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Deutsche Kurzfassung

Zweidimensionale Kristalle, die aus schwach (Van der Waals) gekoppelten,
geschichteten Materialien herausgelöst werden, eröffnen die Möglichkeit,
2D-Materialien sowohl theoretisch als auch experimentell zu untersuchen.
Ihre im Vergleich zu herkömmlichen “3D-Materialien” unterschiedlichen
elektronischen, optischen und mechanischen Eigenschaften, die sie zu erst-
klassigen Kandidaten für künftige Anwendungen in der Informationstechno-
logie machen, stoßen auf reges Forschungsinteresse. Aufgrund des maximalen
Verhältnisses von Oberfläche zu Volumen dieser Systeme ist es auch möglich,
die Eigenschaften dieser Materialien durch externe Maßnahmen zu beein-
flussen. Diese äußeren Einflüsse können von elektrostatischen Gates, die
eine präzise Ladungslokalisierung und Stromsteuerung ermöglichen, bis hin
zu einer weiteren Schicht eines anderen 2D-Materials reichen, die je nach
der genauen relativen Ausrichtung zur ersten Schicht zu einer neuartigen
Moiréphysik auf verschiedenen Längenskalen führt.

Eine weitere Quelle für die Veränderung von Materialeigenschaften - wenn
auch eine historisch unerwünschte - sind Gitterfehler und Defekte. Die
außerordentliche Vielseitigkeit und Beeinflussbarkeit niedrig-dimensionaler
Werkstoffe macht sie auch anfälliger für Veränderungen, die durch Fehler
in ihrer kristallinen Struktur verursacht werden. Obwohl die Probenvor-
bereitung und damit die Kontrolle über das Auftreten dieser Defekte seit
der Entdeckung dieser niedrig-dimensionalen Systeme erheblich verbessert
wurde, ist das Verständnis des Einflusses solcher Defekte nach wie vor ein
entscheidender Faktor für die Entwicklung von Materialien mit gewünschten
Eigenschaften.

Diese Arbeit zielt darauf ab, die theoretische Modellierung solcher Sys-
teme mit Defekten voranzutreiben, und untersucht mehrere Beispiele, bei
denen Defekte nicht nur Fehler in der Kristallstruktur sind, sondern auch
die Möglichkeit bieten, sowohl optische als auch elektronische Eigenschaf-
ten aktiv in wünschenswertere Konfigurationen zu ändern. Ich wende
Modelle unterschiedlicher Komplexität an, um experimentelle Daten von
Photolumineszenz-, Rastertunnel- und elektronischen Transportmessungen
in Systemen zu verstehen und zu erklären, deren Eigenschaften entweder
durch Gitterdefekte oder elektrostatische Gates verändert werden. Neben
verschiedenen spannenden Möglichkeiten, experimentelle Daten theoretisch
zu untermauern, untersuche ich auch einige Systeme von einem rein theo-
retischen Standpunkt aus und versuche, Anreize für die experimentelle
Umsetzung zu schaffen. Die Modellierung dieser Systeme beinhaltet oft
Multi-Skalen-ansätze, bei denen numerisch teure, aber genaue Methoden
(z.B. Dichtefunktionaltheorie für Defekt-Superzellen) in ein erfolgreiches
Zusammenspiel mit groß-skaligen Methoden (z.B. Tight-Binding für elek-
tronischen Transport) gebracht werden müssen, die die Simulation von
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Millionen von Atomen (d.h. vergleichbar mit experimentell zugänglichen
Längenskalen) ermöglichen.

Trotz der Tatsache, dass die Qualität der Übereinstimmung zwischen
gemessenen und simulierten Daten nicht immer eine monotone Funktion
der Modellierungskomplexität und des Aufwands ist, versuche ich auch
die Generierung von ab-inito abgeleiteten Defektparametrisierungen an-
zugehen. Zu diesem Zweck implementiere ich einen modernen maschinel-
len Lernalgorithmus, der versucht, die hervorragenden, aber aufwendigen
Standard-Defektmodellierungsmethoden zu umgehen. Darüber hinaus wen-
de ich modernste numerische Algorithmen an, die in Zusammenarbeit mit
Florian Libisch und seinen früheren Doktoranden entwickelt wurden, um den
elektronischen Transport in Moiré-Strukturen von zweischichtigem Graphen
(tBLG) und hexagonalem Bornitrid (hBN) zu untersuchen.



Abstract

Two dimensional crystals — exfoliated from weakly (Van der Waals) coupled
layered materials — open the possibility of studying 2D materials both
theoretically and experimentally. Their differences in electronic, optical and
mechanical properties when compared to conventional “3D materials” makes
them prime candidates for future application in information technology,
attracting considerable interest. Due to the maximal surface to bulk ratio of
these systems it is also possible to tailor the characteristics of these materials
via external measures. These can range from electrostatic gates enabling
precise charge localization and current control, all the way to a sheet of
another 2D material, which depending on the precise relative orientation
with respect to the first layer results in novel moiré physics.

Another source of altering material properties — albeit a historically
undesirable one — are lattice imperfections and defects. In this regard the
outstanding versatility and influenceability of low dimensional materials
also renders them more susceptible to changes caused by flaws within their
crystalline structure. While sample preparation and thus control over the
occurrence of these imperfections has undergone vast improvements since
the discovery of these low-dimensional systems, understanding the influence
of such defects remains a vital ingredient to tailoring materials with desired
properties.

This thesis aims at advancing the theoretical modeling of such modified
systems and studies several examples where defects are not only flaws in the
crystal structure but present opportunities to actively change both optical
and electronic properties to more desirable configurations. I apply models
of varying complexity to help understand and explain experimental data of
photoluminescence, scanning tunneling and electronic transport measure-
ments in systems with characteristics altered by either lattice defects or
electrostatic gates. Apart from several exciting opportunities to provide
theoretical support to experimental data I also study some systems from a
purely theoretical aspect and try to provide incentive for experimental real-
ization. Modeling these systems often involves multi-scale approaches where
numerically expensive but accurate methods (e.g. density functional theory
for defect super cells) need to be brought into a successful interplay with
large scale methods (e.g tight-binding for electronic transport) that allow
for the simulation of millions of atoms (i.e. comparable to experimentally
accessible length scales).

Although the quality of agreement between measured and simulated data
is not always a monotonous function of modeling complexity and effort I also
try to address the generation of ab-inito derived defect parametrizations. To
this extent I implement a modern machine learning algorithm that tries to
circumvent the excellent but cumbersome standard defect modeling methods.
Furthermore I also apply state-of-art numerical algorithms developed in a
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group effort with Florian Libisch and his preceding PhD students to study
electronic transport in twisted moiré structures of bilayer graphene (tBLG)
and hexagonal boron nitride (hBN).
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Chapter 1

Introduction

“The scientist is not a person who
gives the right answers, he is one
who asks the right questions.”

C. Levi-Strauss

Imperfections are at the heart of what makes life interesting and exciting.
They add character and charm to otherwise mundane objects. Without
flaws, life would be boring and dull. In the context of materials science this
certainly seems debatable and the answer depends on whether you talk to a
frustrated PhD student that tries to measure a fragile effect in an unclean
sample or a professor in theoretical solid state physics that vigorously insists
on the importance of disorder to explain something as impressive as the
integer quantum Hall effect. Occasionally, modern science and engineering
even has us go out of our way to diminish the symmetries of an otherwise
immaculate crystal structure of electronic devices to improve their desired
properties (e.g. strain engineering [1–5]).

While process control in conventional, silicon based technologies — the
workhorse of modern electronics design — is unparalleled in the fabrication
of defect-free single crystals, novel materials in the early stages of their
development often cannot be produced to the same quality standards. One
subclass of prominent new materials are so called two-dimensional materials
(layered crystals which can be thinned down to a monolayer). Starting with
graphene (an atomically thin layer of graphite) in 2004 [6], research efforts
towards the isolation of other 2D crystals [7] has brought forward a whole
zoo of low dimensional materials ranging from metals, semi-metals, semi-
conductors to insulators. Apart from interesting physical effects emerging
from their low dimensionality (e.g. linear dispersion, modified screening
properties or spin-valley-locking in TMDs) these layered materials — by
definition almost entirely made up of surface — are prone to modification
by controlling their immediate surroundings (e.g. application of electro-
magnetic fields or substrate interaction). Continuous improvements in
sample quality and measurement accuracy [8] has allowed the experimental
realization of impressive achievements such as probing the multiplet structure
of precisely controlled BLG quantum dots [9], single photon emitters in
TMDs [10] or unconventional superconductivity in magic-angle tBLG [11],
observation of a fractional quantum Hall effect in graphene [12, 13]. This
recent amount of exceptional experimental data beckons theorists to advance
and improve their predictive tools for both qualitative and quantitative
analysis.



2 1 Introduction

Furthermore, these 2D materials become especially interesting — albeit
evermore challenging to describe from a theoretical perspective — if their
intrinsic tuneability is employed for device manipulation. This internal
modification may correspond to a change in twist angle of a bilayer system
or the introduction of local lattice defects and generally require multi-scale
approaches to allow theory comparable to experimental data. Over time the
community established more or less two approaches to model the influence of
defects on experimentally accessible systems. While a fairly straightforward
description such as creating a vacancy via omission of an atomic site in
an otherwise unrelaxed lattice (nevertheless to some extent also employed
throughout this thesis) that lives entirely on the tight-binding level of theory
tends to come short in terms of quantitative analysis, high-quality ab-inito
derived tight-binding parametrizations that can be embedded into a model
of much larger, pristine structures tend to be elusive and cumbersome in
their extraction. Obviously, the latter models are much better candidates for
experimental comparison. The interdependent analysis of both quantitative
and qualitative agreement with measurements will guide us through most
of this thesis.

This thesis is structured in two parts: Part I introduces the foundations
of concepts in solid state theory and machine learning and Part II contains
various projects and applications.

Prominent 2D materials and crystal structures studied throughout this
work are introduced in Chapter 2. We present the electronic structure of
the pristine systems and briefly outline different types of lattice defects.

Chapter 3 introduces the work horse solid-state-theories tight-binding and
density functional theory. We discuss fundamental concepts and glimpse at
computational aspects.

Chapter 4 gives a general introduction into machine learning aspects. In
the grand scheme of this discipline our chapter only scratches the surface yet
provides enough background for the algorithms encountered in Chapter 6.
We give a concise definition of the discipline and follow with descriptions of
neural network architectures and their “inner workings”. We conclude this
chapter as well as Part Part I with describing Gaussian process regression
and hope to convey not only the abstract concept but also its immense
usefulness for modern optimization problems.

Part II opens with Chapter 5, where we explore the influence of several
lattice defects of single layer graphene on the energy spectra of nearby
edge-free quantum dots. In the presence of a strong magnetic field the
electrical field of a scanning tunneling microscopy tip can localize electrons
in graphene [14]. In theory, traversal of isolated lattice defects allows for
controlled lifting of the valley degeneracy and could even induce controlled
transitions between quantum dot levels.

Chapter 6 documents the joint efforts with the group of P. Rinke at
the Aalto University to establish a machine learning based algorithm that
efficiently extracts high-quality tight-binding parametrizations of defects
in graphene and WSe2 systems. We find that neural networks that learn
a mapping between band structure data and a minimal set of hopping
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parameters can, to some extent, provide an alternative route that does not
rely on maximally localized Wannier functions.

In Chapter 7 we implement a Hartree-Fock algorithm to try to explain
experimental data on the two-particle spectra of bilayer graphene quantum
dots from the group of C. Stampfer at the RWTH Aachen. Our model
re-diagonalizes a bare Coulomb kernel in basis states of a k · p Hamiltonian
for Bernal stacked bilayer graphene in cylindrical coordinates.

Chapter 8 reports on a joint project with the group of S. Heeg at the
Universität zu Berlin. We find signatures of hybridization of defect related
states in WSe2 that lead to resonances in photoluminescence measurements.
We carefully disentangle doping and strain influences of the electrostatic
based straining setup.

In Chapter 9 we study the valley filtering properties of grain boundaries
in single layer graphene. We review simple symmetry arguments provided
of [15] in the context of ab-initio derived parametrizations of periodic
line defects in conjunction with first rate, 10th-nearest neighbour bulk
descriptions.

Chapter 10 dissects scanning tunneling microscopy measurements of
the group of M. Morgenstern at the RWTH Aachen. We study Landau
quantized, single-layer graphene in strong perpendicular magnetic fields.
Careful estimation of relevant parameters from experimental data followed
by Poisson simulations of the electrostatic potential of a back gate induced p-
n-junction culminates in large scale tight-binding simulations that accurately
explain experimental features.

Chapter 11 discusses our efforts to calculate quantum Hall conductivities
of graphene-hBN moiré systems from ab-initio derived real space tight-
binding models. We employ highly efficient algorithms to produce finely
sampled band structures. Employing Strěda’s formula allows us to obtain
the Hall conductivity within band gaps but is inappropriate for comparisons
with experimental data.

Lastly we study magnetotransport through a system of composite moiré
super lattices in Chapter 12. Together with our experimental collaborators
from the group of C. Stampfer at the RWTH Aachen we find additional
Landau fan features at non-integer fillings and pinpoint their origin to an
additional moiré lattice with one of the hBN layers used for encapsulation.





Part I

Theory



Chapter 2

2D crystals & lattice defects

“In physics, you don’t have to go
around making trouble for your-
self - nature does it for you.”

F. Wilczek

Materials science is typically interested in understanding, modeling and
possibly predicting the physical (or chemical) properties of materials. Early
research was mostly interested to explain these traits based on what a
particular substance was made of (i.e. atom type and bonding character).
It took some time to understand that the fundamental properties of matter
also depend on its size: electrical conductivity, chemical reactivity and even
light matter interaction need not necessarily be identical if some of the
materials dimensions approach the nano scale (i.e. anywhere between the
atomic scale of a few Å and up to a few hundred nanometers). Once the
thickness of a material gets negligible we can effectively speak of a two
dimensional material.

The first two dimensional crystal (i.e. a structure with long range periodic
order in only two dimensions) that was successfully extracted in experiment
was graphene, a single atomic layer of graphite (honeycomb carbon lattice)
[6, 16]. This discovery has since sparked an entire research field that includes
a zoo of different 2D materials [17, 18]. What follows is a brief introduction
to a small subset of these materials (the ones relevant to the projects in this
thesis).

2.1 Graphene

Graphene [19] is a single atomic layer of graphite (a highly lamellar allotrope
of carbon). The four valence electrons of each carbon atom ([He]2s22p2)
hybridize into 3 sp2 orbitals (in-plane σ bonds ) and a single pz orbital
(protected from hybridization by mirror symmetry, assuming a perfectly
flat hexagonal lattice). The unit cell of this lattice holds two carbon
atoms (henceforth addressed as “A” and “B”) at (0, 0)T and a · (0, 1/

√
3)T

respectively.
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Given the lattice constant a = 2.46Å, a unit cell (see Fig. 2.1) can be
spanned by the following real space lattice vectors:

a1 =

(
a

0

)
a2 =

(
−a/2√
3a/2

)
(2.1)

The diatomic basis of entirely indistinguishable carbon atoms introduces
the sublattice degree of freedom (i.e graphene is made of two interwoven
triangular lattices) which also has implications in reciprocal space. The
reciprocal lattice vectors read:

G1 =
2π√
3a

(√
3

1

)
G2 =

4π√
3a

(
0
1

)
(2.2)

Γ

(
0
0

)
D6h

K 4π
3a

(
1
0

)
D3h

K’ -K D3h

M π√
3a

(√
3

1

)
C2

Tab. 2.1: Name, co-
ordinates and symme-
try groups (Schönflies
notation) for the high
symmetry points of
the hexagonal lattice
in reciprocal space.

The 1st Brillouin zone of graphene is again hexagonal and includes several
high-symmetry points (see Table 2.1). The most prominent points (K and
K’) are known as Dirac points and mark the reciprocal positions where
conduction and valence band of graphene touch and build the gapless Dirac
cone structure (see Fig. 2.1e).

a

b

c d

e

Fig. 2.1: Schematic honey comb lattice of graphene (black carbon atoms with grey bonds)
in a x,y plane (including the Wigner Seitz cell - blue rhombus) and b x, z plane. c
Unit cell employed throughout this thesis (see also a ). d Reciprocal unit cell spanned
by G1 and G2. The black hexagon represents the 1st Brillouin zone of graphene. High
symmetry points of the hexagonal lattice including the k-point path for the band structure
plots are indicated. e Band structure of single layer graphene (computed along the path
shown in d ) including zoom-in of the Dirac cone close to the Fermi energy.
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K and K’ are referred to as valleys and are intimately connected to the
real space sublattice symmetry. The dispersion in their vicinity is linear
and mimics the solution of a massless Dirac equation in ultra-relativistc
quantum mechanics [20, 21]. Vanishing density of states at the Fermi level
(which for undoped graphene coincides with the Dirac point) together with
the lack of a real band gap classifies graphene as a peculiar semi metal

somewhere in between semiconductor and metal.
The additional valley degree of freedom compared to conventional electron-

ics materials (such as GaAs [22]) in combination with the linear dispersion
relation give rise to many unique electronic properties of graphene (see [19,
23] for an in-depth introduction) .

Graphene also exhibits high deformability allowing for elastic strains of
up to 15% [24]. The valley degree of freedom with its two minima positioned
in opposite corners of the Brillouin zone allows for the emergence of effective
pseudo gauge fields in the presence of large wavelength deformations [25–28].
However, while isotropic and uniaxial strain only generate a pseudo-electric
field [29] triaxial strain offers the prospect of inducing strong and uniform
pseudo-magnetic fields in the order of several Tesla. It is worth noting
that deformations locally change the interatomic distances and therefore in
some configurations affect hopping amplitudes in a way that manifests in a
gauge field that manipulates electron similar to a magnetic field. Naturally,
pseudo-fields generated from these “artificial” vector potentials do not break
time-reversal symmetry. Controlled introduction of mechanical strain [30–
32] thus offers an alternative approach of altering electronic properties of
graphene. Conversely, strain that is unintentionally introduced during the
fabrication process may alter the electronic structure in an undesired way.

2.1.1 k · p Hamiltonian

Somewhat preemptively to Section 3.3 I choose to simply introduce the
Dirac Hamiltonian as an approximative description for single layer graphene
in the vicinity of the two inequivalent valleys τ = ±1 (representing K and
K , points respectively) at this point (instead of deriving it as a linearization
of the full tight binding Hamiltonian of graphene, see [19]).

Single layer graphene To first order in momentum the gapless double
cone-like band structure of single layer graphene may be described in terms
of a massless Dirac Hamiltonian:

Hτ = vf

[
0 τpx − ipy

τpx + ipy 0

]
(2.3)

The solutions to Hψ = Eψ are then of the following form:

Eτ,± = ±vf|p| ψ± =
1√
2

(
1

±τeiτφ

)
e

ip·r
,h (2.4)

where ± refers to conduction and valence band respectively and φ =

arctan(py/px). The spinor components refer to the two sublattice sites
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in the real space unit cell (and is rightfully referred to as pseudo spin).
The off diagonal parts of Eq. (2.3) can be coupled via a mass term with
opposite signs for each sublattice (i.e. (mA − mB)/2σz = mσz) which

effectively opens a band gap in the dispersion, E = ±
√
v2
f|p|

2 +m2. It is

worth noting that on their own the two variations of Eq. (2.3) (i.e. the two
valleys τ = ±1) break both parity and time reversal symmetry but restore
them when combined (both parity and time reversal map the valleys onto
each other).

Bilayer graphene Stacking two graphene layers results in a bilayer system
(experimentally distinguishable via e.g. Raman spectroscopy [33]) with
parabolic dispersion and a field-tunable band gap. The degrees of freedom
for this stacking (x shift, y shift, relative angle) can generate rich physics in
the form of moiré structures [34]. Bernal stacking (see Fig. 2.2) describes
two perfectly aligned but slightly shifted sheets such that the sublattice sites
A2 and B1 (two sublattices in each layer, i.e. A1,B1,A2,B2) are vertically
aligned (dimer site).

a

b

c

d

Fig. 2.2: Schematic structure of Bernal stacked bilayer graphene (bottom layer slightly
opaque) in a x,y plane and b x, z plane. c Unit cell with 4 atoms (two of them
congruent in z view). d Bandstructure along ΓKMΓ including zoom-in close to the Fermi
energy highlighting the now quadratic dispersion.
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An approximative but still reasonable model for the bilayer system is
given by two single layer Dirac Hamiltonians and an interlayer coupling γ1

at the dimer site:

Hτ = vf

]
[

0 τpx − ipy 0 0
τpx + ipy 0 γ1

vf
0

0 γ1

vf
0 τpx − ipy

0 0 τpx + ipy 0

[
] (2.5)

where we now use a four component wave function basis of the form
Ψ = (ψA,ψB,ψA , ,ψB ,)T . Inserting the second and third row of HΨ = EΨ

into one another:

ψA , =
E2

γ2
1

ψA , −
E2vf

γ2
1

(τpx − ipy)ψB , −
vf

γ1
(τpx + ipy)ψA (2.6)

ψB =
E2

γ2
1

ψB −
E2vf

γ2
1

(τpx + ipy)ψA −
vf

γ1
(τpx − ipy)ψB , (2.7)

and plugging them into the first and last row respectively, yields an
effective low energy equation for the non-dimer sites:

Eτ

(
ψA

ψB ,

)
= −

vf

γ1

[
0 (τpx − ipy)

2

(τpx + ipy)
2 0

](
ψA

ψB ,

)
(2.8)

Solutions then take the form:

Eτ,± = ± vf

γ1
|p|2 ψ± =

1√
2

(
1

∓τei2τφ

)
e

ip·r
,h (2.9)

describing parabolic bands near the K/K , points.

Bilayer graphene provides another highly useful property in the form
of displacement-field induced band gap opening [35–37]. A strong enough
perpendicular electric field introduces a potential difference ∆ between top
and bottom layer of bilayer graphene,

Hτ =
v2
f

γ1

[
∆
2 (τpx − ipy)

2

(τpx + ipy)
2

-

∆
2

]
(2.10)

which in turn leads to an energy spectrum of

Eτ,± = ±
√

p4

γ1v
4
f

+
∆2

4
(2.11)
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for the low-energy two-band model. We have thus opened a band gap of
roughly ∆. Solving the full four-band model numerically only adds a small
correction to this result. Voltages accessible in experiment can therefore
open band gaps on the order of up to 40 meV. In practice this allows one
to electrostatically define quantum point contacts and localize electrons in
bilayer graphene quantum dots in a way that preserves valley information
(in contrast to physical patterning). Closer inspection reveals that such a
displacement field effectively upends the quadratic dispersion and for strong
enough fields introduces three mini-valleys per Dirac cone [38].

Interestingly, introducing a mass term ∝ σz in sublattice space that
causes a potential difference between the trigonal sublattices within one
graphene layer also opens a band gap. While such a configuration cannot be
exploited experimentally theorists often employ this approach in numerical
calculations as a robust method to avoid edge states [39].

2.2 Transition metal dichalcogenides

Transition metal dichalcogenides (TMDs) represent a family of 2D materials
commonly made up of one transition metal atom (molybdenum Mo or
tungsten W) and two chalcogen atoms (sulfur S, selenium Se or tellurium
Te). Similar to graphite their bulk form is a van der Waals stack of individual
three atom thick layers (metal sandwiched between chalcogen atoms, see
Fig. 2.4). The electronic structure of the metal and chalcogen are typically
well described by d orbitals and p orbitals respectively [40, 41]. I will briefly
introduce WSe2 and point out general aspects as well as differences to the
other TMDs whenever relevant.

TMD
exp.
[eV]

DFTb

[eV]

MoS2 2.5a 1.59

MoSe2 2.18c 1.34

WS2 2.14d 1.58

WSe2 2.51e 1.27

Tab. 2.2: Measured
and calculated band
gaps (∆EKK) for promi-
nent TMDs. a[42],
b[43], c[44], d[45], e[46]

2.2.1 Tungsten diselenide WSe2

The unit cell of tungsten diselenide (a1 = (a, 0)T ,a2 = (−a/2,
√

3a/2)T )
is hexagonal and features three atoms (1×W, 2×Se) positioned at rW =

(0, 0, 0)T and rSe = (0,a/
√

3,±z̄)T with lattice constant a = 3.32 Å and
layer separation z̄ = 1.67Å (see Fig. 2.4). TMDs are a good example for

∆valence
SO

∆conduction
SO

Fig. 2.3: Illustration
of the spin-valley tex-
ture of WSe2 in K and
K ,.

the change of properties (e.g. phonon frequencies [47]) when transitioning
from bulk (i.e. several layers) to the mono layer [48, 49]: Bulk TMDs are
generally indirect band gap semiconductors (see Table 2.2) with valence
band maxima at Γ and conduction band minima an K/K , (or Q = Γ̄K/2).
This changes when removing the neighboring layers (and thus the interlayer
coupling mediated for the most part by the chalcogen atoms) and the new
valence band maximum is shifted to K/K ,. However, for WSe2 there is
some evidence that the nature of the monolayer band gap may remain
indirect (minimal gap ∆EKQ [50]). Semi-local density functional theory [51]
is known to heavily underestimate the quasiparticle band gap of TMDs (see
also Table 2.2). This shortcoming is of little consequence for the character
of the involved states and can (for most investigations) be fixed by scissor
operators (i.e. a rigid shift of the conduction bands without altering their
wave functions [52]) which can increase the band gap to some experimentally
verified value. The position of the conduction band minima in reciprocal



12 2 2D crystals & lattice defects

space is also heavily influenced by strain [53]. This becomes immediately
relevant in Chapter 8.

The electronic band gap in TMDs is furthermore substantially renor-
malized by massive exciton binding energies (several hundred meV, [54,
55]). An effect ascribed to the strongly suppressed screening mechanisms in
2D materials [56]. The different types of TMDs all lack inversion symme-
try which in combination with heavy metal cores (∆SO ∝ Z4 with atomic
Z = 74(W) or Z = 42(Mo) ) manifests large spin-orbit coupling. ∆valence

SO

gets up ≈ 500meV whereas ∆valence
SO remains on the order of a few meV.

The sign of this spin splitting depends on the constituents of the TMD
(opposite in valence and conduction band for Mo or identical for W, see
Fig. 2.3). The spin splitting in the conduction band is maximal at the Q

point (an important point in reciprocal space for possibly indirect relaxation
processes in TMDs, albeit not a high symmetry point of the lattice). As
non-centrosymmetric materials TMDs exhibit non trivial spin texture with
opposite spin orientations in the K and K , valleys (see Fig. 2.4). This
interrelation of spin and valley degree of freedom (spin-valley locking [57])
allows for both valley- and spin-selective excitation (circular dichroism [58])
and enables long lived spin and valley accumulations [59].

2.3 Crystal lattice defects

A perfect crystal is an idealization. There is no such thing in nature. A
pristine crystalline structure, while it may indeed be preferred energetically,
is in the limit of low temperatures (atoms are relatively immobile in solids01)
difficult to achieve since eliminating whatever imperfections are introduced
into the crystal during its growth, processing or use is unlikely. These defects
come in a plethora of different variations and can among other criteria be
categorized via concepts of topological homotopy [60].

point defects do not extend in any space dimension. They typically involve
a few atoms at most, are historically called centers and can be specified via
Kröger-Vink notation [61]. Intrinsic point defects do not introduce foreign
atomic species into the crystal and thus only rearrange or add/remove
indigenous atoms (e.g. vacancies, self-interstitials, anti-sites, topological
defects, ...) while extrinsic or impurity defects add or substitute lattice
sites via foreign atoms (e.g. impurity interstitial, add-atoms, substitutional
centers, ...).

line defects are linear defects that extend in one dimension and can to
some extent be described via gauge theories [62]. The constituents of this
category also depend on the dimensionality of the material in question:
Three dimensional crystals may feature edge and screw dislocations caused
by premature termination of a plain of atoms or partial in-plane shifts of
lattice planes. Those are defined via a Burgers vector [63]. Studying two-
dimensional materials also introduces grain boundaries into this category.
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a b

c

d

e

f

Fig. 2.4: Schematic lattice of tungsten-diselenide (WSe2) (blue tungsten atoms and
orange selen atoms, bonds indicated in grey) in a z,y plane b x,y plane and c x, z
plane. d Unit cell employed throughout this thesis (see also b ). e Reciprocal unit
cell spanned by G1 and G2. The black hexagon represents the 1st Brillouin zone of WSe2.
High symmetry points of the lattice including the k-point path for the band structure
plots are indicated. f Band structure of WSe2 (computed along the path shown in e ).
Colorscale indicates spin character of the respective band in k-space.
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planar defects extend in two dimensions and include: grain boundaries (of
three dimensional materials), phase boundaries, stacking faults and many
more. Interfacial defects typically separate regions of the material that have
different crystal structures and or crystallographic orientations.

bulk defects are necessarily confined by planar defects and may take form
as voids (whole cavities of vacant lattice sites), pores, impurity clusters
and generally any form of conglomeration of point-, line- or planar-defects.
These defects generally occur on a much larger scale than microscopic im-
perfections.

Continuous improvement in the fabrication and preparation of two-
dimensional crystal structures [64, 65] has lead to excellent sample qualities
with low defect densities and high mobilities. To some extent it is also
possible to purposefully re-introduce certain defects in a controlled man-
ner to influence material properties via defect engineering [66, 67]. These
processes typically involves irradiation with either photons or high-energy
particles. Depending on defect formation energies and temperature it is
also possible for defects to migrate (possibly with a preference along certain
crystallographic directions) and rearrange into other configurations (e.g.
two vacancies transitioning into a di-vacancy).

The presence of lattice defects may introduce non-dispersive defect levels
into the band structure. These flat bands typically correspond to electronic
states localized in the real space vicinity of a point defect. Depending on
the local chemical structure of the defect (e.g. dangling bonds, different
coordination numbers) these defect levels may emerge at energies well inside
the band gap. Such configurations are referred to as deep defect levels
and tend to bind charge carriers much more strongly. Due to their high
ionization energies deep levels contribute very little to the free charge carriers.
Defects that introduce these deep levels (also called traps or recombination

centers) can be both desirable (e.g. switching devices that can exploit these
recombination centers to quickly remove minority carriers [68, 69]) and a
nuisance (e.g. reducing efficiency of photovoltaic cells).

Another, oftentimes more interesting configuration is if such a flat defect
band emerges close to a band edge (≈ 0.1 eV energy separation allows
for thermal ionization). Ionization energies can often be described by
modified hydrogen models. These states are referred to as donor or accep-

tordepending on whether they are close to the conduction or valence bands
respectively. Shallow defects drastically alter electronic or optical properties
in 2D semiconductors such as gapped bilayer graphene or TMDs. One such
example would be vacancy defects in WSe2 that are theorized to host donor
bound excitons and act as single photon emission centers. This topic is also
explored in Chapter 8.

01 “Solids always feel quite frosty.”, Prof. Reissner while deriving expressions for the
Debye temperature in solid state theory I.
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2.4 Moiré systems

Bilayer systems of 2D materials can generate superordinate periodicity if
certain conditions are met. Aligned Hetero-bilayers, stacks of two different
2D materials, with slightly different lattice constants can display long-range
periodic patterns to form so-called moiré super cells [70]. These patterns
usually consist of a large number of primitive unit cells of the constituent
materials and thus introduces a new, much larger length scale into the
system. Bilayers of the same materials, homo-bilayers, can also display
moiré patterns if the individual layers are slightly rotated with respect to
each other.

While homo-bilayers with hexagonal symmetry show quasi-periodic struc-
tures for all angles, perfect periodicity is only obtained for so-called com-
mensurable twist angels θcomm. [71, 72],

cos(θcomm.) =
3m2 + 3mr+ r2

2

3m2 + 3mr+ r2
with m, r ∈ N (2.12)

Fig. 2.5: Illustra-
tion of commensurable
moiré unit cells (green)
for twisted bilayers
(top layer - red, bot-
tom layer - blue) for
a m=1, r=2 (θ ≈ 32◦)
b m=1, r=1 (θ ≈ 21◦)
c m=1, r=4 (θ ≈ 42◦)

The new, generally larger moiré unit cell (see Fig. 2.5) is then (up to
shifts of origin) obtained via

(
A1

A2

)
=

[
m+ r m

2m+ r -(m+ r)

[(
a1

a2

)
(2.13)

While for sufficiently large m, r the commensurable angles seem densely
ranked (not in the mathematical sense), in reality lattice relaxation has to be
taken into account. Obviously, this reconstruction is twist-angle dependent
and will render some configurations energetically more stable than others.
This (apart from many other obstacles a theorist knows little about) makes
precise adjustment of bilayer twist angles experimentally quite challenging
[73–75].

Hetero-bilayers with marginally different lattice constants a,a , (e.g.
graphene/hBN) also generate moiré patterns for vanishing twist angle.
The new lattice periodicity λ then depends on lattice constant mismatch
ϵ = a ,

a − 1 as well as the twist angle θ[76]:

λ =
a(1 + ϵ)√

ϵ2 + 2(1 + ϵ)(1 − cos(θ))
(2.14)

Unfortunately moiré effects often become relevant when the supercell size
(number of atoms in moiré unit cell ∝ 1/θ2) is already too large for density
functional theory [77, 78]. While there exist works of computationally
demanding supercell DFT calculations [72, 79–82], L. Linhart (a PhD
predecessor in our group) has implemented ab-initio derived tight-binding
models [83, 84] based on sampling the local stacking configuration in large
moiré cells and mapping to small untwisted DFT calculations (see Chapter 11
for details). It is also worth noting that in stacked systems consisting of
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more than two layers one may form competing moiré lattices at more than
one interface. These concurring structures would then in theory again form
an even larger super moiré lattice. Depending on their relative energy scales
one of the moiré subsystems may dominate physical properties. Chapter 12
discusses the appearance of two competing moiré lattices in hBN/tBLG
stacks in the context of magnetotransport measurements



Chapter 3

Methods of solid state physics

“In the beginning there was noth-
ing, which exploded.”

T. Pratchett

3.1 Bloch’s theorem

We can describe crystalline systems (systems with long-range periodic
order) via a Hamiltonian Ĥ that includes a potential V̂ which respects the
periodicity of the lattice:

V̂(r) = V̂
(

r +

3∑
i=1

λiai

. ,, .
t

)
with λ1, λ2, λ3 ∈ Z (3.1)

with lattice vectors ai (see for example Fig. 2.1) and t a general translation
along these real space lattice vectors. The density n(r) = | <ψ|r> |2 has to
respect the same periodicity while the wavefunction, itself not a physical
observable, only needs to be periodic up to a uni-modular phase factor:

ψk(r + t) = eik·t ψk(r) (3.2)

Furthermore we can separate the wavefunction into a lattice periodic part
uk(r) = uk(r + t) (i.e. meaningfully defined only within the unit cell) and a
phase factor (Bloch phase) ψk(r) = eik·r uk(r). This insight by Felix Bloch
[85] has since been exploited in many computational implementations and
is a workhorse theorem in solid state physics.

3.2 Density functional theory

In computational materials science few methods are applied as frequently as
density functional theory (DFT) to understand and predict the electronic
structure of condensed matter. Not unlike Thomas-Fermi theory [86, 87]
but first formulated by Hohenberg and Kohn [88, 89] DFT is a versatile
quantum mechanical theory that solves the scaling problem of the many-
body Schrödinger equation by choosing the electron density n(r) as its key
variable.

The Hohenberg-Kohn theorems (somewhat generalized [90–92] from their
initial formulation) constitute the basis for this theory:
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I) Both the external potential Vext(r) and the total energy E are unique
functionals of the ground state density n(r) (typically proven via reductio

ad absurdum).

II) E[n] is minimal as n(r) approaches the exact ground state density.

This energy functional is of the form:

E[n] = Tni[n] + EV [n]. ,, .∫
Vext(r)n(r)dr

+ EHartree[n]. ,, .
e2

2

∫ ∫ n(r)n(r ,)
r−r , drdr ,

+ Exc[n]. ,, .
Ex[n]+Ec[n]

(3.3)

and includes the kinetic energy Ts[n] (of a non-interacting system with
identical density), the external potential contribution EV [n] as well as
the Hartree term EHartree[n] on an exact level. Furthermore it contains
contributions that are not known exactly and thus constitute a form of
approximation. These terms are collected into an exchange-correlation
functional Exc[n] that is also defined with deceptive simplicity by the above
equation as the difference between the exact functional and the sum of
Tni and EHartree. It is common practice to further subdivide this term into
correlation Ec[n] and exchange Ex[n] contributions. While the latter is
defined as the Hartree-Fock exchange energy functional, the correlation part
is then defined as the difference between the exact functional and the Hartree-
Fock approximation to the exact functional. Both exchange and correlation
can be properly treated with diagrammatic techniques in many-body theory
(which leaves the realm of mean-field theories such as DFT and therefore
the scope of this thesis). Improving the available approximations for Exc[n]

is still an active field of research [93, 94]. Simple and yet surprisingly
accurate approximations are semi-local functionals that only depend on
the electronic density n(r) (local density approximation (LDA) [51, 95])
and/or its gradient ∇n(r) (generalized gradient approximation (GGA))
where respecting the exchange-correlation-hole sum rule proved vital for
error cancellation [96].

Variational minimization of the total energy functional Eq. (3.3),
δE[n]/δn = 0 yields the Kohn-Sham equations,

n(r) =

N∑
i=1

fi|φi(r)|
2 (3.4)

]
−

,h2∇2

2m
+ Veff(n(r), r). ,, .

Vext+
δEHartree[n]

δn +
δExc[n]

δn

]
φi(r) = εiφi(r) (3.5)

which, while deceptively similar to Schrödinger-like equations, are typically
solved self-consistently (mind their non linearity due to Veff(n(r), r)). In
this formulation of DFT we have opted to solve for wave functions φi

(Kohn Sham orbitals) to generate an electronic density from (according to
the occupation function fi). While the resulting scaling of O(N3) (with
N the total number of electrons) limits DFT to systems no larger than
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roughly several hundred atoms it is often preferable over direct functional
minimization of E[n] (orbital free DFT) since the treatment of the kinetic
energy contributions become far less accurate with only the density as a
working variable [97].

In order to solve the non-linear eigenvalue equations Eq. (3.5) numerically
it is customary to expand our solution in a suitable set of basis functions
{Φi}. There are two main types of basis sets with fundamentally different
properties: localized pseudo-atomic orbitals (PAO) and delocalized plane
waves (PW) and lots of subcategories of the former. PW basis sets consist of
so called augmented plane waves truncated at a certain energy cut-off that
thus also controls the resolution of the real-space grid. In order to reduce the
necessary basis set size the system under consideration is typically divided
into active and spectator electrons with the latter efficiently replaced by
additional pseudo potentials (non-local potential terms that enforce the Pauli
exclusion of the now absent core levels). PW basis sets are equally applicable
to molecules or solids and display convenient convergence properties. Most
modern localized basis sets are some variation of contracted Gaussian-
type orbitals (CGTO) (ΦCGTO

abc (x,y, z) = N
∑n

i cix
aybzce−ζir

2

) which are
superpositions (to better approximate cusps) of atom-centered Gaussians.
The basis set size is determined by choosing a number of basis functions
per atomic orbital (minimal, double-zeta, triple-zeta, . . . ) as well as the
number of polarization functions (mixtures of different angular momenta).
These basis sets can be efficiently used in all-electron calculations (including
core states), need to be tweaked for molecular or solids calculations, exhibit
more complex convergence behavior (basis set superposition errors) and can
be post-processed [98] to be optimized for various applications.

DFT is a well developed tool to investigate ground state properties but
does a priori not provide insight into the response of systems to changes in
external parameters. However, the Hohenberg-Kohn theorems introduce the
total energy as a functional of the density while concealing its parametric
dependence on some external quantity λ (e.g. position of nucleii, unit cell
volume, ...). For any given set of these external parameters standard DFT
as introduced above suffices for determining the ground state. In order to
study the influence of these parameters we will generally require at least a
first order derivate dE/dλ. For the practical purpose of this thesis we will be
interested in atomic forces (e.g. geometry relaxation for defect structures).
Starting from a full Hamiltonian that includes both the electronic and ionic
degrees of freedom (i.e. He+I = Te+Ve−e+TI+VI−I+VI−e) we can employ a
Born-Oppenheimer product ansatz (e.g. |ψ{Rm},{rn}> := |χ{Rm}> · |θ{Rm},{rn}>)
and drop terms proportional to the mass ratio of electron and nucleus.
Assuming the electronic system reacts adiabatically to ionic changes it
would suffice to minimize VI−I + E({Rm}) to find the equilibrium of atomic
positions. E({Rm}) is the potential energy surface that encodes the energy
contributions of the electronic system for the ionic system and is readily
replaceable with the parametric energy functional of DFT E{Rm}[n]. Lastly
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the Hellman-Feynman theorem allows us to replace the total with a partial
derivative, yielding our atomic forces as:

fm = −
∂(VI−I + Vext)

∂Rm
(3.6)

We mention that modern DFT codes also add so called Pulay force correc-
tions [99] to the Hellman-Feynman forces that arise due to incompleteness
of the basis set. These corrections become especially important when the
basis set explicitly depends on the ionic positions (i.e. localized basis sets).

So in order to relax atomic positions in a given solid we have to adhere
to the twofold self-consistent process of 1) calculating the electronic ground
state for a fixed ionic configuration 2) update atomic positions according
to fm and repeat 1) and 2) until all atomic forces are below a predefined
threshold.

Unless specified otherwise, all DFT calculations in this thesis are (de-
pending on the choice of basis) either performed in the Vienna ab-initio
simulation package (VASP [100–103] with a plane wave basis set) or GPAW
[104–106] (Gaussian type basis sets) with the Perdew-Burke-Enzersdorf
exchange-correlation functional [107].

3.3 Tight-binding

The tight-binding (TB) formalism [108–110] constitutes an approximation
of the single-particle Schrödinger equation that projects it onto a set of
tightly bound (i.e. well localized) orbitals φα. The motivation for this
approximation is splitting the potential term V̂(r) of the Hamiltonian Ĥ into
that of an isolated atom Vatom(r) plus a (presumably) small term V lattice(r)

that accounts for the surrounding periodic lattice of atoms in a solid. The
eigenfunctions of the isolated atom [−,h2∇2/(2m) + Vatom(r)]φα = εαφα

then provide a natural basis that is usually referred to as a linear combination
of atomic orbitals (LCAO) basis set. The Bloch wave functions of a solid
can then be expanded in this basis as

χα,k(r) =
1√
N

∑
c

eik·Rα,c φα(r − Rα,c) (3.7)

without violating the periodicity condition Eq. (3.2). Rα,c points to the
αth orbital (out of no orbitals in the unit cell) in the cth periodic unit cell.
The electronic wavefunction in the solid is then made up of several of these
Bloch states corresponding to the same k (crystal momentum k is a good
quantum number in periodic lattices):

ψβ,k(r) =

no∑
α

bβ,α(k)χα,k(r) (3.8)

With this there are no different energy bands in the system, with energies
Eβ = <ψβ| |Ĥ| |ψβ> / <ψβ|ψβ>. The numerator evaluates to:
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<ψβ|Ĥ|ψβ> = 1
N

∑
α,c,δ,c ,

b∗
β,αbβ,δe

ik·(Rδ,c−Rα,c ,) <φα(r − Rα,c ,)|Ĥ|φδ(r − Rδ,c)> =

=
∑
α,c,δ

b∗
β,αbβ,δe

ik·(Rc+Rδ−Rα) <φα(r)|Ĥ|φδ(r − Rδ,c)> =

=
∑
α,δ

b∗
β,αbβ,δ <φα(r)|Ĥ

(0)|φδ(r)>
. ,, .

E
(0)
β <ψβ|ψβ>

+

∑
α

|bβ,α|
2 <φα(r)|V̂

lattice(r)|φα(r)>. ,, .
oα

+

∑
α,δ,c/=0

b∗
β,αbβ,δe

ik·(Rδ,c−Rα) <φα(r)|V̂
lattice(r)|φδ(r − Rδ,c)>. ,, .

γc
αδ

(3.9)

where we used translational invariance between the first two lines and iden-
tified the individual terms E

(0)
β as the (k-independent) energy contributions

of the isolated atom, oα the onsite term (i.e. the correction due to the
presence of the other atoms in the lattice) and γc

α,δ the hopping amplitude
between orbital α and orbital δ situated in unit cell c. The hopping integral
γc
α,δ(Rδ,c) generally decreases exponentially with the inter orbital distance.

Therefore all the summations will only have to take a finite number of
neighbouring sites into account. The number of orbitals per atomic site can

— depending on the material under investigation — often be restricted to
some outer shell eigenfunctions of the atomic Hamiltonian.

x

y

a

Fig. 3.1: Sketch of the
NN neighbour sites in
the graphene lattice.

Finally we arrive at the energy dispersion of the βth band,

Eβ,k = E
(0)
β +

∑
α |bβ,α|

2oα +
∑

α,δ,c/=0 b
∗
β,αbβ,δγαδ(Rc)e

ik·(Rδ,c−Rα)

1 +
∑

α,δ,c /=0 b
∗
β,αbβ,δηαδ(Rc)e

ik·(Rδ,c−Rα)

(3.10)
where the second term in the denominator, ηαδ(Rc) = <φα(r)|φδ(r − Rδ,c)>,
accounts for corrections of the norm <ψβ|ψβ> caused by finite overlaps
between orbitals on different sites.

3.3.1 Example: tight-binding models for the pz bands in
graphene

There are a plethora of valid TB parametrizations for single layer graphene
(SLG) [19, 111]. Here I briefly introduce TB models generated via maximally
localized Wannier functions (MLWF) [112] (which are employed throughout
this thesis) for the π bands of graphene. These models include varying
numbers of neighbour interactions (NN= 3, 5,10) (see Fig. 3.1). We include
two orbitals per unit cell (one pz orbital per carbon atom) represented by
orthogonal, well-localized basis functions , i.e the overlap matrix S in the
generalized eigenvalue problem

Hbβ = EβSbβ (3.11)
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reduces to the identity 12 in this case (bβ = (bβ,1,bβ,2)
T is the vector of

expansion coefficients).

a

d

b

c

Fig. 3.2: a pz bands of graphene calculated from TB models with different numbers of
neighbour interactions. b, c, d Periodic Hamiltonians H(λ1,λ2,0) for TB models of SLG
with 3, 5 and 10 NN interactions respectively with labels for (λ1, λ2, 0).

