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Abstract

Craig’s Interpolation Theorem is a fundamental result in classical first-order logic. In this

master’s thesis we examine interpolation in the quantified modal logic S5 . Craig’s Interpolation
Theorem does not generally hold in this logic, but we will examine some exceptions.

First, we describe Gentzen’s sequent calculus and important results such as the cut-elimination

theorem and Craig’s Interpolation Theorem. We explore the connection to Beth’s Definability

Theorem, which is implied by the Interpolation Theorem. We proceed to introduce the modal

logic S5 and explore some possibilities and limitations of different calculi. Then we present Kit

Fine’s proof of the statement that the Interpolation Theorem does not hold in S5 . Fine proceeds
by showing that Beth’s Definability Theorem is not valid in S5 . However, there are exceptions.

In the last chapter, we show that one can find the interpolant for fragments of quantified S5 ,
namely the fragment of sequents of prenex formulas and those containing weak modal operators

only. We find the interpolants for these sequents by translating them to classical two-sorted

first-order logic, finding the interpolant there with Craig’s Interpolation Theorem, and then

translating the interpolant back to S5 .
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Kurzfassung

Craigs Interpolationstheorem ist ein zentrales Resultat in der klassischen Prädikatenlogik

erster Stufe. In dieser Diplomarbeit betrachten wir die Möglichkeiten der Interpolation in der

quantifizierten Modallogik S5 . Craigs Interpolationstheorem gilt in dieser Logik nicht im Allge-

meinen und wir werden uns in dieser Arbeit mit einigen Ausnahmen befassen.

Zuerst beschreiben wir Gentzens Sequenzialkalkül und wichtige darauf beruhende Resultate,

wie Gentzens Hauptsatz über die Schnittelimination sowie Craigs Interpolationstheorem. Wir

betrachten die Verbindung zum Beth’schen Definierbarkeitstheorem, welches aus dem Interpo-

lationstheorem folgt. Im darauf folgenden Kapitel führen wir die Modallogik S5 ein und be-

trachten die Möglichkeiten und Limitationen verschiedener Kalküle. Anschließend präsentieren

wir den Beweis von Kit Fine, dass das Interpolationstheorem für die quantifizierte Modallogik

S5 nicht gilt. Der Beweis gelingt Fine, indem er zeigt, dass das Beth’sche Theorem in S5
nicht zutrifft. Dazu gibt es jedoch Ausnahmen. Im letzen Kapitel zeigen wir, dass man für

Sequenzen aus dem Fragment der pränexen Formeln sowie aus dem Fragment der Formeln mit

ausschließlich schwachen Modaloperatoren sehr wohl Interpolanten finden kann. Wir finden diese

Interpolanten, indem wir die Sequenzen in die klassische zweisortige Logik übersetzen, in dieser

mithilfe von Craigs Interpolationstheorem die Interpolante finden, und diese schließlich in S5
zurückübersetzen.
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1 Introduction

Craig’s Interpolation Theorem is a fundamental result in classical first-order logic. The inter-

polant of an implication shows the essence of the logical connection of the premise and the

consequence. Further, the Interpolation Theorem implies Beth’s Definability Theorem, another

cornerstone in the formalization of mathematics. Thus, being able to show that the Interpola-

tion Theorem holds in a logic is of great interest. However, it does not apply to some logics

because they do not allow for calculi that provide the necessary proof structure to construct an

interpolant from. One of them is the quantified modal logic S5 , which we will examine further

in this thesis.

In the early 19th century, a movement to rigorize mathematics started, pushed by mathemati-

cians such as Cauchy and Bolzano. This movement culminated in the development of the formal

axiomatic method for mathematical reasoning. ([Swi98], p. 760). In the process of formalizing

logical deductions, Gentzen introduced his sequent calculus in his paper “Untersuchungen über

das logische Schließen” in 1935 ([Gen35]). Before that, Hilbert’s deduction system, which was

developed with contributions from Frege, Russell and Hilbert himself, was known and used as

a way to formalize logical deductions. These two systems differ in the sense that Hilbert-style

deduction systems allow a large number of logical axiom schemes as a base but only few inference

rules to deduce proofs from these axioms (often just the modus ponens and the generalization

rule for predicate logic). Gentzen felt dissatisfied with this style of deduction, as he thought

that it does not correspond to the way humans normally go about conducting mathematical

proofs. He developed a formalism that he deemed more “natural”, the “calculus of natural de-

duction” ([Gen35] p. 176). In contrast to Hilbert’s system, the natural deduction system uses

only very few axiom schemes but a greater number of inference rules for its proofs. Whereas the

Hilbert-style systems work with unconditional tautologies as starting points, natural deduction

uses hypotheses as a starting points, i.e. conditional tautologies. Exploring the properties of the

natural deduction system led Gentzen to formulate his famous “Hauptsatz”, also known today

as the cut-elimination theorem (Theorem (2.7)). However, the natural calculus turned out not

to be suitable to prove the Hauptsatz, which led Gentzen to introduce the sequent calculus.

Gentzen was able to formulate and prove the Hauptsatz for this new calculus. It is equivalent

to his natural deduction calculus, but thanks to the Hauptsatz has some convenient properties

that the latter does not have. The Hauptsatz is remarkable as it expresses that every purely

logical proof can be transformed into a normal form such that the proof does not contain any
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detours. Consequently, all expressions used in the proof are part of the final result, such that the

proof contains only expressions that necessarily need to be introduced. Another benefit of this

property is that as a consequence, the length of proofs is bounded in the sequent calculus. Every

inference step introduces a new logical symbol that will be contained in the endresult, such that

the length of the proof is limited by the structure of the final formula in the deduction.

We refer to such calculi that allow for cut elimination and thus proofs without detours as

“analytic”. The property of analyticity has far-reaching consequences as Gentzen’s Hauptsatz

lays the foundation for several other important theorems, foremost Craig’s Interpolation Theorem

for classical first-order logic. This theorem tells us that if we have a valid implication φ ⊃ ψ,

where both arguments of the implication have at least one predicate symbol in common, then

there exists a formula γ in the common language of the arguments, called an “interpolant”,

such that both formulas φ ⊃ γ and γ ⊃ ψ are valid. Thus, the interpolant reveals the logical

connection of φ and ψ that makes up the implication. Craig derived his interpolation theorem

originally in order to prove Beth’s Definability Theorem, which immediately follows from Craig’s

theorem. Beth’s Definability Theorem states that a concept is implicitly definable in a given

logic if and only if it is explicitly definable. This is a central result about the definability of

concepts and being implied by Craig’s Interpolation Theorem, the latter becomes particularly

interesting for other logics as well.

Craig’s Interpolation Theorem does not hold for all logics however. For example, it is not

true for the quantified modal system S5 . In general, there is no analytic calculus known for S5 ,
meaning that we cannot eliminate the cut-rule in a sequent calculus for S5 without reducing

its expressive power. Consequently, we would not be able to derive the statement of Craig’s

Interpolation Theorem for S5 in the same manner as in classical first-order logic. In 1979, Kit

Fine went further and showed in his paper “Failures of the Interpolation Lemma in quantified

Modal Logic” that Craig’s Interpolation Theorem does not hold in quantified S5 by showing

that Beth’s Definability Theorem fails for it ([Fin79]). However, there are some exceptions –

there are certain classes of formulas in S5 to which Craig’s Interpolation Theorem applies. In

this thesis, we will show that amongst others, prenex formulas in S5 do interpolate. We will

deduce this result by translating the formulas from S5 to two-sorted classical first-order logic,

finding the interpolant there and translating it back to S5 . Due to the prenex structure of the

formula, which gets preserved by the translation, it is possible to find an interpolant in prenex

form in first-order logic that can be translated back to S5 .
This thesis is structured in the following way. In the first chapter that follows, Chapter 2,
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we will introduce Gentzen’s sequent calculus and the influential Hauptsatz, the cut-elimination

theorem. In Chapter 3, we will describe important consequences of the cut-elimination theorem

such as Gentzen’s Midsequent Theorem, Maehara’s Lemma and one of the main theorems in

this thesis: Craig’s Interpolation Theorem. We will also delve into Beth’s Definability Theorem

and its relation to Craig’s Interpolation Theorem. We will proceed by introducing modal logic

and in particular quantified S5 in Chapter 4. There we will also describe the translation of

modal formulas to two-sorted classical first-order logic, a fragment of classical first-order logic

that abides much by the same rules. In Chapter 5, we will present Fine’s result that Craig’s

Interpolation Theorem does not hold in quantified S5 . Ultimately, in Chapter 6 we will show

that prenex formulas in S5 do interpolate, as well as formulas containing weak modalities only.
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2 First-order logic

As we mentioned in the introduction, Gentzen’s sequent calculus has beneficial properties.

Gentzen’s cut-elimination theorem can be proven for it, allowing to find proofs of valid sequents

that are free of any detours. These properties of Gentzen’s sequent calculus will be useful for us

when establishing the interpolants in the quantified modal logic S5 . Thus, this is the calculus

that we will present below, following Gaisi Takeuti’s book ”Proof Theory” ([Tak87]).

In the first section of this chapter we will introduce some basics. We assume that the reader

has some knowledge of first-order logic, but we will go through several definitions in order to

clarify the notation used in this thesis. Then we will proceed to introduce Gentzen’s sequent

calculus for classical first-order logic, called “logistisches klassisches Kalkül” LK, in Section

2.2. We end the chapter with Gentzen’s Hauptsatz, the cut-elimination theorem. The useful

consequences of this theorem such as Craig’s Interpolation Theorem will be introduced in the

next chapter.

2.1 Basics

A classical first-order language from which we will build our formulas consists of individual

constants a, b, c, ..., function constants f, g, h, ..., predicate constants R, P, Q, ..., the 0-

place predicate symbol ⊤, and variables x, y, z, .... The language further consists of the logical

connectives ¬,∧,∨,⊃,∀ and ∃, as well as the auxiliary symbols (, ), and , (comma). Sticking

with the standard approach in elementary logic, the cardinality of the various kinds of symbols is

restricted to ℵ0 with order type ω. In the languages we work with the set of variables is infinite

and there is at least one predicate symbol apart from ⊤.

Now we define the terms and formulas in our language.

Definition 2.1. Terms are defined inductively as follows:

1. Every individual constant is a term.

2. Every free variable is a term.

3. If f is a function constant with n argument-places and t1, . . . , tn are terms, then f(t1, . . . , tn)

is also a term.

4. These are all terms.
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An atomic formula is an expression of the form ⊤ or R(t1, . . . , tn), where R is a predicate

constant with n argument-places and t1, . . . , tn are terms.

Formulas are defined inductively as follows:

1. Every atomic formula is a formula.

2. If A and B are formulas, then ¬A, A ∧B, A ∨B and A ⊃ B are formulas.

3. If A is a formula, a a free variable and x a variable not occuring in A, then the expressions

∀xA′ and ∃xA′ are formulas, where A′ is obtained from A by replacing each occurence of

a in A by x.

4. These are all formulas.

We insert parentheses when needed to clarify the meaning of a formula and assume the

usual precedence rules for our logical connectives. We write A ≡ B as an abbreviation for

(A ⊃ B) ∧ (B ⊃ A) and ⊥ to denote ¬⊤.

2.2 Gentzen’s sequent calculus

Now we will describe Gentzen’s sequent calculus LK. It’s a calculus that only admits the most

basic tautologies in the form A ⊃ A as axioms, but admits a wide variety of deduction rules that

can be used to derive valid formulas. We will use Greek capital letters Γ, ∆, Π and Λ to denote

finite and possibly empty sequences of formulas separated by commas, like A, B, . . . , C. Gentzen

introduced his sequent calculus for a language not including the symbol ⊤. We will present a

slightly modified version of LK that includes the predicate symbol ⊤ and according sequents,

which Takeuti also introduces and refers to as LK# ([Tak87] p. 31). Introducing the symbol ⊤
does not change the applicability of the theorems that we will introduce below as their proofs

are easily extended.

