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Introduction

In the late 19th and early 20th century, increasing interest emerged in combining analyti-
cal, set-theoretic and topological notions and methods to describe properties of subsets of
the real line. Such efforts were fruitful, leading to the advent of modern measure theory
(and later, descriptive set theory) as a mathematical discipline, spearheaded by figures
such as Borel, Lebesgue, Luzin, Radon, Fréchet and others.

In searching for a useful notion related to being a Lebesgue measure zero set, Borel
[Bor19] introduced strong measure zero sets.

Definition. A subset X of the real numbers is strong measure zero iff for any sequence
(εn)n∈ω of positive real numbers there exists a sequence of intervals (In)n∈ω with λ(In) ≤
εn and X ⊆ U

n∈ω In.

Clearly, strong measure zero sets are measure zero and every countable set is strong
measure zero. Moreoever, it is also easy to see that perfect sets cannot be strong measure
zero. It was conjectured by Borel that countability is perhaps the only constraint on
strong measure zero sets, giving rise to the Borel Conjecture (BC):

A set is strong measure zero if and only if it is countable.

In 1928, Sierpiński [Sie28] showed that CH implies the existence of uncountable strong
measure zero sets (specifically, he showed that any Luzin set is strong measure zero). It
was not until after the advent of Cohen’s revolutionary technique of forcing that Laver
[Lav76] established the relative consistency (and thus independence from ZFC) of BC.
As is remarked in [JSW90], Laver’s result will turn out to be significant in two ways;
it firmly cemented the efficacy of methods from abstract set theory, such as forcing, in
discussions of concrete interest to analysis. Secondly, it is the first appearance of forcing
with countable support, which would later lead to Shelah’s notion of properness.

Over the years, investigations into matters related to strong measure zero sets (such as
the interplay between BC and the size of the continuum [JSW90], the dual notion of
strongly meager sets [Gol+13] and others) became testament to the fact that Borel’s
notion was indeed worthy of interest.

For our purposes the most interesting of these is Corazza’s proof of the consistency of
“a set is strong measure zero iff it has size less than continuum” ([Cor89]) in which he
employs an ω2-length iteration of strongly proper forcings (a notion stronger than “proper
+ ωω-bounding” that includes well-known forcings such as Sacks and Silver), together
with a previous result of Miller [Mil83] to construct a model with

“Every set of reals of size continuum can be mapped uniformly continuously
onto [0, 1]”.

We are interested in a version of Borel’s Conjecture on higher cardinals κ. The higher
Cantor space 2κ and the higher Baire space κκ come equipped with the standard <κ-box
topology; see [FKK14] for basic properties of these spaces. Their elements are called
κ-reals, or simply reals. Note that near universally, the assumption κ<κ = κ is made in
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discussions on the higher Baire space, without which the space exhibits some undesirable
topological properties (see [FHK13, ➜II.2.1.]). Especially in recent years, renewed interest
has sparked among set theorists in studying these spaces; a compendium of open questions
can be found in [Kho+16].

The following definition is due to Halko [Hal96]:

Definition. Let X ⊆ 2κ. We call X strong measure zero iff

∀f ∈ κκ ∃(ηi)i<κ :
( ∀i < κ : ηi ∈ 2f(i)

) ∧X ⊆
U
i<κ

[ηi].

This is a straightforward combinatorial reformulation (here [η] is a basic clopen set as
defined in the next section) of Borel’s definition that is agnostic to the existence of a
measure on 2κ. Let SN be the collection of all strong measure zero sets; it is easy to
see that SN is a proper, ≤κ-complete ideal (see also Lemma 6.2) on 2κ containing all
singletons.

The Borel Conjecture on κ (BC(κ)) is the statement “a subset of 2κ is strong measure
zero iff it has cardinality ≤κ”. Strong measure zero sets for κ regular uncountable have
been studied in [HS97], where the authors have proven that BC(κ) is false for successor
κ satisfying κ<κ = κ.

Throughout this paper we shall restrict our attention to κ at least inaccessible, thus in
particular κ<κ = κ. The question of the consistency of BC(κ) on such κ is still open
[Kho+16]. By the results in [Kho+20], every Laver-like tree forcing on κκ necessarily
adds a κ-Cohen real. Any treatment of the consistency of BC(κ) thus cannot be merely
a straightforward adaptation of Laver’s results, since adding κ-Cohen reals makes the
ground model reals strong measure zero.

We shall give two proofs establishing the relative consistency of

ZFC + |2κ| = κ++ + SN = [2κ]≤κ+

,

the first of which is an adaptation of an iteration found in [GJS93] and requires κ to be
strongly unfoldable (a large cardinal property between weakly compact and Ramsey that
is consistent with V = L). The second, somewhat better, proof only requires κ to be
inaccessible and employs the same iteration by establishing minimality of the respective
forcing extension, following the approach of Corazza [Cor89].

The content of this thesis is based on the paper “Strong measure zero sets on 2κ for κ
inaccessible” by Johannes Schürz [Sch19].

I would like to thank my advisor Martin Goldstern and my co-author Johannes Schürz
for their invaluable help in the creation of this thesis.
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Notation and Basic Definitions

Let us make some preliminary remarks.

The higher Cantor space 2κ is equipped with the standard <κ-box topology, whose base
consists of the basic clopen sets

[η] := {b : η ◁ b}
for η ∈ 2<κ; for the higher Baire space κκ the topology is defined analogously. The relation
η ◁ ν denotes the extension relation for sequences, i.e. η = ν ↾ i for some i ≤ dom(ν).
The relation η⊥ν denotes incompatibility, i.e. η ⋪ ν and ν ⋪ η.

A (κ-) tree is a subset of κ<κ closed under initial segments.

Let T ⊆ κ<κ be a tree and η ∈ T . Then we define the following notions:

❼ A b ∈ κκ is a branch of T iff b ↾ i ∈ T for all i < κ. Let [T ] denote the set of all
branches of T .

❼ Denote by succT (η) the set of immediate successors of η in T . Call η a splitting
node of T iff | succT (η)| > 1. Denote the set of all splitting nodes of T as split(T ).
We will only consider trees in which every node has a successor.

❼ T is perfect iff [T ] contains no isolated points or, equivalently, above every η ∈ T
there is a ν such that η ◁ ν and ν ∈ split(T ). Note that for κ ̸= ω this is not
equivalent to [T ] being homeomorphic to 2κ.

❼ The height htT (η) of a node η is the order type of the set {ν ⪇◁ η : ν ∈ split(T )}.
Additionally, for i < κ, define

spliti(T ) := {η ∈ split(T ) : htT (η) = i}.
Perfect trees on regular κ (in particular conditions p ∈ PTf as defined in the next
section) contain nodes of any height less than κ.

❼ As usual, the set of branches of a tree is a closed set and every closed set S can be
represented as the set of branches of the tree T = {b ↾ i : i < κ∧ b ∈ S}. However,
it may be the case that this tree T necessarily contains dying branches, i.e. T might
contain an increasing sequence (ηi)i<λ with λ < κ whose limit

U
i<λ ηi is not an

element of T 1. This phenomenon is unique to the κ-case and has no ω-equivalent.

We say T (or [T ]) is superclosed iff this does not happen, meaning that whenever
λ < κ is a limit ordinal and η ∈ κλ, then η ∈ T ⇔ ∀i < λ : η ↾ i ∈ T .

We shall attempt to, wherever feasible, adhere to certain self-imposed notational conven-
tions. In this vein, the letters i, j, k, ℓ will generally refer to ordinals <κ; δ, λ to limit
ordinals ≤κ and α, β, γ, ζ to ordinals ≤κ++. The letters p, q, s, t denote conditions while
η, ν, ρ are elements of κ<κ. The pair F, i will always fulfil F ∈ [α]<κ, i < κ, where α ≤ κ++

is either explicitly given or clear from context.

1Consider for example the closed set 2κ\[η], where η ∈ 2ω.
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1 Perfect Tree Forcing

We are interested in a particular forcing consisting of <κ-splitting perfect trees whose
splitting is bounded by an f ∈ κκ with f(i) ≥ 2 for all i < κ.

Definition 1.1. Let p ∈ PTf iff

(S1) p ⊆ κ<κ is a nonempty tree

(S2) p is perfect

(S3) ∀η ∈ p ∀i ∈ dom(η) : η(i) < f(i)

(S4) p has full splitting: ∀η ∈ p : | succp(η)| = 1 ∨ succp(η) = {η⌢j : j < f(dom η)}
(S5) p is superclosed

(S6) splitting is continuous: If λ < κ is a limit, then
∀η ∈ κλ ∩ p : {ν ⪇◁ η : ν ∈ split(p)} is unbounded in η ⇒ η ∈ split(p)

The significance of (S4) and (S6) lies in ensuring <κ-closure of the forcing (see Lemma
1.6). The axioms (S4) and (S5) guarantee that for all η ∈ p we have

[η] ∩ [p] ̸= ∅,

i.e. there is a branch of p going through η. Under the other axioms, (S2) + (S6) is
equivalent to the following statement: whenever b ∈ [p] is a branch of p, then

{i < κ : b ↾ i ∈ split(p)}

is a club subset of κ.

For f ≡ 2 we have a κ-version of Sacks forcing, first studied by Kanamori [Kan80].
An overview of variants of familiar forcing notions on higher cardinals can be found in
[FKK14].

The rest of this section is devoted to proving some regularity properties for PTf , gener-
alized straightforwardly from the classical treatment of similar tree forcings on ωω.

Set q ≤PTf
p iff q ⊆ p. For a PTf -generic filter G define the generic real sG to be the

unique real contained in
∩

p∈G[p].

Fact 1.2. For a condition p ∈ PTf the set spliti(p) is a front in p, that is,

∀b ∈ [p] : |b ∩ spliti(p)| = 1.

Call it the i-th splitting front of p.

Lemma 1.3. Let i < κ and p ∈ PTf be a condition. Then | spliti(p)| < κ.

Proof. We proceed by induction on i:

❼ i = 0: Trivial.
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❼ i → i+1: The map η ,→ min{ν◁ η : htp(ν) = i+1} is bijection between spliti+1(p)
and

U
η∈spliti(p) succp(η). By the inductive hypothesis and the fact that p is <κ-

splitting, the latter set has size < κ.

❼ λ is a limit: Since every η ∈ splitλ(p) is the limit of a sequence (ηj)j<λ with
ηj ∈ splitj(p), we have | splitλ(p)| ≤ |Πj<λ splitj(p)| < κ by the inaccessibility of κ.

Definition 1.4. Let (P ,≤P) be a forcing notion and (≤i)i<κ a sequence of reflexive and
transitive binary relations on P such that

∀j < i < κ : (≤i) ⊆ (≤j) ⊆ (≤P).

Then

1. (pj)j<δ is a fusion sequence of length δ ≤ κ iff ∀j < k < δ : pk ≤j pj.