If the unit cell is large enough (i.e. it consists of n × n minimal unit
cells) the Hamiltonian matrix of that system H(n×n) is banded and includes
on-site elements si on the diagonal and up to NN hopping term γ

(NN)
ij on

the minor diagonals.

H{n×n} =




s0 γ01 γ02 0
γ
†
01 s1 γ12 γ13 0

γ
†
02 γ

†
12 s2 γ23

. . .

0 γ
†
13 γ

†
23

. . . . . . . . .

0
. . . . . . . . . . . .

. . . . . . s2n2




(3.12)
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x

y

Fig. 3.3: Sketch of
the periodic neighbour
unit cells in graphene.

Since we deal with a periodic system compartmentalized into minimal
unit cells (see Fig. 3.3) we have a whole set of periodic Hamiltonian matrices
(of size 2 × 2). The periodic Hamiltonian matrices H(λ1,λ2,λ3=0) determine
the interaction of sites in the original cell (0, 0, 0) with sites in the periodic
image of the cell (λ1, λ2, 0) translated along a linear combination of lattice
vectors {λ1 · a1, λ2 · a2, 0}. The range of the indices λ1, λ2, λ3 depends on the
range of non-zero interactions between periodically shifted unit cells and
thus on the number of neighbours any which orbital shares a finite hopping
amplitude with (see Fig. 3.2).

3.4 Quantum transport

We will give a very concise introduction to quantized transport in the context
of Landauer-Büttiker theory [113] and the tight-binding framework. Seeing
as this formalism is not a major part of my work I will only introduce the
basics (even though this discipline is a specialty of our group) and refer to
theses of colleagues [114–116] for a thorough introduction.

3.4.1 Green’s functions

Green’s functions are a vital and widely applied concept throughout physics
and engineering [117]. They represent integral kernels and are used to solve
equations involving a differential operator L:

L(q)r(q) = x(q) LG(q,q ,) = δ(q− q ,) (3.13)

→ r(q) =

∫
G(q,q ,)x(q ,)dq , (3.14)

where the response r to an excitation x of a system in this context is
computed via the Green’s function G ∝ L-1 (i.e. something resembling
the inverse of the differential operator). Hamiltonian systems in quantum
mechanics allow for a clever introduction of an energy dependent Green’s
function,

Ĝ(E) := limϵ→0

(
Ĥ - E± ϵ

)
(3.15)

where ϵ avoids issues at the eigen energies of the system and the direc-
tion of the limit approach defines retarded and advanced Green’s function
respectively.

3.4.2 Infinite waveguides and the recursive Green’s function
method

The total Hamiltonian of an infinite lead of repeated building blocks reads,

Ĥ =



Ĥ0 L̂I 0 · · ·
R̂I Ĥ0 L̂I 0 · · ·
0 R̂I Ĥ0 L̂I 0
... 0 R̂I

. . . . . .


 (3.16)
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where blocks described by Ĥ0 are coupled via interaction Hamiltonians
R̂I = L̂

†
I. Enforcing Bloch’s theorem via ψ = (..., e-ik∆xη,η, eik∆xη, ...)T we

can solve the eigenvalue problem Hψ = Eψ of the form,(
Ĥ0 + eik∆xĤ

(L)
I + e-ik∆xĤ

(R)
I

)
η = Eη (3.17)

by casting it into a space of double the size via the introduction of ζ = eik∆xη,[
Ĥ0 - E R̂I

1 0

](
ζ

η

)
= eik∆x

[
-L̂I 0

0 1

](
ζ

η

)
(3.18)

The 2N (twice the transversal system size) eigenvectors and eigenvalues En

of this generalized problem represent left- and right-moving lead modes of
the system identified via the sign of their group velocity,

v
(n)
G =

1
,h

∂En

∂k
= i∆x<ηn|eik∆xL̂I - e-ik∆xR̂I|ηn> (3.19)

Solutions of a square lattice with parabolic dispersion in the continuum
limit take the form sin(kyy) with quantized ky = nπ/W (with W the width
of the transversal y direction). Depending on the energy, the factor eik∆x

determines whether a solution propagates in x (-x) direction (i.e. kx ∈ R)
or exponentially decays (i.e. Im(kx) /= 0).

The Green’s function for such an infinite lead can be expressed in the
basis of left (right) moving Bloch states |ηl> (|ηr>) as,

G(x, x ,) = N

(∑
n

|ηl>eik∆x<ηl|Θ(x− x ,) +
∑
n

|ηr>e-ik∆x<ηr|Θ(x , − x)

)

(3.20)
with Heaviside function Θ and normalization constant N.

The recursive Green’s function formalism [115, 116] presents an elegant
algorithm for computing the total Green’s function of a scattering geometry
connected to two semi-infinite leads. By virtually cutting the entire region
into smaller building blocks we can invert the smaller regions individually
and then recombine them for the full Green’s function. This is achieved
via Dyson’s equation [118] which incorporates perturbations into Green’s
functions. For example, the Green’s function of a half infinite lead extending
to the left, GL(x, x ,) follows

GL = GS +GSR̂IG
LL̂IG

L (3.21)

where we exploit the idea that adding a single slice (described by GS) to
half an infinite lead again yields half an infinite lead. This kind of equa-
tions allow us to both dissect a larger section into smaller ones as well as
recombine them later on. The strategy of the overall algorithm would be to
identify building blocks of the scattering structure corresponding to different
transversal width. Then for all widths encountered:
I) solve the eigen problem Eq. (3.18) for an infinite lead,
II) express the half-infinite lead Green’s function GL in the freshly acquired
basis of Bloch states,
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III) extract the Green’s function of a rectangle G□ (a finite-length section
of the respective half-infinite lead),
IV) then re-assemble the solutions to acquire the total Green’s function Gtot

and
V) obtain transmission- tmn and reflection-coefficients rmn (i.e. the scatter-
ing matrix) by sandwiching the total Green’s function between eigenstates
of infinite leads.

Finally, Landauer-Büttiker theory [119] lets us compute the conductance
by summing over squares of transmission coefficients (

∑
m

∑
n |tmn|

2) and
multiplying by twice (spin) the conductance quantum e2/h.

3.5 Maximally localized Wannier functions

TB models need not necessarily employ atomic orbitals but can be formulated
with any reasonably localized set of basis functions. As alluded to in
Section 3.2, ab-initio electronic structure calculations are often solved in
terms of Bloch states (e.g. VASP). The formalism of Wannier functions
[120] provides an elegant bridge between highly accurate DFT calculations
and large scale TB models. The mth Wannier function |R,m> in a unit cell
pointed to by R is a non-unique Fourier transform of a mixture of Bloch
states |n, k>:

|R,m> = V

(2π)3

∫
e−ik·R ∑

n

Umn(k) |n, k>dk (3.22)

where Umn(k) represents a unitary mixing of Bloch states. The resulting
generalized Wannier functions will vary in their localization. One can
try to find a set of maximally localized Wannier functions (MLWF) by
tweaking Umn(k) to minimize one of many localization criteria [121–123].
In this thesis we adhere to minimizing the spread functional Ω (the sum of
quadratic spreads of the Wannier probability density) defined by Vanderbilt
and Marzari [124]:

Ω :=
∑
n

[ <r̂2>n. .. .
<0,n|r|0,n>

− <r̂>2
n....

<0,n|r2|0,n>

]
(3.23)

Successfully minimizing this spread functional (e.g. via steepest descend)
guarantees some important properties of the resulting MLWFs: 1) they
are unique, 2) exponentially localized and 3) are typically found to be
real as long as time reversal symmetry is not broken in the system under
consideration (i.e. systems without spin-orbit coupling).

If this transformation of Bloch states into Wannier orbitals incorporates
more energy bands than target MLWFs at some region in the Brillouin zone
(BZ) (e.g. energy bands of a different orbital character crossing through
the ones we are interested in modelling) one has to perform an appropriate
disentangling step. We pick energy ranges to build up N-dimensional sub
Hilbert spaces H(k) (i.e. an outer energy window that includes possible
Bloch states as well as an inner energy window the states in which are



26 3 Methods of solid state physics

guaranteed to be used). This optimal subspace selection is again based on
the spread functional Eq. (3.23) which can be decomposed into two terms:

Ω =
∑
n

[
<r2>n −

∑
R,m

| <R,m| r̂ |0,n> |2
]

. .. .
Ωi

+
∑
n

∑
R,m/=0,n

| <R,m| r̂ |0,n> |2

. .. .
Ωg

(3.24)
with the first (Ωi) measuring the k-space dispersion of the band-projection
operator and the latter (Ωg) quantifying the degree to which the Wannier
functions fail to be eigenfunctions of the projected position operators. Ωi

does not depend on Umn(k) which means the computation of MLWFs can
be decomposed into 1) minimizing Ωi via subspace selection and 2) subse-
quently finding the optimal mixing of the selected Bloch states. Physically
Ωi measures the similarity of the selected states across the BZ in terms of
the subspace mismatch between adjacent k-points:

Ωi = N
∑
k,b

wb

N∑
m

[
1 −

N∑
n

|<n, k|m, k + b>|2
]

(3.25)

with b connecting neighbouring k-points k, N some normalization and
wb weight factors introduced by the discrete derivatives with respect
to k used in evaluating the position operator elements in Eq. (3.24),
<R,m|̂r|0,n> = iV/(2π)3

∫
eik·R<m, k|∇k|n, k>dk. Depending on the desired

number of Wannier functions (i.e. the number of orbitals in the unit cell)
this non-convex, high-dimensional minimization problem benefits immensely
from sensible initial guesses. To this extent it is often a good idea to start
by projecting Bloch states onto LCAO orbitals. Nonetheless, finding a
high-quality Wannier parametrization requires both chemical intuition and
tenacity for several trial and error cycles. Chapter 6 of this thesis explores
ways to circumvent the Wannier transformation alltogether by invoking
machine learning techniques to extract highly accurate parametrizations
with merely band energies and geometry information as inputs.

Throughout this thesis all MLWF are calculated with the Wannier90 code
package [125] using the VASP2Wannier interface. The next section provides
a brief discussion for Wannier models of WSe2 (used in Chapter 8).

3.5.1 Example: MLWF of WSe2

Starting with a non-collinear, plane wave based DFT calculation (including
spin orbit coupling) we employ the vasp2wannier interface to produce a
TB parametrization of pristine WSe2. The Wannier model includes 22
orbitals (11 per spin component) and omits the bands below −12eV (see
Fig. 3.5d). Disentanglement proves fairly straightforward with the most
of the desired bands isolated in energy. We use px, py and pz orbitals as
initial projections for the selenium sites and d-orbitals for m = 0, 1, 2 (i.e.
dz2 ,dxz,dxy,dx2−y2 ,dxy) for the tungsten atoms.

The semi-local DFT calculation (PBE) heavily underestimate the band
gap to about 1.3eV [43]. The bands around the HOMO-LUMO gaps are to a
large extent made of tungsten d-orbitals while the orbitals character of the
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a

b

c

d

Fig. 3.5: Wannier band structure of pristine WSe2 with color scale indicating the
contribution of the different d-type orbitals (a - dz2 , b - dxz,yz, c - dx2−y2,xy) of W. Insets
represent schematics of the corresponding spherical harmonics. d DFT band structure
(solid black lines) of pristine WSe2 with Wannier band structure on top (dashed blue
lines). Shaded regions represent energy windows (inner - green, outer - red) for the
disentanglement process of wannier90.

lower valence bands (E < −1.7eV) is dominated by the selenium p-orbitals
(see Fig. 3.4). In terms of spherical harmonics the valence band around K

is dominated by dxy and dx2−y2 ( 50%) and transitions to dz2 at Γ . The
conduction band is mostly made up of dz2 at the K point and features a
pronounced character change to the m = 2 d-orbitals at M.



Chapter 4

Machine learning concepts

“But I don’t want to go among
mad people.”

Alice

“Oh, you can’t help that. We’re
all mad here.”

Cheshire Cat

The recent rise in popularity of so-called machine learning methods
provides a plethora of novel approaches for optimization and automization
tasks. These methods come with individual benefits as well as drawbacks
and the torrent of acronyms and keywords can seem daunting at first. This
section is by no means a complete introduction to the topic and highly
motivated readers are encouraged to take their pick among [126–129]. I will
give a concise and vastly incomplete introduction to the concepts relevant
for my work.

Let us start by charting out the machine learning landscape. The common
catchphrases artificial intelligence (AI), machine learning (ML) and deep
learning (DL) are best introduced as a kind of matryoshka doll with AI
spanning the largest conceptual space of trying to automate tasks or

activities that would usually involve human supervision or action [130].
This most vaguely defined discipline thus also encompasses all hard-coded
if bifurcations and virtually any kind of code that has a useful purpose. If
we choose to omit algorithms with hard-coded procedures and only focus

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040

AI ML DL h
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n
t

d
ra
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n
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Fig. 4.1: Schematic ML time line.
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on those that “learn” their purpose by observing data, we arrive at the
subdiscipline of machine learning. These algorithms undergo training (i.e.
establishing correlations between inputs and outputs of a general data set)
and thus formulate their own “rules” to process future data. Machine
learning can therefore be viewed as a technology that mines knowledge
from data. The a priori vaguely determined act of learning itself is best
defined by Mitchell [131]: “an algorithm learns if its performance measure
P improves with experience E for a given task T”. Therefore things learn if
they change in a way that allows them to perform better in the future (in
our daily language we often use “training” to designate a kind of mindless or
mundane learning which seems much more fitting here). The experience E

obviously represents a dataset with lots of examples (i.e. data points) that
are either labeled (typically via human assistance → supervised learning )
or unlabeled (unsupervised learning). The most common tasks T can be
categorized into:

classification computing f : Rn → {1, ...,k} that maps data x ∈ R
n to a “

category” in {1, ...,k}
(e.g. image processing, face recognition)

regression predict a real-valued variable f(x ,) given a pattern {xi,yi}i=1,...,N

with f : Rn → R and xi ∈ R
n,yi ∈ R

(e.g. algorithmic trading, ...)

density estimation estimate a density p : Rn → R+ that can be interpreted
as a probability distribution on the example space.
(e.g. automatic generative models)

reinforcement learning a virtual agent within an environment takes ac-
tions such that their mutual influence maximizes a cumulative reward.
(e.g. AI in games [132, 133], autonomous driving,...)

Fig. 4.2: Explanatory
sketches for the differ-
ent types of tasks.

Deep learning is again a subcategory to machine learning that involves so
called neural network models that generate their decision or approximation
power by successively applying seemingly simple but non-linear transforma-
tions to their input and repeatedly do so within a layered setup (deep then
refers to a large number of these layers).

Before diving into more specific machine learning algorithms I would
like to mention that the threshold of getting started with machine learning
is continuously lowered by many excellent and highly usable open source
implementations of the most frequently used algorithms in packages such
as scikit-learn [134], PyTorch [135] or TensorFlow [136].

4.1 Neural networks

Neural networks, or rather artificial neural networks, are interconnected
arrays of basic modules that to some extent imitate the functions of brain
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w1
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θ(Σ+ b)∑
a1

a2

a3

x1

x2

x3

y1

y2

Fig. 4.3: Schematic layout of a simple fully-connected feed-forward neural network layout
with two hidden layers (associated neurons in blue) that processes three input values
(pink input neurons) to a result stored in two output neurons (purple). Inset to the left
sketches an artificial neuron with inputs ai, weights wi, bias b and activation function θ.

nerve cells in living organisms [137]. These computational models aim to
allow data processing akin to the human brain which typically consists
of several 100 billion of neurons the communication of which occurs via
impulse-like electrical signals mediated by the synapses. A neuron is densely
connected to its peers and will thus receive numerous input signals. It then
“decides” whether to output (or “fire”) a signal of its own depending on the
type (excitatory or inhibitory) and magnitude of its incoming stimuli [138].

The fundamental building block of neural networks (the artificial neuron)
stems from models such as the threshold logic unit [137] by McCulloch and
Pitts in 1943 or the perceptron [139] of Rosenblatt in 1958. The inability of
these early models to learn the XOR logic gate [140] (a non linear separable
problem) led to a stagnant field of research until Rumelhart et. al. started
to rekindle the mindfulness to these models by successful application of back

propagation [141] in 1968. Followed by Hornik’s universal approximation

theorem [142] and the advent of efficient GPU computing the architectures
of deep neural networks became feasible. This created one of the most
prominent research area in recent years the success of which tentatively
culminated in superhuman performance in games of Go and Chess [132,
143] as well as impressive breakthroughs in protein folding [144, 145].

a
(l)
i = θ


n

(L-1)
n∑
j=0

w
(l)
ij a

(l−1)
j + b

(l)
i


 with l ∈ [1,L] (4.1)

The artificial neurons of modern day neural networks still work fundamen-
tally similar to these pioneering approaches: A neuron processes an arbitrary
but fixed amount of input activations a

(l−1)
i ∀ i ∈ [0,n(l-1)

n - 1] (coming
from a previous layer l - 1) by feeding the sum of all these weighted (weight
w

(l)
ij ∈ R connects neurons j in layer l - 1 to neuron i in layer l) inputs plus

a neuron specific bias b
(l)
i ∈ R into a non-linear activation function θ (see

Eq. (4.1) and Fig. 4.3). While the possible choices of this activation function
are numerous (Fig. 4.4), even barring the historically outdated ones, and
not necessarily identical for the different layers, the concatenation of these
relatively simple but non-linear functions creates an immense plasticity
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for the neural network to approximate a seemingly arbitrarily complicated

function Fw : x ∈ R
n

(0)
n → y ∈ R

n
(L)
n . This adaptability is then exploited

during training (see Section 4.1.1) where both weights w and biases b

of all neurons represent tunable parameters of the model. The universal
approximation theorem [142] in principle guarantees that a fully connected
neural network with a single hidden layer can approximate any compactly
supported, continuous function to arbitrary accuracy. However, it does
not provide a constructive prescription on the finite but presumably quite
large number of neurons in this shallow network. Thus in practice one often
employs “deep” (more hidden layers) but “leaner” (less neurons per layer)
networks to great success. If all neurons in the previous layer are connected
to all neurons in the following one the network is termed fully-connected
(otherwise called convolutional network). The absence of loop structures
for these connections classifies a network as feed-forward (otherwise termed
recurrent network). I will mostly discuss fully connected feed-forward net-
works and briefly introduce the specifics of convolutional neural networks
(see Section 4.1.3). Apart from this crude classification of different network
architectures it is worth noting that the topic of architecture search makes
up a research field on its own [146–149].

1
1+ex

sigmoid

tanh (x)

{
0,x<0

x,x≥0

ReLU

{
−0.01x,x<0

x ,x≥0

leaky ReLU

Fig. 4.4: Typical ac-
tivation functions θ(x).4.1.1 Network training & model fitting

So far we have introduced neural networks as general parametric (potentially
highly non-linear) functions. The total number d of the so called trainable
parameters (weights and biases) of wide or deep networks can become
immense (d > 106 is nothing out of the ordinary), especially so for fully-
connected networks ( Eq. (4.2)):

d =

L∑
l=1

n
(l)
n

(
1 + n

(l−1)
n

)
(4.2)

Determining the “correct” choice of these internal parameters for a given
task is done during “training”. This typically involves a sufficiently large set
of training examples (the training set St) and a set of validation examples
(validation set Sv). Furthermore one needs to be able to quantify the
network’s performance. This is of course dependent on the task at hand

but generally encompasses a so called loss function: L : Rn
(L)
n × R

n
(L)
n → R.

Equipped with such a loss function we can immediately evaluate how far
off-target the model prediction Fw(x) is in relation to the desired output
(the “truth”) y for a given input-output pair (x, y) in our data set. A loss
function can be highly customized and may also involve derived quantities
(see Table 4.1 for some common examples). Training a model thus constitutes
minimizing this loss function averaged over all available pairs in the training
set:

min
w

<L(Fw(x), y)>(x,y)∈St
(4.3)

re
g
re

ss
io

n

mean squared
error

||y − Fw(x)||2

mean absolute
error

||y − Fw(x)||

cl
a
ss

ifi
ca

ti
o
n

categorical
crossentropy

−
∑

i y ln (Fw(x))

Tab. 4.1: Common
loss functions L in re-
gression and classifica-
tion problems.
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Apart from the issue of efficiently implementing this minimization in
practice we have a priori no way to be sure if the network will succeed to
grasp the desired underlying patterns in our data. In other words, will
the network still predict meaningful when presented with inputs that it
has not seen during training? In this context we desire that the model
can “generalize” well enough to both effectively interpolate between known
training samples as well as extrapolate beyond them in a universal manner.
After all, a network lacking this property would be hardly more than an
unnecessarily sophisticated look-up table for its training data. In order
to evaluate model performance both during and after training (how else
would we define a meaningful stop criterion for the fitting process) it is
customary to split all available data into disjunct training and validation
sets. A very thorough assessment method (among other methods such
as bootstrapping or leave-p-out validation) is k-fold cross validation which
involves splitting the total data in k subsets S(i)∀i ∈ [1, k] before training k

different models by employing k - 1 of those subsets as training data S
(i)
t

and the remaining subset as validation data S
(i)
v before finally assessing the

performance via the validation error averaged over the k different models
(i.e. 1/k

∑k
i=1 L(Fw(x), y)>

(x,y)∈S
(i)
v

).

Training (i.e. the minimization problem introduced in Eq. (4.3)) is, despite
its high dimensionality d, usually already well handled by seemingly simple
optimization algorithms such as gradient descent. The new weights w , are
generated via:

w , = w - α∇wL̄w (4.4)

where α ∈ R
+ is the learning rate of the system and L̄w denotes the loss

function evaluated using the old weights and averaged over a batch B (i.e.
subset) of data points:

L̄w =
1
B

∑
(x,y)∈B

L(Fw(x), y) (4.5)

The batch size (i.e. the cardinality of B) can range from 1 (stochastic

gradient descent - update weights after processing one data point) up to the
full size of the training set. Iterating over the full training set is called an
epoch. Both batch size and learning rate are so called hyper parameters that
are not derived through training. However these parameters can heavily
influence efficiency and effectiveness of the training process.

Backpropagation refers to computing the gradient in weight space neces-
sary to execute an update of all the weights in a neural network. This aptly
termed process utilizes that a forward pass trough our network (i.e. evalu-
ating Fw(x) ) is merely a concatenation of (while non-linear) analytically
known activation functions. One can thus calculate derivatives of Fw with
respect to any weight via the chain rule. The necessary equations to update
all the weights can be elegantly formulated as simple matrix multiplications.
The approximation error a priori only accessible at the output layer can
thus be efficiently “back propagated” from layer L to L− 1 (and so forth)
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using linear algebra. Writing L as concisely as possible while highlighting
the nesting of its (in general) vector valued arguments:

L

(
f
(L)
1

(
f
(L−1)
1 (. . .), . . . , f(L−1)

nn (. . .)
). .. .

outputs of the neurons in layer L-1
connected to neuron 1 in the last layer L

, . . . , f(L)
n

(L)
n

(...)

. .. .
prediction (output of last network layer)

; y1, . . . ,y
n

(L)
n. .. .

truth

)
,

(4.6)
using short hand notation f

(l)
k =

∑
mw

(l)
kma

(l−1)
m =

∑
mw

(l)
kmθ(f

(l−1)
m )

we find the back propagation of the loss information as

∂L

∂f
(L−1)
k

=
∑
m

∂L

∂f
(L)
m

∂f
(L)
m

∂f
(L−1)
k

= θ ,(f(l−1)
k )

∑
m

wmk
∂L

∂f
(L)
m

. (4.7)

Recursive application of Eq. (4.7) can thus evaluate

∂L

∂w
(l)
ji

=
∂L

∂f
(l)
j

∂f
(l)
j

∂w
(l)
ji

=
∂L

∂f
(l)
j

a
(l)
i (4.8)

in all hidden layers l (regardless of network topology) and therefore update
all weights according to Eq. (4.5). The suitability of GPU computation for
this formulation of network training is at part responsible for the emergence
of the deep learning field.

forward
(predict)

backward
(train)

x y

Fig. 4.5: Information
flow schematic in neu-
ral networks.

Despite the apparent elegance of this back propagation update there is
the possibility that some of the gradients that are being multiplied together
along the way will vanish or diverge. While the first (e.g. gradient of
tanh(x) becomes very small for extreme arguments) could cut sections of
our network off the training process altogether while the latter would lead
to highly unstable weight updates. These issues while ever more prevalent
in deeper architectures can be easily mitigated by I) employing well behaved
activation functions (e.g. ReLU), II) appropriately initializing the weights
and biases [150] and III) standardizing the activations on-the-fly after each
layer to zero mean and unit variance (batch normalization [151]).

Modern back propagation algorithms [152] employ (among many other
technical ingenuities) adaptive learning rates and “momentum” (i.e. an
exponential moving average over past gradients) for the weight updates
to accelerate minimization in smooth sections of the loss function while
maintaining stability in highly structured regions.

The prescribed training routine is not to be run in perpetuity but requires
a halting criterion. While choices for this criterion are in no way unique
it is customary to monitor the validation loss throughout the training and
halt once this loss does not improve over a handful of epochs. Since each
weight update will only allow for minor improvements in overall network
performance one typically trains for many epochs before the model can
utilize its full predictive power.



34 4 Machine learning concepts

4.1.2 Regularization

Regularization usually refers to adapting an ill-posed optimization task by
adding additional penalties to the objective function. In the context of deep
learning it typically controls the bias-variance trade-off (i.e. how well the
model can generalize) when fitting a model.

The massive complexity of deep neural network architectures will (if
not impeded) lead to a model that works almost perfectly on the training
data. However, this behavior needs not necessarily transfer to unseen
data (validation set). This constitutes a typical case of overfitting (similar
problems arise in simple regression tasks when least-squares fitting data
points of a scalar function f(x) with a high order polynomial). In such
scenarios the network is well capable of learning underlying patterns in
the data but unfortunately picks up the features specific to the provided
training data instead of the more general patterns we would rather have it
learn. While such a deficiency is at heart a sampling issue of the available
training data (i.e. the best way to mitigate overfitting , even though very
academic, is to simply provide the network with more diverse data) one
typically adapts hyperparameters and introduces various penalizing effects
to the model as a countermeasure. The other extreme would be a network
that is far too simple (imagine a very shallow network with few trainable
parameters) to capture the intricate pattern of our data. In this case the
model only partially manages to learn the desired input-output mapping
and behaves too generic to be of real use (underfitting).

bare model

regularized

Fig. 4.6: Typical
learning curves of
unregularized and a
regularized network.

During a typical training process a reasonably complicated neural network
model typically transitions between an underfitting state (i.e. the model
initially has not learned a lot from the data) to an overfitting status (at
some point the model prevalently customizes to the training data). This
usually reflects in a trough-like structure for the validation loss. Initially
both training and validation loss decrease. The training loss will continue
to decrease (or converge) as training progresses while the validation loss
reaches a minimal value before starting to increase again once overfitting
sets in (see Fig. 4.6). With regularization one can typically achieve better
performance than simply halting the training a the minimal validation loss.

Apart from simply reducing the model complexity (e.g. network with
fewer layers) there are various approaches to introduce regularization to a
model:

Weight regularization [153, 154] makes it more costly for the model to
hold large weights by adding a penalty term to the loss function,

L = L0 + ηLreg. (4.9)

Common penalty terms Lreg are either L1 (||w||1 =
∑

i |wi|) or L2 norms
(||w||2 =

∑
i |wi|

2) of the total weight vector. L2 regularization limits model
complexity but can never really enforce a weight wi to exactly zero while
L1 additionally performs some feature selection by setting some weights
exactly zero. The hyperparameter η serves to regulate the magnitude of
regularization.
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Dropout [155] is an equally powerful regularization technique based on
the idea of model combination. It aims to create a network (total number
of nodes n) that is somewhat similar to an average of a vast collection of 2n

different “slimmed down” networks. Slim networks are spawned from the
underlying architecture by temporarily ignoring a randomly chosen subset
of all nodes within the network (see Fig. 4.7). A hyperparameter p controls
the probability with which to keep a node. These slim virtual networks
all share the same weights and biases (total number of parameters is not
increased by dropout) and only differ in their connectivity. We can als view
this as training 2n slim networks where each individual network is updated
very seldomly. Procuring a real average of all this models at prediction
time quickly gets out of reach. We can however use the full network so long
as its weights are multiplied by p to ensure that the expected output of
a node at training time matches the actual output at test time to create
an approximate average of 2n different networks. This idea of diversifying

Fig. 4.7: Schematic
explanation of slim-
ming networks by ran-
domly dropping nodes.

the realizations of a network structure aims to make the output features
of each individual node more useful and avoids training far too complex
co-adaptations into the model (several nodes relying heavily on few others)
which are less likely to correctly apply to novel data (i.e. less overfitting).
Empirical evidence suggests that this a very successful method to reduce
generalization errors. This improvement comes at the cost of another hyper
parameter p and slower convergence with respect to the number of epochs.

Data augmentation Another approach to help with generalization is to
artificially enlarge the available training set St by explicitly generating
several altered data points. This often goes hand in hand with ensuring the
model complies with desired invariances of the underlying data. A prime
example comes up in pattern recognition (e.g. detecting cats in pictures
should work regardless of their position and orientation within a given
picture) where augmentations can involve mirroring, rescaling or rotation
[156]. While having the model learn these invariances by applying symmetry
operations to the training data it might be preferable to pre-process the data
and extract invariant features and use those for training a model [157–159].

4.1.3 Convolutional neural networks

It is fairly straightforward to imagine that there is a vast freedom in the
architecture of neural networks [160]. Besides to number and size of layers
one can also change the connectedness of individual nodes. This can involve
connections skipping some layers altogether (residual networks [161]), closed
loop structures with internal memory (recurrent networks [162] and long

short-term memory networks [163]) and various forms of more sparsely
connected networks (convolutional networks [164–166], CNN), the latter of
which we will briefly discuss here.

CNNs adhere to two main principles for connecting nodes in adjacent lay-
ers: locality (i.e structure conserving) and shared weights (i.e. translational
invariance). Layers in convolutional networks can be thought of as 2D arrays
where locality implies that a neuron in layer l+ 1 is linked to only a “local”
subset of the neurons in layer l. This connectedness is achieved by a so
called kernel or filter which is typically a small 2D array that stores weights.
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1× 3×

flatten

Fig. 4.8: Diagrammatic structure of a convolutional network with two convolutional layers
(shape and number of filter kernels indicated for each layer) connected to fully-connected
layers on the output side.

That same filter is then used to compute the activations for all neurons in
layer l+ 1 (shared weights) by traversing it across the previous layer with a
given stride length (see Fig. 4.8). A convolutional layer typically consists
of several channels that hold different representations of the data and are
often referred to as feature maps (often depicted as a third dimension to the
2D arrays). The desired number of channels in layer l determines the depth
of the filter/kernel and we will employ separate kernels for each channel in
layer l+ 1:

layer type
&

size

# of I
parameters

dense

1282

↓
642

67,108,864

conv.

(3 × 3)

16 × 1282

↓
64 × 642

9,280

Tab. 4.2: Comparison
of the number of train-
able parameters nec-
essary for connecting
two layers of a neural
network of type dense
or convolutional.
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(l)
c


 with l ∈ [1,L] (4.10)

where p = (row, column)(p ,) are 2D index vectors and c(c ,) runs over all
channels in layer l(l + 1) respectively. U(p) constitutes a local environ-
ment depending on the kernel size. In short the action of a convolutional
layer is element-wise multiplication with the kernel followed by subsequent
summation.

A convolutional layer is thus best suited to process data with underlying
spacial correlations (e.g. object detection in images). CNNs therefore extract
local attributes that are gradually processed into higher-order feature maps
as the information propagates through layers that decrease in height and
width but grow in depth (# of channels). This compression in the first
two dimensions occurs naturally due to the convolution with kernel sizes
greater than one but can be customized by appropriate use of padding [167]
and or pooling [168]. Zero padding can avoid premature information loss at
the border nodes in shallow layers (i.e. it keeps the height and/or width
constant during convolution) caused by the natural decrease in layer size:
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h(l+1) =
h(l) − k

(l)
y

s(l)
+ 1 (4.11)

where h represents the height of the respective layer, k(l)y ist the height
of the Kernel matrix and s(l) the stride. Pooling on the other hand is used
to actively reduce the dimensionality of the feature maps by extracting
pertinent details at the expense of discarding irrelevant information. This
downsampling procedure which increases the feasible depth of convolutional
layers by economizing on parameters while acting as a countermeasure to
overfitting [168] can be implemented in different variations (see Fig. 4.9).

7 9 3 5

0 4 0 0

5 0 9 4

9 2 8 6

original feature map

9 9

9 5

max
pooling

4.25 6.75

5 2

average
pooling

Fig. 4.9: Exemplary
depiction of different
pooling prescriptions.

In some sense convolutional layers enable a form of automated preprocess-
ing of the data. They act as trainable feature extractors with a comparatively
managable number of parameters due to locality and shared weights (see
Table 4.2). This automatically preprocessed information is then typically
fed into few fully-connected feed-forward layers that transform the data into
the desired output (i.e. classification or regression).

4.2 Gaussian Process Regression

Gaussian processes (GPs) are stochastic models that represent a collection
of random variables with the probability distribution of any finite subset of
which being a multivariate Gaussian [169]. They follow an inherently differ-
ent regression paradigm than most other machine learning algorithms: If one
wishes to find a scalar valued function with vector valued inputs f : Rn → R

that is most consistent with training data, the most common approach is to
restrict the available function space to some class of appropriate functions,
the best of which is thereafter chosen by tuning parameters that when varied
essentially span the elected sub space of functions. This parametric approach
inelegantly depends on the users ability to correctly choose a suitable class
of functions that is capable of adequately modeling the underlying patterns
within the data. GPs however employ a more abstract but vastly powerful
strategy of establishing Bayesian prior probabilities over function space that
can be used to extract a seemingly parameter-free likeliest function via
inference.

Fig. 4.10: One dimen-
sional Gaussian with
exemplary means and
variances.

I will try to introduce GPs in a way short enough for the methods
section of this thesis yet descriptive enough to easily follow its vainly
application for defect parametrization later on. I advise the avid reader to
study the definitive book on GPs [169], the original publication [170] or
alternatively harness some of the concise yet vividly picturesque introductory
web articles [171, 172] available.

4.2.1 Multivariate Gaussian

The normalized probability density of a univariate (1D) Gaussian distribu-
tion (or normal distribution, see Fig. 4.10) for a random variable x ∈ R is
given by:

p(x;µ,σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.12)
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with mean µ ∈ R and variance σ2 ∈ R
+
0 .

Its generalization to a d dimensional vector of random variables x =

(x1, x2, ..., xd)T ∈ R
d, where every linear combination a · x (with arbitrary

but constant vector (a1,a2, ...,ad)
T ∈ R

d) is normally distributed results
in the joint normal distribution or multivariate Gaussian:

p(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
e−

1
2
(x−µ)TΣ−1(x−µ) (4.13)

where the argument of the exponential is still a quadratic form which
now involves a mean vector µ = (µ1,µ2, ...,µd)

T ∈ R
d and the symmetric

positive definite covariance matrix Σ ∈ R
d × R

d which holds the covariance
Cov(xi, xj) of all possible pairs of random variables in x:

Cov(xi, xj) = <xixj>− <xi><xj> (4.14)

Σ =

[
1 0.6

0.6 1

]

Σ =

[
1 0.4

0.4 1

]

Σ =

[
1 0.2

0.2 1

]

Σ =

[
1 0
0 1

]

Fig. 4.11: Contour
plots of two dimen-
sional Gaussian distri-
butions labeled with
percentiles. Subplots
correspond to different
Covariance matrices.

The covariance matrix thus expresses the individual variances of the
random variables on its diagonal while the off-diagonal elements describe
how correlated two components of x are (see Fig. 4.11).

Given such a d dimensional distribution one can repeatedly sample random
vectors {x}s∀s ∈ [1,nsamples] and plot their components in a scatter plot (see
Fig. 4.12) for different correlation strengths in the covariance matrix (off
diagonal elements of Σ). If the components are entirely uncorrelated (i.e.
Σij = 0 ∀ i /= j) then any sample vector will be a collection of independent
values that form a seemingly random and incoherent pattern (green markers
in Fig. 4.12a). However, increasing correlation will lead to smoother patterns
due to the proclivity of neighbouring elements to take somewhat similar
values (purple markers in Fig. 4.12a) or almost identical values for very
strong (and long ranged) correlation (i.e. all components are very likely
to assume the same random value, orange markers in Fig. 4.12a). While
individual samples of the same distribution will obviously differ, samples
originating from multivariate Gaussians with different covariances will when
viewed as a collection differ in their smoothness. Since both means µ = 0 and
diagonal parts of Σ remain unchanged for these different distributions the
ensemble average over many samples will always give zero for all components
of x with equal variance (see Fig. 4.12b).

marginalization extract partial information by integrating the original
distribution p(xa, xb) along dimensions of no interest:

p(xa) =

∫
xb

p(xa, xb)dxb (4.15)

conditioning determine the probability distribution of a subset of variables
while fixing the remaining ones to some value (i.e. formulate a condition for
them). This is typically done via Bayesian inference (Bayes rule):

p(xa|xb = y) =
p(xa, xb)

p(xb)
(4.16)
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If the original and marginalized distributions are all Gaussians the condi-
tional distribution is also guaranteed to be Gaussian with adapted mean
vector µ̃ and covariance matrix Σ̃:

µ = (µa,µb)
T → µ̃ = µa + γabγ

−1
bb (y − µb) (4.17)

Σ =

[
γaa γab

γT
ab γbb

]
→ Σ̃ = γaa − γabγ

−1
bbγ

T
ab (4.18)

In the context of this d-dimensional distribution we can exploit a con-
venient property of multivariate Gaussians: They are closed under both
conditioning and marginalization. This algebraic property of the resulting
distribution after either fixing a coordinate or tracing over it is again a
Gaussian allows one to make use of analytical expressions for both processes.
If we again examine samples from the 40-dimensional Gaussian used in
Fig. 4.12 but this time condition components x0, x12, x27 and x38 to fixed
values we will necessarily draw samples that are guaranteed to “pass through”
these points but retain some randomness in the other components.

a

b

c

d

Fig. 4.12: Colors correspond to different degrees of correlation in the covariance matrix
similar to Fig. 4.11. a Three random vectors x sampled from a 40 dimensional Gaussian.
b Interpolated mean and 1 σ intervals (light grey area between dashed lines). c Three
random vectors x sampled from a 40 dimensional Gaussian conditioned to four training
data points (marked as black diamonds). d Interpolated mean and 1 σ intervals for the
conditioned Gaussian.
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From here it is quite straightforward to imagine a kind of ensemble average
over various such samples to give a most probable, average function that
approximates the underlying data pattern. Since all the distributions are
Gaussians we can calculate the corresponding mean vector µ̃ analytically
(Eq. (4.17)) without the need for evaluating sample averages. Moreover we
can also calculate the conditioned variances and use them as a measure
of uncertainty for our regression fit (i.e. which coordinates of our random
vector are least determinate and therefore benefit most from acquiring
additional training data points). This process gives us both an optimal
non-parametric candidate function for the gathered data (see solid lines in
Fig. 4.12d) as well as an (potentially even more valuable) error bar (see
hued regions bounded by dashed lines in Fig. 4.12d). Such an error estimate
is especially important for fitting problems for which every data point to
be acquired is computationally expensive (i.e. the objective function f(x)

is difficult to evaluate) and thus one wishes to avoid unnecessary sampling
(especially so in high dimensional input domains). In these cases the error
estimation allows for efficient global optimization via Bayesian optimization

schemes.

4.2.2 Gaussian Process

A Gaussian process (GP) is a stochastic process [173] and can be viewed as an
infinite-dimensional generalization of the Gaussian probability distribution
and therefore acts as a distribution over functions (i.e. continuous domains).
We therefore replace the mean vector µ by a mean function m(x), define
the covariance matrix Σ by a covariance- or kernel function k(x, x ,) and
denote our random variable (function value) f(x) as:

f(x) ∼ GP
(
m(x), k(x, x ,)

)
(4.19)

The crux of this concept comes with realizing that so long as we only ever
query the function at a finite number of points the closedness of Gaussians
under marginalization implies that this result has to be identical to taking
infinitely many points into account (i.e. examining a larger set does not
change the distribution over the smaller set). This property is often referred
to as marginalization property or consistency and necessitates that all
possible finite queries of the GP are consistent with one another (this is
also at the heart of what makes GPs computationally tractable).

Assume we have nt training input/output pairs (xt,yt)i ∀ i ∈ [1,nt] and
np inputs xp at which we aim to predict. With this we can imagine a joint
training/prediction prior as a GP with zero mean:

GP (0,Σt+p) and Σt+p =

[
Σt Σtp

Σpt Σp

]
(4.20)
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We predict by conditioning on the observed training outputs yt which
will again yield a GP with a predictive mean and variance function:

m(x) = ΣxtΣ
−1
t yt (4.21)

K(x, x ,) = Σt − ΣxtΣ
−1
t Σtx (4.22)

with x(x ,) ∈ {xp}1≤i≤np
. While this is in principle a fully correlated

prediction (i.e. it provides predictive correlations between any pair of
prediction outputs) it is often sufficient to use the marginal variances (the
diagonal part of Σt, x = x ,) to gauge the uncertainty of a prediction. While
the matrix inversion in the predictive mean m(x) Eq. (4.21) costs O(n3

t) we
can precompute Σ−1

t yt and only calculate the weighted sum of these basis
functions for a prediction at x in O(nt), as long as the training set remains
unchanged. If we also want a confidence estimate preparatory work does not
help anymore. Eqs. (4.21) and (4.22) are typically implemented via Cholesky
decomposition [174]. We can typically initialize our GP with a zero mean

squared exponential

σ2 exp
(
−∆x2

2l2

)

rational quadratic

σ2
(

1 + ∆x
2αl2

)−α

periodic

exp
(
−

2 sin(0.5∆x)

λ2

)

Matérn
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Γ(ν)

(√
2ν∆x
l

)ν
Kν

(√
2ν∆x
l

)

linear

σ2
0 + x · x ,

Tab. 4.3: Common
kernels/covariance
functions (if station-
ary: k(x, x ,) = k(∆x))
with representative
functions sampled
from the prior distri-
bution (zero mean
and variance indicated
in black and grey
respectively).

function but have to be more thoughtful about the covariance matrix which
is typically created from a kernel function k(x, x ,). These kernel functions
are also used in other ML algorithms (e.g. support vector machines [175])
and are conceptually speaking some form of similarity measure in some
abstract, higher dimensional feature space [176, 177].

kernel functions denoted k(x, y) : Rn × R
n → R correspond to computing

a dot product of some feature vectors χ(x) : R
n → R

m without explicit
knowledge about this potentially higher-dimensional feature space. A generic
example kernel function:

k(x, y) := (1 + x · y)2 (4.23)

= 1 + x2
1y

2
1 + x2

2y
2
2 + 2x1y1 + x2y2 + 2x1x2y1y2 (4.24)

would thus correspond to calculating a dot product of the two vectors
(1, x2

1, x2
2,
√

2x1,
√

2x2,
√

2x1x2) and (1,y2
1,y2

2,
√

2y1,
√

2y2,
√

2y1y2) in a 6
dimensional feature space. In the same sense we can interpret a kernel of
the form k(x, y) = exp

(
−||x − y||2

)
acting as an inner product in an infinite

dimensional feature space when viewed as a Taylor expansion.

The choice of kernel function determines the properties (e.g. smoothness)
of the underlying sample functions and thus calls for a careful selection
depending one the particular process we try to model. There is a variety of
common kernel functions (see Table 4.3) that can be broadly divided into
non-stationary and stationary kernels with the latter remaining invariant
under translations (they only have relative coordinates as arguments). A
detailed introduction to kernel choice is given in [178]. The flexibility of
choosing a kernel does not stop at the common kernels found in Table 4.3.
We can also combine several kernels into a new one (that we believe — given
some domain knowledge — better reflects the underlying patterns) by either
adding or multiplying them (see [170, 172] for details).
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All these kernel functions will naturally introduce some hyper parameters
θ to the GP (e.g. length scale l, amplitude σ, scale mixture parameter
α, ...). Another upside of the full probabilistic nature of GPs is that they
come with an automatic selection process for these parameters that does
not involve any form of cross validation. While analytically calculating a
Bayesian posterior p(θ|yt) might work in some cases the generally more
robust approach is to minimize the negative log marginal likelihood cost
function with respect to θ:

log (p (y|θ)) = −
1
2

yT
t Σ

−1
t yt −

1
2

log |Σt|−
nt

2
log(2π), (4.25)

where the first term measures how well the model fits the training data
points yt, the second penalizes model complexity (Occam’s razor) and the
last accounts for normalization. We thus aim to maximize the probabil-
ity of the monitored data given our model. Despite the non-convexity of
this minimization problem standard conjugate gradient descent methods in
combination with randomly initiated restarts typically avoid local minima
reasonably well. Involved gradients are readily computable with the numeri-
cal bottleneck of the entire optimization again being the matrix inversion of
Σ. The number of hyper parameters in standard kernel functions is typically
well manageable and overfitting is usually not an issue. In problems with
multidimensional inputs x ∈ R

d some of the hyper parameters (e.g. length
scale l) may be split up into individual parameters for each dimension
li∀ i ∈ [1,d]. Optimizing them individually can to some extent include
automatic feature selection or relevance detection [179] with the downside
of quickly growing the number of hyper parameters.
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Chapter 5

Manipulating Quantum dots through
lattice defects

“Science is what we understand
well enough to explain to a com-
puter; art is everything else.”

Donald E. Knuth

This chapter summarizes my first project during my PhD [180] and
represents a natural extension to calculations started during my master
thesis. We model the influence of lattice defects on the level structure
of graphene quantum dots (GQDs). We study both the adiabatic level
spacing “landscape” — orbital splitting and valley splitting — as well as
transition dynamics between GQD-states. The system is modeled using a
tight-binding approach with onsite- and hopping parameters in the vicinity
of the defect region extracted from density functional theory via Wannier
orbitals while time propagation is done using Magnus operators. Different
defect types, such as double vacancy, Stone-Wales, flower and Si substitution
are considered. We predict tunable valley splittings of the order of 2-20 meV.
The level structure can thus be tailored at will by engineering appropriate
defect geometries.

