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Introduction

In the late 19th and early 20th century, increasing interest emerged in combining analyti-
cal, set-theoretic and topological notions and methods to describe properties of subsets of
the real line. Such efforts were fruitful, leading to the advent of modern measure theory
(and later, descriptive set theory) as a mathematical discipline, spearheaded by figures
such as Borel, Lebesgue, Luzin, Radon, Fréchet and others.

In searching for a useful notion related to being a Lebesgue measure zero set, Borel
|Bor19] introduced strong measure zero sets.

Definition. A subset X of the real numbers is strong measure zero iff for any sequence
(€n)new Of positive real numbers there exists a sequence of intervals (I, )ne, with A(1,,) <
ep and X C J,e, In-

Clearly, strong measure zero sets are measure zero and every countable set is strong
measure zero. Moreoever, it is also easy to see that perfect sets cannot be strong measure
zero. It was conjectured by Borel that countability is perhaps the only constraint on
strong measure zero sets, giving rise to the Borel Conjecture (BC):

A set is strong measure zero if and only if it is countable.

In 1928, Sierpinski showed that CH implies the existence of uncountable strong
measure zero sets (specifically, he showed that any Luzin set is strong measure zero). It
was not until after the advent of Cohen’s revolutionary technique of forcing that Laver
[Lav76] established the relative consistency (and thus independence from ZFC) of BC.
As is remarked in [JSW90], Laver’s result will turn out to be significant in two ways;
it firmly cemented the efficacy of methods from abstract set theory, such as forcing, in
discussions of concrete interest to analysis. Secondly, it is the first appearance of forcing
with countable support, which would later lead to Shelah’s notion of properness.

Over the years, investigations into matters related to strong measure zero sets (such as
the interplay between BC and the size of the continuum |[JSW90|, the dual notion of

strongly meager sets [Gol+13| and others) became testament to the fact that Borel’s
notion was indeed worthy of interest.

For our purposes the most interesting of these is Corazza’s proof of the consistency of
“a set is strong measure zero iff it has size less than continuum” ([Cor89)]) in which he
employs an wo-length iteration of strongly proper forcings (a notion stronger than “proper
+ w¥-bounding” that includes well-known forcings such as Sacks and Silver), together
with a previous result of Miller to construct a model with

“Every set of reals of size continuum can be mapped uniformly continuously
onto [0, 1]”.

We are interested in a version of Borel’s Conjecture on higher cardinals x. The higher
Cantor space 2" and the higher Baire space k" come equipped with the standard <x-box
topology; see for basic properties of these spaces. Their elements are called
k-reals, or simply reals. Note that near universally, the assumption k<% = x is made in
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discussions on the higher Baire space, without which the space exhibits some undesirable
topological properties (see [FHK13, §11.2.1.]). Especially in recent years, renewed interest
has sparked among set theorists in studying these spaces; a compendium of open questions

can be found in [Kho+16].
The following definition is due to Halko |[Hal96]:

Definition. Let X C 2%. We call X strong measure zero iff

Vi€ r"IAmi)icn: (Vi<k: m€ Qf(i)) NX C U[nz]

1<K

This is a straightforward combinatorial reformulation (here [n] is a basic clopen set as
defined in the next section) of Borel’s definition that is agnostic to the existence of a
measure on 2%. Let SN be the collection of all strong measure zero sets; it is easy to
see that SN is a proper, <k-complete ideal (see also Lemma on 2% containing all
singletons.

The Borel Conjecture on £ (BC(k)) is the statement “a subset of 2 is strong measure
zero iff it has cardinality <s”. Strong measure zero sets for x regular uncountable have
been studied in [HS97], where the authors have proven that BC(k) is false for successor

k satisfying k<" = k.

Throughout this paper we shall restrict our attention to s at least inaccessible, thus in
particular k<" = k. The question of the consistency of BC(k) on such  is still open
[Kho+16]. By the results in [Kho+20], every Laver-like tree forcing on k" necessarily
adds a k-Cohen real. Any treatment of the consistency of BC(x) thus cannot be merely
a straightforward adaptation of Laver’s results, since adding x-Cohen reals makes the
ground model reals strong measure zero.

We shall give two proofs establishing the relative consistency of
ZFC + 2] = &t + SN = [27]°,

the first of which is an adaptation of an iteration found in and requires k to be
strongly unfoldable (a large cardinal property between weakly compact and Ramsey that
is consistent with V' = L). The second, somewhat better, proof only requires x to be
inaccessible and employs the same iteration by establishing minimality of the respective

forcing extension, following the approach of Corazza |Cor89].

The content of this thesis is based on the paper “Strong measure zero sets on 2 for k
inaccessible” by Johannes Schiirz [Sch19).

I would like to thank my advisor Martin Goldstern and my co-author Johannes Schiirz
for their invaluable help in the creation of this thesis.
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Notation and Basic Definitions

Let us make some preliminary remarks.

The higher Cantor space 2" is equipped with the standard <x-box topology, whose base
consists of the basic clopen sets

] :=={b:n<b}

for n € 2<%; for the higher Baire space k" the topology is defined analogously. The relation
1 < v denotes the extension relation for sequences, i.e. 7 = v [ i for some i < dom(v).
The relation n_Lv denotes incompatibility, i.e. n 4 v and v £ 1.

A (k-) tree is a subset of k<% closed under initial segments.
Let T'C k<" be a tree and n € T'. Then we define the following notions:

e Abe r"isa branch of T iff b [ i € T for all i < k. Let [T] denote the set of all
branches of 7.

e Denote by succr(n) the set of immediate successors of n in T'. Call n a splitting
node of T iff |succr(n)| > 1. Denote the set of all splitting nodes of 1" as split(7').
We will only consider trees in which every node has a successor.

e T is perfect iff [T] contains no isolated points or, equivalently, above every n € T
there is a v such that n < v and v € split(7T"). Note that for k # w this is not
equivalent to [T'] being homeomorphic to 2.

e The height htr(n) of a node n is the order type of the set {v < n: v € split(T)}.
Additionally, for ¢ < k, define

split;(T") := {n € split(T’) : htr(n) = i}.

Perfect trees on regular x (in particular conditions p € PT} as defined in the next
section) contain nodes of any height less than .

e As usual, the set of branches of a tree is a closed set and every closed set S can be
represented as the set of branches of the tree T'={b [i: i <K Ab € S}. However,
it may be the case that this tree T' necessarily contains dying branches, i.e. T might
contain an increasing sequence (7;)i<x with A < s whose limit (J,_, 7; is not an
element of T’ El This phenomenon is unique to the x-case and has no w-equivalent.

We say T (or [T]) is superclosed iff this does not happen, meaning that whenever
\ < k is a limit ordinal and € xk*, thenn e T & Vi< \: nlieT.

We shall attempt to, wherever feasible, adhere to certain self-imposed notational conven-
tions. In this vein, the letters i, j, k, ¢ will generally refer to ordinals <k; §, A to limit
ordinals <x and «, 3,7, ¢ to ordinals <x™*. The letters p, g, s, t denote conditions while
n, v, p are elements of k<". The pair F,i will always fulfil F' € [a|<" i < K, where o < k1T
is either explicitly given or clear from context.

!Consider for example the closed set 2%\[n], where n € 2*.
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1 Perfect Tree Forcing

We are interested in a particular forcing consisting of <rk-splitting perfect trees whose
splitting is bounded by an f € k* with f(i) > 2 for all i < k.
Definition 1.1. Let p € PT} ift
S1) p € k<" is a nonempty tree
S2) p is perfect
S3) Vn € pVi € dom(n) : n(i) < f(i)
S4) p has full splitting: Vn € p: |succ,(n)| = 1 Vsucc,(n) ={n"j: j < f(domn)}
S5) p is superclosed
)

(
(
(
(
(
(

S6) splitting is continuous: If A < k is a limit, then
Vner*Np: {v<n:vesplit(p)} is unbounded in n = n € split(p)

The significance of |(S4)| and |(S6)| lies in ensuring <r-closure of the forcing (see Lemma
[.6). The axioms and [(S5)| guarantee that for all n € p we have

[ N [p] # 0,

i.e. there is a branch of p going through 7. Under the other axioms, |(S2)| + is
equivalent to the following statement: whenever b € [p| is a branch of p, then

{i <k:blicsplit(p)}

is a club subset of .

For f = 2 we have a k-version of Sacks forcing, first studied by Kanamori [Kan80].

An overview of variants of familiar forcing notions on higher cardinals can be found in
IFKK14

The rest of this section is devoted to proving some regularity properties for P71}, gener-
alized straightforwardly from the classical treatment of similar tree forcings on w®.

Set ¢ <pr, piff ¢ C p. For a PTy-generic filter G define the generic real s¢ to be the
unique real contained in (1) ., [p].