Definition 2.2. A sequent is an expression of the form Γ → ∆, where Γ and ∆ are formula

sequences as described above. Γ is called the antecedent and ∆ the succedent of the sequent.

We call the formulas in Γ and ∆ sequent-formulas.

According to Gentzen ([Gen35], p.181), a sequent A1, . . . , Am → B1. . . . , Bn has the same

meaning as the formula A1 ∧ · · · ∧Am ⊃ B1 ∨ · · · ∨Bn. Consequently, the sequent A1, . . . , Am →
expresses that A1 ∧ · · · ∧Am yields a contradiction, and → B1, . . . , Bn means that B1 ∨ · · · ∨Bn

5



holds. The empty sequent → expresses a contradiction. We will denote sequents by the letter

S, with or without subscripts.

Definition 2.3. An inference is an expression of the form

S1

S
or

S1 S2

S
,

where S1 and S2 are called upper sequents and S the lower sequent of the inference.

Intuitively, an inference means that we can infer the lower sequent from the upper one(s).

We will now introduce the inferences that are allowed in Gentzen’s sequent calculus. As

previously, Greek capital letters denote sequences of formulas as before and A, B, C, D, F (x)

denote formulas.

1. Structural Rules:

(a) Weakening:

left:
Γ → ∆

D, Γ → ∆
, right:

Γ → ∆
Γ → ∆, D

,

where D is called the weakening formula.

(b) Contraction:

left:
D, D, Γ → ∆

D, Γ → ∆
; right:

Γ → ∆, D, D

Γ → ∆, D
.

(c) Exchange:

left:
Γ, C, D, Π → ∆

Γ, D, C, Π → ∆
; right:

Γ → ∆, C, D, Λ

Γ → ∆, D, C, Λ
.

(d) Cut:

left:
Γ → ∆, D D, Π → Λ

Γ, Π → ∆,Λ
,

where D is called the cut formula.

2. Logical Rules:

(a) Propositional Inferences:

i. ¬:
left:

Γ → ∆, D

¬D, Γ → ∆
; right:

D, Γ → ∆

Γ → ∆, ¬D .

ii. ∧:
left:

C, Γ → ∆

C ∧D, Γ → ∆
and

D, Γ → ∆

C ∧D, Γ → ∆
;
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right:
Γ → ∆, C Γ → ∆, D

Γ → ∆, C ∧D
.

iii. ∨:
left:

C, Γ → ∆ D, Γ → ∆

C ∨D, Γ → ∆
;

right:
Γ → ∆, C

Γ → ∆, C ∨D
and

Γ → ∆, D

Γ → ∆, C ∨D
.

iv. ⊃:

left:
Γ → ∆, C D, Π → Λ

C ⊃ D, Γ, Π → ∆, Λ
;

right:
C, Γ → ∆, D

Γ → ∆, C ⊃ D
.

(b) Quantifier Inferences:

i. ∀:
left:

F (t), Γ → ∆

∀xF (x), Γ → ∆
, right:

Γ → ∆, F (y)

Γ → ∆, ∀xF (x)
,

where t is an arbitrary term, and the variable y does not appear in the lower

sequent of ∀: right. In that case, y is called the eigenvariable of the inference

and the mentioned condition the eigenvariable condition.

ii. ∃:
left:

F (y), Γ → ∆

∃xF (x), Γ → ∆
, right:

Γ → ∆, F (t)

Γ → ∆, ∃xF (x)
,

where the variable y does not appear in the lower sequent of ∃: left and t is an

arbitrary term. Again, y is called the eigenvariable and the mentioned condition

the eigenvariable condition of this inference.

The first three rules, i.e. the structural rules “Weakening”, “Contraction” and “Exchange”,

are referred to as weak inferences, while all others are called strong inferences. Further,

we refer to the quantifier inferences ∀ : right and ∃ : left, which require the eigenvariable

condition to be fulfilled, as strong quantifier inferences, and the quantifiers as strong quantifiers.

The quantifiers introduced with ∀ : left and ∃ : right are referred to as weak in contrast. The

condition placed on quantified formulas in Definition 2.1 prohibits the introduction of quantifiers

in inferences that are already present in the formula, such that an expression like ∀x∀xA(x)∧B(x)

cannot be inferred as it is not a formula.
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In addition to the inference rules we define the sequents from which we can start our inferences,

so-called initial sequents or axioms. These are sequents of the form A → A as well as the

sequent → ⊤.

Definition 2.4. A proof is a tree of sequents that satisfies these conditions:

1. The topmost sequents of the tree are initial sequents.

2. Every sequent in the tree except the lowest one is an upper sequent of an inference whose

lower sequent is also in the proof.

Definition 2.5. The lowest sequent of a proof P is called end-sequent. A sequent S is called

provable if there is a proof P with S as its end-sequent. A formula A is called provable if the

sequent → A is provable.

When we deal with proofs, we will assume that all eigenvariables appearing in the proof are

distinct from another, and if a free variable y appears as an eigenvariable in a sequent S of the

proof, then it only occurs in sequents in the branch leading to S. According to Lemma 2.10 in

[Tak87] we can make this assumption without loss of generality.

Proposition 2.6. Every sequent that is provable has a proof in which all the initial sequents

consist of atomic formulas. If the sequent is provable without the cut-rule (which is always the

case in LK as we will see later), then it has a proof without a cut in which all the initial sequents

consist of atomic formulas.

Proof. As all initial sequents of proofs are by definition of the form → ⊤ or A → A for some

arbitrary formula A, it suffices to show the proposition for the sequents → ⊤ and A → A. The

case for → ⊤ is clear as ⊤ is an atomic formula. The latter can be shown by induction on the

complexity of A.

Now we have prepared the ground for Gentzen’s well-known Hauptsatz and its far-reaching

implications.

Theorem 2.7 (Gentzen’s Hauptsatz: the cut-elimination theorem). If a sequent is provable,

then it has a proof without a cut, i.e. a cut-free proof.

Proof. We will present an outline of the proof. Gentzen proved the cut-elimination theorem by

defining a new inference rule, the mix, and showing that it is equivalent to the cut-rule. Let A

be a formula, and let Π′ and ∆′ denote the sequences Π and ∆ with all occurences of A deleted,

respectively. Then the mix rule with respect to the formula A is the following inference rule:

8



Γ → ∆ Π → Λ
Γ,Π′ → ∆′,Λ

(Mix, A)

After proving the equivalence of the mix and cut rule, Gentzen proceeds to show by transfinite

induction that the mix can be eliminated in any proof. The proof is constructive and gives an

alternative, cut-free proof of the endsequent. The full proof can be found in [Tak87] on pp.

21-28.

2.3 Semantics of classical first-order logic

So far we have only talked about the syntactical aspects of classical first-order logic - it is time to

explore the semantics. A model in the language of classical first-order logic as we have described

it above is a pair M = (D,V ), where D is a non-empty set, and V is a function mapping all

the constants of the language such that V (a) ∈ D for individual constants a, V (f) ⊂ Dn for

a function constant f with n arguments, and V (P ) ⊂ Dn for a predicate constant P with n

arguments. The satisfaction relation that tells us when a model satisfies a formula is defined in

the usual manner. Accordingly, a formula is called valid if it is satisfied by every model with

every variable assignment.

Theorem 2.8 (completeness and soundness). A formula is provable in LK if and only if it is

valid.

For the proof we refer to [Tak87], p. 40ff.

In place of the algorithmic procedure presented in the proof of the cut-elimination theorem

above, we could also prove the Hauptsatz semantically by showing that the cut-free fragment of

LK is complete. That is, any valid sequent in LK is also provable in the fragment of LK without

a cut. However, this proof is not constructive. Calculus systems for which the non-constructive

type of proof exists (but possibly not the constructive proof) are called cut-free complete ([Bur],

p. 13). As already mentioned in the introduction of this thesis, the cut-elimination theorem

is a very important and useful property of Gentzen’s sequent calculus. We will explore some

theorems that can be proved thanks to cut-elimination in the next chapter, in particular Craig’s

famous interpolation theorem.
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3 Craig’s Interpolation Theorem

The cut-elimination theorem has a lot of useful consequences that we will examine in this chapter.

One of the theorems that can be proven thanks to Gentzen’s Hauptsatz is Craig’s Interpolation

Theorem. This theorem was originally thought of by William Craig as a lemma in order to prove

Beth’s Definability Theorem (see Section 3.2) in a simpler way than had been achieved until

then. However, it has gained a standing of its own afterwards. We will present some theorems

following from the cut-elimination theorem in Section 3.1, orienting ourselves on [Tak87] once

again unless indicated otherwise. The exploration culminates in Craig’s Interpolation Theorem

3.6. In Section 3.2 we will explore Beth’s Definability Theorem and its meaning, following the

respective entry in the Routledge Encyclopedia of Philosophy ([Swi98]).

3.1 Consequences of the cut-elimination theorem

The cut-elimination theorem gives us information on the structure of proofs and their end result.

We will use the term subformula of a formula A to refer to the formulas that are used to build

A. If we look at the inferences that are allowed in LK, we can see that every formula appearing

in an upper sequent is a subformula of some formula appearing in the lower sequent - except for

in the cut-rule. Therefore, in a proof without a cut we only use subformulas of the end-sequent-

formulas.

Theorem 3.1 (Subformula property). All formulas which occur in a cut-free proof in LK are

subformulas of some formulas of the proof’s end-sequent.

Proof. The result is shown by induction on the number of inferences in the cut-free proof.

This is a remarkable property of cut-free proofs. Thus, in such proofs we can infer the end-

sequent from the initial sequents without any detours or expressions that are not used in the

end-sequent. The only downside of this proof format is that it comes at the cost of readability

of the proof, as compared to proofs in Gentzen’s natural deduction system for example.

We refer to sequent calculi as analytic in which cut-elimination or at least cut-free complete-

ness as well as the subformula property hold. This term was introduced in the 1960s by Smullyan

and expresses the idea that the given formula is analyzed in the proof procedure. Proofs in an-

alytic systems have the remarkable property that they can be transformed into proofs without

any detours, that is, they can be built from the bottom up consisting only of subformulas of

the end-sequent. Systems like Hilbert-style systems or Gentzen’s natural deduction system are

10



non-analytic. In those systems, usually either the cut-rule or Modus Ponens are used to eliminate

formulas which are not part of the end-sequent. It is possible to have an analytic calculus that

uses the cut-rule, however, as the subformula property may hold nevertheless ([Pfe84]).

A direct consequence of the subformula property is the consistency of LK.

Theorem 3.2. Gentzen’s sequent calculus for classical first-order logic, LK, is consistent.

Proof. Suppose LK were inconsistent, i.e. the empty sequent → could be derived in it. By the

cut-elimination theorem, this would be provable without using the cut-rule. However, this is

impossible by the subformula property.

Gentzen also introduced an important theorem about the structure of proofs of prenex for-

mulas, the Midsequent Theorem that we will describe below.

Definition 3.3. A formula is called prenex if no quantifier in it is in the scope of a propositional

connective. A sequent is called prenex sequent if it consists of prenex formulas only.

Every formula in LK is equivalent to a prenex formula, that is, for every formula A there

exists a prenex formula B such that A ≡ B is deducible in LK. According to the Midsequent

Theorem, we can find a proof for a sequent consisting of prenex formulas that is divided into two

parts - the propositional part, where only inference rules that are also applicable in propositional

logic are applied, and the quantificational part, in which quantifiers are introduced. Since we

will focus on prenex formulas and their interpolant in the context of the modal logic S5 later in

the thesis, the Midsequent Theorem will play a central role in later chapters.

Theorem 3.4 (Gentzen’s Midsequent Theorem). For a provable prenex sequent S, there is a

cut-free proof which has the following property: The proof contains a quantifier-free sequent M

called the mid-sequent such that every inference above M is either structural or propositional,

and every inference below it is either structural or a quantifier inference.