Unique electronic properties and long spin coherence times make graphene
[23, 181, 182] a promising host material for quantum dots which might one
day replace GaAs as the state-of-the-art material for both spintronic [183–
186] and valleytronic applications [15, 187, 188]. Unfortunately, patterning
graphene to form quantum dots yields devices dominated by edge effects [189,
190]. The gapless spectrum of graphene makes electrostatic confinement
challenging. Recent developments towards so called edge-free quantum dots
in single-layer graphene by a combination of electric and magnetic fields
[14, 191–196] pave the way for graphene quantum dots (GQDs) with a
level spectrum free of edge effects. GQDs are appealing host materials for
spin-qubits [184, 186]. These are unfeasible without controlled breaking of
the valley degree of freedom of graphene. The hexagonal symmetry of the
honeycomb lattice results in two inequivalent electronic states in graphene,
so-called valleys, which we label with “+” and “−”. Quantum states in
pristine graphene carry this valley index τ = ± as an additional quantum
number. Imagining a setup of two singly occupied graphene quantum dots
that are controllably coupled by an exchange interaction would (together
with single spin rotations) present all the ingredients required for general
quantum computation gates.
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However, the additional valley quantum number allows for both electrons
to occupy the same dot even in a triplett spin state and thus heavily
supresses a necessary singlet-triplet splitting J /= 0. Apriori this cannot be
remedied in single layer graphene given the intrinsic valley degeneracy. In
this project we simulate the spectrum of electrostatically defined GQDs in
the presence of lattice defects. In particular, we focus on the controlled
breaking of the valley symmetry by defects close to the GQD. Tremendous
improvement in the synthesis of graphene nanostructures [64, 65] has enabled
very clean samples with high mobility and low defect density. Instead of
many randomly distributed defects hampering device performance, one can
envision exploiting specific lattice defects in graphene which actively tune
the level spectrum of edgeless GQDs in their close vicinity. The possibility
to purposefully create a certain defect density via high-energy particle beam
bombardment [66, 197, 198] in graphene may ultimately develop towards
systematically placing certain defects in a controlled manner.

5.1 Smoothly confined quantum dots in graphene

Inducing smooth electrostatic confinement in single layer graphene involves
combining an out-of-plane magnetic field (to ensure Landau quantization)
with an electric field. The Landau level energies E(n) for pristine graphene
in a perpendicular magnetic field B are given by [23]

E
(n)
L = vF · sgn(n)

√
2h́e
c

|B||n| with n ∈ Z, (5.1)

with Fermi velocity vF. The energy gaps between Landau levels (∆E0 =

E
(1)
L − E

(0)
L ≈ 80meV for B = 7 T) allow electrostatic confinement given a

suitable electrostatic potential. This potential can be induced by a scanning
tunneling microscopy (STM) tip hovering over the graphene flake [14, 191]
(see Fig. 5.1).

Fig. 5.1: a Schematic setup of STM tip and graphene flake on an hBN substrate. b
Achieving confinement within the first Landau gap

We assume that substrate effects are small compared to the tip-induced
confinement, as readily achieved using an unaligned atomically flat substrate
such as hexagonal boron nitride (hBN). The STM tip locally shifts the
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energy relative to the Landau levels. The resulting smooth confinement
avoids any physical edges and hosts four-fold near-degenerate spin-valley
quadruplets [14]. The energy spacing between the quadruplets is determined
by the electrostatic environment created by the STM tip. In practice [14],
one finds values of the order of 10 meV, about one order of magnitude
smaller than ∆E0. The homogeneous magnetic field used for inducing
Landau quantization leads to a small spin splitting on the order of 800µeV
(at B = 7 T) between the two spin doublets of the quadruplet. The GQDs
defined by a mobile STM tip can easily be moved with respect to the
graphene lattice, as opposed to GQDs created by patterning of the lattice.
Creating the GQD with an STM tip also provides an elegant way to measure
the energies of individual quantum dot states via charging events [14]. Since
the spectrum of the quantum dot reacts sensitively to the local electronic
environment it can be used as a sensitive probe of the local electronic
structure [191]. Exchanging the STM tip for an array of electric gates could
also provide motion on relevant time scales for dynamic switching between
dot states.

This project includes: I) our approach for accurately modeling quantum
dot states in the presence of defects, II) calculations on the effect of several
lattice defects (double vacancy, Si substitution and flower defect) on the
quantum dot states, with a particular focus on valley symmetry breaking
induced by these defects. We identify several avoided crossings within the
valley subspace, suggesting that the valley splitting changes sign when the
dot passes through the defect. III) We finally show how such crossings
can be exploited to dynamically obtain a desired state by transitioning the
crossing (in real space) either adiabatically or diabatically (i.e. at different
traversal velocities).

5.2 Model

We model a finite-sized, rectangular graphene flake with an area of approxi-
mately 120 × 100 nm2 using a tight-binding Hamiltonian

Ĥ(E) =
∑
i

siĉ
†
i ĉi +

∑
<i,j>

tijĉ
†
i ĉj + Σ(E) (5.2)

with ĉ
†
i(ĉi) representing the creation (annihilation) operators of a quasipar-

ticle at site i with position ri, si the onsite (diagonal) matrix elements and
tij the hopping zemplitudes between sites i and j. The sum over j runs over
the nearest-neighbour sites included: we use up to 10th nearest-neighbour
hopping with values taken from density functional theory by Wannierization
[112]. An energy-dependent self-energy [199, 200] Σ(E) implements open
boundary conditions on all four sides (see Fig. 5.2a). This avoids edge effects
and also filters out delocalized states [189]. We do not include physical
spin. A perpendicular, homogeneous magnetic field (7 T) enters the hopping
matrix elements tij via a Peierl’s phase. For now, we neglect the influence of
the hBN substrate, except for its effect on the electrostatic environment. We
will explicitly consider the influence of (substrate-induced) disorder below.
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Fig. 5.2: a Schematic depiction of the model graphene-flake with red marker indicating
the embedding position for defects (flake center) and the green circle representing the
GQD (possibly shifted relative to the defect by RT = (XT , YT ). b sequence of eigenenergies
(real part) around the Dirac point for different values of tip voltage (and thus “depth”
of the GQD potential) filtered for localized (low imaginary parts Γi,τ , blue dots) and
delocalized states (high imaginary parts Γi,τ, grey dots). Landau level energies (horizontal
dot-dashed green lines) as well as the Fermi level for defining occupied GQD states are
indicated (red line). c Energy level diagram for the lowest two orbitals of a GQD with
orbital splitting ∆O

1 , valley splitting ∆τ
1 and spin splitting ∆σ indicated.

To model the electrostatic environment due to an STM tip at a voltage
V0, we numerically solve a classical Poisson equation [14] with the following
parameters: rtip = 120 nm, ϵhBN = 4, ϵgr = 2.5 and a thickness of the hBN
substrate dhBN ≈ 30 nm. Following [201] we fit an analytic function to
arrive at a rotationally symmetric potential

φtip(r) =

{
−V0 · cos5

(
π

2α |r|
)

, |r| < α

0, |r| > α
(5.3)

with

α = 2309|V0|

,..√1 +

√
0.4

0.005 + |V0|
. (5.4)

which can be easily implemented into our tight binding calculations (see
supplemental information of [14] for details regarding the tip potential calcu-
lation). At typical tip voltages we obtain a potential well of approximately
20 nm in diameter.
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We then solve the eigenproblem]
Ĥ(EF) +

∑
l

φtip(rl − RT )ĉ
†
l ĉl

]
|Ψτ

j >=εj,τ|Ψ
τ
j > (5.5)

for eigenvalues within an energy range of interest via Krylov methods
[202], where j counts the orbital energy levels and τ = +,− refers to the
valley index of graphene. Here, EF is the Fermi level of the surrounding
graphene, which is tuned into the bulk Landau gap to optimize confinement.
We model level spacings obtained in experiment, where one scans the tip
potential and detects charging events whenever a GQD level is occupied
[14]. We can solve Eq. (5.5) for a given V0 to determine eigenenergies
εj,τ(V0) (Fig. 5.2b). Since the self-energy contained within the Hamiltonian
breaks time-reversal symmetry (it includes only outgoing lead modes, not
incoming ones), (Eq. (5.5)) yields complex eigenvalues εj,τ = ϵj,τ − iΓj,τ.
The imaginary part Γj,τ describes the coupling to the environment — we
can thus easily distinguish between states localized within the GQD (blue
lines in Fig. 5.2b) and delocalized Bloch states (gray lines in Fig. 5.2b,
Γ < 190µeV gives a reasonable threshold). We extract the values of V0 at
which eigenvalues corresponding to localized states cross the Fermi level
EF [red crosses in Fig. 5.2b]. Recalculating for different displacements
RT = (XT , YT ) of the tip potential allows us to map out a “level spacing
landscape”,

V
j,τ
0 (RT ,EF) : εj,τ(RT ;Vj,τ

0 ) = EF. (5.6)

We simplify the eigenvalue problem Eq. (5.5) by evaluating the now energy-
dependent Hamiltonian (due to the energy-dependent selfenergy for the
open boundaries) at EF instead of εj,τ to avoid solving an otherwise quite
cumbersome non-linear eigenvalue problem. This approximation becomes
exact in the limit εj,τ → EF, which is exactly the eigenenergy of each
dot-state solution in Eq. (5.6) (red crosses in Fig. 5.2b). For a pristine
graphene lattice, level (j, τ) crosses the Fermi level at constant tip potential
(V0(RT ) = V

j,τ
0 ± 1µeV) independent of tip displacement. We conclude that

there are no sizeable finite-size or edge effects due to the boundary of our
simulation cell.

Analytical solutions for free Dirac fermions in a magnetic field are the
valley pairs[23]:

|ψ+
j > =

(
|φ|j|−1>
|φ|j|>

)
, |ψ−

j > =
(

|φ|j|>
|φ|j|−1>

)
, (5.7)

where the |φj> are eigenstates of a harmonic oscillator that can be expressed
in Hermite polynomials. The orbital index j differs by one on the two
sublattice components and when j ≡ 0, the other component “|j| − 1”
vanishes.
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In the case of an additional confinement potential which (approximately)
conserves valley symmetry, the structure of the solution for the two valleys
suggested by Eq. (5.7) remains intact,

|ψ+
j > =

(
|ϕa>
|ϕb>

)
, |ψ−

j > =
(

|ϕb>
|ϕa>

)
, (5.8)

with the ϕa,b now determined numerically by the exact shape of the
confinement potential. The radially symmetric tip potential in Eq. (5.5)
suggests a description via radial (nr ∈ N0) and angular (m ∈ Z) quantum
numbers for the modified GQD states.

10nm

Fig. 5.3: Probability density of the first six (one valley pair per row) GQD eigenstates
as well as their sublattice projected density (A/B insets) for the pristine system.

A possible adiabatic mapping from LL index N to allowed combinations
of nr and m can be formulated [203, 204]. The simulated eigenstates
(Fig. 5.3), indeed, resemble the structure suggested by the analytical solution
in (Eq. (5.7)) perfectly. We obtain doubly valley degenerate GQD states
(∆τ ≈ 0 meV), separated by orbital splittings ∆O ≈ 20 meV. Additionally
considering physical spin would yield a spin splitting ∆σ = 800 µeV at
7 T. Clean numerical separation of the degenerate valley pairs can only
be achieved via a small mass term (VAB = (+1,−1)meV) with opposite
sign on the two sublattices. In subsequent calculations that include lattice
defects we use these states as reference valley-states. We project the dot
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Fig. 5.4: Level spacing landscape for different embedding methods of the double vacancy
defect for GQD displacement in x-direction.

wavefunctions on the corresponding <ψ+
i | as a measure for the residual valley

polarization
Pτ =

..<ψ+
i |Ψ

τ
i >
..2 , (5.9)

where |Ψ> represents a GQD state in the presence of a defect while |ψ> is
the corresponding state of the pristine system with the same displacement
of the tip.

How do lattice defects modify the level spectrum of the GQD? We include
defects at the center of our flake by suitably tuning the onsite and hopping
elements in Eq. (5.2). Then, we study the change of the level spectrum,
(Eq. (5.5)), as a function of quantum dot displacement RT (see Fig. 5.2a).

Since the quantum dot eigenstates sensitively probe the local electronic
environment, care must be taken to correctly model the various defects.
We consider, in order of increasing accuracy and numerical cost, different
approaches for the simple case of a lattice double vacancy:

(a) The poor man’s description of a vacancy simply removes the corre-
sponding orbitals entirely, while everything else remains unchanged.

More elaborate approaches are based on some level of density functional
theory (DFT). We use the VASP software package for DFT calculations
[205–208] and refer to our earlier work for technical details [209].

(b) Based solely on the relaxed defect geometry obtained from DFT (or,
potentially, from a molecular dynamics simulation or STEM / STM
measurements), one can parametrize the defect based on a simple
Slater-Koster model [210, 211].

Finally, one can extract tight-binding parameters directly from the DFT
result, without the need for empirical models. We use Wannier90 [212–
214] and project only on the carbon pz orbitals, since those dominate the
electronic structure around the Fermi energy:
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(c) We extract the parametrization of the entire defect from a 6 × 6 DFT
supercell calculation.

In the full defect calculation (c) the tight-binding parameters obtained
by Wannier90 reproduce the DFT band structures of the fully relaxed
defect geometry, with a maximal deviation of 4 meV in an energy range
around the Dirac point (±1.25 eV). While numerically quite costly, this
approach should be the most accurate one, and can be used to benchmark
the two more approximative methods. Unfortunately, both (a),(b) heavily
underestimate the induced valley splittings compared to the fully wannierized
embedding (see Fig. 5.4). Since the qualitative agreement of method (b)
(Slater-Koster, Fig. 5.4b) also seems lacking, we conclude that using such
a general parametrization is not accurate enough for the present problem
(agreeing results for other defects not shown). In contrast, the very simple
method (a), inherently only usable for vacancies, provides an — admittedly
rough — qualitative estimate of induced valley splittings.

The asymmetry of the induced valley splitting (relative to the gray lines in
Fig. 5.4 representing the pristine system) at displacement XT = 0 is only seen
when using a full DFT supercell calculation. The resulting level spectrum
landscape of a defect would therefore appear to be an intricate function
of all hopping terms. None of the low level methods provide a reasonable
alternative to a full Wannierization of the defect super cell (method (c)).
We therefore employ method (c) in all subsequent calculations.

5.3 Tuneable Valley Splittings

We henceforth investigate the influence of various defects, such as double
vacancy, a silicon substitution and a flower defect on the potential landscape
V
i,τ
0 (RT ). These defects induce a sizeable valley splitting ∆τ as well as

a series of avoided crossings in the valley subspace. Our findings prove
robust even in the presence of moderate, long-range correlated disorder
(representing influence of the hBN substrate), as outlined below. These
findings suggest that a suitable arrangement of defects on the lattice can
be used to engineer a desired series of avoided crossings. A graphene flake
with correctly placed defects could thus serve as a scaffold for quantum-
mechanical few-level systems with tailored interactions.

Double Vacancy A double vacancy strongly perturbs the valley symmetry
of a GQD (see Fig. 5.5) resulting in a sizeable, asymmetric valley splitting
of the lowest orbital (∆τ

1≈ 13 meV) when the tip is located at the defect,
RT = (0, 0). This splitting decreases for the second orbital to about 8meV
and vanishes completely for the third orbital due to the decreasing probability
density of the wavefunctions at the GQD center (see Fig. 5.3). At RT = (0, 0)
the valley pairs split into an energetically favourable, localized state, and a
delocalized state at an energy similar to the pristine system. In a double
vacancy, with the sublattice corresponding to the “upper” missing atom
labelled as “A”, the wavefunction in the upper semicircle predominantly
localizes on the “B” sublattice, and vice-versa for the lower hemisphere
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(see Fig. 5.6). The energy of the state is thus lowered by avoiding the
inter-sublattice hopping to the missing atom.

Fig. 5.5: Displacement dependent level spectrum for the lowest GQD states (first three
valley pairs) in the presence of a double vacancy defect at the indicated position (red
marker in flake schematic) for GQD displacement in a x-direction and b y-direction. The
color scale represents the squared overlap between defect and pristine wavefunctions Pτ

as defined in Eq. (5.9).

The dependence of the induced valley splitting ∆τ
i on the distance to the

defect correlates with the radial density distribution of the corresponding
pristine wavefunctions |ψτ

i >: We plot Pτ (see Eq. (5.9)) as colorscale in
the level-spacing landscapes. States with Pτ = 0 (red) or 1 (blue) have
perfect overlap with the pristine valley solutions of Eq. (5.8), whereas
Pτ = 0.5 (green) indicates a balanced superposition within the pristine
valley basis (“valley mixing”). The splitting ∆τ and valley mixing gradually
decrease and are lost when there is no more density at the defect site.
The lowest — and thus narrowest — orbitals regain the characteristic
structure of Eq. (5.8) at a distance of about 20nm (see red/blue color
scaling associated with Pτ = 0, 1 in Fig. 5.5). While the magnitude of the
induced valley splitting ∆τ is independent of the direction of displacement
of the GQD, the respective states differ substantially (compare Fig. 5.5a,b).
For displacements perpendicular to the axis through the two removed carbon
atoms of the double vacancy (x-direction in our coordinate system) we find
no well-defined valley polarization Pτ, (Eq. (5.9), green lines in Fig. 5.5a)
indicating a maximal mixing of the valley states as soon as the defect is
within the typical radius of the respective GQD orbital. At very small
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10nm

Fig. 5.6: Probability density in the presence of a double vacancy for RT = (0, 0). The
panels show the first six (one valley pair per row) GQD eigenstates as well as their
sublattice projected density (A/B insets)

distances (XT < 5 nm) this mixing is no longer restricted to a specific
valley subspace as P+ + P− no longer add up to one. Displacing the GQD
parallel to the double vacancy (y-direction) reveals a fundamentally different
evolution of Pτ including several avoided crossings connected by regions
where Pτ ≈ 0 or 1 (Fig. 5.5b). Displacing the tip in y direction induces
an asymmetry with respect to the vacant atom positions, which leads to
a sequence of avoided crossings as the maxima of probability density pass
over the defect position. This asymmetry is also reflected in the sublattice
projected densities (top left of Fig. 5.6) and gives an intuitive understanding
of the valley inversion that occurs when the tip is displaced in ±y direction.

Flower Defect The flower defect, a 30◦ rotation of a region containing
seven carbon rings [215, 216] (see inset in Fig. 5.7a), induces valley splittings
of similar magnitude as the double vacancy at RT = (0, 0) (Fig. 5.7a).
However, the splitting opens in a very symmetric way, εflower± ≈ ε0 ± ∆τ/2
(gray dashed lines in Fig. 5.7a), while the strong localization at the double
vacancy site induces an asymmetric valley splitting, ε

vacancy
+ ≈ ε0 and

ε
vacancy
− ≈ ε0−∆τ. Despite being a pure relocation defect with comparatively

large extent, the level spectrum seems to approach the pristine limit much
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sooner when increasing the GQD-defect distance. Moving the GQD in x-
direction produces an almost identical response of the levels as in (Fig. 5.7a),
confirming the well preserved rotational symmetry of the flower defect.

Silicon Substitution The level spectrum with a silicon substitution defect
[217] shows far smaller valley splittings (2meV for the lowest orbital). Its
comparatively weak perturbation to the valley symmetry is also reflected by
values of Pτ close to 0 and 1 (red/blue color scale) with very narrow avoided
crossings. The lowest orbital shows no valley inversion at all (Fig. 5.7b).

Fig. 5.7: GQD energies as function of quantum dot position RT = (XT , YT ) relative to a
a flower defect and b a Si substitution defect for GQD displacement in y-direction.

Magnetic field The magnetic field is what enables smooth confinement in
the first place by creating the confinement gap due to Landau quantization.
We want to emphasize that increasing (decreasing) the magnitude of the
magnetic field to first order only resizes this confinement gap and thus merely
globally shifts the level spectrum landscape to higher (lower) values of V0.
Investigating the system at different field strengths (not shown) reveals
that valley splittings ∆τ

i are not significantly sensitive to the magnetic field
strength.

Disorder Some additional disorder (e.g. due to substrate interaction)
will undoubtedly be present in the experiment. We create a correlated
disorder potential VD(r) with various correlation lengths lcorr and amplitudes

V0
D =

√
<V2

D>, and <VD> = 0, by convolution of uncorrelated disorder with
a Gaussian kernel. This should adequately represent the typical potential
landscape of graphene on a non-aligned hBN substrate even in the presence
of possible defects/impurities in the hBN.

Very large lcorr of the order of the GQD size (FWHM ≈ 20nm) merely
result in global shifts to all GQD levels with almost no changes to the level
splittings. In contrast, the influence of short-ranged disorder is a priori not
clear. However, since our system is deep in the Landau regime, another
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important length scale is given by the magnetic length (lB ∝ 1/
√
B), which

in our case (|B| ≈ 7T) evaluates to about 9.4 nm. The system thus averages
over disorder on length scales below this limit, and since <VD> = 0 the level
spectrum landscape recovers the unperturbed shape.
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Fig. 5.8: Level spectrum landscapes for the double vacancy defect (with GQD displace-
ment in x-direction) in the presence of correlated disorder (dashed black lines correspond
to vanishing disorder). The subplots are labelled with values for both

√<V2
D> and lcorr.

Each subplot is additionally referenced by a sketch of the total onsite potential si [eV]
throughout the graphene flake (120×100nm2) to put the included disorder into perspective.
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We consider valley projections for the double vacancy (Fig. 5.8) as in
(Fig. 5.6), but with additional disorder. Both the induced valley splitting
as well as the wavefunction character Pτ are robust for various amplitudes
and characteristic length scales of the disorder. Typical disorder up to a
strength of 10 meV with correlation lengths between 1.5nm and 15nm only
slightly distorts the level spectrum landscape, and most importantly, has no
effect on the magnitude of the level splitting. The two main changes of the
wavefunction due to disorder are: (i) some density is induced at the vacancy
site (|Ψτ

i |
2(r = 0) /= 0) for all orbitals, which leads to valley mixing, and (ii)

regions of low values of Pτ for large VD (green colorscale in Fig. 5.8) appear
because the valley doublet in the pristine basis becomes poorly suited to
accurately represent the distorted wave functions.

5.4 Transition Dynamics

In the static system, lattice defects can induce sizeable valley splittings ∆τ

of an order comparable to the orbital splitting ∆O. We now investigate
the dynamics of moving the GQD with respect to the defect on time scales
relevant for the electronic dynamics. We find that dynamically traversing
the GQD in the vicinity of such defects provides an elegant approach to
drive transition between GQD states. An experimental realization will
require much shorter time scales than those accessible via moving an STM
tip. While dynamically generating a moving potential-well via electronic
gates seems plausible, fabricating an array of gates on the nm scale (as is
required for this task) remains a challenging aspect with current resolution
limits of electron beam lithography [218].

To elucidate the dynamics near an avoided crossing between two valley
states, we consider a toy Hamiltonian of the form

H(t) =
1
2

[
αt ∆

∆ −αt

]
, (5.10)

describing the general structure of an avoided crossing: for the diabatic
Hamiltonian with conserved symmetry (i.e., ∆ = 0), the two eigenenergies
become degenerate at t = 0. For broken symmetry (i.e., finite ∆), degenerate
perturbation theory yields an avoided crossing with an energy spacing of
∆. Landau-Zener theory [219, 220] provides a straightforward analytical
approach to estimate the diabatic transition probabilities for propagating
an initially valley-pure eigenstate past the avoided crossing:

→ P
(LZ)
diabatic ∝ exp

(
−
π∆2

2α

)
(5.11)

The movement of the GQD is parametrized by the time t, and thus
α = vT · |∇r(εi,− − εi,+)|, where vT = ∂tRT is the traversal velocity of the
GQD. The second term represents the slope of the spectral landscape of
a valley doublet in real space. Close to an avoided crossing we consider
one valley doublet as an effective two level system (∆τ < ∆O) such as the
one modeled by the toy Hamiltonian of (Eq. (5.10)). Different traversal
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velocities vT allow for either adiabatic (low speeds) or diabatic (high speeds)
propagation of an initial eigenstate. To simulate the dynamics, we use
state-of-the-art time propagation via Magnus operators with adaptive time
steps based on computable upper error bounds for the Krylov approximation
[221] and error estimates of the Magnus integrator [222]:

|Ψ(tB)> = Û(tB, tA) |Ψ+
2 > (5.12)

We propagate an initial state |Ψ+
2 > at (XT , YT ) = (0, 5.6) nm, indicated

by the black dot and arrow in (Fig. 5.9b), from “A” to “B” (see Fig. 5.9a).
The crossing has to be approached by an instantaneous GQD eigenstate in
level “1” with a well defined velocity vT. We therefore have to smoothly
accelerate from a static eigenstate, which restricts the selection of possible
crossings. We choose a rather wide (i.e. large ∆ in Eq. (5.10)) avoided
crossing (between third and fourth GQD level of the double vacancy in
y-direction, see Fig. 5.9b). An even wider avoided crossing would require a
larger traversal velocity to achieve diabatic switching (Eq. (5.11)), reaching
values that cannot be sufficiently smoothly accelerated to, because the
neighbouring avoided crossings would be in too close proximity. Narrower
(i.e. small value for ∆ in Eq. (5.10)) avoided crossings (e.g. see the avoided
crossings generated by the flower defect in Fig. 5.7a) would result in much
too long traversal times (this time for the adiabatic result) beyond our
computational time limits. In experiment much larger time scales would be
accessible, and thus narrower avoided crossings should be considered.

As we propagate our initial wave function from “A” to “B” (Fig. 5.9) we
project |Ψ(t)> onto the third (|Ψ+

2 >) and fourth (|Ψ−
2 >) orbitals of the static

calculations of the otherwise identical system. The projection Qτ(t) on the
valley τ = ± at displacment XT (t) is given by

Q+(t) =
..<Ψ+

2 |Ψ(t)>
..2 , Q−(t) =

..<Ψ−
2 |Ψ(t)>

..2 , (5.13)

and shown in (Fig. 5.9c). Note that we project onto the static defect state
at the same GQD position, not the pristine state.

Performing these calculations for a range of different traversal velocities vT

reveals the expected diabatic switching for faster traversal. We calculate the
“final” projection values of <Ψ−

2 |Ψ(t)>2 after the avoided crossing has been
traversed (blue crosses in Fig. 5.9c) as a function of the corresponding velocity
(Fig. 5.9d). We find surprisingly good agreement with the simple two-level
Landau-Zener formalism. The distorted nature of the underlying avoided
crossing impedes a precise evaluation of the parameters |∇r(εi,−−εi,+)| and
∆ used in the Landau-Zener formula. Due to the exponential sensitivity of
the transition curve on these parameters, a fit to our numerical data for the
transition probability in Fig. 5.9d is much more accurate than estimating
these parameters directly from the shape of the avoided crossing in Fig. 5.9b.

We thus determine |∇r(εi,− − εi,+)| = 163 µeV/nm and ∆ = 1.9 meV
from a fit to the data points in Fig. 5.9d, and find these values entirely con-
sistent with the shape of the avoided crossing of the level spacing landscape.
Quantitatively predicting the required transition speed from the shape of
the avoided crossings might therefore prove difficult. Nevertheless, the
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Fig. 5.9: a Schematic overview of the graphene flake with initial and final y-coordinate
of the GQD center indicated by lines labelled "A" and "B". b Level spectrum landscape
of the double vacancy defect with the avoided crossing between levels 3 and 4 centered
between lines "A" and "B" which correspond to the ones in a). c Squared projections
(as labelled) of the propagated state as a function of y-coordinate. d Final values of
the projections in c) superposed onto the analytical function for the diabatic transition
probability.

qualitative dependence of the diabatic transition probability on the traversal
speed still offers an elegant way to enact controlled transitions between
GQD levels, a necessary first step for possible applications in emerging
quantum technologies.
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5.5 Conclusion

We have modeled the response of the level spectrum of smoothly confined
graphene quantum dots to lattice defects in tight-binding calculations.
By embedding a local defect parametrization, obtained from Wannier-
projection of DFT super cell calculations, into an extended pristine lattice
(also parametrized from DFT) we present an elegant way of manipulating
the level spectrum of edge-free GQDs by making use of some common
imperfections of graphene lattice structures. We identify several avoided
crossings within the valley doublets for the different quantum dot states.
Conversely, measuring the evolution of the quantum dot eigenenergies with
dot position would provide a sensitive probe for the electronic structure
of the defect. Transition dynamics in these GQD-defect systems are well
described by Landau-Zener theory.

Employing the defects for dynamic control of electronic states within
the GQD, demonstrated as theoretically possible, will be challenging in
experimental setups. Scanning tunneling microscopy tips are not designed
to be moved rapidly and one would instead need to spatially and temporally
control the GQD via an array of electronic gates. We feel that the feasibility
of such an array of gates depends on the resolution limits of current electron
beam lithography [218]. While creating an array of several gates on a scale
of 10 - 15 nm (as is the traversal distance for the presented crossing) with
a resolution of at best 1 - 3 nm seems challenging at the moment (but
not entirely out of reach in the near future) we also stress that there is
some “customizability” for the shape of an avoided crossing when allowing
for more complex systems that involve more than a single isolated point
defect (i.e. two close-by defects can be of different type and have varying
orientation or distance in relation to the GQD).

The predicted defect-induced valley splittings ∆τ on the order of up to
12 meV should be experimentally accessible and warrant further research.



Chapter 6

Defect parametrization via Machine
Learning

“If you torture the data long
enough, it will confess.”

R. Coase

In this section we present an automated ML workflow to generate accurate
tight-binding parametrizations for defects. We achieve ab-initio density
functional theory accuracy for a wide range of material properties using
only band energies and defect geometry as inputs. We test several machine
learning methods that map the atomic and electronic structure of a defect
onto a sparse tight binding parameterization. Since Multi-layer perceptrons
(i.e. shallow feed-forward neural networks) perform best we adopt them for
final benchmarks that carefully assess the accuracy of our parametrizations
in terms of bandstructure reconstruction, local density of states, electronic
transport and level spacing simulations for two common defects in single
layer graphene (SLG). The developed approach is general and can be applied
to a wide range of other materials, enabling accurate large-scale simulations
of material properties in the presence of different defects.

6.1 Ab-initio modeling of defect super cells

Calculating the electronic structure and transport properties of nano devices
containing millions of atoms requires suitable techniques to tackle the differ-
ent length scales involved. On the atomic scale, accurate but expensive DFT
methods provide precise parameters for large-scale tight-binding approaches
that operate on the entire nanodevice. Such a multi-scale approach has been
well established for pristine materials. The description of defects proves
inherently more challenging, with only a few established approaches that
differ substantially in accuracy and effort (see Chapter 5). An accurate
description of how these defects modify the electronic structure of a system
is thus key for exploring potential applications of novel materials.

x

y

Fig. 6.1: Lattice ge-
ometry of double va-
cancy (top) and flower
defect (bottom) in sin-
gle layer graphene.

In recent years, machine learning (ML) has facilitated new research lines
in materials science and chemistry [223–234]. This project aims for an
ML based scheme that achieves Wannier TB accuracy with much simpler
inputs (i.e. only band structure and geometry information). Ultimately
we do not want to merely generate a parametrization for a defect but
embedd it into a large scale system and perform subsequent calculations to
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study multi-scale effects in realistic systems. The efficiency of applying TB
parametrizations typically scales with the sparseness of the TB Hamiltonian
(typically a banded matrix with the only non-zero coupling elements close
to the main diagonal [235]). Therefore we want to be able to tune the
sparseness of our machine-learned TB parameters at will to obtain a desired
balance of accuracy and efficiency. To remain accurate despite fewer tuning
parameters implied by improved sparsity, we will adjust the parametrization
to specific energy regions of interest (i.e. close to the Fermi edge). This
proof-of-concept aims to strike a balance between the laborious but excellent
Wannier parametrizations and customary but limited empirical models
such as Slater-Koster (SK) [236–238]. In addition to providing such a
middle ground, our model achieves predefined sparseness with only minor
(quantitative) shortcomings in a comprehensive set of benchmarks. We
aim to develop an easy-to-use framework that can efficiently produce TB
parametrizations of any given defect in a material. In this section we will
generate machine-learned TB models for two common defects in single layer
graphene (double vacancy and flower defect, see Fig. 6.1).

6.2 Tight binding model

Tight-binding methods (TB) are well established for modelling electronic
and transport properties of large scale systems. A suitable parametrization
for a given system can be generated with different aspirations of accuracy:
Starting point can be either a set of symmetry-adapted empirical parameters
(e.g. Slater-Koster) or a more accurate ab-initio-based description typically
obtained by projecting extended Bloch states on a truncated set of suitably
chosen localized basis functions (Wannierization [124, 239–241]). In contrast
to pristine materials the description of defects is an inherently more intricate
problem as the necessary super-cell size increases while its symmetry is
diminished. This customary increase in system size entails challenges for the
selection of relevant bands in the much more densely populated Brillouin
zone and necessitates profound experience for the choice of basis functions
to accurately represent the ab-initio calculation within a TB model. While
the usability of a Slater-Koster approach is hardly affected by the change in
system size its validity suffers due to its inability to describe the qualitative
changes to the electronic configuration of complicated defects.

Without loss of generality we will focus on 2D systems. Such systems
with no orbitals can then be described by a TB Hamiltonian of the generic
form:

H =

no∑

i

siĉ
†
i ĉi +

∑

<i,j>

γijĉ
†
i ĉj. (6.1)

Here ĉ
†
i(ĉi) are the creation (annihilation) operators of a quasiparticle at site

i with position ri, si = <i| H |i> the onsite (diagonal) matrix elements and
γij = <i| H |j> the hopping amplitudes between sites i and j. For single layer
graphene we will only take into account a single pz orbital per carbon site.
In more complicated materials (i.e. several orbitals per lattice site) indices
i, j may subsume atomic and orbital information. For sufficiently localized
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orbitals, the magnitude of γij quickly decays for increasing interatomic
distances

..ri − rj
... Omitting such elements below a certain threshold (e.g.

1meV) can make H sparse.
Given a converged DFT Hamiltonian in a basis of Bloch functions, optimal

values for si, γij can be directly calculated using maximally localized
Wannier functions [212–214, 242] (see Section 3.5). In practice, however,
exactly evaluating the si,γij proves not optimal: after tedious iteration to
find suitable Wannier functions, the final degree of localization — i.e.,the
distance beyond which overlaps between orbitals are small enough to be
neglected — may be several unit cells [112]. To obtain a more sparse
description, one can directly fit a small set of TB parameters si, γij to
reproduce the DFT BS in an energy region of interest. The second sum in
Eq. (6.1) then only runs over the n-th nearest-neighbour (NN) sites [Fig. 3.1],
where

..ri − rj
.. < rNN with a cutoff radius rNN controlling the sparseness.

H
(0,1)

H
(1,0)

H
(-1,-1)

Fig. 6.2: Interaction of a defect supercell with its periodic images (defect region high-
lighted in orange). The center cell itself is described by H(0,0), the interactions to its
neighboring cells by H(λx,λy) — for large super cells such as this only the nearest-neighbor
interactions between cells, i.e., λx, λy ∈ {-1, 0, 1} are non-zero.

Plane wave based DFT calculations describe periodic systems and we
account for the Bloch phase of the periodic wave function by adding cor-
responding phase factors in the periodic images of the Hamiltonian. The
periodic Hamiltonian matrices H(λx,λy) determine the interaction of sites
in the original cell (0, 0) with sites in the periodic image of the cell (λx, λy)
translated along a linear combination of lattice vectors {λx · Rx, λy · Ry}.
The full Hamiltonian in k-space thus reads:

H(k) =
∑

λx,λy

eik·(λxRx+λyRy)H(λx,λy) (6.2)

Note that the set of si,γij entirely determines the matrix elements
of H(λx,λy) while the grouping into periodic cells just accounts for the
periodicity of the lattice. A system of interest is thus fully described by a set
of lattice vectors and parameters si,γij yielding the Hamiltonian matrices
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{H(λx,λy)}. The indices λx, λy ∈ [−m,m] with m ∈ N0 determine the range
of non-zero interactions between periodically shifted unit cells. In practice,
we truncate at |m| = 1 given the large defect super cells in this thesis (see
Fig. 6.2).

Given the large super cells of defect systems we have to consider a
reduction of the number of free parameters for the TB Hamiltonian. For
much smaller pristine systems a (more manageable) TB Hamiltonian has
recently been directly parameterized with a ML approach [243]. In our case,
if we were to only enforce hermiticity, our TB Hamiltionian of Eq. (6.2)
would feature no(no+1)

2 +4n2
o independent parameters si,γij, which quickly

gets out of hand. Considering a medium-sized defect supercell with 70
orbitals this would require approximately 25000 independent parameters.
We can however employ the residual symmetries of a defect structure to
further reduce the number of parameters our ML model needs to optimize.
To obtain a robust framework, we aim for a simple mapping between the
hopping matrix elements γij and local geometry information. Finding such

Fig. 6.3: Distance-hopping map for all entries of a Wannier parametrization for the
double vacancy defect in SLG (black dots) with both a Slater-Koster based initialization
(taken from [210]) γ(SK)(δr) (dashed green line) as well as another initialization γ(0)(δr)

defined as spline interpolation between the 10th-NN distance-hopping values of a bulk
singler layer graphene cell (red crosses). The hoppings at distance zero represent the
onsite energies si.

a simple mapping seems daunting as coordination numbers of atoms around
the defect site will in general differ substantially from those in the bulk.
A general mapping therefore seems to require detailed information about
the local chemical environment. We avoid additional, complex geometrical
parameters by exploiting that for the pristine bulk lattice, there are only
a few distances (the nearest-neighbour spacings, red crosses in Fig. 6.3)
while a relaxed defect geometry features many different distances. We
generate the γij purely as a mapping of distance γij = γ(

..ri − rj
..) to

obtain an efficient and compact representation of the final TB Hamiltonian.
A sufficiently fine, discontinuous mapping between atomic distance and
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x

y

Fig. 6.4: Non complete selection of representative distance classes with the symmetry
related interactions highlighted in red (defect super cell indicated in blue).

hopping parameters essentially implies assigning an individual hopping
parameter to each unique distance — except for degeneracies implied by
symmetries, which should, indeed, have the same hopping interaction. A
parametrization on distance alone thus yields a hermitian Hamiltonian
correctly accounting for symmetries by construction. We can also simply
choose a cutoff length rNN above which no orbitals share a finite hopping
value, to obtain a more sparse description. We discretize the interval [0, rNN]

into nc equidistant bins l with l ∈ [1,nc] using

γij = γ(
..ri − rj

..) = γl, l = ceil

..ri − rj
..

∆r
, (6.3)
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with ∆r = rNN/nc the discretization step, and ceil(x) the ceiling function
picking the smallest integer l with l > x.

We append a minimal set of onsite terms {si} (accounting for symmetries)
to the set of hopping values {γl} with l ∈ [1,nc] to obtain a full TB
parameterization, denoted for brevity as {γl}. We can then establish a
bijective mapping from this list of interactions to full Hamiltonian matrices
and vice versa. rNN provides a tunable parameter for the desired sparseness
of our TB model (up to how distant a neighbouring orbital interacts with
another one).

The number of bins nc controls the coarseness of the discretization and
can be adapted depending on the distribution of inter-orbital distances
in a given structure. As long as the discretization ∆r is fine enough, we
only establish a convenient way of simultaneously addressing all symmetry-
related interactions. For the two SLG defects we choose as benchmark
systems, we decrease ∆r until the number of different γl no longer increases
(i.e. each value γl only addresses the hopping terms connected by symmetry,
∆r ≈ 10−4Å). At first glance, this prescription for grouping and setting
the relevant interaction elements in a TB Hamiltonian seems quite similar
to distant-dependent Slater-Koster parametrizations [210, 211, 244] (e.g.
dashed green line in Fig. 6.3). However, the discrete distance-hopping
map only decouples symmetries and hermiticity from the parameter search
and introduces little to no unnecessary simplification. We do not need
to consider the local geometric configuration (screening) of interacting
orbital pairs as long as the discretization is fine enough to distinguish all
different hoppings not related by symmetry. Indeed, we do not aim for a
smooth mapping γ(rij), but rather for a distinct hopping parameter for all
“different” couplings. Consequently, two neighbouring values γl and γl+1

can in principle take entirely different values. From TB parameters {γl}

one can easily calculate a TB BS by diagonalizing the k-space Hamiltonian
of Eq. (6.2) to obtain band energies ϵTB

b,k and eigenfunctions |ψb,k> via the
eigenvalue problem:

H(k) |ψb,k> = ϵb,k |ψb,k> (6.4)

The full set of TB parameters thus straightforwardly yields a BS with
minimal numerical cost, ({γl} → H → ϵTB

b,k[γl]).

6.3 Inverse band structure problem

Obtaining a BS from Eq. (6.2) and Eq. (6.4) for a given Hamiltonian
H(λx,λy) is straightforward. However, to find the optimal Hamiltonian that
best reproduces a given DFT BS {ϵDFT

b,k } we need to solve the inverse problem
({ϵb,k} → H, Fig. 6.5). There is no straightforward (or unique) solution to
this problem as highlighted by the plethora of TB parametrizations for any
given material. Since {ϵTB

b,k} can be quickly evaluated, generating pairs of
(arbitrary) sets {γl, si} and the resulting BS {ϵTB

b,k} on the TB level is easy.
We can then use ML algorithms to identify the set of TB parameters which
produces a TB BS in closest agreement with DFT.

To select a ML algorithm suitable for the inverse problem, we need to
quantitatively compare different approaches. We will grade several ML
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machine learning {γl, si}

bandstructure ϵb,k Hamiltonian H

si

γij

γji

Fig. 6.5: Schematic of the inverse BS problem: for a given Hamiltonian, calculating a BS
is trivial. By contrast, there is no constructive algorithm to obtain a Hamiltonian from
a BS. Using ML, we aim to find such an inverse mapping from BS data (scalar energy
values ϵb,k for each band b and k-point k) to a minimal list of TB parameters {γl, si} (for
each distance and onsite class l) which describes a full TB Hamiltonian H.

approaches both in terms of computational efficiency (how quickly do we
arrive at an answer) as well as quality. Since the TB parameters themselves
are not physical observables, we resort to derived quantities such as the BS.
To obtain a quantitative criterion for the quality of a parametrization we
evaluate the difference of the final converged result to the DFT BS {ϵDFT

b,k },

δϵ[{ϵb,k}] =

nk∑

j

nb∑

b

(
ϵb,kj − ϵDFT

b,kj

)2
. (6.5)

Starting from a plane-wave based density functional theory (DFT) code

Fig. 6.6: DFT band
structure for the
double vacancy defect.
Color map represents
the projection of the
corresponding Bloch
states onto atomic pz

orbitals.

(VASP) we wish to only parametrize the pz orbitals in single layer graphene
(since only these contribute to electronic properties in the relevant energy
ranges). We therefore extract bands featuring a finite overlap | <pz|φ> |2
with a generic pz orbital from the DFT band structure (BS) above a certain
threshold (| <pz|φ> |2 = 0.25 works well in our case). Unfortunately this
procedure fails at very high energies where the band character for a vast
number of overlapping virtual bands becomes challenging to determine on
the DFT level (Fig. 6.6). After having determined a final set of parameters,
we will further assess their quality by also considering the local density of
states (LDOS), transport properties as well GQD states with defects. We do
this a posteriori because these calculations are numerically too demanding
to use during training. Despite this lack of high-energy bands (ε > 5 eV),
we will see that our model still achieves ab-initio accuracy.

6.4 Algorithm comparison

In this section we introduce and compare several state-of-the-art ML al-
gorithms applied to the inverse band structure problem. To tackle such a
high-dimensional, non-uniquely solvable inversion problem, we test varia-
tions of gradient-less descent (GLD) [245, 246], both multilayer perceptron
(MLP) and convolutional neural network (CNN) as well as Bayesian optimiza-
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tion via Gaussian process regression (GPR) [170] as possible optimization
methods.

We include the conceptually most simple gradient-less descent and Slater
Koster (SK) as a reference method to assess the benefit of more intricate
approaches. All our ML methods produce reasonable parameter sets as
exemplified by the small errors (δϵ) in Tab. 6.1. Comparing also the time
required to obtain a parametrization, we observe considerable differences
between the approaches and therefore selected only the MLP for our final
benchmarks. Below we briefly introduce each approach and discuss its pros
and cons.

method δϵ time

[-] [hh:mm]

Wannier 1.23
Ntrial

×
00:5001

MLP 3.09 02:20

CNN 3.48 60:00

GLD 3.73 01:30

GPR 6.2 >24:00

Slater
Koster

54.72 -

Spline02 13.92 -

Tab. 6.1: Comparison
of both performance
[in terms of BS error
δε, see Eq. (6.5)] and
time efficiency of sev-
eral ML approaches to
the inverse BS problem
of the double vacancy
in SLG. While the un-
derlying data sets are
not necessarily equal
for the different op-
timization algorithms
we still find this to be a
legitimate comparison.

All the methods introduced require an initial guess for the compressed
TB parameter list introduced in Eq. (6.3) (and thereby an initial full
Hamiltonian). Depending on the quality of this initial guess the convergence
rate of the following algorithms will change and some parameters have
to be adjusted. We determine an initial distance-hopping map γ(0)(δr)

based on the TB parameters of the pristine material, to obtain an initial
TB Hamiltonian H

(0)
TB. We assume some reasonable parametrization of

the pristine material exists - it is far simpler to extract a 10th-NN TB
description for the bulk material than it is for a defect structure. For
materials where even the bulk cell proves challenging to “wannierize” one
could resort to empirical or recent machine-learning approaches [243] for
the initial parameter set. We initialize γ(0)(δr) as a linear interpolation
between the ten distance-hopping pairs extracted for the bulk material
(see blue line and red markers in Fig. 6.3). We have validated this spline
initialization for several defects in graphene and found that already such a
(physically unmotivated) prescription for a TB parametrization outperforms
a common Slater-Koster parametrization of graphene (see Table 6.1 and
dashed green line in Fig. 6.3). However, both of these initialization choices
(spline from pristine system, Slater Koster) allow for a cutoff radius rNN to
tune sparseness.

6.4.1 Gradient-less descent

GLD is a zeroth-order, model-free optimization technique [245, 246] that
does not rely on an underlying gradient estimate (such an estimate can
get expensive to come by in high dimensional spaces). It solves the inverse
problem by repeated application of the forward problem. Since we cannot
expect the desired optimal parametrization to be unique we implement this
with both exploration and exploitation in mind.