Fact 1.2. For a condition p € PT} the set split;(p) is a front in p, that is,
Vb € [p] : |bnsplit;(p)| = 1.

Call it the ¢-th splitting front of p.
Lemma 1.3. Let i < s and p € PT be a condition. Then |split;(p)| < k.

Proof. We proceed by induction on i:

e | = (: Trivial.
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® i — i+ 1: The map n — min{v <n : ht,(v) =i+ 1} is bijection between split,,  (p)
anc} Unespliti(p) suce,(n). By‘the inductive hypothesis and the fact that p is <x-
splitting, the latter set has size < k.

e )\ is a limit: Since every n € splity(p) is the limit of a sequence (7;);<n with
n; € split;(p), we have | split, (p)| < |[[,.,split;(p)| < k by the inaccessibility of x.

O

Definition 1.4. Let (P, <p) be a forcing notion and (<;);~, a sequence of reflexive and
transitive binary relations on P such that

Vi<i<nr:i (<) C(55) € (Sp).

Then
1. (pj)j<s is a fusion sequence of length § < k it Vj < k < d:py <, pj.
2. P has Property B ift
o (P,<p) is <r-closed.
e Whenever (p;)j<s,0 < K is a fusion sequence in P, then there exists a fusion
limit ¢ with Vj <6 : ¢ <, p;.
e If A is a maximal antichain, p € P and ¢ < k, then there exists a ¢ <; p such

that A [ ¢ :={r € A: r || q} has size <k, where || means compatible.

Note that by weakening the third requirement to |A | ¢| < k, we get a k-version of
Baumgartner’s Axiom A. Property B is thus a variant of Axiom A combined with the
notion of being x"-bounding Def. 7.2.CJ; it is well-known from the countable
context that many standard tree forcings, such as Sacks and Silver forcing, have this

property.

Lemma 1.5. Property B implies £"-bounding.

Proof. Assume p Ik g € k" and §(i) is decided by an antichain A; ;. Construct a fusion
sequence (¢;)i<, below p by setting qo := p and finding a ¢; 1 <; ¢; with |A;11 | giv1| < K
in successor steps. In limit steps A, set ¢y to be a fusion limit of (¢;);<x. The fusion limit
g of the whole sequence will force g, I- ¢ < h for some h in the ground model. n

Lemma 1.6. PT} is <s-closed.

Proof. If (p;)i<s with 0 < & is a decreasing sequence, set ¢ := (),_sp;- We check that ¢
is a condition; only |(S2)|is nontrivial. Note that by [(S4)| every node in ¢ has a direct

SuUcCCessor.

Let thus 7 € ¢. For some b € [g] with n < b (recall that by + such a b exists)
consider the sets

Ci:={j<rk:b|jesplit(p)}
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By and C; is a club subset of x. Thus (),_; C; is a club and yields a v <1b with
v € split(q) and n < v. O

Remark 1.7. Clearly, the intersection (),_; p; in the previous lemma is simultaneously
also the greatest lower bound of the decreasing sequence (p;)i<s, d < K.

Definition 1.8. For p,q € PTy, define ¢ <; p iff ¢ <pr, p and split,;(p) = split,(q).
Fact 1.9. The following are equivalent:
L.g<ip
2. q <pr; p and Vj < :split;(p) = split,(q)
3. ¢ <pr; pand ¥y € p: ht(n) < i = succy(n) C q
4. q <pr, p and split, ., (p) C ¢
It remains to prove that equipped with these relations, PT} has Property B.
Lemma 1.10. For every fusion sequence (p;);<s of length § < k in PT there exists a g
with Vj <0 : ¢ <, pj.
Proof. 1f § < k, the intersection g from Lemma [1.6| can be seen to also be a fusion limit.

Otherwise once again set ¢ = [ i< Pj and follow the proof of Lemma along a branch
b € [q] again define the sets

C;:={l<k:b|Lesplit(p))}.

Since (p;);<x is a fusion sequence, we observe

() Ci = A;.Cy

I<kK
and thus i< Cj 1s also a club by the fact that the club filter is closed under diagonal
intersections. O

Before concluding the proof, we first give two definitions which will come in handy later
in the iteration context.

Definition 1.11. For a condition p € PT} and 1) € p, define p" := {v € p: v<anpvn<v}.

One can see easily that pl” is a stronger condition than p and that for any i < x we have
p= UUESpliti(p)p .

Definition 1.12. Let p € PT; be a condition and i < k. We say that a condition
s € PTy is (p,i)-determined iff s < p and

|s N split, (p)| = 1.

Lemma 1.13. The set of (p,i)-determined conditions is dense below p for all i.
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Proof. For any s < p we may extend the stem of s in the following way: take any branch
b € [s] C [p]; since we then know |b N split;(p)| = 1, we see that there is a unique v with
v € bnsNsplit;(p). Then st is (p,4)-determined. ]

Theorem 1.14. PTy has Property B.

Proof. 1t remains to show the antichain condition. To this end, let A be a maximal
antichain, p € PTy and i < k. Enumerate split,,,(p) as (7;);<s with 6 < k. We will
decompose p into |0|-many parts, each of which will be thinned out above the (i 4+ 1)-th
splitting front.

Proceed by finding for each j < ¢ a condition ¢; < pil such that |A | ¢;] = 1. Set

¢:=Jq

j<é

Then g € PT} is a condition with split, (p) € ¢ and thus ¢ <; p. To prove |A | ¢| < &,
let r € A be compatible with ¢. By the previous lemma we may pick an s, that is (p,i)-
determined with s, < r, ¢ and hence s, Nsplit,,;(p) = {n;,} for some j, < §. But since
s, < ¢, we can conclude s, < g;, and thus 7 || ¢;,. We have thus found a function from
A | ¢ to §, mapping r +— j,, which is injective (since |A | ¢;| = 1 for all j < §). The
desired conclusion |A [ ¢| < k follows. O

10
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2 lteration

The backbone of our forcing construction will consist of an iteration of PT) forcings. Let
therefore (P, Qs : o < k™", 8 < kTT) be a <k-supported forcing iteration with

IFp, Qo = PTy,
where the sequence (f,)q<s++ is in the ground model and f,(i) > 2 for all i < k. Set
P:=P.++.

As a matter of notation, let.Ga for a < 5** denote the can'onical.IP’a—name for a (V,IP,)-
generic filter; we know IFp G.++ [ @ = G,. We also write G for G,++. Finally, let s, be
the canonical name for the a-th generic real.

This section is dedicated to verifying some regularity properties of such iterations. We
will observe that

1. P is <k-closed

2. P does not collapse x™

3. if V = 12%| = kT, then P has the k*"-c.c.,
thus in aggregate no cardinals are collapsed when forcing with IP.
Fact 2.1. P is <k-closed.

In the countable case, the favoured tool one would look towards in the endeavour of
preserving w; is the notion of properness. Finding a satisfactory analogue for higher
cardinals is a long-standing open problem (see e.g. and [FHZ13]). A relatively
straightforward generalization that still enjoys many desirable qualities of properness is
the following:

Definition 2.2. A forcing P is called k-proper iff for every sufficiently large 6 (e.g.
6 > |27]) and every elementary submodel M < H(f) such that P € M, |M| = x and
<M C M, and every p € P N M, there exists ¢ <p p such that for every dense D € M,
D N M is predense below q.

Fact 2.3. Forcing notions that are <x'-closed or have the x™-c.c. are s-proper. Fur-
thermore, k-proper forcing notions do not collapse x™.

Further details on k-properness can be found in [FKK14].

Unfortunately, in stark contrast to the classical setting, there is no preservation theorem
for k-properness in iterations (see for an iteration of x™-c.c. forcings whose w-
limit collapses k). Our strategy for ensuring x-properness is to verify an iteration version
of Property B. Similar to fusion with countable support, in such cases the correct tool is
the following notion:

Definition 2.4. For ¢ < s let (P,, Qs : o < (, B < ¢) be a <k-support iteration with

Va < (: Ik, ¢ Qn has Property B 7.

11
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Let F' € [¢]<" and i < k. We define ¢ <p; p iff

g <p.pand VB e F:qlBlksq(B) < p(B).
Then
1. A sequence (p;, F; : i < ) of length 0 < & is called a fusion sequence iff
o Vj<k<d:pr<r;p;
o The Fj are increasing and, if § = &, then J;_ssupp(p;) € U, _; F}-
2. We say that P, has Property B* iff

e For every fusion sequence (p;, F; : i < 0), 0 < k there exists a fusion limit ¢
with Vj <6 :q <, ; p;.

e For every maximal antichain A, every p € P and every F' € [(]<",i < k there
exists a ¢ <pg; p such that |A | ¢| < k.

