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Abstract

The simulation of laser based manufacturing processes plays a key role in the
application in production as well as their improvement. With Computational
Fluid Dynamics (CFD), the conservation laws governing laser simulations can be
predicted quantitatively. As there are multiple physical phenomena involved, the
accurate simulation of processes is computationally demanding. We hypothesized
that computations based on the Discrete Element Method (DEM) like
Lagrangian particles can be accelerated, using the parallel processing power of
graphics processing units (GPU).

In this thesis, an existing numerical solver using the open-source CFD software
OpenFOAM® is adapted. All computations regarding the DEM can be
outsourced to the GPU, resulting in a reduction of the execution time. The
software is validated against the original solver showing quantitatively similar
simulation results. Depending on the accuracy of the simulation, the execution
time of the GPU-accelerated solver can be more than 100 times faster.

The implementation using discrete Lagrangian particles to simulate the
propagation of the laser offers further advantages for the simulation of multiple
reflections. Although it is possible to calculate beam propagation and reflections
by solving a differential form of the radiative transport equation coupled with ray
tracing, the approach gets computationally extremely expensive. With
Lagrangian tracers, not only the beam propagation and energy transfer to the
mesh can be simulated. Furthermore, it is possible to take into account
polarization and wave effects like interference.
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Kurzfassung

Die Simulation von laserbasierten Fertigungsverfahren spielt eine Schlüsselrolle
bei deren Anwendung und Verbesserung. Mit Modellen der numerischen
Strömungsmechanik (CFD) lassen sich Prozesse wie Laserschweißen quantitativ
vorhersagen. Auf Grund der Vielzahl der physikalischen Phänomene ist die
akurate Simulation solcher Prozesse sehr rechenintensiv. Wir haben die
Hypothese aufgestellt, dass Berechnungen, die auf der
Diskrete-Elemente-Methode (DEM) beruhen, durch den Einsatz von
Grafikprozessoren (GPU) beschleunigt werden können.

Im Rahmen dieser Masterarbeit wird ein bestehender CFD-Solver in der
Simulationssoftware OpenFOAM® angepasst. Alle Berechnungen der DEM
können auf der Grafikkarte vorgenommen werden, wodurch die Simulationszeit
reduziert wird. Die Validierung erfolgt gegenüber dem ursprünglichen Solver und
zeigt quantitativ gleiche Ergebnisse. Abhängig von der eingestellten Präzision
lässt sich die Simulationszeit um mehr als das 100-fache verkürzen.

Die Ausbreitung des Laserstrahls lässt sich durch Lagrangesche Partikel
berechnen. Dieser Ansatz vereinfacht die Simulation von Vielfachreflexionen.
Zwar ist es auch möglich, die Strahlausbreitung und Reflexion durch Lösen der
differenziellen Strahltransportgleichung in Kombination mit Ray-Tracing zu
berechnen. Allerdings ist dieser Ansatz deutlich rechenintensiver. Durch
Lagrangesche Tracer kann sowohl die Strahlausbreitung als auch der
Energietransfer an das Gitternetz simuliert werden. Weiterhin besteht die
Möglichkeit, Polarisation und Interferenz sowie weitere sekundäre Effekte
einzubeziehen.
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1 Introduction

In recent years, laser based manufacturing processes have become widely used.
Compared to similar production operations, there is generally low throughput
times, tool wear and component degradation due to heat. Meanwhile, very high
precision and flexibility can be maintained. As with most technologies, the full
potential can be utilized when accurate simulation software is at hand. The
magnitude of different parameter combinations can not be considered in real-life
experiments.

Laser simulations are computationally demanding, as there are multiple physical
phenomena interacting with each other, including fluid flow, heat transfer, phase
changes and material deformation. With Computational Fluid Dynamics (CFD),
the conservation laws governing fluid motion can be predicted quantitatively.
The Finite Volume Method (FVM) is a numerical technique, allowing the
discretization of partial differential equations like the conservation laws. Key
feature is the division of the simulation geometry into a finite number of cells or
volumes. Some terms of the conservation equations are transformed into face
fluxes. The evaluation of these fluxes is inherently conservative, as the flux
leaving a given volume is the same as the flux entering the adjacent control
volume. This property makes the FVM the preferred method in CFD [14] [17].

Another description of conservation laws is the Lagrangian approach. Here, fluid-
flow and transport phenomena are formulated following a material volume. One
application is the Discrete Element Method (DEM). It is generally used for the
computation of large numbers of particles in motion. A coupling of both methods
has proven to be an effective tool to conduct laser simulations. Yet due to the
complexity, simulations running on CPUs can take weeks or months to complete.

The graphics processing unit (GPU) is a highly parallelized computer hardware.
It can perform thousands of congruent computations simultaneously. By using
the processing power of GPUs, simulation applications can be accelerated,
allowing for a faster and more accurate prediction of the behaviour of the system.
Such speedups in turn, lead to improved understanding of the processes. This
enables better control of the laser-material interaction, higher quality parts and
more efficient manufacturing.
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1 Introduction

In the following thesis, the feasibility of using GPUs in order to accelerate FVM-
DEM simulations in OpenFOAM® is investigated.

Project Goals

The aim of this thesis will be the portation of the Lagrangian DEM part of an
existing mixed FVM-DEM multiphase solver to be executable on the GPU for
performance benefits.
To be more precise, this involves the following tasks:

• Implementation of the 3D particle tracking algorithm in CUDA

• Creation of a static CUDA library which executes all computationally
intensive and parallelizable computations for the particle tracking

• Extension of the existing Lagrangian photonic particle, parcel and cloud
classes in such a way, that the calculations can be either executed on the
GPU or the CPU

• Design of a C++ class which handles all necessary data conversion from the
OpenFOAM® framework to the GPU particle tracking algorithm like mesh
data, particle position & velocity

• Comply to the OpenFOAM® programming idioms (Object-oriented
programming (OOP) and curiously recurring template pattern (CRTP)) as
far as possible and develop all software in an easily extendable way

• Testing of the correct implementation by comparing it to a solely CPU based
approach in more than one test case

• Benchmark the efficiency, latency and memory footprint, identification of
possible bottlenecks

• Documentation of the code through Doxygen in order to be easily expendable
for future users

2



2 Review of Laser Simulation
with OpenFOAM®

In the following chapter, the adapted Volume-of-Fluid (VOF) approach in
combination with the DEM for solving fluid flow problems with Lagrangian
particles is presented. After a brief overview the general model and governing
equations are described. Then the solution procedure using the FVM in the
C++ toolbox OpenFOAM® is presented.

2.1 Overview

The development of an accurate model for the simulation of laser manufacturing
processes is very complex. In order to simulate these processes, a mixture model
for the fluid-mechanical multiphase problem is employed, where the Navier-Stokes
Equation is solved for a mixture of 𝑁 phases. This approach is coupled with
additional models like beam propagation, laser-material interaction, phase change
and surface tension. Fluid simulations are predominantly based on the FVM with
the most widely used method being the VOF approach [12]. It enables the observer
to fix a volume in space and monitor the change in the properties of the fluid, like
velocity, temperature or pressure. A Lagrangian model like the DEM allows the
observer to follow a fixed material volume moving in space and time. A mixed
FVM-DEM approach hence makes the integration of particles into fluid simulations
possible [17]. In the approach described below, particles are used to calculate the
laser beam propagation and material interaction. The solver was developed by
Otto et al. and fist described in [18].

