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Abstract—As more novel devices are integrated into the
electricity grid due to the changes taking place in the energy
system, ways of detecting deviations from the intended settings
are needed. If misconfigurations of, for example, reactive power
control curves of inverters go unnoticed, the safe and reliable
operation of the power grid can no longer be ensured due to
possible voltage violations or overloadings. Therefore, methods
of detection of misconfigurations of said inverters using opera-
tional data at transformers are presented and compared. These
methods include preprocessing by dimensionality reduction
as well as detection by supervised learning approaches. The
data used is of high reliability as it was collected in a lab
setting reenacting typical and relevant grid operation situations.
Furthermore, this data was recreated by simulation to validate
the simulation data, which could also potentially be used for
detection applications on a bigger scale. The results for both
data sources were compared and conclusions drawn about
applicability and usability for grid operators.

Index Terms—Power distribution, detection, device malfunc-
tions, operational data.

I. INTRODUCTION

As the energy system is undergoing massive and quick
changes, especially the electric power grid is experiencing
a transformation. This leaves power distribution system op-
erators (DSO) facing novel challenges. A major cause of
these challenges in the transmission and storage of power
is rooted in the decentralization of power generation [1].
One of the biggest effects is caused by the widespread
use of photovoltaics (PV) in a grid. Violations of voltage
limits as well as bidirectional power flows or overloading of
components can be caused by generation exceeding demand
in a grid segment [2]. High power infeed from PV can lead
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to voltage band violations due to elevated voltages. These
are to be avoided through controls to allow for an extensive
integration of renewable power generation in a decentralized
manner. Therefore, the generation units implement some
form of voltage regulation [3] that offers grid supporting
functions. As the obvious measure of reducing active power
dispatch is to be generally avoided to maximize renewable
energy output, the voltage is mostly controlled through the
variation of the reactive power generation. This is done
through variation of the power factor following a droop
control curve locally [4].

The behavior of PV inverters and other grid-connected
devices has to be monitored to make sure these grid sup-
porting functionalities are performed correctly. Otherwise, a
stable and reliable grid operation can not be guaranteed by
the DSO. However, limitations in data availability either set
by a lack of sensors [5] or data protection regulations [6]
have to be taken into account when developing a solution.
Therefore, a data driven approach on transformer level to this
is advantageous for DSOs as information about components
in the grid is frequently lacking [7]. Misconfigurations of grid
connected devices are a mismatch between the configuration
implemented and the one laid out in the specifications, which
is itself defined by grid codes. This mismatch can have two
causes; either a different configuration was implemented on
purpose or the configuration can change as a result of, for
example, malfunctions. The case under scrutiny here is the
latter one, meaning the configuration – the control curve –
is expected to be initially the correct one. A more extensive
discussion on this was already conducted in [8]. This makes
obvious that misconfigurations can be detected by a solution
using only the operational data collected in the grid, since
a misconfiguration leaves a different impact on this data in
comparison to a correct configuration of a grid connected
device. For this reason, only operational data is used here.

The main contribution of this work is the detailed descrip-
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tion of grid operational data, as well as methods applied
on it to detect misconfigurations. Data was collected both
in a laboratory environment as well as through simulation,
allowing for a validation of the simulation data. Furthermore,
data processing methods as well as detection methods were
applied on the data so as to assess their performance in
the task at hand. Dimensionality reduction methods for
processing data as well as supervised learning approaches
are employed as their applicability is suggested by previous
work [9] as well as literature [10].

This work has the following content: In Section I, a dis-
cussion of issues in power distribution grids and monitoring
needs is conducted. Section II describes the state-of-the-art
related to malfunctions in power systems as well as the
relevant usage of artificial intelligence for detecting them.
In Section III, the data collected and the means thereof are
laid out and in Section IV a description and results of the
approaches applied are presented. Finally, Section V provides
the conclusions and an outlook about potential further work.

II. RELATED WORK

In [11], energy consumption characterization of buildings
of a university campus is presented with the aim of finding
anomalies on building level. Features are extracted as well as
data reduction methods applied during the characterization.
Following, normal patterns for certain times of the day are
identified by estimating the most probable one using globally
optimal Evolutionary Trees. These, in addition to being
more accurate than standard Decision Trees (DT), offer full
interpretability of the results. After anomalies are detected
on building level, underlying causes are discovered by an
unsupervised approach based on Association Rule Mining
(ARM). The data used stem from a medium-low voltage
transformer, however, in 15 minutes resolution, reducing the
applicability of this approach for the higher resolution data
at hand.