Hence for iterations we consider fusion sequences pointwise, with the added caveat of
being able to delay fusion arbitrarily long in each coordinate. In practice, the auxiliary
sets F; will almost always be defined by a bookkeeping argument relative to the p;.

Fact 2.5. Property B* implies x-properness.

In the definition of Property B*, only the antichain condition is nontrivial. In fact, for
such iterations of Property B forcings, fusion limits always exist.

Lemma 2.6. With notation from the previous definition, every fusion sequence (p;, F; :
i <), 0 <k in P, has a fusion limit g.

Proof. We construct g inductively such that P, 3 ¢ [ « is a fusion limit of (p; [ a, F;Na :
i < 0) for each a < (.

Assume ¢ | a has been defined for o < ¢. To define ¢(«), distinguish three cases:

e a € J;ssupp(pj) N € U, F: Find j*(a) minimal such that a € Fj«(,). Now
q [ alk “(pj(a))j>j+ is a fusion sequence”, so let g() be a fusion limit of that
sequence.

o a € J; ssupp(p;) N ¢ Uj<5Fj3 Note that this case may only occur for § < &,
thus we may use <r-closure of Q, to construct ¢(«) from (p;(a));<s.

e ¢ Uj<5 supp(p;): Set q(«) := Iy, .
To see that ¢ [ A € Py for limit A, merely note supp(q [ A) € [J,_ssupp(p; [ A). O

Remark 2.7. Note that the forcings Q, = PTy, fulfil <k-closure and the existence
of fusion limits in a particularly strong way: in either case, a canonical weakest lower
bound /fusion limit exists. Thus by following the above proof and choosing these canonical
conditions, we can see that an iteration of PT} forcings also fulfils a stronger fusion
condition: for every fusion sequence there exists a canonical, weakest fusion limit.

12
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Some work remains to prove the antichain condition for P¢, which we do in a rather ad
hoc manner by induction on ¢. On the way we will introduce some notation that will
also come in handy later.

First off, let us define the iteration version of Definition [1.12| and the corresponding
density lemma.

Definition 2.8. Let ( < k™t ,p € P, F € [(]=" and ¢ < k. We say a condition s € P is
(p, F,i)-determined following g € [[ 4, =7 iff s <p, p and
VB € Fang € k<"
s | B1F s(8) Nsplit,(p(8)) = {ns} A suceys)(ng) = {9(8)}-

We say a condition s is (p, Fi)-determined iff it is (p, F’ i)-determined following some
(unique) g.

The function g prescribes the choices s makes at the i-th splitting front of p; it is com-
pletely determined by s.

Lemma 2.9. The set of (p, F,i)-determined conditions is dense below p € P, for all
p, F,i and the set of (p, F,i)-determined conditions following g is open for all p, F, i, g.

Proof. Enumerate F' as an increasing sequence (f3;);<s with 0 < k. For a ¢ < p we will
inductively construct a decreasing sequence (s;),<s below ¢ and a C-increasing sequence
(95)j<s with g; € [Igepng, #=" such that s; is (p, F'N §;,4)-determined following g;.

e j=0: Set sy :=q.

e j — j+ 1: Since s; [ 5; IF s;(5;) SQﬁj p(B;), we may use Lemma [1.13] to find

ng—names i, 7?5].7 ng with
si [ Bkt € Qg At <g, 5i(8))
and
Sj f ﬁj I= t N Sphti<p) = {ﬁﬁj} A Succi(ﬁﬁj) - {I),Bj}'
Find a stronger condition r < s; [ 3; that decides the names 7g,, 5, as ng;, Vg,
Define sj1 1= 1717 (s; | (8;,()) and gj41 := g; U {(8;,v5,)}-
e )\ < Jisalimit: By <k-closure we can find a lower bound s, of the sequence (sy)s<.
Define gy := U, 9¢-

If s5 is a lower bound of (s;);<s (Which again exists by <x-closure) and g5 = U;_; 95,
then one can easily see that s; < ¢ is (p, F), i)-determined following gs.

Lastly, if s is (p, F, i)-determined following g, then clearly any s’ < s is as well. O

Fact 2.10. If p’ <p; p and s < p/, then s is (p, F,i)-determined iff it is (p/, F,4)-
determined.

13
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Suppose now that ¢ <pr, p. The extension of p to ¢ may be undertaken in two steps by
interpolating on the <; relation. In the first step, we thin out as much as is necessary
from p, but only in its ‘upper regions’ - say, above the (i 4+ 1)-th splitting front - yielding
an interpolating condition p@ with p@ <, p (above nodes not present in ¢, p may be left
untouched in the extension to p(@). In the second step, nodes are removed from p{?, but
only near the base of the tree, such that whenever n € p'@\q, then there is already some
initial segment v < with v € p@\q and ht, (v) < i+ 1. We thus have

g <p <ip.

This motivates the next lemma.

Lemma 2.11 (Interpolation). Let p € P. and s be (p, F,i)-determined following g €
[I5ep w7 for some F' € [(]<%,i < k. Then there exists a condition p®) <p; p with

o 5 <p, p' <p;pand

e for all (p, F,i)-determined conditions s following g, whenever s <p, p®), then
already ' <p, s

Proof. Construct p'® by induction such that for each o < ¢ we have p® | a € P, and
p(S) [ a SFﬁa,i b r «.

Assume p® | a has been defined; to define p(*) («), there are two cases to distinguish:

s(a) ifs]ae G,

o Ifar ¢ F, set pi¥(a) := (
# o) {p(a) otherwise.

s(a) U (p(a)\p(a)9@)) if s | a € G,

o Ifac F,set pi¥(a):=
Y {p(a) otherwise.

Note that we have p® | a IF g(a) € p(a) and

P9 T alk p(a) < pla).

To see that p®) | A € Py for A limit, we note that supp(p® | A) C supp(p | A) Usupp(s |
\). Furthermore, we clearly have s < p(*),

It remains to check the second requirement. Take some (p, F,i)-determined s’ following
g with s’ < p(®. Assume inductively that s’ [ @ < s | a. The case a ¢ F is trivial, we
may restrict our attention to the case o € F. Then we have s' | a I s'(a) <g, p¥(a) =
s(a)U(p(a)\p(a)¥@)]). But then we already have s | a I s'(a) <g, s(a). In conclusion,
s’ < s, which finishes the proof of the lemma. O

Remark 2.12. The above construction yields the following observation: not only is pt*)
an interpolant for p,s, F' and i, but we even have that p® | « is an interpolant for
pla,s|a FNaand:i for any a < (.
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In the next lemma, we show that under certain conditions, the forcing P: admits least
upper bounds of the form

Vs

s<q

s is (q,F,i)fdeter_mined following g

Lemma 2.13. Let p € P; and s be (p, F, i)-determined following g € HﬂeF k<", Then

for every ¢ <p; p®) there exists an § < ¢, s that is (¢, F,7)-determined following g such
that for every ¢’ < ¢, if ' is (¢, F, 7)-determined following g, then s’ < 3. In other words,
§ is the weakest (g, F,i)-determined condition following g.

Proof. Construct s by induction such that for alla < (wehave s [a € P,, 5 [a < q | «
and § [ ais (q | a, F N, i)-determined following ¢ | «.
Assume 5 | a has been defined; define §(«) as

~ g() @l ifa e F
S(a) = :
q(@) otherwise.

If o ¢ F, there is nothing to prove. For o« € F', observe that since § [ o < ¢ [ a is
(q | a, FNa,i)-determined following ¢ [ o and ¢ <p; p(®) <ri D, so by the above remark
we can conclude § [ o < s [ a. But s [ a Ik g(«) € split,;(p(e)) and ¢ [ v IF split, (p(a)) =
split,(¢(«)), hence 3(«) is well-defined. The other two properties follow easily.

If A is a limit, then we have supp(§ [ A\) C supp(q) U F', hence § [ A € P, is a condition.

Knowing 5 to be well-defined, one can easily see that for each s < ¢ that is (q, F,i)-
determined following g we have s’ < 3. O]
Fact 2.14. (P, <p;) is <r-closed for all ¢, F 1.

Let us now introduce two auxiliary “boundedness” properties a P¢ condition may exhibit.
Definition 2.15. We say a condition p € P; is (F,i)-bounded for F € [(]<",1 < k iff

there exists a p < k with

VB e F: pl Blksplit,(p(B)) C u~H.

Fact 2.16. If p € P; is (F,7)-bounded and p’ <pg; p, then p’ is as well.

Definition 2.17. Let ¢ < k™*,p € P, F € [(|*" and ¢ < k. Take furthermore a
D C P, that is open dense below p. We say p is (D, F,i)-complete iff there exists a
C C[lger " |C| < K and a family (sy)gec in D such that

a) Sy is (p, F,i)-determined following g for all g € C

b) whenever s < pis (p, F,1)-determined following a function g and s € D, then g € C
and s < s

15
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Fact 2.18. If p € P is (D, F,i)-complete as witnessed by (s,)sec, then (s,)zec is a
maximal antichain below p.