2.2 Model Description and Governing Equations

As the scope of this work mainly focuses on Lagrangian particle tracking as well
as beam-propagation and laser-material interaction, the fluid-mechanical model is
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2 Review of Laser Simulation with OpenFOAM®

outlined briefly with the former procedures explained in more detail. At the end
of this chapter, the overall solution procedure of the utilized multiphase solver is
explained.

Continuity and Momentum Equation

The continuity equation describes the transport of the mixture of phases in the
volume. In its general form it reads as

𝜕𝜌

𝜕𝑡
= ∇ · (𝜌𝒖). (2.1)

The left hand side of the equation denotes the change in time of the density 𝜌 of
the mixture. On the right hand side, the divergence of the vector field of velocities
𝒖 indicates the expansion or contraction of the fluid [9].
The momentum equation relates the forces acting on a volume of fluid to its
acceleration

𝜕 (𝜌𝒖)
𝜕𝑡

+ ∇ · (𝜌𝒖𝒖) = ∇ · 𝝈 + 𝜌𝒃, (2.2)

with 𝒃 denoting any force per unit mass acting on the body of fluid and 𝝈 denoting
the symmetric stress tensor describing all forces acting within the fluid. The latter
can be rewritten in order to emphasize the linear relationship between shear stress
𝝉 and shear rate as

𝝈 = 𝝉 − 𝑝𝑰. (2.3)

The body forces can be split up into gravitational and surfaces forces as well as a
Darcy source term due to movement restrictions of the solid phases [21]:

𝜌𝒃 = 𝑺𝑔 + 𝑺𝑠 + 𝑺𝑑 (2.4)

Energy Equation

In the simulation of multiphase mixtures, all phases inside a cell share a common
temperature 𝑇 which is relevant for heat conduction. Since the convective
transport is associated with the individual phase and motion, it is decoupled
from the conductive transport and calculated first. Due to the
temperature-dependency of the materials heat conductivity and capacity,
convection is then calculated by solving the equation

𝜕𝐸𝑖

𝜕𝑡
+ ∇ · (𝒖𝐸𝑖) + 𝑆𝑝,𝑖 = 𝑄𝑎𝑏𝑠,𝑖, (2.5)

4



2 Review of Laser Simulation with OpenFOAM®

𝑁 times, once for every phase [2]. The total energy is obtained through
summation of the individual phase energies 𝐸𝑖. The source term 𝑆𝑝,𝑖 represents
thermal-pressure coupling and 𝑄𝑎𝑏𝑠,𝑖 denotes the laser energy absorbed by each
phase 𝑖. Both source terms are distributed energy-conservative among the phases.

Conduction can be calculated after determination of the temperature
distribution 𝑇𝑐𝑜𝑛𝑣 by solving

𝜕
�
𝜌𝑐𝑝𝑇𝑐𝑜𝑛𝑣

�
𝜕𝑡

= ∇ · (𝜅∇𝑇) , (2.6)

where 𝜅, 𝜌, and 𝑐𝑝 denote mixture thermal conductivity, density and specific heat
capacity, respectively. 𝑇𝑐𝑜𝑛𝑣 is the converged temperature value after the convective
heat transport.

Laser Beam Propagation and Interaction

As stated above, the propagation of the laser beam is simulated by distributing
the laser energy onto ’photon’ particles. It must be noted, that not every photon
of the laser beam is explicitly simulated, as this would exceed the processing power
of even the most advanced high performance computer. The propagation with the
speed of light follows a flow field which resembles the caustic of the laser [18]. The
caustic describes the intensity distribution (e.g. Gaussian, tophat or Bessel) inside
the focused beam.
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2 Review of Laser Simulation with OpenFOAM®
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Figure 1: A Gaussian laser beam will have a peak intensity twice as large as a flat
top laser beam with the same average optical power.

The particles velocity 𝒖 is updated each iteration according to

𝒖 =
𝐶

𝑛
𝐷 (2.7)

where 𝐶 denotes the speed of light in vacuum, 𝑛 is the refractive index of the
current medium and 𝐷 is the caustic of the laser interpolated to the position of
the particle.

A laser beam with the intensity 𝐼 hitting a flat material surface will be reflected,
transmitted and absorbed, such that

1 = 𝑅 + 𝑇 + 𝐴 (2.8)
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2 Review of Laser Simulation with OpenFOAM®

defines the energy distribution [13].

The absorption 𝐴 is calculated using Beer Lamberts law for each medium in the
mixture of the cell, weighted by its phase-normed 𝛼𝑖 coefficient:

𝐴 =
𝑁∑︁
𝑖=1

𝛼𝑖𝐴𝑖 (2.9)

The absorption coefficient consists of a linear part

𝐴𝑖,𝑙𝑖𝑛 =
1

𝜆
4𝜋𝑘 + 𝑙𝑒

(2.10)

with the extinction coefficient 𝑘, wavelength 𝜆 and the electron ballistic
penetration length 𝑙𝑒. Additional phase specific non-linear absorption involves
the multi-photon, free-carrier, cascade and plasma absorption effects. [13]

Reflection at the material interface is calculated based on the incident angle of
the particle. For polarized light, there are two reflection coefficients, 𝑟𝑠 for
perpendicular and 𝑟𝑝 for parallel polarization. With 𝜃1 and 𝜃2 representing the
angles of incidence and refraction, the Fresnel equations read as

𝑟𝑠 =
𝑛1 · 𝑐𝑜𝑠𝜃1 − 𝑛2 · 𝑐𝑜𝑠𝜃2
𝑛1 · 𝑐𝑜𝑠𝜃1 + 𝑛2 · 𝑐𝑜𝑠𝜃2 (2.11)

and
𝑟𝑝 =

𝑛2 · 𝑐𝑜𝑠𝜃1 − 𝑛1 · 𝑐𝑜𝑠𝜃2
𝑛1 · 𝑐𝑜𝑠𝜃2 + 𝑛2 · 𝑐𝑜𝑠𝜃1 (2.12)

with the refractive indices 𝑛1 and 𝑛2 of the two media. The reflection is composed
of the normalized reflection coefficients with the respective proportions of parallel
(𝑝) and perpendicular (𝑠) polarized light [13]:

𝑅 = 𝑠 · 𝑟2𝑠 + 𝑝 · 𝑟2𝑝 (2.13)

For unpolarized light one can assume an equal distribution of the polarization
states and the equation simplifies to:

𝑅 =
𝑟2𝑠 + 𝑟2𝑝

2
(2.14)

Due to the conservation of energy, the transmission 𝑇 is the portion of the incident
power that is not absorbed nor reflected. It arises from equation 2.8. The refracted

7



2 Review of Laser Simulation with OpenFOAM®

particles propagate with a straight linear movement through the new media. The
direction is calculated according to Snell’s refraction law:

𝑛1
𝑛2

=
𝑠𝑖𝑛𝜃2
𝑠𝑖𝑛𝜃1

(2.15)

2.3 OpenFOAM® and FVM

In order to simulate flow problems, the derived set of governing equations is
combined with a numerical model which can be solved on a computer. The basic
idea is to describe continuous physical properties with discrete values. By
splitting time into intervals of duration Δ𝑡, space into finite volumes and fields
into discrete cell values, the partial differential equations that describe physical
phenomena can be simplified into sets of linear equations. [9]

Figure 2: Continuous physical entities are represented by equivalent discrete
entities [9]

.
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2 Review of Laser Simulation with OpenFOAM®

OpenFOAM® is an open-source C++ toolbox for simulating fluid dynamics
based on finite volumes. It offers a variety of built-in applications that fall into
three categories: pre-processing, solving and post-processing. The pre-processing
includes mesh-generation and data-manipulation tools. Solvers are designed to
numerically solve a specific problem in fluid (or continuum) mechanics.
Post-processing tools like paraView allow the solution visualization using a
graphical user interface (GUI). Due to the open accessibility of the source code,
existing solvers can be improved and adapted easily [11].