The work in [12] presents a Deep Learning based anomaly
detection method for finding outliers using a Light Gradient
Boosting Machine. This machine has the advantage to be
less computationally expensive due to the lower number of
parameters. Even though the data used in the work has almost
the same resolution as the data available here, the approach
does not provide extraordinary good results. Moreover, a very
big data set is required and therefore also used. This dataset
is compiled using only active and reactive power data. This
points towards the usage of feature-based approaches that
can also handle higher dimensional multivariate data for the
problem present.

An approach focusing on phase measurement unit (PMU)
data is sketched in [13]; very good results are achieved using
Gaussian Mixture Model (GMM) to estimate the probability
density function of regular PMU data streams to define
the minimum and maximum thresholds for anomalous data
streams. Initially Principal Component Analysis (PCA) is
used for feature selection as well as k-Means Clustering for
clustering of the PMU streaming data. The anomalies under

scrutiny here are only faults such as line-to-line or line-
to-ground faults. Moreover, the anomalous data is merely
simulated, and it is available in a very high resolution,
which is not the case for the problem to be treated here.
Nevertheless, the approaches to data treatment are relevant.
Also [14] indicates that PCA is of use when treating data; it
is used here to find the principle components in voltage sags
allowing for clustering of them and then assessing the quality
of this clustering. The results show that PCA is capable
of extrapolating features from voltage data in addition to
revealing that the ward linkage method is the best fit for
clustering substation power quality data. Both results can be
of help in the task presented here.

Methods for anomaly detection on transformer data that
are also multivariate are elaborated in [15]. Support vector
machines (SVM) as well as k Nearest Neighbors (kNN) and
Decision Trees (DT) appear to deliver promising results here.
However, the data set is not as high dimensional as the
present one and the application described is cybersecurity.
Additionally, an ensemble learner of three models is used
which makes the approach complex. This makes the utilized
supervised machine learning approaches such as SVM, kNN,
and DT of interest, leaving nevertheless to be investigated
how they perform in the particular case at hand. Another
application of SVM and kNN to PMU data can be found in
[16]. Here, both show good results when put to the task of
detecting voltage magnitude anomalies in feature extracted
data. The data used stem both from synthesizing as well as
from real world sources and is therefore noised as it has
realistic properties in general. However, the detection is only
applied to voltage anomalies such as sags, ramps, and steps.

These anomalies do not necessarily have the same proper-
ties as the subtle changes in behavior that are to be detected
in this work. One more example from the cybersecurity
domain can sooth concerns raised by this; in [17], features
are also first selected and then the SVM, kNN, and DT algo-
rithms are applied to find anomalies in substation data. Here,
these are constituted by, for example, false data injected.
These attacks are recognized with a very high probability,
showing that these machine learning algorithms are very well
capable of detecting all sorts of anomalies in the present work
setting.

Summarizing, the work in the electrical grid domain
on anomaly detection (see Table I) shows that there are
approaches that are either very well suited to certain time
resolutions of data, fit for particular dimensionalities of time
series data, or require very big amounts of data and computa-
tional resources. What becomes clear is that a pre-processing
that allows for feature selection appears to be very helpful.
Along with classic machine learning algorithms for anomaly
detection this approach yields very good results in various
applications. However, no solution to the posed problem can
be found in the literature, which is why explorations and
assessments of approaches to such a solution have to be
conducted.



TABLE I: Non-functional requirements (NFR) fulfilled (X) or unfulfilled
(–) by approaches in related publications cited.

NFR Reference
[11] [12] [13] [14] [15] [16] [17]

Scalability X X X X X X X
Adaptability – X X X – X X
Integrability – – X – – X X

Usability – – – – – X –
Data Retention X – X X X X X

Robustness X X – X X – X
Quality X – X X X X X

III. DATA COLLECTION & PROPERTIES

This section is intended to describe the motivation for
collecting data in a laboratory setting as well as through sim-
ulation and elaborates the respective aims and functionalities
it should help develop. The detailed ways of obtaining the lab
and simulation data is elaborated along with their properties.
Finally, the results produced by it are depicted and analyzed.