Proof. We will give an outline of the proof. Let S be a provable sequent which only consists of

formulas in prenex form. From Proposition 2.6 and the cut-elimination theorem we know that

there is a cut-free proof P of S in which all initial sequents consist of atomic formulas only.

We will define an order of P and conduct the proof as an induction on this order. Let I be a

quantifier inference in P . Then we define the order of I as the number of propositional inferences

that appear in P below I. The order of P thus is defined as the sum of the orders of all quantifier

inferences in P .
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We start with the base case where the order of P is 0. In this case, if there is a propositional

inference in P , then there is no quantifier inference above it. We take the lowest propositional

inference and refer to its lower sequent as M0. Even though there is no quantifier inference above

it, M0 might still contain quantifiers introduced by weakenings. By the subformula property,

these weakening formulas must appear as subformulas in the formulas of the endsequent. These

formulas are in prenex form, such that in the course of the proof, no propositional inferences

are applied to the weakening formulas containing quantifiers. Thus, we can just eliminate these

weakenings above M0 and if necessary introduce them again below it. This way we get an

adapted sequent M ′
0 that serves as a quantifier-free midsequent for the proof of S.

If there is no propositional inference in P , we can take the upper sequent of the uppermost

quantifier inference as the midsequent.

In the case that the order of P is larger than 0, we can find at least one propositional inference

under a quantifier inference. In particular, we can find a quantifier inference I with the property

that the uppermost logical (i.e. quantifier or propositional) inference is a propositional inference

I ′. Now we can lower the order of P by interchanging the positions of the inferences I and I ′.

For example, in the case of I being ∀ : right, the proof P has this form:

...

Γ → Π, F (y)
I

Γ → Π, ∀xF (x)

structural inferences
I ′

∆ → Λ

where Λ contains ∀xF (x) as a sequent-formula. We can transform P into the following proof P ′

by interchanging the positions of I and I ′:

Γ → Π, F (y)

structural inferences

Γ → F (y),Π, ∀xF (x)
...

I ′
∆ → F (y),Λ

...
I

∆ → Λ, ∀xF (x)
...

∆ → Λ
...

Clearly, the proof P ′ has a lower order than P .
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Now we introduce Maehara’s partition interpolation method. It is the basis of the proof of

Craig’s Interpolation Theorem.

Lemma 3.5 (Maehara’s Lemma). Let Γ → ∆ be an LK-provable sequent. Further, let (Γ1,Γ2)

and (∆1,∆2) be arbitrary partitions of Γ and ∆ respectively. We will denote this partition of the

sequent Γ → ∆ as [{Γ1; ∆1}, {Γ2; ∆2}]. Then there exists a formula C, called the interpolant of

the partition, such that:

1. Γ1 → ∆1, C and C,Γ2 → ∆2 are both provable in LK;

2. C only contains free variables and individual and predicate constants (apart from ⊤) that

occur in Γ1 ∪∆1 as well as Γ2 ∪∆2.

Before we prove Maehara’s Lemma, we will derive Craig’s Interpolation Theorem from it.

Theorem 3.6 (Craig’s Interpolation Theorem). Let A and B be two formulas such that A ⊃ B

is provable in LK. Then there is a formula C, the interpolant of A and B, such that A ⊃ C

and C ⊃ B are provable in LK, and such that C only contains free variables and individual and

predicate constants (apart from ⊤) that occur in A as well as B.

Proof. (Craig’s Interpolation Theorem). Let A and B be two formulas such that A ⊃ B is

provable in LK. The sequent A → B is provable then, too, and we can apply Maehara’s Lemma

using the partition [{A; }, {;B}]. Consequently, there exists a formula C satisfying the conditions

1. and 2. of the lemma. That is, the sequents A → C and C → B are provable in LK, and C

only contains free variables and individual and predicate constants (apart from ⊤) that occur in

A as well as B. Thus, C is the required interpolant of A ⊃ B.

The proof of Craig’s Interpolation Lemma is based on Maehara’s Lemma. In the proof

thereof, we derive an interpolant for the given sequent constructively by building on the logical

structure of the proof. The interpolant only contains the information truly necessary to maintain

the implication. Thus, the interpolant of an implication encapsulates its logical essence.

Proof. (Maehara’s Lemma). The lemma is proven by induction on the number of inferences k

in a cut-free proof of the sequent Γ → ∆. We will focus on the cases of inferences that we will

also use later for our method to interpolate formulas in the modal logic S5 . We will also restrict

the partitions we look at to the one relevant for our purpose, where Γ1 = Γ, ∆2 = ∆, and Γ2
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and ∆1 are both empty, i.e. the partition [{Γ; }, {; ∆}] used in the proof of Craig’s Interpolation

Theorem. Thus we look for interpolants C such that Γ → C and C → ∆ are provable.

1. k = 0: First we start with the base case where the number of inferences is k = 0. Thus,

our sequent Γ → ∆ has the form of an initial sequent → ⊤ or D → D. In the first case, the

interpolant is ⊤. In the second case, we look at the partition [{D; }, {;D}]. The formula

D fulfills all the requirements for an interpolant of D → D.

2. k > 0 and the last inference is ∀ : left:

F (t),Γ → ∆

∀xF (x),Γ → ∆

Let b1, . . . , bn denote the free variables and constants (possibly none) in the term t. Again,

we suppose our partition is [{∀xF (x),Γ; }, {; ∆}]. This induces the partition [{F (t),Γ; }, {; ∆}]
in the upper sequent. We can apply the induction hypothesis to find an interpolant

C(b1, . . . , bn) such that

F (t),Γ → C(b1, . . . , bn) and C(b1, . . . , bn) → ∆

are both provable in LK. Now let bi1 , . . . , bim be all the variables and constants among

b1, . . . , bn that do not occur in {F (x),Γ}. Since the interpolant may only contain free

variables and constant symbols that occur in both the antecendent and succedent of the

sequent, we need to replace bi1 , . . . , bim with bound variables. Then the required interpolant

C̃ has the form

∀y1 . . . ∀ymC(b1, . . . , y1, . . . , ym, . . . , bn),

where we replaced bi1 , . . . , bim by the bound variables y1, . . . , ym.

We can derive that C̃ fulfills the requirements that ∀xF (x),Γ → C̃ and C̃ → ∆ are LK-

provable with the following inferences:

F (t),Γ → C(b1, . . . , bn)∀: left ∀xF (x),Γ → C(b1, . . . , bn)∀: right ∀xF (x),Γ → ∀y1 . . . ∀ymC(b1, . . . , y1, . . . , ym, . . . , bn)

C(b1, . . . , bn) → ∆∀: left ∀y1 . . . ∀ymC(b1, . . . , y1, . . . , ym, . . . , bn) → ∆
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3. k > 0 and the last inference is ∀ : right:

Γ → ∆, F (y)

Γ → ∆, ∀xF (x)
,

where y is a free variable which does not occur in the lower sequent. We partition the

lower sequent as [{Γ; }, {; ∆, ∀xF (x)}], which induces the partition [{Γ; }, {; ∆, F (y)}] on
the upper sequent. By our induction hypothesis, there is an interpolant C of the upper

sequent which fulfills all the requirements of Maehara’s Lemma, in particular the provability

of the implications Γ → C and C → ∆, F (y). Since the variable y does not occur in

{Γ,∆, F (x)}, it does not appear in C either and we can infer:

C → ∆, F (y)∀: right
C → ∆, ∀xF (x)

Thus, C is also an appropriate interpolant for the lower sequent Γ → ∆, ∀xF (x).

4. k > 0 and the last inference is ∃ : left:

F (y),Γ → ∆

∃xF (x),Γ → ∆
,

This case is analogous to the one of the inference ∀ : right that we just described above.

Therefore, the interpolant C of the upper sequent is also suitable interpolant of the lower

sequent of the inference.

5. k > 0 and the last inference is ∃ : right:

Γ → ∆, F (t)

Γ → ∆, ∃xF (x)

This case is analogous to the one of the inference ∀ : left. Let b1, . . . , bn denote all

the free variables and constants (possibly none) in the term t and let C(b1, . . . , bn) be

the interpolant of the upper sequent. Then ∃y1 . . . ∃ymC(b1, . . . , y1, . . . , ym, . . . , bn) is a

suitable interpolant for the lower sequent, where the yi replaced all the elements among

b1, . . . , bn that do not occur in {∆, F (x)}.

Let us describe the interpolant for other inferences as well for the sake of completeness.

The structural inferences Weakening, Contraction and Exchange do not affect the logical

consequence of a sequent. Thus, the interpolant of the lower sequent is the same as the one from

the upper sequent.
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For the propositional inferences, the interpolant remains either unchanged or is a propositional

connection of the interpolants of the upper sequents. For example, for the inference rules ∧ : left,

the interpolant of the antecedent is the same as for the succedent, as introducing the additional

formula this way has no effect on the essence of the implication, just was with a weakening. On

the other hand, let us consider the inference rule ∧ : right:

Γ → ∆, C Γ → ∆, D

Γ → ∆, C ∧D
.

If the left and right upper sequents have the interpolant C1 and C2 respectively, then the

lower sequent has the interpolant C1 ∧ C2.

As we have seen in the proof of Maehara’s Lemma, the interpolant of an implication A ⊃ B

can be formed constructively by looking at the inferences of the proof and forming the interpolant

in an inductive manner from the bottom up. If we deal with prenex formulas in particular, we

can apply the Midsequent Theorem (Theorem 3.4) first and obtain a proof where all quantifier

inferences only appear below the midsequent. The midsequent is then quantifier-free and we can

obtain its interpolant using the methods of classical propositional logic. We can then use the

inductive steps of the proof of Maehara’s Lemma to reintroduce the quantifiers to the midse-

quent’s interpolant to obtain the interpolant of the original formula. Thus, the combination of

the Midesequent Theorem and Maehara’s Lemma provides us with tools to constructively build

the interpolant of prenex formulas in a straight-forward manner. We will further explore this

approach later in the thesis.

3.2 Beth’s Definability Theorem

Beth’s Definability Theorem is a central result in classical first-order logic about the definability

of non-logical symbols. We will explore the context of this important theorem in this section

following the Routledge Encyclopedia of Philosophy [Swi98]. The question in which ways concepts

can be defined began to arise with the development of the formal axiomatic method in the

mathematics of the late nineteenth and twentieth century. Beth’s theorem as described in [Fin79]

states that in classical first-order logic, a predicate symbol P is implicitly definable in a theory

T if and only if it is explicitly definable in T :

Definition 3.7. Let T be a theory and T ′ be the result of replacing each occurence of the

predicate symbol P in T by a new predicate symbol P ′ of the same degree n ≥ 0. Then we say

that P is implicitly definable in T if T, T ′ ⊢ ∀x1 . . . ∀xn(P (x1, . . . , xn) ⊃ P ′(x1, . . . , xn)).
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We say that P is explicitly definable in T if there is a formula φ in the language of T not

containing P such that T ⊢ ∀x1, . . . ∀xn(P (x1, . . . , xn) ≡ φ).

Theorem 3.8 (Beth’s Definability Theorem). A predicate P is implicitly definable in a theory

T if and only if it is explicitly definable in T .

Implicit definability can intuitively be described as the theory T fixing the extension of the

symbol P uniquely if the extension of the other symbols in the language is given. This translates

to conditions being placed on the models of T , that is, to semantical conditions. On the contrary,

explicit definability of P means that its extension can be explicitly given by a formula, i.e. it

expresses a syntactical condition as it needs to be deducible that P is equivalent to this formula.

Consequently, Beth’s theorem tells us something about the expressive power of classical first-

order logic - it tells us that there is a balance between the semantics and the syntax of the logic

at hand.

The expressions of “implicit” and “explicit” definability of concepts originates in the early

nineteenth century. The French mathematician Jose Diez Gergonne suggested these terms in-

spired by their use in algebra. There they were used to describe unknowns that are defined by an

unsolved or solved set of equations respectively. In 1901, the Italian mathematician Alessandro

Padoa proposed a new method, later called “Padoa’s Method”, to prove the independence of a

concept of other concepts in a theory: he aimed at doing so by finding two models that differ

only on the term in question. That is, his method entailed establishing that a concept was not

implicitly definable in a theory. Padoa claimed that this was a sufficient and necessary condition

to prove explicit undefinability as well.

