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Kurzfassung

Seit 01.01.2016 sind Versicherungsunternehmen mit Sitz in der europäischen Union
aufgrund der Richtlinie Solvency II unter anderem dazu verpflichtet, die zukünftige
Überschussbeteiligung (future discretionary benefits, FDB) zu melden. Normalerweise
wird diese mit aufwändigen Monte Carlo Algorithmen berechnet, allerdings wurde im
Paper Estimation of future discretionary benefits in traditional life insurance [GH22]
von Gach und Hochgerner eine neue Methode entwickelt um die FDB im Kontext von
Lebensversicherungen mit Gewinnbeteiligung abzuschätzen.

Der Fokus dieser Arbeit liegt auf der Überprüfung der Annahmen, die Gach und
Hochgerner in ihrem Paper getroffen haben. Dies wird mit einem Asset-Liability-Modell
in R durchgeführt. Es zeigt sich, dass der Großteil der Annahmen verifiziert werden kann
und alle Annahmen zumindest so weit bestätigt werden können, dass deren Anwendung
im Paper gerechtfertigt ist. Nach der Validierung der Annahmen wird die FDB in
verschieden simulierten Zinsszenarien numerisch und analytisch berechnet, der Schätzer
für die FDB bewertet und die verschiedenen Ergebnisse verglichen. Zusammenfassend
kann die Abschätzung der FDB in allen simulierten Szenarien als erfolgreich bezeichnet
werden, zusätzlich ist der Schätzfehler immer sehr klein.
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Abstract

Since 01.01.2016, insurance companies domiciled in the European Union are obligated
to report the future discretionary benefits (FDB) due to the regulation Solvency II. The
FDB are normally calculated with computationally expensive Monte Carlo algorithms,
but a new method to estimate the FDB in the context of life insurance with profit par-
ticipation was developed by Gach and Hochgerner in their paper Estimation of future
discretionary benefits in traditional life insurance [GH22].

The focus of this thesis is to validate the assumptions made by Gach and Hochgerner
in their paper. This is done with an Asset Liability Management model in R. It turns
out that the majority of the assumptions can be verified and that all assumptions can
be confirmed at least to the extent that their application in the paper is justified. After
validating the assumptions, the FDB are calculated numerically and analytically in dif-
ferently simulated interest rate scenarios, the estimation of the FDB is evaluated and
the different results are compared. Overall, the estimation of the FDB can be considered
successful in all simulated scenarios, in addition the estimation error is always very small.
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dieses Studium ermöglicht haben. Außerdem bedanke ich mich bei meiner gesamten
Familie und meinem Freund dafür, dass sie mich bei meinem Studium immer unterstützt
und ermutigt haben.
Großer Dank gilt auch Simon Hochgerner für den Anstoß zu dieser interessanten Diplom-
arbeit und der Betreuung dieser. Generell bedanke ich mich bei Simon Hochgerner und
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1 Introduction

Solvency II, a directive of the European Union which harmonises the EU insurance
regulation, came into effect on 01.01.2016. Among other demands, it requires insurance
companies to report the best estimate (BE) on a quarterly basis. The Directive of the
European Parliament of 25.11.2009 defines the best estimate as follows:

The best estimate shall correspond to the probability weighted average of fu-
ture cash-flows, taking account of the time value of money (expected present
value of future cash-flows), using the relevant risk-free interest rate term
structure. [Eurb]

This thesis focuses on life insurance companies which are subject to the Solvency II
regulatory regime and sell traditional life insurance products with profit participation,
the following was written according to [GH22]. In the context of life insurance with profit
participation the policyholder’s expected payoff consists of a guaranteed part and a bonus
benefit. Essentially, the guaranteed part is defined by a guaranteed technical interest
rate and the bonus benefit depends on the performance of the insurer’s asset portfolio.
In general, the company’s gross surplus is shared between policyholder, shareholder and
tax office.
The representation

BE = GB + FDB,

where GB are the benefits which are guaranteed at valuation time (guaranteed benefits)
and FDB are the future discretionary benefits which depend on the company’s gross
surplus, is one possibility to decompose the best estimate when considering life insurance
with profit participation. Both the GB and the FDB must be reported on a quarterly
basis. While the guaranteed benefits GB can be calculated with methods which are close
to classical actuarial computations, the calculation of the FDB, which we are interested
in, is more complicated. This is caused by their direct dependence on the company’s
gross surplus and therefore on management actions and financial revenue.
The FDB are often calculated with computationally expensive Monte Carlo algo-

rithms, but in the paper [GH22] the authors Gach and Hochgerner have found a new
method to evaluate them by calculating an upper and a lower bound for the FDB and
using the average of these two bounds as an estimator. This procedure works easier
and faster than the calculation with Monte Carlo algorithms and the aim of this thesis
is to validate the assumptions Gach and Hochgerner needed to be able to make their
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1 Introduction

calculations. Furthermore, the FDB are calculated analytically and numerically in dif-
ferently simulated interest rate scenarios, the estimation of the FDB is evaluated and
the different results are compared. All this is done with an Asset Liability Management
model (ALM model) which is implemented in R.

In Chapter 2, we start with an introduction of the later used notation and derive
a closed formula for the FDB. Chapter 3 briefly describes our ALM model which is
implemented in R. The validation of the assumptions which were made by Gach and
Hochgerner in [GH22] is performed in Chapter 4, which is the main part of this the-
sis. Finally, upper and lower bounds for the FDB are derived, the analytical estimator
�FDB is calculated and the numerical FDB and the analytical �FDB are compared in
differently simulated interest rate scenarios in Chapter 5. Chapter 6 provides a quick
review of existing literature.

actuarial provisions 2020 2019

insurance with profit participation 253 428 793 245 126 705

best estimate 268 604 237 242 665 093

of which guaranteed benefits 223 865 226 195 223 681

of which future profit participation 44 739 011 47 441 412

of which options and guarantees 3 397 937 3 339 925

risk margin 2 485 520 2 461 613

Table 1.1: Extract from the solvency and financial condition report of the Allianz
Lebensversicherungs-AG Germany in 2020 and 2019, values are in thousand
euros. [Allb], [Alla]

2020 2019

eligible own funds 40 318 958 28 919 681

solvency capital requirement 11 345 148 8 977 868

solvency ratio 355% 322%

minimum capital requirement 5 105 317 4 040 040

Table 1.2: Extract from the solvency and financial condition report of the Allianz
Lebensversicherungs-AG Germany in 2020, values are in thousand euros.
[Allb]
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1 Introduction

Tables 1.1 and 1.2 show a few key figures from the solvency and financial condition
report of the Allianz Lebensversicherungs-AG Germany in 2020 so that the reader has an
idea of the magnitude of the BE and the relationship between BE, FDB and own funds.

Disclaimer. The opinions expressed in this thesis are those of the author and do not
necessarily reflect the official position of the Austrian Financial Market Authority.
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2 Preliminaries

2.1 Notation

To make the subsequent parts of this thesis more readable, many of the later used ab-
breviations from [GH22] are defined and explained in the following section. However, all
connections and definitions are also listed in the Appendix: List of symbols.

Firstly, a yearly time grid t = 0, 1, . . . , T is fixed, where t = 0 corresponds to valuation
time and the time horizon T may be large. Furthermore it is assumed that there exists a
filtered probability space (Ω,F , (Ft),Q) such that all stochastic processes are adapted to
(Ft) and all expected values are computed with respect to the risk neutral spot measure
Q [Fil09, Sec. 11.4]. The increments of a time dependent quantity ft are denoted by
∆ft = ft − ft−1 and c+, c− describe the positive and negative parts of a number c.

Let Ct denote the amount of cash held by the company at time t, MVt the market
value and BVt the book value of the portfolio at time t. MVt and BVt are defined as

MVt =
�
a∈At

MV a
t + Ct, BVt =

�
a∈At

BV a
t + Ct

where At denotes the set of assets (excluding cash) in the portfolio at time t and BV a
t ,

MV a
t are the book value and the market value of an asset a ∈ At at time t. The

unrealized gains at time t, UGt, are defined as the difference UGt = MVt −BVt. The
simple one year forward rate between t and t + 1 is defined as Ft, the bank account at
time t is specified as

Bt =
t−1�
j=0

(1 + Fj).

Let

D(t, s) =

s−1�
j=t

(1 + Fj)
−1

denote the discount factor from s to t < s, and thus the value of a zero coupon bond at
time t which pays one unit of currency at time s can be specified as

P (t, s) = E[D(t, s)].

10



2 Preliminaries

The book value return of the portfolio at time t is denoted by

ROAt =
�

a∈At−1

ROAa
t + Ft−1Ct−1

where
ROAa

t = cfa
t +∆BV a

t

is the book value return of an asset a ∈ At at time t and cfa
t is the cash flow of an asset

a ∈ At at time t which includes coupon, nominal, dividend or rental income.

Let Lt denote the book value of liabilities at time t, we assume that Lt = BVt at all
time steps t and that it can be expressed as Lt = LPt + SFt. Thereby LPt denotes the
life assurance provision at time t which can be itemized as follows:

LPt = Vt +DBt +DB≤0
t .

In this equation Vt describes the mathematical reserve at time t which only depends
on the survival rates of the policyholders but not on future surplus declarations. The
declared bonuses after valuation time t are denoted by DBt and DB≤0

t defines the
declared bonuses up to and including valuation time at time t, DB≤0

t also only depends
on the survival rates of the policyholders and not on future surplus declarations. As
we also model the projection of model points which have started before valuation time
t = 0, this distinction between past and future is necessary. The total declared bonuses
at time t are then defined as TDBt = DB≤0

t +DBt.
The surplus fund at time t, SFt, belongs to the collective of policyholders and consists

of those profits that have not yet been declared to the policyholders. The fraction of
declarations of SFt−1 to DBt at time t is ηt, management may choose the value of ηt at
each time step t.

The gross surplus at time t is denoted by gst, it can be expressed as

gst = ROAt − ρtVt−1 + γtLPt−1, (2.1)

where ρt denotes the technical interest rate at time t and γt is the fraction of technical
gains at time t. It is used to compute the cost of guarantees

COG = E[B−1
t gs−t ].

If the gross surplus gst is positive at time t, it has to be shared between policyholder,
shareholder and tax office, if it is negative, it is covered by the shareholder. Thereby the
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2 Preliminaries

policyholder accounting flow, the shareholder cash flow and the tax cash flow at time t
are denoted by ph∗t , sht and taxt and

gst = sht + ph∗t + taxt

applies. The policyholder share in gross surplus is denoted by gph and therefore we have

ph∗t = gph · gs+t .
Note that a fundamental principle in traditional life insurance is that ph∗t is not neces-
sarily declared to specific policyholder accounts to its full extent because profit sharing
is not equal to profit declaration. The declaration fraction of ph∗t , that the management
may choose at each accounting step t, is νt and therefore νt · ph∗t is declared to the
policyholder accounts at time t. The shareholder share in gross surplus and the tax paid
on gross surplus are defined as gsh and gtax, we have

gsh+ gph+ gtax = 1

and

sht = gsh · gs+t − gs−t , taxt = gtax · gs+t .
The time value of the accounting flows ph∗t is denoted by

PH∗ = E[
T�
t=1

B−1
t ph∗t ],

the time value of taxt by

TAX = E[
T�
t=1

B−1
t taxt]

and the value of in-force business by

V IF = E[
T�
t=1

B−1
t sht].

The declaration to the policyholder accounts at time t is defined as

bdt = νt · ph∗t + ηt · SFt−1 (2.2)

and the amount of discretionary benefits paid out at time t is denoted by pht, this amount
is provided by DBt. As the declarations at valuation time t = 0 belong to DB≤0

t and
the resulting cash flows are already guaranteed at t = 0, we have ph1 = 0. Moreover,
gbft are the guaranteed benefits at time t and sg∗t is the surrender fee at time t. Finally,
the future discretionary benefits are defined as

FDB = E[
T�
t=1

B−1
t pht].

12



2 Preliminaries

2.2 A representation of the future discretionary benefits

In combination with a representation of PH∗, Gach and Hochgerner derived a closed
formula for the FDB in [GH22]. This is outlined below.
To obtain the desired representation of PH∗, the no-leakage principle [GH19] is

needed. This convention only uses no-arbitrage theory and generally accepted account-
ing principles which define the cash flows that characterize the quantities BE, V IF and
TAX. It states that

MV0 = BE + V IF + TAX + E[B−1
T MVT ]

and gives rise to the following representation of PH∗, for which some definitions and
relations defined in the previous section 2.1 have been used.

PH∗ := E[
�

B−1
t ph∗t ]

= gph · E[
�

B−1
t gs+t ]

= gph · E[
�

B−1
t gst] + gph · E[

�
B−1

t gs−t ]

= gph · E��B−1
t (sht + ph∗t + taxt)

�
+ gph · COG

= gph · (V IF + PH∗ + TAX + COG)

= gph · �MV0 − E[B−1
T MVT ]− TAX −BE + PH∗ + TAX + COG

�
= gph · �MV0 − E[B−1

T MVT ]−GB − FDB + COG
�
+ gph · PH∗

⇔
PH∗ =

gph

1− gph

�
MV0 − E[B−1

T MVT ]−GB − FDB + COG
�

(2.3)

Using the integration by parts formula

∆(ftgt) = (∆ft)gt−1 + ft∆gt,

the relations
DBt = DBt−1 + ηt · SFt−1 + νt · ph∗t − pht − sg∗t

and
SFt = SFt−1 + (1− νt) · ph∗t − ηt · SFt−1

and the facts that

∆(DBt + SFt) = DBt + SFt −DBt−1 − SFt−1

= ηt · SFt−1 + νt · ph∗t − pht − sg∗t + (1− νt) · ph∗t − ηt · SFt−1

= ph∗t − pht − sg∗t

13



2 Preliminaries

and

∆B−1
t = B−1

t −B−1
t−1

=
t−1�
j=0

(1 + Fj)
−1 −

t−2�
j=0

(1 + Fj)
−1

=

t−2�
j=0

(1 + Fj)
−1 · �(1 + Ft−1)

−1 − 1
�

= B−1
t−1 · (

1

1 + Ft−1
− 1)

= −Ft−1 ·B−1
t

leads to another helpful relation:

T�
t=1

B−1
t (ph∗t − pht − sg∗t ) =

T�
t=1

B−1
t ∆(DBt + SFt)

=
T�
t=1

∆
�
B−1

t (DBt + SFt)
�− T�

t=1

∆B−1
t (DBt−1 + SFt−1)

= B−1
T (DBT + SFT )− SF0 +

T�
t=1

Ft−1B
−1
t (DBt−1 + SFt−1).

(2.4)

Taking the expectation of equation (2.4) and using the representation of PH∗ (2.3)
then leads to the following result.