2. P has Property B iff

❼ (P ,≤P) is <κ-closed.

❼ Whenever (pj)j<δ, δ ≤ κ is a fusion sequence in P , then there exists a fusion
limit q with ∀j < δ : q ≤j pj.

❼ If A is a maximal antichain, p ∈ P and i < κ, then there exists a q ≤i p such
that A ↾ q := {r ∈ A : r ∥ q} has size <κ, where ∥ means compatible.

Note that by weakening the third requirement to |A ↾ q| ≤ κ, we get a κ-version of
Baumgartner’s Axiom A. Property B is thus a variant of Axiom A combined with the
notion of being κκ-bounding [BJ95, Def. 7.2.C]; it is well-known from the countable
context that many standard tree forcings, such as Sacks and Silver forcing, have this
property.

Lemma 1.5. Property B implies κκ-bounding.

Proof. Assume p ⊩ ġ ∈ κκ and ġ(i) is decided by an antichain Ai+1. Construct a fusion
sequence (qi)i<κ below p by setting q0 := p and finding a qi+1 ≤i qi with |Ai+1 ↾ qi+1| < κ
in successor steps. In limit steps λ, set qλ to be a fusion limit of (qi)i<λ. The fusion limit
qκ of the whole sequence will force qκ ⊩ ġ ≤ ȟ for some h in the ground model.

Lemma 1.6. PTf is <κ-closed.

Proof. If (pi)i<δ with δ < κ is a decreasing sequence, set q :=
∩

i<δ pi. We check that q
is a condition; only (S2) is nontrivial. Note that by (S4) every node in q has a direct
successor.

Let thus η ∈ q. For some b ∈ [q] with η ◁ b (recall that by (S4) + (S5) such a b exists)
consider the sets

Ci := {j < κ : b ↾ j ∈ split(pi)}.

8



By (S2) and (S6), Ci is a club subset of κ. Thus
∩

i<δ Ci is a club and yields a ν ◁ b with
ν ∈ split(q) and η ◁ ν.

Remark 1.7. Clearly, the intersection
∩

i<δ pi in the previous lemma is simultaneously
also the greatest lower bound of the decreasing sequence (pi)i<δ, δ < κ.

Definition 1.8. For p, q ∈ PTf , define q ≤i p iff q ≤PTf
p and spliti(p) = spliti(q).

Fact 1.9. The following are equivalent:

1. q ≤i p

2. q ≤PTf
p and ∀j ≤ i : splitj(p) = splitj(q)

3. q ≤PTf
p and ∀η ∈ p : ht(η) ≤ i ⇒ succp(η) ⊆ q

4. q ≤PTf
p and spliti+1(p) ⊆ q

It remains to prove that equipped with these relations, PTf has Property B.

Lemma 1.10. For every fusion sequence (pj)j<δ of length δ ≤ κ in PTf there exists a q
with ∀j < δ : q ≤j pj.

Proof. If δ < κ, the intersection q from Lemma 1.6 can be seen to also be a fusion limit.

Otherwise once again set q =
∩

j<κ pj and follow the proof of Lemma 1.6; along a branch
b ∈ [q] again define the sets

Cj := {ℓ < κ : b ↾ ℓ ∈ split(pj)}.
Since (pj)j<κ is a fusion sequence, we observe∩

j<κ

Cj = ∆j<κCj

and thus
∩

j<κCj is also a club by the fact that the club filter is closed under diagonal
intersections.

Before concluding the proof, we first give two definitions which will come in handy later
in the iteration context.

Definition 1.11. For a condition p ∈ PTf and η ∈ p, define p[η] := {ν ∈ p : ν◁η∨η◁ν}.
One can see easily that p[η] is a stronger condition than p and that for any i < κ we have
p =

U
η∈spliti(p) p

[η].

Definition 1.12. Let p ∈ PTf be a condition and i < κ. We say that a condition
s ∈ PTf is (p, i)-determined iff s ≤ p and

|s ∩ spliti(p)| = 1.

Lemma 1.13. The set of (p, i)-determined conditions is dense below p for all i.
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Proof. For any s ≤ p we may extend the stem of s in the following way: take any branch
b ∈ [s] ⊆ [p]; since we then know |b ∩ spliti(p)| = 1, we see that there is a unique ν with
ν ∈ b ∩ s ∩ spliti(p). Then s[ν] is (p, i)-determined.

Theorem 1.14. PTf has Property B.

Proof. It remains to show the antichain condition. To this end, let A be a maximal
antichain, p ∈ PTf and i < κ. Enumerate spliti+1(p) as (ηj)j<δ with δ < κ. We will
decompose p into |δ|-many parts, each of which will be thinned out above the (i+ 1)-th
splitting front.

Proceed by finding for each j < δ a condition qj ≤ p[ηj ] such that |A ↾ qj| = 1. Set

q :=
U
j<δ

qj.

Then q ∈ PTf is a condition with spliti+1(p) ⊆ q and thus q ≤i p. To prove |A ↾ q| < κ,
let r ∈ A be compatible with q. By the previous lemma we may pick an sr that is (p, i)-
determined with sr ≤ r, q and hence sr ∩ spliti+1(p) = {ηjr} for some jr < δ. But since
sr ≤ q, we can conclude sr ≤ qjr and thus r ∥ qjr . We have thus found a function from
A ↾ q to δ, mapping r ,→ jr, which is injective (since |A ↾ qj| = 1 for all j < δ). The
desired conclusion |A ↾ q| < κ follows.
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2 Iteration

The backbone of our forcing construction will consist of an iteration of PTf forcings. Let
therefore ⟨Pα, Q̇β : α ≤ κ++, β < κ++⟩ be a ≤κ-supported forcing iteration with

⊩Pα Q̇α = PTfα

where the sequence (fα)α<κ++ is in the ground model and fα(i) ≥ 2 for all i < κ. Set
P := Pκ++ .

As a matter of notation, let Ġα for α ≤ κ++ denote the canonical Pα-name for a (V,Pα)-
generic filter; we know ⊩P Ġκ++ ↾ α = Ġα. We also write Ġ for Ġκ++ . Finally, let ṡα be
the canonical name for the α-th generic real.

This section is dedicated to verifying some regularity properties of such iterations. We
will observe that

1. P is <κ-closed

2. P does not collapse κ+

3. if V |= |2κ| = κ+, then P has the κ++-c.c.,

thus in aggregate no cardinals are collapsed when forcing with P.

Fact 2.1. P is <κ-closed.

In the countable case, the favoured tool one would look towards in the endeavour of
preserving ω1 is the notion of properness. Finding a satisfactory analogue for higher
cardinals is a long-standing open problem (see e.g. [RS13] and [FHZ13]). A relatively
straightforward generalization that still enjoys many desirable qualities of properness is
the following:

Definition 2.2. A forcing P is called κ-proper iff for every sufficiently large θ (e.g.
θ > |2P |) and every elementary submodel M ≼ H(θ) such that P ∈ M , |M | = κ and
<κM ⊆ M , and every p ∈ P ∩M , there exists q ≤P p such that for every dense D ∈ M ,
D ∩M is predense below q.

Fact 2.3. Forcing notions that are <κ+-closed or have the κ+-c.c. are κ-proper. Fur-
thermore, κ-proper forcing notions do not collapse κ+.

Further details on κ-properness can be found in [FKK14].

Unfortunately, in stark contrast to the classical setting, there is no preservation theorem
for κ-properness in iterations (see [Ros18] for an iteration of κ+-c.c. forcings whose ω-
limit collapses κ+). Our strategy for ensuring κ-properness is to verify an iteration version
of Property B. Similar to fusion with countable support, in such cases the correct tool is
the following notion:

Definition 2.4. For ζ ≤ κ++ let ⟨Pα, Q̇β : α ≤ ζ, β < ζ⟩ be a ≤κ-support iteration with

∀α < ζ : ⊩α “ Q̇α has Property B ”.
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Let F ∈ [ζ]<κ and i < κ. We define q ≤F,i p iff

q ≤Pζ
p and ∀β ∈ F : q ↾ β ⊩β q(β) ≤Q̇β

i p(β).

Then

1. A sequence ⟨pi, Fi : i < δ⟩ of length δ ≤ κ is called a fusion sequence iff

❼ ∀j < k < δ : pk ≤Fj ,j pj

❼ The Fj are increasing and, if δ = κ, then
U

j<δ supp(pj) ⊆
U

j<δ Fj.

2. We say that Pζ has Property B* iff

❼ For every fusion sequence ⟨pi, Fi : i < δ⟩, δ ≤ κ there exists a fusion limit q
with ∀j < δ : q ≤Fj ,j pj.

❼ For every maximal antichain A, every p ∈ Pζ and every F ∈ [ζ]<κ, i < κ there
exists a q ≤F,i p such that |A ↾ q| < κ.

Hence for iterations we consider fusion sequences pointwise, with the added caveat of
being able to delay fusion arbitrarily long in each coordinate. In practice, the auxiliary
sets Fj will almost always be defined by a bookkeeping argument relative to the pj.

Fact 2.5. Property B* implies κ-properness.

In the definition of Property B*, only the antichain condition is nontrivial. In fact, for
such iterations of Property B forcings, fusion limits always exist.

Lemma 2.6. With notation from the previous definition, every fusion sequence ⟨pi, Fi :
i < δ⟩, δ ≤ κ in Pζ has a fusion limit q.

Proof. We construct q inductively such that Pα ∋ q ↾ α is a fusion limit of ⟨pi ↾ α, Fi∩α :
i < δ⟩ for each α ≤ ζ.

Assume q ↾ α has been defined for α < ζ. To define q(α), distinguish three cases:

❼ α ∈ U
j<δ supp(pj) ∧ α ∈ U

j<δ Fj: Find j∗(α) minimal such that α ∈ Fj∗(α). Now
q ↾ α ⊩ “(pj(α))j≥j∗(α) is a fusion sequence”, so let q(α) be a fusion limit of that
sequence.

❼ α ∈ U
j<δ supp(pj) ∧ α /∈ U

j<δ Fj: Note that this case may only occur for δ < κ,

thus we may use <κ-closure of Q̇α to construct q(α) from (pj(α))j<δ.

❼ α /∈ U
j<δ supp(pj): Set q(α) := ✶Q̇α

.

To see that q ↾ λ ∈ Pλ for limit λ, merely note supp(q ↾ λ) ⊆ U
i<δ supp(pi ↾ λ).

Remark 2.7. Note that the forcings Q̇α = PTfα fulfil <κ-closure and the existence
of fusion limits in a particularly strong way: in either case, a canonical weakest lower
bound/fusion limit exists. Thus by following the above proof and choosing these canonical
conditions, we can see that an iteration of PTf forcings also fulfils a stronger fusion
condition: for every fusion sequence there exists a canonical, weakest fusion limit.
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Some work remains to prove the antichain condition for Pζ , which we do in a rather ad
hoc manner by induction on ζ. On the way we will introduce some notation that will
also come in handy later.