Sufficiency is clear, as it means that implicit definability follows from explicit definability. If a

predicate P is explicitly defined in a theory T , then for any model satisfying the equivalence

of the explicit definition, the meaning of P is already uniquely interpreted due to the explicit

definition. Consequently, two models agreeing on every term other than P must also agree on

the extension of P .

Necessity is less obvious, however. The question could not have been answered at that time, as

it requires the underlying logic to be specified more precisely than what Padoa had at his hands.

In 1953, Evert Beth, a Dutch philosopher and logician, managed to prove that implicit defin-

ability also implied explicit definability for classical first-order logic – and Beth’s Definability

Theorem was born. More precisely, Beth showed that if a term cannot be explicitly defined in

a theory, then there exist two models of the theory that agree on the interpretation of all terms
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except for the one in question. Thus the term cannot be implicitly defined either. In his original

proof, Beth used Gentzen’s Hauptsatz, the cut-elimination theorem (Theorem 2.7) that we have

introduced above, and he was even able to find a way to construct two models that differ on the

term in question explicitly using his so-called semantic tableau method. Today, however, Beth’s

Definability Theorem is usually shown as a direct implication of Craig’s Interpolation Theorem

(Theorem 3.6). This theorem was in fact originally introduced by William Craig as a lemma in

order to prove Beth’s Definability Theorem in a simpler way, but has gained such attention ever

since that today it stands on its own.

We already presented in the preceding paragraphs why implicit definability follows from

explicit definability. We will now sketch the rest of the proof of Beth’s Definability Theorem, that

is, the direction that implicit definability implies explicit definability, using Craig’s Interpolation

Theorem. Let us assume that the predicate symbol P is implicitly definable in the theory T .

That is, if T ′ is the theory obtained from T by replacing every occurrence of P by a new predicate

symbol P ′ of the same degree, we have that

T, T ′ ⊢ ∀x1 . . . ∀xn(P (x1, . . . , xn) ⊃ P ′(x1, . . . , xn)).

By compactness, we can assume T and T ′ to be a finite set of sentences that we can write as a

conjunction. Thus we can say that

T ∧ T ′ ⊢ ∀x1 . . . ∀xn(P (x1, . . . , xn) ⊃ P ′(x1, . . . , xn)).

Consequently, the following deduction also holds:

T ∧ P (c1, . . . , cn) ⊢ T ′ ⊃ P ′(c1, . . . , cn)).

where the ci are new individual constants not contained in the first-order language used. Now

we apply Craig’s Interpolation Theorem. Accordingly, there is an interpolant ϕ(c1, . . . , cn) such

that T ∧ P (c1, . . . , cn) ⊢ ϕ(c1, . . . , cn) and ϕ(c1, . . . , cn) ⊢ T ′ ⊃ P ′(c1, . . . , cn). Since ϕ only

contains symbols of the common language of the interpolated formulas (apart from possibly ⊤),

the symbol P ′ is not contained in ϕ. Thus it holds equally that ϕ(c1, . . . , cn) ⊢ T ⊃ P (c1, . . . , cn).

From these statements we can deduce the equivalence

T ⊢ P (c1, . . . , cn) ≡ ϕ(c1, . . . , cn)

Thus, P is also defined explicitly in T and we have completed the proof.
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4 Modal logic and quantified S5

In this chapter, we will describe modal logic and the quantified version of the modal system

S5. Already Aristoteles talked about modal logic, and its semantics was being discussed during

medieval times as well. The examination of modal logic was rekindled before the start of World

War I by the logician C. I. Lewis, though it was first perceived very critically. This changed

when the relational semantics where introduced in the 1960s with decisive contributions by Saul

A. Kripke ([Pri08] p.70), as they provided an intuitive way to talk about modal logics.

We will start by introducing basic propositional modal logic and its relational semantics. Then

we will proceed to talk about quantified modal logic. We will define propositional and quantified

modal logic as described in Chapters 1 & 9 of the Handbook of Modal Logic edited by Blackburn

et al. ([BvB07], [BG07]). Here, modal logic is introduced from a semantic perspective, i.e. as

a tool for talking about structures or models. We will introduce quantified modal logic from

the sources mentioned above with the exception that we will not introduce the equality symbol,

as we have introduced first-order logic without equality as well. Modal logic is closely linked

to classical first-order logic by the standard translation, which enables us to view modal logic

as a fragment of the former. We will describe two-sorted logic, which is a fragment of classical

first-order logic, and present the standard translation mapping modal formulas to formulas in

two-sorted logic.

4.1 Propositional modal logic

4.1.1 Basics

In this section, we will introduce propositional modal logic as described in [BvB07]. The signature

of our modal language will be a set of propositional symbols, typically denoted as p, q, r, . . . and

the modality symbol □. We will usually assume a fixed signature where the set of propositional

symbols is denumerably infinite. We define the basic modal language given a signature as

follows:

Definition 4.1. We define formulas in propositional modal logic in the following way:

1. Any propositional symbol is a formula.

2. The logical symbols ⊤ and ⊥ are formulas.

3. If A and B are formulas, then ¬A, A ∧B, A ∨B and A ⊃ B are formulas.
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4. If A is a formula, □A is a formula. We write ♢A as an abbreviation for ¬□¬A.

4.1.2 Relational semantics

Now we will look at a way to interpret propositional modal formulas.

Definition 4.2. We define amodelM, also calledKripke model, for the basic modal language

over some fixed signature as a triple M = (W,R, V ), where

1. W is a non-empty set that we refer to as domain and whose elements we will call worlds,

2. R is a binary relation on the worlds W , the so-called accessibility relation,

3. V is a function called valuation assigning to each propositional symbol p a subset V (p) ⊂
W

We can think of the set V (p) as the set of worlds in which p is true. An intuitive way to

think of Kripke models is to imagine them as graphs, where the vertices represent the worlds

and the (directed) edges stand for the binary relation on the worlds. The drawing in Figure 1

is an example of such a graph. It represents a model M = (W,R, V ) where W = {u, v, w},
R = {(u, v), (v, v), (v, w), (w,w), (w, v)}, V (p) = {u, v} and V (q) = {u,w}.

We give the satisfaction definition for formulas in propositional modal logic now and induc-

tively define in which cases a formula φ is satisfied in a model M at a world w. We omit some

p, q

u

p

v

q

w

Figure 1: An example of a Kripke model.
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Boolean clauses that are clear from analogy.

(M, w) |= p iff w ∈ V (p)

(M, w) |= ⊤ always

(M, w) |= ⊥ never

(M, w) |= ¬φ iff (M, w) ̸|= φ

(M, w) |= φ ∧ ψ iff (M, w) |= φ and (M, w) |= ψ

(M, w) |= □φ iff for all v ∈ W with R(w, v) we have M, v |= φ

(M, w) |= ♢φ iff there is some v ∈ W such that R(w, v) holds and M, v |= φ

If a formula φ is satisfied at all worlds in a model M, then we call φ globally satisfied and

write M |= φ. We call φ valid if it is globally satisfied in all models and write |= φ in that case.

As described in [BvB07] (p.5), the satisfaction definition given above has a very internal

character: a formula tells us something about a Kripke model from the inside. A modal formula

is always evaluated at a certain world in the model, and thus takes contextual information

into account like the propositional variables assigned to this world and connected worlds by a

valuation - or in modal first-order logic, which we will introduce below, the variable assignment

in that respective world. In first-order classical logic, in contrast, we talk about models from

the outside. Here, a closed formula is simply true or false of a given model irrespective of any

contextual information regarding the variables.

Furthermore, we can already observe from the satisfaction definition that the modal operators,

the box and the diamond, can be seen as an encoding of quantification over the worlds that are

accessible via R in a variable-free notation. This will become more apparent with the standard

translation that we will present later, which transforms modal formulas to formulas in two-sorted

classical first-order logic.

4.1.3 Proof system

Now that we have introduced semantics for basic propositional modal logic, we will present a

proof system that we can use to deduce valid formulas. We can axiomatize the set of all modal

validities, i.e. the minimal modal logic, by a Hilbert-style proof system K. We define this proof

system by declaring the axioms of K to be the following:
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1. all formulas in the above basic modal language which have the form of propositional tau-

tologies

2. all instances of the following axiom schema:

(K) □(φ ⊃ ψ) ⊃ (□φ ⊃ □ψ)

Furthermore, we may use the following two inference rules, modus ponens and modal gen-

eralization:

(MP )
φ ⊃ ψ φ

ψ

(MG)
φ

□φ

Remember that validity in the above defined semantics means that a formula is true at every

world of every model, such that the modal generalization is sound.

4.1.4 The calculus S5

We can examine calculi that contain K by adding more axioms to our list. One of the most

closely studied calculi is the system S5 . It is obtained by adding the following axiom schemata

to K:

(T ) □A ⊃ A

(4) □A ⊃ □□A

(B) A ⊃ □♢A

The Kripke models satisfying these schemata are exactly those whose relation R is reflexive

(T ), transitive (4) and symmetric (B). Thus, models in S5 are exactly those which have an

equivalence relation as world relation R. We assume without loss of generality that there only

is one equivalence class of worlds. Consequently, we have that R = W × W . In light of this

relationship, we refer to these kinds of models as S5 -models.

Theorem 4.3. The logic S5 is sound and complete with respect to the Kripke semantics given

above for S5 -models.
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From the axiom schemata for S5 given above we can infer other formulas valid in S5 (see

[Ste88], p. 113), for example:

□□A ≡ □A ♢□A ≡ □A

♢♢A ≡ ♢A □♢A ≡ ♢A

These formulas can also be deduced semantically, as they follow from the simple fact that in

S5 -models all worlds are connected to another. From this we can see that if we have several

modal operators at the beginning of a propositional S5 -formula, only the innermost operator is

relevant for the formula’s meaning.

4.2 Quantified modal logic

Now we move on to the quantified version of modal logic. We will follow [BG07] in this section,

though in order to stay consistent with our notation throughout this thesis, we will define models

the way that Fine does in his paper [Fin79] that we will refer to in Chapter 5.

4.2.1 Basics

The syntax for the basic first-order modal logic is, analogously to propositional modal logics, ob-

tained simply by taking the syntax of classical first-order logic as we have defined it in Chapter 2

and adding a modal operator □. Just as in classical logic, a set of predicate symbols is given

which we will denote as previously using the metavariables P,Q,R, . . . . For simplicity, we will

not consider functions or individual constants. From a model-theoretic perspective, constants

are just variables that are not being quantified over. Function symbols can be modelled using

predicate symbols. Thus, all terms in our modal language will be variables. We will refer to

the language of quantified modal logic described here as QML. Now we will proceed to define

formulas, models and the satisfaction relation for first-order modal formulas.

Definition 4.4. We define formulas in quantified modal logic in the following way:

1. For any predicate symbol P of arity n, the expression P (x1, . . . , xn) is a formula.

2. The logical symbols ⊤ and ⊥ are formulas.

3. If A and B are formulas, then ¬A, A ∧B, A ∨B and A ⊃ B are formulas.
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4. If A is a formula, then ∀xA and □A are formulas. We write ♢A as an abbreviation for

¬□¬A.

Regarding the semantics of quantified modal logic that we chose to present here, the variables

designate rigidly. This means that the variables designate the same object in every world and we

do not need to set a specific domain for every world when defining a model. Predicates, however,

may have different extensions in different worlds. We also need to make a choice what domains

our quantifiers quantify over in the different worlds. In this thesis, we will work with constant

domain quantified modal logic. That is, we only need to set one quantification domain D which

holds for all worlds when defining the model.