Lemma 2.19. Let p’ <g; p be P.-conditions such that p is (D, F,i)-complete and p’ is
(D', Fi)-complete and let the antichains (s)gec and (s )yecr witness this. Then C" C C.
If in addition D" C D, then we even have s’g < s, for each g € C".

Proof. Assume that g € (" and find a ¢t < s, with ¢ € D. Then t < pis (p, F,i)-
determined following g by Fact and thus g € C' and t < s, by the second requirement
in the definition of completeness. If D" C D, we may take t = s} and get s} < s,. O

In particular we know that the set C' in the definition of completeness is completely
determined by p. Complete conditions are also going to be playing a major role later in
Lemma (.11

Our strategy for proving Property B* for all P¢,( < %1 is by the equivalence of the
following four statements:

a(¢): P, has Property B* for each a < (.

b(¢): The set of (F,i)-bounded conditions is <p,-dense in P, for all « < (, F' € [a]<"
and i < K.

¢(¢): The set of (D, F,i)-complete conditions is <p,-dense in [P, for all F,i and open
dense D C P.

d(¢): P, has Property B*.

The implication |a(¢)| = [b(¢)| is Lemma [2.21} [b({)| = |c(¢)| is Lemma and [c(C)| =

d(¢)]is Lemma [2.23] Thus[a(¢)] = [d({)] establishes an induction by which Property B* is
verified for all PP,.

Corollary 2.20. P; has Property B* for all {( < x*T.

Lemma 2.21. Let ( < k™ and assume P, has Property B* for each o < (. Take a < (,
p € Py, F € [a]<" and i < k. Then there is a condition ¢ <p; p that is (F,i)-bounded.

Proof. We proceed by induction on a < (.
e « = 1: Trivial by the inaccessibility of k.

e a — o+ 1: Since P, is <k-closed, x remains inaccessible in VF. Thus
Fp, V8 € F3pug < - split(p(8)) C pg™?
and considering supgep f1s we can find a name fi for an ordinal less than x with
Fp, VB € F : split,(p(B)) C p~H.

Let now A C P, be a maximal antichain deciding j; we may find a P, 3 ¢ <pna.i
p | a with |A | ¢| < k. Thus

qIF i < g
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for some f1, < £ and therefore

VB e F: ¢ BIFsplit,(p(B)) C pgh.

Setting ¢ := ¢~ p(c) and noting that since § <pna; p | @ we have ¢ [ 8 IF
split(q(B)) = split(p(p)) for all 5 € F, so it follows that ¢ is (F),i)-bounded.

e )\ < (is a limit: By <s-closure of (P,, <p;) and the inductive assumption, we can
construct a <p,-decreasing sequence (¢z)ger in Py with the following properties:

—VBeEFVE € FNB: qs <riqs <riD
—VBEFIug <kVB € FN(B+1): qs | B ke, split,(qa(8) C p5"”.

Using <k-closure of (Py, <p;), set ¢ to a <p;-lower bound of (¢s)ser and p =
supgep pg. Now g <p; p and

VB e F: ql B IFsplit,(¢(B)) € p=t.
0

Lemma 2.22. Let ¢ < x™1, F € [(|",7 < k and suppose p € P¢ is (F,i)-bounded.
Let furthermore D C P¢ be open dense below p. Then there is a ¢ <g; p which is
(D, F,i)-complete.

Proof. By assumption p is (F,7)-bounded, hence we can find a p such that

VB e F: pl BIFsplit(p(8) € p™".

Our strategy is to consider all possible choices a (p, F,i)-determined condition might
make at the i-th splitting front of p and then interpolate on the witnesses of such choices.
Since we have a uniform bound p on the respective splitting fronts, this will require us to
only iterate through <x many possibilities. Set jig := sup;,, f5(j) and consider the set

é:zHﬂE“.

BeF

Whenever s is (p, F,i)-determined following some ¢, then ¢ € C. Enumerate C as
(gj+1)j<s with 0 < k. We now construct a <p,-decreasing sequence (t;);<s:

e j=0: Set ty :=p.

e j — j+ 1: If there exists an s € D,s < t; that is (p, F,i)-determined following

gj+1, take an arbitrary such condition and call it 5, . Set t;1, := t;sgj“). If there
is no such s, simply set ¢;,; := t;. In any case we have t;;1 <pg; ;.

e )\ is a limit: Set ¢y to a <p;-lower bound of (¢;),<x.

17
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Set ¢ to a <g;-lower bound of (¢;);<s5. We know ¢ <g; p. Now let
C = {g cC: 3, exists},

i.e. Cis the set of all g;4; for which a witness was found in the inductive step j — j + 1.
We have |C| < k. Finally, for each g = g;41 € C apply Lemma top=t;, s =35,
and ¢ = ¢ to construct the condition s,. We have s, € D since s, < 5, € D and D is
open.

We verify that ¢ is (D, F,i)-complete, witnessed by (s,)sec. The first condition in the
definition of completeness follows by construction. The second follows immediately from
Lemma by noting that if s < ¢ is (¢, F, i)-determined following g, then g = g;4, for
some j < ¢, and thus a witness was found in the inductive step j — j+1and g € C. O

Lemma 2.23. If the set of (D, F,i)-complete conditions is <p,-dense in P, for all F,i
and D C P, open dense, then P has Property B*.

Proof. We have seen in Lemma that the fusion condition is always fulfilled. We will
now prove that P, fulfils the antichain condition: let A C P, be a maximal antichain,
peP., Fel(]<Fandi < k. Find a ¢ <g; p that is (D, F,i)-complete, where

D={s: |A]sl =1}

and let (sg)gec witness this. Since (sg)g4ec is a maximal antichain below g by Fact
it is easy to see that

AlqgC{reA: 3geC: Als,={r}}
and thus |A | q| < |C] < k. O
From this point onward, assume that
VE|2¢] = kT
From among our stated goals at the beginning of this section, only one remains to be
verified; our interest now turns to the x™-chain condition:

Theorem 2.24. P has the k™ t-c.c.

This will follow easily from Lemma once we have proven that each P, for a < x**
has a dense subset of size k.

For the purposes of the next definition, for each a < k** fix a P,-name ¢, for a bijection
ot (PTp)V™ = (P(k))V"™ such that cq(1 pry,) = 0. In particular, there is a canonical
embedding H, < H, for a < o/ (see below).

Definition 2.25. Let o < k™.

18
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e A P,-name 7 for a subset of k is a-good if 7 is a nice name of the form
T={{i} x 45 <},
where A; C H, and |A;| < & for all j < k.

e A condition p € P, isin H, iff p | f € Hg for each f < o and, if a =+ 1isa
successor, additionally either

— there is a f-good name 7 such that p [ 8 IFg és(p(B)) =7
or

— there exists a fusion sequence ((p;, F;) : i < §) of length § < k consisting of
H,, conditions such that p is its canonical fusion limit (see Remark [2.7).

Remark 2.26. H,-conditions and a-good names appeared first as H,-P,-names in
IBGS18] and are themselves a straightforward generalization of hereditarily countable
names as introduced in [She9§].

Lemma 2.27. For every a < k™", F' € [o]<" and i < k, H, is <p;-dense in P, and
|Ho| = k™.
Proof. We prove the statements by induction on a.
e o =1: We have H; =P, and |Py| = |PT},| = k™.
e a »>a+1: Let p € Pyyq, F € [a+1]5% and i < k. Using the inductive hypothesis,
we may assume p [ a |k, é,(p(o)) = {{j} x 4, : j <k} with A; C H, C P, for all
J < k. Additionally using Property B*, construct a fusion sequence (g;, Fj : j < k)
with
— 4o SFﬂa,i p fOé,
- \V/5</$\V/j<(5q(; SFj,i%»ij andFﬂonFJEI,
- Vj<k:q; € Hyand |4; | ¢j| < k.

and let g, be its fusion limit. By induction on 8 we have ¢, [ 8 € Hp for all 8 < a.
By the third property of the fusion sequence,

7=} x (4 1 4e) -7 <k}
is an a-good name and g, Ik, ¢o(p(a)) = 7, thus Hy1 3 (¢ ~p(e)) <p; p.

Since |H,| = k™ and there are only |x™ X (k7)"| = kT-many good names for reals,
we get |Hoy1| = kT by standard arguments.

e 7 is a limit: If cf(y) = k™, density is trivial and |H,| < |Uﬁ<,y Hg| < k™.