First off, let us define the iteration version of Definition 1.12 and the corresponding
density lemma.

Definition 2.8. Let ζ ≤ κ++, p ∈ Pζ , F ∈ [ζ]<κ and i < κ. We say a condition s ∈ Pζ is
(p, F, i)-determined following g ∈ Π

β∈F κ<κ iff s ≤Pζ
p and

∀β ∈ F ∃ηβ ∈ κ<κ :

s ↾ β ⊩ s(β) ∩ spliti(p(β)) =
ˇ{ηβ} ∧ succs(β)(ηβ) = ˇ{g(β)}.

We say a condition s is (p, F, i)-determined iff it is (p, F, i)-determined following some
(unique) g.

The function g prescribes the choices s makes at the i-th splitting front of p; it is com-
pletely determined by s.

Lemma 2.9. The set of (p, F, i)-determined conditions is dense below p ∈ Pζ for all
p, F, i and the set of (p, F, i)-determined conditions following g is open for all p, F, i, g.

Proof. Enumerate F as an increasing sequence (βj)j<δ with δ < κ. For a q ≤ p we will
inductively construct a decreasing sequence (sj)j<δ below q and a ⊆-increasing sequence
(gj)j<δ with gj ∈

Π
β∈F∩βj

κ<κ such that sj is (p, F ∩ βj, i)-determined following gj.

❼ j = 0: Set s0 := q.

❼ j → j + 1: Since sj ↾ βj ⊩ sj(βj) ≤Q̇βj
p(βj), we may use Lemma 1.13 to find

Pβj
-names ṫ, η̇βj

, ν̇βj
with

sj ↾ βj ⊩ ṫ ∈ Qβj
∧ ṫ ≤Q̇βj

sj(βj)

and

sj ↾ βj ⊩ ṫ ∩ spliti(p) = {η̇βj
} ∧ succṫ(η̇βj

) = {ν̇βj
}.

Find a stronger condition r ≤ sj ↾ βj that decides the names η̇βj
, ν̇βj

as ηβj
, νβj

.
Define sj+1 := r⌢t⌢(sj ↾ (βj, ζ)) and gj+1 := gj ∪ {(βj, νβj

)}.
❼ λ < δ is a limit: By <κ-closure we can find a lower bound sλ of the sequence (sℓ)ℓ<λ.
Define gλ :=

U
ℓ<λ gℓ.

If sδ is a lower bound of (sj)j<δ (which again exists by <κ-closure) and gδ =
U

j<δ gj,
then one can easily see that sδ ≤ q is (p, F, i)-determined following gδ.

Lastly, if s is (p, F, i)-determined following g, then clearly any s′ ≤ s is as well.

Fact 2.10. If p′ ≤F,i p and s ≤ p′, then s is (p, F, i)-determined iff it is (p′, F, i)-
determined.
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Suppose now that q ≤PTf
p. The extension of p to q may be undertaken in two steps by

interpolating on the ≤i relation. In the first step, we thin out as much as is necessary
from p, but only in its ‘upper regions’ - say, above the (i+1)-th splitting front - yielding
an interpolating condition p(q) with p(q) ≤i p (above nodes not present in q, p may be left
untouched in the extension to p(q)). In the second step, nodes are removed from p(q), but
only near the base of the tree, such that whenever η ∈ p(q)\q, then there is already some
initial segment ν ◁ η with ν ∈ p(q)\q and htp(q)(ν) ≤ i+ 1. We thus have

q ≤ p(q) ≤i p.

This motivates the next lemma.

Lemma 2.11 (Interpolation). Let p ∈ Pζ and s be (p, F, i)-determined following g ∈Π
β∈F κ<κ for some F ∈ [ζ]<κ, i < κ. Then there exists a condition p(s) ≤F,i p with

❼ s ≤Pζ
p(s) ≤F,i p and

❼ for all (p, F, i)-determined conditions s′ following g, whenever s′ ≤Pζ
p(s), then

already s′ ≤Pζ
s.

Proof. Construct p(s) by induction such that for each α ≤ ζ we have p(s) ↾ α ∈ Pα and
p(s) ↾ α ≤F∩α,i p ↾ α.
Assume p(s) ↾ α has been defined; to define p(s)(α), there are two cases to distinguish:

❼ If α /∈ F , set p(s)(α) :=

(
s(α) if s ↾ α ∈ Ġα

p(α) otherwise.

❼ If α ∈ F , set p(s)(α) :=

(
s(α) ∪ (p(α)\p(α)[g(α)]) if s ↾ α ∈ Ġα

p(α) otherwise.

Note that we have p(s) ↾ α ⊩ g(α) ∈ p(α) and

p(s) ↾ α ⊩ p(s)(α) ≤i p(α).

To see that p(s) ↾ λ ∈ Pλ for λ limit, we note that supp(p(s) ↾ λ) ⊆ supp(p ↾ λ)∪ supp(s ↾
λ). Furthermore, we clearly have s ≤ p(s).

It remains to check the second requirement. Take some (p, F, i)-determined s′ following
g with s′ ≤ p(s). Assume inductively that s′ ↾ α ≤ s ↾ α. The case α /∈ F is trivial, we
may restrict our attention to the case α ∈ F . Then we have s′ ↾ α ⊩ s′(α) ≤Qα p(s)(α) =
s(α)∪ (p(α)\p(α)[g(α)]). But then we already have s′ ↾ α ⊩ s′(α) ≤Qα s(α). In conclusion,
s′ ≤ s, which finishes the proof of the lemma.

Remark 2.12. The above construction yields the following observation: not only is p(s)

an interpolant for p, s, F and i, but we even have that p(s) ↾ α is an interpolant for
p ↾ α, s ↾ α, F ∩ α and i for any α < ζ.

14



In the next lemma, we show that under certain conditions, the forcing Pζ admits least
upper bounds of the form V

s≤q,
s is (q,F,i)−determined following g

s.

Lemma 2.13. Let p ∈ Pζ and s be (p, F, i)-determined following g ∈ Π
β∈F κ<κ. Then

for every q ≤F,i p
(s) there exists an s̃ ≤ q, s that is (q, F, i)-determined following g such

that for every s′ ≤ q, if s′ is (q, F, i)-determined following g, then s′ ≤ s̃. In other words,
s̃ is the weakest (q, F, i)-determined condition following g.

Proof. Construct s̃ by induction such that for all α ≤ ζ we have s̃ ↾ α ∈ Pα, s̃ ↾ α ≤ q ↾ α
and s̃ ↾ α is (q ↾ α, F ∩ α, i)-determined following g ↾ α.
Assume s̃ ↾ α has been defined; define s̃(α) as

s̃(α) :=

(
q(α)[g(α)] if α ∈ F

q(α) otherwise.

If α /∈ F , there is nothing to prove. For α ∈ F , observe that since s̃ ↾ α ≤ q ↾ α is
(q ↾ α, F ∩α, i)-determined following g ↾ α and q ≤F,i p

(s) ≤F,i p, so by the above remark
we can conclude s̃ ↾ α ≤ s ↾ α. But s ↾ α ⊩ g(α) ∈ spliti(p(α)) and q ↾ α ⊩ spliti(p(α)) =
spliti(q(α)), hence s̃(α) is well-defined. The other two properties follow easily.

If λ is a limit, then we have supp(s̃ ↾ λ) ⊆ supp(q) ∪ F , hence s̃ ↾ λ ∈ Pλ is a condition.

Knowing s̃ to be well-defined, one can easily see that for each s′ ≤ q that is (q, F, i)-
determined following g we have s′ ≤ s̃.

Fact 2.14. (Pζ ,≤F,i) is <κ-closed for all ζ, F, i.

Let us now introduce two auxiliary “boundedness” properties a Pζ condition may exhibit.

Definition 2.15. We say a condition p ∈ Pζ is (F, i)-bounded for F ∈ [ζ]<κ, i < κ iff
there exists a µ < κ with

∀β ∈ F : p ↾ β ⊩ spliti(p(β)) ⊆ µ<µ.

Fact 2.16. If p ∈ Pζ is (F, i)-bounded and p′ ≤F,i p, then p′ is as well.

Definition 2.17. Let ζ ≤ κ++, p ∈ Pζ , F ∈ [ζ]<κ and i < κ. Take furthermore a
D ⊆ Pζ that is open dense below p. We say p is (D,F, i)-complete iff there exists a
C ⊆ Π

β∈F κ<κ, |C| < κ and a family (sg)g∈C in D such that

a) sg is (p, F, i)-determined following g for all g ∈ C

b) whenever s ≤ p is (p, F, i)-determined following a function g and s ∈ D, then g ∈ C
and s ≤ sg
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Fact 2.18. If p ∈ Pζ is (D,F, i)-complete as witnessed by (sg)g∈C , then (sg)g∈C is a
maximal antichain below p.

Lemma 2.19. Let p′ ≤F,i p be Pζ-conditions such that p is (D,F, i)-complete and p′ is
(D′, F, i)-complete and let the antichains (sg)g∈C and (s′g)g∈C′ witness this. Then C ′ ⊆ C.
If in addition D′ ⊆ D, then we even have s′g ≤ sg for each g ∈ C ′.

Proof. Assume that g ∈ C ′ and find a t ≤ s′g with t ∈ D. Then t ≤ p is (p, F, i)-
determined following g by Fact 2.10 and thus g ∈ C and t ≤ sg by the second requirement
in the definition of completeness. If D′ ⊆ D, we may take t = s′g and get s′g ≤ sg.

In particular we know that the set C in the definition of completeness is completely
determined by p. Complete conditions are also going to be playing a major role later in
Lemma 5.1.

Our strategy for proving Property B* for all Pζ , ζ ≤ κ++ is by the equivalence of the
following four statements:

a(ζ): Pα has Property B* for each α < ζ.

b(ζ): The set of (F, i)-bounded conditions is ≤F,i-dense in Pα for all α ≤ ζ, F ∈ [α]<κ

and i < κ.

c(ζ): The set of (D,F, i)-complete conditions is ≤F,i-dense in Pζ for all F, i and open
dense D ⊆ Pζ .

d(ζ): Pζ has Property B*.

The implication a(ζ) ⇒ b(ζ) is Lemma 2.21, b(ζ) ⇒ c(ζ) is Lemma 2.22 and c(ζ) ⇒
d(ζ) is Lemma 2.23. Thus a(ζ) ⇒ d(ζ) establishes an induction by which Property B* is
verified for all Pζ .

Corollary 2.20. Pζ has Property B* for all ζ ≤ κ++.