PH∗ − FDB − E[
T�
t=1

B−1
t sg∗t ]

= E
�
B−1

T (DBT + SFT )
�− SF0 + E

� T�
t=1

Ft−1B
−1
t (DBt−1 + SFt−1)

�
⇔

PH∗ − FDB

= E
�
B−1

T (DBT + SFT )
�− SF0 + E

� T�
t=1

Ft−1B
−1
t (DBt−1 + SFt−1)

�
+ E[

T�
t=1

B−1
t sg∗t ]

⇔
gph

1− gph

�
MV0 − E[B−1

T MVT ]−GB − FDB + COG
�− 1− gph

1− gph
· FDB = RHS

14



2 Preliminaries

⇔
gph

1− gph

�
MV0 − E[B−1

T MVT ]−GB + COG
�− 1

1− gph
· FDB = RHS (2.5)

Rearranging equation (2.5) finally induces a closed formula for the FDB:

FDB := E[
T�
t=1

B−1
t pht]

= (1− gph) ·
� gph

1− gph
· �MV0 − E[B−1

T MVT ]−GB + COG
�
+ SF0

− E
�
B−1

T (DBT + SFT )
�− E

� T�
t=1

Ft−1B
−1
t (DBt−1 + SFt−1)

�− E[
T�
t=1

B−1
t sg∗t ]



= gph · (LP0 + SF0 + UG0 − E[B−1

T MVT ]−GB + COG) + (1− gph) · SF0

− (1− gph) · E�B−1
T (DBT + SFT )

�− (1− gph) · E[
T�
t=1

B−1
t sg∗t ]

− (1− gph) · E� T�
t=1

Ft−1B
−1
t (DBt−1 + SFt−1)

�
= gph · (LP0 + UG0 −GB)− gph · E[B−1

T MVT ] + gph · COG+ SF0

− (1− gph) · E�B−1
T (DBT + SFT )

�− III − II (2.6)

where

II := (1− gph) · E[
T�
t=2

B−1
t sg∗t ]

III := (1− gph) · E� T�
t=1

Ft−1B
−1
t (DBt−1 + SFt−1)

�
.

The component

gph · E[B−1
T MVT ] + (1− gph) · E[B−1

T (DBT + SFT )]

15



2 Preliminaries

of (2.6) is considered separately:

gph · E[B−1
T MVT ] + (1− gph) · E�B−1

T (DBT + SFT )
�

= gph · E�B−1
T (UGT + LPT + SFT )

�
+ (1− gph) · E�B−1

T (DBT + SFT )
�

= E[B−1
T SFT ] + gph · E[B−1

T (UGT + VT +DB≤0
T +DBT )] + (1− gph) · E[B−1

T DBT ]

= E
�
B−1

T

�
DBT + SFT + gph · (UGT + VT +DB≤0

T )
��

=: I.

Altogether, the following representation of the FDB is obtained [GH22]:

FDB = SF0 + gph · (LP0 + UG0 −GB) + gph · COG− I − II − III (2.7)

with

I := E
�
B−1

T

�
DBT + SFT + gph · (UGT + VT +DB≤0

T )
��

(2.8)

II := (1− gph) · E[
T�
t=2

B−1
t sg∗t ] (2.9)

III := (1− gph) · E� T�
t=1

Ft−1B
−1
t (DBt−1 + SFt−1)

�
. (2.10)

In this representation, the first part SF0 + gph · (LP0 + UG0 − GB) is determined by
balance sheet items and classical actuarial computations (GB), the second part gph ·
COG− I − II − III has to be estimated.

16



3 The cash-flow model

The aim of this chapter is to briefly introduce the Asset Liability Management model we
implemented in R. The model is capable of simulating statutory balance sheets and it
was implemented in order to calculate the GB and the FDB numerically. While the GB
can be calculated independently from the asset module and the management rules, the
calculation of the FDB is more difficult since it is in interaction with the asset module
(Section 3.3), the liability module (Section 3.4) and the management rules (Section 3.5).
Life insurance with profit participation in general is described in Section 3.1 and Section
3.2 introduces the Economic Scenario Generator (ESG).

The content of this chapter has in slightly adapted form been taken from the pa-
per Numerical validation of analytic FDB estimation [GHKS]. This paper, which is
currently still in progress, is written by Gach, Hochgerner, Schachinger and myself.

3.1 Life insurance with profit participation

Our ALM model is concerned with classical life insurance contracts. Each contract (or,
more generally, model point) x has a specified maturity paymentMx which is guaranteed
and may participate in the company’s earnings. More precisely, each contract x

• has a specific maturity time T x;

• has associated best estimate mortality and surrender tables;

• has a constant technical interest rate ρx;

• pays a constant premium prx up to T x − 1;

• has an associated mathematical reserve V x
t calculated according to classical actu-

arial assumptions involving e.g. ρx;

• has an associated bonus account of total declared benefits TDBx
t depending on

the company’s profits;

• receives either a maturity benefit Mx + TDBx
Tx−1 at Tx; or a death benefit Mx +

TDBx
t−1 at t < Tx; or, in case of surrender at t < Tx, a surrender benefit κt(V

x
t−1+

TDBx
t−1) where κt is a penalty term which is linear in t such that κ0 = 0.9 and

κTx = 1.

17



3 The cash-flow model

3.2 Economic Scenario Generator (ESG)

Our ALM model is able to generate market and book values for four asset classes: cash,
bonds (without default), equity and property.

Cash is modelled as a bond with maturity of one year. This corresponds to the roll-over
definition of the implied money market account.

Market values of property and equity are assumed to follow a geometric Brownian
motion where the drift depends on the prevailing one-year forward interest rate Ft.
Further, the drift may depend on a fixed rate d, modelling rental income or dividend
yield. Finally, each property or equity asset may have its own fixed volatility σ. Hence
the market value MV a

t of a given property or equity asset is assumed to be projected
according to

MV a
t = MV a

0 · exp �(Ft − d− σ2

2
)t+ σWt

�
(3.1)

where MV a
0 is the initial market value and W a

t is the assets Brownian motion whose
correlation with other assets’ stochastic drivers remains to be specified. We emphasize
that d ≥ 0 and σ > 0 are assumed to be fixed numbers while Ft is white in time, i.e.
follows its own stochastic process.

Specifying this stochasticity is the main task of choosing an appropriate ESG. The
mean-field Libor market model (MF-LMM) of [DHOT22] is an interest rate model that
has been developed precisely for the purpose of valuating long term guarantees as they
are present in traditional life insurance contracts. We have thus chosen this model to
generate the stochastic scenarios for our ALM model. In the following we provide a
short introduction to this MF-LMM.
Let us fix a tenor structure 0 = t0 < t1 = δ < . . . < tN = Nδ. In the ALM model we

consider yearly time steps such that δ = 1 and N corresponds to the projection horizon.
For i = 0, . . . , N − 1 the i-th forward (Libor) rate valid on [ti, ti+1] at time t ≤ ti is

Li
t :=

1

δ

P (t, ti)− P (t, ti+1)

P (t, ti+1)

where P (t, ti) is the value of a zero coupon bond at time t paying 1e at time ti.
The classical Libor market model is now specified as follows. For each index i =

0, . . . , N − 1, there should be an Rd-valued diffusion coefficient σi = σi(t), a forward
measure Qi and a corresponding d-dimensional Brownian motion W i (d ≥ 1), such that
the dynamics of Li under Qi are given by

dLi
t = Li

tσ
⊤
i dW i

t , t ≤ ti.
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3 The cash-flow model

The mean-field extension consists now of a generalized dependency of σi. Namely, we
assume that σi : [0, ti]× P2(R) → R:

σi = σi(t, µ
i
t) = λi(t,VQi [Li

t])

where

• P2(R) = {probability measures µ :


R x2 dµ(x) < ∞}

• Q is the spot measure

• µi
t = Law(Li

t) = (Li
t)♯Qi is the law of Li

t under Qi

• VQi [Li
t] = Vµi denotes the variance of Li

t under Qi which can be expressed as

VQi [Li
t] = EQ

��
Li
t − EQ[L

i
tY

i
t ]
�2
Y i
t

�
=: Ψi

t

where

Y i
t :=

dQi

dQ
��
Ft

= EQ
�dQi

dQ
��Ft

�
• λi : [0, ti]× R+ → Rd is a deterministic function.

Then the dynamics of the mean-field Libor Market Model under the spot measure Q
are defined as follows:

dLi
t = Li

t

� i�
k=η(t)

δkL
k
t

δkL
k
t + 1

λk(t,Ψk
t )

⊤λi(t,Ψi
t)dt+ λi(t,Ψi

t)
⊤dW ∗

t



, (3.2)

dY i
t = −Y i

t

i�
k=η(t)

δkL
k
t

δkL
k
t + 1

λk(t,Ψk
t )

⊤dW ∗
t , (3.3)

with Y i
0 = 1. Equations (3.2) and (3.3) are a mean field system of SDEs since the Ψi

t

depend on the joint law �µi
t of L

i
t and Y i

t under Q. Those Ψi
t can be denoted by

Ψi
t(
�µi
t) =

	
R2

�
x−

	
R2

x′y′ d �µi
t(x

′, y′)

2

y d �µi
t(x, y) = VQi [Li

t],

where Ψi
t is a map Ψi

t : P2(R2) → R.
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3 The cash-flow model

Projection along tenor dates

If t = tj is a tenor date, then the conditional expectation can be expressed as

Y i
tj = B∗(tj)−1D(j, i)

D(0, i)
,

see [Fil09, Sec. 7.1], where

B∗(tj) = (1 + δj−1L
j−1
tj−1

)B∗(tj−1), B∗(t0) = 1

is the implied money market account (i.e., the numeraire) and

D(j, i) =
i−1�
l=j

(1 + δlL
l
tj )

−1

is the discount factor from i to j < i. With

Ψi
j := EQ

��
Li
tj − EQ

�
Li
tjB

∗(tj)−1D(j, i)

D(0, i)

�
2
B∗(tj)−1D(j, i)

D(0, i)

�
it follows that the evolution along the tenor dates of the mean-field Libor market model
with respect to the spot measure is given by

dLi
tj = Li

tj

� i�
k=j+1

δkL
k
tj

δkL
k
tj
+ 1

λk(tj ,Ψ
k
j )

⊤λi(tj ,Ψ
i
j)dt+ λi(tj ,Ψ

i
j)

⊤dW ∗
t



since η(tj) = j + 1.

Thus it remains to specify the functional form of λi : [0, ti]×R+ → Rd. In this regard
we choose four different forms:

1. Libor market model: λi = λi(t). This corresponds to the classical Libor mar-
ket model without mean-field interaction. For technical reasons (stemming from
notation in the R code) this choice will be referred to as VolSwi2.

2. Mean-field taming: we choose a variance threshold σ̃ and define

λi(t,Ψi
t) = σ

(1)
i (t) exp

�−max{Ψi
t − σ̃, 0}

σ̃

�
,

where σ
(1)
i is the same time dependent structure as in the classical Libor market

model. This choice will be referred to as VolSwi25.
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3 The cash-flow model

3. Decorrelation beyond threshold: it is assumed that the mean-field interaction does
not affect the scalar instantaneous volatility structure but rather leads to an ex-
ponential decay in the instantaneous correlation between different forward rates.
This choice will be referred to as VolSwi6.

4. Anti-correlation beyond threshold: it is assumed that the mean-field interaction
does not affect the scalar instantaneous volatility structure but rather leads to a
negative instantaneous correlation between different forward rates. The effect of
this modelling ansatz is that high rates tend to decrease while low rates tend to
increase. This choice will be referred to as VolSwi4.

Details and a numerical study concerning these choices are provided in [DHOT22],
where it is also shown numerically that, in the long run, the classical Libor market model
can lead to exploding rates while the mean-field controlled models all significantly reduce
blow-up probability.

3.3 Asset module

The purpose of the asset module is to model book and market values of assets under
management, and to provide re- and deinvestment strategies. The latter are part of the
management rules and described in Section 3.5.
The ALM model provides four different asset classes: cash, bonds, equity, and prop-

erty. Bonds are assumed to be default-free, thus there is no distinction between corporate
and government bonds.
Cash is equivalent to a bond with a maturity of 1, and correspondingly the interest

earned by cash is the prevailing one-year forward rate. Further, book and market values,
BV c and MV c, for cash coincide. That is, BV c

t = MV c
t = (1 + Ft−1)MV c

t−1.
A bond b consists of a maturity T b, a nominal payment N b, a coupon factor Kb such

that the coupon payment is KbN b, a market value MV b and a book value BV b. At each
time step t < T b the market value is determined by the prevailing yield curve, i.e.

MV b
t =

T b�
s=t+1

P (t, s)KbN b + P (t, Tb)N
b

where P (t, s) is the value of the zero-coupon bond from the mean-field Libor market ESG.
The book value is determined by the strict lower-of-cost-or-market (LCM) principle, that
is

BV b
t = min

�
BV b

t−1,MV b
t



.

When a bond b with nominal N b and maturity T b is bought at time t the initial book
value is BV b

t = N b, and the coupon factor Kb follows from the requirement MV b
t = N b

and the prevailing yield curve at t up to T b. I.e., bonds are bought at par.

21



3 The cash-flow model

An equity position e consists of a market value, a book value, a (constant) volatility
factor and a (constant) dividend factor. The latter is relevant for the company’s surplus
which is calculated according to local generally accepted accounting principles (GAAP),
since the dividend affects the book value return. The market value development is given
by the geometric Brownian motion (3.1). The book value is given by the strict LCM
principle, that is BV e

t = min(BV e
t−1,MV e

t ).
Properties are modelled similar to equities with two distinctions: The dividend factor

is interpreted not as a dividend but as rental income. Second, properties p have a
depreciation time T p such that BV p

T p = 0. This depreciation time (which is usually not
more than 30 years) has to be provided as part of the initial data. The depreciation is
linear, i.e. according to

�
1 − (s − t + 1)(T p − t + 1)

�
BV p

t−1 for t− 1 ≤ s ≤ T p and the
strict LCM applies. Hence the book value development is given by

BV p
t = min

�
(1− 1

T p − t+ 1
)BV p

t−1,MV p
t

�
where MV p

t follows (3.1). Consequently properties often carry comparatively large
amounts of unrealized gains UGp

t = MV p
t −BV p

t .

3.4 Liability module

All definitions and relations which are part of the liability module are already listed in
Section 2.1 as they are also needed in the remaining part of this thesis. The ALM model
assumes that the following quantities are given as deterministic functions of time:

• premium payments: prt

• guaranteed benefits, including surrender payments, due to Vt and DB≤0
t : gbft

• cost payments: cot

• mathematical reserve: Vt

• previously allocated bonuses: DB≤0
t

• technical interest rate: ρt

In fact, all these quantities are given on the level of model points such that the quoted
values are the aggregate sums. Moreover, these quantities have been constructed ac-
cording to classical actuarial assumptions such that benefits, premiums and technical
reserves are consistent.
The liability module gives rise to two management rules concerning the quantities νt

and ηt in (2.2). These rules are specified in Section 3.5.
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3 The cash-flow model

3.5 Management rules and profit declaration

Strategic asset allocation

Rule 1. New bonds are bought at par with a time to maturity of 10 years.

Rule 2. The strategic asset allocation is kept approximately constant: the market value
ratios cash over total market value, bonds over total market value, equities over total
market value and properties over total market value must remain constant up to a devia-
tion of at most ±10%. When an asset class breaches this bound the portfolio is rebalanced
such that the original market value ratios at t = 0 are restored. The rebalancing is such
that placement of assets with minimal unrealized gains is prioritized (to avoid unintended
book value return).

Negative surplus

Rule 3. When the gross surplus is negative, unrealized gains are realized until the gross
surplus equals 0 or no more positive unrealized gains exist. The selling order is bonds
before equity before property, and within those classes positions with large amounts of
positive unrealized gains are prioritized.

This rule is in place in order to avoid shareholder capital injections as much as possible.

Rule 4. After three consecutive years of negative gross surplus and when, at the same
time, no more positive unrealized gains are available, the surplus fund is depleted in order
to (try to) achieve a non-negative gross surplus.