Assume cf(y) = § < k and let furthermore p € P, , F' € [y]<" and i < k be given.
For a cofinal sequence (f;);<s once again construct a fusion sequence (g;, F; : j < )
with

2Use a bookkeeping argument to construct the Fj.
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- Vj<d:q; € H,,

— Vi <0:q; | Bj <pjnp,ivj P | By and F'N 3; C F;

— Vi <OV <j:q <k,
where the [ are constructed using a bookkeeping argument. Set g5 to be the fusion
limit; then we have H, 3¢5 <p; p. Lastly, |H,| < ‘Hj<5 Hﬁj‘ < kT,

]

Lemma 2.28. Let (P,, Qg ca < (,f < () be an iteration such that
VYa < (: P, has the #-c.c.,

where 0 is a regular uncountable cardinal. If P; is a direct limit and, additionally, either
cf(¢) # 0 or the set {av < ¢ : P, is a direct limit} is stationary, then P, has the #-c.c.

Proof. See |Jec03, Theorem 16.30]. O

Proof of Theorem (2.24 By Lemma each P, has a dense subset of size <k and
therefore satisfies the k™ "-c.c.; our desired conclusion thus follows easily from Lemma
and by noting that the set {a < k™" : cf(a) = K} is stationary in k7. O
As we have remarked at the beginning of this section, we get the following corollary:
Corollary 2.29. Forcing with P, < k™" does not collapse cardinals.
Lemma 2.30. We have

o If « < k™", then VFe |= |27 = k.

o If cof(a) > &, then Ve |= 2% = (J,_ (2" N V7).

° VIP }: ’25‘ — K,++.
Proof. Suppose o < k™. Let 7 be a P,-name and p € P, force 7 to be a subset of .
Without loss of generality assume 7 = {{j} x A; : j < Kk} is a nice name with A; C H,
for all j < k. Just like in the previous lemma, construct a fusion sequence (g;, Fj : j < k)
below p with |A; [ ¢;| < & for all j < k. The fusion limit ¢, forces 7 to be equal to an
a-good name, of which there are only x™-many. If we additionally assume cf(a) > k&,

then ¢, forces 7 to be equal to a IP,-name for some v < a. The first two statements thus
follow by a density argument.

The last point follows immediately from the previous two. O

For o < k™ we can define in V¥ the tail iteration P, ,++ as the limit of the <x-support

iteration <I§’7,@5 cy < kT B < KTT) where F5, @v = Qaﬂ. It follows from standard
proper forcing arguments that P ~ P, x P/ is dense in Py x Py o4+
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3 First Proof

We are now equipped to present the first proof of the relative consistency of
ZFC 4 |2°] = x4+ SN = [28]5%".

Starting with a model of [2%| = k™, we consider a <x-supported forcing iteration (P,, Qs :
a < kT B < k) with '
Va < k7 i lkp, Q, = PTy,,

where each increasing f € k" NV appears as an f, cofinally often. Set P := P.++. By
Lemma we see VF = |27 = k1.

By a density argument, the a-th generic real $, will encode a covering of the ground
model reals satisfying the ‘challenge’ f,. For this argument it is sufficient that only
fo from some dominating family appear cofinally often; from the perspective of some
intermediate model V¥ the tail forcing P, ++ fulfils this criterion. Hence the observation
can be extended to the set of reals appearing already in some VFe; the following theorem
formalizes this.

Theorem 3.1. VP EVa < st : 28N VP € SN.

Proof. Take a < k™ and f € k. Since P is x"-bounding, we find an h € k* NV with
f < hand 8 > a with f5(i) = [2"D] for all i < k. In V we may construct bijections
Cy 1|27 = 27 for v < k.

Working now in V¥4, recall that 2<¢ NV = 2<* N V¥  thus we can define the function
(i) = cn(i)(85(1)). For z € 28 N VP> the set

D, ={peQp: Ji<r:plkaoli)=z[h(i)}

is dense; in fact, it is easy to see that for any p € Qg and 1 € split(p), j = dom(n) we have

p[nAC;é)(x[h(j e D,. Hence (0(i))ic,. provides the required covering for the challenge f
and 27 N V¥ € SN follows. O

If VE = X C 2% |X| < k', then by the k™ t-c.c., X already appears at some intermediate
stage V¥« We thus get one direction of our desired result by the previous theorem.

Theorem 3.2. V' |= [27]=%" C SN.

In order to lift the arguments appearing in |[GJS93], we require additional large cardinal
assumptions on . A priori it is sufficient for our purposes for x to merely be weakly com-
pact, since the only occasion at which a property stronger than inaccessibility is utilized
is a crucial invocation of the tree property in Lemma (3.5 However, the aforementioned
lemma is invoked not only in V, but also at intermediate stages V¥ it might be the case
that weak compactness of x is by that point destroyed.

The following large cardinal property was introduced by Villaveces [Vil96| Definition 4]:
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Definition 3.3. Let € be an ordinal. We say an inaccessible cardinal « is 6-strongly
unfoldable iff for all transitive models M of ZF~ (ZF without the Power Set Axiom) such
that |[M| = k,k € M and <*M C M there exists a transitive model N with V,U{0} C N
and an elementary j : M — N with critical point x and j(k) > 6.

Furthermore, call x strongly unfoldable iff it is #-strongly unfoldable for all 6.

Strongly unfoldable cardinals are weakly compact and are downwards absolute to L
. Villaveces also observed that Ramsey cardinals are strongly unfoldable in L
(though they may fail to be such in V'). The consistency strength of a strongly unfold-
able cardinal thus slots between a weakly compact and Ramsey cardinal, with it being
a conservative enough strengthening of weak compactness as to still be consistent with
V =L.

Of interest to us is a preservation theorem by Johnstone [JohO§].

Theorem 3.4 (Johnstone [Joh08]). For any x strongly unfoldable there is a forcing
extension in which the strong unfoldability of x is indestructible under <x-closed, -
proper forcing notions.

We stress that the full strength of strong unfoldability is not used in our proof; we merely
require it in order to make the weak compactness of x indestructible by the forcings P,.

For a strongly unfoldable k, after forcing indestructibility using Johnstone’s theorem,
we may collapse a potentially blown up 2% back to k% with a <k'-closed forcing El
Throughout this section we may therefore assume

V | “|2%| = kT + the strong unfoldability of & is indestructible

under <k-closed, k-proper forcing notions”.

We now set out to prove VF = SN C [25]5¢".

The statement of the next two lemmas takes place in V«. Recall that P, .++ denotes
the tail forcing.

Lemma 3.5. Let a < k™t be an ordinal. Let furthermore 7 be a P, ,++-name for a real
in 2%, p € Py ++ a condition, i < x and F' € [x7F]<%. Assume plFp_ 7 ¢ V. Then
there exists a § < x such that

Vn € 2°3q <riD: q ||—Ip>w++ ngr.
We will write 6, r,; for the least such 4.
Proof. Suppose not. Then we can find «, 7, ;7 and p with

Vo< ks €2°: ~(3qg<pip: ql-ndg 7).

3<kt-closed forcings and two-step iterations of x-proper forcings are k-proper.
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Set T:={ns [ {:6 < kALl <0}. By virtue of the preparation of x,
Ve |= k is weakly compact

and therefore, since T is a <s-splitting tree of height «, it has a branch 0" in VFe Since
p k7 ¢ VP there is a name ¢ for an ordinal less than x such that p =7 [ £#0" [ L As
P, .++ satisfies Property B*, there is a ¢ <p,; p and {* < r with ¢ IF ¢ < ¢*.

Since b* | ¢* € T, there is a 0 > ¢* such that b* | ¢* = ns | ¢*. But this means
gl 705 #b* | €5 =ns | £* and therefore g IF ns € 7, a contradiction. n

In the following we refer to pointwise (everywhere) domination < and not just the eventu-
ally dominating relation. For a <k-closed, x"-bounding forcing, the ground model x-reals
form a pointwise dominating family.

Definition 3.6. Let D C k" be a dominating family. We say that H has index D iff
H ={h;: f € D} and Vi < r: hy(i) € 270,

Fact 3.7.

X € SN < VD dominating 3H with index D: X C ﬂ U [hs(a)].

fe€D a<k

Lemma 3.8. Let D € V be a dominating family, o < k™ and H € V¥« have index D.
Let furthermore 7 be a name for an element of 2% with IFp_ 7 ¢ VP Then we have

Fe o7& () UG-

feD i<k

bt

Proof. We prove the claim with a density argument, let therefore p € P, ,++ be arbitrary.
Within VP we will construct an increasing sequence (0;)i<x of ordinals less than k. On

the tree
T:z{gGHZ‘sJ’ 11 < K}
7<i

we shall construct a mapping q : 7' — P, .++ and a sequence of increasing sets (F;)i<
with F; € [a, k77]<" such that whenever b € [[,_, 2% is a branch of T in VFe then

(q(b 14), F;: i <k)

is a fusion sequence below p. Each condition q(g) will carry some information about an
increasingly long initial segment of 7. More specifically, we want to ensure that for all
i <rand g €[], 2% we have

a(g) I g(i) € 7.