γj → γj(1 + ηrelf1) + ηabsf2 (6.6)

Starting from an initial parameter list γ(0)(δr) we add noise according to
Eq. (6.6). We then calculate the corresponding band structure and the
approximation error (Lϵ) to the desired band structure and keep track of

01While wannier90 is impressively efficient for a single run, it will typically require of the
order of Ntrial ≈ 20 trial runs to identify correct parameters and achieve convergence
in our experience.

02introduced in Section 6.4 and Fig. 6.3.
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the best one. We continue to alternately add noise (η(i)rel ,η(i)abs) to either the

initial parameter set or (η(b)rel ,η(b)abs ) to the currently best parameter set and
thereby explore parameter space without the need to evaluate gradients. The
noise amplitudes can also be adapted as the algorithm progresses so as to not
overshoot a possible optimum (see Fig. 6.7). While this algorithm manages
to consistently minimize the band structure approximation error we find that
it cannot match the performance of the MLP model (Section 6.4.3) generated
from an equal number of samples. Despite reasonable δϵ (Table 6.1), the
extracted parametrizations seem to perform less convincing for derived
quantities. We attribute this to the fact that this algorithm can only really
optimize all the TB parameters individually and does not build a model
than learns about their correlation.

γj

γi

Fig. 6.7: 2D schematic of the high dimensional search via the GLD algorithm. Initial
parameter set (red dot) and its vicinity (red-grey circle) followed by successively improved
(orange, yellow) parameter sets with their respective n-balls

6.4.2 Bayesian optimization

We implement an active learning algorithm utilizing Bayesian inference via
Gaussian Processes (GP’s). Our algorithm trains a Gaussian process that
maps input TB parameters {γl} to the BS mismatch δϵ. An acquisition
function (introduced in the next paragraph) tailored to minimize δϵ then
decides whether a new ({γl}, {ϵTB

b,k})-pair is added to the data set. Such
an active learning strategy results in compact datasets. Similarly to our
GLD approach we explore our parameter space via random noise added to
an initial parameter set γ(0)(δr). Having gathered several thousand initial
exploration points we then fit a Gaussian process with the TB parameters
as inputs and the corresponding band structure approximation error (Lϵ)
as output.

At the beginning we generate 3000 samples to manage an initial “coarse”
fit of the Gaussian Process which works best when employing a radial basis
function (RBF) kernel. Henceforth a newly generated parameter list (adding
noise to the initial list according to Eq. (6.6)) is used to query the GP about
an estimate of BS error Lϵ (as well as its uncertainty about that prediction).
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These results are then used as arguments for an acquisition function (see
Fig. 6.8) of the following form:

A(Lϵ,σϵ) = 0.95
(

1 − tanh(κ ∗
√
Lϵ

σϵ
)

)
+ 0.05 (6.7)

Where κ is chosen such that the acceptance rate of the 3000 initial samples
would have been roughly 0.75. The acquisition function takes values between
0.05 and 1 for any given input and represents the acceptance probability
for a proposed parameter set for which the Gaussian process predicts BS
error Lϵ with uncertainty σϵ. This acceptance probability of at least 0.05

Fig. 6.8: Contour plot of the probability to add a sample to the training data (i.e.
acquisition function A(Lϵ,σϵ)) depending on both GP predicted BS error as well as GP
uncertainty.

increases for very good candidates (low BS error Lϵ) and for candidates
where the GP is not very confident of its prediction in line with our efforts
to balance exploration and exploitation. Accepting a parameter list means
we calculate its real BS error and add this sample pair to our training
data set. Once a predefined batch size of accepted data points is reached
we refit the GP and thus consecutively improve its inference power. An
on-average decreasing uncertainty for any given prediction means that the
algorithm will become more and more selective over time (see Fig. 6.9). A
rejected parameter list will not have its real BS error calculated and the
loop continues with another proposed parameter list.

Fig. 6.9: Conver-
gence of (top) length
scale l of the RBF ker-
nel in the GP, (center)
batch-averaged band
structure approxima-
tion error and (bot-
tom) batch-averaged
uncertainty of the GP
queries.
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initial H(0)
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sampling

initial
samples

fit GPpropose H
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(estimated)
&

uncertainty σϵ

query
acquisition
function
A(Lϵ, σϵ)

calculate
BS error Lϵ

add Htest &
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no
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Fig. 6.10: Schematic flow chart of the active learning approach via Gaussian Process and
an acquisition function. The right branch represents preliminary sampling that allows for
an initial fit of the GP. The left branch describes the main algorithm that then employs
and successively improves the GP.
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Our implementation of active learning thus manages to omit calculating
many band structures and their approximation errors by first invoking an
incredibly efficient GP query and acquisition decision. We spent a fair
amount of time to optimize this approach but (given the much worse results
than the other methods) ultimately acknowledged that it is not the right
method for this particular optimization problem. We find that all the time
saved by only calculating the BS for “promising” canditates is subsequently
lost in the refitting of the GP which scales unfavourably with the number
of training points (discussed in Section 4.2.2). We ascribe this to the fact
that Gaussian processes are not particularly suited to high-dimensional (lots
of training points necessary to approximate the loss surface) optimization
problems where sample points are not very costly to generate (such as TB
band structure calculations).

6.4.3 Neural network models

In this section we describe the workflow of the network based algorithms
(multi-layer perceptrons and CNNs) of which we ultimately choose the
multi-layer perceptron for the final benchmarks of our machine learned TB
parametrizations.

Convolutional neural networks

CNNs are reasonably deep, sparsely connected neural networks that are
designed for automatic feature extraction from the input band structure.
They excell at exploiting correlations in their input data (e.g. the continuous
lines forming a BS). We aim to train a network that directly maps a given
band structure {ϵTB

b,k} onto a list of TB parameters {γl}. Apart from the
structure of the involved neural network the workflow is identical to the MLP
algorithm (see Section 6.4.3 for details). Naturally we will provide our input
BS as a 2D matrix with the entries holding energy values, where each row
represents a single band and each column a k-point (see Fig. 6.11). Despite

resca
led

en
erg

y
[a

rb
.u

.]

Fig. 6.11: Visualiza-
tion of the input form
of the band structure
data into the CNN.

a reduction of trainable parameters compared to MLPs, the convolutional
setups we benchmarked resulted in significantly longer training times but
slightly worse BS losses (Table 6.1). The best performing CNN in our
testing consists of three sparsely connected blocks (five convolutional layers
of increasing depth followed by a max pooling layer) and ends in two fully
connected layers (see Table 6.2).

Multi-layer perceptron models

Multi-layer perceptrons (MLPs) are shallow feed-forward neural networks.
Here we demonstrate that MLPs can also solve the inverse problem directly
by mapping band structures onto TB parameters. We add regularization
via dropout layers and train them on ({ϵTB

b,k}, {γl})-pairs. We then make
a final TB parameter prediction for {ϵDFT

b,k }. In our investigations, MLPs
outperform all alternative approaches in accuracy at approximately equal or
even lower computational cost (Table 6.1). We attribute this to the strong
interdependence between the different TB parameters: an almost identical
band structure can be described by several different parameter sets, while
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layer type output shape # of parameters

conv2d (30,55,4) 40
conv2d (30,55,4) 40
conv2d (30,55,8) 40
conv2d (30,55,8) 40
conv2d (30,55,16) 40

pooling_2d (15,28,16) 0

conv2d (15,28,4) 2320
conv2d (15,28,4) 2320
conv2d (15,28,8) 2320
conv2d (15,28,8) 2320
conv2d (15,28,16) 2320

pooling_2d (15,14,16) 0

conv2d (14,13,16) 1040
conv2d (13,12,16) 1040
conv2d (12,11,32) 2080
conv2d (11,10,48) 6192
conv2d (10,9,32) 6176

pooling_2d (5,5,32) 0

flatten 800 0
dense 500 400,500
dense 475 237,975

Tab. 6.2: Convolutional neural network setup used in Table 6.1 containing 668 839
trainable parameters for the double vacancy defect. The CNNs we considered are made
up of feature selection blocks (convolutional layers + pooling) followed by a shallow dense
network.

changing only a single parameter (with the others fixed) will substantially
change it. Such a system is better represented by the fully connected
network as opposed to model-free optimization schemes optimizing the
different parameters individually. The MLP model is the one that we
will explore and benchmark more closely in the remaining sections of this
chapter.

6.5 Machine learning workflow

6.5.1 Data set generation

Before we can query our MLP to predict hopping parameters for the DFT
BS of a defect system we need to procure appropriate training data in the
form of BSs and their corresponding parameter lists. We do so entirely on
the TB level, i.e. without requiring any DFT input, by randomly sampling
the vicinity of a reasonable initial guess in TB parameter space.

Having obtained a starting guess for H
(0)
TB (see discussion in the third

paragraph of Section 6.4 ) we calculate the training dataset by solving
the forward problem (H → ϵb,k) many times with random fluctuations
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added to H
(0)
TB. We sample approximately 150,000 training band structure-

Hamiltonian pairs per defect. We generate samples until further increase of
the dataset size no longer reduces the BS error (see Fig. 6.12). Starting from
the initial parameter list {γj} (generated either via bulk wannierization
or some Slater-Koster model) we I) randomly choose a subset of these
parameters, II) add relative and absolute noise to all chosen parameters
individually:

γj → γj(1 + ηrelf1) + ηabsf2 (6.8)

with amplitudes ηabs,ηrel and random variables f1, f2, III) unfold the param-
eter list into a full TB Hamiltonian and calculate the corresponding band
structure. We find that this procedure is robust as long as the amplitudes

Fig. 6.12: Conver-
gence study for the net-
work performance (i.e.
the quality of its pro-
duced band structure)
depending on the size
of the training set.

η of the added noise (ηrel and ηrel) are large enough to explore sensible
value ranges of any given TB parameter (i.e. the neural networks can
“interpolate” rather than “extrapolate” unknown hopping values). These
noise amplitudes thus depend on the quality of the initial parameter list
{γj}. In practice it seems generally advisable to slightly overestimate rather
than underestimate them. We choose ηrel = 0.25 and ηabs = 0.05 for both
defects under consideration. A suitable choice of these amplitudes should
be feasible for any given material. We also experiment with sampling the
random variables f1 and f2 from different distributions (uniform, Gaussian,
Laplace) and find that while differences are marginal, sampling from a
uniform distribution f ∈ [−1,+1] yields the best results.

Finally we then train the MLP to correlate changes in the shape of bands
to corresponding modifications of values for specific TB parameters.

6.5.2 Training

As alluded to in Section 6.4, we adopt a multilayer perceptron to map
BSs to TB parameters. The MLP takes all BS data {ϵb,k} as 1D vector
(ϵk0

, . . . , ϵkn
) and outputs TB parameters as another 1D vector {γl} holding

the different hopping values for every distance as well as the minimal set of
onsite energies necessary for building the entire TB Hamiltonian. We find
optimal performance using three hidden network layers and choose their
sizes via linear interpolation of the sizes for input- and output layer.

The range of BS inputs and TB parameter outputs covers several orders
of magnitude. This wide spread necessitates Gaussian scaling of both inputs
and outputs across all samples. Drop-out regularization (20% at the input
layer) effectively avoids overfitting. By applying the distance-hopping map
procedure to TB Hamiltonians of the two defect structures, we obtain a
number of output parameters that strongly varies with the desired sparseness
of the model (see Table 6.4). The sampling density of our BS in k space
determines the number of input neurons in our network. We find sampling
the Brillouin zone path with 30 points (i.e. 30 × no input values for the
network) to be a sufficient compromise between resolving BS features while
keeping the input layer size manageable.

layer
type

# of
neurons

# of
parameters

dense 1,650 2,724,150
dropout 1,650 0

dense 1,259 2,078,609
dense 868 1,093,680
dense 475 412,775

Tab. 6.3: Structure of
the multilayer percep-
tron architecture used
for the double vacancy
defect.We emphasize that we aim to train a single-use network that is specifically

tailored to one specific defect in a given material, as opposed to training
a general MLP for predicting parameters for different defects. Such an
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approach would fail to capture the peculiarities and details of the indi-
vidual defects. Our training approach is very robust and straightforward,
enabling a much faster workflow than manually converging a well-behaved
Wannier parametrization. Indeed, for large systems converging a Wannier
parametrization can even prove quite elusive, while our MLP based approach
should still work. Fig. 6.13 provides a complete (but hopefully assessable)
view of the entire ML process.

defect supercell

ionic & electronic
relaxation (DFT)

ab-initio band
structure

ϵDFT
b,k

geometry
information

initial H(0)

TB sample
generation

samples{
ϵb,k, (γ, si)

}

MLP training
inputs: ϵb,k

outputs: (γ, si)

predict (γ, si) for the
DFT bandstructure

desired parametrization

H(TB)

pristine cell

ionic & electronic
relaxation (DFT)

wannierization

initial distance-
hopping map

γ(0)(δr)

Fig. 6.13: Schematic flow chart of the steps to produce a machine learned TB parametriza-
tion of a defect system. The hued section on the right can be replaced with an initial
γ(SK) from Slater-Koster theory for materials with challenging bulk cells. Cornered green
nodes represent calculation processes and rounded blue nodes represent data.

We train the MLP on Ns = 150,000 data points, since performance
converges and does not improve further by providing more samples (see
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Fig. 6.12). We employ a custom loss function that accounts for both
parameter loss and BS mismatch of the predictions:

L = Lγ + aϵLϵ (6.9)

Lϵ =

nb∑

b=1

nk∑

j=1

(
ϵ
(p)
b,kj

− ϵ
(t)
b,kj

)2

(6.10)

Lγ =

np∑

l

(
γ
(p)
l − γ

(t)
l

)2
(6.11)

With aϵ as a weighting factor, ϵ(t)b (kj)
(
ϵ
(p)
b (kj)

)
the true (predicted)

value of band b at k-point j and γ
(t)
l , (γ(p)

l ) the true (predicted) value for
the hopping (or si) of distance l, which we know for each pair of random
Hamiltonian and associated BS in the training set. While an exact solution
of the inverse band structure problem implies zero parameter loss, Lγ = 0,
we find that adding a physical observable, i.e., the actual BS mismatch Lϵ

to the loss function improves convergence. We achieve optimal performance
for aϵ ≈ 5 × 10−4 (see Fig. 6.14).

Fig. 6.14: Conver-
gence study for the net-
work performance (i.e.
the quality of its pro-
duced band structure)
depending on aϵ.

6.5.3 Models for sparse parametrizations

The numerical effort in using a given TB parametrization strongly depends
on the sparsity of the TB Hamiltonian, i.e., the number of non-zero hop-
ping elements γij. To improve performance, one can introduce a smaller
cutoff length rNN requiring that all interactions beyond the NN-th nearest
neighbour are set to zero. We denote this as xNN for the models generated
in this work. Generating sparser TB models barely requires changes to our
ML workflow yet enables vast performance gains for subsequent application
of the TB models (Eq. (6.14)). The initial parameters γ(0)(δr) can again be
taken from the spline interpolated bulk parameters (but cut off at rNN).

We will end up with fewer individual parameters (see Table 6.4) in a
sparser TB description, generally allowing for a less accurate fit. However,
in many applications the interesting physics is confined to a specific energy
region, most commonly around the Fermi edge. Depending on the desired
sparseness it proved beneficial to introduce additional weighting w(ϵ̄

(t)
b )

into the BS loss function:
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structure no
sparseness

(# of neighbours)
np

(# of parameters)

double vacancy

70

10NN

5NN

3NN

475

168

120

flower defect

128

10NN

5NN

3NN

842

344

173

Tab. 6.4: Number of independent TB parameters for a given sparseness in both defect
structures under consideration.

Lϵ =

nb∑

b=1

nk∑

j=1

(
ϵ
(p)
b,kj

− ϵ
(t)
b,kj

)2

w
(
ϵ̄
(t)
b

)
(6.12)

ϵ̄
(t)
b =

1
nk

nk∑

j=1

ϵ
(t)
b,kj

(6.13)

Restricting long-range interactions increasingly compromises the accurate
reconstruction of the entire band structure. We achieved best results by
focusing on the energy bands close to the charge neutrality point (E=0)
by reducing the number of input bands for the MLP (i.e. this mimics a
step function for w(ϵ̄

(t)
b )) all together and thus reduce both network size

and computational cost for training. Employing a zero-centered Gaussian
distribution with appropriate width for w(ϵ̄

(t)
b ) achieves similar results at

higher computational costs.

6.6 Benchmarks

Our machine learned TB parameters cannot be directly verified as they
are no physical observables. Their exact values are not necessarily unique
so long as they are capable of accurately reproducing derived quantities.
We thus test the quality and validity of our extracted parametrizations
with respect to BS, local density of states (LDOS), quantum transport and
GQD-spectra which we found to be highly sensitive to the local electronic
configuration of defects (see Chapter 5).
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6.6.1 Band structure / LDOS

For each defect, we calculate the LDOS on both the TB and DFT level thus
enabling direct comparison to DFT results (as compared to the additional
benchmarks discussed below in which the Wannier TB parametrization is
the only reference). LDOS and BS are shown for the double vacancy and
flower defect in Fig. 6.15 and Fig. 6.16, respectively.

x

y

a b

c

d

Fig. 6.15: a BS of the SLG double vacancy supercell along ΓMXΓ of both DFT calculation
and MLP TB-model. b pz-projected density of states of the supercell. c Cosine similarity
of the local density of states between different TB models and the DFT result. d LDOS
at the three energies (left to right) indicated by veritcal dash-dotted grey lines in b,c) for
DFT, Wannier, MLP respectively (top to bottom, colored boxes match line colors in b,c).

Our 10th-NN ML TB model displays excellent agreement with the DFT
BS (Fig. 6.15a) over a large energy window. While exact symmetries are
captured via the distance-hopping map, noticeable disagreement regarding
the exact width of some avoided crossings prove as the most challenging
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aspects for the MLP. In terms of the total density of states (DOS) the 10th-
NN ML-TB-model is on par with the Wannier-TB-model. While neither can
capture all the features of the ab-initio DOS both reproduce it much better
than general Slater-Koster models (see Fig. 6.15b and Fig. 6.16b). Since
the deviations to the DFT DOS are present for both the machine learned
and the Wannier parametrization we ascribe them to approximations of the
TB formalism rather than a deficiency of our MLP algorithm.

x

y

a b

c

d

Fig. 6.16: a BS of the SLG flower defect supercell along ΓMXΓ of both DFT calculation
and MLP TB-model. b pz-projected density of states of the supercell. c Cosine similarity
of the local density of states between different TB models and the DFT result.d LDOS at
the three energies (left to right) indicated by veritcal dash-dotted grey lines in b,c) for
DFT, Wannier, MLP respectively (top to bottom).
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1
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a

b

c

Fig. 6.17: Energy dependent transmission T(E) for different TB parametrizations of the
a double vacancy and c flower defect in SLG (vertically offset for clarity). b Scattering
density plots for the three lowest modes at E = 0.7eV in the double vacancy setup with
ribbon-width and embedded defect positions indicated.
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The spatial information of the LDOS provides an even more detailed
comparison, which we analyze both visually (Fig. 6.15d-f and Fig. 6.16d-f) at
relevant energies (indicated as dash-dotted vertical grey lines in (Fig. 6.15b,c
and Fig. 6.16b,c) and numerically via the cosine-similarity of individually
normalized LDOS distributions with respect to the DFT results over the
entire energy range (Fig. 6.15c and Fig. 6.16c). The results show that the
MLP parametrizations not only capture the total DOS very well but also
its spatial distribution (on par with Wannier) over a wide energy range.

6.6.2 Electronic Transport

State-of-the-art modular recursive Green’s function methods (MRGM) (see
Section 3.4 or [116, 247] for a more thorough introduction) profit im-
mensely from sparse Hamiltonian matrices. Applying our sparse ML-TB-
parametrizations to electronic transport calculations is therefore especially
interesting. We study the different TB-parametrizations by embedding
the defect supercells at five random but reproducible positions within a
15nm wide zig-zag SLG ribbon of length ≈ 130nm (Fig. 6.17b). Employing
our MGRM code we obtain the energy-dependent transmission T(E) which
uniquely portrays the multiple scattering events occuring in systems with
several defects and compare T(E) for the different parametrizations.

The 10th-NN ML-TB parametrizations accurately reproduce the transmis-
sion signature T(E) for both defects (Fig. 6.17a,c). Our results also highlight
the limited transferability [248] of Slater-Koster parametrizations to different
defect geometries: While the SK-TB-parameters for the double vacancy
(Fig. 6.17a) produce a somewhat useful transmission curve its performance
degrades drastically when applied to the flower defect (Fig. 6.17c).

Our sparser ML-TB parametrizations with interactions only up to the 3rd-
or 5th-nearest neighbour still outperform the SK-parametrization. The loss
in accuracy when enforcing very sparse Hamiltonians (3rd-NN) is a priori
hard to quantify. While the TB description of the double vacancy seems
more robust with respect to restraining long-range interaction than that
of the flower vacancy (compare Fig. 6.17a and Fig. 6.17c) the 5th-nearest
neighbour parametrization seems to strike an appropriate balance between
computational performance gain:

t10NN
Transport : 10m42s

t5NN
Transport : 1m26s (6.14)

t3NN
Transport : 0m49s

and accuracy.
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a
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d

Fig. 6.18: Level spectrum landscapes calculated with different TB parametrizations of the
double vacancy in SLG compared against the Wannier parametrization [ a MLP(10NN),
b Slater-Koster, c MLP(5NN), d MLP(3NN) ]. Inset shows schematic sketch of the
underlying system: We calculate the level spectrum (orbital and valley quantum number,
spin is omitted) as a function of the position of an STM-tip (brown) induced (smoothly
confined) GQD relative to an embedded defect in a large graphene flake (grey rectangle).
Dotted grey lines represent the level structure of a pristine GQD with doubly degenerate
orbitals.

6.6.3 GQD spectra

Another highly sensitive probe of our parametrizations comes in the form
of smoothly-confined SLG quantum dots [192, 196]. We consider the in-
fluence of nearby lattice defects on the level spectrum of GQD’s [180] as
a benchmark for how well different TB-parametrizations model the local
electronic configuration. Smoothly confining electrons in SLG retains the
valley degeneracy which, omitting spin, yields doubly degenerate states.
In the vicinity of a lattice defect this degeneracy is lifted as a function of
defect-GQD distance [180] (see Fig. 6.18). The resulting level spectra as
a function of GQD displacement XT work as a unique fingerprint of the
electronic structure of a defect.

We again find excellent agreement between the Wannier and the 10th-NN
ML-TB parametrization. Conventional approaches such as Slater-Koster
heavily underestimate the induced valley splittings ∆τ and fail to capture
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a

c

b

d

Fig. 6.19: Level spectrum landscapes calculated with different TB parametrizations of
the flower defect in SLG compared against the Wannier parametrization [ a MLP(10NN),
b Slater-Koster, c MLP(5NN), d MLP(3NN) ].

the characteristic asymmetry of the lowest splitting for the double vacancy
(Fig. 6.18c,d). The sparse ML parametrizations (3rd-NN or 5th-NN) still
work quite well. Both slightly underestimate the induced splittings but
manage to reproduce some of the asymmetry of the splittings for the double
vacancy. The sparse ML-TB descriptions work especially well for the flower
defect in this benchmark: qualitative agreement remains excellent and
the quantitative changes to the induced valley splittings with increasing
sparseness remain minor. The Slater Koster model highly overestimates
splittings and fails to reproduce several of the sharp avoided crossings.

A shortcoming of this initial algorithm that learns purely distance based
interaction mappings is its inapplicability to materials that involve more
complex orbital structure (e.g. TMDs, crumpled graphene, ...). Since
this introduces additional directional dependency to the learnable hopping
parameters we will try to generalize our approach in the next section. Incor-
porating the basic idea of Slater-Koster and assigning spherical harmonics
to the angular part of the involved orbitals allows us to then learn several
distance depending maps that originate from the typical convention of
Slater-Koster parameters.
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6.7 Machine learning discrete Slater-Koster maps for

a selenium di-vacancy in WSe2

Here we show an elegant generalization of our machine learned distance-
hopping map formalism to systems with a much richer orbital basis such as
transition metal dichalcogenides (TMDs). Our examplary system of choice
is a selenium divacancy in WSe2 (see Fig. 6.20).

Fig. 6.20: Relaxed 6 × 6 super cell of a selenium divacancy in WSe2.

The relevant energy bands in WSe2 are built from the px,py,pz orbitals of
selenium and the d-orbitals of tungsten (dz2 ,dxz,dyz,dxy,dx2−y2). Since
the involved orbitals are no longer spherical in the x−y plane and the finite
thickness of a single WSe2 layer also introduces hoppings in z direction an
assignment of interaction values based solely on inter-orbital distance is
not sufficient. We therefore adapt our distance-hopping map formalism to
distance dependent Slater-Koster (SK) parameters [211].

For this particular system we promote the SK parameters Vpp−σ, Vpp-π,
Vpd-σ, Vpd-π, Vdd-σ, Vdd-π, Vdd-δ to discretized, distance dependent
maps which are then treated formally identical to the simple γ distance-
hopping maps from before, e.g.:

Vpp−π → Vpp−π(|ri − rj|) = V
(l)
pp−π

with l = ceil
|ri − rj|

∆r
(6.15)
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The only difference being that these distance maps do not directly give
Hamiltonian entries but parameters that once decorated with direction
cosines (i.e. plugged into the well known SK formulas) yield Hamiltonian
entries. We stress that this proliferation of SK parameters does not neces-
sarily lead to long range interaction with remote neighbours but results in
several different nearest neighbour parameters (a relaxed defect cell features
a multitude of nearest neighbour distances) that are utilized only for setting
interactions between symmetry related orbital partners. A cut-off radius
rNN for the longest distance up to which finite interactions may occur can
also be readily implemented.

As starting point for generating a parametrization for the divacancy
system we choose an established SK parametrization [211]. For the sake
of convenience but without loss of generality we omit the spin degree of
freedom which is typically incorporated by a split-off spin-orbit term. We
produce a DFT band structure for the pristine system and optimize the
SK parameters via gradient descent (for the pristine cell there are only 12
parameters in total, see Fig. 6.21a) such that the highest valence and lowest
conduction bands are best reproduced (Fig. 6.21b).

SK parameter value [eV]

∆0 -0.518
∆1 -1.250
∆2 -1.677
∆p -15.343
∆z -13.158

Vpp−σ 3.051
Vpp−π 0.158
Vpd−σ 6.656
Vpd−π -1.453
Vdd−σ -1.086
Vdd−π 0.204
Vdd−δ 0.239

a b

Fig. 6.21: a Table for the SK parameters for the pristine system optimized for the system
without spin degree of freedom (starting from [249]). b Corresponding band structure of
the pristine system (DFT in blue, SK for the lowest conduction and highest valence band
in red).

The only input our ML approach with discrete Slater Koster maps (learned
by an MLP) requires is a relaxed supercell geometry and a target band
structure both of which we acquire in DFT calculations. We focus on
both valence and conduction band edges as well as the 3 mid-gap defect
states (D1, D2, D3) the upper two of which are doubly degenerate. Given
the complexity of TMDs, providing a valid description within this energy
range suffices to model photo-luminescence emissions, exciton dynamics and
electronic transport.
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Fig. 6.22: Grouping of hoppings into 2NN (in this context first neighbour of a W atom
being a Se and the second neighbour being another W irrespective of distance class) SK
distance maps (line colors correspond to different distance classes l, see Eq. (6.15)) for (left)
tungsten-tungsten bonds, (center) tungsten-selenium bonds, (right) selenium-selenium
bonds. Periodic unit cell borders are drawn in dark green.

Starting point for the sample generation are discrete SK maps filled with
pristine SK parameters (see Fig. 6.21). We adapt the onsite energies of
the vacancy-adjacent W atoms to shift the flat defect bands fully into the
energy gap and allow the the network to set the onsite parameters of these
three sites individually to account for potential bond reconstruction.

We then generate 200,000 band structure - SK map sample pairs via
random noise added to the parameters γ (see Eq. (6.6)), where γ now refers
to the concatenated discretized SK maps (e.g. V

(l)
pp-σ) as well as a minimal

set (with respect to symmetry) of onsite parameters (∆0,∆1,∆2,∆p,∆z per
atom). We train a shallow MLP and predict these in total 261 parameters
of our combined SK maps (plus onsites) for the DFT band structure.
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a b c

Fig. 6.23: Relevant bands around EF for the 6 × 6 Se divacancy super cell of WSe2 for a
a ∗poorman’s Wannier description (i.e. vacancy with pristine wannier parametrization, b
Slater Koster parametrization (from the pristine system), c machine-learned parametriza-
tion based on discrete Slater Koster maps with rNN cutoff that allows for up to 3NN
interactions between kindred atoms (i.e. W -W or Se - Se).

The band structure of our defect cell parametrized by this MLP prediction
agrees very well with the original DFT band structure (see Fig. 6.23c).
The energy and degeneracy of defect states D1, D2, D3 is reproduced
remarkably well. We find an inadvertent small splitting of the conduction
band maxima for our sparse description. However, since the much more
important minima of the conduction bands are reproduced accurately we feel
that this model should allow for accurate TB simulations (e.g. PL spectra).
The quality of our ML based TB parametrization is further highlighted
when we compare to the often utilized, alternative models of poor-man’s
vacancies (see Fig. 6.23a,b). In these models a pristine parametrization
(either based on maximally localized Wannier functions or standard Slater
Koster parameters) is applied to the defect cell and the vacant atoms are
then simply removed without affecting the adjacent interaction values. These
models not only severely misjudge the energies of the flat defect bands (or
do not even give the correct number of mid-gap states) but also deliver a
sub par description for the valence and conduction band edges.

Analyzing the orbital composition of the defect states by calculating
the l,m-resolved density of states (DOS) reveals astounding agreement
of orbital character for the flat defect bands as well as band edges (see
Fig. 6.24). While the overall height of the defect related DOS peaks (D1,
D2, D3) agree quite well the DFT calculation underestimates the relative
intensity of the band edges. We ascribe this to the fact that the optimal
choice of Wigner-Seitz radii when determining DOS for multi-elemental
systems is not unambiguous and affects localized (defect) and delocalized
(Bloch bands) differently. Since the agreement of band edges is already well
assessed on the band structure level (see Fig. 6.23c) we omit further DOS
calculations and view Fig. 6.23c predominantly as a composition analysis of
the defect peaks.
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a

b

Fig. 6.24: DOS (including analysis of orbital contributions, see color scheme) near EF for
the 6 × 6 Se divacancy super cell of WSe2. a DFT result vs. tight-binding DOS for the
MLP Slater Koster map parametrization of Fig. 6.23c. b Zoom-ins of the midgap defect
states D1, D2, D3.

Summarising, we have shown that the concept of machine learned, discrete
distance hopping maps can be generalized to materials with arbitrarily
complicated orbital structure by promoting Slater Koster parameters to
distance dependent maps. The finite thicknes of WSe2 also showcases the
applicability to systems beyond 2D (i.e. any 3D crystal with defects).

6.8 Conclusion

We have successfully implemented a ML algorithm to derive a tight-binding
Hamiltonian that accurately reproduces the band structure details for
general defect supercell structures in graphene. This model requires a target
BS and geometry information as inputs and allows for optimization towards
a predefined sparseness of the desired TB description. The comparatively
poor performance (see Table 6.1) of effective Slater-Koster methods strongly
highlights the need for more accurate defect descriptions tailored to the
corresponding electronic structure, which simply cannot be captured without
additional DFT calculations. The ML TB parametrizations yield accuracy on
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par with a full Wannier description, yet at substantially reduced cost. Given
the considerably less complex input (energy values and atomic positions)
than required by state-of-the-art iterative projection based methods (full
DFT solution including Bloch states) our method should prove better suited
for high-throughput material analysis. The algorithm allows for optimization
towards target sparseness and thus greatly reduces computational demands
in subsequent applications of the TB descriptions. This sparse description
of a defect system can be understood as a constrained optimization problem
where ML offers elegant ways to find the sparse description with an optimal
balance between accuracy and efficiency.

Our comprehensive benchmarks (LDOS, transport, quantum states di-
rectly influenced by the defects) clearly outline the prowess of ML in
obtaining DFT-quality results of defects in devices without substantial addi-
tional cost beyond the initial DFT calculation of the defect. The remaining
minor discrepancies in the highly sensitive GQD benchmark underline how
the long-range interactions dictated by the underlying physics ultimately
determine the accuracy of effective short-range descriptions: since we cut
off long-range hoppings in the TB Hamiltonian, the sparse parametrization
underestimates the range of the change in electronic structure induced by
the defect. As a consequence, energy splittings between the two valley states
are underestimated for small point defects like a vacancy (Fig. 6.18): only
a tiny fraction of the quantum dot wavefunction (those few orbitals close
to the defect) can actually contribute to the defect-induced energy shift.
By contrast, an extended defect like the flower (Fig. 6.19) is much better
described. However, we generally found both qualitative and quantitative
agreement of Wannier-TB-parameters (reference system) and the ML TB
parameters of our MLP based approach.

We have also started to generalize our approach to more complex 2D
material classes. For materials with a richer orbital structure (e.g. TMDs
with five d-orbitals on the metal site and six p orbitals on the chalcogen sites)
one may adopt a mixture of Slater-Koster and discrete-distance-hopping-map
approach by following the usual scheme for the angle dependent assignment
of interactions (i.e. direction cosines for the spherical harmonic nature of
the respective orbitals) but promoting the typical Slater-Koster parameters
(Vpp-σ, Vpp-π, Vpd-σ, Vpd-π, Vdd-σ, Vdd-π, Vdd-δ, . . . ) to discretized
distance dependent maps (in principal identical to γ in the graphene part
of this work).

We have provided a proof-of-principle for an — admittedly somewhat
academic (spin-less) — selenium di-vacancy in WSe2. The adapted algorithm
based on Slater-Koster maps was able to accurately parametrize this defect
in a way that also manages to accurately capture the underlying orbital
character of both conduction and valence bands close to the Fermi energy
(an obvious prerequisite for employing such a parametrization in studies of
optical material properties). Our approach can be generalized to systems
with relevant spin texture by either introducing additional Slater-Koster
maps for different spin channels (γ↑↑,γ↑↓,γ↓↓) or employing a split-off
spin-orbit coupling term.

All the promising prospects aside there is still lots of room for conceptual
advancements: Employing a band-structure based loss function for the
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parametrization of the WSe2 di-vacancy required initial manual tweaking
of onsite elements to match the number of mid-gap states. This need for
vague comparability of the interesting part of the band structure certainly
presents one obstacle to novel defect studies. To this extent we have begun
collaboration with Henry Fried from the group of Ludger Wirtz at the
Universite du Luxembourg to explore options of Green’s function (a quantity
that can also be extracted from DFT calculations) based loss functions.
The underlying idea would be that this energy dependent function would
prove more robust than the topological intricacies of directly comparing
two band structures. Another aspect that warrants investigation is that our
revised algorithm requires a Slater-Koster description for the bulk material.
Since these parametrizations may also be non-orthogonal tight-binding
descriptions one would also have to think about including the overlap
matrix (apart from the Hamiltonian) into the optimization strategy.

In summary, modern machine learning algorithms have found their way
into many aspects of physics and chemistry. Their potential applications
reach from tight-binding [250] all the way to strongly correlated electrons
[251]. The tough challenge of conceptualizing a meaningful and beneficial
application where they can support or even replace long proven methods
seems very exciting and warrants further research.



Chapter 7

Two particle spectra of bilayer
graphene quantum dots

“Creative minds are uneven, and
the best of fabrics have their dull
spots.”

H.P. Lovecraft

This project stems from a discussion with the group of C. Stampfer at
the RWTH Aachen regarding their finite bias spectroscopy measurements
of the two-electron spectra in a bilayer graphene (BLG) quantum dot in a
perpendicular magnetic field. At the time they presented us with differential
conductance maps as a function of gate voltage and magnetic field. While
the single particle (N = 1) measurements seemed plausible the results for
the transition between N = 1 and N = 2 occupancy of the quantum dot
displayed a rich and somewhat puzzling structure (see Fig. 7.1 or [9] for
the final results and explanation). Naturally both Thomas Fabian (a friend,
colleague and more senior PhD student of Florian at the time) and I set
out to try and explain the underlying two particle spectrum. Therefore the
contents of this chapter are to be understood as a joint effort of the two of
us.
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Fig. 7.1: Absolute
value of the differential
conductance |dI/dVfg|

as a function of both
Vfg and B⊥ measured
across the a N = 2
coulomb peak and
b N = 1 coulomb
peak. See Fig. 7.2
for a sketch of the
experimental setup.
(These impressive
measurements were
performed by S. Möller
et. al. in the group
of C. Stampfer at the
RWTH Aachen.)

7.1 Introduction

Graphene presents itself as a promising candidate for hosting spin Q-bits01

(low spin-orbit coupling [252], spin and valley degrees of freedom, tunable
g-factors [253]). Bilayer graphene, as repeatedly demonstrated [254, 255],
allows for gate-defined quantum dots (without the need for a Landau gap
in contrast to SLG) with controllable occupancy. With the future imple-
mentation of singlet-triplet Q-bits [256] in mind it is especially interesting
to understand two particle states within these systems.

01Notation following David Mermin in his lecture notes [257] on quantum computation:
“Unfortunately the preposterous spelling “qubit” currently holds sway for the quantum

system. Although qubit honors the English rule that q should be followed by u, it ignores

the equally powerful requirement that qu should be followed by a vowel. My guess is

that “qubit” has gained acceptance because it visually resembles an ancient English unit

of distance, the homonymic cubit. To see its ungainliness with fresh eyes, it suffices

to imagine that Dirac had written qunumber instead of q-number, or that one erased

transparencies and cleaned ones ears with Qutips.”
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7.2 Model and numerical trickery

We choose to model a spherical quantum dot on the level of a k·p Hamiltonian
in a BLG system. We therefore transform the momentum operators (pi =

−i∂i) of Eq. (2.3) into cylindrical coordinates,

FG

SG hBN

BLG

S

D

Fig. 7.2: Sketch
of the experimental
system (as imagined
by a theorist) used
for the measure-
ments (see Fig. 7.1)
in the group of C.
Stampfer. FG...finger
gate, SG...side gates,
S...source, D...drain.

∂x = cos(φ)∂r − 1/r sin(φ)∂φ (7.1)

∂y = sin(φ)∂r + 1/r cos(φ)∂φ (7.2)

and arrive at

Hτ = .hvf

[
0 eiτφ(iτ∂r − 1

r∂φ)

e−iτφ(iτ∂r + 1
r∂φ) 0

]
(7.3)

for the single layer and

Hτ =




mA .hvfeiτφα−
τ 0 0

.hvfe−iτφα+
τ mB γ1 0

0 γ1 mA , .hvfeiτφα−
τ

0 0 .hvfe−iτφα+
τ mB ,


 (7.4)

where α±
τ = (iτ∂r ± 1/r∂φ), for the Bernal stacked bilayer system. An

ansatz of the form,

Ψτ,m(r,φ) =
(

ei(m+τ)φam+τ(r), eimφbm(r), eimφAm(r), ei(m−τ)φBm−τ(r)
)T

(7.5)
then separates radial (a(r),b(r),A(r),B(r)) and angular components of the
wavefunction. Following [258] we include a magnetic field via minimal
coupling in symmetric gauge:

α±
τ = (iτ∂r ± 1

r
∂φ) → (iτ∂r ± 1

r
∂φ ∓ i

eBr

2
) (7.6)

We attempt a numerical solution of this system on a real space radial lattice
to incorporate a smooth Fermi-like confinement potential:

mA = mB = −mA , = −mB , =
∆V

2
+

Vinf

e
r0−r
γ + 1

(7.7)

where r0 controls the extension, γ = 10nm defines a characteristic length
scale, ∆V opens a band gap and Vinf acts as the infinite radius boundary
condition of the confinement potential. Unfortunately, straightforward
discretization yields unphysical solutions. This phenomenon is known as
fermion doubling (additional solutions appear due to the Nielsen-Ninomiya

theorem [259, 260] from lattice gauge theory, this issue seems to be known
yet litte communicated in the graphene community [261–263] ). Out of
several options to avoid this (Wilson fermions [264] — adding a second order
derivative as a mass term to break chiral symmetry , Kogut-Susskind fermions

[265, 266] — employing a staggered lattice to break translational invariance)
we adopt the latter and formulate our equations on slightly shifted lattices for
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four sublattice components (i.e. in single layer terminology Ψ
(A)
τ,m resides on

radii { j ·δr | j ∈ [1,Nr]} and Ψ
(B)
τ,m dwells on radii { (j+1/2) ·δr | j ∈ [1,Nr]}).

This entails slightly custom formulations for the numerical derivatives [267]
but, once coded, requires no further attention.

Fig. 7.3: Single parti-
cle spectrum in a BLG
quantum dot (r ≈
50nm) as a function of
total angular momen-
tum j = m+τ at B = 0.

The single particle spectrum of such a BLG quantum dot for B = 0 can
be categorized by a total angular momentum j = m+ τ with the solutions
remaining invariant under the combined symmetry operations (see Fig. 7.3:

j → −j (7.8)

τ → −τ (7.9)

B → −B (7.10)

Unfortunately the staggering introduces “edge” states which are very lo-
calized at r = 0 and break valley symmetry since one of the staggered
sub lattices lives closer to the center. We filter these unphysical solutions
and carefully restore the original symmetry by averaging two solutions
[i.e. ( Ψ(m, τ,B) + Ψ∗(-m, -τ, -B) )/2]. Finally we generate interpolating
functions for the now correctly determined single particle wavefunctions.
The evolution of energy levels with non zero magnetic field approaches the
Landau level energies in an infinitely large BLG system (yellow curves in
Fig. 7.4).

Fig. 7.4: Evolution of single particle energy levels in a BLG quantum dot with perpen-
dicular magnetic field B. Valleys K and K , are colored blue and red respectively. Yellow
curves show analytic solutions (following [268]) of Landau levels in an infinite BLG system.

Equipped with reasonable single particle states in a BLG quantum dot
we next choose a two-particle basis in which we calculate and then re-
diagonalize the Coulomb operator Ĉ = 1/2

∑
i /=j 1/||ri − rj||. Since the

Coulomb interaction is diagonal in spin space we select spin singlet (S = 0)

|σ-x> = 1
2
(|↑↓>− |↓↑>) (7.11)
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and triplett states (S = 1)

|σ-z> = |↑↑> (7.12)

|σ+x> = 1
2
(|↑↓>+ |↓↑>) (7.13)

|σ+z> = |↓↓> (7.14)

where S = s1 + s2. Since none of these mix during the re-diagonalization we
effectively treat these blocks separately. We omit an identical classification
for the valley quantum number (i.e. |τ-x> , |τ-z> , |τ+x> , |τ+z>) since to us
it was a priori unclear whether valley was still a good quantum number.
That usually depends on the characteristic length scales of the involved
potentials. While our confinement potential is certainly smooth enough we
remain unsure how to estimate the effects of steep parts in the 1/r potential.
The allowed spin singlet states are thus of the form:

ΨS
τ1,m1,τ2,m2(r1, r2) = σ-x ·




Ψτ1,m1(r1)Ψτ2,m2(r2) for (τ1,m1)=(τ2,m2)

1√
2
( Ψτ1,m1(r1)Ψτ2,m2(r2)+

Ψτ2,m2(r2)Ψτ1,m1(r2) ) for (τ1,m1)/=(τ2,m2)

(7.15)

and necessarily feature a symmetric orbital and valley character while the
spin triplets further separate into blocks with ms = −1, 0, 1 that consists of
states:

ΨT
τ1,m1,τ2,m2(r1, r2) =

Ψτ1,m1(r1)Ψτ2,m2(r2) + Ψτ2,m2(r2)Ψτ1,m1(r2)√
2

·



σ-z

σ+x

σ+z

(7.16)

Calculating the respective Coulomb matrix elements,

<ΨS
1,2|Ĉ|Ψ

S
3,4> =




<Ψ1(r1)Ψ2(r2)|
q2

4πϵϵ0||r12|| |Ψ3(r1)Ψ4(r2)> ,Ψ1=Ψ2∧Ψ3=Ψ4

<Ψ1(r1)Ψ2(r2)|
q2

4πϵϵ0||r12|| |Ψ3(r1)Ψ4(r2)>·
√

2 ,Ψ1=Ψ2∨Ψ3=Ψ4

q2

4πϵϵ0
( <Ψ1(r1)Ψ2(r2)|

1
||r12|| |Ψ3(r1)Ψ4(r2)>+

<Ψ1(r1)Ψ2(r2)|
1

||r12|| |Ψ4(r1)Ψ3(r2)> ) ,Ψ1 /=Ψ2∧Ψ3 /=Ψ4

(7.17)

<ΨT
1,2|Ĉ|Ψ

T
3,4> = q2

4πϵϵ0
( <Ψ1(r1)Ψ2(r2)|

1
||r12|| |Ψ3(r1)Ψ4(r2)>−

<Ψ1(r1)Ψ2(r2)|
1

||r12|| |Ψ4(r1)Ψ3(r2)> ) (7.18)

brings its own challenges.
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a b

Fig. 7.5: a Single particle energies for states of the lowest radial quantum number n. b
Energy E1 + E2 for the non-interacting singlet and triplet states introduced in Eqs. (7.15)
and (7.16).