This rule constitutes the only instance where the surplus fund may increase the gross
surplus. Concretely, if gst is smaller than 0 and the requirements of Rule 4 hold, then

the gross surplus may be augmented as gs
(1)
t = gst+min(−gst, SFt−1); at the same time

the surplus fund is reduced according to SFt = SFt−1 −min(−gst, SFt−1).

Positive surplus

Fix ϑ = SF0/LP0. Let τt denote the declared total participation rate at t. Notice that
a participation rate of τt means that the amount of bonus declarations is given by

bdt =
�
x∈Xt

�
τt − ρx



+
V x
t−1

where Xt is the set of model points x which are active at t, and ρx and V x
t−1 are the

technical interest rate and previous mathematical reserve. The following rule applies if
gst > 0.
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3 The cash-flow model

Rule 5. Let v = 5/1000, τ∗t = (τt−1 + L10
t )/2 and tat =

�
x∈Xt

(τ∗t − ρx)+V
x
t−1. We

distinguish two cases:

1. If ph∗t ≥ tat we define

νt = min
�
1,

�
x∈Xt

(τ∗t + v − ρx)+V
x
t−1

ph∗t



ηt = max

�
0,

SFt−1 − ϑ(Vt +DB≤0
t + νt ph

∗
t )

(1 + ϑ)SFt−1



unless SFt−1 = 0 in which case we set ηt = 0.

2. If ph∗t < tat we define νt = 1 and

η
(1)
t =

��
x∈Xt

(τ∗t − v − ρx)+V
x
t−1 − ph∗t

�
+

SFt−1

η
(2)
t = min

�1
2
, η

(1)
t



η
(3)
t =

SFt−1 − ϑ(Vt +DB≤0
t + ph∗t )

(1 + ϑ)SFt−1

ηt = max
�
η
(2)
t , η

(3)
t



unless SFt−1 = 0 in which case we set ηt = 0.

This rule aims at avoiding large jumps in the profit participation rate. The choice for
v means that the participation rate deviates by at most 5 basis points from the specified
target, unless the ϑ-term is positive. Notice that the target tat is defined in terms of
the previous participation rate τt−1 and the prevailing 10Y-forward rate L10

t . Thus the
target is a combination of previous profit participation and general market expectation.
However, to reach this target not more than half of the existing surplus fund is provided.
Moreover, this rule ensures that, in cases of positive gross surplus, SFt ≤ ϑLPt so

that the surplus fund does not become unrealistically high.

Order of management rules

Rule 6. The rules are applied in the order in which they are stated.

As a consequence of this rule it may happen, within one accounting step, that Rule 3
is carried out after the rebalancing step in Rule 2. Thus capital gains may be realized
by, e.g., selling an equity position so that the distribution of assets may no longer be in
line with the strategic asset allocation. In such a case a misalignment of asset positions
is carried forward along one accounting year and then rebalanced at the end of this year.
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3 The cash-flow model

This rule is chosen nevertheless in this form since, firstly, short term misalignment is
acceptable and, secondly, it is very difficult to implement the alternative: if rebalancing
were to occur at the end of each accounting step, the gross surplus would change and
the profit participation would have to be calculated once over, thus potentially leading
to a multiple loop.
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4 Numerical validation of assumptions

Calculating the model dependent quantities I, II, III and COG, which were derived
in Section 2.2, is just as difficult as calculating the FDB itself. For the purpose of
estimating the terms I, II and III and to derive a lower and an upper bound for the
FDB, a few assumptions are needed. Gach and Hochgerner defined ten assumptions in
their paper [GH22] and the goal of this chapter is to verify those.
Since all of the quantities which are part of the assumptions are also part of our

ALM model in R, it is possible to validate the assumptions with it. In this chapter, the
assumptions are tested with simulated data and the projection horizon is set to T = 60
years. In general, 1000 interest rate scenarios simulated with VolSwi4 are considered.
Furthermore, the effect of a 2% increase in the interest curve on the assumptions is
tested with 1000 interest rate scenarios simulated with VolSwi4.

4.1 Assumption 1

The projection horizon T corresponds to the run-off time of the liability port-
folio such that SFT = LPT = UGT = 0. [GH22]

Solvency II requires a run-off approach for best estimate calculation. This means that
the valuation of liabilities is restricted to the existing business at valuation time t = 0
and it is assumed that the company does not write new business in the future. All
future cash flows associated with existing contracts are considered for the calculation
of the best estimate, a contract is no longer recognised as an existing contract if its
obligation is discharged, cancelled or expired. Therefore the existing portfolio is steadily
on the decrease and expiring at the projection horizon T . This can also be recognised
in figures 4.1 and 4.2. The values of SFT , LPT and UGT might probably not exactly
be 0 since a few contracts might not have expired at T , but their values are very small
compared to the initial market value MV0 (less than 0.5% of the initial market value
MV0), and therefore the assumption holds.
The corresponding Solvency II article in the commission delegated regulation of the

European Union [Eura] states:

The cash flow projection used in the calculation of the best estimate shall
include all of the following cash flows, to the extent that these cash flows
relate to existing insurance and reinsurance contracts:
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4 Numerical validation of assumptions

(a) benefit payments to policy holders and beneficiaries;

(b) payments that the insurance or reinsurance undertaking will incur in
providing contractual benefits that are paid in kind;

(c) payments of expenses as referred to in point (1) of Article 78 of Directive
2009/138/EC;

(d) premium payments and any additional cash flows that result from those
premiums;

(e) payments between the insurance or reinsurance undertaking and inter-
mediaries related to insurance or reinsurance obligations;

(f) payments between the insurance or reinsurance undertaking and invest-
ment firms in relation to contracts with index-linked and unit-linked
benefits;

(g) payments for salvage and subrogation to the extent that they do not
qualify as separate assets or liabilities in accordance with international
accounting standards, as endorsed by the Commission in accordance
with Regulation (EC) No 1606/2002;

(h) taxation payments which are, or are expected to be, charged to policy
holders or are required to settle the insurance or reinsurance obligations.

4.2 Assumption 2

The expected life assurance provisions E[LPt] decrease geometrically: there
is a fixed 1 ≤ h < T such that E[LPt] = lht ·LP0 where lht := 2−t/h for t < T
and lhT := 0. [GH22]

Since the portfolio is in run-off, there is a time h where E[LPh] = LP0/2. If the business
model of the considered company is stable over time, we have E[LPh+h] = LP0/4.
Continuing like this leads to the assumption that the run-off of the liability book is
geometric. This approximation works really well if the company under consideration
has a longer history and has not taken up business very recently.
The geometrical decrease of LPt and Vt+DB≤0

t can be recognised in the corresponding
plots 4.1 and 4.2, which were generated with the ALM model in R. Figure 4.1 shows the
geometrical decrease with respect to the risk-free curve as of 31.01.2022 of annual zero-
coupon spot rates from EIOPA, figure 4.2 shows the analogous but with a 2% upward
shift in the spot rates. The blue curve shows in each plot the development of the sum
of the mathematical reserve Vt and the declared bonuses up to and including valuation
time DB≤0

t , these values are given and deterministic. The red curve respectively shows
the decline of the total reserve LPt, which is part of the model in R and stochastic.
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4 Numerical validation of assumptions

Since the life assurance provision LPt at time t is defined as LPt = Vt +DB≤0
t +DBt

and DB0 = 0, the blue and the red curves have the same starting points in both figures.
In the following time steps the red curves are above the blue ones because the difference
DBt is greater than or equal to zero at all time steps t. All reserves are paid out until the
projection horizon T is reached and therefore the blue and the red curves meet in the end.

Figure 4.1: Geometrical decrease of LPt and Vt + DB≤0
t with respect to the risk-free

curve as of 31.01.2022 of annual zero-coupon spot rates from EIOPA.
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4 Numerical validation of assumptions

Figure 4.2: Geometrical decrease of LPt and Vt + DB≤0
t with respect to the risk-free

curve as of 31.01.2022 of EIOPA’s annual zero-coupon spot rates increased
by 2%.

As an explicit value of h is needed to check some of the following assumptions, our
ALMmodel in R is used to compute a value ht for every time step t and to decide whether
a fixed h exists or not. The values of LPt are known in the model and therefore it is
possible to calculate E[LPt] and to rearrange the equation in Assumption 2 to compute
ht for every time step t:

ht =
−t

log2(
E[LPt]
LP0

)
.

Those calculated ht can be considered in the left table of table 4.1, they start at t = 1
because h0 is arbitrary since 2−0/h = 1 for all h. Some statistical key figures of ht can be
recognized in the left table of table 4.2. They show that the assumption of the existence
of a fixed h is appropriate, especially because the variance of the computed ht is very
small.
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4 Numerical validation of assumptions

In the following a constant h is fixed as the mean

h = mean(ht) = 8.66,

this will be used later for further computations.

t ht t ht
1 13.26 31 8.40
2 11.39 32 8.46
3 11.67 33 8.56
4 11.07 34 8.69
5 10.35 35 8.73
6 9.38 36 8.89
7 9.91 37 8.48
8 9.47 38 8.35
9 9.91 39 7.82
10 9.75 40 7.74
11 9.73 41 7.70
12 9.53 42 7.47
13 9.55 43 7.41
14 9.19 44 7.45
15 9.16 45 7.42
16 9.00 46 7.58
17 8.83 47 7.66
18 8.84 48 7.88
19 8.70 49 7.54
20 8.81 50 7.78
21 8.61 51 7.78
22 8.73 52 7.97
23 8.63 53 7.34
24 8.79 54 7.36
25 8.80 55 7.35
26 8.82 56 7.16
27 8.97 57 7.31
28 8.69 58 7.44
29 8.49 59 7.56
30 8.75 60 7.72

t �ht t �ht
1 17.18 31 10.13
2 14.48 32 10.20
3 15.21 33 10.35
4 14.16 34 10.51
5 13.09 35 10.55
6 11.81 36 10.76
7 12.80 37 10.20
8 12.09 38 10.01
9 12.79 39 9.29
10 12.54 40 9.29
11 12.49 41 9.26
12 12.05 42 8.92
13 12.04 43 8.83
14 11.44 44 8.89
15 11.32 45 8.84
16 11.01 46 9.05
17 10.77 47 9.19
18 10.77 48 9.48
19 10.50 49 9.02
20 10.64 50 9.45
21 10.34 51 9.42
22 10.49 52 9.65
23 10.40 53 8.76
24 10.62 54 8.78
25 10.66 55 8.78
26 10.67 56 8.53
27 10.89 57 8.74
28 10.48 58 8.90
29 10.20 59 9.07
30 10.65 60 9.35

Table 4.1: Values of ht and �ht, ht calculated with respect to the base case, �ht computed
with respect to the interest curve increased by 2%, both for each time step t.
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4 Numerical validation of assumptions

mean(ht) = 8.66
min(ht) = 7.16
max(ht) = 13.26
var(ht) = 1.41

CV(ht) = 0.1370

mean( �ht) = 10.61

min( �ht) = 8.53

max( �ht) = 17.18

var( �ht) = 3.05

CV( �ht) = 0.16

Table 4.2: Statistical key figures of the ht and �ht noted in table 4.1.

Subsequently, the same calculations are performed with respect to the by 2% increased
interest curve, the results for these �ht can be considered in the right table of table 4.1.
The statistical key figures of �ht in the right table of table 4.2 show that the assumption
is again fulfilled, especially because the variance of �ht is small.
A constant �h is then fixed as the mean

�h = mean( �ht) = 10.61.

4.3 Assumption 3

In expectation the total declared bonuses are a fixed fraction of the life assur-
ance provisions:

E[DB≤0
t +DBt] = σ · E[LPt] ∀ 0 ≤ t ≤ T and 0 ≤ σ ≤ 1 fixed.

Moreover, E[DBt] does not vanish too quickly:

E[DBt] ≤ σt · E[LPt] where σt :=

�
tσ/h, for t ≤ h
σ for t > h

with h as in Assumption 2.

[GH22]

The existence of a σ ∈ [0, 1] for each time step t is obvious since LPt = Vt+DB≤0
t +DBt

and these quantities are all greater than or equal to zero at all time steps t. Whether
σ remains constant throughout the time period and if the second estimation holds for
t ≤ h is tested with our ALM model in R.
As the values of DB≤0

t , DBt and LPt are known in the model, the expected values
and therefore σ can be computed for each time step t by rearranging the equation in
Assumption 3:

st :=
E[DB≤0

t +DBt]

E[LPt]
,

the calculated values can be considered in table 4.3. It is apparent that these values are
not constant throughout the time period but increasing. Therefore we cannot assume
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4 Numerical validation of assumptions

that there exists a constant σ and the first part of the assumption does not hold. Mean,
minimum, maximum and the coefficient of variation of the computed st can be consid-
ered in table 4.4.

t st t st
0 0.1667 31 0.3102
1 0.1866 32 0.3202
2 0.2073 33 0.3281
3 0.2227 34 0.3315
4 0.2293 35 0.3371
5 0.2346 36 0.3430
6 0.2327 37 0.3808
7 0.2288 38 0.3879
8 0.2263 39 0.4309
9 0.2216 40 0.4651
10 0.2209 41 0.4958
11 0.2176 42 0.5124
12 0.2183 43 0.5361
13 0.2177 44 0.5516
14 0.2174 45 0.5604
15 0.2164 46 0.5669
16 0.2124 47 0.5886
17 0.2129 48 0.5898
18 0.2105 49 0.6061
19 0.2065 50 0.6157
20 0.2091 51 0.6211
21 0.2094 52 0.6192
22 0.2084 53 0.6263
23 0.2127 54 0.6456
24 0.2182 55 0.6728
25 0.2269 56 0.6954
26 0.2382 57 0.6943
27 0.2454 58 0.6877
28 0.2618 59 0.6812
29 0.2762 60 0.6793
30 0.2899

t swt t swt
0 0.0125 31 0.0018
1 0.0133 32 0.0018
2 0.0138 33 0.0017
3 0.0140 34 0.0017
4 0.0134 35 0.0016
5 0.0126 36 0.0016
6 0.0112 37 0.0014
7 0.0105 38 0.0012
8 0.0095 39 0.0010
9 0.0089 40 0.0010
10 0.0082 41 0.0009
11 0.0075 42 0.0008
12 0.0069 43 0.0007
13 0.0064 44 0.0007
14 0.0057 45 0.0006
15 0.0052 46 0.0006
16 0.0047 47 0.0006
17 0.0042 48 0.0006
18 0.0039 49 0.0005
19 0.0034 50 0.0005
20 0.0033 51 0.0005
21 0.0029 52 0.0005
22 0.0027 53 0.0003
23 0.0025 54 0.0003
24 0.0025 55 0.0003
25 0.0024 56 0.0002
26 0.0023 57 0.0002
27 0.0023 58 0.0002
28 0.0021 59 0.0002
29 0.0019 60 0.0002
30 0.0020

t f(t) t f(t)

0 0.0465 31 -0.0049
1 0.0296 32 -0.0052
2 0.0136 33 -0.0054
3 0.0029 34 -0.0053
4 -0.0012 35 -0.0052
5 -0.0041 36 -0.0054
6 -0.0027 37 -0.0057
7 -0.0007 38 -0.0053
8 0.0004 39 -0.0049
9 0.0023 40 -0.0051
10 0.0024 41 -0.0052
11 0.0034 42 -0.0045
12 0.0029 43 -0.0043
13 0.0029 44 -0.0042
14 0.0026 45 -0.0038
15 0.0027 46 -0.0039
16 0.0033 47 -0.0040
17 0.0029 48 -0.0041
18 0.0031 49 -0.0032
19 0.0035 50 -0.0035
20 0.0029 51 -0.0032
21 0.0025 52 -0.0033
22 0.0025 53 -0.0021
23 0.0018 54 -0.0020
24 0.0010 55 -0.0019
25 0.0000 56 -0.0016
26 -0.0011 57 -0.0016
27 -0.0017 58 -0.0016
28 -0.0028 59 -0.0016
29 -0.0035 60 -0.0016
30 -0.0045

Table 4.3: Values of st, s
w
t and f(t) = (σ − st) · E[LPt]/MV0, calculated in R with re-

spect to the base case.