OpenFOAM® finds wide applications for fluid flow, heat transfer and
multi-physics simulation problems. The Finite Volume Method is used to solve
the governing equations of fluid dynamics. FVM is a numerical technique used to
solve partial differential equations (PDE). The domain is divided into many
small control volumes with a simple geometry. The PDEs are solved by
approximating the average values of variables and fields in each control volume.

By utilizing the FVM in OpenFOAM®, we can simulate the multiphysics
phenomena that occur during laser based manufacturing processes, and by
combining the FVM with DEM, we can model the beam propagation.

9



3 GPU Computing

To understand the principles of GPU programming, an overview of GPU
architecture as well as major differences compared to Central Processing
Unit (CPU) architecture is given. Lastly the NVidia programming language
CUDA is presented with a context to understand how the coding model works.

3.1 Introduction

In 1965 the engineer and entrepreneur Gordon Moore predicted in an article in
Electronics that the number of transistors contained on semiconductor chips would
roughly double each year. His forecast proved to be true for many years, with
the semiconductor industry seeing an increase in component density as well as
frequency. In the early 2000’s the industry hit what is called the ’power wall’.
Cramming more transistors into chips running at ever higher frequencies increased
the power consumption exponentially. This increased the CPU’s power dissipation
beyond the means of inexpensive cooling techniques. There are only two ways of
solving this problem: sophisticated cooling techniques and the move to the multi-
core CPU design [6].

10



3 GPU Computing

Figure 3: 42 Years of Microprocessor Trend Data [19].

In 2005, both Intel and AMD produced the first multi-core CPUs. As it is visible
in figure 3, the number of logical cores has increased ever since [6].

graphics processing units are available since the mid 1980s. Game consoles required
dedicated hardware to generate the images in fractions of a second. Since these
images are made up of many pixels, GPUs developed into highly parallel compute
units with hundreds of physical cores. The image processing methods and hardware
began to move into computers and have evolved into the graphical user interfaces
everyone is now accustomed to. [5]

By the early 2000s programming languages specifically aimed at harnessing the
power of GPUs with OpenGL (Khronos Group) or NVidia releasing Compute
Unified Device Architecture (CUDA). CUDA was built as a C/C++ and Fortran
extension, allowing the development of GPU-specific code without deepest
technical insight. This caused the use of GPUs for mathematical and scientific
computing to explode.

3.2 Architecture of Graphics Processing Units

At the highest level, a GPU is a highly parallel computing device, consisting of
multiple processing units and a memory hierarchy. The processing units are called

11



3 GPU Computing

Streaming Multiprocessor (SM) and are connected to an on-chip L2 cache and a
high-bandwidth DRAM.

Figure 4: GA10x GPU Architecture [5]

The parallel processing power of a GPU is mostly determined by its Streaming
Multiprocessor and cores. The SMs contain several cores which are responsible to
execute the instructions. These instructions are executed with the Single

12



3 GPU Computing

Instruction Multiple Data (SIMD) technique. This allows to process multiple
pieces of data with a single instruction concurrently.

Each SM has a small local memory called Shared Memory. It can be accessed
faster than the large Video Random Access Memory (VRAM). In order to reduce
the load on the VRAM and to hide latency, intermediate results and thread-private
variables are stored here.

A thread is a small set of instructions or subset of a process. On the GPU, thread
scheduling is implemented in hardware. The scheduler of each SM bundles threads
into warps of 32 threads. The threads of a warp are executed simultaneously, they
share the same process state and adress space. Because of this, Nvidia refers
to this architecture as Single Instruction Multiple Threads (SIMT). In case a
warp has to wait for data, its execution can be exchanged by another warp, ready
for calculation. Since each warp executes one common instruction at the time,
divergent branching in a warp is inefficient. [4][5][1]

3.3 CUDA Programming

The CUDA programming language extends C++ through the definition of GPU-
executable kernels. When calling a kernel it is executed 𝑁 times by 𝑁 different
CUDA threads. As opposed to standard C++, where a function is executed only
once by the process. Kernels can be called from the host, which is the CPU process,
or from the device, the GPU. In the kernel definition, the specifiers __global__ or
__device__ define, where a certain kernel can be called. A __global__ kernel is
called using the <<<numBlocks, threadsPerBlock>>> execution configuration.
A __device__ kernel is called from inside the device and executed only by the
thread that called it. [3]

Let’s compare a simple vector addition programmed in C++ and CUDA. The
VecAdd kernel is defined globally and called form within the main()-function block.
The kernel is invoked with 𝑁 threads, where 𝑁 is the number of vector elements
to be added. Inside the kernel, each thread sets its thread id, adds the elements
from the A and B vector at that index and sets C. Hence each thread performs
two READ, one ADD and one WRITE operation.

Listing 3.1: Vector addition CUDA kernel
1 // Kernel d e f i n i t i o n
2 __global__ void VecAdd( f l o a t ∗ A, f l o a t ∗ B, f l o a t ∗ C)
3 {
4 i n t i = threadIdx . x ;
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5 C[ i ] = A[ i ] + B[ i ] ;
6 }
7

8 i n t main ( )
9 {

10 . . .
11 // Kernel i nvoca t i on with N threads
12 VecAdd<<<1, N>>>(A, B, C) ;
13 . . .
14 }

In regular C++, the addition is executed inside a for-loop. The index 𝑖 goes from
0 to 𝑁. In each iteration, the elements from A and B are added and set at the
index in the C array. It becomes obvious that the work of the function is executed
only by one process, as opposed to the kernel call, where the work is split evenly
over all participating threads.