We define q(g) for g € [[,-; 2% by induction in i.

e i = 0: By Lemma we can find a d; and q(so) < p for every 1y € 2% such that
q(no) Ik no € 7. Set Fy = 0.

23



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

e i — i+ 1: Assume (g) is defined for every g € ngz‘ 2%, Using Lemma [3.5 we can
again define 6,1 = sup{dy().r.i : 9 € [[, 2%} and for every g € [[i<i2% mi1 €
2%+1 find a condition q(g™n;11) <g . q(g) with

a(g " i) - nia & 7.
Use a bookkeeping argument to define Fj;.

e \ < isalimit: By construction, for every h € [[,_, 2% the sequence (q(h | j))j<a
is a fusion sequence. Set q(h) to be a fusion limit of said sequence, F\ := Uj<)\ F;
and &y := sup{dqn),m: h € de 2%}, Once again using Lemma we can find
a(h™m) <px q(h) for every ny € 2*. Note that since q(h™ny) <p  d(h) <pg,;
q(h [ j) for every j < A, we still have

q(h"nx) <g 5 a(h 7).

This concludes the construction of q. Let now f € D dominate the function ¢ +— §; and
set 1; == hy(i) [ 6;. Now (q((no,m1,--.,1;)));<w is a fusion sequence and has a fusion limit
qx- 1t follows that

Gl €7
for each i < r and therefore g, I- 7 & (;cp U;.[hs(#)]. Thus the set of conditions that
force 7 ¢ ﬂfeD Uiz, lhs(9)] is dense in Py i+ n

We see that every intermediate model V' believes that a set X which contains a real
appearing in a later model will never be strong measure zero with respect to any test
conducted in Ve, This essentially gives us our theorem.

Theorem 3.9. V¥ |= SN = [27]=+"

Proof. The D-direction is Theorem For the other direction, let X € V¥ be of size
xT* and D be a dominating family in V¥ which lies in V. We will show that there is no
H € V¥ with index D such that

x < (UG,

feD i<k

hence X is not strong measure zero by Fact Towards a contradiction, note that since
D appears in V', such an H can have cardinality at most x*. Since IP fulfils the x*"-c.c.,
we know H must already appear in some VFe. But |X| = x™*, thus there must be an
x € X with x ¢ VP Let 4 be a P, x++-name such that

Fp ., 2 E€X NE¢ VP

ot
then by Lemma (3.8 we have

Fe @ ¢ () RO,
fED i<k

and X is not strong measure zero, a contradiction. O]
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4 Coding of Continuous Functions

For the reader’s convenience we collect some selected facts about the coding of continuous
functions that are going to find use in the next section.

Throughout this section, every tree 1" is assumed to be a tree on 2<".

Definition 4.1. Let 7" be a tree and (7})),c2<~ a family of trees. Then (T, (T},)pe2<x) is
a code for a continuous function iff

1. if gy L o, then [T, N [T,,] = 0,
2. if m <y, then [T5,] C [T,
3. U,ea[Ty] = [T7] for each i < .
Theorem 4.2. If P is a <k-closed forcing notion, then IT}-absoluteness holds between

Vand VP, e (VY VY, €) <m (VD VY7 o]

K

Proof. See [FKK14]. m

Lemma 4.3. Let (T, (1,,),e2<~) be a code. Then there exists a unique continuous function
g<T7(Tn)n€2<n> : [T] — QH SuCh that

i1 1) = [T
for all n € 2<".

Proof. If we set g(y) := U{n € 2" : y € [T,,]}, then it is easy to see that g : [T] — 2~
is a well-defined continuous function and ¢~*([]) = [T,,] for all n € 2<*. Since ([n]),ea<=
forms a clopen basis of 2%, uniqueness is given. ]

On the other hand, if g : Y — 2" is a continuous function where Y C 2" is closed, then
(T, (T,)pe2<+) is a code for g, where T, are trees with [T,] = ¢~'([n]) and [T] =Y.

Definition 4.4. For codes ¢, ¢ define ¢ < ¢ < g. C go.
Clearly < is reflexive and transitive.

Definition 4.5. A function ¢ : Y — Z with Y, Z C 2% is uniformly continuous iff
Vi<k3dj(i) <wVexeY: ¢"(x[j@)]NY) Clg(z) [iNZ.

The map i — j(i) is the modulus of continuity of g.

Fact 4.6. The following statements are IT{ and therefore absolute for <r-closed forcing
extensions:

e ¢ is a code for a continuous function

"Note that VY = vV,
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o “[T] =1[T"] for trees T, T’
e “c <7 for codes ¢,
e “ran(g.) C [T]” for a code ¢ and a tree T

e g. is uniformly continuous with modulus of continuity i — j()

It is easy to prove that if ¢ € V' is a code and P a <rk-closed forcing notion, then (gc)V7>

extends (g.).

Let now Y C 2% be closed and g : Y — 2% be continuous. The above thus yields a
method to continuously and uniquely extend g to § : Y™ — (25)V"). To do so, take
an arbitrary tree T such that [T] =Y, then choose a code ¢ for g as a function from [T
to 2% and evaluate ¢ in V7. By Fact the function § = (g.)"" is an extension of g.
Furthermore, g is independent of the chosen code ¢, since the statement ¢ < ¢ is II} and
thuspabsolute. Lastly, we note that g is the unique extension of g, since [T]" is dense in
[TV

By <k-closure, 2<* NV = 2<*N V7" and thus total functions g extend to total functions
g.

In the future we will not be making a notational distinction between g and g.
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5 Second Proof

In this section we will construct a model in which every X C 2% of size |2"| can be uni-
formly continuously mapped onto 2%. The construction closely follows Corazza’s approach
|Cor89].

We will consider the same forcing iteration (P,, Qg : a < &1, 8 < k1) with <-support
as in the previous section. Additionally, we also choose Q. to be r-Sacks forcing (i.e.
fo = 2) for @« = 0 and for o with cofinality x*. We still assume V' |= |27 = kT, but  is
only required to be inaccessible this time.

Since the forcing iteration is identical to the one in the previous section, Theorem
holds and thus

VP = 2755 C SN
The other direction of the proof hinges on a technical lemma.

Lemma 5.1. Let p € P, F € [sTT]<% i < k, Y € [2"]<" and a P-name 7 be given such
that p forces 7 € 2% and 7 ¢ V. Then we may find an X € [27]<" and a sequence (¢;);<x
of conditions below p such that

o Vi1 <J2a<k: @y <riqy <riD
o Vj < kK: quI—EIxEX: 7]j=z1]jand
e XNY = 0.

Proof. 1f necessary, we may strengthen p twice in the following manner:

e Firstly, since |Y| < s and p I- 7 ¢ Y, we may find a name ¢ for an ordinal less than
k such that ; . .
plEYyeY: : 7] l#y]L.

Property B* enables us to find a p’ <p; p and £* < k with
VyeY p'lk 7104y
by restricting a maximal antichain deciding /.
e Secondly, we can find a p” <pg; p’ that is (F,4)-bounded (see Definition .

So without loss of generality assume that p already has both these properties. We con-
struct the sequence (¢;);<, inductively:
e j =0: Set qy :=p.
e j — j+ 1: Since
Dji1:={r<gq;:rdecides 7 | (j +1)}

is open dense below ¢;, we may apply Lemma to gj, I,i and Dj ﬂto get gj1
and (s77')gec;,,, where gji1 is (Djyq, F,i)-complete as witnessed by (s77')sec;, ;-
Note that we have ¢;11 <r; ¢; <p;i D

®q; is (F,i)-bounded by Fact
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e \is a limit: Find a <g;-lower bound ¢y of (g;)s<r. Just as in the successor step,
apply Lemma to ¢y, F,1 and

Dy :={r < g, :r decides 7 [ \}

to get ¢, and (s;\)gecx

By Lemma we know that (C});<, is a decreasing sequence of non-empty sets smaller
than k; as such, the sequence is eventually constant. Write j* for the index at which this
happens.

Now define )
Xi={e€2:3geCpVj<n: sjlrilj=xlj}

For g € Cj- the sequence (S‘;>j<n is decreasing by Lemma m Hence each g € Cj-
successfully interprets 7 as some (unique) = € X, i.e.

Vge Cpdv e XVj <k: sgll—%[j:x[j.

Since Vy € Y : plF7 [ £* £y | ¢*, we know that X NY = (.

Suppose now that j > 7% and s < ¢;. Then s is compatible with sg for some g € C; = O+
and we can find a t < s, sg. But then dz € X : tlF7 [ j =2 j, so we can conclude

glFreX: ilj=uxj

Since |Y| < k, we can easily modify X such that it remains disjoint from Y and
glFIzeX: tlj=alj
holds for 7 < j* as well. O]

We are now preparing to show that every new real 7¢ € V¥ can be mapped onto the first
Sacks real $g via a continuous ground model function. In what follows we shall slightly
abuse notation; for p € P and a node 1 € p(0) denote by pl" the condition that satisfies

p(0) = p(0) and ph(8) = p(8) for § > 0.