32



4 Numerical validation of assumptions

mean(st) = 0.37
min(st) = 0.17
max(st) = 0.70
CV(st) = 0.48

Table 4.4: Statistical key figures of the st noted in table 4.3.

Our next approach is to calculate weighted swt for each time step t as

swt := wt · st = E[LPt]�
k E[LPk]

· E[DB≤0
t +DBt]

E[LPt]
with wt :=

E[LPt]�
k E[LPk]

.

These values, which can be recognized in table 4.3, are also not constant but decreasing.
Nevertheless a fixed σ is computed as the weighted average

σ =
�
t

swt = 0.23.

As the fixed σ is not very far away from the computed st in the first 25 time steps, this
choice is not too bad because the existing portfolio is steadily on the decrease.

The main part of the paper [GH22] where the considered relation E[DB≤0
t +DBt] =

σ · E[LPt] is needed is the computation of �gst, which will be considered in Section 4.7.
There the relation is used for the equation

E[ρt · Vt−1] = ρt · (1− σ) · E[LPt−1],

which can be rewritten as

E[ρt · Vt−1] = E
�
ρt · (LPt−1 −DBt−1 −DB≤0

t−1)
�

= ρt · E[LPt−1] · (1− st−1)

= ρt · (1− σ) · E[LPt−1] + ρt · (σ − st−1) · E[LPt−1]. (4.1)

Equation (4.1) shows the desired result if the second summand is vanishing small. Hence

(σ − st) · E[LPt]

MV0

is computed for every time step t. The ideal outcome would be that all of the computed
values are smaller than 0.5%, and almost all of the results shown in table 4.3 satisfy this.
However, since these calculated values are multiplied with the percentage ρt in (4.1), the
results will indeed be vanishing small even if some values of

�
(σ − st) · E[LPt]

�
/MV0 are

not smaller than 0.5%. Furthermore, the sum of all error terms�
t

(σ − st) · E[LPt]

MV0
= 6.51 · 10−18
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4 Numerical validation of assumptions

is vanishing small. Therefore the choice of the fixed σ is appropriate for the application
of Assumption 3 in the paper of Gach and Hochgerner [GH22].

t �st t �st
0 0.1667 31 0.5550
1 0.1963 32 0.5656
2 0.2276 33 0.5769
3 0.2543 34 0.5819
4 0.2704 35 0.5903
5 0.2865 36 0.5964
6 0.2996 37 0.6283
7 0.3095 38 0.6364
8 0.3185 39 0.6704
9 0.2716 40 0.7053
10 0.3347 41 0.7288
11 0.3421 42 0.7408
12 0.3490 43 0.7566
13 0.3562 44 0.7690
14 0.3639 45 0.7765
15 0.3694 46 0.7813
16 0.3717 47 0.7972
17 0.3812 48 0.7991
18 0.3869 49 0.8119
19 0.3881 50 0.8255
20 0.3973 51 0.8279
21 0.4042 52 0.8271
22 0.4102 53 0.8338
23 0.4243 54 0.8451
24 0.4352 55 0.8596
25 0.4515 56 0.8727
26 0.4663 57 0.8736
27 0.4772 58 0.8716
28 0.4968 59 0.8699
29 0.5134 60 0.8747
30 0.5348

t �swt t �swt
0 0.0106 31 0.0042
1 0.0120 32 0.0041
2 0.0132 33 0.0040
3 0.0141 34 0.0039
4 0.0141 35 0.0038
5 0.0140 36 0.0037
6 0.0134 37 0.0032
7 0.0135 38 0.0029
8 0.0128 39 0.0023
9 0.0127 40 0.0023
10 0.0122 41 0.0022
11 0.0118 42 0.0018
12 0.0111 43 0.0016
13 0.0107 44 0.0016
14 0.0099 45 0.0014
15 0.0094 46 0.0015
16 0.0086 47 0.0015
17 0.0081 48 0.0015
18 0.0077 49 0.0012
19 0.0070 50 0.0013
20 0.0069 51 0.0012
21 0.0063 52 0.0013
22 0.0061 53 0.0008
23 0.0058 54 0.0008
24 0.0058 55 0.0007
25 0.0056 56 0.0006
26 0.0055 57 0.0006
27 0.0054 58 0.0006
28 0.0050 59 0.0006
29 0.0046 60 0.0006
30 0.0048

t �f(t) t �f(t)
0 0.1383 31 -0.0192
1 0.1110 32 -0.0191
2 0.0831 33 -0.0194
3 0.0619 34 -0.0192
4 0.0482 35 -0.0188
5 0.0355 36 -0.0188
6 0.0254 37 -0.0175
7 0.0195 38 -0.0160
8 0.0137 39 -0.0135
9 0.0105 40 -0.0139
10 0.0053 41 -0.0136
11 0.0019 42 -0.0116
12 -0.0009 43 -0.0108
13 -0.0035 44 -0.0105
14 -0.0057 45 -0.0097
15 -0.0070 46 -0.0099
16 -0.0070 47 -0.0100
17 -0.0089 48 -0.0104
18 -0.0097 49 -0.0083
19 -0.0091 50 -0.0094
20 -0.0106 51 -0.0087
21 -0.0108 52 -0.0088
22 -0.0114 53 -0.0056
23 -0.0129 54 -0.0054
24 -0.0142 55 -0.0051
25 -0.0158 56 -0.0043
26 -0.0170 57 -0.0044
27 -0.0180 58 -0.0044
28 -0.0181 59 -0.0044
29 -0.0179 60 -0.0047
30 -0.0205

Table 4.5: Values of �st, �swt and �f(t) = (�σ − �st) · E[LPt]/MV0, calculated in R with re-
spect to the interest curve increased by 2%.
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4 Numerical validation of assumptions

The same observations are made when performing these calculations regarding the by
2% increased interest curve. The results can be considered in table 4.5. Thereby, the
values of the error terms are not as small as in the base case, but still small enough
because the computed term will be multiplied with the percentage ρt as described in the
base case. Besides that, the sum of the error terms is�

t

(�σ − �st) · E[LPt]

MV0
= 5.08 · 10−17,

which is vanishing small. Altogether, the assumption works with analogous argumenta-
tion as in the base case and the constant �σ is fixed as

�σ =
�
t

�swt = 0.35.

The second part of Assumption 3, the inequation

E[DBt] ≤ σt · E[LPt] where σt :=

�
tσ/h, for t ≤ h
σ for t > h

with h as in Assumption 2

holds per assumption for all t greater than h because we have fixed a constant σ in the
first part of Assumption 3 that satisfies E[DB≤0

t + DBt] = σ · E[LPt], and DB≤0
t is

greater than or equal to 0 at all time steps t. An explicit calculation of E[DBt]/E[LPt]
and σt = tσ/h in the ALM model in R for t smaller than or equal to h shows that
the assumption does not hold in all cases, the results can be considered in table 4.6.
Nevertheless, the error is not too bad.

t 1 2 3 4 5 6 7 8
E[DBt]
E[LPt]

0.03 0.07 0.10 0.11 0.12 0.13 0.13 0.13

σt 0.03 0.05 0.08 0.10 0.13 0.16 0.18 0.21

Table 4.6: E[DBt]/E[LPt] ≤ σt tested by explicit computation in R for t ≤ h with respect
to the base case, values start at t = 1 because DB0 = 0.

Considering the second part of Assumption 3 regarding the by 2% increased interest
curve shows that the assumption is also not fulfilled in some cases of t smaller than or
equal to �h. However, the results, which can be considered in table 4.7, show that the
error is again not too bad. The inequation E[DBt]/E[LPt] ≤ �σt always holds per assump-
tion for t greater than �h since we have fixed a constant �σ in the first part of Assumption 3.
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t 1 2 3 4 5 6 7 8 9 10
E[DBt]
E[LPt]

0.05 0.09 0.13 0.16 0.18 0.20 0.22 0.24 0.25 0.26

σt 0.03 0.07 0.10 0.13 0.16 0.20 0.23 0.26 0.29 0.33

Table 4.7: E[DBt]/E[LPt] ≤ �σt tested by explicit computation in R for t ≤ �h with respect
to the by 2% increased interest curve, values start at t = 1 because DB0 = 0.

4.4 Assumption 4

The relation SF0/LP0 =: ϑ remains constant in expectation:
E[SFt] = ϑ · E[LPt] ∀ 0 ≤ t ≤ T . [GH22]

This assumption is tested by computing E[SFt] and E[LPt] and in the following

ϑt =
E[SFt]

E[LPt]

with the ALM model in R for all time steps t.
The resulting values, which can be recognized in the left table of table 4.9, are quite

stable and have very small variance, therefore ϑ can be fixed as the mean of ϑt and the
assumption holds. The same conclusion can be made for the values �ϑt, which were cal-
culated analogously to ϑt but with respect to the by 2% increased interest curve. These
values can be considered in the right table of table 4.9. Some statistical key figures of
ϑt and �ϑt are listed in table 4.8.

ϑ := mean(ϑt) = 0.05
median(ϑt) = 0.05
min(ϑt) = 0.04
max(ϑt) = 0.08

var(ϑt) = 3.48 ·10−5

CV(ϑt) = 0.12

�ϑ := mean( �ϑt) = 0.05

median( �ϑt) = 0.05

min( �ϑt) = 0.04

max( �ϑt) = 0.08

var( �ϑt) = 4.20 ·10−5

CV( �ϑt) = 0.12

Table 4.8: Statistical key figures of the ϑt and �ϑt noted in table 4.9.
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t ϑt t ϑt

0 0.04 31 0.05
1 0.04 32 0.05
2 0.04 33 0.05
3 0.04 34 0.05
4 0.04 35 0.05
5 0.05 36 0.05
6 0.05 37 0.05
7 0.05 38 0.05
8 0.05 39 0.06
9 0.05 40 0.05
10 0.05 41 0.05
11 0.05 42 0.06
12 0.05 43 0.05
13 0.05 44 0.05
14 0.05 45 0.05
15 0.05 46 0.05
16 0.04 47 0.05
17 0.04 48 0.05
18 0.04 49 0.06
19 0.04 50 0.05
20 0.04 51 0.05
21 0.04 52 0.05
22 0.04 53 0.08
23 0.05 54 0.06
24 0.05 55 0.06
25 0.05 56 0.06
26 0.05 57 0.05
27 0.05 58 0.05
28 0.05 59 0.05
29 0.05 60 0.05
30 0.05

t �ϑt t �ϑt

0 0.04 31 0.06
1 0.04 32 0.05
2 0.04 33 0.05
3 0.04 34 0.05
4 0.05 35 0.05
5 0.05 36 0.05
6 0.05 37 0.06
7 0.05 38 0.06
8 0.05 39 0.06
9 0.05 40 0.06
10 0.05 41 0.06
11 0.05 42 0.06
12 0.05 43 0.06
13 0.05 44 0.05
14 0.05 45 0.06
15 0.05 46 0.05
16 0.05 47 0.05
17 0.05 48 0.05
18 0.05 49 0.07
19 0.05 50 0.05
20 0.05 51 0.06
21 0.05 52 0.05
22 0.05 53 0.08
23 0.05 54 0.06
24 0.05 55 0.06
25 0.05 56 0.07
26 0.05 57 0.05
27 0.05 58 0.05
28 0.05 59 0.05
29 0.05 60 0.05
30 0.05

Table 4.9: Values of ϑt, calculated with respect to the base case and values of �ϑt, com-
puted with respect to the interest curve increased by 2%, both for each time
step t.

37



4 Numerical validation of assumptions

4.5 Assumption 5

The surrender gains, sg∗t = χt ·DBt−1, can be estimated on average with the
same factor γt as the technical gains: E[sg∗t ] ≤ E[γt ·DBt−1]. [GH22]

The technical gains depend on costs, life tables and surrender tables and these are
modeled independently of the scenarios in R. Therefore the inequation

E[sg∗t ] ≤ E[γt ·DBt−1]

can be rearranged to
E[sg∗t ]

E[DBt−1]
≤ E[γt].

t E[sg∗t ]/E[DBt−1]

0 0.00000
1 NaN
2 0.00031
3 0.00029
4 0.00027
5 0.00025
6 0.00024
7 0.00024
8 0.00022
9 0.00023
10 0.00021
11 0.00021
12 0.00020
13 0.00019
14 0.00018
15 0.00018
16 0.00017
17 0.00018
18 0.00018
19 0.00017
20 0.00017

t E[sg∗t ]/E[DBt−1]

21 0.00016
22 0.00016
23 0.00015
24 0.00016
25 0.00016
26 0.00016
27 0.00016
28 0.00015
29 0.00017
30 0.00019
31 0.00017
32 0.00020
33 0.00020
34 0.00019
35 0.00018
36 0.00017
37 0.00015
38 0.00016
39 0.00016
40 0.00018

t E[sg∗t ]/E[DBt−1]

41 0.00018
42 0.00018
43 0.00022
44 0.00023
45 0.00023
46 0.00025
47 0.00023
48 0.00023
49 0.00021
50 0.00029
51 0.00027
52 0.00027
53 0.00022
54 0.00038
55 0.00037
56 0.00035
57 0.00045
58 0.00041
59 0.00036
60 0.00030

Table 4.10: Values of E[sg∗t ]/E[DBt−1], computed in R with respect to the base case.

According to [GH22, Table 6], it is reasonable to assume that the fraction of technical
gains γt is greater than or equal to 0.5%. Since the values of E[sg∗t ]/E[DBt−1], which
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were computed with our ALM model in R and can be considered in table 4.10, are
smaller than 0.5% and Assumption 5 uses an upward estimate, the assumption holds.
This works similarly if the considered interest curve is increased by 2%, the values of
E[sg∗t ]/E[DBt−1] are then also smaller than 0.5% and therefore the assumption is correct
as well. Those values can be considered in table 4.11.

t E[sg∗t ]/E[DBt−1]

0 0.00000
1 NaN
2 0.00031
3 0.00029
4 0.00027
5 0.00025
6 0.00024
7 0.00025
8 0.00023
9 0.00023
10 0.00022
11 0.00022
12 0.00021
13 0.00020
14 0.00019
15 0.00019
16 0.00018
17 0.00018
18 0.00018
19 0.00018
20 0.00017

t E[sg∗t ]/E[DBt−1]

21 0.00016
22 0.00016
23 0.00016
24 0.00016
25 0.00016
26 0.00016
27 0.00016
28 0.00016
29 0.00017
30 0.00019
31 0.00017
32 0.00020
33 0.00020
34 0.00019
35 0.00018
36 0.00017
37 0.00015
38 0.00016
39 0.00015
40 0.00018

t E[sg∗t ]/E[DBt−1]

41 0.00018
42 0.00018
43 0.00022
44 0.00023
45 0.00024
46 0.00025
47 0.00024
48 0.00023
49 0.00021
50 0.00030
51 0.00027
52 0.00027
53 0.00023
54 0.00038
55 0.00037
56 0.00036
57 0.00046
58 0.00042
59 0.00037
60 0.00031

Table 4.11: Values of E[sg∗t ]/E[DBt−1], computed in R with respect to the interest curve
increased by 2%.