Lemma 2.21. Let ζ ≤ κ++ and assume Pα has Property B* for each α < ζ. Take α ≤ ζ,
p ∈ Pα, F ∈ [α]<κ and i < κ. Then there is a condition q ≤F,i p that is (F, i)-bounded.

Proof. We proceed by induction on α ≤ ζ.

❼ α = 1: Trivial by the inaccessibility of κ.

❼ α → α + 1: Since Pα is <κ-closed, κ remains inaccessible in V Pα . Thus

⊩Pα ∀β ∈ F ∃µβ < κ : spliti(p(β)) ⊆ µ
<µβ

β

and considering supβ∈F µβ we can find a name µ̇ for an ordinal less than κ with

⊩Pα ∀β ∈ F : spliti(p(β)) ⊆ µ̇<µ̇.

Let now A ⊆ Pα be a maximal antichain deciding µ̇; we may find a Pα ∋ q̂ ≤F∩α,i
p ↾ α with |A ↾ q̂| < κ. Thus

q̂ ⊩ µ̇ < µq
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for some µq < κ and therefore

∀β ∈ F : q̂ ↾ β ⊩ spliti(p(β)) ⊆ µ<µq
q .

Setting q := q̂⌢p(α) and noting that since q̂ ≤F∩α,i p ↾ α we have q ↾ β ⊩
split(q(β)) = split(p(β)) for all β ∈ F , so it follows that q is (F, i)-bounded.

❼ λ ≤ ζ is a limit: By <κ-closure of (Pλ,≤F,i) and the inductive assumption, we can
construct a ≤F,i-decreasing sequence (qβ)β∈F in Pλ with the following properties:

– ∀β ∈ F ∀β′ ∈ F ∩ β : qβ ≤F,i q
′
β ≤F,i p

– ∀β ∈ F ∃µβ < κ ∀β′ ∈ F ∩ (β + 1) : qβ ↾ β′ ⊩Pβ′ spliti(qβ(β
′)) ⊆ µ

<µβ

β .

Using <κ-closure of (Pλ,≤F,i), set q to a ≤F,i-lower bound of (qβ)β∈F and µ :=
supβ∈F µβ. Now q ≤F,i p and

∀β ∈ F : q ↾ β ⊩ spliti(q(β)) ⊆ µ<µ.

Lemma 2.22. Let ζ ≤ κ++, F ∈ [ζ]<κ, i < κ and suppose p ∈ Pζ is (F, i)-bounded.
Let furthermore D ⊆ Pζ be open dense below p. Then there is a q ≤F,i p which is
(D,F, i)-complete.

Proof. By assumption p is (F, i)-bounded, hence we can find a µ such that

∀β ∈ F : p ↾ β ⊩ spliti(p(β)) ⊆ µ<µ.

Our strategy is to consider all possible choices a (p, F, i)-determined condition might
make at the i-th splitting front of p and then interpolate on the witnesses of such choices.
Since we have a uniform bound µ on the respective splitting fronts, this will require us to
only iterate through <κ many possibilities. Set µ̃β := supj≤µ fβ(j) and consider the set

C̃ :=
Π
β∈F

µ̃≤µ
β .

Whenever s is (p, F, i)-determined following some g, then g ∈ C̃. Enumerate C̃ as
(gj+1)j<δ with δ < κ. We now construct a ≤F,i-decreasing sequence (tj)j<δ:

❼ j = 0: Set t0 := p.

❼ j → j + 1: If there exists an s ∈ D, s ≤ tj that is (p, F, i)-determined following

gj+1, take an arbitrary such condition and call it s̃gj+1
. Set tj+1 := t

(s̃gj+1 )

j . If there
is no such s, simply set tj+1 := tj. In any case we have tj+1 ≤F,i tj.

❼ λ is a limit: Set tλ to a ≤F,i-lower bound of (tj)j<λ.
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Set q to a ≤F,i-lower bound of (tj)j<δ. We know q ≤F,i p. Now let

C :=
{
g ∈ C̃ : s̃g exists

}
,

i.e. C is the set of all gj+1 for which a witness was found in the inductive step j → j+1.
We have |C| < κ. Finally, for each g = gj+1 ∈ C apply Lemma 2.13 to p = tj, s = s̃gj+1

and q = q to construct the condition sg. We have sg ∈ D since sg ≤ s̃g ∈ D and D is
open.

We verify that q is (D,F, i)-complete, witnessed by (sg)g∈C . The first condition in the
definition of completeness follows by construction. The second follows immediately from
Lemma 2.13 by noting that if s ≤ q is (q, F, i)-determined following g, then g = gj+1 for
some j < δ, and thus a witness was found in the inductive step j → j+1 and g ∈ C.

Lemma 2.23. If the set of (D,F, i)-complete conditions is ≤F,i-dense in Pζ for all F, i
and D ⊆ Pζ open dense, then Pζ has Property B*.

Proof. We have seen in Lemma 2.6 that the fusion condition is always fulfilled. We will
now prove that Pζ fulfils the antichain condition: let A ⊆ Pζ be a maximal antichain,
p ∈ Pζ , F ∈ [ζ]<κ and i < κ. Find a q ≤F,i p that is (D,F, i)-complete, where

D = {s : |A ↾ s| = 1}

and let (sg)g∈C witness this. Since (sg)g∈C is a maximal antichain below q by Fact 2.18,
it is easy to see that

A ↾ q ⊆ {r ∈ A : ∃g ∈ C : A ↾ sg = {r}}

and thus |A ↾ q| ≤ |C| < κ.

From this point onward, assume that

V |= |2κ| = κ+.

From among our stated goals at the beginning of this section, only one remains to be
verified; our interest now turns to the κ++-chain condition:

Theorem 2.24. P has the κ++-c.c.

This will follow easily from Lemma 2.28 once we have proven that each Pα for α < κ++

has a dense subset of size κ+.

For the purposes of the next definition, for each α < κ++ fix a Pα-name ċα for a bijection
cα : (PTfα)

V Pα → (P(κ))V
Pα

such that cα(✶PTfα
) = ∅. In particular, there is a canonical

embedding Hα c→ Hα′ for α < α′ (see below).

Definition 2.25. Let α < κ++.
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❼ A Pα-name τ̇ for a subset of κ is α-good if τ̇ is a nice name of the form

τ̇ = {{j} × Aj : j < κ},
where Aj ⊆ Hα and |Aj| ≤ κ for all j < κ.

❼ A condition p ∈ Pα is in Hα iff p ↾ β ∈ Hβ for each β < α and, if α = β + 1 is a
successor, additionally either

– there is a β-good name τ̇ such that p ↾ β ⊩β ċβ(p(β)) = τ̇

or

– there exists a fusion sequence ⟨(pi, Fi) : i < δ⟩ of length δ ≤ κ consisting of
Hα conditions such that p is its canonical fusion limit (see Remark 2.7).

Remark 2.26. Hα-conditions and α-good names appeared first as Hκ-Pα-names in
[BGS18] and are themselves a straightforward generalization of hereditarily countable
names as introduced in [She98].

Lemma 2.27. For every α < κ++, F ∈ [α]<κ and i < κ, Hα is ≤F,i-dense in Pα and
|Hα| = κ+.

Proof. We prove the statements by induction on α.

❼ α = 1: We have H1 = P1 and |P1| = |PTf0 | = κ+.

❼ α → α+1: Let p ∈ Pα+1, F ∈ [α+1]<κ and i < κ. Using the inductive hypothesis,
we may assume p ↾ α ⊩α ċα(p(α)) = {{j} × Aj : j < κ} with Aj ⊆ Hα ⊆ Pα for all
j < κ. Additionally using Property B*, construct a fusion sequence ⟨qj, Fj : j < κ⟩
with

– q0 ≤F∩α,i p ↾ α,
– ∀δ < κ ∀j < δ : qδ ≤Fj ,i+j qj and F ∩ α ⊆ Fj

2,

– ∀j < κ : qj ∈ Hα and |Aj ↾ qj| < κ.

and let qκ be its fusion limit. By induction on β we have qκ ↾ β ∈ Hβ for all β ≤ α.
By the third property of the fusion sequence,

τ̇ = {{j} × (Aj ↾ qκ) : j < κ}
is an α-good name and qκ ⊩α ċα(p(α)) = τ̇ , thus Hα+1 ∋ (qκ

⌢p(α)) ≤F,i p.

Since |Hα| = κ+ and there are only |κ+ × (κ+)κ| = κ+-many good names for reals,
we get |Hα+1| = κ+ by standard arguments.

❼ γ is a limit: If cf(γ) = κ+, density is trivial and |Hγ| ≤ |Uβ<γ Hβ| ≤ κ+.

Assume cf(γ) = δ ≤ κ and let furthermore p ∈ Pγ , F ∈ [γ]<κ and i < κ be given.
For a cofinal sequence (βj)j<δ once again construct a fusion sequence ⟨qj, Fj : j < δ⟩
with

2Use a bookkeeping argument to construct the Fj .
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– ∀j < δ : qj ∈ Hγ,

– ∀j < δ : qj ↾ βj ≤Fj∩βj ,i+j p ↾ βj and F ∩ βj ⊆ Fj

– ∀j < δ ∀ℓ < j : qj ≤Fℓ,i+ℓ qℓ,

where the Fj are constructed using a bookkeeping argument. Set qδ to be the fusion

limit; then we have Hγ ∋ qδ ≤F,i p. Lastly, |Hγ| ≤
|||Πj<δ Hβj

||| ≤ κ+.

Lemma 2.28. Let ⟨Pα, Q̇β : α ≤ ζ, β < ζ⟩ be an iteration such that

∀α < ζ : Pα has the θ-c.c.,

where θ is a regular uncountable cardinal. If Pζ is a direct limit and, additionally, either
cf(ζ) ̸= θ or the set {α < ζ : Pα is a direct limit} is stationary, then Pζ has the θ-c.c.

Proof. See [Jec03, Theorem 16.30].

Proof of Theorem 2.24. By Lemma 2.27, each Pα has a dense subset of size ≤κ+ and
therefore satisfies the κ++-c.c.; our desired conclusion thus follows easily from Lemma
2.28 and by noting that the set {α < κ++ : cf(α) = κ+} is stationary in κ++.

As we have remarked at the beginning of this section, we get the following corollary:

Corollary 2.29. Forcing with Pα, α ≤ κ++ does not collapse cardinals.

Lemma 2.30. We have

❼ If α < κ++, then V Pα |= |2κ| = κ+.

❼ If cof(α) > κ, then V Pα |= 2κ =
U

β<α(2
κ ∩ V Pβ).

❼ V P |= |2κ| = κ++.