Listing 3.2: Vector addition C++
1 i n t main ( )
2 {
3 . . .
4 f o r ( i n t i = 0 ; i < N; i++){
5 C[ i ] = A[ i ] + B[ i ] ;
6 }
7 . . .
8 }

On first glance, the vector addition using a CUDA kernel seems superior in every
aspect. Yet what is not shown in the code snippets is the device memory
management. As stated above, host and device have their own separate memory.
Kernels operate out of device memory, meaning that the data must first be
allocated and copied to the device, before calculations can take place and the
result is copied back to the host. The transfer of data between CPU and GPU
takes place through a PCIe 4.0 bus interface, offering a bandwidth of up to 64
GB/s. For comparison, data transfer between CPU and DDR5 RAM (dual
channel DDR5-6400) can scale up to 102 GB/s and the theoretical memory
bandwidth on the GPU is 936 GB/s (NVidia GeForce RTX 3090FE). Moreover,
the PCIe bus is a latency source, with a kernel launch latency of ∼ 10𝜇𝑠 as
opposed to an on device memory latency of ∼ 100𝑛𝑠.[5]

In conclusion GPU kernel functions can offer large potential for accelerating
computations. The CPU is a low latency component and trumps at serial
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processing. Fewer but very versatile cores at higher clock speed are able to
execute diverging instructions. The GPU on the other hand is a high throughput
component specialized in parallel processing. Running simple instructions
without divergent branching on thousands of cores in parallel can make up the
slower clock speed and reduced versatility.
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4 Particle Tracking on the GPU

In this chapter, OpenFOAM® mesh representation is explained, as its
understanding is crucial for the comprehension of the applied particle tracking
algorithm. Next, the tracking algorithm itself is presented. It was published by
Macpherson et al. ([15]) and implemented in CUDA for GPU accelerated particle
tracking in flow fields by Bruenggel ([1]). Since ’photon’ particles are not affected
by the velocity of the fluid, the provided implementation was adapted. The
software now also focuses on the laser-material interaction as a parallel
implementation proved very effective. Lastly, the implementation of the
algorithm in OpenFOAM® is explained, emphasizing the communication
streams and synchronization points between CPU and GPU.

4.1 Mesh Representation

OpenFOAM® offers the mesh-generation application blockMesh. It can generate
structured and unstructured polyhedral meshes. The mesh is then stored in files of
the simulation case directory. The content is explained below. For a more detailed
description, refer to [11], [1] and [10].

• Points: A list of cell vertex coordinates

• Faces: A list of cell faces. The point indices are used to reference the
vertices. OpenFOAM® distinguishes between boundary faces and internal
faces. Internal faces have an owner and a neighbour cell, whilst boundary
faces lie on the boundary of the simulation domain and just have an owner
cell assigned

– Owner: Each face is assigned an owner cell. For internal faces, this is
the adjacent cell with the lower label. The face normal vector always
points in the outside direction of the owner cell

– Neighbour: Internal faces are assigned a neighbour cell. This is the
adjacent cell with the higher label. Since not all faces are internal faces,
the list of neighbours has less items than the list of owners
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• Cells: A list of cells. Each cell class is defined by a list of face numbers

• Boundary: A list of patches. Each patch can include one or more boundary
faces, representing different region of the boundary. This allows for the
definition of multiple boundary conditions

This representation of the mesh allows for a static linearization. The essential file
contents can be transferred into array containers and stored in the GPUs main
memory. Hence the particles can be tracked in global coordinates as well as in
their cell occupancy.

4.2 Basic Particle Tracking Algorithm

Consider the situation as depicted in figure 5. A particle is located at the initial
position a in cell A and moves to the end position b in cell B. During this tracking
event, the particle will move through position p, where the trajectory crosses face
1 and change into cell C. Next it moves along the line pp’ to position p’ and
change cell again. Finally, the particle arrives at position b.
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Figure 5: Exemplary particle trajectory with particle moving from position a to b
while crossing two faces

The first part of the motion can be described by the formula

p = a + 𝜆𝑎 · (b − a) (4.1)

where 𝜆𝑎 denotes the fraction of the path ab where the intersection with the face
2 occurs, which is defined by the face centre 𝐶 𝑓 and the face normal 𝑆 𝑓 . The
position p is not known. Since p lies on the face

(p − 𝑪 𝒇 ) · 𝑺 𝒇 = 0 (4.2)

substituting Equation 4.1 into eq. 4.2 gives

𝜆𝑎 =
(𝑪 𝒇 − a) · 𝑺 𝒇

(b − a) · 𝑺 𝒇
(4.3)
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and hence an equation which no longer depends on p. With Equation 4.3 the
value 𝜆𝑎 can now be calculated for each face of the cell, that the particle
occupies. For each calculation, the respective face centre 𝐶 𝑓 and the face normal
𝑆 𝑓 is applied. The face that the particle actually crosses is the face with the
lowest 𝜆𝑎 value in the interval 0 ≤ 𝜆𝑎 ≤ 1. In the example situation from figure 5,
face 2 will yield a smaller 𝜆𝑎 than face 1 (or more exact, the plane defined by
face 1) since this track fraction is smaller. Once the correct face is found, the
particle can be moved onto the face hit using Equation 4.1 and the occupancy
information is updated to cell C. The next tracking event is executed in a similar
way, with the calculation of the 𝜆𝑎 values for all faces of the cell. Once no face
satisfies 𝜆𝑎 ∈ [0, 1], then the position b must be in the same cell as the particle
and it can directly moved to the end point of the motion.

The calculation of 𝜆𝑎 for one particular face can be categorized into three cases.
𝜆𝑎 < 0 corresponds to the particle moving away from the face. 𝜆𝑎 > 1
corresponds to the particle moving towards the face but not crossing it and
0 ≤ 𝜆𝑎 ≤ 1 corresponds to the particle moving towards a face and crossing it.

This basic tracking algorithm might loose track of particles, when the mesh consists
of cell faces based on more than three vertices. In that case, not all vertices
necessarily lie on one plane. The mesh then stores the face centroid as well as the
face surface vector, which in its magnitude represents the effective plane of the
face. The mesh representation is now no longer space filling and it is possible to
loose track of a particle crossing a face close to a vertex [1] [15].

4.3 Modified Tracking Algorithm

The basic particle tracking algorithm can be modified in order to mitigate the
problem of loosing track of particles. With reference to figure 5, it is also possible
to use other points inside the cell to determine which faces the particle might cross.
Starting at any other position inside the cell, a particle would cross the planes of
the same faces as if it would have started at position a. It is thus possible to
replace a in Equation 4.3 with 𝑪𝒄, which yields

𝜆𝑐 =
(𝑪 𝒇 − 𝑪𝒄) · 𝑺 𝒇

(b − 𝑪𝒄) · 𝑺 𝒇
(4.4)

As in the previous case, if there is no face with 0 ≤ 𝜆𝑐 ≤ 1 the end point of the
motion must be in the same cell. Otherwise, 𝜆𝑎 must be calculated for all faces
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where 𝜆𝑐 ∈ [0, 1] and the particle is moved onto the face with the smallest 𝜆𝑎.
With 𝜆𝑚 = 𝑚𝑖𝑛(1, 𝑚𝑎𝑥(0, 𝜆𝑎)) Equation 4.5 is then used to move the particle to
position p.

p = a + 𝜆𝑚 · (b − a) (4.5)

Below, the complete tracking algorithm can be seen as pseudo code. This was
taken from [15] (Algorithm 1).