4.6 Assumption 6

There is a fixed 0 < ν < 1 such that the declarations satisfy
ηt · SFt−1 + νt · ph∗t ≥ ν · ph∗t ∀ 1 ≤ t ≤ T . [GH22]

The reference value for ν in our ALM model in R is ν = 0.7 and the purpose of the
following analysis is to show that this assumption is appropriate. This will be done by
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computing ν for every time step t and each scenario j, thereby the calculated ν for every
time step t and each scenario j are denoted by ξjt to avoid notational confusion because
there already are νt on the left hand side of the inequation in Assumption 6 and ν ̸= νt.
The base case and the interest curve increased by 2% will be considered.

Quantiles ξjt
0% 0.00

0.910% 0.69
0.915% 0.71
5% 1.00
10% 1.00
15% 1.00
20% 1.00
25% 1.00
30% 1.01
35% 1.04
40% 1.06
45% 1.07
50% 1.10
55% 1.13
60% 1.16
65% 1.20
70% 1.25
75% 1.32
80% 1.41
85% 1.54
90% 1.77
95% 2.29
100% 1530.87

Quantiles
�
ξjt

0% 0.49
0.025% 0.69
0.030% 0.71
5% 0.99
10% 1.00
15% 1.02
20% 1.02
25% 1.04
30% 1.05
35% 1.05
40% 1.06
45% 1.07
50% 1.08
55% 1.09
60% 1.11
65% 1.12
70% 1.13
75% 1.15
80% 1.18
85% 1.22
90% 1.29
95% 1.44
100% 177.29

Table 4.12: Quantiles of ξjt , computed with respect to the base case and quantiles of
�
ξjt ,

computed with respect to the interest curve increased by 2%.

For ph∗t > 0, the inequation can be rearranged to

ηt · SFt−1 + νt · ph∗t
ph∗t

≥ ν,

in that case

ξjt =
ηjt · SF j

t−1 + νjt · ph∗jt
ph∗jt
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is calculated for every time step t and each scenario j with the model in R. Then ξjt
fulfill the inequation in Assumption 6 with equality for all t, j (ν �= ξjt ). If ph

∗
t = 0, the

inequation always holds because ηt and SFt are both greater than or equal to zero at
every time step t and each scenario j and therefore ξjt is arbitrary, anyway we fix ξjt = 1
in this case.
The quantiles of ξjt in the left table of table 4.12 show that ν = 0.7 is a good approach

when considering the base case because 99.085% of the computed ξjt are greater than
0.7. This applies because Assumption 6 uses an estimation downwards. According to

the quantiles of
�
ξjt in the right table of table 4.12, which were computed with respect

to the by 2% increased interest curve, the assumption of ν = 0.7 also holds in this case.

This is similarly due to the fact that 99.97% of the computed
�
ξjt are greater than 0.7.

The quantiles for some time steps t of both cases can be considered in table 4.13.

t 0% 25% 50% 75% 100%

5 1.00 1.17 1.21 1.27 1.73
10 0.78 1.20 1.5 4 2.24 473.22
15 0.12 1.00 1.00 1.20 29.18
20 0.00 1.00 1.00 1.08 46.13
25 0.00 1.00 1.10 1.29 34.87
30 0.00 1.00 1.08 1.21 315.48
35 0.00 1.02 1.10 1.24 176.98
40 0.98 1.08 1.25 1.54 103.82
45 0.59 1.05 1.11 1.21 22.66
50 0.97 1.11 1.28 1.55 37.90
55 0.96 1.08 1.16 1.28 135.49
60 0.32 0.98 1.00 1.03 11.42

t 0% 25% 50% 75% 100%

5 1.05 1.07 1.07 1.08 1.30
10 1.01 1.07 1.10 1.13 1.51
15 0.84 1.14 1.22 1.34 9.23
20 0.49 1.08 1.14 1.25 6.71
25 0.63 1.03 1.06 1.09 13.85
30 0.96 1.02 1.05 1.09 3.90
35 0.80 1.02 1.04 1.07 6.92
40 0.98 1.09 1.18 1.29 3.03
45 0.97 1.03 1.05 1.08 2.05
50 0.97 1.07 1.15 1.26 5.71
55 0.98 1.06 1.09 1.13 12.89
60 0.93 0.97 0.99 1.00 1.70

Table 4.13: Quantiles of ξjt computed with respect to the base case for some time steps

t in the left table and quantiles of
�
ξjt computed with respect to the interest

curve increased by 2% for some time steps t in the right table.

4.7 Assumption 7

Assume that µs+1
k is determined by the geometric run-off assumption

Assumption 2: µs+1
k =

lhs−lhs+1

lhk
. [GH22]

In the paper [GH22], Gach and Hochgerner define µt
k as the fraction of the bonus dec-

larations ηk · SFk−1 + νk · ph∗k at k that is either paid out as a surrender fee (in the case
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of premature contract termination) or paid out as a future discretionary benefit (in the
case of contract maturity or mortality). The defining relation is

pht + sg∗t =

t−1�
k=1

µt
k · (ηk · SFk−1 + νk · ph∗k), (4.2)

this relation is now used to show that Assumption 7 holds by simply inserting µt
k as

defined in Assumption 7 into (4.2) and checking whether the equality holds or not. This
is possible with our ALM model in R since all of the other needed variables are known
in the model.

t E SD

0 0.0000 0.0000
1 0.0000 0.0000
2 -0.0018 0.0000
3 -0.0022 0.0001
4 -0.0030 0.0001
5 -0.0035 0.0001
6 -0.0045 0.0002
7 0.0005 0.0000
8 -0.0029 0.0002
9 0.0007 0.0000
10 -0.0007 0.0002
11 -0.0003 0.0002
12 -0.0002 0.0004
13 0.0003 0.0005
14 -0.0015 0.0010
15 -0.0001 0.0012
16 -0.0014 0.0012
17 -0.0004 0.0010
18 0.0002 0.0011
19 -0.0006 0.0010
20 0.0011 0.0008

t E SD

21 -0.0003 0.0006
22 0.0008 0.0004
23 0.0000 0.0004
24 0.0014 0.0003
25 0.0006 0.0003
26 0.0006 0.0003
27 0.0010 0.0002
28 -0.0012 0.0010
29 -0.0011 0.0009
30 0.0011 0.0004
31 -0.0013 0.0014
32 0.0005 0.0002
33 0.0008 0.0002
34 0.0008 0.0003
35 0.0002 0.0002
36 0.0010 0.0003
37 -0.0014 0.0015
38 -0.0008 0.0007
39 -0.0021 0.0018
40 0.0002 0.0004

t E SD

41 0.0006 0.0004
42 -0.0005 0.0007
43 0.0005 0.0003
44 0.0009 0.0005
45 0.0005 0.0003
46 0.0013 0.0008
47 0.0011 0.0006
48 0.0013 0.0008
49 -0.0008 0.0009
50 0.0012 0.0007
51 0.0005 0.0003
52 0.0010 0.0006
53 -0.0015 0.0014
54 0.0005 0.0003
55 0.0006 0.0003
56 0.0001 0.0003
57 0.0008 0.0005
58 0.0007 0.0005
59 0.0007 0.0004
60 0.0006 0.0004

Table 4.14: Expected values and standard deviation of��t−1
k=1 µ

t
k · (ηk · SFk−1 + νk · ph∗k)− pht − sg∗t

�
/MV0, computed with

respect to the base case.
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After computing µt
k for each time step t as

µt
k =

2−(t−1)/h − 2−t/h

2−k/h

with h as in Assumption 2, equation (4.2) can be rearranged to�t−1
k=1 µ

t
k · (ηk · SFk−1 + νk · ph∗k)− pht − sg∗t

MV0
= 0 (4.3)

and the left hand side is computed for each time step t and every scenario j. Equation
(4.2) was divided by MV0 since the error should be small in comparison to MV0, in this
case the outcome of the left hand side of (4.3) should be smaller than 0.5%.

t E SD

0 0.0000 0.0000
1 0.0000 0.0000
2 -0.0029 0.0000
3 -0.0040 0.0001
4 -0.0056 0.0001
5 -0.0067 0.0001
6 -0.0085 0.0002
7 -0.0012 0.0001
8 -0.0071 0.0002
9 -0.0006 0.0001
10 -0.0042 0.0004
11 -0.0031 0.0004
12 -0.0038 0.0006
13 -0.0017 0.0004
14 -0.0056 0.0010
15 -0.0016 0.0007
16 -0.0036 0.0009
17 -0.0022 0.0010
18 -0.0003 0.0006
19 -0.0024 0.0009
20 0.0018 0.0003

t E SD

21 -0.0021 0.0012
22 0.0016 0.0002
23 -0.0008 0.0008
24 0.0029 0.0002
25 0.0007 0.0006
26 0.0004 0.0007
27 0.0022 0.0002
28 -0.0041 0.0019
29 -0.0034 0.0016
30 0.0033 0.0006
31 -0.0046 0.0025
32 0.0012 0.0004
33 0.0020 0.0003
34 0.0024 0.0005
35 0.0009 0.0005
36 0.0027 0.0005
37 -0.0047 0.0031
38 -0.0017 0.0014
39 -0.0059 0.0037
40 0.0008 0.0008

t E SD

41 0.0018 0.0008
42 -0.0011 0.0016
43 0.0014 0.0007
44 0.0030 0.0009
45 0.0018 0.0006
46 0.0041 0.0014
47 0.0035 0.0012
48 0.0041 0.0016
49 -0.0017 0.0020
50 0.0037 0.0014
51 0.0017 0.0006
52 0.0032 0.0013
53 -0.0041 0.0037
54 0.0019 0.0006
55 0.0020 0.0007
56 0.0008 0.0009
57 0.0027 0.0012
58 0.0025 0.0011
59 0.0023 0.0010
60 0.0021 0.0009

Table 4.15: Expected values and standard deviation of��t−1
k=1

�µt
k · (ηk · SFk−1 + νk · ph∗k)− pht − sg∗t

�
/MV0, computed with

respect to the interest curve increased by 2%.
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4 Numerical validation of assumptions

Taking a look at the expected values and the standard deviation of the results of (4.3)
for each time step t shows that the assumption holds because those values, which can be
observed in table 4.14, are vanishing small. This result is also obtained if the expected
values and standard deviation of (4.3) are considered with respect to the interest curve
increased by 2%, the corresponding values can be considered in table 4.15. The quantiles
of the results of (4.3) for both cases can be considered in tables 4.16 and 4.17 for some
time steps t.

t 0% 25% 50% 75% 100%

0 0.0000 0.0000 0.0000 0.0000 0.0000
5 -0.0038 -0.0036 -0.0035 -0.0035 -0.0028
10 -0.0020 -0.0008 -0.0007 -0.0006 -0.0004
15 -0.0094 0.0002 0.0003 0.0003 0.0004
20 -0.0061 0.0012 0.0013 0.0013 0.0017
25 -0.0032 0.0006 0.0007 0.0007 0.0009
30 0.0004 0.0009 0.0010 0.0012 0.0042
40 -0.0043 0.0001 0.0003 0.0004 0.0013
50 0.0003 0.0007 0.0010 0.0014 0.0086
60 0.0001 0.0004 0.0005 0.0007 0.0046

Table 4.16: Quantiles of
��t−1

k=1 µ
t
k · (ηk · SFk−1 + νk · ph∗k)− pht − sg∗t

�
/MV0, com-

puted with respect to the base case for some time steps t.

t 0% 25% 50% 75% 100%

0 0.0000 0.0000 0.0000 0.0000 0.0000
5 -0.0071 -0.0068 -0.0067 -0.0067 -0.0058
10 -0.0058 -0.0045 -0.0042 -0.0040 -0.0035
15 -0.0052 -0.0018 -0.0014 -0.0011 -0.0005
20 -0.0007 0.0017 0.0018 0.0019 0.0023
25 -0.0048 0.0005 0.0008 0.0010 0.0016
30 0.0022 0.0029 0.0032 0.0035 0.0070
40 -0.0093 0.0006 0.0010 0.0012 0.0024
50 0.0017 0.0028 0.0034 0.0042 0.0172
60 0.0010 0.0016 0.0019 0.0024 0.0105

Table 4.17: Quantiles of
��t−1

k=1
�µt
k · (ηk · SFk−1 + νk · ph∗k)− pht − sg∗t

�
/MV0, com-

puted with respect to the interest curve increased by 2% for some time
steps t.
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4 Numerical validation of assumptions

Estimating the gross surplus

In order to estimate terms III and COG, Gach and Hochgerner [GH22] use a simplified
model of gst where all quantities except Ft−1 are replaced by their expected values.
The simplified model is denoted by �gst, its derivation according to [GH22] is illustrated
below.

To find a useful representation of gst and therefore also for �gst, the following repre-
sentation of ROAt is needed:

ROAt = E[ROAt | Ft−1] +ROAt − E[ROAt | Ft−1]

=
�

a∈At−1

E[cfa
t | Ft−1] + E[∆BV a

t | Ft−1] + Ft−1Ct−1 +ROAt − E[ROAt | Ft−1]

=
�

a∈At−1

(1 + Ft−1) ·MV a
t−1 − E[MV a

t | Ft−1] + E[∆BV a
t | Ft−1] + Ft−1Ct−1

+ROAt − E[ROAt | Ft−1]

= Ft−1 · (BVt−1 + UGt−1)− E[∆UGt | Ft−1] +ROAt − E[ROAt | Ft−1].

The gross surplus gst can then be denoted by

gst = ROAt − ρtVt−1 + γtLPt−1

= Ft−1BVt−1 + Ft−1UGt−1 − E[∆UGt | Ft−1] +ROAt − E[ROAt | Ft−1]

− ρtVt−1 + γtLPt−1

= Ft−1BVt−1 + P (0, t)−1(ldt−1 − ldt ) · UG0 − ρtVt−1 + γtLPt−1,

where Assumption 9 was used for the last equation. Compared to the representation of
gst in [GH22], this one is correct because there is a typing error in the paper.

By replacing all quantities in gst except Ft−1 with their expected values and using
Assumption 2, Assumption 3, Assumption 4 and Assumption 8, the simplified represen-
tation �gst can be derived:

�gst = Ft−1 · E[BVt−1] + P (0, t)−1(ldt−1 − ldt ) · UG0 + E[γt · LPt−1 − ρt · Vt−1]

= Ft−1 · (lht−1 · LP0 + ϑ · lht−1 · LP0) + P (0, t)−1(ldt−1 − ldt ) · UG0

+ γt · lht−1 · LP0 − ρt · lht−1 · LP0 · (1− σ)

= lht−1 · LP0 · (1 + ϑ) · �Ft−1 + P (0, t)−1 l
d
t−1 − ldt
lht−1

UG0

LP0 · (1 + ϑ)
+

γt − ρt · (1− σ)

1 + ϑ

�
.
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4 Numerical validation of assumptions

4.8 Assumption 8

In �gst the technical interest rate ρt and the fraction of technical gains γt are
deterministic functions of t. [GH22]

This assumption is fulfilled in our ALM model in R because ρt and γt were modelled
deterministically. Hence the assumption cannot be checked here.