Proof. Suppose α < κ++. Let τ̇ be a Pα-name and p ∈ Pα force τ̇ to be a subset of κ.
Without loss of generality assume τ̇ = {{j} × Aj : j < κ} is a nice name with Aj ⊆ Hα

for all j < κ. Just like in the previous lemma, construct a fusion sequence ⟨qj, Fj : j < κ⟩
below p with |Aj ↾ qj| < κ for all j < κ. The fusion limit qκ forces τ̇ to be equal to an
α-good name, of which there are only κ+-many. If we additionally assume cf(α) > κ,
then qκ forces τ̇ to be equal to a Pγ-name for some γ < α. The first two statements thus
follow by a density argument.

The last point follows immediately from the previous two.

For α < κ++ we can define in V Pα the tail iteration Pα,κ++ as the limit of the ≤κ-support

iteration ⟨P̃γ,
˙̃Qβ : γ ≤ κ++, β < κ++⟩ where ⊩P̃γ

˙̃Qγ = Q̇α+γ. It follows from standard
proper forcing arguments that P ≃ Pα ⋆ P/Ġα

is dense in Pα ⋆ Pα,κ++ .
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3 First Proof

We are now equipped to present the first proof of the relative consistency of

ZFC + |2κ| = κ++ + SN = [2κ]≤κ+

.

Starting with a model of |2κ| = κ+, we consider a ≤κ-supported forcing iteration ⟨Pα, Q̇β :
α ≤ κ++, β < κ++⟩ with

∀α < κ++ : ⊩Pα Q̇α = PTfα ,

where each increasing f ∈ κκ ∩ V appears as an fα cofinally often. Set P := Pκ++ . By
Lemma 2.30 we see V P |= |2κ| = κ++.

By a density argument, the α-th generic real ṡα will encode a covering of the ground
model reals satisfying the ‘challenge’ fα. For this argument it is sufficient that only
fα from some dominating family appear cofinally often; from the perspective of some
intermediate model V Pα , the tail forcing Pα,κ++ fulfils this criterion. Hence the observation
can be extended to the set of reals appearing already in some V Pα ; the following theorem
formalizes this.

Theorem 3.1. V P |= ∀α < κ++ : 2κ ∩ V Pα ∈ SN .

Proof. Take α < κ++ and f ∈ κκ. Since P is κκ-bounding, we find an h ∈ κκ ∩ V with
f ≤ h and β > α with fβ(i) = |2h(i)| for all i < κ. In V we may construct bijections
cγ : |2γ| → 2γ for γ < κ.

Working now in V Pβ , recall that 2<κ ∩ V = 2<κ ∩ V Pβ , thus we can define the function
σ̇(i) = ch(i)(ṡβ(i)). For x ∈ 2κ ∩ V Pα the set

Dx := {p ∈ Qβ : ∃i < κ : p ⊩ σ̇(i) = x ↾ h(i)}

is dense; in fact, it is easy to see that for any p ∈ Qβ and η ∈ split(p), j = dom(η) we have

p[η
⌢c−1

h(j)
(x↾h(j))] ∈ Dx. Hence (σ(i))i<κ provides the required covering for the challenge f

and 2κ ∩ V Pα ∈ SN follows.

If V P |= X ⊆ 2κ, |X| ≤ κ+, then by the κ++-c.c., X already appears at some intermediate
stage V Pα . We thus get one direction of our desired result by the previous theorem.

Theorem 3.2. V P |= [2κ]≤κ+ ⊆ SN .

In order to lift the arguments appearing in [GJS93], we require additional large cardinal
assumptions on κ. A priori it is sufficient for our purposes for κ to merely be weakly com-
pact, since the only occasion at which a property stronger than inaccessibility is utilized
is a crucial invocation of the tree property in Lemma 3.5. However, the aforementioned
lemma is invoked not only in V , but also at intermediate stages V Pα ; it might be the case
that weak compactness of κ is by that point destroyed.

The following large cardinal property was introduced by Villaveces [Vil96, Definition 4]:
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Definition 3.3. Let θ be an ordinal. We say an inaccessible cardinal κ is θ-strongly
unfoldable iff for all transitive models M of ZF− (ZF without the Power Set Axiom) such
that |M | = κ, κ ∈ M and <κM ⊆ M there exists a transitive model N with Vθ∪{θ} ⊆ N
and an elementary j : M → N with critical point κ and j(κ) ≥ θ.

Furthermore, call κ strongly unfoldable iff it is θ-strongly unfoldable for all θ.

Strongly unfoldable cardinals are weakly compact and are downwards absolute to L
[Vil96]. Villaveces also observed that Ramsey cardinals are strongly unfoldable in L
(though they may fail to be such in V ). The consistency strength of a strongly unfold-
able cardinal thus slots between a weakly compact and Ramsey cardinal, with it being
a conservative enough strengthening of weak compactness as to still be consistent with
V = L.

Of interest to us is a preservation theorem by Johnstone [Joh08].

Theorem 3.4 (Johnstone [Joh08]). For any κ strongly unfoldable there is a forcing
extension in which the strong unfoldability of κ is indestructible under <κ-closed, κ-
proper forcing notions.

We stress that the full strength of strong unfoldability is not used in our proof; we merely
require it in order to make the weak compactness of κ indestructible by the forcings Pα.

For a strongly unfoldable κ, after forcing indestructibility using Johnstone’s theorem,
we may collapse a potentially blown up 2κ back to κ+ with a <κ+-closed forcing 3.
Throughout this section we may therefore assume

V |= “|2κ| = κ++ the strong unfoldability of κ is indestructible

under <κ-closed, κ-proper forcing notions”.

We now set out to prove V P |= SN ⊆ [2κ]≤κ+
.

The statement of the next two lemmas takes place in V Pα . Recall that Pα,κ++ denotes
the tail forcing.

Lemma 3.5. Let α < κ++ be an ordinal. Let furthermore τ̇ be a Pα,κ++-name for a real
in 2κ, p ∈ Pα,κ++ a condition, i < κ and F ∈ [κ++]<κ. Assume p ⊩Pα,κ++ τ̇ /∈ V Pα . Then
there exists a δ < κ such that

∀η ∈ 2δ ∃q ≤F,i p : q ⊩Pα,κ++ η ⊈ τ̇ .

We will write δp,F,i for the least such δ.

Proof. Suppose not. Then we can find α, τ̇ , F, i and p with

∀δ < κ ∃ηδ ∈ 2δ : ¬(∃q ≤F,i p : q ⊩ η ⊈ τ̇).

3<κ+-closed forcings and two-step iterations of κ-proper forcings are κ-proper.
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Set T := {ηδ ↾ ℓ : δ < κ ∧ ℓ ≤ δ}. By virtue of the preparation of κ,

V Pα |= κ is weakly compact

and therefore, since T is a <κ-splitting tree of height κ, it has a branch b∗ in V Pα . Since
p ⊩ τ̇ /∈ V Pα , there is a name ℓ̇ for an ordinal less than κ such that p ⊩ τ̇ ↾ ℓ ̸= b∗ ↾ ℓ. As
Pα,κ++ satisfies Property B*, there is a q ≤F,i p and ℓ∗ < κ with q ⊩ ℓ̇ < ℓ∗.

Since b∗ ↾ ℓ∗ ∈ T , there is a δ ≥ ℓ∗ such that b∗ ↾ ℓ∗ = ηδ ↾ ℓ∗. But this means
q ⊩ τ̇ ↾ ℓ∗ ̸= b∗ ↾ ℓ∗ = ηδ ↾ ℓ∗ and therefore q ⊩ ηδ ⊈ τ̇ , a contradiction.

In the following we refer to pointwise (everywhere) domination ≤ and not just the eventu-
ally dominating relation. For a <κ-closed, κκ-bounding forcing, the ground model κ-reals
form a pointwise dominating family.

Definition 3.6. Let D ⊆ κκ be a dominating family. We say that H has index D iff
H = {hf : f ∈ D} and ∀i < κ : hf (i) ∈ 2f(i).

Fact 3.7.

X ∈ SN ⇔ ∀D dominating ∃H with indexD : X ⊆
∩
f∈D

U
α<κ

[hf (α)].

Lemma 3.8. Let D ∈ V be a dominating family, α < κ++ and H ∈ V Pα have index D.
Let furthermore τ̇ be a name for an element of 2κ with ⊩Pα,κ++ τ̇ /∈ V Pα . Then we have

⊩Pα,κ++ τ̇ /∈
∩
f∈D

U
i<κ

[hf (i)].

Proof. We prove the claim with a density argument, let therefore p ∈ Pα,κ++ be arbitrary.
Within V Pα we will construct an increasing sequence (δi)i<κ of ordinals less than κ. On
the tree

T := {g ∈
Π
j≤i

2δj : i < κ}

we shall construct a mapping q : T → Pα,κ++ and a sequence of increasing sets (Fi)i<κ

with Fi ∈ [α, κ++]<κ such that whenever b ∈ Π
j<κ 2

δj is a branch of T in V Pα , then

⟨q(b ↾ i), Fi : i < κ⟩
is a fusion sequence below p. Each condition q(g) will carry some information about an
increasingly long initial segment of τ̇ . More specifically, we want to ensure that for all
i < κ and g ∈ Π

j≤i 2
δj we have

q(g) ⊩ g(i) ⊈ τ̇ .

We define q(g) for g ∈ Π
j≤i 2

δj by induction in i.

❼ i = 0: By Lemma 3.5 we can find a δ0 and q(s0) ≤ p for every η0 ∈ 2δ0 such that
q(η0) ⊩ η0 ⊈ τ̇ . Set F0 = ∅.
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❼ i → i+ 1: Assume q(g) is defined for every g ∈ Π
j≤i 2

δj . Using Lemma 3.5 we can

again define δi+1 := sup{δq(g),Fi,i : g ∈ Π
j≤i 2

δj} and for every g ∈ Π
j≤i 2

δj , ηi+1 ∈
2δi+1 find a condition q(g⌢ηi+1) ≤Fi,i q(g) with

q(g⌢ηi+1) ⊩ ηi+1 ⊈ τ̇ .

Use a bookkeeping argument to define Fi+1.

❼ λ < κ is a limit: By construction, for every h ∈ Π
j<λ 2

δj the sequence (q(h ↾ j))j<λ

is a fusion sequence. Set q(h) to be a fusion limit of said sequence, Fλ :=
U

j<λ Fj

and δλ := sup{δq(h),Fλ,λ : h ∈ Π
j<λ 2

δj}. Once again using Lemma 3.5 we can find

q(h⌢ηλ) ≤Fλ,λ q(h) for every ηλ ∈ 2λ. Note that since q(h⌢ηλ) ≤Fλ,λ q(h) ≤Fj ,j

q(h ↾ j) for every j < λ, we still have

q(h⌢ηλ) ≤Fj ,j q(h ↾ j).