We employ Mathematica [269] to calculate the four-center integrals of
Eqs. (7.16) and (7.17) with our interpolated single particle wave functions.
Achieving convergence is possible by following [270] and adopting an inge-
nious expansion01 of 1/r in polar coordinates [271] using Legendre functions
Qm−1/2 of the second kind of half-integer degree:

1
|r1 − r2|

=
1√

r1r2π

∞∑
m=−∞

R
]
Qm−1/2

(
r2
1+r2

2+(z1−z2)
2

2r1r2

)]
eim(φ1−φ2) (7.19)

where r = (r,φ, z) and R[·] is the real part. This powerful relation renders
all the angular parts of the integrals in the Coulomb matrix elements analyti-
cally tractable as the exponential contributions of the inverse distance 1

|r1−r2|

need to exactly cancel the exponents of the participating wavefunctions to
give a non-zero matrix element (i.e. the angular parts of the wavefunctions
pick out a single term of the infinite sum in Eq. (7.19)). Applying this to

01 There exists an even more general form of Eq. (7.19) known as “Heine identity” [272].
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one of the menacingly looking integrals for a Hartree term of specific spinor
components:

<1, 3 |
1
r12

| 2, 4> =
∫ ∫2π

0
dφ1dφ2

∫ ∫∞
0+

r1r2dr1dr2· (7.20)

e−i(m1+τ1)φ1a∗
1(r1)e

i(m2+τ2)φ1a2(r1)·
e−i(m3+τ3)φ2a∗

3(r2)e
i(m4+τ4)φ2a4(r2)·

1√
r1r2π

∞∑
M=−∞

R

[
QM−1/2

(
r2

1 + r2
2 + (∆z)2

2r1r2

)]
eiM(φ1−φ2)

e−iKτ1 ·r1eiKτ2 ·r2e−iKτ3 ·r3eiKτ4 ·r4

we only need to numerically evaluate the two radial integrals

4π2

∫ ∫∞
0+

√
r1r2

π
dr1dr2a

∗
1(r1)a2(r1)a

∗
3(r2)a4(r2)·

R

[
QM−1/2

(
r2

1 + r2
2 + (∆z)2

2r1r2

)]
e−iKτ1 ·r1eiKτ2 ·r1e−iKτ3 ·r2eiKτ4 ·r2 (7.21)

where ∆z is the layer separation of BLG, if and only if M in Eq. (7.21) fulfills
M = m1 + τ1 −m2 − τ2 = m3 + τ3 −m4 − τ4. Lastly we remain unable to
accurately converge this integral if different valleys occur (i.e. this introduces
increasingly oscillatory terms of the form ei∆K·r) and therefore can only
assume them to vanish. This also involuntarily “solves” our lack of clarity
regarding valley mixing discussed in the singlet triplet basis introduction.

a b

Fig. 7.6: a Interacting two-particle spectrum for an effective dot radius of about 30nm using
ϵhBN = 3.6 to account for screening. b same as a but now with the lowest single particle
energy subtracted (as a function of magnetic field, see Fig. 7.5).

We account for screening of the hBN sandwich structure by an effective
ϵ ≈ 3.6 and calculate the interacting two particle spectrum for several dot
sizes. Results show that the Coulomb interaction introduces significant
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reordering of the spectrum. For small magnetic fields the ground state
has triplet character due to favorable exchange interaction (see Fig. 7.6a).
For larger magnetic fields (not shown) the magnetic field evolution of the
single particle states dominates and the ground state may again have singlet
character. While our results seem physical and agree quite well with previous
works [270] we do not seem to compare well with the experimental data
from the Stampfer group. Fig. 7.6b subtracts the lowest (and therefore
occupied) single particle energy for every magnetic field and should at least
to some extent already resemble the differential conductance measurements
(see Fig. 7.1). One of our first suspicions (possibly quite oblate dots in the
experimental setup) is tough to investigate since the assumption of sphericity
enters fairly early into our model. We nevertheless started thinking about a
more general model that utilizes a full tight-binding Hamiltonian and thus
arbitrarily shaped TB wavefunctions.

Shortly thereafter A. Knothe et.al from the Fal’ko group seemed to have
solved the puzzle [9, 273] by introducing symmetry breaking short-range
interaction terms

HSR =
1
2

∫ ∑
(i,j)

gij

]
Ψ†(r)ξAB

i ξτjΨ(r))
]2

dr (7.22)

where ξAB
i (ξτj ) are Pauli matrices in sublattice (valley) space and (i, j) ∈

[(x, x), (x,y), (y, x), (y,y), (z, z), (z, 0), (0, z)]. The coupling constants gij in-
troduce various forms of symmetry breaking (intervalley scattering, current-
current interactions) and are to my understanding mainly used as fit pa-
rameters.

7.3 Conclusion

We model the interacting two-particle spectrum of BLG quantum dots by
rediagonalizing a bare Coulomb kernel. After jumping over many numeri-
cal hurdles we end up with reasonable results that agree with previously
established works. However, our model apparently lacks some necessary
symmetry breaking and thus falls short of explaining the experimental data
from Aachen. I nevertheless choose to include this chapter into my thesis
since we (Thomas and I) have spent significant time on it and it is my
understanding that negative results (while less encouraging) should also be
communicated. In terms of prospects I expect that the rapid improvement of
bilayer graphene based, electrostatically confined quantum dots will also be
interesting in the context of magic-angle tBLG. The efforts of several groups
to confine electrons in a quantum dot that is surrounded by superconducting
bulk is both puzzling and impressive at the same time. Theoretical support
for such an achievement would obviously require calculation methods beyond
the single-particle picture.



Chapter 8

Photoluminescence in strained WSe2

“If you want to have good ideas,
you must have many ideas.”

Linus Pauling

Mechanical strain is a very powerful tuning knob for the optical and
electronic properties of layered two-dimensional materials. While the strain
response of bright free excitons is broadly understood, the behavior of dark
free excitons (long-lived excitations that generally do not couple to light due
to spin and momentum conservation) or localized excitons related to defects
remains mostly unexplored. Here, we study the strain behavior of these
fragile many-body states on suspended WSe2 kept at cryogenic temperatures.
We find that under the application of strain, dark and localized excitons
in monolayer WSe2 — a prototypical 2D semiconductor – are brought
into energetic resonance, forming a new hybrid state that inherits the
properties of the constituent species. The hybridized exciton reported here
may play a critical role in the operation of single quantum emitters based
on WSe2. This project is a collaboration with the group of S. Heeg at the
Humboldt Universität zu Berlin [274]. Pablo Hernándes López (Berlin)
and Kirill Bolotin (Berlin) implemented an electrostatic based straining
technique capable of straining suspended WSe2 at cryogenic temperatures
and performed measurements of photoluminescence spectra that display
intriguing resonance properties. Based on work of my doctoral predecessor
Lukas Linhart (TU Wien) I have built a strain dependent TB approach
to study the hybridization of conduction band states with localized defect
levels. Despite a fairly simple theoretical study of single-particle dipole
matrix elements we find surprisingly good agreement with experimental
data.

Fig. 8.1: a Schematic
of the device and mea-
surement scheme. Ap-
plying a voltage VG

between a suspended
WSe2 monolayer sus-
pended and the back-
gate introduces strain.
We record PL spectra
at the center of the sus-
pended WSe2 where
the strain is spatially
homogeneous and biax-
ial in nature. b Mi-
croscope image of a
typical device. Inset:
Room temperature PL
map of the neutral ex-
citon at 1.66eV in the
unstrained (VG = 0V)
membrane.

8.1 Introduction

Excitons (Coulomb-bound electron-hole complexes) are responsible for the
strong absorption of light in 2D transition metal dichalcogenides [275–277].
These many-body states control valley properties in these materials [278,
279], and can condense into various correlated quantum states at low temper-
atures [280, 281]. Previous studies focused mostly on “bright” free excitons
characterized by their large oscillator strength and intense optical activity.
In TMD systems such as WSe2 or WS2 spin selection rules prohibit the
radiative recombination of the ground state excitons composed of electron



98 8 Photoluminescence in strained WSe2

and hole wavefunctions in the same valley [282]. Other energetically close
excitons composed of a hole wavefunction localized in the K valley and an
electron in the Q or K’ valleys (or vice versa) are dark due to the required
momentum transfer. While these “dark” excitons [283–285] usually only
interact weakly with light due to several selection rules (spin and momentum
conservation, see Section 2.2 for the electronic structure of pristine WSe2)
the understanding of these (and other) excitonic species could be crucial
for understanding and exploiting TMDs in future applications. In all cases,
dark excitons feature greatly increased charge lifetime, spin lifetime, and
diffusion length compared to their bright counterparts [286–288]. These
properties (desirable for future spintronic applications) created research
interest targeted towards storing and transporting quantum and classical
information [289, 290]. In the presence of lattice defects the existence of
spatially localized, mid-gap defect states allow excitonic species that are
delocalized in reciprocal space [291] and optically active. In addition, defect-
related states function as broadly tunable quantum emitters, one of the
fundamental building blocks of quantum information technologies allowing
the generation of entangled photons [292–297]

Mechanical strain modifies the energies and the hierarchy of these excitonic
species. The strain induced energy shift of energy bands [298, 299] varies
across different bands and k-space regions. Excitonic species built from
these bands inherit the corresponding energy shifts. The conduction/valence
band gap at the K/K’ valleys decreases at ∼100 meV/% for uniform biaxial
strain [300]. Naturally all excitonic species associated with these valleys
(dark/bright neutral excitons, dark/bright trions, bi-excitons, and their
phonon replicas) redshift at about the same rate.

In contrast, excitons residing in the Q valleys of WSe2 display much
weaker strain dependence [301, 302], while localized excitons associated
with defects are essentially unaffected by strain [298, 299, 303]. Thus one
could employ the strain response signature to identify excitonic species. For
some strain values energy alignment between band minima at K and K’
with the localized defect states can occur and cause them to hybridize [287,
304, 305]. Therefore mechanical strain engineering can be used to identify,
generate, and tune novel hybridized excitonic states in TMDs and poses
interesting questions: (I) What are the properties of the hybridized states?
One can expect them to inherit the traits of the involved excitons before
hybridization01. This is especially noteworthy should bright, defect-related,
localized excitons hybridize with free dark K/K’ excitons as they feature
high oscillator strength and long diffusion length, respectively [287, 304,
305]. (II) Are there possible applications for the hybridized states? As
strain is required for the operation of TMD-based quantum emitters, we
believe that the hybridized states may be critical for the operation of these
emitters. In a wider scope the ability to manipulate the emission from
long-lived dark states may prove important for various excitonic transport

01 When we speak of the hybridization of excitons (i.e. many body states) we refer
to a picture of hybridization of the underlying single particle states. Excitons that
initially consist of different single particle states (e.g. conduction band minima at K
vs. localized defect level) also “hybridize” when their mutually different single particle
states intermix.
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devices [289]. (III) How do we realize strain-induced hybridization experi-
mentally? Observing well-separated excitonic peaks via optical spectroscopy
requires clean, controllably strained devices operating at cryogenic tem-
peratures. In contrast, most existing strain-engineering techniques either
function only at room temperature [306–309] or do not allow in-situ control
of the strain level [310–314]. This project addresses these questions via
an electrostatic-based straining approach capable of straining a suspended
WSe2 monolayer at very low temperatures. In addition to the well-known
free bright excitons we identify two types of excitonic species: (I) the free
dark excitons localized at K/K’ valleys and (II) a pair of bright localized ex-
citons related to shallow defects states. These two types are distinguishable

Fig. 8.2: a PL spec-
tra as a function of
VG at T = 100K. b
Cuts of (a) for fixed
VG. Neutral exci-
ton (X0, 1.738eV), pos-
itively charged trion
(X+, 1.713eV), nega-
tively charged interval-
ley trion (X-

T , 1.708eV),
and negatively charged
intravalley trion (X-

S,
1.701eV) appear at the
energies close to what
is reported in litera-
ture for high-quality
hBN encapsulated de-
vices [315–318]. The
near-zero charge neu-
trality point and the
disappearance of the
X0 peak outside of
the −50V < Vg <

+10V region confirm
the good optical qual-
ity of our samples.

by their strain dependencies and can be brought into energetic resonance
at ∼ 1% and ∼ 2.5% strain (dependent on temperature). At resonance, we
observe signatures of the formation of the new hybridized state, includ-
ing strongly increased photoluminescence of dark excitons and signatures
of avoided crossing behaviour between dark and defect related excitonic
species. Strikingly, some signatures of energetic resonance survive up to
room temperature allowing us to observe pure defect emission.

8.2 Experimental Photoluminescence of strained
WSe2

We strain to monolayer WSe2 by applying a gate voltage VG between a
monolayer WSe2 membrane suspended on top of a circular hole etched into an
Au/SiO2/Si substrate and an electrode below (see Fig. 8.1). This approach
combines several key advantages: (I) electrostatic straining functions at
cryogenic temperatures, unlike other straining approaches that only work
near room temperature (e.g. bending elastic substrates or pressurizing a 2D
membrane with gas, [307–309]). (II) We can create large strain values of up
to a few percent (higher than the limits of other techniques [306, 313]). (III)
Suspended 2D materials are not affected by substrate-related scattering and
therefore feature high optical quality necessary to resolve closely-spaced
excitonic states [315–317, 319]. Unfortunately using electrostatic forces for
straining means that the carrier density inside the device changes together
with the mechanical strain. Therefore, a careful analysis disentangling the
effects of doping and strain is required (see Fig. 8.5).

The device (see Appendix Chapter B for fabrication details) is loaded into
an optical cryostat and measured via photoluminescence (PL) spectroscopy.
We establish the quality of our device by identifying excitonic species
and start by exploring the low gate voltage regime |VG| < 80 V, where
changes in the carrier density dominate the optical response of WSe2 (
Fig. 8.2). Measuring at a temperature of 100K (where only the most intense
excitons are visible) we observe narrow PL peaks corresponding to neutral
exciton (X0) and charged trions (X+,X-

T , X-

S) at energies close to reported
values [315–318]. The X0 peak width of 7.5meV is close to the 4 - 6 meV
reported at T < 5K for high-quality WSe2 encapsulated in hBN samples [315,
320].
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Fig. 8.3: a PL map (device 1) at T = 100K with individual spectra shown in b. Free
excitonic states X0, X+/-,X0

d red-shift with increasing strain (black, dashed lines as a
guide to the eye). The state X0

d develops strong intensity maxima at energies 1.63eV (D1)
and 1.45eV (D2). The strain-independent states close to the position of D1 associate with
defects are marked with a dotted line. See Fig. B.2a in Appendix chapter Chapter B for
an offset plot of the PL spectra. c High-resolution map of the region I (device 2). The
state X− disappears with increasing strain while the state X0

d arises ∼ 14 meV below it. d
Detailed map of the region II (marked with white dashed lines in (a)) from device 1.
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8.2.1 Decoupling doping- and strain-induced effects

Examining the behaviour of the system in the high voltage regime |VG| > 80
V (where strain effects become dominant) we observe a redshift in the
energetic position of the excitons X0, X-, X+ with increasing gate voltage
(Fig. 8.3). The redshift is equal for both polarities of VG. This behaviour is
a well-characterized effect of mechanical strain [308, 319, 321]. In general,
uniform biaxial strain in WSe2 results in a downshift of all excitonic peaks
at a constant rate of 100 meV/% [322]. We use this rate to fit the observed
peak shifts to voltage dependent strain values Eq. (8.2) and extract an
effective 2D Young’s modulus of 100 N/m, close to previously reported
values [319](see Fig. B.4 in Appendix Chapter B). With this we can relate
a given VG to both the carrier density n and strain level ε induced in our
device:

n = CGVG + n0 (8.1)

ε ≈
{

αV4
G + ε0 for αV4

G < ε0

βV
4/3
G for αV4

G > ε0
(8.2)

Here CG is the gate capacitance of the device, α, β represent constants
dependent on device geometry, ε0 and n0 are intrinsic strain and charge
doping, respectively. Eq. (8.1) and Eq. (8.2) indicate that when the gate
voltage is low (i.e. |VG| < (ε0/α)

1/4 ∼ 100 V in a typical device) it mostly
controls the carrier density without efficiently introducing strain. At large
|VG|, mechanical strain starts to change rapidly, while being symmetric with
respect to the sign of VG. Experimentally we disentangle the effects of
doping and strain in our gated devices by comparing two PL intensity maps
vs. VG measured on the same device with different intrinsic doping levels
(Fig. 8.5).

Fig. 8.4: Neutral
exciton PL energy of
a suspended WSe2

monolayer (device
2) at T = 77 K
and VG = −200 V
measured across a
line scan through the
center of the mem-
brane. The redshift
of the neutral exciton
energy with respect
to its unstrained
value is converted to
strain (right axis). We
observe sharp steps
of nearly 1% strain
around the borders
of the membrane
(5µm diameter)and
small strain gradients
(< 0.07%/µm) around
its center, confirming
that the strain is
spatially homogeneous
within the area probed
by the laser spot (800
nm radius).

We reach strain values of almost 3% in our suspended WSe2 devices [299]
and have verified the voltage-strain conversion via optical interferometry
(see Fig. B.3 in Appendix Chapter B). The induced strain profile across
the suspended region is displays sharp gradients along the border and litte
variation in its center (Fig. 8.4).

We also observe trends that are not expected from a simple model based
on Eq. (8.2) that only considers spectral redshift due to strain and gating-
related redistribution of the oscillator strength between trions and neutral
excitons. Our first and most striking finding is the highly non-monotonic
evolution of the PL intensity with increasing strain (see Fig. 8.3a). After
an initial intensity drop the PL intensity increases towards a maximum
(labelled D1) at VG = ±160V (∼ 0.7% strain) and 1.63eV. The integrated
PL intensity reaches a factor 6 higher than the combined intensities of
neutral excitons and trion for VG = 0V. PL intensity then drops and peaks
again with another maximum (labelled D2) at VG = ±230V (ε ∼ 2.5%) at a
PL energy of 1.45eV. We see that the state associated with this enhanced
PL intensity emerges 14meV below the trion state. The trion gradually
disappears (Fig. 8.3c) and dominates the PL when it approaches the energies
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of D1 and D2. From its energy position, we identify01 the state as a dark
exciton, X0

d [323].
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Fig. 8.5: a and b show PL vs. VG on device 2 at 77 K (excitation 532nm, 10 µW) from
two measurements performed three months apart. Degradation of monolayer WSe2 over
time due to chemical instability varies the defect and initial charge carrier concentrations
of the samples. Excitonic species are marked with dashed lines and labeled. Individual
spectra extracted from the black solid lines are shown in insets nearby. The PL spectrum
at VG=0 is dominated in a by neutral excitons and in b by negative trions. We therefore
conclude that the sample is close to charge neutrality in a and initially electron doped
in b. The main doping-related effect, the redistribution of oscillator strength between
neutral exciton and trions, happens symmetrically for negative and positive voltages
around the charge neutrality point, VG=0 in (a) and VG ≈ −100V in b. The brightening
of the dark neutral exciton (X0

d), however, happens at roughly the same energy for the
two VG polarities in both a and b because it is caused by the strain-driven hybridization
of X0

d with a defect state when their energetically approach. We thus decouple strain and
doping effects based on the fact that doping-induced changes in the PL depend on the
polarity of VG whereas strain-induced changes are symmetrical with respect to the sign
of VG.

We also observe faint lines around 1.6 eV for |VG| < 100 V (see black trian-
gle in Fig. 8.3a). Their PL energy is largely strain-independent. Furthermore,
these features exhibit saturating power dependence that clearly distinguishes
them from the near-linear dependence for neutral excitons and trions (see
Fig. B.1 in Appendix Chapter B). Saturating power behaviour is characteris-
tic of defect-related states [291, 324, 325] while strain-independence suggests
that the underlying state has vanishing contributions from conduction band
Bloch states.

8.3 Modeling hybridization on the single particle level

Given the diameter (≈ 5µm) and expected curvature of the suspended
monolayer in relation to the irradiation spot size of the laser (≈ 1µm) we
assume a homogeneous biaxial strain at the optically active monolayer region
(see Fig. 8.4). In order to study strain dependent photoluminescence of a
WSe2 monolayer we generate TB models based on MLWF [120, 124, 125,

01The energetic proximity between dark exciton and trion requires high resolution
measurements to resolve the two peaks.
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239–241] from several uniformly strained DFT calculations of the pristine
system (see Section 2.2.1 for a concise introduction to pristine WSe2). We
therefore perform fully spin-polarized, structural and electronic optimization
of a pristine WSe2 unitcell with the DFT software package VASP [205–208]
and find an energetically favorable lattice constant of 3.322Å. We ultimately
aim to interpolate between Wannier descriptions of a few differently strained
WSe2 calculations. In order to achieve this we produce strain sampling
calculations at strains ε ∈ [−1%, 0%,+1%,+2%,+3%].

Fig. 8.6: Band structure of pristine WSe2 calculated from Hamiltonians interpolated
according to Eq. (8.3). Color indicates spin-up (↑) projection of the underlying Bloch
states φ. Band gaps for all strains are corrected by about 1.2 eV via scissor operators.

Fig. 8.7: Evolution of
topmost valence band
(solid black line, only
one spin component
shown), D1 (orange
lines, solid and dot-
ted correspond to spin
components), D2 (red
lines) and bottom of
the spin split con-
duction band (blue
lines). Coloring valid
for strains up to 0.8%.
For higher strains the
bands start to continu-
ously intersect and are
colored grey.potential
clashes with the zz
edge of the graphene
flake in an unintended
and non-physical man-
ner.

Our calculations encompass 35Å vacuum in z direction and use a 25×25×1
Monkhorst-Pack k-space grid. Our exchange-correlation functional of choice
is Perdew-Burke-Ernzerhof (PBE) in a generalized gradient approximation.
Relative positions of the selenium atoms are fully relaxed (using a conjugate
gradient algorithm) to residual forces less than 10−2 eV/Å for each strain
value. Stretching the system also induces lateral contraction with the layer
thickness (i.e. the distance between the two selenium atoms along the z

direction) shrinking by about 1.4% at +2% in-plane strain. Plane wave
energy cutoff is set to 500eV and the systems are electronically converged
to δE ≈ 10−9 eV.

We then produce TB descriptions based on maximally localized Wannier
functions (involving (with spin) six p-orbitals on each chalcogen site and ten
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d-orbitals on the metal site, see Section 3.5) for these systems. The disen-
tanglement converges after roughly 500 iterations with window parameters
(outer: [−12.0eV, 6eV], inner: [−12.0eV, 0.5eV]) to final spreads between
49 and 46 Å2 depending on the involved strain. We thus obtain both the
periodic Hamiltonian as well as the position operator in Wannier basis for
subsequent calculations of dipole matrix elements. In order to accurately
investigate at intermediate strain values we linearly interpolate the matrix en-
tries of both the periodic Hamiltonian and periodic position operator between
two sampling points ϵa,ϵb (i.e. ϵa, ϵb ∈ [−1%, 0%,+1%,+2%,+3%]):

Ĥλx,λy (ϵ) = Ĥλx,λy (]ϵ]) + (ϵ− ]ϵ])
(
Ĥλx,λy([ϵ]) − Ĥλx,λy(]ϵ])

(

r̂λx,λy (ϵ) = r̂λx,λy (]ϵ]) + (ϵ− ]ϵ])
(
r̂λx,λy([ϵ]) − r̂λx,λy(]ϵ])

(
(8.3)

Here λx, λy runs over all relevant periodic real space cells that have non
vanishing coupling elements01. We have taken care to ensure that the
Wannier bases of the different DFT sampling points are converged to con-
sistent solutions that allow for meaningful interpolation. This interpolation
enables us to efficiently calculate the band structure of pristine WSe2 for
arbitrary strains (up to about 3%, see Fig. 8.6). Semi-local DFT severely
underestimates the resulting single particle band gaps [43]. We correct this
in TB via a scissor operator [52] that results in a band gap of 2.5 eV which
agrees with both experimental and many-body GW calculations [44, 301,
302].

Fig. 8.8: Composition of the wavefunction at the K- and Q-valley minima of the con-
duction band as calculated by our Wannier model. Unlike the strongly strain-dependent
K-valley band minimum, composed of only dz2 orbitals, the band minimum at Q features
many different orbitals whose strain dependencies could be thought to cancel each other
out, explaining the weak strain dependence of the Q-valley.

The influence of strain is different for conduction and valence band and
also k-dependent. Tensile strain predominantly causes the conduction band
minima at K/K , to shift downwards in energy. The strongly spin-split
valence band also migrates to lower energies around K/K , but does so
at a much lower rate. The competing minimum of the conduction band

01 Given the small unit cell these are quite a lot. (i.e. λx ∈ [−16, 16] and λy ∈ [−9, 9])
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at Q (indirect band gap) seems mostly unaffected by strain and becomes
increasingly energetically separated from the K/K , minimum at larger tensile
strains. This observation is consistent with literature and also holds for
expensive GW+BSE [301] and even scGW calculations [302]. An insight of
our Wannier model is the stark difference in composition for the conduction
band at the respective minima at Q and K (see Fig. 8.8).

Fig. 8.9: Tight binding band structure along ΓKMΓ and lattice plots for 7× 7 super cells
of tungsten diselenide for a pristine reference, b selenium di-vacancy defect, c selenium
mono-vacancy defect, d tungsten vacancy. Horizontal dotted lines serve as guide to the
eye for the pristine band gap with scissor correction applied.
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While the conduction band minima at K (which shifts more strongly with
strain) is predominantly composed of dz2 like orbitals, the Q minimum
features a mixture of states with various orbital characters. The strain
dependence of these states could to some extent “cancel out”.

8.4 Transition matrix elements of defect supercells

We model the intensity variations of the PL peaks with increasing strain
discussed in Section 8.2 as single particle effects: Strain causes the bulk
conduction bands to shift energetically downwards through localized defect
levels which leads to hybridization and a strong increase in oscillator strength.
We omit more accurate but far more elaborate GW calculations [326–328]
that would be required for quantitative corroboration since the proposed
mechanism should already be well captured in the single particle picture
and allow for qualitative analysis. In order to probe this hypothesis we
study optical transitions between the relevant bands in a poor man’s 17×17
defect super cell01.

Fig. 8.10: a Schematic illustration of the K and K’ valley bandstructure of WSe2 at
several different strain levels. Filled and empty arrows denote spin. b Corresponding
bandstructure calculated via maximally localized Wannier functions. The color scale
of the bands denotes their degree of localization in the immediate vicinity V of the
defect site. Dark excitonic states X0

d associated with the K point becomes resonant with
excitons related to defect-related mid-gap states D1 and D2 at 1.2% and 2.4% strain.
The resonance between X0

d and D1/D2 is determined by the total strain. Since intrinsic
strain is temperature-dependent due to the thermal extension of involved materials as
well as other effects [329], strain values at which the hybridization occurs also depend on
temperature, as discussed in detail in Section 8.7.
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A comparison between different defect candidates (Se-vacancy, Se-divacancy,
W-vacancy) strongly favours the simple Se-vacancy due to both number and
energy of midgap defect levels (see Fig. 8.9). The selenium mono vacancy
features two defect levels (four with spin) with shallow donor character.
Conduction, defect and valence bands all shift downwards in energy under
tensile strain but do so at different rates (cb: −74 meV/%, D1: −71 meV/%,
D2: −73 meV/%, vb: −182 meV/%)02. The spin split conduction bands
then undergo a sequence of avoided crossings with the two defect levels D1
and D2. We expect optical transitions to be the dominant decay channel
for the excitons in our system (cryostat temperatures) and thus calculate
dipole matrix elements

|J · <Ψv |̂r|Ψc>|2 (8.4)

with topmost valence wavefunction |Ψv> and conduction wave function
|Ψc> (this nomenclature counts defect levels as conduction bands) and
polarization vector J. We extract the position operator from Wannier90
[120, 124, 125, 239–241]:

<R,n|̂r|0,m> = i
V

(2π)3

∫
eik·r<n, k|∇k|m, k>dk (8.5)

Due to the starkly different strain dependence of competing conduction
band minima at K and Q (see Fig. 8.6) we limit the transition to the direct
bandgap at the K point but also consider the possibility of momentum
relaxation at the lattice defect (non radiative transition from K to K ,)
followed by radiative decay into the valence band which features opposite
spin polarization in the other valley. This is incorporated by an overlap
integral of almost degenerate (to within ±2.5meV) states at the two valleys.

|J · <Ψv
K
|̂r(K)|Ψc

K
>|2 × (

1 + |<Ψcn

K
|Ψcn

K , >|2
)

(8.6)

1.7

1.4

0.0                  1.0                 2.0

1.7

1.4

0.0                  1.0 2.0

a

b

Fig. 8.11: Modeled
PL intensity for a 17×
17 Se single vacancy su-
per cell in WSe2 (i.e.
the expression of tran-
sition matrix elements
in Eq. (8.6) evaluated
at K and K ,) plotted
as a function of strain
ϵ and PL energy. a
no relative weighting
of bright and dark fea-
ture, b bright feature
suppressed by a factor
of e−(36meV/8.6meV) ≈
1/66 (to account for
thermal population dif-
ferences). We include
a Gaussian smearing of
width 10 meV for all
energies.

In order to compare with experimental data we calculate PL intensity
(oscillator strength, see Eq. (8.4)) as a function of PL energy ∆Ec→v and
strain ε. We shift our PL energy axis by an exciton binding energy of 0.8 eV
for all conduction-valence band transitions [54] which is naturally missing
from our single particle analysis.

01 Both the successful implementation of my machine learning based defect parametriza-
tion algorithm (Chapter 6) as well as its extension to TMDs (Section 6.7) had not
yet been achieved at the start of this project. I meanwhile also have a Wannier
description of a fully relaxed 6 × 6 defect super cell. Embedding this into a larger
pristine supercell (for meaningful defect concentrations) and redoing the calculation
presents the prospect of studying polarization retention in future projects as such
questions require exact knowledge of which symmetries the relaxed defect breaks.

02 Note that the rate of relative redshift between valence band and conduction band
agrees well with the value assumed (100 meV/%, [322]) for transforming gate voltage
to effective strain in Section 8.2 for the experimental data.
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8.5 Comparison to experimental data

The experimentally observed strong increase in photoluminescence occurs
when a strain-related modification of the energy spectrum brings the dark
exciton X0

d into an energetic resonance with defect-related states D1,D2.

Fig. 8.12: Experimental (a) and modelled (b) PL spectra map of WSe2 vs. strain.
Different shift rates vs. strain for the defect-related states D1,D2 and a dark excitonic
state X0

d are evident. When X0
d is energetically resonant with either D1 (around ε ∼ 1.2%)

or D2 (around ε ∼ 2.4%) a strong increase in oscillator strength and avoided-crossing
type behaviour occur. Insets show on- and off- resonant alignment between dark- and
defect-related excitons.

This is especially striking since D1 and D2 are virtually invisible in
unstrained devices. We explain these changes in intensity via strain-related
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hybridization between the dark exciton X0
d and defect-related states D1 and

D2, as predicted by our tight-binding model (Fig. 8.10). Direct comparison
of the experimental PL data, now plotted as a function of strain (Fig. 8.12a)
to the theoretical evaluation of dipole matrix elements (Eq. (8.6), Fig. 8.12b)
reveals solid agreement.

The fully spin resolved TB model can clearly capture the relative intensity
of the bright and dark excitonic features (see Fig. 8.11). Since our model
only calculates oscillator strength and does not in fact model the occupation
of the corresponding energy bands we suppress the bright exciton by a factor
of e−(36meV/8.6meV) ≈ 1/66 (to account for thermal population differences).
All of the features of the experiment are evident in our simulation, including
the linear shift of X0

d with strain, near strain-independence of D1/D2 and
an order of magnitude increase in PL intensity when X0

d into resonance with
D1 or D2. At the strain values where the dark conduction band produces
avoided crossings with the defect levels, hybridization occurs and the PL
intensity forms peaks since momentum and spin selection rules no longer
fully extinguish the PL signal.

It is also worth discussing several differences between experiments and
theory. The shape of the region of increased PL in the experimental
measurements is much more elongated than in the simulation data. Whether
this is due to a potential mixture of differently contributing defect types
in the real system might be up for discussion (see closely spaced midgap
states of e.g. the double Se vacancy defect in Fig. 8.9). The experimental
D1 maxima also features a subtle horizontal “tail” of PL intensity that is
absent in Fig. 8.12 due to the artificial occupation suppression of the bright
band and all other above (i.e. the large number of virtual bands crossing
D1 Fig. 8.7 can — if not suppressed — also form a ridge like structure
that at least visually however seems more “connected” to the bright exciton
feature). Since our model only calculates oscillator strength and does not
in fact model the filling of the defect energy bands we see quite pronounced
horizontal intensity features at the defect energies. These should however
only become effectively populated (and thus visible) once the conduction
bands approach their energy due to strain. To confirm our interpretation,
we have considered other phenomena that may contribute to non-monotonic
variation of PL intensity in the next section.

8.6 Other possible contributions to PL intensity of
the suspended WSe2 system

Several phenomena can contribute to gate-dependent changes in PL in-
tensity and potentially produce signatures similar to the ones ascribed to
hybridization between bright and localized excitons. Here, we discuss such
artefacts and show that none of them can explain our observations:

• Fermi level changes Changes of the gate voltage VG produce changes
in the Fermi level of our device in addition to the changes in strain. In
principle, changes in the Fermi level affect photoluminescence spectra.
However, the gradual increase in EF only produces a Stokes shift in
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the energetic positions of trion vs. neutral excitons and a gradual
decrease in the intensity of all excitonic peaks due to phase-space
filling effects and screening [320]. In contrast, our experimental data
exhibits sharp peaks and avoided crossing signatures at specific strain
values.

VG(V)VG(V)

Fig. 8.13: One artefact that can produce non-monotonous changes in the PL intensity
vs. VG — and hence appear similar to the signatures observed — arises due to optical
interference. We expect the total PL intensity – by which we mean the integrated intensity
of all PL peaks peaks in a spectrum – to vary proportional to the membrane displacement.
Here, we quantify the possible contribution of this effect. We examine the integrated
PL intensity vs. VG (empty symbols) for different excitation wavelengths (570, 600, 645,
675 nm) on device 5 at room temperature. Room temperature PL intensity in this range of
VG is roughly constant with most changes likely arising from interference effects. Indeed,
we see that for all excitations, the variation in the signal remains small, but its phase
shifts, as expected for interference. Furthermore, the signal matches the calculated laser
intensity at the position of the device vs. VG for same wavelengths using a simple model
based on transfer matrices that captures interference effects (solid lines). In addition, we
also plot the normalized reflectivity vs. VG (curves are upshifted for clarity). As expected,
this data is similar to the PL intensity data as the reflectivity maxima coincide with
the maxima in absorption. We therefore ascribe the modulations seen in the figure to
interference effects. Note that the maximum modulation due to interference is found for
645 nm (green empty symbols) and it is smaller than a 30 % of the average intensity.
This allows us to set 30 % as an upper boundary for the effect of interference in the
experimental data.

• Interference effects The space between the WSe2 membrane and
a reflective Si backgate forms an optical cavity where the excitation
laser beam interferes with itself. This interference results in a spatial
modulation in the laser intensity inside the cavity. When the mem-
brane actuated by VG deflects, its center moves with respect to the
interference pattern leading to changes in absorption. Changes in
absorption, in turn, affect PL emission, so the overall PL intensity
ultimately reflects the spatial modulation of the laser intensity. To
carefully analyze the contribution of this effect we carried out opti-
cal interferometry and photoluminescence excitation measurements
described in Fig. 8.13. These measurements indicate that the contri-
bution of the interference to VG-dependent changes in PL intensity
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is small (< 30 % of the overall PL signal at zero strain) and does
not significantly affect our observations (the change of the overall PL
signal intensity we attribute to hybridization is about a factor of six
compared to PL at zero strain).

• Changes in absorption As strain is applied to the WSe2 monolayer,
its optical absorption spectrum gradually shifts with respect to the
excitation laser kept at λ = 532nm. Changes in absorption, in turn,
affect the overall brightness of photoluminescence. For the absorption
spectrum of monolayer WSe2, however, our excitation energy of 2.33
eV lies well above the two main excitonic resonances A and B [330].
Using available data, we estimate that at 100 K absorption should
increase 30% from its unstrained value between 0 and 1.5% strain.
It then decreases slowly as the strain is increased above > 1.5 $. In
contrast, our experimentally observed PL intensities do not reflect
these changes in absorption. The PL intensity increases 6 times at
0.75% compared to the unstrained value, decreases and then increases
again 2 times at 2.4%. The difference between the PL emission
behaviour with strain and the expected changes in absorption for the
same strain values allow us to dismiss absorption as the main cause
of the observed experimental features.

• Strain-dependent scattering between K- and Q-valleys Strain-
dependent scattering between K- and Q-valleys of WSe2 has been
previously invoked to explain strain-dependent changes of the PL
intensity [299, 319]. It was argued that the strain increases the energy
separation between the K- and Q-valleys thereby suppressing K-Q
intervalley scattering. This, in turn, reduces the linewidth of the
bright neutral exciton [299]. We do observe a corresponding reduction
of the bright neutral exciton linewidth at room temperature with
increasing strain up until 0.75 %. However, for strain > 0.75 % the
observed linewidth of the emission increases as PL splits in two bands.
Continuous distancing of the K- and Q- valleys can explain neither the
two PL resonances arising at different strain values nor the splitting
of the PL emission in two bands. We therefore conclude that strain-
induced changes in the relative energies of the K- and Q-valleys cannot
account for the observation of hybridized peaks and other features
seen in the experiments.

To summarize, none of the phenomena discussed above can meaningfully
contribute to the non-monotonic changes in PL spectra seen in experiment.

8.7 Temperature dependent data

Having understood the strain induced hybridization of dark free and bright
defect-related excitons, we can now discuss the temperature dependent
nature of the states undergoing hybridization. For this, we turn to more
complex data at temperatures between 10 K and 300 K (Fig. 8.14) and
observe several trends:
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(I) The strain tunability of the excitonic states decreases at low tempera-
tures (e.g. VG = 200 V generates 2.2% strain at 300 K and only 0.9% at
10 K). This difference is readily explained by the temperature-dependence
of both intrinsic strain and the mechanical constants (e.g. Young’s modulus)
of WSe2 [331, 332].

(II) Despite a strong temperature-dependent blueshift in the unstrained
X0 and X+/− excitonic peaks with decreasing T the strong enhancement in
the PL intensity occurs at roughly constant energy for T = 10, 100, 300 K
(dashed lines in Fig. 8.14). This is consistent with strain-independent
defect-related excitons D1 and D2.

(III) At T > 100 K the state hybridizing with D1/D2 — and thus
dominating the photoluminescence — matches the energy of X0

d. At T = 10 K
we observe more complex behaviour (Fig. 8.14a, see Appendix Chapter B
for individual spectra). A state that lies ∼ 80 meV (∼ 87 meV) below X0 for
p- (n-) doping dominates the spectrum. This state is faint at zero strain,
redshifts with strain at the same rate as other excitonic states, and its
intensity reaches a maximum when it is brought into resonance with the
defect-related state D1. The energy of that state is within a cluster of states
related to dark trions X+

d , X-

d and their phonon replicas [315, 333]. This
suggests that at low temperatures the strain-driven hybridization between
dark trions X+

d , X-

d and the defect state D1 dominates the emission. At low
temperature is likely the increased population of dark trions [334] that fuels
this shift in relative intensities.
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Fig. 8.14: PL spectra vs. strain maps acquired at a T=10 K, b 100 K, c 300 K. An
individual spectrum at 10K measured under 0.25% strain (-140 V) and marked with a
white, solid line is shown in the inset of (a). While the energy of the unstrained, free
excitonic states (X0, X+, X0

d, the corresponding spectral lines are marked with dashed
lines) blueshifts with lowering temperature, the features D1 and D2 associated with the
corresponding defects stay roughly energy-independent. Due to the temperature-related
changes in mechanical constants, only the D1 state is resolved at 10 K within our accessible
VG range. In contrast, we resolve the hybridization with both states D1 and D2 at 100 K
and 300 K. As opposed to the T=10 K data in (a) that is symmetric with respect to p-
and n- doping, the intensity of the n-branch at 300 K in (c) is roughly 30 times lower
than that for the p-branch. Note that the voltage scales in (a-c) are not linear.
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(IV) In contrast to lower T we see a pronounced asymmetry between
positive and negative voltages in both intensity and structure of the PL
spectrum at 300 K (Fig. 8.14c). Since our setup induces strain independent
of the sign of VG, this asymmetry must arise from changes in the carrier
density. At n-doping (i.e. VG > 0) the PL intensity is 30 times lower than on
the p-side (i.e. VG < 0). Furthermore we do not see any features associated
with free excitons or linear strain dependence at n-doping and only observe
weakly dispersing features at the energies of states D1/D2 that do not seem
to undergo hybridization. We speculate that this behaviour may be related
to the small oscillator strength of free excitons seen at room temperature for
substrate-supported WSe2 samples for n-doping [335–337]. This suggests
that the features seen on the n-side are the intrinsic contributions from
localized defect states D1/D2 that are in this regime not masked by other
much stronger excitons.

8.8 Conclusion

We have shown that mechanical strain can bring dark- and localized defect-
states into resonance and form a new hybridized state with large oscillator
strength. That state dominates light/matter interactions in WSe2. The out-
lined phenomenon can in principle occur between any pair of excitonic states
that have different strain dependencies as long as they are not protected
by some remaining symmetry (i.e. in our case the defect both introduces
localized states and allows for avoided crossings with conduction bands).
Point defects other than the Se vacancies discussed here can also be in-
volved, as long as they feature localized defect states sufficiently close to the
conduction band edge (i.e. within range of strain induced redshift). The
hybridized state we observe is likely key for the operation of single quantum
emitters in WSe2. These devices generate highly non-uniform strain in WSe2

by deposition onto e.g. a bed of pillars. At the point of maximal strain
(e.g. the pillars’ top) the hybridization conditions are fulfilled and dark
excitons effectively release their energy as photons while the strain gradient
“funnels” all excitonic species (including dark) towards this point of highest
strain. Since the lifetime of dark excitons is much longer than that of their
bright cousins, our work shows that the area from which this funneling pro-
cess “collects” the energy is much larger than what was thought previously.
Similar processes may happen in other TMD materials, especially in WS2,
where the ground state is also dark [338]. Our results also suggest the use
of mechanical strain to fingerprint excitonic complexes in TMDs (e.g. free
and defect-related excitons respond to strain very differently allowing their
unambiguous identification).

Recent experimental PL measurements of WSe2 single photon emitters
employing atomic force microscopy to carefully introduce nano-indents
near lattice defects [339] might be the final confirmation of the strain-
induced spectral shift/hybridization mechanism. Our current modeling of
the PL map based entirely on single-particle quantities and the continuing
research interest from experimental groups calls for a follow-up investigation
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of these systems via more refined techniques such as re-diagonalizing a
Bethe-Salpteter Kernel or following the GW approximation.

Furthermore, I have meanwhile managed to produce a Wannier parametriza-
tion of a complete 6 × 6 Se single vacancy defect super cell. Since this
model also includes lattice relaxation we can now study polarization re-
tention of the strained defect system. Abhijeet Kumar from the group of
Kirill Bolotin has recently reached out to us with interesting experimental
data that suggests that the defect hybridized exciton appears to break the
expected symmetry between σ

-
and σ+ excitation. Since the retention of

chirality certainly depends on the remaining symmetries of the defect the
fully relaxed defect geometry is a necessary building block for future studies.
A theory to describe the new valley-polarization measurements (via Kerr
microscopy) will also have to model the excitation to some extent. Since
the new data from the Universität zu Berlin is time-resolved, this would
also provide an exciting opportunity to study the dynamic aspect of this
polarization flip.



Chapter 9

Grain boundaries as valley filters

“Equipped with five senses, man
explores the universe and calls
the adventure science.”

Edwin Hubble

This chapter reports on a joint project with my project student Siyar
Duman (an excellent project- and later on master student in our group).
The idea for the project came from the motivation to possibly extend the
controlled symmetry breaking discussed in Chapter 5 from point defects
to one-dimensional line defects or grain boundaries and quickly grew into
a brainstorming about other interesting physics of these systems. One
successful “wannierization” and literature search on these defects later I
stumbled across a relatively short paper with an even more succinct title
[15]. The authors employ a fiendishly simple 1NN TB model of the 5-8-5
line defect in graphene to corroborate a very elegant series of symmetry
arguments that state that any line defect that is mirror-symmetric along its
main axis results in valley filtering, the efficiency of which depends on the
angle of incidence of the scattered electron.

The main motivation for this project is thus to figure out whether this
angle dependent valley filtering holds for a 10NN TB description of sym-
metric grain boundaries generated from fully relaxed DFT calculations.
To this extent we generate Wannier parametrizations for two symmetric
grain boundaries, embedd them into a scattering geometry that allows for
variation of the angle of incidence (via a Berry-Mondragon-like guiding
potential [39, 340]) in electronic transport simulations and analyze the
valley character of both transmitted and reflected amplitudes. Carefully
disentangling effects from the trajectory-controlling potential we find that
valley polarization only occurs at narrow energy windows near bound defect
states. Angle dependence of transmitted polarization (while qualitatively
similar) is generally not well approximated by a simple sine function (as
predicted in [15]). I conceived the project, generated the Wannier descrip-
tions and came up with the scattering geometry. Siyar implemented the
angle variation potential, executed the transport calculations and evaluated
all results.
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9.1 TB models for symmetric line defects

We perform DFT structural and electronic optimization with the VASP
software package [205–208] for two types of line defects that are mirror-
symmetric with respect to their longitudinal direction. The first being the
exact same line defect for which the valley filtering properties have been
proposed in [15] (henceforth referred to as 5-8-5 line defect, see Fig. 9.1a). It
is essentially the reconstruction of two graphene flakes telescoped into each
other along the armchair (AC) direction. The calculations encompass 3×9×1
k-points with a plane wave cutoff of 600eV. Ionic positions are converged to
forces less than 10−2eVÅ−1. The relaxed unit cell size in y-direction is found
to be 4.9219Å with the PBE functional [107] and 25Å of vacuum added in
z-direction. After the final electronic relaxation to δE ≈ 10−9eV we employ
Wannier90 [212–214] to generate 185 Wannier functions (initially starting
from atom-centered pz and bond-centered s orbitals) disentangling (outer
window [−28.5eV, 8.4eV], frozen window [−28.5eV, −0.12eV]) physical from
vacuum states converges after 1036 iterations. Successive minimization of
the spread functional results in a total spread of 146.87Å2 after 199230
iterations.

55
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a b

Fig. 9.1: a Relaxed pentagon/octagon (indicated in blue and green respectively) geometry
of a 5-8-5 line defect resulting from two graphene flakes shoved into each other along the
arm chair direction. Grain boundary adjacent atoms are colored red. Dashed orange lines
indicate periodicity in y direction. b Relaxed pentagon/heptagon (indicated in blue and
green respectively) geometry of a tilt line defect (classified via grain boundary indices
m = 1, n = 2 according to [341]) resulting from two graphene flakes rotated by θ = 21.8◦

(arm chair orientation of both sides indicated by dotted grey lines). Grain boundary
adjacent atoms are colored red. Dashed orange lines indicate periodicity in y direction.