4.9 Assumption 9

In �gst the return ROAt is predictable, i.e. Ft−1-measurable, and realizations
of unrealized gains are determined by a fixed number 1 < d < T : [GH22]

1. ROAt − E[ROAt | Ft−1] = 0

2. Ft−1 · UGt−1 − E[∆UGt | Ft−1] = P (0, t)−1(ldt−1 − ldt ) · UG0 where

ldt := 2−t/d for t < T and ldT := 0.

t 0% 25% 50% 75% 100%

5 -0.02575 -0.00230 -0.00078 0.00103 0.02781
10 -0.01773 -0.00110 -0.00000 0.00071 0.01682
15 -0.05026 -0.00294 -0.00000 0.00289 0.02701
20 -0.06999 -0.00421 0.00023 0.00604 0.05939
25 -0.11959 -0.00501 -0.00000 0.00516 0.13070
30 -0.21022 -0.00878 -0.00042 0.00898 0.70315
35 -0.28231 -0.00613 0.00000 0.00696 0.12570
40 -0.29872 -0.01177 0.00016 0.01444 0.36713
45 -0.62105 -0.00964 0.00037 0.00863 0.49382
50 -0.33968 -0.01143 0.00006 0.01117 0.59588
55 -0.31601 -0.01308 -0.00018 0.00983 0.42577
60 -0.35104 -0.01335 0.00024 0.01330 0.49764

Table 4.18: Quantiles of
�
ROAt − E[ROAt | Ft−1]

�
/BVt−1, computed with respect to

the base case.

The first part of this assumption is tested by computing

ROAt − E[ROAt | Ft−1]

BVt−1
(4.4)

for each time step t and every scenario j, the term is divided by BVt−1 because the error
should be small in comparison to BVt−1. The quantiles of these values can be considered
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4 Numerical validation of assumptions

in table 4.18 for some time steps t. Then the expected values and the standard deviation
of (4.4) are computed for every time step t. The results, which can be considered in
table 4.19, are very small and therefore the assumption holds.
The corresponding expected values and standard deviation of (4.4) which were com-

puted with respect to the by 2% increased interest curve can be considered in table
4.20, the assumption applies with analogous argumentation as in the base case. The
corresponding quantiles of the results of (4.4) can be considered in table 4.21 for some
time steps t.

t E SD

1 -0.00002 0.00017
2 -0.00025 0.00098
3 0.00045 0.00111
4 -0.00061 0.00340
5 -0.00039 0.00375
6 0.00057 0.00192
7 -0.00004 0.00090
8 0.00003 0.00208
9 -0.00010 0.00176
10 -0.00015 0.00338
11 -0.00007 0.00389
12 0.00009 0.00596
13 0.00055 0.00632
14 0.00002 0.00665
15 -0.00032 0.00684
16 0.00040 0.00872
17 -0.00013 0.00923
18 -0.00008 0.01011
19 -0.00027 0.01056
20 0.00075 0.01183

t E SD

21 -0.00077 0.01158
22 0.00024 0.01315
23 0.00012 0.01332
24 -0.00023 0.01749
25 0.00041 0.01719
26 0.00074 0.01979
27 -0.00094 0.02101
28 0.00043 0.02212
29 -0.00005 0.02333
30 0.00142 0.04279
31 -0.00071 0.02386
32 0.00012 0.02478
33 0.00015 0.02713
34 0.00055 0.02688
35 0.00023 0.02474
36 0.00035 0.03389
37 -0.00067 0.02739
38 0.00024 0.03535
39 -0.00037 0.03593
40 0.00315 0.04341

t E SD

41 0.00015 0.03107
42 0.00020 0.04178
43 -0.00082 0.04377
44 -0.00040 0.03398
45 -0.00052 0.04266
46 0.00279 0.04935
47 -0.00065 0.03284
48 0.00112 0.05021
49 0.00103 0.03926
50 0.00250 0.06343
51 -0.00073 0.04381
52 -0.00172 0.05430
53 0.00102 0.04638
54 -0.00194 0.03922
55 -0.00035 0.04135
56 0.00075 0.04801
57 -0.00166 0.04396
58 -0.00106 0.04738
59 -0.00217 0.04666
60 0.00176 0.05639

Table 4.19: Expected values and standard deviation of�
ROAt − E[ROAt | Ft−1]

�
/BVt−1, computed with respect to the base

case.

The simplest way to incorporate interest rate dependencies (discount factors and mar-
ket value projections) in our Asset Liability Management model is to consider an evolu-
tion along the initial term structure. This corresponds to a deterministic modelling of
asset prices and discount factors. The relevant initial term structure in this context is
the risk-free curve as of 31.01.2022 of annual zero-coupon spot rates from EIOPA with
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4 Numerical validation of assumptions

which forward rates are computed. When considering this approach (EIOPA scenario),
the first part of Assumption 9 is always fulfilled because in this case there is no volatility
in property, stocks and the interest rate scenario. Therefore the market movements are
always as expected. In other words, the information available at t = 0 is complete and

ROAt − E[ROAt | Ft−1] = E[ROAt | F0]− E[E[ROAt | Ft−1] | F0]

= E[ROAt | F0]− E[ROAt | F0]

= 0

applies. The calculated values can be considered in table 4.22.

t E SD

1 -0.00001 0.00004
2 -0.00027 0.00085
3 0.00037 0.00098
4 -0.00101 0.00326
5 0.00004 0.00438
6 0.00075 0.00226
7 -0.00008 0.00079
8 -0.00064 0.00416
9 -0.00027 0.00215
10 0.00002 0.00663
11 0.00042 0.00365
12 -0.00034 0.00494
13 0.00134 0.00747
14 0.00023 0.00606
15 0.00044 0.00434
16 0.00128 0.00596
17 -0.00104 0.00584
18 -0.00069 0.00605
19 0.00003 0.00480
20 0.00032 0.00571

t E SD

21 -0.00079 0.00691
22 0.00048 0.00871
23 0.00119 0.00985
24 -0.00069 0.01183
25 0.00094 0.01305
26 -0.00039 0.01184
27 -0.00048 0.01028
28 0.00067 0.01287
29 -0.00018 0.00848
30 -0.00079 0.01898
31 -0.00080 0.01420
32 -0.00011 0.01679
33 0.00340 0.02056
34 0.00004 0.01503
35 0.00032 0.01471
36 -0.00014 0.01654
37 -0.00039 0.01430
38 0.00018 0.01193
39 0.00041 0.01047
40 -0.00063 0.03614

t E SD

41 -0.00181 0.01882
42 0.00084 0.02386
43 0.00261 0.03485
44 0.00099 0.02092
45 0.00121 0.01904
46 -0.00159 0.01909
47 0.00041 0.01531
48 -0.00055 0.01464
49 0.00050 0.01559
50 -0.00124 0.04854
51 -0.00067 0.01895
52 -0.00003 0.02780
53 0.00549 0.03710
54 -0.00009 0.02044
55 0.00039 0.01947
56 0.00063 0.02233
57 0.00124 0.01790
58 -0.00018 0.01403
59 0.00060 0.01384
60 0.00096 0.06258

Table 4.20: Expected values and standard deviation of�
ROAt − E[ROAt | Ft−1]

�
/BVt−1, computed with respect to the inter-

est curve increased by 2%.
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t 0% 25% 50% 75% 100%

10 -0.02900 -0.00135 -0.00022 0.00096 0.02630
15 -0.04233 -0.00134 0.00028 0.00248 0.02253
20 -0.04774 -0.00218 0.00005 0.00223 0.03604
25 -0.07056 -0.00359 0.00019 0.00448 0.09206
30 -0.16073 -0.00863 -0.00108 0.00736 0.12158
35 -0.07168 -0.00361 0.00001 0.00293 0.12785
40 -0.23737 -0.01219 -0.00080 0.01024 0.26846
45 -0.09249 -0.00313 0.00044 0.00431 0.17629
50 -0.20602 -0.01515 -0.00023 0.01039 0.54216
55 -0.11135 -0.00392 0.00043 0.00517 0.14458
60 -0.38042 -0.01289 -0.00015 0.01402 0.77437

Table 4.21: Quantiles of
�
ROAt − E[ROAt | Ft−1]

�
/BVt−1, computed with respect to

the interest curve increased by 2%.

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

f(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

f(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

f(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4.22: Values of f(t) = ROAt − E[ROAt | Ft−1] in the EIOPA Scenario.

Validating the second part of Assumption 9 is more complicated because a fixed num-
ber d has to be determined and it is not possible to solve the equation for d at every
time step t. We start by rearranging

Ft−1 · UGt−1 − E[∆UGt | Ft−1] = P (0, t)−1(ldt−1 − ldt ) · UG0

to
P (0, t)

�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
UG0

= ldt−1 − ldt (4.5)

49



4 Numerical validation of assumptions

and computing the standard deviation of the left hand side of (4.5) for every time step
t. The results with respect to the base case can be considered in table 4.24, the results
with respect to the interest curve which has been increased by 2% are denoted in table
4.26. The standard deviation is slightly higher when regarding the increased interest
curve, but since it is still very small in each case it is possible to perform a non linear
regression analysis with the expected values of the left hand side of (4.5) in both cases
for every time step t. The goal is to derive fixed values for d (base case) and �d (shifted
interest curve). The corresponding expected values can be considered in tables 4.24 and
4.26, some quantiles of the results of the left hand side of (4.5) can be observed in tables
4.25 and 4.27.
Each regression analysis is performed with the formula

E[
P (0, t)

�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
UG0

] ∼ ldt−1 − ldt .

The starting values, which were calculated with WolframAlpha for t = 1, are respectively
d = 3.09436 and �d = 3.79862. Transferring these parameters to R and applying a non
linear least squares fit leads to the results in table 4.23, the dedicated plots 4.3 and 4.4
also show that the regression analysis works really well. It can be concluded that the
assumption holds in both cases. This outcome is particularly remarkable because the
assumption relies on a deterministic approximation of a stochastic quantity which was
derived by rather crude heuristic arguments.

d

Coef. 2.625
Std. error 0.089
t-stat. 29.515
p 0.000

�d
Coef. 3.233
Std. error 0.132
t-stat. 24.572
p 0.000

Table 4.23: Results of the non-linear regression analysis with respect to the base case
(left table) and with respect to the interest curve increased by 2% (right
table).
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t E SD

1 0.2007 0.0000
2 0.2105 0.0088
3 0.1716 0.0168
4 0.1017 0.0157
5 0.0942 0.0101
6 0.0453 0.0138
7 0.0294 0.0145
8 0.0333 0.0194
9 0.0220 0.0183
10 0.0256 0.0184
11 0.0130 0.0197
12 0.0101 0.0189
13 0.0094 0.0201
14 0.0011 0.0161
15 0.0093 0.0182
16 0.0066 0.0129
17 0.0080 0.0146
18 0.0030 0.0129
19 0.0007 0.0147
20 0.0005 0.0172

t E SD

21 -0.0017 0.0160
22 -0.0018 0.0226
23 0.0005 0.0190
24 0.0005 0.0165
25 0.0017 0.0199
26 0.0011 0.0190
27 0.0027 0.0194
28 -0.0003 0.0191
29 0.0056 0.0187
30 0.0060 0.0206
31 -0.0003 0.0152
32 0.0033 0.0152
33 0.0013 0.0134
34 -0.0004 0.0150
35 0.0000 0.0126
36 0.0003 0.0123
37 0.0000 0.0133
38 0.0028 0.0113
39 0.0017 0.0102
40 0.0047 0.0100

t E SD

41 0.0010 0.0064
42 0.0012 0.0056
43 0.0016 0.0052
44 0.0009 0.0047
45 0.0007 0.0039
46 0.0007 0.0033
47 -0.0000 0.0035
48 0.0003 0.0028
49 0.0002 0.0030
50 0.0012 0.0029
51 -0.0001 0.0029
52 0.0002 0.0030
53 0.0000 0.0023
54 0.0010 0.0025
55 0.0003 0.0015
56 0.0002 0.0014
57 0.0003 0.0014
58 0.0001 0.0010
59 0.0000 0.0011
60 0.0002 0.0011

Table 4.24: Expected values and standard deviation of
P (0, t)

�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
/UG0, computed with respect

to the base case.

t 0% 25% 50% 75% 100%

5 0.0130 0.0892 0.0939 0.0992 0.1293
10 -0.0790 0.0166 0.0287 0.0379 0.0938
15 -0.0695 0.0003 0.0051 0.0141 0.2182
20 -0.1392 -0.0013 -0.0001 0.0042 0.1172
25 -0.1754 -0.0034 0.0019 0.0090 0.0981
30 -0.3035 0.0001 0.0048 0.0116 0.1792
40 -0.0453 0.0008 0.0027 0.0060 0.0856
50 -0.0196 0.0002 0.0008 0.0017 0.0220
60 -0.0084 -0.0001 0.0001 0.0003 0.0110

Table 4.25: Quantiles of P (0, t)
�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
/UG0, computed with

respect to the base case for some time steps t.
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t E SD

1 0.1668 0.0000
2 0.1769 0.0077
3 0.1582 0.0156
4 0.0808 0.0140
5 0.0942 0.0105
6 0.0581 0.0193
7 0.0412 0.0189
8 0.0344 0.0189
9 0.0260 0.0194
10 0.0312 0.0256
11 0.0119 0.0302
12 0.0311 0.0317
13 0.0065 0.0269
14 0.0008 0.0243
15 0.0257 0.0232
16 0.0002 0.0150
17 0.0081 0.0212
18 0.0164 0.0183
19 -0.0021 0.0196
20 0.0032 0.0205

t E SD

21 -0.0055 0.0187
22 -0.0013 0.0282
23 0.0061 0.0255
24 -0.0065 0.0218
25 0.0027 0.0259
26 0.0037 0.0255
27 0.0034 0.0269
28 -0.0021 0.0264
29 0.0075 0.0260
30 0.0198 0.0266
31 -0.0039 0.0201
32 0.0073 0.0216
33 0.0039 0.0187
34 -0.0036 0.0215
35 -0.0005 0.0191
36 0.0007 0.0164
37 -0.0001 0.0187
38 0.0059 0.0152
39 0.0034 0.0134
40 0.0150 0.0170

t E SD

41 -0.0007 0.0088
42 0.0033 0.0087
43 0.0039 0.0086
44 0.0012 0.0060
45 0.0012 0.0057
46 0.0014 0.0055
47 -0.0001 0.0059
48 0.0004 0.0046
49 0.0003 0.0048
50 0.0053 0.0070
51 -0.0005 0.0059
52 0.0007 0.0053
53 0.0003 0.0048
54 0.0026 0.0053
55 0.0008 0.0029
56 0.0005 0.0028
57 0.0010 0.0030
58 0.0002 0.0022
59 0.0002 0.0027
60 0.0012 0.0031

Table 4.26: Expected values and standard deviation of
P (0, t)

�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
/UG0, computed with respect

to the interest curve increased by 2%.

t 0% 25% 50% 75% 100%

5 0.0374 0.0885 0.0948 0.1015 0.1178
10 -0.0975 0.0194 0.0348 0.0471 0.1075
15 -0.0927 0.0122 0.0233 0.0378 0.1925
20 -0.1849 -0.0022 0.0031 0.0097 0.1518
25 -0.2573 -0.0034 0.0056 0.0140 0.0868
30 -0.3100 0.0085 0.0161 0.0288 0.2178
40 -0.0544 0.0056 0.0097 0.0186 0.1387
50 -0.0173 0.0017 0.0032 0.0062 0.0739
60 -0.0096 0.0002 0.0005 0.0014 0.0352

Table 4.27: Quantiles of P (0, t)
�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
/UG0, computed with

respect to the interest curve increased by 2% for some time steps t.
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4 Numerical validation of assumptions

Figure 4.3: Plot of the output of the regression analysis for the base case:
the red line shows the with the approximated value d calcu-
lated values of ldt−1 − ldt , the blue dots show the expected values

E
�
P (0, t)

�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
/UG0

�
for every time step t and

the grey lines denote mean ± standard deviation.
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Figure 4.4: Plot of the output of the regression analysis for the interest curve in-

creased by 2%: the red line shows the with the approximated value �d
calculated values of l

�d
t−1 − l

�d
t , the blue dots show the expected values

E
�
P (0, t)

�
Ft−1 · UGt−1 − E[∆UGt | Ft−1]

�
/UG0

�
for every time step t and

the grey lines denote mean ± standard deviation.
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4.10 Assumption 10

The coefficient of variation of book valued items is negligible in comparison to
that of market movements. Concretely, the coefficients of variation of DBt,
LPt and SFt are assumed to be negligible in comparison to those of Ft and
B−1

t . [GH22]

The coefficients of variation of DBt, LPt, SFt, Ft and B−1
t are computed with the ALM

model in R for every time step t. A part of the results with respect to the base case can
be considered in table 4.29, some of the computed coefficients of variation regarding the
interest curve which has been increased by 2% can be considered in table 4.30. Observing
these results leads to the conclusion that the coefficients of variation of DBt, LPt and
SFt are indeed small in comparison to those of Ft in both cases. This especially holds
because there are management rules to ensure that book valued items do not vary too
much. The coefficient of variation of B−1

t is in each case as small as those of DBt, LPt

and SFt and therefore the assumption does not hold for B−1
t .