Algorithm 1 Modified particle tracking algorithm
while particle has not reached end position b do

find set of faces 𝐹𝑖 for which 0 ≤ 𝜆𝑐 ≤ 1
if size of 𝐹𝑖 = 0 then

move particle to end position b
else

find face 𝑓 ∈ 𝐹𝑖 for which 𝜆𝑎 is smallest
move particle with 𝑝 = 𝑎 + 𝜆𝑎 · (𝑏 − 𝑎)
set particle occupancy to neighbouring cell of 𝑓

end if
end while

The algorithm can still cause particles to get stuck. When moving a particle onto a
face and calculating all 𝜆𝑎, the calculation might yield the same face again, causing
the particle to move back into the previous cell. Consider the situation as depicted
in figure 6.

cell A

b

cell B
a

Figure 6: A particle getting stuck on the face between two cells, when the
trajectory lies on the effective plane of the face
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Since the trajectory of the particle lies on the effective plane of the face between
the cells A and B, the algorithm will always yield the same face. This will cause
the particle to flip from one cell to another with extremely small 𝜆𝑎 values, hence
making no progress in its Lagrangian time step. The problem can be avoided by
implementing an 𝜖-environment or by disabling the face for the next calculation.
In a structured mesh, the rotational axis of a laser beam might lie exactly on this
plane. An implementation of the particle algorithm with an 𝜖-environment helped
with no particles getting stuck, but it also caused unphysical behaviour, as some
particles remained longer in the simulation domain as the 𝜖-environment slowed
them down. Thus in the actual implementation, a face can not be crossed twice.

4.4 Implementation in OpenFOAM®

The actual implementation of the algorithm is more complicated. Before, the
velocity of the particle was assumed to be constant during all events of the
Lagrangian tracking step. In fact this does not describe the physical behaviour in
the beam. Instead, as stated in Section 2.2, the propagation follows a flow field
resembling the caustic of the laser beam. Consequently, the particles velocity
depends on the velocity of the cell it occupies and changes once the particle
changes cell (or reaches an interface). The motion of a ’photon’ particle during
one Eulerian time step describes its track from a to b. This motion is broken up
into several smaller Lagrangian time steps. Figure 7 shows a particle at the
beginning of the Eulerian time step at position a. The end position is estimated
using the laser direction field of the actual cell, marked as 𝒃1. Once the cell
changes, the end position is re-estimated using the laser direction field from the
new cell.
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b4 

b

b1

b2

b3 

a

Figure 7: A particle trajectory through multiple cells with the cell field influencing
the particles path causing the end position to change after each tracking
event [15]

The thick red line shows the actual trajectory of the particle. The light red arrows
point to the end position of each respective sub step [1]. A Lagrangian step is
limited by two factors. For one, the particle crosses a face and changes occupancy
to another cell, making it necessary to reestimate the velocity. Secondly, the
Courant–Friedrichs–Lewy condition must be fulfilled:

𝐶𝑜 =
𝑢Δ𝑡
Δ𝑥

< 𝐶𝑜𝑚𝑎𝑥 (4.6)

where 𝐶𝑜, 𝑢, Δ𝑡 and Δ𝑥 denote the dimensionless Courant number, the
magnitude of the velocity, the time step and the length interval between mesh
elements respectively.
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5 Software Development

The tracking engine is built upon the photonParticle and photonCloud library
wich is based on the regular OpenFOAM® Lagrangian particle library. The gpu
switch toggles the execution of the particle tracking and interaction on the CPU or
GPU. The CUDA code must be compiled separately using NVidias nvcc compiler
as shared library and is linked to the OpenFOAM® solver.

Software Design

The communication between the solver and the shared library respectively the
GPU takes place using two structs named StaticHostData and TimeDepHostData.
Both contain several std::vector container, the former encapsulating all static
mesh data and the latter the dynamic mesh and particle data. The static struct is
used before the first tracking event and after each mesh refinement. The dynamic
struct is altered every iteration, both by the CPU solver and the GPU.
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<<struct>>
StaticHostData

cellCentres
cellLabels
cellLengthScale
cellVolumes
faceLabelsPerCell
faceLabelsIndex
owners
neighbours
faceCentre
faceNormals
lambdaCNumerator
phasesState
constrainedDirections

vec<int>
vec<int>
vec<scalar>
vec<scalar>
vec<int>
vec<int>
vec<int>
vec<int>
vec<scalar>
vec<scalar>
vec<scalar>
vec<int>
vec<int>

...

<<struct>>
TimeDepHostData

particlePositions
estimatedEndPositions
Uparticle
energy0
energy
absCoeff
occupancy
occupancy_old
nReflections
nRefractions
phaseLabelsCurrent
nFacesFound
facesFound

vec<scalar>
vec<scalar>
vec<scalar>
vec<scalar>
vec<scalar>
vec<scalar>
vec<int>
vec<int>
vec<int>
vec<int>
vec<int>
vec<int>
vec<int>

...

Figure 8: C++ structs for data communication between CPU and GPU

The std::vector containers are referenced by a custom wrapper class cuvector
which encapsulates the container in host memory as well as a pointer to the device
memory. Furthermore, basic data transfer functionality like upload and download
to device memory is possible via member functions.

Mesh data

All mesh data is stored in a FlatMesh class. This class compares to the mesh
classes of OpenFOAM® in terms of member variables and basic functionality.
Furthermore, it is used to calculate the 𝜆𝐶-numerator for the modified tracking
algorithm, cell neighbour relations as well as encapsulate the transfer of mesh
data [1].

OpenFOAM® meshes are stored in linked-list containers, which are not suitable
for parallel processing on the GPU. Thus the lists are flattened into fixed size
arrays. Vectors are stored using the CUDA vec3 and int3 data types, allowing
for standard array indexing using the cell or face indices. The mesh data is stored
in such a way, that structured and unstructured meshes can be used, e.g. meshes
where cells can have varying number of faces. The cell labels are not stored, since
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they go from 0 to the number of cells -1. The association of face labels to each
cell and vertex labels to each cell was taken from [1] and works the same way for
both connectivities:

0 1 32

0 8 3216

0 1 32 4 5 76

8 8 88

(0.0 0.0 0.0) (1.0 0.0 0.0)

cellLabels

pointLabelsIndex

pointLabelsPerCell

nPointsPerCell

pointCoordinates

8 points per cell

Figure 9: Vertex connectivity arrays allow use of unstructured and refined meshes.

Figure 9 illustrates the connectivity mapping from cell labels to the point labels
of the cell. The point labels are stored in the pointLabelsPerCell array. This
array has more entries than the number of points in the mesh, as each vertex can
belong to more than one cell. Using the point labels, the respective coordinates
can be obtained from the pointCoordinates cuvector.
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Particle Engine

CuData

FlatMesh ParticleData

ParticleEngine

Figure 10: Inheritance diagram for CuData class.

The main body of the software is the ParticleEngine class. It inherits from
ParticleData, a wrapper class similar to the ParticleEngine class with all
relevant functionality of the GPU particles. The FlatMesh and ParticleData
class inherit from the CuData class which handles the conversion from
std::vector to the CUDA vec3 and int3 data types.

Each iteration of the OpenFOAM® solver triggers the execution of the global
runStep kernel. The basic procedure can be seen in figure 11.
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Estimate End Position
Estimate the end position of the particles current
 tracking event, limited by the Courant number

Find Faces

Find the set of faces, for which 
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Move particle to end position or into the face hit

Interpolate field values
Interpolation of the field values to the new position
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Figure 11: Procedure of the runStep-kernel with all device kernel calls.