The second line defect under consideration is a so called tilt grain boundary
(see Fig. 9.1b). These kind of periodic grain boundaries arise from a finite
misorientation angle between two graphene flakes and are described with
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coincidence site lattice (CSL) theory. Such grain boundaries are uniquely
classified via two indices (m,n) that build the generating vector out of the
pristine lattice vectors [341],

B1 = ma1 + na2 (9.1)

similar to the description of moiré patterns. The periodicity d and misori-
entation angle θ of these grain boundaries follow from commensurability
conditions [342]

dm,n = ||B1|| = a
√

m2 +mn+ n2 (9.2)

θm,n = 2 arcsin
(

|n−m|

2
√
m2 +mn+ n2

)
(9.3)

We choose a line defect with m = 1 and n = 2 that results in reasonable y

periodicity of d = 6.5112Å. In order to also achieve periodicity in x direction
the DFT supercell for this defect involves two grain boundaries rotated 180◦

to one another. We use a Monkhorst grid (3 × 5 × 1) with a plane wave
cutoff of 350eV. After the final electronic relaxation to δE ≈ 10−8eV we
again employ Wannier90 [212–214] to generate 340 Wannier functions with
otherwise identical parameters to the 5-8-5 line defect.

9.2 Valley filtering via symmetry

The valley filtering properties proposed in [15] follow from simple symmetry
arguments for low energy (k remains restricted to the vicinity of K/K’
valleys) quasiparticle waves with well defined angle of incidence to the line
defect α. The full system is described via a Hamiltonian of the form

Ĥ = Ĥ0 + ĤD + V̂ (9.4)

the three terms of which account for pristine graphene, line defect and
their interaction respectively. In the limit of vanishing wave vectors the
reflection operator Π̂ commutes with the translation operators both along
and perpendicular to the line defect axis (i.e. T̂|| and T̂⊥). This allows us to
write solutions in terms of eigenstates of the reflection operator Π̂ (|+>, |−>)
with k dependent, unimodular, complex coefficients a+, a−,

|Ψk> = a+|+>+ a−|−>. (9.5)

Assuming a 1NN TB model we can now argue that since |−> has a node
along the mirror axis, it can not contribute to transport across the line
defect. This results in transmission and transmitted valley polarization of
the form:

Tτ = |<+|Ψτ>|2 =
1 + sin(τα)

2
(9.6)

PT = TK − TK , = sin(α) (9.7)
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where τ = ±1 describes the valleys K/K’. While this deduction involves
several approximations (no transversal confinement, 1NN TB, low energy
limit) we may at least expect some degree of valley polarization for reasonably
high angles of incidence even in our more realistic simulations.

a b

-α

Fig. 9.2: a Top view schematic of the zig-ac-zig geometry employed for transport
calculations through the 5-8-5 line defect (see Fig. 9.1a). The line defect is oriented along
the brown, dot-dashed line. The half-infinite zig-zag edged leads are attached at the left
and right ends. Dashed lines (red, orange, yellow) represent the center of the guiding
potential used for manipulating the angle of incidence α. b Perspective view of the same
geometry as in a with a schematic cross section of the guiding potential Eq. (9.9)

9.3 Transport geometry

Fig. 9.3: Transmitted
(top) and reflected
(bottom) valley polar-
ization PT/R for the
pristine benchmark
geometry (no line
defect embedded but
otherwise identical) as
a function of energy
and angle of incidence
α. Vertical, dotted,
grey lines indicate
the angle range in
which the pristine
geometry does not
produce finite valley
polarization. For
α < -20◦ the guiding
potential clashes with
the zz edge of the
graphene flake in
an unintended and
non-physical manner.

In order to study the valley polarization effects of the line defects in terms
of Landauer Büttiker [343] transport with our modular recursive Green’s
function code [116, 344] we need to identify the valley character of the
incoming and outgoing lead modes. In this formalism the first desired
information is the surface Green’s function of the semi-infinite leads [115]
attached to the scattering geometry (which encompasses the defect)

GL/RĤL/R =
∑

L/R

|L/R> eik∆x, ,, ,
β

<L/R| (9.8)

where |L/R> refers to left- or right-moving states respectively and β := eik∆x

are the eigenvalues of the lead eigenproblem.
While there has been much ingenuity implemented by my predecessors

(Thomas Fabian [114], Lukas Linhart[83]) for efficiently solving for the lead
modes (involving a Jacobi-Davidson eigensolver as well as a mode sorting
algorithm that involves singular value decomposition for highly degenerate
unit cells [345]) it turns out that identifying the valley character of a lead
mode is best done via the sign of the imaginary part of the eigenvalue β.
In “normal” systems where the band minimum is at Γ open modes would
be located around (1, 0) in the complex β plane. For graphene we expand
around K/K’ (i.e. ±(2π)/(3a)) which makes the sign of the imaginary part
of β a unique valley descriptor for 1D transport calculations. However this
procedure comes with several prerequisites:
1) by definition it only works for low energy solutions (i.e. the close vicinity
of K/K’).
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2) the lead needs to feature zig-zag (ZZ) boundaries to avoid K and K’ being
projected onto each other along the imaginary β axis.
3) The term ∆x in β can (for artificially degenerate unit cells) also make
the extraction of valley information impossible (exponentiating of signs or
in other words over-rotation on the complex unit circle).

Our transport geometry of choice (Fig. 9.2) meets these conditions by

Fig. 9.4: Exem-
plary scattering den-
sities in the pristine
reference geometry at
E = 0.5eV (color scale
from black to red) for
(top) zero node mode,
α = 30◦, (center)
zero node mode, α =

-15◦, (bottom) single
node mode, α = -4◦.

connecting the 5-8-5 line defect region via two trapezoidal shaped regions
to half-infinite zz leads. Furthermore we also employ a guiding potential of
the form

VCS(d⊥)σz =
(

e−γ(d⊥+W
2 ) + eγ(d⊥−W

2 )
)
σz (9.9)

that is used to both change the effective angle of incidence α ∈ [−40◦, 40◦]
and gets rid of any influence of zig-zag or armchair edges. VCS(d⊥) is
a double exponential tub potential that defines the cross section of the
guiding channel along yCS(x) (e.g. yellow, orange or red dashed curves in
Fig. 9.2a). This center line is defined via cubic splines connecting straight
regions at lead source and drain as well as a straight region close to the
crossing with the defect line. d⊥ represents the orthogonal distance to this
center line yCS(x). σz is a Pauli matrix in sublattice space which can only
be applied where the sublattice assignment of lattice sites is meaningful (i.e.
we replace σz with a unity matrix in sublattice space for the sites that make
up the defect). In order to unequivocally determine the source of any valley
polarization effects we build an essentially identical copy of this scattering
geometry without embedding the line defect to allow for blank tests of
the intricate guiding potential setup (see Fig. 9.3). Transport calculations
of this benchmark system for varying angles reveal the limitations of our
guiding potential setup. While transmission through the geometry is close
to unity for all angles α ∈ [-40◦, 40◦] (not shown) we find finite valley
polarization for extreme angles below -20◦ (see Fig. 9.3). Inspection of
the corresponding scattering densities (Fig. 9.4) reveals that the guiding
potential (high curvatures for large angles) collides with the zz edges of our
graphene flake for these angles. Since this effect also occurs at smaller angles
for increasing energy we restrict the following analysis to the “trustworthy”
angle regime of α ∈ [-20◦, 20◦] (vertical dotted grey lines in Fig. 9.3) where
we have certainty that any valley polarization encountered in the defect
geometry is caused only by the presence of the defect.

Since such a benchmarking system is not viable for the rotated line
defect (one cannot connect two rotated graphene sheets without the grain
boundary) we only present results for the 5-8-5 line defect. A similar analysis
for the tilt grain boundary in Fig. 9.1b is an ongoing project.
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Fig. 9.5: a Transmitted valley polarization PT (E,α) Eq. (9.11) for the 5-8-5 linedefect
geometry presented in Fig. 9.2. Curly brackets indicate energy regions I-IV referred to in
the discussion. Dashed lines indicate coordinates of cuts presented in panels b-d. b Con-
stant angle cut of panel a (α = 17◦). Dotted, vertical lines separate qualitatively different
behaviour (I . . . isolated peaks, II . . . emerging background, III . . . pronounced background
with sharp “Fano-like” resonances, IV . . . monotonic decline before mode opening). c
Constant energy cuts of panel a (A. . . 0.18eV, B. . . 0.163eV, C. . . 0.154eV). Grey, dashed
line plots sinα for visual comparison. d Constant energy cuts of panel a (D. . . 0.18eV,
E. . . 0.163eV, F. . . 0.154eV). Grey, dashed line plots sinα for visual comparison.
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9.4 Valley polarization and bound defect states

The main properties of interest — valley polarization of transmitted and
reflected wave — can be readily defined via the valley channel resolved total
transmission and reflection:

PR(α,E) :=
RKK + RKK , − RK ,K − RK ,K ,

Rtot
(9.10)

PT(α,E) :=
TKK + TKK , − TK ,K − TK ,K ,

Ttot
(9.11)

with RK ,K (TK ,K) the reflection (transmission) coefficient of an incoming K
wave scattered into a K’ state and Rtot (Ttot) the total reflection (transmis-
sion).

a b
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y y
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Fig. 9.6: Scattering density at a a generic energy with no significant valley polarization
PT and b at a polarization resonance. (see respective energies in panel c). c PT for the
5-8-5 defect geometry (see also panel b in Fig. 9.5). d Probability density for bound
states at the energies indicated in panel c. Resonances in transmitted valley polarization
correspond to the existence of bound defect states.
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We calculate valley polarization for both the transmitted and reflected
currents for energies E ∈ [0.08eV, 0.23eV] for the 5-8-5 line defect geometry.
In this energy regime our lead supports two open modes which are degenerate
and correspond to the valleys K/K’ respectively. Our calculations reveal a
surprisingly rich transmitted polarization landscape PT(E,α) (see Fig. 9.5a)
that features several sharp polarization maxima along the energy axis
(see Fig. 9.5b) and smooth but in general nonlinear angle dependence
(see Fig. 9.5c,d). We can identify four energy regimes with qualitatively
different behavior for PT: (I) E ∈ [0.08eV, 0.13eV] with separate sharp
(FWHM ≈ 0.8meV), (II) E ∈ [0.13eV, 0.151eV] broader peaks with increasing
background, (III) E ∈ [0.151eV, 0.175eV] pronounced background superposed
by very narrow, asymmetric resonances, (IV) E ∈ [0.175eV, 0.214eV] slowly
decreasing background without peaks and sign reversal before new mode
opening at 0.214eV. Focusing only on angle dependence for a moment we
can compare constant energy cuts (see Fig. 9.5c,d) with the simple sine
expression of [15]. While PT(α,E = const.) is monotonically increasing in
regions (III) and (IV) (cuts through the extended background, see Fig. 9.5c)
our calculations yield consistently larger polarization than that of Eq. (9.7).
We note varying slopes and shifts in the position of the zero-crossing for
different energies. Cuts through the sharper maxima (Fig. 9.5d) in regions
(I) and (II) show non-monotonicity with PT(α,E = const.) featuring two
inflection points in α ∈ [-20◦, 20◦].

A similar analysis for PT(α,E = const.) (see Fig. 9.7) reveals in general
inverse valley polarization. Interestingly enough the line defect appears to
introduce net scattering between valleys as the total valley polarization of
incoming (Pin = 0) and outgoing waves Pout := PT + PR /= 0 differ. Whether
this unexpected loss of valley symmetry is caused by the line defect itself or
only in combination with guiding potential remains elusive in our analysis.
While one may expect the reflected wave to interact more intensely with
the grain boundary (i.e. reflection requires a larger change in momentum)
the reflected wave features lower valley polarization than the transmitted
counterpart.

Both PT(α = const.,E) and PR(α = const.,E) (Fig. 9.5b and Fig. 9.7b)
display pronounced peaks for some energies. The scattering densities for
the two incoming modes (K/K’) at these energies reveal strong resonance
at the defect site with starkly different mode resolved transmission (i.e.
K simply passes the boundary while K’ appears almost entirely reflected,
see Fig. 9.6a,b). We conjecture resonances with bound defect states as
the origin of the energetically narrow but strong valley polarization (in
both transmission and reflection). To this extent we have also calculated
eigenstates of the transmission geometry by replacing the half-infinite leads
with hard walls. We indeed find that the peaks in valley polarization can be
identified with localized eigenstates of the grain boundary (see Fig. 9.6c,d).
This is furthermore supported by the angle independence of the resonance
features (see Fig. 9.5a). We explain the tilt of the two lowest resonance
lines in region (I) with the lower defect states primarily probing the bottom
of the guiding potential (also present for the eigenstate analysis) and thus
experience a slight energy shift depending on α. Without demand for
completeness we point out that width, shape and intensity of the eigenstate
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resonances depend on their particular single particle spacing, real space
localization and symmetry properties.
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Fig. 9.7: a Reflected valley polarization PR(E,α) Eq. (9.10) for the 5-8-5 linedefect geom-
etry presented in Fig. 9.2. Curly brackets indicate energy regions I-IV referred to in the
discussion. Dashed lines indicate coordinates of cuts presented in panels b-d. b Constant
angle cut of panel a (α = 17◦). Dotted, vertical lines separate qualitatively different
behaviour (I . . . isolated peaks, II . . . emerging background, III . . . pronounced background
with sharp “Fano-like” resonances, IV . . . monotonic decline before mode opening). c
Constant energy cuts of panel a (A. . . 0.18eV, B. . . 0.163eV, C. . . 0.154eV). Grey, dashed
line plots sinα for visual comparison. d Constant energy cuts of panel a (D. . . 0.18eV,
E. . . 0.163eV, F. . . 0.154eV). Grey, dashed line plots sinα for visual comparison.
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9.5 Conclusion

We have extended the simple symmetry analysis of [15] to realistic transport
calculations with an ab-initio derived 10NN TB parametrization for the
5-8-5 line defect. While we could not validate the simple angle dependence of
Eq. (9.7) our calculations yield a much richer valley polarization landscape
with sophisticated energy dependence. Nevertheless the valley filtering
properties of this grain boundary survive the extension from 1NN TB to TB
models accounting for long range interactions and seem to rely on resonances
with bound defect levels.

In a next step we will try to produce a similar analysis of the second
(rotated) grain boundary (see Fig. 9.1) to verify if the observed behavior is
reproducible. The relative rotation of the two leads makes disentanglement
of effects due to the curving geometry from boundary induced polarization
tricky. We will then also focus on the resonant behaviour of the valley
filtering aspect since some of the resonance peaks appear to differ in character.
It might also be worthwhile to study a non mirror-symmetric line defect
since this symmetry is the underlying argument of [15].



Chapter 10

Mapping quantum Hall edge states
in graphene

“Man prefers to believe what he
prefers to be true.”

Francis Bacon

This chapter reports on a collaboration with the group of M. Morgenstern
at the RWTH Aachen and focuses on the experimental measurements and
Poisson calculations done by Tjorven Johnson (RWTH) as well as large scale
TB calculations on my part. In this joint project we study quantum Hall
edge states in single layer graphene. Experimentally created with a partially
covering back gate they are the paradigmatic example of the bulk-boundary
correspondence. These states are typically prone to elaborate reconstructions
and thus call for detailed investigation via scanning tunneling microscopy
(STM). We probe a gated p-n interface in graphene at magnetic fields up
to 7T. The Landau levels bend across the interface, exhibit plateaus at the
Fermi level, feature multiple charging lines as fingerprints of the tip-induced
quantum dot (QDOT) and show a branching of higher Landau levels close to
the interface. By comparison with tight-binding calculations, we disentangle
the contributions of the edge states and the quantum dot. The comparison
reveals, that, depending on gate voltage, the branching can either be caused
by the orbital structure of the edge states or by the development of confined
states in the quantum dot across the junction. This marks a vital step for
understanding intrinsic edge state properties with the unprecedented spatial
resolution of scanning tunneling microscopy.
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Fig. 10.1: (top)
Optical image of the
finalized sample with
different areas marked.
The graphene area is
encircled (red line) as
determined by atomic
force microscopy
(AFM). The graphene
has been ruptured
during the transfer,
such that the trenches
within the graphite
are not used. The
studied lateral inter-
face is marked (blue
line) separating the
graphite gate area
on the left and an
area without graphite
gate on the right.
(bottom) AFM image
acquired in tapping
mode at ambient con-
ditions, Si-cantilever,
fres = 325 kHz. The
rim of the contacted
graphene flake is
marked by a red line.
The circle indicates
the intended landing
position of the STM
tip.

10.1 Introduction

In the classification of topological insulators the so called bulk-boundary

correspondence principle relates the bulk related Chern number of a material
to Hall-current-carrying edge states [346–348]. Invesigations into the spacial
structuring of these edge modes into compressible/incompressible strips [349,
350] due to Coulomb interactions as well as more complicated reconstructions
(e.g. neutral upstream modes at filling factor ν = 1, [351–353]) has advanced
their understanding in recent years even into the fractional quantum Hall
regime [354–357]. Despite impressive predictions and indirect experimental
evidence for some of them (e.g. neutral upstream modes via shot noise
measurements [358, 359]) detailed experimental, spacial analysis of the
internal structure of quantum Hall (QH) edge states has remained elusive.
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To the best of our knowledge, all previous studies employing single elec-
tron transistors [360], electrostatic force microscopy [361–363], scanning gate
microscopy [364–366], scanning capacitance microscopy [367], microwave
impedance microscopy [368] and scanning superconducting quantum inter-
ference device (SQUID) microscopy [369] could not resolve internal edge
state structures due to being limited to spacial resolutions well above the
magnetic length. Unfortunately previous STM measurements also could
not resolve edge states at graphene boundaries due to a heavily screening
graphite substrate [370]. During the final preparation of this project, we
became aware of measurements attempting to probe quantum Hall edge
states at the physical edge of graphene on hBN/SiO2/Si. They did not find
signatures of edge states, likely due to a too strong edge potential [371].

Our work applies scanning tunneling microscopy to an interface between
different filling factors in single layer graphene at perpendicular magnetic
fields of 7 T [372]. The key challenge in such a setup is the formation
of a quantum dot underneath the tip tip-induced quantum dot (TIQD)
[14, 191, 373] which can locally disturb the edge state structure and thus
obscure the measurements. We infer size and depth of this TIQD from
charging lines in the experimental data and model their dependence on gate
voltage and tip position via Poisson simulations. We then quantitatively
account for these effects in large-scale tight binding (TB) calculations that
allow for comparison of the local density of states (below the tip) with
experimental maps of dI/dVsample as a function of Vgate, xsample and Vsample.
This analysis reveals parameter regimes in which the perturbation of the
edge states (due to the TIQD) is negligible thus allowing cartography of
edge states with much improved spacial resolution.

10.2 Experimental Observations

The graphene sample is prepared via dry stacking (3 nm graphite, 23 nm
hBN, exfoliated monolayer graphene, Si/SiO2, see Fig. 10.2c). We create
a tunable potential step by only partially covering the graphite back gate
(see Fig. 10.1). Both graphite and graphene are contacted via gold elec-
trodes (shadow mask evaporation). We apply an additional voltage Vsample

(against ground) to the graphene in order to record the tunneling current
I (Fig. 10.2c). Our main observable is dI/dVsample (proportional to the
LDOS at E− EF = eVsample). Additional derivation with respect to Vgate,
i.e. d2I/(dVsampledVgate), can improve visibility for some features.

Setting the STM tip above the graphite back gate (far from the interface)
the dI/dVsample(Vgate,Vsample) shows the Landau levels LLn (n ∈ Z) as
bright, stepped LDOS lines (due to pinning to EF, [374–376]), see Fig. 10.2.
Appropriate LL indices n can be ascertained by the sequence of energy
spacings. At negative Vgate (hole doping) pinning plateaus remain close to EF

while LL0 and positive LL features appear pinned at slightly positive Vsample.
We can therefore assume that the measured features do not correspond to
intrinsic LLs but are in fact perturbed by the TIQD [373]. The localized
states within a quantum dot in a magnetic field can broadly be classified
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via radial nr and angular quantum numbers m (we will discuss this in more
detail in Section 10.4).
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Fig. 10.2: a dI/dVsample(Vgate, Vsample) on a graphene area far away from the lateral
interface. Landau level features LLn are marked. The tip-sample distance is stabilized
at current Istab = 1 nA and voltage Vstab = −250 mV. b Zoom into the area where the
LL0 lines cross EF (Vsample = 0 V). The marked bright line above EF corresponds to the
(m = 0)-orbital of LL0 confined in the TIQD. The replica of this line at lower Vsample are
other confined m-states of LL0. Charging lines run from the lower left to the upper right.
The ones that cross an m-state at EF are caused by the charging of exactly this m-state.
Quadruplets of charging lines showcase the spin and valley degeneracy of graphene. c
Sample layout with circuitry, graphite thickness: 3 nm, hBN: 23 nm, SiO2: 300 nm. The
graphite is used to partially gate the graphene. d STM topography of graphene with a
step marking the onset of the underlying graphite defined as xtip = 0 nm (white line),
I = 200 pA, Vsample = −500 mV. e STM topography of graphene with atomic resolution and
moiré lattice due to a mutual rotation of the graphene and the underlying hBN by 11.1◦,
I = 1 nA, Vsample = −250 mV, Vgate = 3.5 V. f dI/dVsample(xtip, Vsample) across the lateral
interface, Istab = 200 pA, Vstab = −500 mV, Vgate = 3.5 V. g dI/dVsample(xtip, Vgate)

across the lateral interface, Istab = 1 nA, Vstab = −250 mV, Vsample = 0 V.
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The brightest lines in Fig. 10.2b thus correspond to (m = 0)-states
(due to their antinode in the center of the TIQD) and parallel, fainter
dI/dVsample lines correspond to (|m| > 0)-states with larger confinement
energy [203]. Since the (|m| > 0)-states appear at lower Vsample relative to
the (m = 0)-states our TIQD has hole character. The displacement of the
pinning plateaus relative to EF indicates the depth of the TIQD for varying
Vgate (i.e. the dot is very shallow at negative Vgate).

Additional lines with opposite incline (due to Vgate and Vsample compen-
sating) in Fig. 10.2a,b are charging lines [377] caused by abrupt changes
in current due to the Coulomb repulsion of each additional electron added
to the TIQD [191]. Charging lines can cause kinks in the plateaus of LL0
and LL-1 (see Fig. E.1 in Chapter E). The charging lines located at the
right end of plateaus at EF appear strongest (see Fig. E.2 in Appendix
Chapter E) thus again corroborating the hole-like character of the TIQD
((m = 0)-states are filled first and have the highest impact due to their
central antinode). Increasingly negative Vgate removes more electrons (i.e.
charges holes into the TIQD). The increased lateral distance of these states
relative to the tip center induce less change in the LDOS beneath the tip
and thus appear as fainter features.

The sample geometry (see Fig. 10.2c) with its partially covering graphite
back gate creates a lateral interface of different filling factors the position
of which can be readily determined by height measurements via STM (see
Fig. 10.2d). We do not study moiré physics as graphene and hBN are
strongly rotated in our sample (≈ 11.1◦, see Fig. 10.2e, [191]).

We can inspect the evolution of LL energies by traversing the STM across
the interface (changing xtip) while also varying Vsample (Fig. 10.2f) or Vgate

(Fig. 10.2g). At e.g. Vgate = −3.5V the difference in filling left (EF between
LL-3 and LL-4) and right (EF between LL0 and LL-1) of the interface
(henceforth located at xtip = 0) is readily visible in Fig. 10.2f. While
occupied states (LL-1 close to xtip = 0) display plateaus pinning close to
EF the unoccupied LL0 state appears pinned slightly shifted, indicating the
influence of the TIQD on the position of the compressible stripes [349]. The
flatness of the potential around the interface (compressible stripes) being
surrounded by steeper sections (incompressible stripes) is also reflected
in the evolution of charging lines with xtip (labeled “charging lines” in
Fig. 10.2f). Most strikingly we find an unexpected “branching” of LL-2 and
LL-1 at xtip ∈ [-50, 0] nm which we analyze in more detail below.

Considering the evolution of dI/dVsample at EF (i.e. Vsample = 0) across
the interface for different heights of the potential step (i.e. varying Vgate

(Fig. 10.2g) we observe — as expected — strong influence on the left side
(xtip < 0) with many LLs shifting across EF. However the back gate continues
to influence LLn features up to xtip ≈ 60nm with weakening extent. We
again observe quadruplets of charging lines indicating the presence of a
TIQD. Interestingly we again find prominent branching of the LLn states as
they cross the interface. We will explain this branching with TB simulations
including a realistic potential deduced from Poisson simulations in the
following sections.
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10.3 Rescaled TB model

We simulate a rectangular single layer graphene flake in terms of a 3rd

nearest-neighbour TB model:

H =
∑
i

siĉ
†
i ĉi +

∑
<i,j>

γije
2πiΦij ĉ

†
i ĉj. (10.1)

where si is the on-site energy, γij are hopping parameters and the magnetic
field B = (0, 0,Bz)

T is included via a Peierls phase:

Φij =
1
Φ0

∫ rj

ri

A · dr (10.2)

with magnetic flux quantum Φ0 = h/e and vector potential in Landau
gauge A = Bxŷ.

In order to make experimental sizes computationally accessible we employ
a rescaled graphene Hamiltonian. Inversely scaling interatomic distances
(increasing them by a factor 10) and Hamiltonian coupling elements (reducing
them by a factor 10) allows us to study realistically sized quantum dots and
quantum hall edge states without qualitatively altering their energy spectra
[378]. This approach holds since we do not expect the physical lattice scale
of graphene to be a necessary ingredient for the measured phenomena. Our
model system thus consists of a rectangular graphene sheet 400nm × 220nm
in size.

2
2
0

n
m

400 nm

xtip

a b

c

LL-1

LL0

LL1

Fig. 10.3: a Top view of the simulated graphene sheet (scaled by a factor 10) with edge
types and center position of the QDOT potential indicated. b Eigen-energies of the finite
graphene sheet in a at a magnetic field of 7T. Horizontal grey lines indicate analytical
Landau level energies (Eq. (5.1)). c Electrostatic potential imprinted on the graphene
sheet by a hovering STM tip (resulting from a fit in [14, 180] and taken unaltered for
shallow potentials).
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10.4 Quantum dot states in single layer graphene

(revisited)

Before we turn to the interplay of tip induced QDOT and quantum Hall
edge stages we study localized QDOT states of this system in isolation. This
initial analysis is somewhat similar to previous works [14, 180, 379] and
somewhat extends the investigation in Chapter 5. At this stage we do not
consider screening effects that would result in “wedding cake” like potential
shapes [380] accompanied by regions of compressible and incompressible
electron liquids [381]. These alterations will be introduced to the combined
potential landscape of QDOT and back gate induced PN potential step as
these potentials vary enough to pierce several Landau levels in energy.

To this extent we calculate roughly 2000 eigenstates in the graphene flake
described in the paragraph above (see Fig. 10.3a) for a magnetic field of 7T
with a tip induced potential identical to that in Chapter 5:

Φ
(0)
tip (r) =

{
−V0 · cos

(
π

2α |r|
)5

, |r| < α

0 , |r| > α
(10.3)

with α defined in Eq. (5.4) for a depth of V0 = 20meV.
The resulting spectrum (see Fig. 10.3b) shows pronounced Landau quan-

tization as well as a small number of geometry dependent eigenstates due
to finite system size. We can also clearly identify localized quantum dot
states which are energetically shifted by the tip potential. Inspecting some
of these states closer (see Fig. 10.6) reveals their typical sub lattice structure
Eq. (5.7) [23]. The orbital index j differs by one on the two sublattice
components and when j ≡ 0, the other component “|j| - 1” vanishes. In an

Fig. 10.4: Total
density of states of
the graphene flake pic-
tured in Fig. 10.3 at
B = 7T for relevant en-
ergies.

attempt to extract radial (nr ∈ N0) and angular quantum numbers (m ∈ Z)
we perform the following analysis: The number of radial nodes is easily
determined visually by inspecting the radial density distributions plotted in
Fig. 10.6. The angular quantum number is somewhat trickier to determine.
We first have to account for the Bloch phase eik·r that the wave functions
pick up depending on which valley (K = (4π/(3a), 0), K , = −K) they dwell
in (since our confinement potential is smooth valley is still a good quantum
number, see Appendix Chapter C). We can then select a slim annular region
close to the radial maximum of each state, renormalize within this area
and calculate overlap integrals |<m ,|φ>|2 with test functions of the form
<r|m ,> = eim ,φ(r) where φ is the azimuthal angle of an orbital site calculated
with respect to the center of the QDOT potential and m , ∈ [−10, 10]. This
overlap should become large only if the angular quantum number of the
QDOT state m is equal to m , and thus effectively allows to determine m
(see Fig. 10.6).

We find that possible adiabatic mappings between LL index N and the
radial and angular quantum numbers (Eqs. (10.4) and (10.5), as formulated
in [203] for spherical infinite mass boundary conditions and zig-zag boundary
conditions of the continuum Dirac-Weyl Hamiltonian respectively) are not
entirely applicable. There are some exceptions that fulfill neither of the two
proposed mappings:
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N = nr +
m+ |m|

2
(10.4)

N = nr +
m+ |m|

2
−Θ(m) (10.5)
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Fig. 10.5: a 2D
Cartesian geometry as
used for the Poisson
simulations including
the lateral interface.
The potentials Φtip

and Φgate are applied
to the tip and the
graphite gate, respec-
tively. b Cylindri-
cal geometry as used
for simulations of the
TIQD without lateral
interface (i.e. the
graphite gate covers
the entire area).

It may appear that unambiguously determining the angular quantum
number of a state only works for the lowest QDOT orbitals of each Landau
levels but it is in fact the rescaling of our graphene system that is at fault
for e.g. Fig. 10.6b due to amplifying the effects of trigonal warping and
therefore undermining m as a good quantum number.

a b

c d

Fig. 10.6: In depth analysis of four QDOT states (a LL0 #0, b LL0 #4, c LL1 #2, d LL2
#4) including 2D color plots of sub lattice densities |ψA/B|

2, radial density distribution and
overlap (within an annulus close to the density maximum) with azimuthal test functions
of the form |eimφ> (top, center and bottom subplots for each panel a, b, c, d).
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10.5 Poisson calculations for the potential of TIQD

and PN junction

In order to perform meaningful TB calculations for comparison with scan-
ning tunneling spectroscopy (STS), we need the 2D potential profile on the
graphene in the vicinity of the interface which consists of the potential step
induced by the graphite gate and the TIQD. The exact shape of these po-
tentials depends on both to the applied voltages Vgate between graphite gate
and graphene as well as Vsample between the tip and graphene (Fig. 10.2c),
their corresponding work function mismatches as well as the geometry of the
two metallic electrodes and STM tip (see Fig. 10.5). Furthermore screening
effects within graphene gapped density of states (DOS) in the magnetic
field cause the potential steps to exhibit plateaus at potential values that
correspond to LL energies (effective screening caused by high DOS).

tip
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Fig. 10.7: a Band
bending of two adja-
cent LLn due to the
TIQD potential. The
probability density of
the confined states of
LL-2 are added at
their confinement en-
ergy and labeled with
its azimuthal quantum
number m. b Same
as (a) with added EF

line . The blue shaded
areas mark the onset
of the insulating sur-
rounding. c EF at
the charging position
of the last state from
LL-1. Tunnel barrier
indicated in grey. d
Sketch with two states
at EF enabling simulta-
neous charging of both
LL.

We employ a “home-made” Poisson solver of the Morgenstern group at the
RWTH Aachen to generate our potential landscape. This implementation
is limited to 2D coordinate systems (we can only extract 1D line cuts of the
resulting potential which we will reconcile later on when transferring the
potential to the TB system) and disregards confinement effects and requires
the DOS of graphene at 7 T (peaks at LLn energies given by Eq. (10.6),
[23]) as a fixed input parameter and accounts for finite temperature via
Fermi-Dirac smearing.

ELLn = vF · sgn(n)
√

2,he|B||n|, n ∈ Z, (10.6)

The thickness of the hBN (dhBN = 23.5 nm) is deduced from atomic force
microscopy (AFM) images. Both, hBN and SiO2 exhibit a dielectric constant
ϵ = 4. We choose a reasonable value dtip = 0.6 nm for the distance between
graphene and the tip apex since it barely influences the results [14, 191, 382].
The tip is assumed to be metallic with a shape consisting of a half sphere
with radius rtip located at the lower end of a cone with opening angle 30◦.

In the Poisson simulations, the sample is grounded and the tip is set
to a variable potential Φtip. The potential of the tip reads Φtip = e ·
(−Vsample + ∆Vsample) with applied graphene voltage Vsample and ∆Vsample

being the voltage required to achieve flat band conditions below the tip for
Φgate = 0 eV. We employ Gaussian broadened (FWHM of 7 meV) DOS of
LL in graphene at a perpendicular magnetic field of 7 T.

Furthermore we will determine the other crucial input parameters of
the Poisson simulation, ∆Vsample, ∆Vgate and rtip, from experimental data
by employing the observed charging lines. The tip radius rtip correlates
with the lateral size of the TIQD, i.e. with the distance of charging lines,
whereas ∆Vsample and ∆Vgate affect the potential depth of the TIQD, i.e.
the onset of charging lines for each LLn. We employ a crossing of charging
lines originating from different LLn at negative Vgate (see Fig. 10.9a). The
assignment of a charging line to a specific LLn relies on its intersection
with a LLn LDOS feature at EF (Vsample = 0 V). Therefore the charging
lines on the left of Fig. 10.9a originate from LL-2. They represent the
first few holes of LL-2 that are added to the TIQD. Close to the crossing
of this charging line with EF, LL-2 of the surrounding graphene must be
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completely occupied with electrons (Fig. 10.7b), since the filling factor of
the surrounding graphene must always be larger than the filling factor of
a hole-type TIQD. Either, EF of the surrounding graphene is in the gap
between LL-2 and LL-1 or it is at states of the rim of LL-2 that are known
to be localized [383, 384]. Both situations provide an insulating barrier for
the confined charge carriers in the TIQD, such that screening of the added
charge is strongly suppressed. Thus a strong change of the DOS by charging
the TIQD results in a bright charging line. The charging lines appearing on
the right of Fig. 10.9a belong to the last holes from LL-1 that are charged
into the TIQD. They exhibit a steeper slope since these states are, on
average, located further away from the capacitive center of the tip. In the
surrounding bulk, EF must be located within LL-1, again since the filling
factor of the bulk must be larger than the local filling factor of a hole-type
TIQD (Fig. 10.7c). The crossing point of two charging lines from LL-3 and
LL-2 implies that QD states from both LLs are at EF simultaneously. This
is naturally realized by a ring like charge distribution with occupied hole
states including the first state from LL-3 in a central disk and occupied hole
states only from LL-2 in an annulus around the disk (Fig. 10.7d).

a

b

130 nmxtip = 240 nmxtip = 270 nmxtip =

Fig. 10.8: a Potential calculated with a Poisson solver along a 1D trajectory (evaluated
for varying x at fixed zgraphene) perpendicular to the PN junction for different values
of Vgate (from −3V to +3.5V in 0.5V increments). b 2D analytical potential (i.e. true
function of x and y) given in Eq. (10.7) used for the TB system sketched in Fig. 10.3a
evaluated along the center line in zig-zag direction for different values of η with fixed λ.
Columns in both subplots correspond to different tip positions (as indicated by vertical
black lines).
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Such a configuration is not uncommon for quantum dots in B field and
sometimes called a “wedding cake” [380]. At such a crossing point the
QD depth approximately equals the known energy gap between LL-1 and
LL-2 of 38.9 meV (Eq. (10.6)). Here, we ignore the finite energetic width
of the bulk Landau levels since not being a dominant error. Furthermore
we also observe a crossing of charging lines associated with LL-2 and LL-3
(see Fig. E.3 in Appendix Chapter E) resulting in an implied TIQD depth
of 30.5 meV at this voltage configuration. These depths come from the
Poisson simulations at varying Φtip and Φgate (see Fig. E.4a in Appendix
Chapter E).

Subsequently, we find pairs of (Φgate, Φtip) that feature the two TIQD
depths at the two crossing points (38.9 meV, 30.5 meV) and, at the same time,
the energetic distances in Φgate and Φtip that are identical to the voltage dis-
tances between the two crossing points (δVgate = 0.95 V, δVsample = 0.15 V)
(see Fig. E.4b in Appendix Chapter E). This analysis leaves us with two pos-
sible combinations for ∆Vsample and ∆Vgate out of which we choose the con-
figuration that features better agreement between measured and calculated
LDOS maps from the Poisson simulation (see Fig. E.5 in Appendix Chap-
ter E) resulting in ∆Vgate = −200±50 mV and ∆Vsample = −180±50 mV. We
deduce the remaining fit parameter rtip from the distance of charging lines
in the experiment: In the Poisson simulations, we determine the additional
charge within the TIQD, ∆QQD, that is caused by a potential change ∆Φtip

in Φtip direction or ∆Φgate in Φgate direction. Note that e∆QQD/∆Φgate

is directly the capacitance of the TIQD with respect to the gate as often
used for analyzing quantum dots in transport experiments [385]. The total
charge QQD within the TIQD is calculated by spatially integrating the
confined charge carrier density up to the edge of the TIQD. We compare
∆QQD/∆Φgate and ∆QQD/∆Φtip for various rtip with the experimental num-
ber of charging lines per voltage. For this purpose, we select groups of
charging lines with regular voltage distances implying only minor contri-
butions from orbital energy, i.e., from the confinement energy neglected in
the Poisson simulations. We determine their average distance and use the
average of all such groups for Vgate < 0 V and Vsample > 0 V. Preselection of
groups of regular charging lines deals with the fact that some of the charging
lines might not be visible due to imperfect confinement at EF or strong
screening from the surrounding graphene. In a first step we estimate rtip by
adapting the ratio of (∆QQD/∆Φgate)/(∆QQD/∆Φtip) to the corresponding
ratio observed in the experiment (slope of the charging lines) and then refine
via the agreement of absolute values of ∆QQD/∆Φgate and ∆QQD/∆Φtip

with the experimental ones. The parameter rtip is varied until the absolute
values fit favorably resulting in rtip = 25 nm (see Fig. E.6 in Appendix
Chapter E). We check for consistency by repeating the determination of
∆Vsample and ∆Vgate with the new value for rtip but find that these two
values barely depend on rtip. We finally calculate the full potential profile
across the PN interface for multiple configurations of tip position xtip, Vgate

and Vsample (see Fig. 10.8a).
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Fig. 10.9: a d2I/dVsampledVgate(Vgate, Vsample) at the transition from LL-2 to LL-1 being
located at EF (red line), Istab = 1 nA, Vstab = −250 mV. The crossing point of the first
(m = 0)-charging line of LL-2 with the last charging line belonging to LL-1 is marked
(red circle). Such crossings for various adjacent LLn are used to determine ∆Vsample and
∆Vgate as input parameters for the Poisson calculations. b Potential of the TIQD without
lateral interface for the marked Vsample, Vgate as resulting from the Poisson simulations. c
Profile line through the potential of superposed TIQD and lateral interface, Vsample = 0 V,
xtip ∈ [−130,+100]nm with increments of 20 nm (blue to red), Vgate as marked. The
potentials are used as input for the TB simulations. d LDOS(xtip,Vgate) at Vsample = 0 V
as resulting from the TB simulations. The LDOS is averaged over a circular region
(radius ≈ 1.5 nm) around the vector xtip describing the position of the tip center. White
horizontal lines on the left mark the bulk LLn. The marked branching of various LLn
states around xtip = 0 nm qualitatively matches the experimental ones (Fig. 10.2g). Red
lines with red dots mark Vgate and xtip, respectively, as used in e–g. e LDOS as a function
of real space coordinates x,y, Vgate = 2.15 V. The columns are for different xtip marked
by red dots (also in d). f Same as e, Vgate = 1.05 V. g Same as e, Vgate = −2.45 V.
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10.6 From 1D Poisson to 2D Tight binding

Having converged the resulting potential landscape of both subsystems
(TIQD Φtip and backgate induced PN junction ΦPN) as well as their com-
bination Φtot, we now need to transform this 1D potential data to be able
to apply this on a 2D TB lattice. To this extent we parametrize the total
potential,

Φtot(r)
(TB) = q

(
λ(η, xtip)Φ

(TB)
tip (r) + ηΦ

(TB)
PN (r)

)
(10.7)

as a superposition of a spherical cosine well (similar to Φ
(0)
tip in Eq. (10.3))

and what is in essence a composition of Fermi functions F 01 that models
the PN step. λ and η are physically immaterial parameters that control the
magnitude of both potential components. r = (x,y)T denotes the position
vector within the graphene plane.

ai

[10-2]

bi

[eV]

ci

[meV]

1.6 -0.43 17
1.8 -0.39 25
0.6 -0.34 52
1.2 -0.21 82
1.1 0 50
1.2 0.21 82
0.6 0.34 52
1.8 0.39 25
1.6 0.43 17

Tab. 10.1: Fit
parameters used
for the quenching
function q(f) defined
in Eq. (10.8).

We also incorporate the flattened regions of the calculated potential
surface, that arise from pronounced screening at energies close to Landau
levels via a “quenching function”,

q(f) = f

(
1 −

∑
i

aiG(f,bi, ci)

)
(10.8)

that locally modifies the potential values by subtracting Gaussians from
the unperturbed weight factor of one. The G(f,bi, ci) are Gaussians 02

centered at bi with standard deviation ci evaluated at f weighted with
prefactors ai. f represents the unquenched potential function in units
of eV. The ai, bi, ci with i ∈ [LL-4, . . . , LL+4 ] are fit parameters
determining the slope and extent of the flat potential areas (compressible
regions) for each LLn. To compare with the experimental data we account
for ∆Vsample and ∆Vgate by adequate energy shifts. Unfortunately, in order
to account for all the intricacies of the Poisson potential a combination
of manually customizing shapes and least square fit routines results in
somewhat convoluted 03 expressions for the 2D TB potential. The TIQD
part that is fed into the quench function (in Eq. (10.7)) reads:

Φ
(TB)
tip (r, Rtip;η) =

{
cos5

(
π
2
|r-Rtip|

31.95

)
, |r - Rtip| < 31.95

0, |r - Rtip| > 31.95
(10.9)

01 F(x,µ,σ) = 1
e(x−µ)/σ+1

02 G(x,µ,σ) = 1√
2πσ2

e-
(x−µ)2

2σ

03 I apologize in advance if at some point anyone has to try and comprehend all the
following expressions in full detail.
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weighted with prefactor

λ(η, xtip) = -0.06 -
0.0005 F(xtip, 2200, 30)
(η+ 0.19)2 + 0.005

+
(

0.06 - 0.08 (η+ 0.42)
)
×

(
1 - F (xtip, 2700, 20)

)
F

(
η, 0.2 +

(
xtip - 1300

180

)8

, 0.01

)

(10.10)

For the PN step we end up with a potential expression of the form:

Φ
(TB)
PN (x) = F (x, 2216, 14) +Θ (-η)max (-0.13,η)×

F
(
x, 2216 - 2300η F (xtip, 2700, 20) , 14

)
F (-x, -2216, 14)

(10.11)

These expressions demand length and position parameters in units of Å.
The resulting potential manages to account for all of the relevant features
generated by the Poisson solution. Variations in TIQD depth and effective
radius with respect to the height of the PN step (generated by the interplay
of tip and back gate voltage) are well accounted for in the fitted potential
surface. Flattening of the potential near Landau level energies also resembles
the Poisson calculation to a high degree and results in staircase-like PN
transition and wedding-cake shaped TIQD potentials. The pronounced
shift of the lowest of the PN steps for negative η (positive Vgate) from
x = 220nm towards larger x-coordinates is also incorporated. Traversing
the STM tip coordinates in this system effectively transitions between a
circular TIQD well (with varying shape depending on Vgate) left of the PN
junction, an elongated and somewhat skewed intermediate TIQD on top of
the PN transition to an again circular TIQD on the right of the interface
with a depth and shape that is almost independent of Vgate (see Fig. 10.10).
A quantitative comparison of Poisson and TB potentials for three example
configurations in Fig. D.19 in Appendix Chapter D reveals deviations in the
few meV regime that we regard as irrelevant considering the uncertainties
of the Poisson simulations such as the negligence of confinement effects and
the assumption of a circular symmetric STM tip.

10.7 Understanding STM measurements via LDOS
maps

We aim to understand the dI/dVsample measurements in terms of LDOS
calculations built from single particle states. We thus calculate roughly 250
eigenstates around EF for varying configurations of Vgate and xtip and then
build up a local density of states with spectral width of about 3meV to
capture temperature broadening of the experiment (measurements are done
at 6K, [382]). This LDOS which parametrically depends on both the height
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and form of the potential step induced by the partially covering back gate
(both controlled via η in TB calculations) as well as the position of the tip
induced quantum well, is then summed over a circular region (r ≈ 1.5nm)
around the tip position Rtip.

yx Φ

x
ti

p
=

29
0

x
ti

p
=

25
0

x
ti

p
=

21
0

x
ti

p
=

17
0

x
ti

p
=

13
0

Fig. 10.10: Array
of 3D surface plots of
Φtot for varying xtip

(indicated in nm) and
fixed η = -0.4.