Lemma 5.2. Let p € P, F € [x"1]<" and i, ¢ < k. Let furthermore a P-name 7 be given
such that p forces 7 € 2% and 7 ¢ V. Then we can find a ¢ <p; p, an £* > ¢ and a family
(Ay)nesplit, (p(0)) of non-empty, clopen sets with

o Ay =U,eg, V] for some S5, C 2t
o if 7y L mo, then A, N A,, =0 and
o g7 € A,
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Proof. Enumerate split,(p(0)) as (nx)r<s with § < k. We inductively construct sequences
((t?)j<,§)k<§ and a sequence of sets (X )r<s: assuming that X, has been constructed for

m < k, apply Lemma to pll and YV = Ui Xm to get a sequence of conditions
(tf)j@ and a set X;. Let £* > ¢ be an ordinal large enough such that whenever j; # jo
for ji,j2 < 0 and @y € X, 20 € Xj, then 2, | £* # x5 | £*. This is possible, since the
(Xk)r<s are disjoint and of size less than k. This allows us to define

A= J =10,

r€Xy

Now we glue the conditions t§. together in the following way: Set

q(0) :== [ Jt4-(0)

k<6

and for >0 .
o(5) i {tf*(ﬂ) if t}. | B € Gy

]1(@ otherwise.
3

It remains to remark that by induction on 3, we can see that (t§. | 3)z<s is a maximal
antichain below ¢ | 8. Therefore, since split,(p(0)) = {nx : £ < d} and by Lemma [5.1] we
have t§. <p; pi™l for each k < &, we can conclude q | 8 <prgip | B for all B < kT,

To see the last claim, only note that ¢ = tk, for some k < 4, therefore by Lemma
we have t5. I 3z € X, : 7 [ ¢* =z | ¢* and thus

" IF 7€ A,
by definition of A,,. O

Remark 5.3. Without loss of generality, we may choose the A, in the previous lemma
to be minimal in the following sense: for each v € 2°° we have v € S, iff there exists a
condition ¢ < ¢l such that ¢ IF 7 € [V].

Lemma 5.4. Let p € P and a P-name 7 be given such that p forces 7 € 2" and p I- 7 ¢ V.
Then there exists a ¢ < p, a sequence (£*(4));<. and a family (A,),esplit(g(0)) such that
A, C 2" are non-empty, clopen and:

e if 77 € split;(¢(0)), then A, =J, g [¥] for some 5, C 20
o if 7y L 7, then A, NA,, =0,

o if 7y <1y, then 4,, C A, and

e ¢"IF7e A,

Proof. We shall construct a fusion sequence (g;, F; : i < k) and a strictly increasing
sequence (£*(1));<, of ordinals less than x such that ¢;;1 has the required properties for

(An)nESpliti(Qi(O))'
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e i =0: Set ¢y := p and Fy := {0}.

e i — i+ 1: Applying Lemma to ¢;, Fi,i and sup;_; €*(j) yields a ¢ <p,; @,
an ordinal ¢*(i) and a family (A:]>77€Spliti(¢h(0))' Set g;11 := ¢. Define F;,; with a
bookkeeping argument.

e \is a limit: Set g to a fusion limit of (g;, Fj : j < A) and Fy =, I}

Let now ¢, be a fusion limit of the sequence (g;, F; : i < k) and

A, = Al

where i(n) is the unique ¢ with n € split;(g.(0)) = split;(¢:(0)). We claim ¢, has the
properties we are looking for:

e The first property holds by Lemma [5.2

e If we assume the Ai,(n) have been chosen minimal in each step as in Remark
then the second property holds. To see this, take v << and 1’ € S,, where S, is

as stated in Lemma By Remark there is a condition ¢t < qm , such that

i(n)+
t -7 € [n]. But then t < q%)ﬂ < qz['(/j/)ﬂ, and thus ' | ¢*(i(v)) € S,. Hence
A, C A,
e To see the third property, let n € split(g.(0)). Then we have g < qulz) and
therefore
g"IF e A,
as desired.

]

The following lemma substitutes in for Tietze’s Extension Theorem from the countable
case in |[Cor89]. Recall the notion of superclosure (page @ and uniform continuity (Defi-
nition [4.5)).

Lemma 5.5. Let Y, Z C 2% where Y is closed and Z is superclosed, and let g : Y — Z
be uniformly continuous. Then g can be extended to a uniformly continuous function
g : 2" — Z with the same modulus of continuity as g.

Proof. The open set 2"\Y can be be written as a union of basic open sets | J,_,[v;] with
A< K,y € 2% such that the v; are minimal, i.e.

Vi<8i: [ 14lnY #£0.

In particular the sets [v;] are pairwise disjoint. We will define g to be constant on each
[Vi]-
For ¢ < A define

S@@)=={ne2~:3j<6i:g"(vi [j]NY) S NN Z}].
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Clearly S(i) consists of pairwise <-compatible elements; furthermore, for each n € S(i)
we have [] N Z # (). Since Z is superclosed [} we have Z N [|JS(i)] # 0. We may thus
set g [ [] to be constant with an arbitrary, fixed value from Z N [|JS(7)].

It remains to check that g : 2¢ — Z is uniformly continuous with the same modulus of
continuity as g. To this end, let i < x and x € 2%. Consider y € [z | j(7)].

e If z € Y, the interesting case is y ¢ Y, hence y € [v,] for some ¢. But then j(i) < d,
and

g"([x 15@DINY) S [g(x) N Z,
hence by definition g(z) [ i € S(¢) and thus g(y) € [JSO)]|NZ C [g (x) Kila
e On the other hand, if # ¢ Y, then z is in [v] for some ¢. Now either [z | j(i)]NY = (D
in which case § is constant on [z [ j(i)] and therefore §(y) = g(x) € [g(z) [ i] N
or [z [ j(0)]NY #0,;(i) < and S(¢) contains a sequence 1 of length i (namely
g(x’) |1 for some 2’ € [x | 7(¢)]NY) and thus g(y) € [n|NZ = [g(x) [ i N Z.

]

A natural question the inquisitive reader might pose is the validity of Lemma in
case of the additional “artificial” assumption of superclosure being dropped. Indeed, the
statement no longer holds; in the authors observe, for instance, that the closed
subset Y of 2" consisting of all sequences with finitely many zeroes is not a retract of 2~
(and thus the identity Y — Y cannot be extended to a continuous function on 2%).

Theorem 5.6. Let p € P force 7 € 2% and 7 ¢ V. Then there exists a ¢ < p and a
uniformly continuous function f*:2% — [¢(0)] in V' such that

q - (1) = S0,
where $y denotes the first Sacks real.

Proof. Lemma-ylelds a condition ¢ < p, a sequence (£*());<, and a family (A,;),espiit(q(0))
of clopen sets. This family codes []a continuous function

f:Y = [a(0)]
y—Jn:ye A}
defined on the closed set Y =,_,. U A,

néesplit,; (g(0))

STf |S(i)| = &, then [|JS(4)] is not defined, so work with {{JS(i)} instead.
"To avoid abuse of notation, we could also define

Al

B {AU, where v = min{p € split(¢(0)) : n < p} for n € q(0)
n-

0 for n & q(0)

and use the code (T, (T}))ye2<~), where [T] =Y and [T;] = A} NY.
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We claim that f is in fact uniformly continuous. To see this, let © < x and y € Y. Choose

n such that y € A, and n € split;(¢(0)). Recall that A, is of the form (see Lemma [5.4)

A, = J W

veSy
with S, C 2. Therefore we have

Fyre@) bl < fly)li
for all y € Y, since i C dom(n).

Since the set [¢(0)] is superclosed, we can apply Lemma [5.5 and extend f to a uniformly
continuous function f*:2% — [¢(0)]. Lastly, we have

"7 e Ay € (F)7 ()
for each n € split(¢(0)) and thus
q = f*(7) = so.
[l

As in the classical case, every k-Sacks condition can be decomposed into 2%-many k-Sacks
conditions in a continuous way. The last auxiliary result we require formalizes this:

Lemma 5.7. Let p € P be a condition and recall that p(0) C 2<%. Then there exists a
uniformly continuous ¢g* : [p(0)] — 2" and for each z € 2° NV a condition ¢, < p such
that

¢ -z = g*(SO)

Proof. First we construct a function e = (e, es) : p(0) — 257 x 2<% with the following
properties:
e ¢ is continuous and monotone increasing
o () =(0,0)
e if n ¢ split(p(0)), then e(n™i) = e(n)
e if n € split;(p(0)) and
— j is a successor, then e(n™i) = (e1(n) "1, e2(n))
— 7 is a limit, then e(n™17) = (e1(n), e2(n) 7).