The execution configuration is calculated such that there is one kernel thread for
each particle in the cloud. The big kernel launches device kernels to complete the
different substeps of the tracking event and returns after all threads finished the
Eulerian time step for their particle and successive child particles.

Field Interpolation

Several scalar and vector valued fields are necessary for the beam propagation
and material interaction calculation on the GPU. The values of the fields are
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defined only in the cell centre of each cell. In order to interpolate this value to
the exact position of a particle inside a cell, the field is interpolated according to
the OpenFOAM® interpolationCellPoint functionality [8]. At first, the cell
centre values are interpolated to the vertices of each cell. The vertex values are
influenced by the centre values of all cells that the vertex is part of. Next, the
tetrahedron containing the particle is determined. The cell is split into space
filling tetrahedron, each consisting of three face vertices and the cell centre. The
barycentric coordinates of the particle inside the tetrahedron are determined
according to [7]. Using the coordinates as weights and multiplying them with the
vertex and centre field values, the field can be interpolated to any position of the
particle inside the cell [10] [11].

Dynamic Mesh Refinement

Adaptive or dynamic mesh refinement refers to the adaption of the accuracy of the
solution within certain sensitive regions of the simulation domain during the time
the solution is calculated. Whereas in a static mesh, the solution is calculated
in equidistant or predetermined spacial steps, a dynamic mesh can react to very
large gradients by spacing the grid more finely in regions where higher accuracy is
needed. The FlatMesh class uses the point, face, owner, neighbour and cell lists
(see subsection 4.1) and stores the data in fixed length arrays on the GPU. A mesh
refinement changes the length of the lists as well as the connectivity of the face
and vertex indices and makes a re-initiation of the FlatMesh necessary. As there
is no variable length std::vector equivalent container available on the GPU, the
memory space is freed and reallocated every time the mesh changes. This naturally
leads to memory transfer overhead. Additionally, the 𝜆𝐶-numerator is calculated
again for all cells.
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6 Benchmarks and Comparison

The main goal of this work is to make use of the GPU parallel efficiency in order
to speed up the simulation run time. A comparison between the existing CPU
based approach and the GPU accelerated solver thus consists of two parts. First,
the simulation result should be at least quantitatively similar. Although the CPU
solver uses a slightly different barycentric particle tracking algorithm, the particles
trajectory should be almost identical. Second, the execution time of the GPU
solver should be faster. More specifically, the execution time of the DEM part of
each time step will be compared, as the rest of the solver is identical.

In this chapter, four test cases will be evaluated. First of all, the GPU solver is
validated against the CPU solver. Then, a simple case with multiple refractions
and a static mesh is simulated. Next, the effect of mesh refinement and the
successive reallocation and transfer of memory is examined. Finally, a realistic
pulsed laser drilling simulation is conducted.

6.1 Validation

In order to visualize diverging results, the CPU and GPU solver are used in a
simulation with a 2D meshing of 12000 cells. During laser pulses, 2000 particles
are injected into the domain per time step. After 450 time steps, the simulation
results are compared.
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Figure 12: Transmitted intensity field for CPU (left) as well as the relative error
between the CPU and GPU field (right)

The transmitted laser intensity in the domain can be seen in figure 12. On the left,
the field calculated by the CPU solver shows the intensity of the laser beam. On the
right, the relative error per cell between the CPU and GPU solver implementation
is visible. Qualitatively, both simulations are the same. The maximum relative
error is below 0.0000001% with less than 100 cells affected. It is explainable by
particles changing cell at different times in the simulation, due to the different
tracking algorithms in use. The error in the intensity field does not accumulate
over time, as there are time steps with no particle injections causing the intensity
to be zero in all cells.

Figure 13: Work piece temperature field for CPU (left) as well as the relative error
between the CPU and GPU field (right)
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The temperature field as well as the relative error in cell temperature between
both solvers can be seen in figure 13. Here, the error does accumulate. After 450
steps, the maximum relative error is less than 0.00005%. It is caused by minor
divergences in the trajectories of the particles accumulating over time.

Both results show a negligible divergence between the two solvers. Such small
errors will not noticeably affect the simulation.

6.2 Multi-Refraction at Static Mesh

Small Mesh

In this simulation, a 1mm thick plate of borosilicate glass is exposed to a laser
beam for 10 nanoseconds. The meshing of the domain is coarse with less than
4000 cells. The number of refractions is set to 2. This results in a maximum
number of 2 newly created particles for each initial particle.

On domains composed of relatively few cells, simulating with multiple CPU cores
does not make any sense, as the performance gain does not outweigh the
communication overhead between threads. Hence on the small domain, the pure
single core CPU performance is compared to the GPU performance. With less
than 4000 cells, the size of the mesh is only 2.76 MB and only about half that
size has to be transferred to the GPU each time step, including e.g. the laser
direction cell and point fields. The data size for each particle is around 0.55 kB.
Thus the particle data is larger than the mesh data when simulating with more
than 2000 particles.

Cells Mesh data Particle data (1 particle) Particle data (100k particles)
4000 2.76MB 0.55 kB 5.15MB

Table 1: Data size of mesh and particle data for small mesh benchmark
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Figure 14: Execution time for particle tracking and interaction on a small static
mesh

Figure 14 shows the execution time for the particle tracking and mesh interaction
function. The simulation was conducted multiple times, thus the average value as
well as the standard deviation is displayed. The performance benefit when using
the GPU compared to a single core CPU execution is clearly visible. Already
at 1000 particles, the GPU is more than 20 times faster. At 25k particles, the
execution time on the CPU is 255 seconds and 1.5 seconds on the GPU. Above
around 10k particles, the GPU scales linearly with the number of particles. This
can be explained by the maximum number of threads for the given program being
reached. This causes single threads to calculate multiple particles and thus linearly
increases the workload of the slowest thread.
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Large Mesh

Most simulations utilize multiple CPU cores when they can be effectively
parallelized, due to reaching a threshold size. The parallelization shares the
workload across multiple cores, allowing for faster processing. However, due to
dependencies between calculations or iterations, a certain communication
overhead increases the run time.

Figure 15: Decomposition for four CPU processes divides the domain through the
optical axis of the laser.

Multi-core efficiency of the CPU solver is compared to the GPU solver by
decomposing a 3D domain into 2 and 4 subdomains respectively. Figure 15 shows
the decomposition along the x- and z-axis, resulting in four equally sized
subdomains around the optical axis of the laser. The 3D mesh consists of 252000
cells, thus the data traffic between CPU and GPU is considerably larger, with
around 250MB per iteration for the mesh alone. Furthermore the mesh size is
around five times larger compared to the particle data for 100k particles. This
leads to this simulation configuration being rather memory bound, at least for
smaller amounts of particles. The domain size is 70 μm in each direction.
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Cells Mesh data Particle data (1 particle) Particle data (10k particles)
252k 250MB 0.55 kB 5.15MB

Table 2: Data size of mesh and particle data for large mesh benchmark
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Figure 16: Execution time for particle tracking and interaction on large static mesh
with multi-core CPU and GPU.