The resulting parametric LDOS map displays features very similar to
the experimental data (see Fig. 10.11a). A regularly spaced pattern of
horizontal lines that can be assigned to individual LLs (any irregularities in
spacing are due to varying TIQD depth with respect to Vgate) seemingly
starts bending and splitting when the STM tip reaches the slope of the
PN junction. Crucially, the branching features of the various LLn states
are correctly reproduced while LL0 does not exhibit any branching. The
bending is obviously just a consequence of the effective decoupling of STM
tip and back gate (i.e. the tip moves into the region of graphene that is
no longer covered by the back gate). In other words, the Landau level gap
0/-1 (encountered at Vgate = 0 in the left half of Fig. 10.11a) is effectively
stretched to fill the entire vertical range at the right end of Fig. 10.11a. The
favourable agreement calls for a detailed study of the complete LDOS(x,y)
map at various xtip as is easily accessible via the TB calculations.
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Fig. 10.11: a Same data set as in Fig. 10.9d with different red lines and dots according
to b–c and additional dashed orange lines indicating Vgate of the line profiles in d–f. b, c
LDOS(x,y) as marked in a and xtip marked by the red dot in each panel as well as in a.
d–f Profile lines along the dashed lines in a (orange), across the calculated LDOS at the
same Vgate, but without the TIQD (blue) and across the experimental data of Fig. 10.2 at
the same Vgate (green). The experimental profiles have been horizontally shifted by +5 nm
(d), +20 nm (e), +10 nm (f) to ease the comparison. Additional intensity adjustments
as marked are used to compensate for the strong charging lines that are not included in
the simulation. The peak fine structure is a fingerprint of the charging lines (compare
Fig. 10.2g).
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The calculations reveal that the branching04 is a consequence of the
internal structure of the edge state wave functions at the interface (see
Fig. 10.9e-g). The STM tip strides across quantum hall edge states and
encounters a sequence of density dips and peaks. The number of these
branching lines depends on the momentary filling set by Vgate. For example,
the edge state belonging to LL-2 (Fig. 10.9g) exhibits two antinodes that
result in two arms of a branching LL-2 state (Fig. 10.9d). By contrast,
the edge state of LL0 with a single antinode (Fig. 10.9f) does not show
branching in the probed LDOS (Fig. 10.9d).

The precise shape of the bending branches in Fig. 10.9d is characteristic
for the size and depth of the TIQD at the respective tip and back gate
voltages. However, a local displacement of the edge state by the TIQD
(apparent in Fig. 10.9e-g) only shifts the lateral position of the edge state
center with minor influence on its internal structure (i.e. a pronounced
quantum well will noticeably deform the otherwise straight edge states and
encounter the density maxima at smaller xtip coordinates). Fig. 10.11b-c
confirms that the intense horizontal LDOS lines observed to the far left of
the lateral interface (Fig. 10.11a) are caused by states of the TIQD. These
states are shifted in energy across the interface and, hence, can disappear
from the probed energy window. Thus, only the weaker LDOS features
across the interface contain the desired edge state information.

To elucidate the remaining influence of the TIQD, we also compare
the calculated cross-section of the LDOS related to the edge states (blue
lines in Fig. 10.11d-f) to the measured dI/dVsample(xtip) (green lines in
Fig. 10.11d-f) and to the simulated dI/dVsample(xtip) including the TIQD
(orange lines in Fig. 10.11d-f). Favorably, the twofold antinodal structure of
LL-2 (Fig. 10.11d) and LL+2 (Fig. 10.11f) appears very similarly in all three
curves (i.e. peak distances and relative intensities are alike). This good
agreement for LL-2 can be traced back to the fact that the TIQD is absent
at the interface region (Fig. 10.9c, lower frame,−20 nm< xtip < 20 nm).
Analyzing the distance of antinodes ∆x in more detail (see Fig. 10.13) reveals
∆x = 31 ± 1 nm in the experiment largely independent of Vgate. In the TB
calculations with TIQD, we find ∆x = 23 ± 2 nm slightly decreasing with
increasing Vgate. Generally the experimental distance of antinodes is larger
by ∼ 25 %. Slightly larger distances in the experiment are also observed for
LL+1 (Fig. 10.11e), with values largely independent from Vgate in experiment
(∆x = 25 ± 2 nm) and simulations (∆x = 15 ± 1 nm) (Fig. 10.13a,b), and
for LL+2 (Fig. 10.11f). A straightforward explanation would be that this
increase in distance is caused by electron-electron repulsion that causes
mixing with higher LLs.

04 In the TB calculations we also see another form of splitting (albeit a smaller one) for
some Landau levels (e.g. LL-1) at the far left of the transition region (see Fig. D.10
in Appendix Chapter D). This occurs whenever a pronounced quantum well enables
resolving individual QDOT levels. As the QDOT then tilts as it traverses the PN
junction the sensing STM tip then passes through radial maxima of the QDOT states
before the loss of spherical symmetry and decrease in QDOT depth results in a
mixing and finally fading of the feature in (Vgate, xsample) space. Unfortunately both
the absence of charging energies in the TB formalism as well as the resolution of
the experimental data does not allow for meaningful comparison of this theoretical
observation.
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Fig. 10.12: a Simulated LDOS(xtip,Vsample,) across the lateral interface, while including
the TIQD, Vgate = −1.9 V. b Measured dI/dVsample(xtip, Vsample, ), Vgate = −2.0 V, Istab =

200 pA, Vstab = −250 mV. c dI/dVsample(xtip) along the lateral interface (y direction)
featuring the LL-1 edge state at EF, Vgate = −1.6 V, Vsample = 0 V, Istab = 1 nA, Vstab =

−250 mV. Filling factors ν are marked on both sides of the interface. d Zoom into
Fig. 10.11a (simulated LDOS, Vsample = 0 V) at larger contrast to visualize the internal
structure of the LL-1 edge state. e Simulated LDOS(x,y) across the interface for various
xtip marked by red dots (also in d), Vgate = −1.4 V (red line in d).

LL
∆x

(LDOS)

[nm]

∆x
(STM)

[nm]

−2 23 ± 2 31 ± 1
+1 15 ± 1 25 ± 2

Tab. 10.2: Average
∆x values from exper-
imental data (STM)
and TB simulations
(LDOS) of selected
edge states. See
Fig. 10.13 for individ-
ual data points.

We also verify our results in an effective 1D system of unscaled graphene
and calculate Landau level wave functions of an 80 nm long graphene slice
in the presence of a magnetic field, a constant potential gradient (i.e a
linear potential in y-direction) as well as periodic boundary conditions
in x-direction. This model finds ∆x = 25 nm. The slope of the potential
(0.8 meV/nm) is chosen in between the slopes observed on the plateaus at the
interface within the Poisson simulations (0.1−0.2 meV/nm) and the average
slope found across the lateral interface (1.5 − 3 meV/nm). The additionally
displayed two sublattice contributions (Fig. 10.14) reveal the well-known
one- and two-fold antinodal structure for LL+1 as well as the two- and
three-fold antinodal structure for LL-2, representing the chiral symmetry of
graphene in analogy to the quantum dot solutions of Fig. 10.6. However,
remarkably, the resulting peaks are different in height showing that the wave
functions are not pure Landau gauge solutions, but the solutions are mixed
LL wave functions due to the influence of the potential slope. The simplified
model nicely reproduces peak distances and relative peak heights of the
more complex tight binding simulations that include the detailed potential
of the Poisson solver (blue lines in Fig. 10.14c,d) as well as the ones that
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additionally consider the TIQD (orange lines in Fig. 10.14c,d). They also
reproduce the trend of different peak heights as found in the experiment.
We checked with the 1D tight binding model that potential slopes up to
3 meV/nm do not change the inter-peak distance by more than 1.5 nm and,
thus, cannot explain the observed larger distances in the experiment.

Fig. 10.13: Branching distances ∆x as deduced from dI/dVsample(xtip,Vgate) of Fig. 10.2g,
and LDOS(xtip,Vgate) of Fig. 10.9d. a Experimental branching distance of LL+1. b
Simulated branching distance of LL+1. c Experimental branching distance of LL-2. d
Simulated branching distance of LL-2. Insets show the parts of the images in Figs. 10.2
and 10.9 that are used to determine ∆x with dots that mark the observed maxima in
dI/dV(xtip) lines, respectively LDOS(xtip) lines. These maxima are used for distance
determination indicated in b.

Discrepancies in relative intensities of anti-nodal peaks become, however,
significant, if charging lines interfere (LL0 in Fig. 10.11e,f). While the peak
distances in Fig. 10.11e still match reasonably well between green and orange
lines, their relative peak intensities do not. More severely, the distances
between the edge state peaks of LL+1 (LL+2) and LL0 (Fig. 10.11e (f)) are
considerably reduced by the presence of the TIQD (blue vs. orange lines).
This relates to a shift of the rightmost incompressible stripe towards the left
by the superposed TIQD potential (Fig. 10.9c, upper frame). Nevertheless,
the simulated shift of LL0 by the TIQD (orange) is in quantitative agreement
with the experiment (green). The fact that the LL-1 feature in Fig. 10.11d
strongly deviates from the simulated peak in terms of position and intensity
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is likely related to the interfering charging lines (Fig. 10.2g) of a relatively
shallow TIQD (Fig. 10.9c, lower frame, xtip > 40 nm). In such a shallow
TIQD, individual charging events can strongly change the TIQD potential,
an effect not captured by the simulations. Thus, imaging of the edge states
works best if no charging lines are observed in the corresponding parameter
regime and the TIQD is absent in the region of the lateral interface.

Fig. 10.14: a Numerical 1D TB solution of the squared graphene Landau level wave
function belonging to LL-2 in a linear potential with slope −0.8 meV/nm (full line). The
dashed and dotted curves are the sublattice contributions. b Same as subfigure a, but
for LL+1 at a potential slope of +0.8 meV/nm. c, d Zoom-ins of Fig. 10.11d, for the
LL features belonging to LL-2 (c) and LL+1 (d). Vertical dashed lines highlight the
agreement of distances between maxima.

To corroborate the generally good agreement of measured dI/dVsample

and simulated LDOS, we compare their dependence on Vsample and xtip in
Fig. 10.12a,b (see also Fig. D.20 in Appendix Chapter D). We again observe
semi-quantitative agreement including the branching features of LL-2 and
LL-3. At a slightly smaller Vgate, where only LL-1 crosses EF at the interface,
we map dI/dVsample(xtip) two-dimensionally at EF (Fig. 10.12c). A bright
line about 40 nm in width with some internal structure meanders along
the lateral interface. Width and internal structure of this stripe are rather
similar to the simulated LDOS(xtip) of the LL-1 edge state (Fig. 10.12d,
along red line) that itself turns out to be barely perturbed by the shallow
TIQD (Fig. 10.12e). Hence, an imaging of an edge state with resolution
well below the magnetic length lB = 10 nm and only minor perturbations
by the TIQD is achieved for the first time.
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10.8 Conclusion

We conclude that quantum Hall edge states can be mapped without signifi-
cant perturbations if one selects favorable parameter regimes. One attractive
option to identify such regions is a direct comparison of dI/dVsample across
a gated lateral interface with TB simulations accounting for the TIQD. Cru-
cially, reliable parameters for simulating the TIQD can be straightforwardly
deduced from the measured charging lines in dI/dVsample(Vgate, Vsample).

Current limitations of the method include neglecting confinement effects
on the shape of the TIQD, which would require more time-consuming
Poisson-Schrödinger simulations and, probably more severe, the assumption
of a circularly symmetric TIQD. Trial and error-type control on the TIQD
shape, however, can generally be achieved by mapping the capacitive charg-
ing of a point defect [386, 387]. Even with these limitations, the anti-nodal
structure of the edge states could be mapped in a largely quantitative fash-
ion, even revealing the influence of the potential gradient at the interface
on the relative peak heights.

Plans for future experimental setups include an additional gate that can
simultaneously tune the filling factor on the other side of the interface.
This will eventually give access to multiple nearly unperturbed edge states
including some that separate symmetry broken [388] or fractional QH phases.

We meanwhile have a working 3D Poisson solver based on finite elemente

software by Joachim Schöberl et. al. [389]. Qualitative agreement with some
experiments from the RWTH Aachen has been established. However, precise
quantitative analysis will require an extension of the current implementation
(based on local shifts of a constant density of states) towards a full Poisson-
Schrödinger solver that accounts for confinement energies as well as charging
energies. We aim to reach predictive accuracy to efficiently support sample
design and fabrication of experimental collaborators.



Chapter 11

Quantum Hall conductivity of
graphene-hBN moirés

“It is good to be a cynic — it is
better to be a contented cat —
and it is best not to exist at all.”

H.P. Lovecraft

This short chapter reports on efforts to calculate the quantum Hall
conductivity σxy of graphene on aligned hBN employing a TB Hamiltonian
of the entire moiré super cell derived from a set of ab-initio DFT calculations
of multiple primitive unit cells. We treat realistic system sizes and calculate
conductance from the bandstructure E(k) in an efficient algorithm that
scales with N3

k (size of the Krylov space in the Lanczos method) instead of
N3

a (the much larger number of atomic sites). Both the ab-initio derived
TB Hamiltonian as well as the efficient band structure calculation heavily
rely on work by my doctoral predecessors L. Linhart [83] and T. Fabian
[84]). We find that in order to compare with future experimental data from
collaborators at the university of Manchester (Julien Barrier and the group
of Prof. Gorbachev) we will require a different approach that works over
the entire energy range.

11.1 Technicalities

11.1.1 A realistic moiré TB Hamiltonian

Graphene on hBN has seen a lot of model Hamiltonians [390–392] that
focus on quantitative analysis of the low energy bands for vanishing or
small magnetic fields. Our approach combines an atomistic TB Hamiltonian
parametrized from DFT calculations with a continuum elasticity model
that accounts for lattice relaxation (see [83] for a much more detailed
introduction). The 1.75% [393] difference in lattice constants of hBN and
graphene can be described via a hexagonal supercell that encompasses
58 × 58 graphene unit cells and 57 × 57 hBN unit cells. The local stacking
configuration of the two layers (parametrized via displacement vector d)
changes throughout this large super cell and can be used to map out the
TB parameters of any local environment via a set of DFT calculations
that involve only primitive unit cells of graphene and hBN with a relative
shift of d(r) (see Fig. 11.1). This two-dimensional configuration space of
the displacement vector d is sampled on a grid involving 100 primitive
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bilayer cells calculated in VASP [100–103] with LDA, 25 × 25 Monkhorst
k-space grid and plane wave cutoff of 380 eV. Atomic positions are relaxed
in out-of-plane direction but fixed in-plane. We then project all Kohn-Sham
orbitals onto one pz orbital per carbon site (via Wannier90 [120, 124, 239,
240] ) and thus capture all the influence of the hBN layer that is relevant
for electronic transport close to the Fermi energy.

d(r1)

d(r2)
r2 r1

Fig. 11.1: a Primitive bilayer (red...hBN, blue...graphene) unit cells in the x-y plane
with local displacement vector d of two regions in the entire moiré super cell shown in b.

From this point on we can smoothly interpolate TB couplings γij across
the entire moiré super cell. However, we have yet to account for the
significant strain fields of the real moiré super cell. We do so via exponential
correction factors that depend on the local strain:

γ
(corr.)
i,j = γi,je

−∆lijαij (11.1)

where ∆lij is the change in inter orbital distance due to mechanical relaxation
and αij encodes the distance sensitivity of individual TB hopping parameters.
We determine the αij from a set of DFT calculations on primitive unit cells
of strained single layer graphene with subsequent Wannierization. Finally
we determine the ∆lij via an approach that resembles the elasticity models
of Nam and Koshino [394]. Such an approach determines an equilibrium
configuration that balances energy gain due to more favourable stacking fault
energies with the elastic energy cost associated with in-plane displacements.
The corresponding energy functional is of the form,

Utot = UE[uhBN] +UE[uSLG] +UB[uhBN, uSLG] (11.2)

where uhBN/SLG are the local displacement vectors in hBN and graphene
respectively. The third, stacking dependent term is elegantly expressed via
the first few Fourier components cG of the generalized stacking fault energy:

UB[uhBN, uG] =

∫ ∑
G

cGei((d+uhBN−uSLG)·G)dr (11.3)
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with G running over reciprocal lattice vectors. The interlayer contributions
UE of both layers (m= hBN/SLG) read,
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with Lamé parameters [390, 395] λ (SLG: 3.25 eVÅ-2, hBN: 3.5 eVÅ-2) and
Fig. 11.2:
Reconstruction
of atomic position
following the elasticity
model in Eq. (11.2).
a1/2 are the moiré su-
percell lattice vectors.
Black arrows indicate
the relative displace-
ments throughout the
supercell. Taken from
[84].

µ (SLG: 9.57 eVÅ-2, hBN: 7.8 eVÅ-2) We then solve the Euler Lagrange
equations of the system following closely along the procedures in [394].
The main result of this relaxation is the proliferation of the energetically
favourable AB stacking region in the upper left half of the moiré super cell
(see Fig. 11.2).

11.1.2 Efficient band structure calculations on dense k-grids

We wish to efficiently calculate the band structure of a ribbon of several
of the — by themselves already quite sizable — moiré unit cells. Since we
are only interested in the eigenvalues close to charge neutrality we may
employ iterative methods to work on sparse matrices at each k − point.
We therefore solve H(k)ψn = En(k)ψn via shift-and-invert in combination
with the Lanczos method [396]. In order to partially avoid cubic scaling we
perform several independent matrix factorizations around different energies
to eventually cover the range E ∈ [−0.25eV, 0.25eV]. The accuracy of
subsequent evaluations of the Hall conductivity depends on the sampling
resolution in reciprocal space (no further improvements noticeable beyond
Nkpt > 3000 in our system). Sampling at such high k-point densities can be
further optimized by exploiting the continuity of bands along small distances
in k-space. We avoid solving the Bloch eigenvalue problem at most of the
Nkpt k-points and instead span a Krylov space for a subset Npillars of “pillar”
k-points. Combining the Krylov spaces of two adjacent pillar points kj and
kj+1 generates a basis {bi} on which to project for all intermediate k-points
k , (kj < k , < kj+1) and thus evaluate band energies. Main caveat of this
approach is the emergence of unphysical eigenvalues due to the artificially
enlarged size of the combined Krylov spaces. This can largely be remedied
by evaluating the following error norm,

δn =
∑
i

|φi[H(k) − En(k)1]ψn|
2 (11.5)

which sees the solutions projected onto a fixed set of randomly chosen
vectors φi ∈ CN with i ∈ [1,Nk]. This error measure only vanishes for an
eigenstate of the full problem and thus filters out the unphysical solutions.
Matrix vector operations between the φi and H0 or HI do not depend
on k and thus need only be evaluated once. This procedure thus enables
efficient sampling of a very dense k-grid only a small subset of which is
solved “rigorously”.
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11.2 From bandstructure to quantum Hall

conductivity

The Hall conductivity σxy of a material is represented by the off-diagonal
components of its conductivity tensor used in Ohm’s law I = σE. It describes
the emergence of a voltage difference (and therefore a current) transverse to
both an applied electric field and an applied magnetic field perpendicular
to the current [397]. A quantized analogue of this Hall effect can be
observed in two dimensional electron systems for low temperatures and
high magnetic field strengths [398, 399]. Deep into the Landau regime this
effect sees the longitudinal ρxx and transverse (Hall) ρxy resistivity adopt
very impressive characteristic shapes as a function of the perpendicular
magnetic field strength. While ρxx exhibits sharp peaks whenever a Landau
level passes through the Fermi surface the Hall resistivity ρxy concurrently
jumps between well defined plateaus (staircase) of integer multiples of
the conductance quantum e2/h. This integer is called Thouless-Kohmoto-
Nightingale-Nijs (TKNN, [400]) number (or the first Chern number C) and
characterizes topological properties of the underlying Bloch bands.

σxy =
−ie2

,h

∑
α,Eα<EF

∑
β,Eβ>EF

<α| ∂H∂k1
|β><β| ∂H∂k1

|α>− <α| ∂H∂k2
|β><β| ∂H∂k1

|α>

(Eα − Eβ)2

(11.6)
The Hall conductivity σxy (see Eq. (11.6), [401, 402]) is usually derived
via the Kubo formula [403, 404] in the context of linear response theory
(see [405] for an excellent modern introduction). Since the contribution of
all occupied states is quantized the integer quantum Hall effect emerges
whenever the Fermi energy lies in a gap. For this situation the Strěda
formula [406] allows the reformulation of σxy in terms of a B-field derivative
of the charge carrier density n(E,B):

σxy = e
∂n

∂B
|E=EF

= C
e2

h
(11.7)

with Chern number C ∈ Z. Outside the band gaps one would additionally
have to compute terms of the form,

σ
(no gap)
xy =

i,he2

2
Tr[vxG+(EF)vyδ(EF−H)−vxδ(EF−H)vyG

-(EF)] (11.8)

where G±(E) = (E−H± i0)-1 are Greens functions and vx/y are velocity
operators. This is numerically unfeasible for ribbons consisting of several
large moiré super cells. However, unlike earlier work that also omits the
direct calculation of the energy spectrum (as required for Eq. (11.7)) for large
twisted moiré systems (e.g. by constructing effective-mass wave functions
for Landau levels [407]) we can use this expression Eq. (11.7) in combination
with the extremely efficient band structure calculations that employ the
ab-initio derived TB Hamiltonians.
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a

c

b

Fig. 11.3: a Quantum Hall conductivity σxy (in units of [e2/h]) of a graphene on hBN
ribbon (of a width of 30 super cells ≈ 750 nm) as a function of perpendicular magnetic
field and Fermi energy as calculated via Eq. (11.7). Regions where the Strěda formula does
not apply are colored black. Green, purple and yellow lines indicate cuts in subsequent
panels. b Constant energy cuts of panel a). c Constant B-field cuts of panel a). Regions
where the Strěda formula does not apply are indicated by thin black lines in panels b)
and c).
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a

c

b

Fig. 11.4: a Quantum Hall conductivity σxy (in units of [e2/h]) of a graphene on hBN
ribbon (of a width of 30 super cells ≈ 750 nm) as a function of perpendicular magnetic
field and filling factor n/n0 of the super lattice as calculated via Eq. (11.7). Apart from
x-axis rescaling identical data to Fig. 11.3. Regions where the Strěda formula does not
apply are colored black. Green, purple and yellow lines indicate cuts in subsequent panels.
b Constant energy cuts of panel a). c Constant B-field cuts of panel a). Regions where
the Strěda formula does not apply are indicated by thin black lines in panels b) and c).
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We calculate band structures of ribbons consisting of several moiré unit
cells and evaluate the energy dependent charge carrier density n(E,B) before
interpolating on a very dense energy grid. We sample the magnetic field
axis with increments of 50 mT and then apply Strěda’s formula via a
symmetric numerical derivative at constant energy. The resulting quantum
Hall conductivity σxy(E,B) (see Fig. 11.3) displayed as a function of energy
reveals familiar features. Regions where the Strěda formula does not apply
(i.e. outside of bandgaps) are colored black in Fig. 11.3. Plateaus of
constants Hall conductivity separated by openings of Landau levels are well
visible over a large region of the magnetic field (the critical magnetic field
where one full flux quantum is threaded through a single moiré unit cell
is roughly 23.5 T). The plateaus close to the Dirac point (i.e. E = 0) do
not quite match the values of the Hall conductivity plateaus in single layer
graphene (i.e. 2, 6, 10) while higher plateaus increasingly fall short (see
yellow features in Fig. 11.3c). Horizontal artifacts within these plateaus
are most present to the right of the E = 0 Landau fan as well as to the
left of the hole side satellite. These may arise due to “lost” states due to
erroneously selected states within the two-fold enlarged Krylov space at
interpolated k-points. Since calculations at different magnetic fields are in
principle entirely decoupled the identification of the n = 0 point on the
energy axis also introduces an error margin that can cause slight horizontal
misalignment of the individual 50 mT increments, thereby introducing
artifacts in the numerical derivative.

E

B

n [-] n [-]

Fig. 11.5: Surface plot of the charge carrier density of the graphene/hBN ribbon as a
function of both energy and magnetic field. Zoom-in illustrates the limits of the Strěda
formula (see text). Green arrow indicates direction of magnetic field derivative. Short
arrows point at ramps of constant slope and are color coded according to plateaus of σxy

in Fig. 11.3a.

The satellite Dirac cones display distinct asymmetry between electron
and hole side with the hole side rendered much cleaner. Regardless of
energy all structure vanishes at low magnetic fields due to the finite ribbon
width of roughly 750 nm. Transforming σxy(E,B) to a density axis in
units of moiré super cell fillings is usually the preferred way to compare to
experimental (gate voltage dependent) data. This transformation first of
all straightens the Landau fan but while readily viable from a numerical
viewpoint also shrinks the gap plateaus while enlarging the regions that
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are inaccessible with Eq. (11.7) (see black spotted and or clipped regions
in Fig. 11.4a). Unambiguously identifying these regions and coloring them
black is numerically difficult. ∂n/∂B|E=const. in Eq. (11.7) erroneously
produces large values of the wrong sign when applied in these regions.
The plateaus of constant σxy in the Landau gaps translate to ramps of
constant slope for n(E,B) (see Fig. 11.5). Since all these curved ramps
originate at the same value of n(E = 0,B = 0), a derivative along the
magnetic field axis will inevitably see steep steps in-between the ramps of
constant slope (as illustrated in Fig. 11.5). These regions can thus (if not
already colored black) also appear either dark blue or dark red depending
on which side of the Landau fan they are located at. Employing Fig. 11.4
for comparison to experimental data (not shown ) is therefore dubious at
best. The only meaningful commonality of the in general much more washed
out experimental data and my simulations is the asymmetry in the satellite
structures between electron and hole side.

11.3 Outlook

With the help of efficient algorithms that have been developed in our group
we have efficiently sampled band structures of moiré structures of realistic
sizes (several hundred nanometers). We have sucessfully employed the
simple yet elegant Strěda formula Eq. (11.7) to process our band structure
data into quantum Hall conductivities of a graphene/hBN moire system.
However, the inability of the current method to calculate σxy outside of
band gaps results in extremely limited comparability to experimental data.

The desire for meaningful theoretical data of experimentally accessible
moiré structures across the entire parameter space (E,B) warrants further
investigation. The fact that our approach can in principle also extract full
information on the underlying Bloch states of the band structure opens yet
another efficient route to mitigate this issue. We are currently implementing
an algorithm following the work of Imry et.al [408] that calculates chemical
potential differences between upper and lower border of the ribbon via wave
function amplitudes. This will allow us to produce a complete quantum
Hall conductance map as a function of magnetic field and charge carrier
density.
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Composite super-moiré lattices in
twisted bilayer graphene on
hexagonal boron nitride

“Physics is the only profession in
which prophecy is not only accu-
rate but routine.”

Neil deGrasse Tyson

Employing most of the numerical methods introduced in Chapter 11 in
a collaboration with Alexander Rothstein from the group of C. Stampfer
at the RWTH Aachen we study magneto transport of hBN-encapsulated
twisted bilayer graphene (tBLG). Alignment of one of the hBN layers leads
to additional Landau fans related to two competing moiré super lattices. Fur-
thermore the presence of this additional moiré lattice results in pronounced
asymmetry of the single particle band gaps in both theory and experiment.
A. Rothstein performed measurements on several hBN/tBLG/hBN devices
(see Fig. 12.1) while we provided magneto transport and bandstructure cal-
culations of ab-initio derived TB ribbons for a commensurable configuration
of both moiré super cells (as identified in the experiment). A manuscript of
our findings intended for publication is currently in preparation.

(a)

V I

2 µm

V

bias

xx

hBN

Graphite

SiO2

hBN

tBLG

Fig. 12.1: a False-
color atomic force
microscopy image
of the measured
device. Overlay
depicts schematic
measurement setup
for both two- and
four-terminal measure-
ments. b Schematic
cross-section of the
stacked devices.

12.1 Introduction

Van-der-Waals heterostructures allow the fabrication of quantum materials
with tailored properties [409]. Apart from the sequencing of the two-
dimensional constituents in these layered materials, the relative orientation
of the individual interfaces is another vital tuning knob for the final physical
properties. Inducing a small orientation mismatch between the individual
building blocks can create a moiré superlattice that significantly changes the
characteristics of the structure. Prime example for the vast consequences
of such superordinate patterns is twisted bilayer graphene. Close to the
magic angle of 1.1◦ one finds a vast number of exotic quantum phenomena
including superconductivity [11, 410–413] and correlated insulators [11, 410,
414–416]. Introducing a second, and thus competing superlattice can alter
the physical properties of tBLG even further. Experimental evidence of an
anomaleous quantum Hall effect as well as orbital ferromagnetism at certain
carrier densities in tBLG [417–419] is traced back to an additional hBN
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alignment leading to the formation of a dual moiré effect and is supported
by theoretical investiations [420, 421].

While one typically tries to avoid the creation of more than one super
lattice in a van-der-Waals stack due to the arising complexity (e.g. via
optical investigation of the orientation of crystallographic axes during the
fabrication process), here, we want to investigate the effect of simultaneous
alignment both within the BLG as well as to one of the hBN substrate
layers. We have also become aware of studies on composite super moiré
lattices in single layer graphene [422]. However, there the two moire lattices
are both of graphene/hBN origin.

12.2 Modelling two moiré superlattices in concert

Fig. 12.2: Schematic
representation of a a
single moiré (tBLG)
and b two superim-
posed moiré lattices
(tBLG aligned with
hBN).

In order to simulate magnetotransport in composite moiré systems we
employ a tBLG tight-binding Hamiltonian derived via the same process
introduced in Section 11.1.1. Several DFT calculations of displaced BLG
unit cells wannierized are put together to form a state-of-the-art description
of a mechanically relaxed bilayer moiré cell. While it might be worth
to contemplate about a clever way to merge the ab-initio derived tBLG
Hamiltonian with the ab-initio derived graphene/hBN Hamiltonian from
Chapter 11 we omit this potentially error-prone challenge in favor of replacing
the entire hBN layer by effective potentials. We utilize a combination of
slowly varying background potentials Vi and short-range symmetry breaking
potentials Wi [423]:

VhBN =
∑

i=I,III,V

Vie
-

(r-Ri)
2

2w2
i ·σ0

⃝
τ0+

∑

i=I,III,V

Wie
-

(r-Ri)
2

2w2
i ·σz

⃝
τ0 (12.1)

where wi are characteristic length scales, σ0(σz) represent unity (z-Pauli
matrix) in sublattice space and τ0 is the unity in valley space. While the
Vi break particle-hole symmetry the Wi introduce sublattice asymmetry.
Derived from DFT calculations [390, 424] these terms can accurately describe
the effect of hBN alignment with respect to one of the graphene layers.

hBN

BLG
I

III

V

Fig. 12.3: a Schematic of the real space moire super cell of the graphene/hBN system.
Colored circles (I,II,V) correspond to centers of Gaussians used in the effective moiré
potential in Eq. (12.1) as taken from [423]. b Schematic explanation of the superposition of
the two moiré lattices. Light grey lines indicate edge character of the unit cells. Assuming
a small graphene/hBN twist angle of θhBN ≈ 0.7◦ brings the two moire cells to the same
periodicity. c Moiré lattice constant of the graphene/hBN moire as a function of their
relative twist angle θhBN.
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We partition the hBN moire unit cell in five regions based on relative
local alignment with the graphene layer (see Fig. 12.3). Assigning different
amplitudes (VI = VIII = 0meV, VV = 100meV [425], WI = 57meV, WIII =

-34meV, WV = -47meV) and widths (0.63wI = wIII = wV = 7nm) to
the Gaussians in Eq. (12.1) allows us to effectively model the influence of
the hBN alignment and introduces the second moiré lattice length scale
into the tBLG Hamiltonian in an elegant and easily adaptable manner.
This adaptability is very important for us to create structures with feasible
periodicity. The relaxed displacement-mapping method we use for the
derivation of the tBLG TB Hamiltonian can only really be applied to
commensurate twist-angles θBLG defined by [72, 426]:

cos (θBLG) =
3m2 + 3mr+ r2

2

3m2 + 3mr+ r2
m, r ∈ N (12.2)

Having access to a set of different twist angles of tBLG Hamiltonians (as
parametrized by L. Linhart [83]) we identify θBLG = 0.987◦ as the closest
one to the experimentally determined twist angles (see Section 12.3). The
unit cell for this moiré system is spanned by the vectors a1 = (14.3, 0)Tnm
and a2 = (-7.1, 12.4)Tnm and features armchair borders. The effective hBN
potential of Eq. (12.1) is derived for a perfectly aligned graphene/hBN
moiré cell (b1 = (13.8, 0)Tnm, b2 = (-6.9, 11.9)Tnm) that features zig-zag
borders. Their difference in border character is easily reconciled via a
rotation. However, this would result in a slightly different periodicity in x
direction. We avoid cumbersome duplication to their least common multiple
and instead assume a slight rotation of the graphene/hBN moiré. This
bilayer of materials with unequal lattice constants also features an angle
dependence ([76, 427–429], see Fig. 12.3c):

λ(ϵ, θ) =
1 + ϵ√

ϵ2 + 2 (1 + ϵ) (1 − cos (θ))
(12.3)

where ϵ is the relative mismatch of lattice constants (≈ 1.8% for graphene
/ hBN). A small twist angle θhBN ≈ 0.5◦ results in perfect agreement of x
periodicity for the composite moiré system which we can then duplicate in
y direction to describe ribbons of realistic width. The area ratio of the two
moiré unit cells of

√
3/2)2 = 3/4 will become important when discussing

magneto transport in Section 12.4. Terminating the edges with σz potentials
in sublattice space [39, 340] suppresses surface states. We again utilize the
efficient algorithms introduced in Section 11.1.2 to compute band structures
and obtain the group velocity of each Bloch state ψn via

vg(n) =
1
,h

∂En(k)

∂k
=

i∆x
,h

ψ†
n

(
HIe

ik∆x − e-ik∆xH
†
I

)
ψn (12.4)

The energy dependent conductance G(E) is then easily obtain by weighting
all right moving states with their respective group velocity and sampling the
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entire Brillouin zone. We estimate the number of modes at a given energy
M(E) as,

M(E) ≈
M∑

m=1

∂E

∂k

∆k

∆E
≈ d

dE

∑

n:En<E,v
(n)
g >0

,hv(n)
g ∆k (12.5)

with k-point spacing ∆k [84].

12.3 Device characterization and band gap
asymmetries

The investigated heterostructure (Fig. 12.1a) consists of tBLG encapsulated
in hBN (thicknesses of the top and bottom flakes are approximately 24 nm
and 32 nm, respectively) and a graphite back gate. After stack assembly
(with a conventional dry PC/PDMS van-der-Waals pick-up technique) the
entire heterostructure is placed on a Si++/SiO2 substrate (see schematic
cross-section in Fig. 12.1b). We create the tBLG superlattice following a
convenient “laser-cut-and-stack” technique adjusting a twist angle of aorund
1.3◦, slightly overshooting the target angle of 1.1◦ [430].
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Fig. 12.4: a Two-terminal differential conductance dI/dV2T as a function of the charge
carrier density n for different temperatures measured along the entire Hall bar structure. b
Arrhenius representation showing the differential resistance dV/dI2T of the band insulating
states as a function of the inverse temperature. The data is taken at charge carrier densities
of n ≈ −2.4 × 1012 cm−2 and n ≈ 2.25 × 1012 cm−2 for the hole and electron insulating
state, respectively. c Same as (b), but for the correlated insulating features at charge
carrier densities of n ≈ −1.2× 1012 cm−2 (hole doping) and n ≈ 1.1× 1012 cm−2 (electron
doping).

The composite supermoiré hBN/graphene lattice is created by aligning
the crystallograpic axes of an hBN flake with the tBLG area. Our colleagues
at the RWTH Aachen perform each transfer step as slowly as possible to
reduce the mechanical stress on the heterostucture. We utilize standard
electron beam lithography and reactive ion etching (CF4/O2) to define
ohmic contacts to the graphene [431] which are subsequently evaporated
(Cr/Au, 5/50 nm). Additional lithography and metal evaporation steps
define the lines to the etched contacts (Cr/Au, 5/50 nm). The Hall bar
geometry is defined after hard mask evaporation (Al, 60 nm) by a reactive
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ion etching step (SF6/O2). Finally, we remove the aluminium hard mask in
N(CH3)+4 OH- (2.38% in de-ionized water). All measurements are performed
in a 3He/4He dilution refrigerator (Oxford Kelvinox) at a base temperature
of around 30 mK until otherwise noted, using standard low-frequency lock-in
measurement techniques (Stanford SR830).

tBLG moiré tBLG/hBN supermoiré(a)  (c) 
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Fig. 12.5: Band structure and density of state for a ribbon with a width of 10 tBLG
moire unit cells of a just tBLG (θBLG ≈ 0.987◦ and b tBLG (same θBLG) with additional
alignment (θhBN ≈ 0.7◦) to an hBN layer.

We initially characterize our device by measuring the two-terminal differ-
ential conductance dI/dV2T as a function of the charge carrier density by
applying an ac bias of Vac = 1 V via an in-house build IV-converter (gain:
107) along the entire Hall bar structure (see Fig. 12.1a) and measuring the
current in parallel for different temperatures (see Fig. 12.4a). We observe
five dips in the differential conductance with decreasing temperature and
identify the insulating features around n ≈ ±2 · 1012 cm−2 with the edges
of the flat bands, corresponding to full filling of four holes/electrons of the
tBLG moiré superlattice unit cell [414]. Note that these band insulator
(BI) states exhibit a distorted shape rather than a clean gap opening: the
band insulator at hole doping exhibits a plateau in differential conductance
until the final pinch-off, while the band insulator at electron doping appears
to be split into two separate insulating features. However, this behaviour
is only visible in the two-terminal data and might be due to twist angle
variations along the device. The strongly insulating parts of the band
insulators around n ≈ ±2.4 · 1012 cm−2 display an asymmetry in the their
temperature dependence: while the hole-site band insulator shows a clear
gap opening over the accessible temperature range, the band insulator at
electron-doping does not show indications of thermal activation up to the
maximum temperature of T = 6 K. This asymmetric behaviour between the
two doping regimes becomes even clearer at the insulating features around
n ≈ ±1.2 · 1012 cm−2 which we identify as the correlated insulator (CI) at
half-filling of the moiré superlattice unit cell. These correlated insulators
display a strong temperature dependence. However, complete pinch-off is
only reached at electron doping.
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The influence of the competing moiré superlattices becomes clearly visible
in band structure calculations (see Fig. 12.5), where we show the non-
aligned and aligned cases for a graphene twist-angle of 0.987◦ (additional BS
calculations for different twist-angles can be found in Fig. G.2 in Appendix
Chapter G). An intrinsic asymmetry between the gaps at electron and hole
doping is already present in the non-aligned case (Fig. 12.5a). We extract
a gap ratio of around Ee

gap/E
h
gap ≈ 2.66. The presence of hBN alignment

(Fig. 12.5b) induces a strong broadening of the flat bands around an energy
of E ≈ 0 meV. In this case we observe an increase of the gap asymmetry,
extracting a ratio of Ee

gap/E
h
gap ≈ 4.48.
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Fig. 12.6: a Finite bias spectroscopy measurement of the band insulating state at hole
doping. Instead of a clean gap, we observe the formation of roughly 130 individual
Coulomb diamonds indicating a disordered system. b Same as in (a) but for the band
insulator at electron doping. Striking is the asymmetry in the applied bias compared to
the hole-doped band insulator. c Schematic representation of the measurement. The Hal
bar consists of individual areas of tBLG with slightly different twist angles.

To extract the gap sizes experimentally from transport experiments, we
perform finite bias spectroscopy measurements at the carrier densities as-
sociated with the insulating features (see Fig. 12.6). Instead of a clean
gap opening (which would be indicated by a large diamond structure of
suppressed differential conductance), we observe disordered behaviour. In
the case of the hole-doped band insulator (Fig. 12.6a) this behaviour is man-
ifested by the presence of approximately 130 individual (but superimposed)
Coulomb diamonds of suppressed differential conductance with addition
energies in the low meV regime. Inhomogeneous twist-angle distributions
over the probed area of the device or edge effects might be a plausible origin
of this effect.
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Interestingly, the band insulating state at electron doping exhibits a less
complex substructure (Fig. 12.6b). Individual Coulomb diamonds cannot
be identified as easily as in the hole-doped case and seem to be shifted
inwards one another. This indicates a cleaner and more stable gap opening
at electron doping. Striking is the stark difference in bias voltages between
electron and hole sides associated with these unclean Coulomb diamonds.
Clear energy gap estimation for comparison to the theory data is however
not credible from this data.

12.4 Magnetotransport simulations

We now focus on the area of the device where the four-terminal magnetore-
sistance measurements were taken (Fig. 12.7). We can extract the local
twist-angle in this area of the device by reading off the superlattice density
ns ≈ ±2.17 · 1012 cm−2 at which we observe Landau levels emerging from
the band insulating states. Together with the small angle approximation
[414]

ns =
8θ2

√
3a2

, (12.6)

where a = 0.246 nm is the lattice constant of graphene, we estimate the
twist angle in this area to be θ ≈ 0.97◦. Comparing the magneto transport
simulations of tBLG with those of tBLG with additional hBN alignment
reveals additional Landau fan features emerging in the double moiré system.
These lines (see red arrows in Fig. 12.7b) originate from fillings close to
ν = 3 which corresponds to the hBN moiré unit cell being three quarter
the size of the tBLG moiré in (see Section 12.2 for modeling details). The
derivative of the longitudinal resistance with respect to the magnetic field
dRxx/dB (Fig. 12.7c,d) as a function of the filling factor ν = 4n/ns and the
magnetic flux per moiré unit cell Φuc/Φ0 normalised to the magnetic flux
quantum Φ0 = h/e (see also Fig. G.1 in Appendix Chapter G for a depiction
without the derivative along the magnetic field) also shows similar novel
features when aligned to hBN. Aside from Landau levels emerging from the
charge-neutrality point (filling factor ν = 0) and the band insulating states
(filling factor ν = ±4) we also observe a clear set of Landau levels from
ν = 2 associated with the CI and thus not captured by the single particle
simulation. However, we also notice an additional set of lines emerging from
non-integer filling factors around ν ≈ ±2.5 (see Fig. 12.7d,e), in line with
theoretical expectations of an additional alignment with the hBN layer.

We are able to extract the twist angle of the hBN-graphene superlattice
by exploiting the ratio between the superlattice unit cell areas given by

AhBN =
2.5
4
AtBLG (12.7)

as well as the angle dependent superlattice wavelength Eq. (12.3), to be
θ ≈ 0.7◦.
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a

b

c

d

e

Fig. 12.7: left column: tBLG with non-aligned hBN, right column: tBLG with aligned
hBN (θhBN ≈ 0.7◦). a Schematic of the onsite energy corresponding to the different
moiré super lattices. (relative sizes are to scale!) b Magnetoresistance simulation of the
tBLG/hBN system with a BLG-twist-angle θBLG of 0.987◦. Landau levels emerge from the
charge neutrality point (ν = 0) and the single-particle band gaps at full filling of the BLG
moiré superlattice unit cell (ν = 4). Alignment with hBN introduces additional Landau
level features at non-integer filling factors (ν ≈ 2.5). c Magnetotransport measurements
showing the B derivative of the longitudinal resistance as a function of filling factor ν and
the normalized flux quantum per moiré super lattice unit cell of a tBLG moiré device
(θexp. ≈ 0.97◦. Landau fans emerge from integer-values of the filling factor. For additional
hBN alignment (right) we observe additional lines starting at non-integer fillings (ν ≈ 2.5).
d Zoom-ins of (c) e Dashed black lines (integer fillings) and dashed blue lines (non-integer
fillings) as guide to the eye for (d).
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Our interpretation of hBN alignment is supported by the absence of any
indications of superconductivity in our device which is in agreement with
hBN-aligned twisted bilayer graphene devices reported in literature [417–
419]. Although this could also be caused by our relatively low twist-angle we
want to highlight that these indications were found at clearly lower angles
than the one discussed here [432].

12.5 Conclusion

We studied a twisted bilayer graphene system at a twist angle of approxi-
mately 0.97◦ which exhibited additional alignment to hBN. Hereby, we were
able to find evidence of this alignment from magnetotransport measurements
which showed remarkable agreement with the theoretical prediction. Band
structure calculations revealed that the competing superlattice reinforces an
intrinsic electron-hole asymmetry twisted bilayer graphene. The presence
of the additional superordinate moiré lattice introduces new Landau fan
features at fillings corresponding to the relative size of the two moiré unit
cells.



Chapter 13

Summary

“Common Sense is that which
judges the things given to it by
other senses.”

Leonardo da Vinci

Throughout this thesis we have studied the influence of various forms of
lattice imperfections (point defects, grain boundaries, ...) on the electronic
properties of two-dimensional materials. We have (among other things) cal-
culated level spectra of quantum dots via large-scale tight-binding, simulated
electronic transport in moiré systems and developed a machine learning
algorithm to aid in the extraction of defect parametrizations from ab-initio
band structures. I strongly encourage to look up the conclusion/outlook sec-
tions of each individual chapter but nevertheless provide concise summaries
for the weary reader.

Manipulating quantum dots through nearby lattice defects We calcu-
lated the effect of lattice defects in single layer graphene on the level spectrum
of smoothly confined quantum dots (Chapter 5). Different types of defect
induce valley splittings ∆τ of up to 12 meV. We showed that controlled
motion of the quantum dot (generated via STM or electronic gates) allows
for controlled transition dynamics that are well captured by Landau-Zener
theory. Controlled breaking of the valley symmetry is a vital ingredient for
building quantum logic gates based on graphene technology in the future.

Sparse TB parametrizations via machine learning We have explored
various forms of modern machine learning concepts in order to aid in the
extraction of tight-binding parametrizations for defect super cells calculated
in ab-initio density functional codes (Chapter 6). We have identified neural
networks as promising candidates and successfully applied a purely distance
based algorithm to two point defects in single layer graphene. A proof-of-
principle approach for generalization to discrete Slater-Koster maps allows
studying a di-vacancy in WSe2.

Two particle spectra in BLG quantum dots This chapter focused on
our efforts to correctly reproduce two particle spectra measured in the
Stampfer group at the RWTH Aachen (Chapter 7). We set up an elegant
numerical apparatus to re-diagonalize a bare Coulomb kernel in a basis
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of confined BLG wavefunctions. Missing the vital ingredient of short-
range symmetry breaking perturbations we nevertheless learned a lot about
efficiently evaluating four-orbital-integrals.

Strain enhanced photoluminescence in WSe2 Collaborating with the
group of S. Heeg in Berlin we provided theory support for photoluminescence
measurements of strained WSe2 in Chapter 8. A fairly simple model that
correctly captures the influence of strain on the single-particle energies of a
vacancy defect appears as the prime candidate to explain strong enhancement
of emission encountered in the experiment. Improvement descriptions of
the full defect cell open the door for future collaborations on time-resolved
Kerr microscopy data.

Grain boundary induced valley polarization Studying the valley filter-
ing properties of grain boundaries we map their energy and angle depen-
dent transmission landscape in Chapter 9. Employing first class defect
parametrizations we find qualitative agreement with old theory predictions.
Interesting resonance behavior with bound defect states warrants additional
investigation.