A. Laboratory Data

Data collection in a laboratory setting complements data
collection conducted through simulations in an important
way. Laboratory data is as close to real-world data as one can
hope for, since real-world field data is practically impossible
to obtain during the regular operation of a distribution power
grid. This is because the occurrence of misconfigurations is
not noted in time by the system operators, and therefore, the
data collected can not be labeled. When using this data, one
would not know whether it stems from regular or erroneous
behavior of a grid connected device.

The data collected here concern the PV inverter reactive
control curve addressed in Section I in the case of intended
configuration as well as in two relevant misconfiguration
cases. These data are very useful for the development of de-
tection approaches at the transformer level. Only operational
data was collected and is used in the following as explained
and justified above.

For this purpose, low voltage distribution grids, or repre-
sentative parts of these, were imitated in a laboratory, where
grid participants were parameterized and malfunctions were
enacted at a given time, allowing for the creation of a labeled
validation dataset. Such a facility was found through the
H2020 ERIGrid 2.0 project at the Power Network Demon-
stration Center (PNDC) at the University of Strathclyde in
Glasgow, Scotland. To conduct the experiments and record-
ings infrastructure like controllable loads, substations, and
inverters, lines as well as measurement devices, such as smart
meters, were necessary. These were then set up in a typical
way for grids to be exhibiting sought-after malfunctions, for
example, in a radial topology for rural grids. Loads and
generation were parameterized to follow certain consumption
or generation profiles, as well as certain control schemes
regarding their energy consumption or dispatch behavior.
The profiles were created following the profiles used by
the SIMBENCH [18] project, which provides grids that are

specifically designed for simulation purposes. Profiles of
consecutive days were chosen to mimic the data collected
during grid operation in the course of about 2 weeks.

The operational data such as voltages and currents were
then recorded by the grid participants to mimic smart me-
ter data and their power flows to be able to validate the
scenario settings. Additionally, readings were recorded at
the substation connecting the grid to the medium voltage
level. In this manner, one data point would be gained by
a quick measurement at a certain setting of generation and
load profiles. Given that at a 15 min resolution there are 96
data points per day, 96 tests would be necessary to collect
data for one day. As already pointed out, the generation
and load profiles, as well as dispatch and charging control
patterns, were to be controlled, whereas operational data
was measured. This measurement was made using Fluke
measurement devices, which delivered 398 different variables
per time step, which is 0.25 seconds. In a first selection
step, this was manually reduced to 84 relevant variables
for further use. As the setup was as close as possible to
a real-world power distribution grid, the experiments yielded
as realistic results as possible, which should guarantee the
highest robustness for the detection methods and monitoring
mechanisms developed using this data.

In the experiments conducted, 15 sets of time series that
each match a day from 9 am to 3 pm were collected.
This time span was chosen to save on valuable laboratory
access time and still have as much data with meaningful
PV contribution, since the night hours are not expected to
contain much valuable information. 15 scenarios, each one
consisting of a set of load and generation patterns, were
applied to two grid setups depicted in Figure 1; both setups
consist of a substation in Dyn configuration with an apparent
power of 315 kVA, two individually configurable load banks
and a PV inverter, as well as cables of up to 100 meters
length each connecting them. Measurements are taken at
3 points; at the substation (corresponding to measurement
point F2), as well as at both connection points of the loads
(measurement points F1 and B1) and the inverter (situated
at, and therefore corresponding either to measurement point
F1 or B1, depending on the setup). The positions and
connections of the measurement points are indicated in the
figure.

For the first setup, Setup A, the reactive power control
curve was either parameterized correctly or just set to a flat
curve, which is called ’wrong’ in the following. A flat control
curve setting does not provide reactive power at all. Running
the 15 scenarios for both control configurations yielded 30
sets of time series for this setup. For the second setup, Setup
B, the control curve was, in addition to the correct and wrong
options, inversed, yielding 45 sets of time series. An inversed
curve setting provides the same amount of reactive power as
the correct one, however, with a wrong sign. In total, 75 sets
of time series were obtained.