This concludes the construction of q. Let now f ∈ D dominate the function i ,→ δi and
set ηi := hf (i) ↾ δi. Now (q(⟨η0, η1, . . . , ηj⟩))j<κ is a fusion sequence and has a fusion limit
qκ. It follows that

qκ ⊩ ηi ⊈ τ̇

for each i < κ and therefore qκ ⊩ τ̇ /∈ ∩
f∈D

U
i<κ[hf (i)]. Thus the set of conditions that

force τ̇ /∈ ∩
f∈D

U
i<κ[hf (i)] is dense in Pα,κ++ .

We see that every intermediate model V Pα believes that a set X which contains a real
appearing in a later model will never be strong measure zero with respect to any test
conducted in V Pα . This essentially gives us our theorem.

Theorem 3.9. V P |= SN = [2κ]≤κ+
.

Proof. The ⊇-direction is Theorem 3.2. For the other direction, let X ∈ V P be of size
κ++ and D be a dominating family in V P which lies in V . We will show that there is no
H ∈ V P with index D such that

X ⊆
∩
f∈D

U
i<κ

[hf (i)],

hence X is not strong measure zero by Fact 3.7. Towards a contradiction, note that since
D appears in V , such an H can have cardinality at most κ+. Since P fulfils the κ++-c.c.,
we know H must already appear in some V Pα . But |X| = κ++, thus there must be an
x ∈ X with x /∈ V Pα . Let ẋ be a Pα,κ++-name such that

⊩Pα,κ++ ẋ ∈ Ẋ ∧ ẋ /∈ V Pα ;

then by Lemma 3.8 we have

⊩Pα,κ++ ẋ /∈
∩
f∈D

U
i<κ

[hf (i)],

and X is not strong measure zero, a contradiction.
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4 Coding of Continuous Functions

For the reader’s convenience we collect some selected facts about the coding of continuous
functions that are going to find use in the next section.

Throughout this section, every tree T is assumed to be a tree on 2<κ.

Definition 4.1. Let T be a tree and (Tη)η∈2<κ a family of trees. Then ⟨T, (Tη)η∈2<κ⟩ is
a code for a continuous function iff

1. if η1 ⊥ η2, then [Tη1 ] ∩ [Tη2 ] = ∅,
2. if η1 ◁ η2, then [Tη2 ] ⊆ [Tη1 ]

3.
U

η∈2i [Tη] = [T ] for each i < κ.

Theorem 4.2. If P is a <κ-closed forcing notion, then Π1
1-absoluteness holds between

V and V P , i.e. (V V
κ+1, V

V
κ ,∈) ≺Π1 (V

(V P )
κ+1 , V

(V P )
κ ,∈) 4.

Proof. See [FKK14].

Lemma 4.3. Let ⟨T, (Tη)η∈2<κ⟩ be a code. Then there exists a unique continuous function
g⟨T,(Tη)η∈2<κ ⟩ : [T ] → 2κ such that

g−1
⟨T,(Tη)η∈2<κ ⟩([η]) = [Tη]

for all η ∈ 2<κ.

Proof. If we set g(y) :=
U{η ∈ 2<κ : y ∈ [Tη]}, then it is easy to see that g : [T ] → 2κ

is a well-defined continuous function and g−1([η]) = [Tη] for all η ∈ 2<κ. Since ([η])η∈2<κ

forms a clopen basis of 2κ, uniqueness is given.

On the other hand, if g : Y → 2κ is a continuous function where Y ⊆ 2κ is closed, then
⟨T, (Tη)η∈2<κ⟩ is a code for g, where Tη are trees with [Tη] = g−1([η]) and [T ] = Y .

Definition 4.4. For codes c, c′ define c ≼ c′ :⇔ gc ⊆ gc′ .

Clearly ≼ is reflexive and transitive.

Definition 4.5. A function g : Y → Z with Y, Z ⊆ 2κ is uniformly continuous iff

∀i < κ ∃j(i) < κ ∀x ∈ Y : g′′([x ↾ j(i)] ∩ Y ) ⊆ [g(x) ↾ i] ∩ Z.

The map i ,→ j(i) is the modulus of continuity of g.

Fact 4.6. The following statements are Π1
1 and therefore absolute for <κ-closed forcing

extensions:

❼ c is a code for a continuous function

4Note that V V
κ = V

(V P)
κ .
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❼ “[T ] = [T ′]” for trees T, T ′

❼ “c ≼ c′” for codes c, c′

❼ “ran(gc) ⊆ [T ]” for a code c and a tree T

❼ gc is uniformly continuous with modulus of continuity i ,→ j(i)

It is easy to prove that if c ∈ V is a code and P a <κ-closed forcing notion, then (gc)
V P

extends (gc)
V .

Let now Y ⊆ 2κ be closed and g : Y → 2κ be continuous. The above thus yields a
method to continuously and uniquely extend g to g̃ : Y (V P ) → (2κ)(V

P ). To do so, take
an arbitrary tree T such that [T ] = Y , then choose a code c for g as a function from [T ]
to 2κ and evaluate c in V P . By Fact 4.6 the function g̃ = (gc)

V P
is an extension of g.

Furthermore, g̃ is independent of the chosen code c, since the statement c ≼ c′ is Π1
1 and

thus absolute. Lastly, we note that g̃ is the unique extension of g, since [T ]V is dense in
[T ]V

P
.

By <κ-closure, 2<κ ∩ V = 2<κ ∩ V P and thus total functions g extend to total functions
g̃.

In the future we will not be making a notational distinction between g and g̃.
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5 Second Proof

In this section we will construct a model in which every X ⊆ 2κ of size |2κ| can be uni-
formly continuously mapped onto 2κ. The construction closely follows Corazza’s approach
[Cor89].

We will consider the same forcing iteration ⟨Pα, Q̇β : α ≤ κ++, β < κ++⟩ with ≤κ-support
as in the previous section. Additionally, we also choose Q̇α to be κ-Sacks forcing (i.e.
fα ≡ 2) for α = 0 and for α with cofinality κ+. We still assume V |= |2κ| = κ+, but κ is
only required to be inaccessible this time.

Since the forcing iteration is identical to the one in the previous section, Theorem 3.2
holds and thus

V P |= [2κ]≤κ+ ⊆ SN .

The other direction of the proof hinges on a technical lemma.

Lemma 5.1. Let p ∈ P, F ∈ [κ++]<κ, i < κ, Y ∈ [2κ]<κ and a P-name τ̇ be given such
that p forces τ̇ ∈ 2κ and τ̇ /∈ V . Then we may find an X ∈ [2κ]<κ and a sequence (qj)j<κ

of conditions below p such that

❼ ∀j1 < j2 < κ : qj2 ≤F,i qj1 ≤F,i p,

❼ ∀j < κ : qj ⊩ ∃x ∈ X̌ : τ̇ ↾ j = x ↾ j and

❼ X ∩ Y = ∅.

Proof. If necessary, we may strengthen p twice in the following manner:

❼ Firstly, since |Y | < κ and p ⊩ τ̇ /∈ Y̌ , we may find a name ℓ̇ for an ordinal less than
κ such that

p ⊩ ∀y ∈ Y̌ : τ̇ ↾ ℓ̇ ̸= y ↾ ℓ̇.
Property B* enables us to find a p′ ≤F,i p and ℓ∗ < κ with

∀y ∈ Y : p′ ⊩ τ̇ ↾ ℓ∗ ̸= y ↾ ℓ∗

by restricting a maximal antichain deciding ℓ̇.

❼ Secondly, we can find a p′′ ≤F,i p
′ that is (F, i)-bounded (see Definition 2.15).

So without loss of generality assume that p already has both these properties. We con-
struct the sequence (qj)j<κ inductively:

❼ j = 0: Set q0 := p.

❼ j → j + 1: Since
Dj+1 := {r ≤ qj : r decides τ̇ ↾ (j + 1)}

is open dense below qj, we may apply Lemma 2.22 to qj, F, i and Dj+1
5 to get qj+1

and (sj+1
g )g∈Cj+1

, where qj+1 is (Dj+1, F, i)-complete as witnessed by (sj+1
g )g∈Cj+1

.
Note that we have qj+1 ≤F,i qj ≤F,i p.

5qj is (F, i)-bounded by Fact 2.16.
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❼ λ is a limit: Find a ≤F,i-lower bound q̃λ of (qℓ)ℓ<λ. Just as in the successor step,
apply Lemma 2.22 to q̃λ, F, i and

Dλ := {r ≤ q̃λ : r decides τ̇ ↾ λ}

to get qλ and (sλg )g∈Cλ
.

By Lemma 2.19 we know that (Cj)j<κ is a decreasing sequence of non-empty sets smaller
than κ; as such, the sequence is eventually constant. Write j∗ for the index at which this
happens.

Now define
X := {x ∈ 2κ : ∃g ∈ Cj∗ ∀j < κ : sjg ⊩ τ̇ ↾ j = x ↾ j}

For g ∈ Cj∗ the sequence (sjg)j<κ is decreasing by Lemma 2.19. Hence each g ∈ Cj∗

successfully interprets τ̇ as some (unique) x ∈ X, i.e.

∀g ∈ Cj∗ ∃x ∈ X ∀j < κ : sjg ⊩ τ̇ ↾ j = x ↾ j.

Since ∀y ∈ Y : p ⊩ τ̇ ↾ ℓ∗ ̸= y ↾ ℓ∗, we know that X ∩ Y = ∅.
Suppose now that j ≥ j∗ and s ≤ qj. Then s is compatible with sjg for some g ∈ Cj = Cj∗

and we can find a t ≤ s, sjg. But then ∃x ∈ X : t ⊩ τ̇ ↾ j = x ↾ j, so we can conclude

qj ⊩ ∃x ∈ X̌ : τ̇ ↾ j = x ↾ j.

Since |Y | < κ, we can easily modify X such that it remains disjoint from Y and

qj ⊩ ∃x ∈ X̌ : τ̇ ↾ j = x ↾ j

holds for j < j∗ as well.

We are now preparing to show that every new real τ̇G ∈ V P can be mapped onto the first
Sacks real ṡ0 via a continuous ground model function. In what follows we shall slightly
abuse notation; for p ∈ P and a node η ∈ p(0) denote by p[η] the condition that satisfies
p[η](0) = p(0)[η] and p[η](β) = p(β) for β > 0.