Define g : [p(0)] — 2" x 2% as g(b) = {J,_,, e(b | 7). Since [p(0)] is perfect, g is well-defined.
Moreover, g maps the clopen basis sets ([1]),espiit(p(0)) t0 @ clopen basis of 2% x 2%, hence
it is a homeomorphism.

For = € 2% now set ¢, (0) :={n € 2<": Jy € g7 ({z} x2%): n<y} and q.(8) = p(B) for
f > 0. We claim that ¢, is a condition; it is sufficient to check that ¢,(0) is. We check
[(S2)] [(S5)| and [(S6)} the rest is left as an exercise for the reader.

32



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

e [(S2)} Since § is a homeomorphism, it follows that g~ ({x} x 2%) is a perfect set.

o [(S5)} Let (n;);.5 with 1; € ¢.(0) be a strictly increasing sequence of length § < .
et n = UJ;5my. It easily follows that v € ¢,(0) & = € [e1(v)]. As e(n) =
U;<s€(n;) we see that z € [e1(n)], hence n € ¢,(0).

° : Let (n;);<s be a strictly increasing sequence of length < such that n; €
split(q.(0)). Again, set n:=J;_sn;. It follows that n € split,(p(0)) for some limit
A. But as x € [e1(n)] and e;(n) = e1(n™ i), we have i € ¢,(0) for i = 0, 1, hence

n € split(g.(0)).

Clearly ¢, < p. Now set g = m; o g, where 7 is the projection onto the first coordinate.
Then ¢* is uniformly continuous with modulus of continuity

i+ j(i) := sup{dom(v) : v € split;;+ (p(0))}.

Finally, we have ¢, IF x = ¢g*(5) by the definition of ¢,(0) and the absoluteness (see Fact
4.6|) of the statement

ran(g” [ [¢.(0)]) € {z}.
0

Theorem 5.8. In V¥, every subset X of 2¢ of size k** can be uniformly continuously
mapped onto 2.

Proof. Assume that X is a P-name for a subset of 2% such that

IFp VA uniformly continuous function Jy € 2% : y ¢ h"X.
We will show Jo* < kt+ @ Ikp X C VFer | thus Ibp | X| < k7.
By our assumption on X and P satisfying the x*T-c.c. we get

Va < k7T Vh P,-name for a uniformly continuous function
38 < kF, B > a3y Ps-name for a real : I-p j ¢ 1" X.

To increase legibility, let the ellipsis ( .) denote the four quantifications in the above
statement. By interpreting the name X partially in the intermediate model VP ie. by
identifying X with a canonical Pg-name for a Ps ,++-name, we get

(o) i lepylbe, o, 9 ¢ h'X.

Keep in mind that g, h are both Ps-names, since 8 > a.

Without loss of generality assume that the function o — [(«) maps to the minimal
for which the statement holds. Observe that, crucially, since every continuous function
h : 2% — 2% can be coded by an element of 2% (see Section [4)), no new functions of the
kind appear at stages of cofinality >« (Lemma; therefore we can easily find a fixed
point of the function o — f(a) with cofinality ™. Call it o*. For o* we thus know that

Ve = Vh uniformly continuous Jy € 2" : Fp ., Y ¢ n'X.
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For the remainder of this proof we will be working within V¥e*. We wish to show

VB = lbp o X C VP,

Let thus p € Py« ,++ and 7 be a P, ,++-name such that p forces 7 € 2% and 7 ¢ VP
Theorem applied within VFe* (recall that the tail iteration P, ,++ has the same
structure as the full iteration) yields a ¢ < p and a uniformly continuous function f* :
2% — [¢(0)]. Likewise, Lemma [5.7] applied to ¢ gives us a uniformly continuous function

*

g* : [q(0)] — 2" and conditions (¢z),connyPa -

Now let @ € 2 N VFe* be arbitrary. By construction we have ¢, Iz = (¢* o f*)(7). For
the uniformly continuous function (g* o f*) : 2% — 2" we can by our assumption on o
find a y € 28 N VP with Ve = Fp . .,y & (g° o f*)"X. The condition g, thus forces

T ¢ X. Since 7 and p were arbitrary, we may conclude

VPQ* ): ”_Pa*’ﬁ_H_ X C lea*.
Thus we have shown IFp_, ”_]pa* it X C VP which finishes the proof. O]

It is easy to see that the uniformly continuous image of a strong measure zero set remains
strong measure zero; thus we have shown

VP = SN C 295

Corollary 5.9. VF |= SN = [2¢]=+".
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6 Stationary Strong Measure Zero
Finally, let us take a look at the following definition, introduced by Halko [Hal96|:
Definition 6.1. A set X C 2% is called stationary strong measure zero ift

Vi€ Im)icn: Vi<w: pedNaxc () Ul

clCk club i€cl

So a set X is stationary strong measure zero iff we can find coverings that cover every
point of X stationarily often. To motivate why this definition might be of interest, observe
that even for regular strong measure zero sets, we can always find coverings that cover
each point at least unboundedly often:

Lemma 6.2. Let X C 2" be strong measure zero. Then
Vi€r s Imic: Vi<r: me2dNax (Ul
J<Kki>j

Proof. Partition k into sets (U;);<,, where each U; has size k. For a challenge f € k" and
every i < & we can find coverings (77});eu, that satisfy the challenge (f(j))jev,. But now
(77;) jeu,i<x has the property we are looking for. O

In the Corazza-type model from Section [5] the notions of strong measure zero and sta-
tionary strong measure zero coincide.

Theorem 6.3. VF =VX C 2¢: X € SN & X is stationary strong measure zero.

Proof. Modify the argument in Theorem [3.1] to show
VP = Va < k71 25N VP is stationary strong measure zero

by instead showing the set
Dy ={peQs:Ficc: plko(i)=xh(i)}

to be dense for every x € VFe and every ground model club ¢l C &, where ¢ is as defined
in Theorem As P is k"-bounding, every club ¢l € V¥ contains a ground model club
cl’, thus this is sufficient. To see that D, . is dense, merely note that for any p € P and
b e [p] NV, the set

{7 <w:b[jesplit(p)}

is a club and thus intersects cl. O]

On the other hand, it follows from |2%| = k™ that there is a strong measure zero set which
is not stationary strong measure zero.

Theorem 6.4. Under |27| = kT there exists an X € SN that is not stationary strong
measure zero.
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Proof. First off, let us enumerate all strictly increasing functions in k" as (f,)a<s+ and
likewise enumerate the set

S:={oce (2" :Vi<k: dom(c(i)) =i+ 1}

as (0a)acnt-

We shall inductively construct three sequences (4)a<w+, (Ta)a<cx+ and (cly)a<y+ with the
following properties:

a) Ya < k'@ x, € 2% 7, € (25%)% and cl, is a club subset of x
b) Va < kTVi < k: dom(7,(7)) = fu(i)

) Va < rTVi<r: U,
d) Va <rk"VE<a: zg el [1a(i)
e) VB < ktVa < f: xg e, [mali)]
f) Ya < k™1 2o & Uieq, [0a(i)]

Setting X = {z, : a < kT} yields a strong measure zero set (by [b)] [1)] and [e)]). However,
X is not stationary strong measure zero, since for the challenge g : © — 7 + 1 property
ensures

c [7.(7)] is open dense

VoeSdr e X3clclub : = ¢ U[a(z)]

i€cl

Suppose now, inductively, that (24)a<y, (Ta)a<y and (cly)a< have been constructed for
v < k*. We wish to define z.,, 7, and cl,. To this end, reindex (2,)a<y and (7o)a<y as
(Tiv1)icns (Tit1)icn El and inductively construct z., and cl,:

e j=0: Set clf := 0 and z := (1 — 0,(0)(0)).

e j — j+ 1: Since by assumption ¢ — dom(7;4;(¢)) is strictly increasing and
Urse-[Tj+1(0)] is open dense for all £* < r, we can find an ¢ > clJ with 27 < 7;14(0).
Set clt! = dom(7;,1(¢)) and 2T = 741 (0) (1 — o (clZF) (clIT)).

e \isa limit: Set ¢f) :=sup;, cl] and 27 := (U, ., #) " (1 = oa(cl))(cl2)).

Now set a, := |, 2} and cl, := {cl] : j < x}. In the construction we have ensured
Ty & Ujeq,04(7)] and 2, € U, [Tis1(j)] for all i < k. Finally, construct 7, such that

Bl [c]] and [d)] holds. O

8If v < K, use some x and 7 multiple times. For v = 0 pick zo and cly arbitrarily such that zo ¢

Uiedo [UO (Z)] .
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