The execution time plotted over the number of particles can be seen in figure 16.
Even for few particles, the DEM part of the code takes more than 1.5 seconds to
complete. With an increasing number of particles, the duration stays the same.
As expected, the kernel execution is not a bottleneck with a large mesh as the
function is limited by the bandwidth between CPU and GPU.
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The multi-core simulation time for 2 and 4 CPU cores increases linearly with the
number of particles. The domain decomposition is very fair in terms of
computational demand per process. Hence the 4-core execution is almost twice
as fast as the 2-core execution, showing almost perfect scaling. The
communication overhead between processes is evidently very low. Depending on
the CPU hardware, this effect can be scaled up. The GPU execution time is still
significantly faster.

In conclusion, the execution time for the particle tracking using the GPU is faster
than the multi-core CPU when using around 1500 particles or more.

6.3 Laser Exposure on a 3D Domain with
Mesh-Refinement

In order to validate the compatibility of the algorithm with mesh refinement and
test its influence on the particle tracking algorithm, the 2D test case from section
6.2 is adapted to a 3D mesh. In the unrefined base state, the mesh consists of 16200
cells. Every 5 time steps, the cells of the borosilicate glass work piece are refined,
up to three times in total. Hence one base hexahedron is refined into 8, 64 and
then 128 smaller cells. The simulations were conducted with just a single particle
such that the results are not influenced by large data traffic for the particles.

Figure 17: Unrefined surrounding phase (blue) at the top and three times refined
borosilicate glass (red) at the bottom.
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Base state 1st Refinement 2nd Refinement 3rd Refinement
Cells 16200 29000 124000 868000
Mesh data 9.64MB 16.82MB 70.78MB 488.63MB

Table 3: Number of cells and size of GPU mesh depending on number of
refinements.

With the number of cells increasing to 29000, 124000 and 868000 after the
respective mesh updates, the amount of data to be send to the GPU for each
time step increases from around 10MB up to 500MB. Furthermore, the
refinement overhead for freeing and reallocating the memory space as well as the
recalculation of the 𝜆𝑐-numerator increases the execution time of the GPU
function call, although just in the time steps of the mesh refinement.

The effect of the mesh refinement is clearly visible in figure 18. The time steps 5,
10 and 15 show a spike in execution time compared to the previous time steps.
Especially the last mesh update to the highest refinement is computationally
expensive with a one-time costly 𝜆𝑐-recalculation for all cells. After each mesh
update, the execution time increases significantly because of the increased
number of cells.
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Figure 18: Execution time for moveGPU-function in each time step.

In order to evaluate the costs and benefits of the mesh refinement, it is necessary
to set it into perspective with the overall execution time of the simulation.

Figure 19 compares the DEM-parts share to the overall execution time for each
time step. The size of the mesh does affect the CPU part of the solver as well,
not only due to increased data traffic for the GPU. The fraction of the DEM
calculations are decreasing with an increasing number of cells. In the time steps
where the mesh is refined, the share of the GPU functions execution time to the
overall execution time is smaller than usual. Taking these results into
consideration, the GPUs contribution is around one order of magnitude smaller
than the general cost for a mesh refinement.
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Figure 19: The fraction of the moveGPU-function compared to overall time step.

It must be noted, that a mesh refinement does generally not affect a whole domain
region like the work piece at once. More likely is a refinement at a small region
of interest, like the keyhole of a welding process. Even with a moving keyhole,
the overall size of the refined region does not change a lot. Such refinements
might not affect the OpenFOAM® mesh as much, due to the linked-list storage
containers. The immutable array structure of the GPUs flatMesh on the other
hand is affected not by the size of the refinement region but the overall mesh size.
With the array lengths and connectivity of the face and vertex indices changing,
the whole flatMesh has to be reinitialized. Yet given the GPUs share to the
overall execution time of around 25%, the update overhead does not really affect
the run time, especially when the refine interval is not too small.
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6 Benchmarks and Comparison

6.4 Borosilicate Glass Drilling

The final test case is a realistic borosilicate glass drilling simulation using a pulsed
ultrashort green laser source. The general simulation parameters are listed below:

Wavelength: 515 nm
Pulse energy: 2.333 × 10−6 J
Pulse duration: 28 × 10−12 s
Pulse frequency: 30 × 106 s−1
Pulse shape: Gauss
Beam shape: Gauss
Spot size: 12 × 10−6m
Focus height −260 μm
Work piece material BK7 borososilicate glass
Work piece dimensions (x,y,z) (0.25, 0.5, 0.25) μm

Table 4: Simulation parameters for borosilicate glass drilling case

Even with a coarse simulation domain of around 40k cells, the number of particles
necessary to achieve adequate results without undersampling the propagation of
the laser is around 100k particles. The results from Section 6.2 show that it is
not feasible to compute such complex simulations on the CPU, using the DEM
approach. Thus symmetric boundary condition is applied assuming that the model
is axisymmetric with respect to the optical axis of the laser. It is hence possible to
simulate a quarter of the domain under the assumption that physical variables of
the flow behave symmetrical. The laser beam and simulation domain can be seen
in figure 20.
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6 Benchmarks and Comparison

Figure 20: 3D view of pulsed borosilicate drilling simulation. The transmitted
laser intensity shows the propagation of the beam though the domain.

The focus height of the laser is clearly below the work piece. The idea is to induce
multi-photon absorption at the bottom surface of the glass. The absorption will
then increase from bottom to top, creating a column of molten glass. Due to the
opacity of the molten glass, material vaporization will begin at the top surface. The
vaporization creates a recoil pressure, ejecting the molten glass from the bottom
of the work piece [20].

The case is simulated three times. Two simulations are conducted without
refraction. The transmitted particles follow the caustic of the laser all the way
through the domain. One version does consider an internal reflection at the
bottom glass surface , the other one does not calculate internal reflections. The
third simulation does consider refraction with straight-linear movement according
to Snells refraction law (equation 2.15) as well as one internal reflection. The
features are listed in table 5.
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6 Benchmarks and Comparison

Simulation A B C
External reflection at top surface ✓ ✓ ✓

Internal reflection at bottom surface ✗ ✓ ✓

Refraction ✗ ✗ ✓

Color code blue green red

Table 5: Simulation features for borosilicate glass drilling case

Figure 21 shows the temperature of the work piece along a line parallel to the
optical axis of the laser.
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Figure 21: Temperature distribution through the work piece along the optical axis
of the laser shows greatest heat generation at the bottom.
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All simulations show the greatest temperature at the bottom of the glass. After
8 μs the work piece in case B has heated to around 1370 ◦C. Since the internal
reflection at the bottom is considered, more laser energy was absorbed as in case
A. The temperature gradient for both cases is larger compared to C. This is due
to the refraction causing the beam to diverge as the particles are deflected towards
the perpendicular of the interface. This creates a more even heat distribution,
which counteracts the desired process.

Figure 22: Case A: Evaporation begins at the top but the molten glass is solidified
at the bottom.

Figure 22 shows the simulation process of case A after 31 μs. The glass has molten
and resolidified at the bottom and mid section of the work piece. At the top
surface, a keyhole is emerging. With the solid glass at the bottom, the vapor
pressure cannot eject glass through the bore hole. The drilling process as described
by Schrauben et al. [20] was not reproduced. In this simulation, the borehole is
created solely by material vaporization.