In Setup A, the inverter is closer to the substation, whereas
it is further away from it in Setup B. This is done to
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Fig. 1: Setup A (left) and Setup B (right) with the corresponding names
(F2, F1, B1) of the measurement points used in the following.

be able to later assess the impact of grid strength on the
detectability of the misconfiguration in the data. In both
setups, the misconfiguration is applied to the inverter, as
the different exemplary control curves in Figure 1 indicate;
one is correct, the other is inversed. Because of laboratory
access time limitations, only two control configurations were
implemented for Setup A, as Setup B is deemed the more
interesting case.

B. Simulation Data

Data collection through simulations complements data
collection conducted in a laboratory setting in an important
way. It allows to create more data that can be of guaranteed
quality when validated through comparison with laboratory
data. As some parameters about the lines of the laboratory
were not fully known, assumptions about the line parameters
that reflect the most likely properties of the lines were
made. Moreover, any modeling of imbalances in the grid
was neglected since none were known. These inaccuracies
might still have an influence on the simulation quality. The
simulations were conducted using the same profiles and
setups as in the laboratory setting, recreating the same 75
sets of time series.

In addition to these, simulations with an inversed control
curve were also carried out for Setup A, yielding another
15 sets of time series. For the simulation, 30 relevant
variables, chosen among the ones available in the software,
were selected to be contained in the results. The grid data
generation capabilities developed in the course of preceding
work [8] were used here.

C. Outcomes

In summarizing, the experiments were conducted using
15 sets of load and generation profiles in both setups under
up to 3 different inverter settings; a regular working control
curve, a flat control curve (‘wrong control’), and an inversed
control curve. An example of the voltage data collected per
measurement point in one of these scenarios can be seen
in Figure 2; as one can see, the voltage is mostly higher

Fig. 2: Laboratory (top) and simulation data (bottom) by measurement
point (note that the measurements in Setup A with an inversed control

curve are not available due to lab access time limitations).

in cases where the control curve is wrong or inversed, as
is to be expected. For the Setup A, the difference is not as
grave since the inverter has, as was expected, as well, a lower
impact at a closer position to the substation where the grid is
stronger. The difference in the simulation data between the
two curves is also smaller than in the lab data. This can only
be attributed to the inaccurate modeling of imbalances and
possible reactive power consumption that results thereof.

Figure 3 shows data, again from the lab and simulation,
for the individual cases of control configuration. Again, the
impact of the control appears smaller in the simulation data
however, it is still noticeable, especially again in Setup B
where the PV is farther from the substation and therefore in
a weaker point of the grid.

To visualize all scenarios as well as the relationships
between each other, clustering was employed, namely, hier-
archical ward clustering as described in [19]; first a similarity
matrix is computed using the Pearson correlation coefficient.
Then a dendrogram is built linking similar time series using
the ward linkage method, which is a variance minimization
algorithm. The results comparing the data in case of a correct
or wrong control curve are shown in Figure 4. It becomes



Fig. 3: Laboratory (top) and simulation data (bottom) by control curve.

obvious that for both lab and simulation data rather the data
of the same scenario, in terms of loads and generation, than
of the same control setting, such as correct or wrong, are
similar. Furthermore, the individual lab data samples seem
less similar to each other than the simulation data samples,
which are still quite dissimilar. This makes the detection task
at hand a nontrivial one.

The simulation model used in a grid simulation software
as well as all data and analysis produced using it can be

Fig. 4: Laboratory (top) and simulation data (bottom) of setup B at
measurement point F2 clustered; ’c. c. S. 1’ and ’w. c. S. 1’ stand for
’correct control Scenario 1’ or ’wrong control Scenario 1’ respectively.

found in the corresponding GitHub repository1.

IV. METHODS & RESULTS

A. Preprocessing

To assemble the dataset, all m multivariate time series data
samples, each one representing a scenario with a certain
control curve configured in one of the grid setups, which
have t rows for t timesteps and n columns for n variables as
represented by 1) in Figure 5, are flattened into single rows
of a dataframe having t∗n columns. Each column, therefore,
represents the value of one variable at a certain timestep of

1https://github.com/DavidFellner/Malfunctions-in-LV-grid-dataset



a measurement. The resulting dataset is a m x t ∗ n matrix,
each of the m rows representing the data of one of the m
measurement samples. Only measurements at the substation
level (measurement point F2) are used, as a transformer level
detection solution is to be developed.
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Fig. 5: Preprocessing and dataset creation.