Definition 4.5. A constant domain model M is a tupel (W,R,D, V ), where

1. W is a non-empty set,

2. R is a binary relation on W ,

3. D is a non-empty set,

4. V is a function mapping each n-place predicate symbol P to a subset V (P ) ⊂ W ×Dn.

As before, we refer to the elements of W as worlds, R stands for the accessibility relation, the

set D is the domain of quantification, and V refers to the valuation.

Definition 4.6. A variable assignment is a function usually referred to as a or b that assigns

an element of the domain D to each variable for a constant domain model M = (W,R,D, V ).

The satisfaction relation is defined as usual with the following definitions for the predicates

and quantifiers, where a is a variable assignment:

(M, w) |= P (x1, . . . , xn)[a] iff (w, a(x1), . . . , a(xn)) ∈ V (P )

(M, w) |= ∀xφ[a] iff (M, w) |= φ[b] for every assignment b that differs from a

at most on x

The semantic condition of having constant domains can be expressed syntactically with the

Barcan formula ∀x□ϕ ⊃ □∀xϕ and its converse □∀xϕ ⊃ ∀x□ϕ. That is, models satisfying the

equivalence □∀xϕ ≡ ∀x□ϕ are constant domain models.
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4.2.2 Hilbert-style proof system for the constant domains

We have already given Hilbert-style axiom systems and inference rules for the propositional

modal logics K and S5 in Section 4.1.3. We will now expand them to cover the quantified logics

as well. To receive the axiom system for constant domain K, we expand the propositional axiom

scheme by the Barcan formula mentioned in the previous section and the (∀Elimination)-axiom:

∀x□φ(x) ≡ □∀xφ(x) (Barcan)

∀xφ(x) ⊃ φ[y/x] (∀ Elimination)

as well as the inference rule

ψ ⊃ φ[y/x]

ψ ⊃ ∀xφ(x) (∀ Introduction)

where the rule (∀Introduction) has the variable condition that y does not occur freely in the lower

implication. The expression φ[y/x] refers to the formula φ with all occurrences of x replaced

by y. The axiom system for quantified constant-domain S5 is given by taking the system for

propositional S5 described in Section 4.1.4 and adding the two axioms and the rule just given.

This system is sound and complete with respect to the constant domain semantics given in

Section 4.2.1 for constant domain models having the accessibility relation R = W ×W ([BG07]

p. 555). We will refer to constant-domain S5 as S5B from now on.

4.2.3 Sequent calculus for quantified modal logics

In their paper ”Gentzen Method in Modal Calculi” from 1957, Masao Ohnishi and Kazuo Mat-

sumoto describe a Gentzen-style sequent calculus for propositional modal logics ([OM57]). This

sequent calculus is analogous to Gentzen’s sequent calculus LK, omitting the quantifier infer-

ences and adding modal inferences to accomodate the modal operator □. We can describe such a

sequent calculus for quantified modal logic by expanding Gentzen’s sequent calculus LK by the

modal inferences and leaving the quantifier inferences. A sequent S is defined for modal formulas

analogously to sequents in LK. We use the same notation as for LK, with the addition that we

write □Γ to denote the expression □A1, . . . ,□An for Γ being a sequence of formulas A1, . . . , An.

The following inference rules can be added to the sequent calculus to accomodate different modal

logics ([Bur], p.20):

Γ → A
□Γ → □A

(k)

25



A, Γ → ∆

□A, Γ → ∆
(t)

Γ → □∆, A

□Γ → ∆,□A
(b)

Γ →
□Γ → (d)

□Γ → A
□Γ → □A

(4)

□Γ → □∆, A

□Γ → □∆, □A
(5)

For the most basic system K, we add the rule (k) only. For the system S5 , we further add

the rules (t) and (5) or alternatively (d), (b) and (4). Just as in the sequent calculus for classical

first-order logic, the initial sequents will be sequents of the form A → A and → ⊤.

Ohnishi and Matsumoto prove that the propositional sequent calculus is cut-free for K. How-

ever, for S5 it is not cut-free complete. For example, the propositional sequent A → □♢A is not

derivable without the use of the cut-rule ([Bur], p.20):

A → A¬ : left ¬A, A →
(t)

□¬A,A →¬ : right
A → ¬□¬A

□¬A → □¬A¬ : right → □¬A, ¬□¬A
(5) → □¬A, □¬□¬A¬ : left ¬□¬A → □¬□¬A

Cut
A → □¬□¬A

Without the cut rule, we could only derive this sequent using weakening and contraction as

structural rules. Thus, a derivation of this sequent could only contain sequents of the form:

A, . . . , A� �� �
m−times

→ □¬□¬A, . . . ,□¬□¬A� �� �
n−times

with m,n ≥ 0. Hence, the derivation could not contain an initial sequent. ([LR15]).

Thus, the sequent calculus is not analytic for propositional S5 . Consequently, the quantified

version is not analytic either for quantified S5 .

4.3 Translation to two-sorted first-order logic

As is apparent from the definition of modal logic and its semantics, the modal symbol □ very

much behaves like the quantifier ∀ in classical first-order logic. This parallel becomes more
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obvious with the standard translation that transforms modal formulas to classical ones. The

standard translation shows that propositional and first-order modal logic can be regarded as a

fragment of classical first-order logic. When reduced to propositional modal logic, we can see

that this logic is simply a variable-free notation for a fragment of first-order logic ([BvB07], p.

10). We will first explore two-sorted logic itself before introducing the standard translation.

4.3.1 Two-sorted logic

The standard translation translates any formula in basic first-order modal logics to formulas in

two-sorted logic. Before giving the standard translation, we define the two-sorted logic under

consideration. The logic being two-sorted means that there are two kinds of variables and

individual constants – those of the sort world and those of the sort domain for individuals. Two-

sorted logic is then a fragment of classical first-order logic. Formulas in two-sorted logic can

easily be embedded in classical first-order logic - we just need to add extra predicates to indicate

whether a variable should be of the sort world or the sort domain. We will follow the definition

of two-sorted logic and standard translation given in [SW00].

We start by defining the language SL for two-sorted logic. We have variables x, y, z, . . .

as variables of the domain sort, and variables u, v, w, . . . to denote the variables of world sort.

These two sets of variables are both countably infinite and disjoint. We have predicate symbols

P ′, Q′, R′ . . . analogously to the predicate symbols in modal first-order logic, such that if P is

an n-place predicate in modal logic, then P ′ denotes an n+1-place predicate in two-sorted logic

of the form world × domainn. Again, there are no function symbols or constants. Formulas in

SL are defined in the following manner:

Definition 4.7. We define formulas in two-sorted modal logic as:

1. Atomic formulas P ′(v, x1, . . . , xn) for a predicate symbol P ′ of sort world× domainn, and

the atomic formula ⊤ are formulas.

2. If φ and ψ are formulas, then ¬φ, φ ∧ ψ, φ ∨ ψ and φ ⊃ ψ are formulas.

3. If φ is a formula, a a free variable of domain sort and x a domain variable not occuring

in φ, then the expressions ∀xφ′ and ∃xφ′ are formulas, where φ′ is obtained from φ by

replacing each occurence of a in φ by x.

4. If φ is a formula, b a free variable of world sort and v a world variable not occuring in φ,

then the expressions ∀vφ′ and ∃vφ′ are formulas, where φ′ is obtained from φ by replacing
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each occurence of b in φ by v.

Definition 4.8. An SL-model is a triple M = (W,D, V ), where

1. W and D are non-empty disjoint sets

2. V is a function mapping each (n+1)-place predicate symbol P ′ to a subset V (P ′) ⊂ W×Dn.

Definition 4.9. An assignment in an SL-model M is a function a = a1 ∪ a2, where a1 maps

every domain variable x to an element a1(x) ∈ D and a2 maps every world variable u to an

element a2(u) ∈ W .

The satisfaction relation M |= φ[a] for two-sorted logic is defined in the usual way:

• M |= P ′(u, x1, . . . , xn)[a] iff (a2(u), a1(x1), . . . , a1(xn)) ∈ V (P ′),

• M |= ∀uφ[a] iff M = φ[b] for every assignment b that differs from a at most on v,

• M |= ∀xφ[a] iff M = φ[b] for every assignment b that differs from a at most on x,

and the standard satisfaction definitions apply to the booleans.

4.3.2 Some properties of two-sorted logic

We have introduced two-sorted logic here in this thesis because we want to translate modal

formulas to SL to talk about their properties there. The tools we can use in two-sorted logic are

those that we know from classical first-order logic. We can apply Gentzen’s sequent calculus to

two-sorted logic just the way we applied it to classical first-order logic in Chapter 2. We only

have to pay attention when introducing quantifiers that we can only introduce quantifiers for a

variable to replace a term of the same sort, i.e. world or object. The inference rules, however,

remain unchanged in principle, meaning that we manipulate the initial sequents with the same

rules. Thus, the cut-elimination theorem, Maehara’s Lemma and Craig’s Interpolation Theorem

all apply to two-sorted logic. Consequently, formulas in two-sorted logic interpolate and the

translation of modal formulas to two-sorted logic turns out to be a quite useful tool to examine

the former.

4.3.3 The standard translation

We can embed the language of quantified modal logic QML into the two-sorted language SL in

a very straight forward manner. We have already defined the two-sorted predicate symbols in
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analogy to modal predicate symbols, such that a modal predicate symbol P is associated with

the two-sorted predicate symbol P ′. Given a world variable v, we define the standard translation

STv from QML into SL this way:

STv(P (x1, . . . , xn)) = P ′(v, x1, . . . , xn)

STv(⊤) = ⊤
STv(φ ∧ ψ) = STv(φ) ∧ STv(ψ)

STv(¬φ) = ¬STv(φ)

STv(∀xφ) = ∀xSTv(φ)

STv(□φ) = ∀wSTw(φ)

where w is some fresh world variable. Usually the two-sorted language and standard transla-

tion also include and consider a predicate symbol R for the accessibility relation R on the worlds

W . Since we will only translate formulas in the logic S5B in this thesis, where we have that

R = W ×W for every model, we can omit R. As all worlds are connected to all worlds and we

work with constant domains, it consequently does not matter from which world variable v we

start the translation STv if every subformula is in the scope of some modal operator.

Definition 4.10. Let M = (W,D, V ) be some SL-model and a = a1 ∪ a2 an assignment in

M. Further, let N = (W ′, R,D′, V ′) be an S5B-model and b be an assignment in N such that

W = W ′, D = D′, b = a1 and such that for any modal predicate symbol P and counterpart

P ′ in the two-sorted language we have that V (P ) = V ′(P ′). Then we call (M, a) and (N, b)

equivalent, writing (M, a) ∼ (N, b).

Note that for each tuple (M, a) we can find a unique equivalent tuple (N, b). Now that we

have defined the standard translation, the question arises whether the translation of a formula

that is valid in constant-domain S5 is still valid in SL.

Lemma 4.11. Suppose we have two equivalent models (M, a) ∼ (N, b). For every formula φ in

quantified modal logic and world variable v we then have that

(N, a(v)) |= φ[b] iff M |= STv(φ)[a].

Proof. By induction on the structure of the formula φ.