Figure 23 shows the simulation of case B after 28 μs. Here, the evaporation at
the top has just begun with the column of molten glass clearly visible throughout
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6 Benchmarks and Comparison

the cross section of the work piece. At the sheath of the column, some cells show
solidified melt. Some material is already pushed out from the underside of the
bore hole. The simulation resembles the process as described by Schrauben et al.
[20].

Figure 23: Case B: Evaporation begins at the top. The ejection of molten glass at
the bottom is becoming apparent.
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7 Conclusion

The main goal of this thesis was to accelerate an existing FVM-DEM solver by
calculating the Lagrangian particle tracking on the GPU. More specifically, this
involved the following tasks:

The 3D particle tracking algorithm and the photon particle interaction are
implemented in CUDA to be executed on the GPU. A static CUDA library is
compiled and linked to the solver. Each Eulerian timestep, the solver calls the
GPU with all necessary particle and mesh field data. On return, the effects of
the laser beam interaction are transferred to the OpenFOAM® mesh.

The existing photon parcel, particle and cloud classes are extended by the GPU
functionality. Complying to the OpenFOAM® file structure to run applications,
a flag can be set in the cloud dictionary file, whether the particle tracking should
be executed on the CPU or GPU.

All written code is programmed in an object-oriented way. It was not necessary
to comply to the template pattern idiom, as dynamic polymorphism with virtual
functions was not used in the CUDA code. Static polymorphism in terms of base
and derived classes was applied, as mentioned in chapter 5.

The thorough execution time analysis conducted in chapter 6 shows that speedups
of factor 100 and more can be achieved compared to CPU execution. It is worth
using the GPU accelerated solver if the number of particles is greater than 2000.
Since undersampling the laser beam shows in the simulation results as symmetric
stripes or patterns of uneven heat distribution, running simulations with so few
particles does only make sense on very small domains.

The solver can be used to simulate laser based manufacturing processes like
through hole drilling. Experimental results as described by Matsumoto et al.
([16], [20]) can be reproduced in terms of the heating propagation from the
bottom to the top surface of the work piece. The ejection of molten glass from
the bottom of the glass plate was shown.
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8 Discussion and Future Work

Although it is possible to simulate realistic laser based manufacturing processes
with the GPU accelerated solver, the current implementation comes with
drawbacks. A software this size is always in a work-in-progress state. With its
potential to massively accelerate the simulation process, it is worth discussing
current limitations and the functionalities with the biggest prospective for
improvement.

1. MPI-GPU compatibility
OpenFOAM® supports the Message Passing Interface (MPI)
implementation openMPI for running simulations in parallel on distributed
processors. Large simulations are computed using domain decomposition, a
method in which the geometry and associated fields are broken up and
distributed on multiple processors for solution [11]. In the GPU-accelerated
implementation only a single cloud object calling the kernel functions is
supported. OpenFOAM®s domain decomposition will create one cloud
object for each processor handling the particles in its respective part of the
geometry. MPI-GPU compatibility can be achieved in two ways. Either by
recomposing the separate clouds using a single master processor and
subsequently calling the GPU kernel once for every time step.
Alternatively, each processors cloud object could call a separate kernel for
calculating the trajectories and interactions in their geometries. This
demands for CUDA-aware openMPI and requires some changes in the
OpenFOAM® source code.

2. Phase interface evaluation and cell face evaluation
At the current state of the software, the boundary between any two phases is
only evaluated at the cell face, i.e. the boundary between two cells. This is
based on the erroneous assumption, that just a single phase can be present in
any cell. Melting and evaporation cause phase advection into other cells. It is
thus necessary to perform an interface evaluation after the particle tracking.
Therefore, the phase fractions are interpolated to the previously obtained
estimated end position or face intersection as well as the particles current
position. In case of a phase conversion, the phase interface can be linearly
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8 Discussion and Future Work

approximated. The particle is thereon moved onto the boundary between
the two phases, where reflection and refraction are calculated.

3. Kernel execution configuration
The main potential or advantage of calculating the laser beam propagation
using particles instead of solving the radiative transport equation lies in
the possibility to calculate multiple reflections and refractions with exact
interface evaluations. Even modern ray tracing algorithms are not able to
take all beam reflection effects into consideration. The kernel execution
configuration is implemented in such a way, that one thread is called for each
initially present particle at the beginning of each time step. Thus each thread
calculates the trajectory and interaction of one particle and all its (through
refraction) subsequently created children. Calculating more reflections and
refractions for each photon particle will increase the quality of the simulation
at the cost of exponentially higher computational costs. One idea to offset
this increased execution time is to use more threads than the initial number
of particles, with the redundant threads spinning on the memory location of
the later added particles until they are created. Although this violates the
principle of divergent branching mentioned in chapter 3.2, it could potentially
speed up simulations with multiple refractions.

To conclude, the thesis has shown that FVM-DEM simulations can be
accelerated by the use of GPUs. The particle tracking and interaction algorithm
is parallelizable, enabling a faster and more accurate prediction of laser based
manufacturing processes. Especially for scenarios where multiple reflections and
refractions of the beam must be considered, the beam propagation using
’photonic’ particles is worthwhile.
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System Specifications

The benchmarks are conducted on a custom workstation. The system
specifications can be seen below:

CPU Model: i9-12900K
CPU Architecture: Alder Lake
Total Cores: 16
Performance-cores: 8
Efficient-cores: 8
Total Threads: 24
Max Turbo Frequency: 5.20 GHz
Memory Type: DDR5 4800 MT/s
Memory Size: 2 x 32 GB
Max Memory Bandwidth: 76.8 GB/sec
Cache: 30 MB
L2 Cache Size: 14 MB

Table 6: Workstation system specifications

GPU Model: NVIDIA GeForce 3090
GPU Architecture: NVIDIA Ampere
GPCs: 7
TPCs: 41
SMs: 82
CUDA Cores / SM: 128
CUDA Cores / GPU: 10469
Memory Clock (Data Rate): 19,5 Gbps
Memory Bandwidth: 936 GB/sec
L1 Data Cache/Shared Memory: 10469 KByte
L2 Cache Size: 6144 KByte

Table 7: GPU system specifications
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Compilation & Documentation

The static gpuTracking.so library can be compiled using the provided
Allmake.sh shell script or by executing the following make file:

Listing 1: Building gpuTracking.so
1 l i b gpu t r a ck ing . so : GPUTracking . cu Part i c l eData . cu
2 FlatMesh . cu Par t i c l eEng ine . cu
3 deviceManagement . cu Kerne ls . cu
4 nvcc
5 −I$ (HOME)/NVIDIA_GPU_Computing_SDK/C/common/ inc
6 −−compi ler−opt ions −Wextra ,−Wall ,−fPIC −−shared
7 −arch=sm_86 −−ptxas−opt ions=−v
8 −−l inke r −opt ions −soname , l i b gpu t r a ck ing . so $^ −o $@
9

10 c l ean :
11 rm −r f l i b gpu t r a ck ing . so

All code is documented using Doxygen documentation. The html files can be
generated in the docs folder using the following command:

Doxygen doxyfile

The documentation can be compiled to PDF format with Latex in the respective
folder using make.
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