Altogether, the values of the coefficients of variation are not as small as we expected,
but the application of Assumption 10 in [GH22] still works.

• In [GH22], Assumption 10 is needed in equation [5.29], where the estimation even
gets sharper with the observed results because the correlations of the computed
coefficients of variations, which can be considered in table 4.28, are positive.

• The assumption is also needed in equation [5.25] in [GH22], where the resulting
values are very small and therefore the fact that the coefficients of variation are
not as small as expected does not have a great impact.

• Lastly, the assumption is needed in equation [4.23] in [GH22], the main argument
there is that the main contribution of the variance is derived from Ft, which is still
true.

Corr
�
CV (DBt), CV (Ft)

�
0.64

Corr
�
CV (DBt), CV (B−1

t )
�

0.97

Corr
�
CV (LPt), CV (Ft)

�
0.64

Corr
�
CV (LPt), CV (B−1

t )
�

0.97

Corr
�
CV (SFt), CV (Ft)

�
0.68

Corr
�
CV (SFt), CV (B−1

t )
�

0.96

Corr
�
CV (DBt), CV (Ft)

�
0.67

Corr
�
CV (DBt), CV (B−1

t )
�

0.99

Corr
�
CV (LPt), CV (Ft)

�
0.64

Corr
�
CV (LPt), CV (B−1

t )
�

0.96

Corr
�
CV (SFt), CV (Ft)

�
0.64

Corr
�
CV (SFt), CV (B−1

t )
�

0.97

Table 4.28: Pearson correlations of the coefficients of variation computed with respect to
the base case in the left table, computed with respect to the interest curve
increased by 2% in the right table.
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4 Numerical validation of assumptions

t CV (DBt) CV (LPt) CV (SFt) CV (Ft) CV (B−1
t )

0 NaN NaN NaN -0.00 0.00
5 0.04 0.00 0.01 1.46 0.01
10 0.11 0.02 0.02 1.68 0.05
15 0.25 0.04 0.15 2.86 0.09
20 0.41 0.06 0.29 1.63 0.13
25 0.58 0.10 0.24 1.56 0.17
30 0.65 0.17 0.20 1.85 0.21
35 0.67 0.21 0.24 1.77 0.25
40 0.74 0.33 0.37 2.08 0.30
45 0.73 0.40 0.44 2.00 0.34
50 0.79 0.48 0.49 2.69 0.38
55 0.89 0.59 0.63 2.27 0.42
60 1.08 0.73 0.75 2.43 0.47

Table 4.29: Coefficients of variation, computed with respect to the base case, for some
time steps t.

t CV (DBt) CV (LPt) CV (SFt) CV (Ft) CV (B−1
t )

0 NaN NaN NaN -0.00 0.00
5 0.02 0.00 0.00 1.46 0.01
10 0.07 0.02 0.02 1.68 0.05
15 0.16 0.05 0.06 2.86 0.09
20 0.25 0.09 0.10 1.63 0.13
25 0.30 0.13 0.14 1.56 0.17
30 0.36 0.18 0.19 1.85 0.21
35 0.42 0.24 0.25 1.77 0.25
40 0.52 0.36 0.38 2.08 0.30
45 0.58 0.45 0.47 2.00 0.34
50 0.66 0.54 0.55 2.69 0.38
55 0.81 0.69 0.72 2.27 0.42
60 1.02 0.89 0.90 2.43 0.47

Table 4.30: Coefficients of variation, computed with respect to the interest curve in-
creased by 2%, for some time steps t.
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5 Analytical and numerical calculation of
the future discretionary benefits

After introducing and validating the assumptions from [GH22] in Chapter 4, a lower
and an upper bound for the FDB and consequently the mean of the two bounds as an
estimator �FDB can be computed. This will be outlined in Section 5.1. Subsequently, the
FDB, the lower bound �LB, the upper bound �UB and the estimator �FDB are computed
with our ALM model in R with 1000 interest rate scenarios simulated respectively with
VolSwi2, VolSwi25, VolSwi4 and VolSwi6 (introduced in Section 3.2). Furthermore, the
effect of increasing the interest curve by 2% is tested with 1000 interest rate scenarios
simulated with VolSwi4. The outcomes are analysed and compared in Section 5.2.

5.1 Analytical lower and upper bounds for the future
discretionary benefits

As all assumptions from [GH22] were verified in Chapter 4, the quantities I, II and III,
which were determined in Section 2.2, can indeed be estimated. Gach and Hochgerner
found approximations �I and �II for I and II and derived a lower and an upper bound�III lb and �IIIub for III in their paper [GH22]. This will be illustrated below.

In (2.8), I was defined as I = E
�
B−1

T

�
DBT + SFT + gph · (UGT + VT +DB≤0

T )
��
. It

can be estimated by using Assumption 1 and the assessment that by Assumption 1

LPT = VT +DB≤0
T +DBT = 0

holds. Since Vt, DBt and DB≤0
t are all greater than or equal to 0 at every time step t

and SFT = UGT = 0, it follows that

�I := I = 0.

II was determined as II = (1 − gph) · E[�T
t=2B

−1
t sg∗t ] in (2.9). With the help of

Assumption 2, Assumption 3, Assumption 5 and Assumption 10 it can be estimated as
II ≤ �II with �II := (1− gph) ·

T�
t=2

γt · σt · P (0, t) · lht−1 · LP0.
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5 Analytical and numerical calculation of the future discretionary benefits

The last quantity III = (1−gph) ·E��T
t=1 Ft−1B

−1
t (DBt−1+SFt−1)

�
was established

in (2.10). With Assumption 2, Assumption 4 and Assumption 10, the lower bound

�III lb := (1− gph)
�
F0(1 + F0)

−1SF0 + ϑ
T−1�
t=1

�
P (0, t)− P (0, t+ 1)

� · lht−1 · LP0



+ gph(1− gph)

T−1�
t=1

(1− CV 1
0,tCV 2

t )
�
1− P (t, t+ 1)

� · O+
t · (1 + ϑ) · lht−1 · LP0

can be found, Assumption 6 and Assumption 7 help to determine the upper bound

�IIIub := (1− gph)
�
1− P (0, T )

� · SF0

+ gph(1− gph)
T−1�
t=1

(1 + CV 1
0,t · CV 2

t )
�
1− P (t, t+ 1)

� · O+
t · (1 + ϑ) · lht−1 · LP0

+ gph(1− gph)
T−1�
t=2

t−1�
s=1

�
1− ν · (1− lht−s)

�
(1 + CV 1

s,t · CV 2
s )

· �P (s, t)− P (s, t+ 1)
� · O+

s · (1 + ϑ) · lhs−1 · LP0

such that �III lb ≤ III ≤ �IIIub. CV 1
s,t and CV 2

s denote the first and the second coefficient
of variation and

O±
t = E

�
B−1

t

�
Ft−1 + P (0, t)−1 l

d
t−1 − ldt
lht−1

UG0

(1 + ϑ)LP0
− (1− σ)ρt − γt

1 + ϑ

�±�
defines the values of the caplet (corresponding to +) and the floorlet (corresponding to

-) at 0 with maturity t− 1 and payment
�
Ft−1 + P (0, t)−1 l

d
t−1−ldt
lht−1

UG0
(1+ϑ)LP0

− (1−σ)ρt−γt
1+ϑ

�
at the settlement date t. All quantities in O±

t except Ft−1 are deterministic and the
expected value can be computed with the Black formula [Bla76]. The resulting formulas

for the lower bound �IIIlb and the upper bound �IIIub are thus analytic.

Lastly, the cost of guarantees COG, which was defined as COG = E[
�T

t=1B
−1
t gs−t ],

can be simplified to

�COG := E[
T�
t=1

B−1
t �gs−t ] = T�

t=1

O−
t (1 + ϑ) · lht−1 · LP0,

where the only difference is that gs−t was replaced by �gs−t .
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5 Analytical and numerical calculation of the future discretionary benefits

With these estimates, a lower and an upper bound �LB and �UB for the FDB can be
determined. The FDB were defined as

FDB = SF0 + gph · (LP0 + UG0 −GB) + gph · COG− I − II − III

in (2.7) and we get �LB ≤ FDB ≤ �UB (5.1)

with �LB := SF0 + gph · (LP0 + UG0 −GB)−�II − �IIIub
and �UB := SF0 + gph · (LP0 + UG0 −GB) + gph ·�COG− �III lb.
[GH22] states that: If the difference �UB −�LB is sufficiently small, then

�FDB =
�LB + �UB

2

may be used as an estimator for the FDB.

5.2 Comparison of estimated and numerical values

Now that representations of the FDB, �LB, �UB and �FDB are known, these values can
be calculated with the ALM model in R. This will be done taking account of differently
simulated interest rate scenarios.

Interest rate scenarios: VolSwi2

At first, the numerical FDB, the lower bound �LB, the upper bound �UB and the an-
alytical �FDB are computed with 1000 interest rate scenarios simulated with VolSwi2.
VolSwi2 represents a classical Libor market model (introduced in Section 3.2), the calcu-

lated values can be considered in Table 5.1. There, FDB, �LB, �UB and �FDB represent
the mean value of all simulated scenarios.

FDB �FDB �LB �UB |δ| ϵ MV0

1 972 351.9 1 816 994.65 1 596 525.59 2 037 463.71 1.12 1.59 13 894 172

Table 5.1: Mean of FDB, �FDB, �LB and �UB; δ and ϵ relative to MV0; all values
computed with 1000 interest rate scenarios simulated with VolSwi2.
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5 Analytical and numerical calculation of the future discretionary benefits

According to [GH22], the estimation of �FDB was successful if |δ| is smaller than ϵ,

where δ = �FDB − FDB and ϵ =
�UB−�LB

2 . This means that the true value FDB lies

within the estimation interval �FDB ± ϵ, δ and ϵ can also be considered relative to
MV0. Therefore the estimation was successful in this case, the estimation error δ is
rather small at 1.12% of the initial market value MV0 and the fact that ϵ = 1.59% of
the initial market value MV0 is also quite good.

Interest rate scenarios: VolSwi25

Next, all desired values are computed with 1000 interest rate scenarios simulated with
VolSwi25, which is a mean-field extension of the LMM (introduced in Section 3.2). Vol-
Swi25 uses mean-field taming to reduce the variance of the scenarios to make an explo-
sion (significant number of scenarios whose forward rates exceed a predefined threshold)
very unlikely. The calculated values can be considered in table 5.2.

FDB �FDB �LB �UB |δ| ϵ MV0

1 919 129.9 1 816 994.65 1 596 525.59 2 037 463.71 0.74 1.59 13 894 172

Table 5.2: Mean of FDB, �FDB, �LB and �UB; δ and ϵ relative to MV0; all values
computed with 1000 interest rate scenarios simulated with VolSwi25.

It is very remarkable that the estimation error δ is at 0.74% far below 1% of the initial
market value MV0. In addition, |δ| is indeed smaller than ϵ and therefore the estimation
was successful. The fact that ϵ = 1.59% of the initial market value MV0 is also good.

Interest rate scenarios: VolSwi4

Then the numerical FDB, the lower bound �LB, the upper bound �UB and the analytical
�FDB are computed with 1000 interest rate scenarios simulated with VolSwi4, which is
also a mean-field extension of the LMM (introduced in Section 3.2). VolSwi4 considers
an anti-correlation prescription to reduce the probability of blow-ups, this is the frame-
work which was also used to verify the assumptions in Chapter 4. The calculated values
can be considered in Table 5.3.

Since |δ| is smaller than ϵ, this estimation was also successful. The estimation error δ
is at 0.79% again far below 1% of the initial market value MV0, which is striking. The
value of ϵ is at 1.59% of the initial market value MV0 also good.

60



5 Analytical and numerical calculation of the future discretionary benefits

FDB �FDB �LB �UB |δ| ϵ MV0

1 926 819.0 1 816 994.65 1 596 525.59 2 037 463.71 0.79 1.59 13 894 172

Table 5.3: Mean of FDB, �FDB, �LB and �UB; δ and ϵ relative to MV0; all values
computed with 1000 interest rate scenarios simulated with VolSwi4.

Interest rate scenarios: VolSwi6

Subsequently the values are computed with 1000 interest rate scenarios simulated with
VolSwi6. VolSwi6 is also a mean-field extension of the LMM (introduced in Section 3.2)
and uses a decorrelation approach to reduce the probability of blow-ups. The calculated
values can be considered in Table 5.4.

FDB �FDB �LB �UB |δ| ϵ MV0

1 944 176.0 1 816 994.65 1 596 525.59 2 037 463.71 0.92 1.59 13 894 172

Table 5.4: Mean of FDB, �FDB, �LB and �UB; δ and ϵ relative to MV0; all values
computed with 1000 interest rate scenarios simulated with VolSwi6.

It is apparent that the estimation was again successful because |δ| is smaller than ϵ.
The estimation error δ is at 0.92% smaller than 1% of the initial market value MV0,
which is really good. The fact that ϵ = 1.59% of the initial market value MV0 is also
good.

Interest rate scenarios: VolSwi4, interest curve increased by 2%

Finally, the FDB, �LB, �UB and �FDB are computed with 1000 interest rate scenarios
simulated with VolSwi4 where the interest curve has been increased by 2%. The reason
that only scenarios simulated with VolSwi4 are used for the shifted case is that these
scenarios are considered as the most realistic set among the mean field controlled equa-
tions. The resulting values can be considered in table 5.5.

Since |δ| is smaller than ϵ, the estimation was once more successful. The estimation
error δ is at 1.22% of the initial market value MV0 bigger than in the other considered
cases, but still small. The value of ϵ is at 1.59% of the initial market value MV0, which
is good.
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5 Analytical and numerical calculation of the future discretionary benefits

FDB �FDB �LB �UB |δ| ϵ MV0

3 266 434.8 3 435 970.66 3 215 501.60 3 656 439.72 1.22 1.59 13 894 172

Table 5.5: Mean of FDB, �FDB, �LB and �UB; δ and ϵ relative to MV0; all values
computed with 1000 interest rate scenarios simulated with VolSwi4 where
the interest curve has been increased by2%.