This data is then scaled to have a mean of zero and a
standard deviation of 1 along all t ∗ n features, which again
are variables at a certain timestep. This is step 2) in Figure 5.
The scaled data is then fed into a PCA as described in
[14]; PCA is an orthogonal linear transformation, aiming to
create a new coordinate system in which the first coordinate,
which is the first principal component (1st PC), represents
the greatest variance in the data. There can be as many PCs as
there are feature vectors in the data however, usually fewer
PCs than features are retained to achieve a dimensionality
reduction and thereby select important parts of the data,
such as the 2nd, 3rd, and so on as higher order PCs retain
decreasingly much variance and therefore less information.

As many principal components are kept so as to retain
99% of the variance in the data, which ends up being 17 or
27 components for the simulation, the respective laboratory
data of Setup A. Step 3) of Figure 5 depicts this unlabeled
dataset.

Lastly, the samples are labeled depending on the state of
the control curve applied during the measurement yielding
the final dataset, as can be seen in step 4) of Figure 5.

B. Detection

Based on the assessment done in Section II, supervised
machine learning algorithms are employed for the miscon-
figuration detection task at the transformer level. Addition-
ally to the mentioned hyperparameter combinations below,
additional sensitivity analyses on hyperparameters were con-
ducted. In cases where little or no impact of variating these
could be observed, the respective hyperparameters were set
to common values as the default ones defined by the specific
library implementation used.

As prompted by [16], SVM and kNN are used. The SVM
is capable of binary as well as multiclass classification by
finding a hyperplane in an arbitrary dimensional space that
guarantees as big as possible separation margins between the
classes. This makes the SVM especially suitable for high
dimensional applications as the one at hand and therefore

attractive. Scitkit-learn’s SVM classifier is used here2, vary-
ing the kernels used (linear, polynomial, radial, sigmoid)
and their degrees (1 to 6), as preliminary examinations
have shown this parameter to have a significant impact on
performance. Kernels define how the separation margin is
formed, and therefore, how the decision boundary is adjusted
to the data. Moreover, another variant, the NuSVM3, was
used. It has the same properties, only that it controls the
number of support vectors that are used to find the decision
hyperplane to avoid overfitting.

The kNN algorithm4 uses the Euclidian distance of a
data sample to its k-nearest neighbors and decides based
on the majority of the neighbor’s labels, which class the
given sample should be attributed to. This makes kNN a lazy
learner, therefore being a very time efficient method. This
makes kNN beneficial especially for adding new samples. For
this method, the number of neighbors to be taken into account
(1 to 4) was varied as well as the weighting of their distances
to the data sample. Either the distance of a neighbor would
be taken into account, which is called distance weighting, or
all neighbors would count equally, called uniform weighting.

Additionally, DTs were applied on the data, as suggested
in [11]; a tree is built from the root by recursively partitioning
the feature space, until areas, the leaves of the tree, of a
certain purity in terms of class labels of the samples in this
area are defined. Depending on the splits rule, which in this
case the gini impurity, as well as information gain, were
used for, the best splits of the feature space are performed.
A new sample is then classified following the branches of
the tree, which represent the decision rules until it is labeled
according to the leaf it ends up with. The DT has a high
degree of explainability, which incentivizes its usage in cases
where decisions should be justified. Also here the Scitkit-
learn implementation5 varying the splits rule was used.

All experiments were done implementing 7 fold cross-
validation with balanced classes in all training and test
batches. Using the data in this way is intended to reflect
the behavior of a detection system using the operational data
of the previous days to decide on whether a misconfiguration
is present or not looking at the current data.

C. Results

The code used to produce the datasets and results can
also be found in the GitHub repository1. The aforementioned
datasets were fed to the detection methods, hyperparameters
were varied, as well as results cross-validated as mentioned
above. The datasets consist of 30 samples for the laboratory
data of Setup A labeled as correct or wrong and 45 samples
for the lab data of Setup B as well as the simulation data of

2https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html\
#sklearn.svm.SVC

3https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.
html#sklearn.svm.NuSVC

4https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

5https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html



both setups, which are labeled as correct, wrong, inversed or
simply abnormal, meaning of class wrong or inversed.

Table II summarizes the best results found for a certain
dataset using the F-score as a result metric. It represents
a balanced combination of Recall, how many of the mis-
configurations present have been found, and Precision, how
many of the found misconfigurations are actually cases of
erroneous configuration. As a grid operator using this appli-
cation would want to balance between finding all occurrences
of misconfigurations and false alarms, the F-score is an
expressive metric of how useful the approach is to a DSO.