Consequently the standard translation is validity preserving. We can also map the S5B-
models to models in two-sorted logic bijectively such that we can use them interchangeably:

M = (W,R,D, V ) �→ N = (W,D, V ).
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We can argue as well that valid S5B-sentences are still valid when translated to SL by

showing that the translations of all S5B-axioms and inference rules from the Hilbert-style proof

system (Section 4.2.2) can be derived in SL simply using Gentzen’s sequent calculus in SL.
For example, we can derive the translation of the axiom □A ⊃ □□A, which has the form

∀vA′(v) ⊃ ∀v∀wA′(w), the following way:

A′(t) → A′(t)
∀ : left

∀vA′(v) → A′(t)
∀ : right

∀vA′(v) → ∀wA′(w)
∀ : right

∀vA′(v) → ∀v∀wA′(w)

Conveniently, we can easily identify formulas in SL that are the translation of a modal

formula. Looking at the shape of translated formulas, we can note that every subformula is

always bound by the innermost world quantifier that it is in the scope of. For example, if we

have a formula like □♢P , then in the translation ∀w∃uP ′(u) the variable u in the predicate

P ′ is bound by the innermost world quantifier ∃u. That is, we will not get a formula from

the translation in which different world-quantifiers bind the same subformula “cross-wise”. The

subformula Q′(v) ∧ P ′(w) in the formula ∀w∀v(Q′(v) ∧ P ′(w)), for example, is in the scope of

both world quantifications ∀w and ∀v, even though the subformulas Q′(v) and P ′(w) are only

bound by one of them respectively, and the innermost wold quantifier that the subformula P ′(w)

is in the scope of does not bind it. In this case, we say that the world-quantifiers cross-bind. In

contrast, the world quantifiers in the translation (∀v(Q′(v) ∧ ∃wP ′(w))) ∧ T ′(u) of the formula

(□(Q ∧ ♢P )) ∧ T do not cross-bind as the subformulas that are being bound are bound by the

innermost world-quantifier that they are in the scope of. Thus, formulas in SL in which world-

quantifiers cross-bind express relations between worlds which cannot be expressed in modal logic.

Coming from these reflections, we define the one-world-variable fragment.

Definition 4.12. Let v be some world variable. Then the one-world-variable fragment SLv

contains the formulas in the two-sorted logic SL in which every subformula is only bound by the

innermost world quantifier. The only free world variable that might appear in a subformula is

v, in which case the subformula is not in the scope of any other world-quantifier.

Lemma 4.13. For every S5B-formula φ, its translation STv(φ) belongs to the one-world-

variable fragment SLv. Conversely, every formula in such a fragment is the translation STv(φ)

of some formula φ in QML for some world variable v.
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Proof. The first implication of the lemma can be easily derived from the definition of the trans-

lation STv. Conversely, we can construct a ”re-translation” of formulas in the one-world-variable

fragment SLv to quantified modal formulas:

Rev : SLv −→ QML
P ′(v, x1, . . . , xn) �→ P (x1, . . . , xn)

⊤ �→ ⊤
φ ∧ ψ �→ Rev(φ) ∧Rev(ψ)

¬φ �→ ¬Rev(φ)

∀xφ �→ ∀x Rev(φ)

∀wφ �→ □Rew(φ)

where w can be any world variable. It is easily checked that for every formula φ in SLv, we have

that φ = STv(Rev(φ)) and thus it is the translation of the formula Rev(φ) in QML.

The language of quantified modal logic as a tool to talk about models in constant-domain

S5 has the same expressive power as the one-variable-fragment SLv of two-sorted logic. When

we look at what the standard translation does, it really is a tool to translate the semantics

of quantified modal logic to syntactic arguments. Whatever we can express semantically in

quantified modal logic, we can express syntactically in the translation.
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5 Fine’s counterexample

We have already discussed that there is no analytic sequent calculus known for the modal logic

S5 as we cannot eliminate the cut-rule. Thus, we cannot derive Craig’s Interpolation Theorem

and consequently Beth’s Definability Theorem for quantified S5B in an analogous manner as in

classical first-order logic. In this chapter we will present Kit Fine’s result that the Interpolation

Theorem does not hold for quantified S5 as demonstrated in his paper ”Failures of the Interpo-

lation Lemma in Quantified Modal Logic” (1979) [Fin79]. Fine proceeds by showing that there

are formulas in S5 as well as in S5B with the constant domain axiom scheme ∀x□φ ≡ □∀xφ
for which Beth’s Definability Theorem does not hold. Consequently, by implication, the Inter-

polation Theorem does not hold for these logics. As we restrict ourselves to modal logics with

constant domains in this thesis, we will concentrate on Fine’s counterexample for S5B in this

section.

5.1 Preliminary definitions

To construct a counterexample to Beth’s Definability Theorem for S5B, we first need to formulate

it for the modal context. There are various ways to formulate implicit and explicit definability

in modal logic. We will stick with a formulation that does not involve any modal operators.

Theorem 5.1 (Beth’s Definability Theorem for Modal Logic). Let T be a theory of the logic

L and let T ′ be the result of replacing each occurence of the n-place predicate P in T by a new

n-place predicate P ′.

We will say that P is implicitly definable in T if T, T ′ ⊢ ∀x1 . . . ∀xn(P (x1, . . . , xn) ⊃ P ′(x1, . . . , xn))

in L. We say that P is explicitly definable in T if there is an L-formula φ in the language of

T not containing P such that T ⊢ ∀x1, . . . ∀xn(P (x1, . . . , xn) ≡ φ) in L.

Then, Beth’s Definability Theorem states that the predicate P is implicitly definable in a

theory T of the logic L if and only if it is explicitly definable.

We could also define implicit and explicit definability in modal logic by replacing the quan-

tifier prefixes ∀x1 . . . ∀xn with prefixes containing modal operators such as □∀x1 . . . ∀xn or

□∀x1 . . .□∀xn. According to Fine, Beth’s Definability Theorem will still fail for quantified S5
in this case, and he conjectures that it will do the same for quantified S5 with constant domains.

We will only consider the version without any modal operators here.

The Interpolation Theorem can be formulated in the general manner: In a logic L, ⊢ φ ⊃ ψ
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implies that ⊢ φ ⊃ ϕ and ⊢ ϕ ⊃ ψ for some formula ϕ in the common language of ϕ and ψ. As

shown in Section 3.2, the Interpolation Lemma implies Beth’s Definability Theorem.

We will now introduce some notation and definitions that we will need to construct the

counterexample.

Definition 5.2. Let M = (W,R,D, V ) be an S5B-structure. Then we write Mw for the

structure (D,Vw), where Vw(P ) = {(a1, . . . , an) ∈ An : (w, a1, . . . , an) ∈ V (P )}. There is

a natural notion of isomorphisms for structures of this form. With Mw as just defined and

structures N = (W ′, R′, D′, V ′) and Nu = (D′, V ′
u) we define the isomorphism σ : Mw

∼= Nu as:

σ : Mw → Nu

D → D′

Vw → V ′
u

where σ : D → D′ is a bijective function such that σ : Vw(F ) → V ′
u(F ) is bijective as well for

any predicate symbol F in the language.

We will now define an isomorphism between two modal structures.

Definition 5.3. For two modal S5 -structures M = (W,R,D, V ) and M′ = (W ′, R′, D′, V ′), we

define an isomorphism from M onto M′, written as σ : M ∼= M′, to be a bijective function

σ : D → D′ such that

1. ∀w ∈ W ∃w′ ∈ W ′ : σ : Mw
∼= M′

w′

2. ∀w′ ∈ W ′ ∃w ∈ W : σ : M′
w′ ∼= Mw.

The following lemma will be useful later on.

Lemma 5.4. Let ρ be an isomorphism ρ : Mw
∼= Nu and let the following condition be fulfilled:

(∀ finite ρ′ ⊂ ρ)(∃σ ⊃ ρ′)(σ : M ∼= N).

Then we have that for any formula ϕ(x1, . . . , xn) with xi being free variables, and for a1, . . . , an ∈
D:

(M, w) |= ϕ(a1, . . . , an) iff (N, u) |= ϕ(ρ(a1), . . . , ρ(an)).

Proof. By induction.
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5.2 Failures for quantified S5B
We will now construct Fine’s counterexample to Beth’s Definability Theorem for S5B.

Theorem 5.5. Beth’s Definability Theorem and consequently the Interpolation Theorem do not

hold in S5B.

Proof. We recall that we have the following axioms in S5B:

1. all formulas that have the form of propositional tautologies

2. all instances of the following axiom schemata:

• □(ϕ ⊃ ψ) ⊃ (□ϕ ⊃ □ψ)

• □ϕ ⊃ ϕ

• □ϕ ⊃ □□ϕ

• ♢□ϕ ⊃ ϕ

• ∀x□ϕ ≡ □∀xϕ

Now let T be the theory that we get if we add the following two axioms to S5B:

1. p ⊃ ♢∀x(F (x) ⊃ □(p ⊃ ¬F (x)))

2. ¬p ⊃ □∃(F (x) ∧□(¬p ⊃ F (x)))

We will now show that p is implicitly definable in T , but not explicitly definable. Let us first

establish that p is implicitly definable in T :

Let us recall what it means for p to be implicitly definable: If we construct a theory T ′ by

replacing each occurrence of p in T with a new predicate p′ of the same degree 0, then p being

implicitly definable in T means that the following holds in S5B:

T, T ′ ⊢ p ⊃ p′.

Let M be a constant domain model (W,R,D, V ) and w0 a world in W such that M models

T at w0. For any world w ∈ W , recall that Vw(F ) is the subset of D on which F holds in w.

Looking at the first axiom that is part of T , we can derive that if M, w0 |= p, then there is a

world v such that for any element a ∈ D, we have that if a ∈ Vv(F ), then a ̸∈ Vw0(F ). Thus,

Vv(F ) is disjoint from Vw0(F ). If we have M, w0 ̸|= p on the contrary, then the second axiom

tells us that for every world v ∈ W there is an element a such that F (a) holds in world v and
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w0 alike. Consequently, Vw0(F ) is not disjoint from Vv(F ) for any world v. Thus we conclude

that M, w0 |= p if and only if Vw0
(F ) is disjoint from Vv(F ) for some world v ∈ W . Thus, the

extension of p is fixed uniquely in T by the extension of the other symbols in the language. In

this way we infer that p is implicitly defined in T .

Next, we will show that p is not explicitly definable in T . Remember that p is explicitly

definable in T if there is an S5B-sentence φ in the language of T not containing p such that

T ⊢ p ≡ φ in S5B.
To establish the counterexample, we construct an S5B-structure U = (W,D,R, V ) for the

language which has F as its only non-logical predicate. The domain D shall be the set of integers

Z. We call a permutation τ on D essentially finite if it only permutes finitely many integers

and leaves the rest unchanged. We define the set of worlds W as W = {⟨k, τ⟩ : k ∈ {0, 1, 2}
and τ an essentially finite permutation}. Let N, O and E be the set of natural, odd natural and

even natural numbers respectively. We set the valuation functions {Vw}w∈W to be defined in the

following way:

V⟨0,τ⟩ = τ(N) V⟨1,τ⟩ = τ(O) V⟨2,τ⟩ = τ(E).

We write id for the identity permutation on D and denote the world ⟨k, id⟩ as wk for k = 0, 1

or 2. Now take ρ to be a permutation on D such that its image ρ(N) = O. Then we have that

ρ : Uw0
∼= Uw1

. Clearly, ρ : D → D is a bijection on the domains of the two structures. For the

valuation of the predicate symbol F we have that

ρ : V⟨0,id⟩(F ) = id(N) = N −→ V⟨1,id⟩(F ) = id(O) = O (1)

n �→ ρ(n) (2)

Furthermore, we can establish that (∀ finite ρ′ ⊂ ρ)(∃σ ⊃ ρ′)(σ : U ∼= U). Let ρ′ ⊂ ρ

be permutation that only acts on a finite set of integers. Take σ to be an essentially finite

permutation such that σ ⊃ ρ′. Then for every world ⟨k, τ⟩ we have that σ : U⟨k,τ⟩ ∼= U⟨k,σ◦τ⟩ and

conversely σ : U⟨k,σ−1◦τ⟩ ∼= U⟨k,τ⟩. Thus, by Definition 5.3 of isomorphisms of structures, the

function σ is an isomorphism σ : U ∼= U. Furthermore, we have thus established the conditions

of Lemma 5.4 such that we can conclude that for every formula ϕ(x1, . . . , xn) with the xi being

free variables, and for a1, . . . , an ∈ D, we have that:

(U, w0) |= ϕ(a1, . . . , an) iff (U, w1) |= ϕ(ρ(a1), . . . , ρ(an)).

From this we can deduce that

(U, w0) |= φ iff (U, w1) |= φ
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for any closed formula φ.