Lemma 5.2. Let p ∈ P, F ∈ [κ++]<κ and i, ℓ < κ. Let furthermore a P-name τ̇ be given
such that p forces τ̇ ∈ 2κ and τ̇ /∈ V . Then we can find a q ≤F,i p, an ℓ∗ > ℓ and a family
(Aη)η∈spliti(p(0)) of non-empty, clopen sets with

❼ Aη =
U

ν∈Sη
[ν] for some Sη ⊆ 2ℓ

∗

❼ if η1 ⊥ η2, then Aη1 ∩ Aη2 = ∅ and

❼ q[η] ⊩ τ̇ ∈ Aη.
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Proof. Enumerate spliti(p(0)) as (ηk)k<δ with δ < κ. We inductively construct sequences
((tkj )j<κ)k<δ and a sequence of sets (Xk)k<δ: assuming that Xm has been constructed for

m < k, apply Lemma 5.1 to p[ηk] and Y :=
U

m<k Xm to get a sequence of conditions
(tkj )j<κ and a set Xk. Let ℓ∗ > ℓ be an ordinal large enough such that whenever j1 ̸= j2
for j1, j2 < δ and x1 ∈ Xj1 , x2 ∈ Xj2 then x1 ↾ ℓ∗ ̸= x2 ↾ ℓ∗. This is possible, since the
(Xk)k<δ are disjoint and of size less than κ. This allows us to define

Aηk :=
U

x∈Xk

[x ↾ ℓ∗].

Now we glue the conditions tkℓ∗ together in the following way: Set

q(0) :=
U
k<δ

tkℓ∗(0)

and for β > 0

q(β) :=

(
tkℓ∗(β) if tkℓ∗ ↾ β ∈ Ġβ

1Q̇β
otherwise.

It remains to remark that by induction on β, we can see that (tkℓ∗ ↾ β)k<δ is a maximal
antichain below q ↾ β. Therefore, since spliti(p(0)) = {ηk : k < δ} and by Lemma 5.1 we
have tkℓ∗ ≤F,i p

[ηk] for each k < δ, we can conclude q ↾ β ≤F∩β,i p ↾ β for all β ≤ κ++.

To see the last claim, only note that q[η] = tkℓ∗ for some k < δ, therefore by Lemma 5.1
we have tkℓ∗ ⊩ ∃x ∈ Xk : τ̇ ↾ ℓ∗ = x ↾ ℓ∗ and thus

q[η] ⊩ τ̇ ∈ Aη

by definition of Aη.

Remark 5.3. Without loss of generality, we may choose the Aη in the previous lemma
to be minimal in the following sense: for each ν ∈ 2ℓ

∗
we have ν ∈ Sη iff there exists a

condition t ≤ q[η] such that t ⊩ τ̇ ∈ [ν].

Lemma 5.4. Let p ∈ P and a P-name τ̇ be given such that p forces τ̇ ∈ 2κ and p ⊩ τ̇ /∈ V .
Then there exists a q ≤ p, a sequence (ℓ∗(i))i<κ and a family (Aη)η∈split(q(0)) such that
Aη ⊆ 2κ are non-empty, clopen and:

❼ if η ∈ spliti(q(0)), then Aη =
U

ν∈Sη
[ν] for some Sη ⊆ 2ℓ

∗(i)

❼ if η1 ⊥ η2, then Aη1 ∩ Aη2 = ∅,
❼ if η1 ◁ η2, then Aη2 ⊆ Aη1 and

❼ q[η] ⊩ τ̇ ∈ Aη.

Proof. We shall construct a fusion sequence ⟨qi, Fi : i < κ⟩ and a strictly increasing
sequence (ℓ∗(i))i<κ of ordinals less than κ such that qi+1 has the required properties for
(Aη)η∈spliti(qi(0)).
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❼ i = 0: Set q0 := p and F0 := {0}.
❼ i → i + 1: Applying Lemma 5.2 to qi, Fi, i and supj<i ℓ

∗(j) yields a q̃ ≤Fi,i qi,
an ordinal ℓ∗(i) and a family (Ai

η)η∈spliti(qi(0)). Set qi+1 := q̃. Define Fi+1 with a
bookkeeping argument.

❼ λ is a limit: Set qλ to a fusion limit of ⟨qj, Fj : j < λ⟩ and Fλ :=
U

j<λ Fj.

Let now qκ be a fusion limit of the sequence ⟨qi, Fi : i < κ⟩ and

Aη := Ai(η)
η ,

where i(η) is the unique i with η ∈ spliti(qκ(0)) = spliti(qi(0)). We claim qκ has the
properties we are looking for:

❼ The first property holds by Lemma 5.2.

❼ If we assume the A
i(η)
η have been chosen minimal in each step as in Remark 5.3,

then the second property holds. To see this, take ν ◁ η and η′ ∈ Sη, where Sη is

as stated in Lemma 5.2. By Remark 5.3 there is a condition t ≤ q
[η]
i(η)+1 such that

t ⊩ τ̇ ∈ [η′]. But then t ≤ q
[η]
i(η)+1 ≤ q

[ν]
i(ν)+1, and thus η′ ↾ ℓ∗(i(ν)) ∈ Sν . Hence

Aη ⊆ Aν .

❼ To see the third property, let η ∈ split(qκ(0)). Then we have q
[η]
κ ≤ q

[η]
i(η) and

therefore
q[η]κ ⊩ τ̇ ∈ Aη,

as desired.

The following lemma substitutes in for Tietze’s Extension Theorem from the countable
case in [Cor89]. Recall the notion of superclosure (page 6) and uniform continuity (Defi-
nition 4.5).

Lemma 5.5. Let Y, Z ⊆ 2κ, where Y is closed and Z is superclosed, and let g : Y → Z
be uniformly continuous. Then g can be extended to a uniformly continuous function
g̃ : 2κ → Z with the same modulus of continuity as g.

Proof. The open set 2κ\Y can be be written as a union of basic open sets
U

i<λ[νi] with
λ ≤ κ, νi ∈ 2δi such that the νi are minimal, i.e.

∀j < δi : [νi ↾ j] ∩ Y ̸= ∅.

In particular the sets [νi] are pairwise disjoint. We will define g̃ to be constant on each
[νi].

For i < λ define

S(i) := {η ∈ 2<κ : ∃j < δi : g
′′([νi ↾ j] ∩ Y ) ⊆ [η] ∩ Z}].
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Clearly S(i) consists of pairwise ◁-compatible elements; furthermore, for each η ∈ S(i)
we have [η] ∩ Z ̸= ∅. Since Z is superclosed 6, we have Z ∩ [

U
S(i)] ̸= ∅. We may thus

set g̃ ↾ [νi] to be constant with an arbitrary, fixed value from Z ∩ [
U
S(i)].

It remains to check that g̃ : 2κ → Z is uniformly continuous with the same modulus of
continuity as g. To this end, let i < κ and x ∈ 2κ. Consider y ∈ [x ↾ j(i)].

❼ If x ∈ Y , the interesting case is y /∈ Y , hence y ∈ [νℓ] for some ℓ. But then j(i) < δℓ
and

g′′([x ↾ j(i)] ∩ Y ) ⊆ [g(x) ↾ i] ∩ Z,

hence by definition g(x) ↾ i ∈ S(ℓ) and thus g̃(y) ∈ [
U
S(ℓ)] ∩ Z ⊆ [g̃(x) ↾ i] ∩ Z.

❼ On the other hand, if x /∈ Y , then x is in [νℓ] for some ℓ. Now either [x ↾ j(i)]∩Y = ∅,
in which case g̃ is constant on [x ↾ j(i)] and therefore g̃(y) = g̃(x) ∈ [g̃(x) ↾ i] ∩ Z,
or [x ↾ j(i)] ∩ Y ̸= ∅, j(i) < δℓ and S(ℓ) contains a sequence η of length i (namely
g(x′) ↾ i for some x′ ∈ [x ↾ j(i)] ∩ Y ) and thus g̃(y) ∈ [η] ∩ Z = [g̃(x) ↾ i] ∩ Z.

A natural question the inquisitive reader might pose is the validity of Lemma 5.5 in
case of the additional “artificial” assumption of superclosure being dropped. Indeed, the
statement no longer holds; in [LS15] the authors observe, for instance, that the closed
subset Y of 2κ consisting of all sequences with finitely many zeroes is not a retract of 2κ

(and thus the identity Y → Y cannot be extended to a continuous function on 2κ).

Theorem 5.6. Let p ∈ P force τ̇ ∈ 2κ and τ̇ /∈ V . Then there exists a q ≤ p and a
uniformly continuous function f ∗ : 2κ → [q(0)] in V such that

q ⊩ f ∗(τ̇) = ṡ0,

where ṡ0 denotes the first Sacks real.

Proof. Lemma 5.4 yields a condition q ≤ p, a sequence (ℓ∗(i))i<κ and a family (Aη)η∈split(q(0))
of clopen sets. This family codes 7 a continuous function

f : Y → [q(0)]

y ,→
U

{η : y ∈ Aη}

defined on the closed set Y =
∩

i<κ

U
η∈spliti(q(0)) Aη.

6If |S(i)| = κ, then [
U
S(i)] is not defined, so work with {US(i)} instead.

7To avoid abuse of notation, we could also define

A′
η :=

(
Aν , where ν = min{ρ ∈ split(q(0)) : η ◁ ρ} for η ∈ q(0)

∅ for η /∈ q(0)

and use the code ⟨T, (Tη)η∈2<κ⟩, where [T ] = Y and [Tη] = A′
η ∩ Y .
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We claim that f is in fact uniformly continuous. To see this, let i < κ and y ∈ Y . Choose
η such that y ∈ Aη and η ∈ spliti(q(0)). Recall that Aη is of the form (see Lemma 5.4)

Aη =
U
ν∈Sη

[ν].

with Sη ⊆ 2ℓ
∗(i). Therefore we have

f ′′([y ↾ ℓ∗(i)]) ⊆ [η] ⊆ f(y) ↾ i

for all y ∈ Y , since i ⊆ dom(η).

Since the set [q(0)] is superclosed, we can apply Lemma 5.5 and extend f to a uniformly
continuous function f ∗ : 2κ → [q(0)]. Lastly, we have

q[η] ⊩ τ̇ ∈ Aη ⊆ (f ∗)−1([η])

for each η ∈ split(q(0)) and thus

q ⊩ f ∗(τ̇) = ṡ0.

As in the classical case, every κ-Sacks condition can be decomposed into 2κ-many κ-Sacks
conditions in a continuous way. The last auxiliary result we require formalizes this:

Lemma 5.7. Let p ∈ P be a condition and recall that p(0) ⊆ 2<κ. Then there exists a
uniformly continuous g∗ : [p(0)] → 2κ and for each x ∈ 2κ ∩ V a condition qx ≤ p such
that

qx ⊩ x = g∗(ṡ0).

Proof. First we construct a function e = (e1, e2) : p(0) → 2<κ × 2<κ with the following
properties:

❼ e is continuous and monotone increasing

❼ e(∅) = (∅, ∅)
❼ if η /∈ split(p(0)), then e(η⌢i) = e(η)

❼ if η ∈ splitj(p(0)) and

– j is a successor, then e(η⌢i) = (e1(η)
⌢i, e2(η))

– j is a limit, then e(η⌢i) = (e1(η), e2(η)
⌢i).

Define ĝ : [p(0)] → 2κ×2κ as ĝ(b) =
U

i<κ e(b ↾ i). Since [p(0)] is perfect, ĝ is well-defined.
Moreover, ĝ maps the clopen basis sets ([η])η∈split(p(0)) to a clopen basis of 2κ × 2κ, hence
it is a homeomorphism.