Comparison of the cases studied

It is immediately noticeable that the estimation was successful in all considered cases.
The estimation error δ was thereby always smaller than 1.25% of the initial market value
MV0, which is remarkable. The smallest values of δ appeared in the cases where the
interest rate scenarios were simulated with VolSwi25 and VolSwi4 under consideration
of the base case. The value of ϵ stayed at 1.59% of the initial market value MV0 in all
considered cases which is really good. All in all, the estimation works really well.
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6 A selective review of existing literature

According to Diehl, Horsky, Reetz and Sass in [DHRS22], stochastic Asset Liability
Management models have gained a lot of attention in recent years. The authors have
developed an ALM model for a life insurance company selling life insurance products
with profit participation in a low interest rate environment and the overall structure
of their ALM model is very similar to our ALM model in R. In [DHRS22] the balance
sheet model considers stocks, bonds and cash, our model additionally considers property.
The bond price is modeled with a Vasic̆ek model and the stock price is modeled with
a discretized geometric Brownian motion model. Management targets to determine the
numbers of assets held in each time period are taken into account in both models.

The ALM model of Diehl, Horsky, Reetz and Sass and our ALM model both consider
model points instead of individual contracts to approximate a real life insurance portfolio.
While our ALM model directly simulates model points (and not individual policyholders)
or receives them from an insurance company, [DHRS22] provides an explicit approach for
the generation of model points: the insured collective is grouped according to gender,
the current age and the exit age of the policyholders. The formed groups are called
cohorts or model points and one representative policyholder of each cohort is selected
randomly. The number of generated cohorts depends on the size and the heterogeneity
of the initial insurance portfolio. In contrast to our ALM model, the model in [DHRS22]
also considers new business in each time period. When new policyholders occur, they
are also grouped into cohorts and those new cohorts are then merged with existing ones
to avoid an increase of the number of cohorts. Mortality and surrender effects are also
taken into account, but only at the end of each time period. This leads to changes in the
sizes of the cohorts during the simulation period. Mortality is simulated by using cohort
life tables and the surrender probabilities are simulated with an exponential distribution,
our ALM model simulates those quantities by using life and surrender tables.
The resulting ALM model is then used to perform simulation studies to investigate

the long-term stability of a life insurer’s balance sheet. For this purpose, a run-off ap-
proach is compared with a scenario which also allows new business. Furthermore, two
different investment strategies are compared in the case of stationary new business and
the robustness of those strategies is tested in a market which allows crashes in stock and
bond markets. Finally, a sensitivity analysis is performed.

The paper Asset-liability management for long-term insurance business [ABE+18]
discusses some challenges insurance companies have to face in accordance with Asset
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6 A selective review of existing literature

Liability Management for long-term insurance business, some of their arguments will be
outlined below.
One of the most important processes in regulating and monitoring insurance businesses

is valuation, which includes risk capital calculations, providing a fair value assessment
for asset and liability portfolios and reserving. Thereby the market consistent valuation
of liabilities could be difficult as it has to be derived from models. The corresponding
cash flows can be grouped into three categories: the components that can be perfectly
replicated by existing financial instruments, the components that can be perfectly repli-
cated by future cash flows and the remaining components that cannot be replicated by
existing and future financial instruments. The market-consistent value then consists of
the costs of producing those cash flows and is thus the sum of the best estimate and
a risk margin, as there is a certain risk that the costs for replicating some of the cash
flows will change in the future. The resulting value strongly depends on assumptions
on future management actions, models for the capital markets and the cash flows, and
the policyholder behaviour. Therefore different insurance companies will have differ-
ent resulting values as those depend on the used model. As future management actions,
market features, product design and policyholder behaviour are not the same in different
insurance companies, it does not seem reasonable to use one general framework. Never-
theless, more transparency on the models and on the assumptions would be good to be
able to compare the results of different insurance companies and to be more transparent
on uncertainties and risks provided in the near future. However, the formula of [GH22]
shows that an estimation of a range of possible values is feasible.

As mentioned above, the Asset Liability Management relies on models and a few issues
that arise when creating a model were also discussed in [ABE+18]. The first one is that
an optimal investment strategy is usually determined with an economic model and an
objective function that is maximized. The problem is that this optimal strategy might
be extremely sensitive to the underlying model assumptions, therefore the strategy could
be optimal in one model but perform badly in the real world. One possibility to solve
this is to find a strategy that performs well under multiple models.
The second important issue is the determination of management rules. As those

parameters might have more impact on the final outputs than other ones, a sensitivity
analysis should be performed and the top management should know how the model
reacts to different management rules. Thereby it is quite interesting that Swiss regulators
have observed very heterogeneous management rules in the supervised companies and a
standardization is to be discussed.
In addition to those issues, a risk-free interest curve has to be constructed and the

volatility surface for yield curves has to be chosen. Furthermore, there should be a bal-
ance between the simplicity and the accuracy of the model and what-if scenarios should
be performed.

El Karoui, Loisel, Prigent and Vedani discuss in Market inconsistencies of the market-
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6 A selective review of existing literature

consistent European life insurance economic valuations: pitfalls and practical solutions
[VELP17] some of the major risk sources that are included in the current regulatory life
insurance valuation scheme.

One of the mentioned risk sources is that insurance companies have to forecast yield
curves in the economic valuation framework and thereby mistakes in the scheme which
is used to calibrate interest rate models can lead to a disconnection to fair pricing.
Furthermore the risk-neutral models might lead to unrealistic projected trajectories,
which might have an unpredictable impact on the way long-term risks are taken into
account in valuation. On this topic, a model-free calibration procedure is explained in
[VELP17] and the effects on economic scenarios are shown graphically.

Besides that, the actuarial market-consistency criterion implies very volatile valua-
tions. The criterion is directly affected by market movements and depends on the cal-
ibration of the chosen model. Insurance companies should beware that December 31st
is not the ideal date to calibrate their model with market data because the markets are
known to provide inexact and highly volatile prices in December as a consequence of the
accounting closing date. One possibility to compute more stable values is to use averaged
calibration sets, for example from the whole month October. Tests in [VELP17] showed
that this is a good approach and that the difference in the observed values is significant.

Moreover, the calibration of financial models which are then used to valuate the eco-
nomic balance sheet can also be an issue as the model is usually used to valuate all of the
insurer’s life insurance products and then the calibration results in only one valuation
probability measure. The estimated values are different for each insurance company as
all models are different and cannot be compared. This is a problem as comparability
is very important for efficient valuation. The authors suggest a consideration of a more
locally defined market-consistency criterion and different calibrations of a model such
that there exist different risk neutral probability measures for different life insurance
liability valuations.
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7 Conclusions

This thesis analyzed a new method to calculate the FDB approximately but much
faster than usual. After introducing a closed formula for the FDB, the assumptions
which Gach and Hochgerner needed to be able to estimate the FDB in [GH22] were
validated. This was done with the help of an Asset Liability Management model in
R, all assumptions were tested with 1000 interest rate scenarios (VolSwi4 ) and then
additionally with 1000 interest rate scenarios (VolSwi4 ) where the initial interest curve
has been increased by 2%.
The results of our analysis were very good because Assumption 1, Assumption 2, As-

sumption 4, Assumption 5, Assumption 6, Assumption 7, Assumption 8 and Assumption
9 were fulfilled for both considered interest curves. Assumption 3 could not be fully ver-
ified, however, the most important estimation for which Assumption 3 is needed in the
paper [GH22] still works. Thus it is not important for the application of Assumption 3
in the paper [GH22] that the assumption is not fulfilled exactly as formulated.
The second part of Assumption 9 was a little tricky to check because the corresponding

equation could not be solved for the variable we were looking for. So a regression analysis
was done, the results were very good for both of the considered interest curves. This is
particularly remarkable because this assumption relies on a deterministic approximation
of a stochastic quantity which was derived by rather crude heuristic arguments.
Assumption 10 was also not fulfilled as formulated, but the result also works when

applying the results in the paper [GH22].
Overall, all assumptions are at least fulfilled to the extent that the application of the

assumptions in [GH22] works.
After verifying the assumptions it was possible to calculate a lower and an upper bound

for the FDB and consequently to estimate �FDB. Subsequently, FDB and �FDB were
calculated in differently simulated interest rate scenarios. It was very remarkable that
the estimation was successful in all considered cases and that the estimation error was
always very small compared to the initial market value MV0.

All in all, our results lead to the conclusion that the analytical calculation of the FDB,
�FDB, works very well as all assumptions needed to estimate the �FDB are correct enough
for the application in [GH22] and the estimation was successful in all considered cases.
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Appendix: List of symbols

The content of the Appendix has in slightly adapted form been taken from [GH22] as
the same notation was used.

Symbol Meaning Definition and relations

A
At set of assets, excluding cash, at time t -

B

Bt bank account at time t Bt =
�t−1

j=0(1 + Fj)

BE best estimate BE = E
��T

t=1B
−1
t (gbft+gbf≤0

t +
pht + cot − prt)

�
bdt total bonus declaration to DBt at time t bdt = νt · ph∗t + ηt · SFt−1

BVt book value of the asset portfolio at time t BVt =
�

a∈At
BV a

t + Ct

BV a
t book value of an asset a -

C
Ct amount of cash held by the company at

time t
-

cfa
t cash flow of asset a at time t -

cot cost cash flows at time t -

COG cost of guarantees COG = E[
�T

t=1B
−1
t gs−t ]

CV 1
s,t first coefficient of variation CV 1

s,t = CV
�
D(s, t)−D(s, t+ 1)

�
CV 2

s second coefficient of variation CV 2
s = CV [B−1

s gs+s ]
χt surrender fee factor at time t -

χ≤0
t surrender fee factor at time t for DB≤0

t -

D

D(t, s) discount factor from s to t < s D(t, s) =
�s−1

j=t (1+Fj)
−1 = BtB

−1
s

DBt declared bonuses after valuation time DBt =
�

x∈Xt
DBx

t

= DBt−1+ηt ·SFt−1+νt ·ph∗t−
pht − sg∗t ,
DB0 = 0

DBx
t declared bonuses after valuation time of

model point x at time t
-
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DB−
t account of declared bonuses before bonus

declaration at time t
-

DB≤0
t declared bonuses up to and including valua-

tion time
DB≤0

t =
�

x∈Xt
(DB≤0

t )x

(DB≤0
t )x declared bonuses up to and including valua-

tion time of model point x at time t
-

∆ft increment of ft ∆ft = ft − ft−1

E
ηt fraction of declaration of SFt−1 to DBt -

F
Ft simple one year forward rate between t and

t+ 1
-

FCt
1 free capital at time t FCt = BVt − Lt

FDB value of future discretionary benefits FDB = E[
�T

t=1B
−1
t pht]

G
GB value of guaranteed benefits GB = BE − FDB
gbft guaranteed benefits at time t gbft =

�
x∈Xt

gbfx
t

gbfx
t guaranteed benefits generated by model

point x at time t
-

gbf≤0
t cash flows due to DB≤0

t−1 gbf≤0
t =

�
x∈Xt

(gbf≤0
t )x

(gbf≤0
t )x cash flows due to (DB≤0

t−1)
x -

gph policyholder share in gross surplus -
gst gross surplus at time t gst = sht + ph∗t + taxt

= ROAt − ∆Vt − ∆DB≤0
t −

DB−
t +DBt−1+prt−gbft−gbf≤0

t −
pht − cot�gst simplified model of gst �gst := lht−1 · LP0 · (1 + ϑ) ·�
Ft−1 + P (0, t)−1 l

d
t−1−ldt
lht−1

UG0
LP0·(1+ϑ) +

γt−ρt·(1−σ)
1+ϑ

�
gsh shareholder share in gross surplus -
gtax tax paid on gross surplus at time t -

γt fraction of technical gains γt =
tgt+χ≤0

t DB≤0
t−1+χtDBt−1

LPt−1

H
h half of life assurance provisions E[LPh] = LP0/2

I
1We assume without loss of generality that FCt = 0 because the return on free capital is not shared
with the policyholders and does therefore not contribute to the FDB which we are interested in.

70



Appendix: List of symbols

J

K

L
Lt book value of liabilities at time t Lt = LPt + SFt

LPt life assurance provision at time t LPt = Vt +DB≤0
t +DBt

M
µt
k fraction of bonus declarations from time k

paid out (or kept - as surrender fee) at time
t

-

MVt market value of the portfolio at time t MVt =
�

a∈At
MV a

t + Ct

MV a
t market value of asset a at time t MV a

t−1 = (1 + Ft−1)
−1

�
E[cfa

t |
Ft−1] + E[MV a

t | Ft−1]
�

N
ν bonus declaration bond ∃ 0 < ν < 1 s.t.

ηt · SFt−1 + νt · ph∗t ≥ ν · ph∗t
∀ 1 ≤ t ≤ T

νt declaration fraction of ph∗t -

O

O+
s value at 0 of the caplet with maturity s− 1 O+

s := E
�
B−1

s

�
Fs−1 − (1−σ)ρs−γs

1+ϑ +

P (0, s)−1 l
d
s−1−lds
lhs−1

UG0
(1+ϑ)LP0

�+�
O−

s value at 0 of the floorlet with maturity s−1 O−
s := E

�
B−1

s

�
Fs−1 − (1−σ)ρs−γs

1+ϑ +

P (0, s)−1 l
d
s−1−lds
lhs−1

UG0
(1+ϑ)LP0

�−�
P
P (t, s) value of a zero coupon bond, with nominal

of 1 at s, at time t
P (t, s) = E[D(t, s)]

PH∗ time value of the accounting flows ph∗t PH∗ = E[
�T

t=1B
−1
t ph∗t ]

pht amount of discretionary benefits paid out at
time t

pht =
�

x∈Xt
phxt

phxt cash flows due to DBx
t−1 -

ph∗t policyholder accounting flow at time t ph∗t = gph · gs+t
prt premium payments at time t -

Q

R
ρt average technical interest rate at time t− 1 -
ROAt book value return at time t ROAt =

�
a∈At−1

ROAa
t +

Ft−1Ct−1
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ROAa
t book value return of asset a at time t ROAa

t = cfa
t +∆BV a

t

S
SFt surplus fund at time t SFt = BVt − LPt

= SFt−1+(1−νt)ph
∗
t−ηtSFt−1

sg∗t surrender fee at time t sg∗t = χt ·DBt−1, 0 ≤ χt ≤ 1
sht shareholder cash flow at time t sht = gsh · gs+t − gs−t
σ total declared bonuses fraction E[DB≤0

t +DBt] = σ · E[LPt]
0 ≤ σ ≤ 1 fixed

T
T projection horizon -

TAX time value of tax TAX = E[
�T

t=1B
−1
t taxt]

taxt tax cash flow at time t taxt = gtax · gs+t
TDBt total declared bonuses at time t TDBt = DB≤0

t +DBt

tgt technical gains at time t -
ϑ surplus fund fraction E[SFt] = ϑ · E[LPt]

U
UGt unrealized gains at time t UGt = MVt −BVt

UGa
t unrealized gains of asset a at time t UGa

t = MV a
t −BV a

t

V
Vt mathematical reserves at time t Vt =

�
x∈Xt

V x
t

V x
t mathematical reserve of model point x at

time t
-

V IF value of in-force business V IF = E[
�T

t=1B
−1
t sht]

W

X
Xt set of model points active at time t -

Y

Z
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