Now we expand the structure U to M and N by expanding the language to {F, p} such that

the following holds:

(M, u) |= p iff u ∈ W \ {w0}
(N, u) |= p iff u = w1

Consequently, both (M, w0) and (M, w1) model the theory T : The structure M models ¬p in

the world w0 and thus automatically models the first axiom of the theory. As we have shown

in the first part of the proof, (M, w0) |= ¬p means that Vw0
(F ) = N intersects Vu(F ) for any

world u ∈ W . Since we are dealing with essentially finite permutations, this is clearly true,

and thus the second axiom of the theory is fulfilled as well. On the other hand, (M, w1) clearly

satisfies the second axiom, and by the above part of the proof Vw1
(F ) = O is disjoint from

Vu(F ) for some u ∈ W . This is the case for u = w2, as Vw2
(F ) = E. Thus, (M, w1) satisfies

the first axiom as well. Now suppose that p was explicitly definable in T , i.e. that there is a

sentence θ with sole non-logical constant F such that T ⊢ p ≡ θ. Since (M, w1) models T and

(M, w1) |= p, we infer that (M, w1) |= θ as well. Therefore, we also have that (U, w1) |= θ. By the

consequence of Lemma 5.4 deduced above, we also have that (U, w0) |= θ. This, however, implies

that (M, w0) |= θ and consequently, as M is also a model of T at w0, we get that (M, w0) |= p.

This is a contradiction of our assumptions about M. Thus, we have shown that the predicate p

is implicitly definable in the theory T , but not explicitly.

Thus we have seen that Craig’s Interpolation Theorem does not hold for all formulas in S5B.
However, there are certain classes of formulas in S5B for which we can derive an interpolant.

We will present these in the next chapter.
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6 Interpolation by translation in S5B
We have seen in the previous chapter that Craig’s Interpolation Theorem does not hold for the

modal logic S5B in general. However, there are some classes of formulas for which it does hold.

We will show in this chapter that we can find interpolants for sequents in S5B consisting of

prenex formulas or containing weak modal operators only. Before we start, we will go through

some preliminary definitions and results.

6.1 Preliminary definitions and results

Definition 6.1. We define a prenex formula in quantified modal logic QML to be a formula of

the form ∗A where ∗ is an arbitrary combination of quantifiers and modal operators, and A is

free from both.

We call a sequent a prenex sequent if it consists of prenex formulas only.

Definition 6.2. Let Γ → ∆ be a sequent in QML. Then we call the modal operators ♢ and

□ appearing in the sequent strong (or conversely weak) modal operators if in the translation of

the sequent the respective quantifiers would be considered strong (or weak).

Lemma 6.3. Let ∗A be a prenex formula in S5B containing at least one modal operator. Then

only the innermost modal operator has a binding effect on A, such that all other modal operators

can be discarded while maintaining equivalence.

Proof. We will expand on our argument from introducing the one-world-variable fragment in

Section 4.3.3. Let ∗A be a prenex formula in S5B. We know that in modal logics, predicates

may have different extensions in every world. Since we look at prenex formulas here, we only

interpret predicate symbols in the worlds pointed to by the innermost modal operator. Using

Kripke semantics, the world relation R in S5B connects all worlds, that is, R = W × W .

Consequently, the worlds pointed to by the innermost modal operator are either all worlds if the

operator is □, or any world if the operator is ♢. Thus we interpret the scope of the innermost

modal operator independently of the modal operators appearing before it in the formula’s prefix.

We will refer to these uninterpreted modal operators as outer modal operators.

Since we have constant domains for the scope of the individual variables, their position within

the prefix ∗ relative to the outer modal operators is irrelevant as well, as their scope is the same

in every world. Consequently, if we discard of the modal operators except for the innermost, we
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receive a logically equivalent formula, as these operators are not relevant for the interpretation

of the formula in S5B.
This property can also be nicely illustrated by translating the formula using the standard

translation to two-sorted logic. Let us take the formula φ = □∃x♢∀yQ(x, y) for example. The

standard translation of this formula is ∀v∃x∃w∀yQ′(w, x, y). We see that the predicate symbol

Q′ is not bound by the outer wold quantifier but only depends on the individual quantified

variables and the innermost world quantification.

6.2 Interpolation of prenex formulas in S5B
In this section we will show a way to find the interpolant for sequents consisting of two prenex

formulas in S5B. The idea is to translate the sequent to two-sorted logic, find the interpolant

there, and translate it back to S5B. Since the prenex formula structure is preserved by the

translation, we can apply the Midsequent Theorem (Theorem 3.4) and thus have a proof of the

translated sequent at hand that makes it easy to infer an interpolant that can be re-translated.

The procedure follows these steps:

1. Translate the prenex formula to SL

2. Apply the Midsequent Theorem

3. Find the (propositional) interpolant of the midsequent

4. Use Maehara’s Lemma to construct the interpolant of the translated formula from the

midsequent’s interpolant

5. Translate the interpolant back to QML

This procedure works for prenex formulas because the interpolant derived by Maehara’s Lemma

in two-sorted logic will be in prenex form and in the one-variable fragment SLv for some world

variable v as well. This way, it can be easily translated back to S5B.

Theorem 6.4. Let φ ⊃ ψ be a valid implication in S5B, where both the antecedent and succedent

are prenex formulas of the form φ = ∗AA and ψ = ∗BB and both prefixes contain at least one

modal operator. Then the implication has an interpolant γ in S5B. That is, there is a formula γ

that is in the common language of φ and ψ, or that consists of ⊤ and logical symbols only, such

that φ ⊃ γ and γ ⊃ ψ are valid in S5B.
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Proof. Let φ ⊃ ψ be a valid implication in S5B, where both the antecedent and succedent are

prenex formulas of the form φ = ∗AA and ψ = ∗BB. Since we work in S5B, only the innermost

modal operator has a binding effect on the formulas A and B by Lemma 6.3, such that we can

assume without loss of generality that there is at most one modal operator present in the prefixes

∗A and ∗B respectively. We will proceed in this proof by first translating the formula to SL,
applying the Midsequent Theorem and finding its interpolant there using Craig’s Interpolation

Theorem. We will deduce that this interpolant is in prenex form from the midsequent structure

of the proof. We will continue by showing that the formulas in the antecedent and succedent of

the midsequent are already in a one-world-variable fragment. We will use this to show that the

interpolant must be in a one-world-variable fragment as well. This way we can translate it back

to S5B and receive an interpolant for the original formula.

We translate the given implication to a formula in two-sorted logic:

STw(φ ⊃ ψ) = STw(∗AA ⊃ ∗BB)

= ⋆ASTv(A) ⊃ ⋆BSTv(B)

= ⋆AA
t ⊃ ⋆BB

t

where the quantifier prefixes ⋆A and ⋆B result from the translation of the prefixes ∗A and ∗B
respectively. The formulas At and Bt stand for STv(A) and STv(B). Since A and B are free

from modal operators as well as quantifiers, their translations STv(A) and STv(B) are also

quantifier-free. Thus, the translation is an implication of prenex formulas as well.

By Craig’s Interpolation Theorem (Theorem 3.6), the implication ⋆AA
t ⊃ ⋆BB

t has an

interpolant C̃. To deduce the interpolant, we apply the Midsequent Theorem (Theorem 3.4) to

the sequent ⋆AA
t ⊃ ⋆BB

t to obtain a cut-free proof thereof of the following form:

⋆AA
t ⊃ ⋆BB

t

S

intial ... sequents

where S is the midsequent of the proof. According to the Midsequent Theorem, every infer-

ence above the sequent S is either structural or propositional, and every inference below is either a

structural or a quantifier inference. Thus, the midsequent has a propositional, i.e. quantifier-free
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interpolant C. By applying the steps of the proof of Maehara’s Lemma (Lemma 3.5) induc-

tively, we can construct the interpolant C̃ step by step from C. From these steps we see that

each structural inference as well as the introduction of strong quantifiers leaves the interpolant

unchanged. When introducing a weak quantifier though, the interpolant is also quantified in

the way described in the proof of Maehara’s Lemma. As the only way that the interpolant C

is modified in these steps is by adding quantifier prefixes, we know that the interpolant C̃ is in

prenex form as well.

It remains to show that C̃ is in a one-variable fragment for a variable of sort world. We

will argue that before any quantifiers are introduced to the interpolant, it contains at most one

world variable, such that upon the introduction of a world quantifier, the result is in a one-world-

variable fragment as well. We will deduce this from the fact that the formulas in the antecedent

and succedent are in a one-world-variable fragment as well.

We already know that the translated endsequent ⋆AA
t ⊃ ⋆BB

t is in a one-world-variable

fragment. We assumed without loss of generality that both the formula in the antecedent and

the one in the succedent contain exactly one world-quantification as we only need to consider

the innermost world quantifier. Looking at the proof, when quantifier inferences are applied to

a formula to introduce a world quantifier, then this formula can contain only the one free world

variable that is being replaced by the bound world variable. Otherwise we would get a formula

in the endsequent that is not in a one-world-variable fragment anymore and in which world-

quantifiers cross-bind, as the world variables in the formula would not be bound by the innermost

world quantifier that they are in the scope of. For example, a formula in the succedent containing

more than one free world variable could look like A′(u, x)∧B′(w, y) before the quantifier inference.

Upon quantification, we would have to introduce the same world variable for both u and w for

the world quantifiers not to cross-bind and to end up in a one-world-variable fragment. We

would get, for example, the expression ∃v∃v(A′(v, x) ∧ B′(v, y)). However, this is not allowed

as a formula by definition. On the other hand, introducing two different quantifiers such as

∃w∃v(A′(v, x) ∧ B′(w, y)) would get us a formula that contains more than one world-variable

quantification and that is not in a one-world-variable fragment anymore. As the proof is cut-

free, this contradicts the endsequent being in a one-world-variable fragment. Thus, we have

only one free world variable within the affected formula upon introduction of world quantifiers.

Consequently, the formulas in the antecedent and succedent of the midsequent are in a one-

world-variable fragment.

We can inductively deduce that the interpolant is in the one-world-variable fragment as well.
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As we start our proof from atomic sequents of the form A → A and → ⊤, the interpolant starts

off containing only the free world variable that is present in the antecedent and succedent of

the atomic formulas from the start (if any). Further, once the interpolant contains a free world

variable, we cannot add any new world variable to it by any inference as they either do not affect

the interpolant or would create formulas in the endsequent that are not in a one-world variable

fragment. For example, if a propositional rule like ∧ : left introduces a new subformula with a

world variable when the affected formula already contains a world variable, it does not affect the

interpolant and it would further contradict the formulas in the antecedent and succedent being

in a one-world-variable fragment in the midsequent already. If in the rule ∨ : left two formulas

with different world variables are being combined, we would create formulas in the midsequent

that are not in the one-world-variable fragment as well. Thus the only way to introduce a new

world variable to the antecedent or succedent is through a weakening. This leaves the interpolant

unchanged. Thus, if the antecedent and succedent of the midsequent are logically connected, i.e.

the interpolant is not only made up of ⊤ and logical symbols only, then the interpolant contains

only one free world-variable that the antecedent and succedent have in common.

Now we know that if the interpolant C of the midsequent does not consist of ⊤ and logical

symbols only, it contains only one kind of free world variable. Any world quantifier introduction

on the interpolant will bind this free variable by the proof of Maehara’s Lemma, as there are no

quantifier introductions on interpolants that do not actually bind any variable. Thus, the final

interpolant of the endsequent is in the one-variable fragment SLw as well for some world variable

w. Consequently, it is re-translatable to QML and by the truth-maintenance of the translation,

it is an interpolant of our original formula ∗AA ⊃ ∗BB.

Using this translation procedure, we can also find the interpolant for valid implications in

S5B that contain weak modal operators only:

Theorem 6.5. Let ϕ ⊃ ψ be a valid implication in S5B, where both the antecedent and succedent

contain arbitrary quantifiers but only weak modalities. Then the implication has an interpolant

γ in S5B. That is, there is a formula γ that is in the common language of φ and ψ, or that

consists of ⊤ and logical symbols only, such that φ ⊃ γ and γ ⊃ ψ are valid in S5B.