For x ∈ 2κ now set qx(0) := {η ∈ 2<κ : ∃y ∈ ĝ−1({x}× 2κ) : η◁ y} and qx(β) = p(β) for
β > 0. We claim that qx is a condition; it is sufficient to check that qx(0) is. We check
(S2), (S5) and (S6); the rest is left as an exercise for the reader.
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❼ (S2): Since ĝ is a homeomorphism, it follows that ĝ−1 ({x} × 2κ) is a perfect set.

❼ (S5): Let (ηj)j<δ with ηj ∈ qx(0) be a strictly increasing sequence of length δ < κ.
Set η :=

U
j<δ ηj. It easily follows that ν ∈ qx(0) ⇔ x ∈ [e1(ν)]. As e(η) =U

j<δ e(ηj) we see that x ∈ [e1(η)], hence η ∈ qx(0).

❼ (S6): Let (ηj)j<δ be a strictly increasing sequence of length <κ such that ηj ∈
split(qx(0)). Again, set η :=

U
j<δ ηj. It follows that η ∈ splitλ(p(0)) for some limit

λ. But as x ∈ [e1(η)] and e1(η) = e1(η
⌢i), we have η⌢i ∈ qx(0) for i = 0, 1, hence

η ∈ split(qx(0)).

Clearly qx ≤ p. Now set g∗ = π1 ◦ ĝ, where π1 is the projection onto the first coordinate.
Then g∗ is uniformly continuous with modulus of continuity

i ,→ j(i) := sup{dom(ν) : ν ∈ split|i|+(p(0))}.
Finally, we have qx ⊩ x = g∗(ṡ0) by the definition of qx(0) and the absoluteness (see Fact
4.6) of the statement

ran(g∗ ↾ [qx(0)]) ⊆ {x}.

Theorem 5.8. In V P, every subset X of 2κ of size κ++ can be uniformly continuously
mapped onto 2κ.

Proof. Assume that Ẋ is a P-name for a subset of 2κ such that

⊩P ∀h uniformly continuous function ∃y ∈ 2κ : y /∈ h′′X.

We will show ∃α∗ < κ++ : ⊩P Ẋ ⊆ V Pα∗ , thus ⊩P |Ẋ| ≤ κ+.

By our assumption on Ẋ and P satisfying the κ++-c.c. we get

∀α < κ++ ∀ḣ Pα-name for a uniformly continuous function

∃β < κ++, β ≥ α ∃y Pβ-name for a real : ⊩P ẏ /∈ ḣ′′Ẋ.

To increase legibility, let the ellipsis (. . . ) denote the four quantifications in the above
statement. By interpreting the name Ẋ partially in the intermediate model V Pβ , i.e. by
identifying Ẋ with a canonical Pβ-name for a Pβ,κ++-name, we get

(. . . ) : ⊩Pβ
⊩Pβ,κ++ ẏ /∈ ḣ′′Ẋ.

Keep in mind that ẏ, ḣ are both Pβ-names, since β ≥ α.

Without loss of generality assume that the function α ,→ β(α) maps to the minimal β
for which the statement holds. Observe that, crucially, since every continuous function
h : 2κ → 2κ can be coded by an element of 2κ (see Section 4), no new functions of the
kind appear at stages of cofinality >κ (Lemma 2.30); therefore we can easily find a fixed
point of the function α ,→ β(α) with cofinality κ+. Call it α∗. For α∗ we thus know that

V Pα∗ |= ∀h uniformly continuous ∃y ∈ 2κ : ⊩Pα∗,κ++ y /∈ h′′Ẋ.
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For the remainder of this proof we will be working within V Pα∗ . We wish to show
V Pα∗ |= ⊩Pα∗,κ++ Ẋ ⊆ V Pα∗ .

Let thus p ∈ Pα∗,κ++ and τ̇ be a Pα∗,κ++-name such that p forces τ̇ ∈ 2κ and τ̇ /∈ V Pα∗ .
Theorem 5.6 applied within V Pα∗ (recall that the tail iteration Pα∗,κ++ has the same
structure as the full iteration) yields a q ≤ p and a uniformly continuous function f ∗ :
2κ → [q(0)]. Likewise, Lemma 5.7 applied to q gives us a uniformly continuous function
g∗ : [q(0)] → 2κ and conditions (qx)x∈2κ∩V Pα∗ .

Now let x ∈ 2κ ∩ V Pα∗ be arbitrary. By construction we have qx ⊩ x = (g∗ ◦ f ∗)(τ̇). For
the uniformly continuous function (g∗ ◦ f ∗) : 2κ → 2κ we can by our assumption on α∗

find a y ∈ 2κ ∩ V Pα∗ with V Pα∗ |= ⊩Pα∗,κ++ y /∈ (g∗ ◦ f ∗)′′Ẋ. The condition qy thus forces

τ̇ /∈ Ẋ. Since τ̇ and p were arbitrary, we may conclude

V Pα∗ |= ⊩Pα∗,κ++ Ẋ ⊆ V Pα∗ .

Thus we have shown ⊩Pα∗⊩Pα∗,κ++ Ẋ ⊆ V Pα∗ , which finishes the proof.

It is easy to see that the uniformly continuous image of a strong measure zero set remains
strong measure zero; thus we have shown

V P |= SN ⊆ [2κ]≤κ+

.

Corollary 5.9. V P |= SN = [2κ]≤κ+
.
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6 Stationary Strong Measure Zero

Finally, let us take a look at the following definition, introduced by Halko [Hal96]:

Definition 6.1. A set X ⊆ 2κ is called stationary strong measure zero iff

∀f ∈ κκ ∃(ηi)i<κ : (∀i < κ : ηi ∈ 2f(i)) ∧X ⊆
∩

cl⊆κ club

U
i∈cl

[ηi].

So a set X is stationary strong measure zero iff we can find coverings that cover every
point ofX stationarily often. To motivate why this definition might be of interest, observe
that even for regular strong measure zero sets, we can always find coverings that cover
each point at least unboundedly often:

Lemma 6.2. Let X ⊆ 2κ be strong measure zero. Then

∀f ∈ κκ : ∃(ηi)i<κ : (∀i < κ : ηi ∈ 2f(i)) ∧X ⊆
∩
j<κ

U
i≥j

[ηi].

Proof. Partition κ into sets (Ui)i<κ, where each Ui has size κ. For a challenge f ∈ κκ and
every i < κ we can find coverings (ηij)j∈Ui

that satisfy the challenge (f(j))j∈Ui
. But now

(ηij)j∈Ui,i<κ has the property we are looking for.

In the Corazza-type model from Section 5, the notions of strong measure zero and sta-
tionary strong measure zero coincide.

Theorem 6.3. V P |= ∀X ⊆ 2κ : X ∈ SN ⇔ X is stationary strong measure zero.

Proof. Modify the argument in Theorem 3.1 to show

V P |= ∀α < κ++ : 2κ ∩ V Pα is stationary strong measure zero

by instead showing the set

Dx,cl := {p ∈ Qβ : ∃i ∈ cl : p ⊩ σ̇(i) = x ↾ h(i)}

to be dense for every x ∈ V Pα and every ground model club cl ⊆ κ, where σ̇ is as defined
in Theorem 3.1. As P is κκ-bounding, every club cl ∈ V P contains a ground model club
cl′, thus this is sufficient. To see that Dx,cl is dense, merely note that for any p ∈ P and
b ∈ [p] ∩ V Pβ , the set

{j < κ : b ↾ j ∈ split(p)}
is a club and thus intersects cl.

On the other hand, it follows from |2κ| = κ+ that there is a strong measure zero set which
is not stationary strong measure zero.

Theorem 6.4. Under |2κ| = κ+ there exists an X ∈ SN that is not stationary strong
measure zero.
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Proof. First off, let us enumerate all strictly increasing functions in κκ as (fα)α<κ+ and
likewise enumerate the set

S := {σ ∈ (2<κ)κ : ∀i < κ : dom(σ(i)) = i+ 1}

as (σα)α<κ+ .

We shall inductively construct three sequences (xα)α<κ+ , (τα)α<κ+ and (clα)α<κ+ with the
following properties:

a) ∀α < κ+ : xα ∈ 2κ, τα ∈ (2<κ)κ and clα is a club subset of κ

b) ∀α < κ+ ∀i < κ : dom(τα(i)) = fα(i)

c) ∀α < κ+ ∀i < κ :
U

j≥i[τα(j)] is open dense

d) ∀α < κ+ ∀β ≤ α : xβ ∈ U
i<κ[τα(i)]

e) ∀β < κ+ ∀α < β : xβ ∈ U
i<κ[τα(i)]

f) ∀α < κ+ : xα /∈ U
i∈clα [σα(i)]

Setting X = {xα : α < κ+} yields a strong measure zero set (by b), d) and e)). However,
X is not stationary strong measure zero, since for the challenge g : i ,→ i+ 1 property f)
ensures

∀σ ∈ S ∃x ∈ X ∃cl club : x /∈
U
i∈cl

[σ(i)].

Suppose now, inductively, that (xα)α<γ, (τα)α<γ and (clα)α<γ have been constructed for
γ < κ+. We wish to define xγ, τγ and clγ. To this end, reindex (xα)α<γ and (τα)α<γ as
(x̃i+1)i<κ, (τ̃i+1)i<κ

8 and inductively construct xγ and clγ:

❼ j = 0: Set cl0γ := 0 and x0
γ := ⟨1− σγ(0)(0)⟩.

❼ j → j + 1: Since by assumption ℓ ,→ dom(τ̃j+1(ℓ)) is strictly increasing andU
ℓ≥ℓ∗ [τ̃j+1(ℓ)] is open dense for all ℓ∗ < κ, we can find an ℓ > cljγ with xj

γ ◁ τ̃j+1(ℓ).
Set clj+1

γ := dom(τ̃j+1(ℓ)) and xj+1
γ := τ̃j+1(ℓ)

⌢(1− σγ(cl
j+1
γ )(clj+1

γ )).

❼ λ is a limit: Set clλγ := supj<λ cl
j
γ and xλ

γ := (
U

j<λ x
j
γ)

⌢(1− σλ(cl
λ
γ)(cl

λ
γ)).

Now set xγ :=
U

j<κ x
j
γ and clγ := {cljγ : j < κ}. In the construction we have ensured

xγ /∈ U
j∈clγ [σγ(j)] and xγ ∈ U

j<κ[τ̃i+1(j)] for all i < κ. Finally, construct τγ such that

b), c) and d) holds.

8If γ < κ, use some x and τ multiple times. For γ = 0 pick x0 and cl0 arbitrarily such that x0 /∈U
i∈cl0

[σ0(i)].
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