TABLE II: Comparison of best detection results on laboratory and
simulation data.

F-Score Grid Setup and Data Source
Result Grid Setup A Grid Setup B
Case Lab Data Sim data Lab Data Sim data

correct
vs. 0.93 0.91 1 0.90

wrong
correct

vs. * 0.97 1 0.97
inversed
correct

vs. wrong * 0.88 0.96 0.90
vs. inversed

correct
vs. * 0.95 1 0.95

abnormal
* Not available due to lab access time limitations

The methods and their hyperparameter settings leading to
the best results for each case are listed in Table III.

TABLE III: Comparison of best approaches on laboratory and simulation
data.

Best Grid Setup and Data Source
Approach Grid Setup A Grid Setup B

Case Lab Data Sim data Lab Data Sim data
correct NuSVM: SVM: SVM: SVM:

vs. linear linear linear linear
wrong kernel kernel kernel kernel
correct NuSVM SVM: SVM:

vs. * linear linear linear
inversed kernel kernel kernel
correct SVM: SVM: SVM:

vs. wrong * linear linear linear
vs. inversed kernel kernel kernel

correct SVM: SVM: SVM:
vs. * linear linear linear

abnormal kernel kernel kernel
* Not available due to lab access time limitations

V. CONCLUSIONS

A. Achievements

Electricity grid operators need to be able to guarantee safe
and reliable grid operation, also in the future of widespread
decentralized generation of renewable energy. Therefore,
better monitoring of the distribution grid becomes necessary.
The data collected and described allows for the development
of a validated solution for monitoring the behavior of PV

systems in such a grid. Furthermore, the methods applied to
this data show the applicability of such a solution.

In general, better performance for Setup B can be ob-
served, which is in line with expectations because the PV is
installed at a weaker point of the grid here. Therefore, the
impact of the control curve is bigger and a misconfiguration
of the same easier to detect. The scores reached on the lab-
oratory data are also higher in all cases than on the scenario
data. As already discussed above, the simulation data showed
only smaller impacts of the different control curves, which
also makes detection harder for the simulated data. This
also explains only a small difference in performance in the
simulation data between Setups A and B. However, this also
implies that the results for the simulation data can serve as
a lower estimate for the performance on real-world data for
Setup A. Nevertheless, the performance is very good, or even
perfect, for both setups and all cases. This is likely connected
to the rather simple grid topologies and the performance
might deteriorate in more complex settings.

In all cases, the method delivering the best results was
found to be a form of SVM with a linear kernel, which can
be explained by the high suitability of this algorithm for
high dimensional data and for datasets with a high feature
to sample ratio. This property also allows for the usage of
only very recent data, meaning data of the previous days, for
detection properties.

The work presented shows that a classical supervised
machine learning approach, the SVM, applied to transformer
level data can yield very good misconfiguration detection
results. As this is the case for both laboratory and simulation
data, wide applicability of the method is implied. The even
better results on the laboratory data underline the robustness
of such a solution.

B. Outlook

The collection and assessment of the data presented as
well as the detection methods explored serve as a building
block for the envisioned decision support tool for electric
power grid operators, facilitating the monitoring of low
voltage distribution grids centrally. In such a solution, as
data is collected at the transformer level, it is checked
for signs of misconfigurations. After passing this check by
the detection methods, simulations of misconfigured cases
would be conducted to form the kind of dataset used in this
assessment. An incoming abnormal data sample would most
likely be recognized by a detection method trained on such
a dataset, as the real world samples showed a greater impact
on the control curve compared to the simulated samples. The
simulations would require the load and generation profiles of
grid participants, which could be obtained through disaggre-
gation of the transformer load profile into its components.
An approach to this disaggregation is the most important
task concerning further work. It could be developed in
combination with the load and PV measurements that were
at this point only used for validation of the transformer
measurements. Other additional tasks are the assessment of



additional use cases, such as monitoring of demand side
management.

The combination of these methods would then allow for
the creation of the already mentioned decision support tool,
which would only require a few days of calibration along
with regular grid operation before being operational. Such
a solution would increase DSOs monitoring capacities in a
substantial and feasible manner.
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