Proof. Let φ ⊃ ψ be a valid implication in S5B, where both the antecedent and succedent contain

arbitrary quantifiers but only weak modalities. Let φ′ ⊃ ψ′ be the formula’s translation to SL, P
a cut-free proof thereof, and γ′ its interpolant according to Craig’s Interpolation Lemma, i.e. the
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interpolant derived using the construction steps of the proof of Maehara’s Lemma. We want to

find out whether we can derive the interpolant of the original modal formula from this one. Since

we only had weak modalities in φ ⊃ ψ in the first place, we only have weak world quantifiers

in the translation φ′ ⊃ ψ′. Consequently, we do not have any eigenvariable conditions in the

inferences introducing the world variables in the proof P . Further, we know that the endsequent

is a translation of a modal formula and thus in a one-world-variable fragment. Analogously to the

argumentation in the proof of Theorem 6.4, when a world quantifier is introduced for a formula

in the course of the proof, this formula only has at most a single free world variable before that,

in which case it is being bound by the quantifier introduction. Else we would get cross-binding

quantifiers and not end up with a translation of a modal formula in the end-sequent as our proof

is cut-free.

With this in mind, we can set all free world variables to the same variable in the proof.

Consequently, the interpolant γ′ has only one free world variable as well in the course of the

proof, and every introduction of world quantifiers then binds this variable in the respective

formula. Thus, we have that γ′ is in a one-world-variable fragment and a translation of an

S5B-formula γ. By the truth maintaining properties of the translation, γ is an interpolant for

φ ⊃ ψ.

We can also show in an analogous manner that propositional S5 interpolates.

Corollary 6.5.1. Propositional S5 interpolates.

Proof. Let φ ⊃ ψ be a valid implication in propositional S5 . By a simple embedding, we can

interpret the implication as a formula in S5B without any quantifiers and with 0-place predicates

only. Translating φ ⊃ ψ to SL, we get a formula φ′ ⊃ ψ′ that consists of 1-place predicates only,

where the arguments are world arguments. Since φ′ ⊃ ψ′ is the translation of a modal formula,

there is at most one kind of free world variable, say v, present in it. Applying Craig’s Interpolation

Theorem, we receive an interpolant γ′ of the implication φ′ ⊃ ψ′. Since we only have variables

from the sort world, we can treat the formula like one in classical first-order logic. Consequently,

we can move quantifiers around – analogously to the quantifier movements in order to create

a logically equivalent prenex normal form – to create a logically equivalent formula where each

quantifier only has predicates in its scope that it actually binds. The modified formula only

contains 1-place predicates, thus no predicate is in the scope of more than one quantifier. Thus,

we can replace all bound variables with the world variable w and receive a logically equivalent

formula. Since this formula belongs to the one-world-variable fragment SLv, we can translate it
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back to S5B. The resulting formula γ belongs to propositional modal logic, as we have 0-place

predicates again. Since the translation maintains validity, the formula γ is an interpolant of

φ ⊃ ψ.

Corollary 6.5.2. Let φ → C̃ be a valid prenex sequent in S5B of the form φ → ∗C□C, where

the prefix ∗C stands for an arbitrary combination of existential quantifiers and modal operators,

□ is the innermost modality of the succedent, and C is some formula without any modalities but

possibly including more quantifiers. Then we can constructively derive unique terms that serve

as truth witnesses for the quantifiers in ∗C .

Proof. Let φ → ∗C□C be a valid sequent in S5B of the form given in the corollary. We translate

this modal formula to SL and get the sequent

φ′ → ∗C′∀vC ′(v),

where φ′ is the translation of the formula φ, ∀vC ′(v) is the translation of □C, and the quantifier

prefix ∗C′ results from the translation of the prefix ∗C .
We can argue analogously to the proof of Theorem 6.4 that the translated sequent consists

of prenex formulas only, and that there is a cut-free proof in the form given by the Midsequent

Theorem. Similarily we can assume that due to the requirement that the endsequent is in the

one-world-variable fragment, the formulas in the antecedent and the succedent of the midsequent

are as well. We also deduced in the proof of Theorem 6.4 that weakenings that are introduced in

order to enable propositional inferences above the midsequent do not introduce any new world

variable to the proof. Else the formula resulting from the propositional connection would contain

more than one free world variable. Since the antecedent and succedent of the endsequent consist

of only one formula each, we do not need any weakenings that would introduce additional world

variables, unless to prove a sequent in which antecedent and succedent are not logically connected,

such as for example the sequent ∃x□B(x) → ∃x□(A(x)∧¬A(x)). In this case a single weakening

suffices to add the missing formula.

Thus, at the point of the proof when the ∀v quantification is introduced to the succedent,

it does not necessarily contain two copies with different free world variables each of the formula

that is being quantified. For example, let the quantification rule be applied to the formula

D(u, s1, . . . , sn), where u is a free world variable and s1, . . . sn are the terms of domain sort that

are being existentially quantified over in the endresult. Then the succedent does not have to

contain a copyD(v, s1, . . . , sn) with a different world variable, as this would have been introduced
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by a weakening which we do not need for any propositional inference. The succedent does not

contain a copy D(u, s1, . . . , sn) with the same world variable either, as this would violate the

eigenvariable condition. Thus there is only one copy of D(u, s1, . . . , sn). Consequently, D is not

being contracted after this quantifier introduction, and s1, . . . , sn are unique terms that serve as

witnesses for the existential quantifiers outside of ∀v in ψ′.

Since the succedent of the endsequent ∗C′∀vC ′(v) is still in a one-world-variable fragment if

we strip it off the outer existential quantifiers and replace the respective variables by the place

holders before their quantifier introductions, we can translate the modified formula back to S5B
and get the desired result.

6.3 Examples

We will begin with an example to illustrate the statement of Theorem 6.4 that we can derive the

interpolant of sequents of prenex formulas in S5B by translation to SL.

Example 6.6. We will show by translation to SL that the S5B-formula □∀x(A(x) ∧ B) →
□∃x(A(x) ∨ C) interpolates.

1. Translate the prenex formula to SL:

∀v∀x(A′(v, x) ∧B′(v)) → ∀v∃x(A′(v, x) ∨ C ′(v))

2. Apply the Midsequent Theorem:

We get the following cut-free proof of the translated sequent that contains the midsequent

M = A′(s, t) ∧B′(s) → A′(s, t) ∨ C ′(s).

A′(s, t) → A′(s, t)
∧ : left

A′(s, t) ∧B′(s) → A′(s, t)
∨ : right

A′(s, t) ∧B′(s) → A′(s, t) ∨ C ′(s)
∀ : left

∀x(A′(s, x) ∧B′(s)) → A′(s, t) ∨ C ′(s)
∃ : right

∀x(A′(s, x) ∧B′(s)) → ∃x(A′(s, x) ∨ C ′(s))
∀ : left

∀v∀x(A′(v, x) ∧B′(v)) → ∃x(A′(s, x) ∨ C ′(s))
∀ : right

∀v∀x(A′(v, x) ∧B′(v)) → ∀v∃x(A′(v, x) ∨ C ′(v))

3. Find the (propositional) interpolant of the midsequent:

The interpolant of the midsequent A′(s, t)∧B′(s) → A′(s, t)∨C ′(s) is the formula A′(s, t).

44



4. Use Maehara’s Lemma to construct the interpolant of the translated formula from the

midsequent’s interpolant:

We will apply the steps from the proof of Maehara’s Lemma (Lemma 3.5) starting from

the midsequent’s interpolant to construct the interpolant of the endsequent and will denote

the inference rule which we are considering on the left:

A′(s, t)
∀ : left

∀xA′(s, x)
∃ : right

∀xA′(s, x)
∀ : left

∀v∀xA′(v, x)
∀ : right

∀v∀xA′(v, x)

Thus, we get the interpolant ∀v∀xA′(v, x) for the translated sequent ∀v∀x(A′(v, x) ∧
B′(v)) → ∀v∃x(A′(v, x) ∨ C ′(v)).

5. Translate the interpolant back to S5B:
The retranslation of the interpolant ∀v∀xA′(v, x) yields the interpolant □∀xA(x) for the

original sequent □∀x(A(x) ∧B) → □∃x(A(x) ∨ C).

The method presented above, where we first translate an S5B-formula to two-sorted logic

and find the interpolant using Maehara’s Lemma, can be applied to non-prenex formulas as well

in order to find their interpolant in SL. In this case, however, we cannot apply the Midsequent

Theorem to obtain a certain proof structure, as the formula lacks the necessary prenex form. As

we will see, in those cases following the steps of Maehara’s Lemma does not always result in an

interpolant that can be directly translated back to S5B, even though the original modal formula

might have an interpolant. We will present an example of this below.

Example 6.7. Let C,D, P and Q be predicate symbols in S5B. We will try to find the inter-

polant of the following valid sequent containing non-prenex formulas:

♢
�
(P ∨ P ) ∧ C

�
, ♢

�
(Q ∨Q) ∧ C

� → ♢(P ∨D) ∧ ♢(Q ∨D), ♢P, ♢Q

As can be easily checked, a suitable interpolant in S5B would be the formula ♢P ∧ ♢Q. Let

us see what kind of interpolant we get from applying Maehara’s Lemma. We will switch to a

landscape view in order to improve readability.
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We will continue with an example that illustrates that propositional S5 interpolates with the

method of Corollary 6.5.1.

Example 6.8. We will just continue with the previous example, as it can be read as a proposi-

tional formula.

♢
�
(P ∨ P ) ∧ C

�
, ♢

�
(Q ∨Q) ∧ C

� → ♢(P ∨D) ∧ ♢(Q ∨D), ♢P, ♢Q

The interpolant we received from applying Craig’s Interpolation Theorem to the translation of

the sequent is I ′ = ∃w∃v(P ′(v)∧Q′(w)). By moving the variables while maintaining equivalence

to disentangle the formula, we get the interpolant ∃vP ′(v) ∧ ∃wQ′(w). We replace all bound

variables by the same variable to get the equivalent formula ∃wP ′(w)∧∃wQ′(w), which is clearly

a translation of the modal formula ♢P ∧ ♢Q and interpolant of the original sequent.
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7 Conclusion

In this thesis, we examined the possibilities and limitations of interpolation in the modal system

S5B. Kit Fine showed that implicit and explicit definability is not equivalent in S5B. Conse-

quently, we cannot find an interpolant for every formula in this system. There are exceptions,

however. We showed that sequents consisting of prenex formulas or containing arbitrary quan-

tifiers but only weak modal operators allow for interpolation. In a next step one could examine

whether the same goes for dual sequents - those with weak quantifiers only but arbitrary modal

operators.

When we translate formulas from propositional S5 to the language of two-sorted logic SL,
then we can find interpolants there that might or might not be re-translatable to S5 . That

is, we will presumably find more interpolants for the same sequent in SL than in S5 . For an

interpolant that is re-translatable, different world quantifiers that were cross-binding predicates

are disentagled such that they only have predicates in their scope that they actually bind. This

disentaglement, however, might prolong the interpolant. Interpolants that are not disentagled,

where quantifiers might cross-bind predicates, thus making it impossible to re-translate them to

S5 , could be exponentially smaller than disentagled ones. Thus the size of not re-translatable

interpolants might be an interesting topic of further research. Disentangling is an exponential

decision procedure. Once disentangled, satisfiability is an NP decision problem, just as satisfia-

bility in propositional logic is.

Another question worth looking at is to which extend proofs might be shorter for the trans-

lation of a sequent in SL than in the original S5 , provided we allow the cut rule to be used

in SL. We cannot necessarily re-translate the cut formulas to S5 . It would be worth examin-

ing what effect those cuts have on the length of the proof. The conjecture is that the proofs

in SL are shorter than in S5 as its language is more comprehensive. The difference might be

non-elementary (that is, it might grow faster than 2.
..
2n

). The worst case complexity of cut-

elimination is non-elementary for classical first-order logic ([Mat15], p. 1). This topic invites

further examination.
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