Probing quantum Hall edge states at an electrostatically define pn-
junction in graphene Together with the group of Markus Morgenstern at
the RWTH Aachen we carefully investigate edge states in the quantum Hall
regime in Chapter 10. A partially covering back gate creates an artificial
edge in single layer graphene. Meticulous extraction of parameters for
Poisson and TB calculations reveal parameter regimes in which these edge
states can be mapped via scanning tunneling microscopy with only minimal
perturbations from the tip induced quantum dot.

Quantum Hall conductivity in graphene/hBN moirés We employ ab-
initio derived models of real space moiré super cells of graphene/hBN
systems and utilize efficient numerical methods to calculate quantum Hall
conductance maps as a function of both magnetic field and charge carrier
density (Chapter 11). The current approach based on evaluating magnetic
field derivatives prevents us from meaningful experimental comparison as it
only applies to the gapped part of the spectrum.

Competing moirés in encapsulated tBLG Modeling two moiré lattices in
concert we corroborate experimental data from the Stampfer group at the
RWTH Aachen in Chapter 12. The presence of two superordinate length
scales in these systems leads to the emergence of additional Landau fan
features at filling ratios defined by the relative areas of the moiré super cells.
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In the course of my thesis I worked on several projects that, to varying
extent, focus on the influence of lattice defects (point defects, grain bound-
aries and “artificial” defects in the form of potential steps) on the physical
properties of their host system. While the constant ambition to improve
predictive aspects of theoretical defect models inevitably also increases
model complexity we find that in some instances simple models also provide
surprisingly good agreement with experimental data. I have explored the
prospects of employing machine learning algorithms to generate accurate
tight-binding parametrizations for defects. While our algorithm is not yet
general enough to avoid the Wannier formalism altogether we nevertheless
took an important first step in its conceptualization and application.

We also developed state-of-the-art algorithms to study quantum transport
of large (small twist angle) bilayer systems in the context of moiré physics.
The recent and rightfully exciting observations of correlated physics in these
systems call for careful analysis of features that may already be explained via
mean-field physics. Graphene offers a seemingly shallow entrance into open
questions of solid state physics. It provides a platform to study complicated
things such as high-temperature superconductivity, (proximity induced)
spin-orbit textures of highly mobile electrons (spintronics) and possibly
magnetic phases in a fiendishly simple material that merely consists of the
very same carbon atoms that make up pencil lead.

The relentless improvement in sample quality and system control in
bilayer graphene systems among experimental groups (e.g. RWTH Aachen)
continues to challenge theory to provide not only retrospective understanding
but aid in sample design via realistic simulations (e.g. Poisson-Schrödinger
solver for optimal gate design).
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Appendix A

Band structure reconstruction for the
sparse ML models

Fig. A.1: BS comparison for ML parametrizations (double vacancy) of different sparsity
(indicated as xNN) with DFT BS as reference. Bands that are not explicitly part of the
loss function Lϵ are drawn in a fainter color.

Following the main text in Section 6.6.1 we present additional plots for the
comparison of ML models with different sparsity regarding BS approximation
accuracy and LDOS similarity. The desired sparseness and the number of
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input bands accounted for in the loss function Lϵ are a priori independent
in our algorithm. However, very sparse models that aim to evenly minimize
BS loss across all bands tend to reproduce very low/high bands slightly
more accurately at the cost of performing much worse for bands around the
Dirac point (i.e. E = 0). Since in graphene these are the bands relevant
for transport we exclude a subset of extremal bands (i.e. low or high in
energy, fainter lines in Fig. A.1 and Fig. A.2) from the loss function. This
slightly improves accuracy for the bands of interest and also reduces model
complexity but comes at the cost of larger errors in reproducing the extremal
bands (this appears to be more pronounced for the flower defect).

Fig. A.2: BS comparison for ML parametrizations (flower defect) of different sparsity
(indicated as xNN) with DFT BS as reference. Bands that are not explicitly part of the
loss function Lϵ are drawn in a fainter color.
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Fig. A.3: DFT results vs. double vacancy ML parametrizations of different sparsity
(sparsity indicated by xNN and line colors). a DOS over a limited energy range b Cosine
similarity of the c LDOS distribution within the supercell.
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Fig. A.4: DFT results vs. flower defect ML parametrizations of different sparsity (sparsity
indicated by xNN and line colors). a DOS over a limited energy range b Cosine similarity
of the c LDOS distribution within the supercell.



Appendix B

Sample fabrication and measurement
details

All devices are fabricated by transferring [433] mechanically exfoliated
WSe2 monolayers onto a circular hole (diameter ∼ 5µm) etched 700nm into
Au/Cr/SiO2/Si (70 nm/3 nm/1500 nm/300 µm) substrates. The large
thickness of SiO2 allows applying voltages of up to ±280 V before the
dielectric rupture of the sample, but measurements are typically limited to
to ±235 V for sample protection. The monolayers are many times larger
than the hole to ensure device stability. Room temperature PL mapping of
the finished device is used to confirm that the monolayer uniformly covers
the hole area. The devices are measured in vacuum inside a cryostat with the
base temperature of 4 K. To avoid damage to the suspended WSe2 during
pump-down of the cryostat, a pressure relief channel is fabricated in SiO2.
Temperature at the sample is detected via an on-sample temperature sensor
and confirmed by tracking the energetic blueshift and linewidth narrowing of
the (bright) neutral exciton. PL measurements are carried out in a homebuilt
setup using a tightly focused laser (diameter ∼ 1 µm) placed at the centre
of the device. We excite the membranes with a linearly polarized, CW laser
with λ = 532nm and power ∼ 10µW (power density 500 Wcm-2) and in
the range 100 nW – 4.5 µW to quantify the character of excitonic states
(power densities 5 W/cm2-250 W/cm2). Additionally, from power-dependent
measurements we estimate the defect concentration on our samples to be in
the order of 1010cm−1 (see Fig. B.1) [434]. Photoluminescence excitation
spectroscopy in the range 570 nm – 675 nm with a pulsed laser source
(femtosecond Ti:Sa Chameleon Ultra II + OPO-VIS) is used to quantify
the contribution of interference effects in our data. We ascribe strain values
to each spectrum by measuring energetic shifts for excitonic species and
assuming the shift rate 95meV/% [322] for all free excitons. This analysis
is confirmed through separate interferometric measurements capable of
directly measuring membrane displacement with nanometer resolution. To
identify excitonic species in our PL data, we compare their energy position
and the binding energy (measured with respect to the X0 position) with
detailed measurement of excitonic species in high-quality unstrained devices
encapsulated in hBN [315, 317, 435, 436]. While the difference in electrostatic
screening between suspended and encapsulated devices leads to noticeable
changes in the binding energy of the excitons, in most cases the identification
is possible.



173

a

b c

d

device 2

PL int. (a.u.)

0            1

device 1
e

PL int. (a.u.)

0   0.1    0.5 1

[saturated]

Fig. B.1: In Fig. 8.3 of the main text we observe strain-independent lines in the PL energy
range between 1.55 − 1.6eV that we assign to defect-related excitons. This assignment is
supported by the detailed analysis of excitation power and VG dependence of PL spectra.
a PL vs. excitation power for an unstrained membrane (VG = 0) measured on device 2 at
77 K. We identify neutral (X0) and charged exciton (X-) and three other peaks labelled
3 − 5 in decreasing energy order (black dashed lines). b PL spectra at selected excitation
power densities. Spectra are normalized and offset for clarity. Peaks 3 − 5 dominate the
PL spectrum at lower excitation powers while X0 and X- dominate at higher powers. c
PL integrated intensities of the five peaks marked with dashed lines in (a) as a function
of excitation power density. PL intensities are obtained by fitting the PL spectra to five
Lorentzians. X0 and X- show an approximately linear dependence with excitation power.
This behaviour is typical for free excitons [324]. PL intensities of peaks 3, 4 and 5 saturate
with power indicating the defect-related character of the emission at those energies. d
PL spectra of devices 1 and 2 featuring the same set of defect peaks, confirming their
reproducibility. Spectra for device 1 (black) and device 2 (red) are extracted from the
white lines in (e) and (d), respectively. Typically fitted spectra for device 2 corresponding
to peaks 3 − 5 shown in (a)-(c) are plotted with dashed lines. e PL spectra vs. VG for
device 1. The energies of defect-related states are almost strain-independent, as expected
from theory. (a)−(e) are measured at excitation 532nm. (d) and (e) are measured at
excitation power density 250Wcm−2.



Strain response of excitonic states in
WSe2 at 100K and 10K

Fig. B.2: a PL spectra of the suspended WSe2 monolayer (device 1) at T = 100 K and
positive VG. Here the spectra are offset for clarity to allow for tracking individual peaks
as a function of gate voltage / strain. In b Normalized PL spectra measured at T = 10
K (device 1) in the electron doping (red line), hole doping (blue) and charge neutrality
(black) regimes under negligible strain. We identify a bright neutral exciton (X0) at 1.769
eV, positive (X+, binding energy 29 meV) and negative trions (X-

T and X-

S, 32 and 38
meV) and a dark neutral exciton (X0

D, 17 meV below X−
S ). We observe a lower energy PL

band peaking at 80 meV and 87 meV below (X0) for hole and electron doping, respectively.
We assign this PL band to dark trions (X±

D) and their phonon replicas. c Selected PL
spectra measured at T = 10 K (device 1) at different voltages (strain values), offset for
clarity. We mark the excitonic species identified in (a) with dashed lines and track their
PL signatures upon increasing voltage. PL intensity of dark trions and their replicas and
dark neutral exciton increase 6 and 20 times, respectively, as compared to their unstrained
values when their energies approach the D1 hybridization energy 1.52 eV.



Confirmation of strain extraction and
mechanical constants from optical
measurements
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Fig. B.3: In the main text, we obtain strain at each gate voltage by measuring the shift
in the energy position of the neutral exciton compared to its unstrained position. Here,
we confirm the assignment of strain via an independent interferometric measurement. a
Schematic of the device used in the main manuscript seen as an interferometric cavity.
A circular monolayer WSe2 membrane of radius a = 2.5µm is suspended over a hole in
SiO2 and actuated (displacement h) by applying gate voltage VG between WSe2 and
a Si substrate underneath (see Methods for details). The device is measured at room
temperature by recording the reflected laser intensity of the laser beam (λ = 633nm,
P = 10µW) focused on the membrane’s center vs. VG b. The interference of the laser
beam in the optical cavity consisting of vacuum, SiO2 and Si results in the changes of
absorption by the membrane. With increasing |VG|, the membrane moves downwards and
the reflected intensity changes depending on the position of the membrane with respect
to the nodes of the interference pattern. Quantitatively, a displacement of the membrane
by λ/4 produces a change of π (half a period) in the phase of the sinusoidal modulation
of the reflected signal. In this way we extract the position of the membrane’s center h vs.
VG from the observed intensity of reflected light. Next, we convert the displacement into
mechanical strain using the formula ε = 2h2

3a2 obtained from the analysis of the system’s
geometry [332]. The resulting data are plotted in c as black dots. For comparison, in the
same graph we plot as red circles the values of strain obtained from the photoluminiscence
energetic shift of the excitonic peaks following the same procedure as in the main text.
Both approaches to estimate strain produce very similar strain values.
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Fig. B.4: To confirm the validity of the model of strain induced by electrostatic force used
in the main text, we extract the mechanical constants of WSe2 from PL measurements
at room temperature. To do this, we first calculate the electrostatic pressure P acting
on the suspended WSe2 at a particular gate voltage. Modelling the system as a parallel
plate capacitor (WSe2/Si) with two media inside of it (vacuum, SiO2), we obtain P =

ϵ0ϵ
2
SiO2

(ϵ0dSiO2
+ϵSiO2

d0)
2

V2
G

2
. We then calculate the displacement of the central point of the

membrane h from strain obtained via PL measurements using ε = 2h2

3a2 , where a is the
radius of the membrane. Finally, P(h) data obtained this way is plotted for two different
devices (1 and 2). This data is fitted using an analytical model for P(h) that is based
on the well-known bulge-test equation in thin-film mechanics [332, 437]. This model
describes the deflection of a uniform circular membrane under uniform pressure using
Young modulus E2D and built-in strain ε0 as free parameters as P =

4E2Dε0

a2 h+ 8E2D

3(1−ν)a4 h
3,

where ν = 0.2 is the Poisson ratio for WSe2 [438]. All data points agree quite well with
the analytical fits (dashed lines). We obtained E2D ∼ 74 N/m and ε0 = 0.04 % for device
1 and E2D ∼ 140 N/m and ε0 = 0.12 % for device 2. The values are consistent with the
mechanical constants typically reported for WSe2 at room temperature [319].



Appendix C

Valley character of QDOT states in
SLG

The preliminary analysis of radial and angular quantum number of quantum
dot (QDOT) states in single layer graphene (SLG) calculated in the Green’s
code [199, 247] within a tight-binding framework necessitates correction of
the phase eik·r, the wave function acquires depending on its localization in
k-space.

a

b

Fig. C.1: Husimi distributions Q(r, k) for the third (a) and fourth (b) eigenstate of
the first Landau level, averaged over several positions of maximal real space probability
density ρ(r) = |ψ|2 (indicated as r|ρ=max).
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Instead of just assuming that the smooth confinement potential Eq. (10.3)
of our tip-induced QDOT does not induce valley mixing we verify the valley
character by calculating the Husimi distribution [439] of the calculated TB
wavefunctions. This quasi-probability density can be understood as a phase
space distribution constructed in a basis of minimum uncertainty states:

Q(q,p;σ) =
1

2π,h
<q,p|ρ̂|q,p> (C.1)

with

|q,p>
{x}
=

1
2πσ2

e−
(x−q)2

4σ2 eipx
,h . (C.2)

The code for evaluating this function at fixed real space coordinates
(specified to the position of density maxima in real space) has been provided
by friend of the group G. Datseris [440, 441]. We find that the two-fold
degenerate QDOT orbitals are clearly localized in the respective valleys (see
Fig. C.1) and thus confirm our fairly simple phase correction for determining
the m quantum number (Section 10.4) as valid.



Appendix D

LDOS maps of the QDOT - PN
system

This section presents additional LDOS maps for the PN - QDOT junction
discussed in Chapter 10.
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Fig. D.1: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL+2 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.2: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL+1 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.3: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL+1 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.4: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL-1 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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b LDOS(Ē, r = rtip) [arb.u.]
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Fig. D.5: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL0 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.6: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL-1 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.7: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL-1 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.8: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL-2 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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b LDOS(Ē, r = rtip) [arb.u.]
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Fig. D.9: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.9d near LL-3 with
coordinates (VBG, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.10: a,b Square amplitude of the state with the largest contribution to the LDOS
in c (cohesiveness indicated with grey shading). States are valley degenerate and feature
pronounced sub lattice structure. The degenerate partner states (not shown) feature
inverted triangular shapes that sum to fairly spherical LDOS signatures in c. c Array
of calculated LDOS colormaps across a zoom-in of the graphene flake for different xtip

(as indicated by red dots). d Zoom-in of Fig. 10.9d near the branching of LL-1 with
coordinates (VBG, xtip) corresponding to panels in c again indicated as red dots.
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Fig. D.11: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12a for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.12: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12a for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.13: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12a for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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b LDOS(Ē, r = rtip) [arb.u.]
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Fig. D.14: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12a for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.15: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12b for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.16: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12b for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.17: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12b for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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Fig. D.18: a Array of calculated LDOS colormaps across a zoom-in of the graphene flake
for different xtip (as indicated by red dots). b Zoom-in of Fig. 10.12b for fixed VBG with
coordinates (Vtip, xtip) corresponding to panels in a again indicated as red dots.
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a b c

Fig. D.19: Detailed comparison of the potentials calculated with the 1D Poisson solver and
the analytic fits used for the 2D TB calculations for three representative configurations
of (VBG, xtip) a η = -0.41, xtip = 180nm, b η = -0.31, xtip = 130nm, c η = 0.32,

xtip = 270nm. The mean absolute difference of the two potentials <|∆Φtot|>
nsites

per TB site is
shown as well.
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Fig. D.20: a Simulated LDOS(Vsample, xtip) across the lateral interface, while including
the TIQD, Vgate = 2.0 V. b Measured dI/dVsample(Vsample, xtip), Vgate = 2.0 V, Istab =

200 pA, Vstab = −250 mV.



Appendix E

Charging lines in scanning tunneling
spectroscopy

This section presents additional zooms into the dI/dVsample(Vgate,Vsample)

map of Fig. 10.2a,b in Chapter 10. The zoom in the lower right showcases
Coulomb diamonds that appear when the different m states cross EF (red
line). The zooms in the lower left and the upper right of Fig. E.1 feature
the kinks in the LDOS lines of m = 0 states away from EF (Vsample = 0 V)
that appear whenever a charging line is crossing.

other m-states

occupied m-state unoccupied m-state

LL0 m=0

LL-1 m=0

Fig. E.1: Zooms into dI/dVsample (Vgate, Vsample) around the LL0 plateau at EF at
fixed position xtip < 0 nm (same data as Fig. 10.2a,b in Chapter 10), Istab = 1 nA,
Vstab = −250 mV. The areas of the four zooms are marked in the central image by a frame
of the same color. Magenta frame: LDOS lines of the various m states that belong to
LL0. Cyan frame: Kinks in the LDOS line belonging to LL-1 that appear each time when
a charging line is crossing. Green frame: same as cyan frame for the LDOS line belonging
to the m = 0 state of LL0. Red frame: Coulomb diamonds at EF belonging to a higher m

state of LL0. The occupied and unoccupied version of the same m state is marked.

The upper right zoom, moreover, features a quadruplet of rather equidis-
tant charging lines. The four rightmost ones have a similar mutual distance,
while the fifth one exhibits a larger distance to the fourth one. This fourfold
bunching is caused by the fourfold spin and valley degeneracy of each m

state in graphene. By following the charging lines down to EF (red line) and
comparison with the central image, it is also apparent that these charging
lines mark the charging of a higher m state of LL0.
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LL-1

Fig. E.2: dI/dVsample (Vgate, Vsample) (zoom into Fig. 10.2a in Chapter 10), xtip < 0 nm,
Istab = 1 nA, Vstab = −250 mV. The LL-1 plateau and its charging lines starting from the
right end of the plateau are visible.

Fig. E.2 features the plateau at EF of the LDOS line belonging to LL-1.
The most bright charging lines appear on the right end of the plateau
followed by weaker charging lines towards the left. As explained in the main
text, this supports our classification of the TIQD as a hole-type dot. The
(m = 0)-state is the one with the highest probability density in the center
of the quantum dot and, hence, leads to the strongest charging line by its
strongest Coulomb repulsion acting on the states that are probed by the
tip. The fact that this (m = 0)-state is charged at the largest Vgate further
corroborates the assignment of the TIQD to a hole-type band bending.
Notice that additional bright charging lines appear in the upper left corner
of Fig. E.2. They are likely caused by the charging of the (m = 0)-state of
LL-2.



191

LL-2LL-3

Fig. E.3: d2I/dVsampledVgate(Vgate, Vsample) for the transition between LL-3 to LL-2 at
EF (full red line), Istab = 1 nA, Vstab = −250 mV. The crossing point of the first charging
line of LL-3 with the last charging line belonging to LL-2 is marked (red circle) via
extrapolation of the two charging lines (dashed red lines).

The following plots explain the selection of Poisson parameters ∆Vgate

and ∆Vsample from two crossing points of charging lines between two pairs
of LLn features (Fig. E.3 and Fig. 10.9a). Practically, we firstly mea-
sure the experimental voltage differences between the two crossing points,
δVgate = 0.95 V in Vgate direction and δVsample = 0.15 V in Vsample direction.
Then, we determine the depth of the TIQD potential from the Poisson
simulations at varying Φtip and Φgate (Fig. E.4a) using circular symmet-
ric coordinates. Afterwards, we select all (Φtip, Φgate) that exhibit the
potential depths as present during the crossing points in the experiment
(Fig. E.4b). Subsequently, we find pairs of (Φgate, Φtip) that feature the
two TIQD depths at the two crossing points (38.9 meV, 30.5 meV) and, at
the same time, the energetic distances in Φgate and Φtip that are identical
to the voltage distances between the two crossing points (δVgate = 0.95 V,
δVsample = 0.15 V). The pairs are marked as symbols of the same color in
Fig. E.4. We then select the combination such that the calculated LDOS
map from the Poisson simulation best matches experimental observations
(Fig. E.5).
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a b

Fig. E.4: a Potential depth of the hole-type TIQD for varying external potentials Φgate

and Φtip, rtip = 25 nm. b Selection of the potential depth values from a that are in
accordance with the crossing points of charging lines in the experiment. green: TIQD
depth = 39.8 ± 2.5 meV, yellow: TIQD depth = 30.5 ± 2.5 meV, blue: all other TIQD
depths. Pairs of circle and cross of the same color are separated by eδVgate = 0.95 eV
along Φgate and by eδVsample = 0.15 eV along Φtip, such as the two crossing points of
charging lines in Fig. E.3 and Fig. 10.9a from the main text. Only two pairs are found to
match the required conditions that the circle is on a green area, while the corresponding
cross is on a yellow area.

We eventually plot a simulated LDOS(Vgate, Vsample) derived from the
LDOS of graphene directly below the tip center at the energy with respect
to the Fermi level of the sample that matches Vsample. This enables a
comparison with the measured dI/dVsample (Vgate, Vsample) (Fig. E.5)

a

Fig. E.5: a dI/dVsample (Vgate, Vsample) recorded at a position xtip < 0 nm, Istab =

1 nA, Vstab = −250 mV. b LDOS(Vgate, Vsample) resulting from the Poisson simulations
with optimzed parameters, ∆Vgate = −200 mV, ∆Vsample = −180 mV, rtip = 25 nm. c
LDOS(Vgate, Vsample) resulting from the Poisson simulations with less favorable parameters,
∆Vgate = +650 mV, ∆Vsample = −230 mV, rtip = 25 nm. Note the shifted Vgate axis in c.
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Fig. E.6: Comparison of the averaged distance between charging lines in the experiment
(dark blue) with the ones deduced from the Poisson simulations at different rtip as labelled,
∆Vgate = −200±50 mV, ∆Vsample = −180±50 mV. The error bars of the experiment result
from the variance of the averages from different regularly spaced groups of charging lines
(see text). The error bars of the simulations result from the variance in ∆Φgate/∆QQD

and ∆Φtip/∆QQD, respectively, within the simulation range of Φtip ∈ [−0.6, 0] eV and
Φgate ∈ [−3.2, 0] eV. Note that the error bars indicate the same variance in experiment
and simulation, but do not provide the statistical uncertainty of the mean values.



Appendix F

Strain influence on the branching
features

One might wonder, if the presence of the step edge visible in Fig. 10.9d
leads to strain that eventually causes the branching of the LL features in
dI/dVsample(xtip). To exclude such a scenario, we estimate the strain in
the following. The step edge visible in Fig. 10.9d has a height of 2.1 nm
and a width of ∼ 70 nm according to its line profile (Fig. E.1a). The line
profile exhibits a continuous curvature with nearly Gaussian shape across
the edge. The smooth shape suggests a direct contact of the graphene to
the underlying hBN. The graphene is deposited in a separate step after the
hBN, such that the hBN already covers the graphite edge prior to graphene
transfer. Hence, there is no obvious reason that the graphene should be
particularly stretched at the step edge. During transfer, the graphene just
sees a minimally bended hBN below. But even if one assumes that the
graphene profile develops from a relaxed, initially flat graphene exactly
parallel to the SiO2 substrate (red line in Fig. E.1a), the resulting strain
from stretching it to the measured profile line would be below 0.05 % only.
This is roughly the same magnitude as the typical strain fluctuations for
graphene samples on flat hBN that exhibit a rms value of 0.05 % as well
[442, 443]. Hence, if strain of this small magnitude would cause a peak
splitting, such a splitting would appear everywhere, not only at the step
edge, in clear contrast to the experiment.

unstretched graphene

stretching
vdW force

a b

Fig. F.1: a Blue line: profile line across the step edge due to the graphite gate as measured
by STM (see also Fig. 10.9c–d). Red line: tentative position of relaxed graphene directly
prior to contact with the hBN. Pink arrow: Force that pulls the graphene downwards to
the hBN. b Wave function corresponding to LL1 determined by a tight binding calculation
without strain (black), with a Gaussian strain profile of amplitude 0.05 % and FWHM 60
nm (red full line), and with amplitude 0.3 % and FWHM 60 nm (red dashed line).
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To quantitatively assess the influence of strain on the LL wave functions
we consider a strain of 0.05 % as a maximum of a Gaussian profile with
full width at half maximum (FWHM) of 60 nm. We modify the hopping
parameters accordingly in the TB simulation. We find only minimal changes
in the two component Landau level wave function (see Fig. E.1b, black
vs. red line). The double peak structure barely changes due to this strain.
To asses the effect of even larger strain, we increased the strain in the
calculation by a factor of six and still found only minor qualitative changes
(dashed line, Fig. E.1b). For the 1D step edge, we only expect a strain
gradient perpendicular to the edge, and thus no pseudomagnetic field that
requires a two-dimensional strain distribution [444]. However, even if one
assumes a circular symmetric Gaussian bump of the same profile as the step,
the pseudomagnetic field would be 200 mT only [444, 445], much smaller
than the externally applied magnetic field (7 T). The difference in Landau
quantization due to such a small pseudo-magnetic field would result in an
energy splitting between the two Dirac cones of ∼ 2 meV.[444] This unreal-
istic strain scenario, thus, would still be significantly too small to explain
the observed splittings during branching of about 25 meV. Consequently, we
can safely exclude that strain is a major factor for the observed branching
of LDOS features at the lateral interface.



Appendix G

Magnetotransport in a composite
moiré system

The conversion from the applied back gate voltage to the adjusted carrier
density is performed by extracting the lever arm from the four-terminal
magnetotransport data. We are extracting the lever arm of the graphite
back gate α from the slopes of the visible Landau levels emerging from
charge neutrality. From quantum Hall effect measurements (data not shown)
we can identify a Landau level filling factor of νLL = ±4 for the first visible
Landau level. We therefore assume a Landau level filling sequence of
νLL = ±4,±8,±12 for the extraction of the lever arm. This proceeding
results in a numerical value of α = (5.148 ± 0.129) · 1015 V−1m−2. This
value is in quantitative agreement with the geometric lever arm expected
from a simple plate capacitor model

αg = ε0εhBN
1
ed

, (G.1)

which yields a value of αg ≈ 5.872 · 1015 V−1m−2. Here, we used εhBN = 3.4
and a thickness of d = 32 nm for the bottom hBN flake which was extracted
via atomic force microscopy [446, 447]. We note, that we observed an
intrinsic doping in our device leading to a shift of the charge neutrality
point away from Vgate = 0 V. During the data analysis we corrected for
this intrinsic shift by fitting according to n = α · (Vgate − Vgate,off) with
Vgate,off = 112 mV.

Fig. G.1: a Two-terminal differential conductance as a function of magnetic field and
carrier density measured along the entire Hall bar structure. b Four-terminal longitudinal
resistance as a function of magnetic field and carrier density.
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minima of the conduction band as calculated by our Wannier
model. Unlike the strongly strain-dependent K-valley band
minimum, composed of only dz2 orbitals, the band minimum
at Q features many different orbitals whose strain dependen-
cies could be thought to cancel each other out, explaining
the weak strain dependence of the Q-valley. . . . . . . . . 104

8.9 Tight binding band structure along ΓKMΓ and lattice plots
for 7 × 7 super cells of tungsten diselenide for a pristine
reference, b selenium di-vacancy defect, c selenium mono-
vacancy defect, d tungsten vacancy. Horizontal dotted lines
serve as guide to the eye for the pristine band gap with scissor
correction applied. . . . . . . . . . . . . . . . . . . . . . . . 105

8.10 a Schematic illustration of the K and K’ valley bandstruc-
ture of WSe2 at several different strain levels. Filled and
empty arrows denote spin. b Corresponding bandstructure
calculated via maximally localized Wannier functions. The
color scale of the bands denotes their degree of localization
in the immediate vicinity V of the defect site. Dark excitonic
states X0

d associated with the K point becomes resonant with
excitons related to defect-related mid-gap states D1 and D2
at 1.2% and 2.4% strain. The resonance between X0

d and
D1/D2 is determined by the total strain. Since intrinsic strain
is temperature-dependent due to the thermal extension of in-
volved materials as well as other effects [329], strain values at
which the hybridization occurs also depend on temperature,
as discussed in detail in Section 8.7. . . . . . . . . . . . . . 106

8.11 Modeled PL intensity for a 17 × 17 Se single vacancy super
cell in WSe2 (i.e. the expression of transition matrix elements
in Eq. (8.6) evaluated at K and K ,) plotted as a function of
strain ϵ and PL energy. a no relative weighting of bright
and dark feature, b bright feature suppressed by a factor of
e−(36meV/8.6meV) ≈ 1/66 (to account for thermal population
differences). We include a Gaussian smearing of width 10
meV for all energies. . . . . . . . . . . . . . . . . . . . . . . 107

8.12 Experimental (a) and modelled (b) PL spectra map of WSe2

vs. strain. Different shift rates vs. strain for the defect-
related states D1,D2 and a dark excitonic state X0

d are ev-
ident. When X0

d is energetically resonant with either D1
(around ε ∼ 1.2%) or D2 (around ε ∼ 2.4%) a strong increase
in oscillator strength and avoided-crossing type behaviour
occur. Insets show on- and off- resonant alignment between
dark- and defect-related excitons. . . . . . . . . . . . . . . 108
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8.13 One artefact that can produce non-monotonous changes in
the PL intensity vs. VG — and hence appear similar to the
signatures observed — arises due to optical interference. We
expect the total PL intensity – by which we mean the inte-
grated intensity of all PL peaks peaks in a spectrum – to vary
proportional to the membrane displacement. Here, we quan-
tify the possible contribution of this effect. We examine the
integrated PL intensity vs. VG (empty symbols) for different
excitation wavelengths (570, 600, 645, 675 nm) on device 5
at room temperature. Room temperature PL intensity in
this range of VG is roughly constant with most changes likely
arising from interference effects. Indeed, we see that for all
excitations, the variation in the signal remains small, but its
phase shifts, as expected for interference. Furthermore, the
signal matches the calculated laser intensity at the position
of the device vs. VG for same wavelengths using a simple
model based on transfer matrices that captures interference
effects (solid lines). In addition, we also plot the normalized
reflectivity vs. VG (curves are upshifted for clarity). As
expected, this data is similar to the PL intensity data as the
reflectivity maxima coincide with the maxima in absorption.
We therefore ascribe the modulations seen in the figure to
interference effects. Note that the maximum modulation due
to interference is found for 645 nm (green empty symbols)
and it is smaller than a 30 % of the average intensity. This
allows us to set 30 % as an upper boundary for the effect of
interference in the experimental data. . . . . . . . . . . . . 110

8.14 PL spectra vs. strain maps acquired at a T=10 K, b 100 K,
c 300 K. An individual spectrum at 10K measured under
0.25% strain (-140 V) and marked with a white, solid line is
shown in the inset of (a). While the energy of the unstrained,
free excitonic states (X0, X+, X0

d, the corresponding spectral
lines are marked with dashed lines) blueshifts with lowering
temperature, the features D1 and D2 associated with the
corresponding defects stay roughly energy-independent. Due
to the temperature-related changes in mechanical constants,
only the D1 state is resolved at 10 K within our accessible VG

range. In contrast, we resolve the hybridization with both
states D1 and D2 at 100 K and 300 K. As opposed to the
T=10 K data in (a) that is symmetric with respect to p- and
n- doping, the intensity of the n-branch at 300 K in (c) is
roughly 30 times lower than that for the p-branch. Note that
the voltage scales in (a-c) are not linear. . . . . . . . . . . 112
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9.1 a Relaxed pentagon/octagon (indicated in blue and green
respectively) geometry of a 5-8-5 line defect resulting from
two graphene flakes shoved into each other along the arm
chair direction. Grain boundary adjacent atoms are colored
red. Dashed orange lines indicate periodicity in y direction.
b Relaxed pentagon/heptagon (indicated in blue and green
respectively) geometry of a tilt line defect (classified via grain
boundary indices m = 1, n = 2 according to [341]) resulting
from two graphene flakes rotated by θ = 21.8◦ (arm chair
orientation of both sides indicated by dotted grey lines).
Grain boundary adjacent atoms are colored red. Dashed
orange lines indicate periodicity in y direction. . . . . . . . 116

9.2 a Top view schematic of the zig-ac-zig geometry employed
for transport calculations through the 5-8-5 line defect (see
Fig. 9.1a). The line defect is oriented along the brown,
dot-dashed line. The half-infinite zig-zag edged leads are
attached at the left and right ends. Dashed lines (red, orange,
yellow) represent the center of the guiding potential used for
manipulating the angle of incidence α. b Perspective view of
the same geometry as in a with a schematic cross section of
the guiding potential Eq. (9.9) . . . . . . . . . . . . . . . . 118

9.3 Transmitted (top) and reflected (bottom) valley polarization
PT/R for the pristine benchmark geometry (no line defect
embedded but otherwise identical) as a function of energy
and angle of incidence α. Vertical, dotted, grey lines indicate
the angle range in which the pristine geometry does not
produce finite valley polarization. For α < -20◦ the guiding
potential clashes with the zz edge of the graphene flake in an
unintended and non-physical manner. . . . . . . . . . . . . 118

9.4 Exemplary scattering densities in the pristine reference ge-
ometry at E = 0.5eV (color scale from black to red) for
(top) zero node mode, α = 30◦, (center) zero node mode,
α = -15◦, (bottom) single node mode, α = -4◦. . . . . . . 119

9.5 a Transmitted valley polarization PT (E,α) Eq. (9.11) for
the 5-8-5 linedefect geometry presented in Fig. 9.2. Curly
brackets indicate energy regions I-IV referred to in the discus-
sion. Dashed lines indicate coordinates of cuts presented in
panels b-d. b Constant angle cut of panel a (α = 17◦).
Dotted, vertical lines separate qualitatively different be-
haviour (I . . . isolated peaks, II . . . emerging background,
III . . . pronounced background with sharp “Fano-like” res-
onances, IV . . . monotonic decline before mode opening). c
Constant energy cuts of panel a (A. . . 0.18eV, B. . . 0.163eV,
C. . . 0.154eV). Grey, dashed line plots sinα for visual com-
parison. d Constant energy cuts of panel a (D. . . 0.18eV,
E. . . 0.163eV, F. . . 0.154eV). Grey, dashed line plots sinα for
visual comparison. . . . . . . . . . . . . . . . . . . . . . . . 120
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9.6 Scattering density at a a generic energy with no significant
valley polarization PT and b at a polarization resonance. (see
respective energies in panel c). c PT for the 5-8-5 defect
geometry (see also panel b in Fig. 9.5). d Probability density
for bound states at the energies indicated in panel c. Reso-
nances in transmitted valley polarization correspond to the
existence of bound defect states. . . . . . . . . . . . . . . . 121

9.7 a Reflected valley polarization PR(E,α) Eq. (9.10) for the
5-8-5 linedefect geometry presented in Fig. 9.2. Curly brack-
ets indicate energy regions I-IV referred to in the discus-
sion. Dashed lines indicate coordinates of cuts presented in
panels b-d. b Constant angle cut of panel a (α = 17◦).
Dotted, vertical lines separate qualitatively different be-
haviour (I . . . isolated peaks, II . . . emerging background,
III . . . pronounced background with sharp “Fano-like” res-
onances, IV . . . monotonic decline before mode opening). c
Constant energy cuts of panel a (A. . . 0.18eV, B. . . 0.163eV,
C. . . 0.154eV). Grey, dashed line plots sinα for visual com-
parison. d Constant energy cuts of panel a (D. . . 0.18eV,
E. . . 0.163eV, F. . . 0.154eV). Grey, dashed line plots sinα for
visual comparison. . . . . . . . . . . . . . . . . . . . . . . . 123

10.1 (top) Optical image of the finalized sample with different
areas marked. The graphene area is encircled (red line) as
determined by atomic force microscopy (AFM). The graphene
has been ruptured during the transfer, such that the trenches
within the graphite are not used. The studied lateral interface
is marked (blue line) separating the graphite gate area on
the left and an area without graphite gate on the right.
(bottom) AFM image acquired in tapping mode at ambient
conditions, Si-cantilever, fres = 325 kHz. The rim of the
contacted graphene flake is marked by a red line. The circle
indicates the intended landing position of the STM tip. . . 125
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10.2 a dI/dVsample(Vgate, Vsample) on a graphene area far away
from the lateral interface. Landau level features LLn are
marked. The tip-sample distance is stabilized at current
Istab = 1 nA and voltage Vstab = −250 mV. b Zoom into
the area where the LL0 lines cross EF (Vsample = 0 V). The
marked bright line above EF corresponds to the (m = 0)-
orbital of LL0 confined in the TIQD. The replica of this
line at lower Vsample are other confined m-states of LL0.
Charging lines run from the lower left to the upper right.
The ones that cross an m-state at EF are caused by the
charging of exactly this m-state. Quadruplets of charging
lines showcase the spin and valley degeneracy of graphene.
c Sample layout with circuitry, graphite thickness: 3 nm,
hBN: 23 nm, SiO2: 300 nm. The graphite is used to partially
gate the graphene. d STM topography of graphene with a
step marking the onset of the underlying graphite defined
as xtip = 0 nm (white line), I = 200 pA, Vsample = −500 mV.
e STM topography of graphene with atomic resolution and
moiré lattice due to a mutual rotation of the graphene and
the underlying hBN by 11.1◦, I = 1 nA, Vsample = −250 mV,
Vgate = 3.5 V. f dI/dVsample(xtip, Vsample) across the lateral
interface, Istab = 200 pA, Vstab = −500 mV, Vgate = 3.5 V. g
dI/dVsample(xtip, Vgate) across the lateral interface, Istab =

1 nA, Vstab = −250 mV, Vsample = 0 V. . . . . . . . . . . . . 127
10.3 a Top view of the simulated graphene sheet (scaled by a factor

10) with edge types and center position of the QDOT poten-
tial indicated. b Eigen-energies of the finite graphene sheet
in a at a magnetic field of 7T. Horizontal grey lines indicate
analytical Landau level energies (Eq. (5.1)). c Electrostatic
potential imprinted on the graphene sheet by a hovering STM
tip (resulting from a fit in [14, 180] and taken unaltered for
shallow potentials). . . . . . . . . . . . . . . . . . . . . . . 129

10.4 Total density of states of the graphene flake pictured in
Fig. 10.3 at B = 7T for relevant energies. . . . . . . . . . . 130

10.5 a 2D Cartesian geometry as used for the Poisson simulations
including the lateral interface. The potentials Φtip and Φgate

are applied to the tip and the graphite gate, respectively. b
Cylindrical geometry as used for simulations of the TIQD
without lateral interface (i.e. the graphite gate covers the
entire area). . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.6 In depth analysis of four QDOT states (a LL0 #0, b LL0 #4,
c LL1 #2, d LL2 #4) including 2D color plots of sub lattice
densities |ψA/B|

2, radial density distribution and overlap
(within an annulus close to the density maximum) with
azimuthal test functions of the form |eimφ> (top, center and
bottom subplots for each panel a, b, c, d). . . . . . . . . . 131
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10.7 a Band bending of two adjacent LLn due to the TIQD po-
tential. The probability density of the confined states of LL-2
are added at their confinement energy and labeled with its
azimuthal quantum number m. b Same as (a) with added EF

line . The blue shaded areas mark the onset of the insulating
surrounding. c EF at the charging position of the last state
from LL-1. Tunnel barrier indicated in grey. d Sketch with
two states at EF enabling simultaneous charging of both LL. 132

10.8 a Potential calculated with a Poisson solver along a 1D trajec-
tory (evaluated for varying x at fixed zgraphene) perpendicular
to the PN junction for different values of Vgate (from −3V
to +3.5V in 0.5V increments). b 2D analytical potential
(i.e. true function of x and y) given in Eq. (10.7) used for
the TB system sketched in Fig. 10.3a evaluated along the
center line in zig-zag direction for different values of η with
fixed λ. Columns in both subplots correspond to different tip
positions (as indicated by vertical black lines). . . . . . . . 133

10.9 a d2I/dVsampledVgate(Vgate, Vsample) at the transition from
LL-2 to LL-1 being located at EF (red line), Istab = 1 nA,
Vstab = −250 mV. The crossing point of the first (m = 0)-
charging line of LL-2 with the last charging line belonging
to LL-1 is marked (red circle). Such crossings for various
adjacent LLn are used to determine ∆Vsample and ∆Vgate as
input parameters for the Poisson calculations. b Potential of
the TIQD without lateral interface for the marked Vsample,
Vgate as resulting from the Poisson simulations. c Profile line
through the potential of superposed TIQD and lateral inter-
face, Vsample = 0 V, xtip ∈ [−130,+100]nm with increments
of 20 nm (blue to red), Vgate as marked. The potentials are
used as input for the TB simulations. d LDOS(xtip,Vgate)
at Vsample = 0 V as resulting from the TB simulations. The
LDOS is averaged over a circular region (radius ≈ 1.5 nm)
around the vector xtip describing the position of the tip center.
White horizontal lines on the left mark the bulk LLn. The
marked branching of various LLn states around xtip = 0 nm
qualitatively matches the experimental ones (Fig. 10.2g). Red
lines with red dots mark Vgate and xtip, respectively, as used
in e–g. e LDOS as a function of real space coordinates x,y,
Vgate = 2.15 V. The columns are for different xtip marked by
red dots (also in d). f Same as e, Vgate = 1.05 V. g Same as
e, Vgate = −2.45 V. . . . . . . . . . . . . . . . . . . . . . . . 135

10.10Array of 3D surface plots of Φtot for varying xtip (indicated
in nm) and fixed η = -0.4. . . . . . . . . . . . . . . . . . . 138
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10.11a Same data set as in Fig. 10.9d with different red lines and
dots according to b–c and additional dashed orange lines
indicating Vgate of the line profiles in d–f. b, c LDOS(x,y)
as marked in a and xtip marked by the red dot in each panel
as well as in a. d–f Profile lines along the dashed lines in
a (orange), across the calculated LDOS at the same Vgate,
but without the TIQD (blue) and across the experimental
data of Fig. 10.2 at the same Vgate (green). The experimental
profiles have been horizontally shifted by +5 nm (d), +20 nm
(e), +10 nm (f) to ease the comparison. Additional inten-
sity adjustments as marked are used to compensate for the
strong charging lines that are not included in the simulation.
The peak fine structure is a fingerprint of the charging lines
(compare Fig. 10.2g). . . . . . . . . . . . . . . . . . . . . . . 138

10.12a Simulated LDOS(xtip,Vsample,) across the lateral inter-
face, while including the TIQD, Vgate = −1.9 V. b Measured
dI/dVsample(xtip, Vsample, ), Vgate = −2.0 V, Istab = 200 pA,
Vstab = −250 mV. c dI/dVsample(xtip) along the lateral inter-
face (y direction) featuring the LL-1 edge state at EF, Vgate =

−1.6 V, Vsample = 0 V, Istab = 1 nA, Vstab = −250 mV. Filling
factors ν are marked on both sides of the interface. d Zoom
into Fig. 10.11a (simulated LDOS, Vsample = 0 V) at larger
contrast to visualize the internal structure of the LL-1 edge
state. e Simulated LDOS(x,y) across the interface for various
xtip marked by red dots (also in d), Vgate = −1.4 V (red line
in d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.13Branching distances ∆x as deduced from dI/dVsample(xtip,Vgate)

of Fig. 10.2g, and LDOS(xtip,Vgate) of Fig. 10.9d. a Experi-
mental branching distance of LL+1. b Simulated branching
distance of LL+1. c Experimental branching distance of
LL-2. d Simulated branching distance of LL-2. Insets show
the parts of the images in Figs. 10.2 and 10.9 that are used
to determine ∆x with dots that mark the observed maxima
in dI/dV(xtip) lines, respectively LDOS(xtip) lines. These
maxima are used for distance determination indicated in b. 141

10.14a Numerical 1D TB solution of the squared graphene Landau
level wave function belonging to LL-2 in a linear potential
with slope −0.8 meV/nm (full line). The dashed and dotted
curves are the sublattice contributions. b Same as subfigure
a, but for LL+1 at a potential slope of +0.8 meV/nm. c, d
Zoom-ins of Fig. 10.11d, for the LL features belonging to
LL-2 (c) and LL+1 (d). Vertical dashed lines highlight the
agreement of distances between maxima. . . . . . . . . . . 142

11.1 a Primitive bilayer (red...hBN, blue...graphene) unit cells in
the x-y plane with local displacement vector d of two regions
in the entire moiré super cell shown in b. . . . . . . . . . . 145
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11.2 Reconstruction of atomic position following the elasticity
model in Eq. (11.2). a1/2 are the moiré supercell lattice
vectors. Black arrows indicate the relative displacements
throughout the supercell. Taken from [84]. . . . . . . . . . 146

11.3 a Quantum Hall conductivity σxy (in units of [e2/h]) of a
graphene on hBN ribbon (of a width of 30 super cells ≈ 750
nm) as a function of perpendicular magnetic field and Fermi
energy as calculated via Eq. (11.7). Regions where the Strěda
formula does not apply are colored black. Green, purple and
yellow lines indicate cuts in subsequent panels. b Constant
energy cuts of panel a). c Constant B-field cuts of panel
a). Regions where the Strěda formula does not apply are
indicated by thin black lines in panels b) and c). . . . . . . 148

11.4 a Quantum Hall conductivity σxy (in units of [e2/h]) of
a graphene on hBN ribbon (of a width of 30 super cells
≈ 750 nm) as a function of perpendicular magnetic field
and filling factor n/n0 of the super lattice as calculated via
Eq. (11.7). Apart from x-axis rescaling identical data to
Fig. 11.3. Regions where the Strěda formula does not apply
are colored black. Green, purple and yellow lines indicate
cuts in subsequent panels. b Constant energy cuts of panel
a). c Constant B-field cuts of panel a). Regions where the
Strěda formula does not apply are indicated by thin black
lines in panels b) and c). . . . . . . . . . . . . . . . . . . . 149

11.5 Surface plot of the charge carrier density of the graphene/hBN
ribbon as a function of both energy and magnetic field. Zoom-
in illustrates the limits of the Strěda formula (see text). Green
arrow indicates direction of magnetic field derivative. Short
arrows point at ramps of constant slope and are color coded
according to plateaus of σxy in Fig. 11.3a. . . . . . . . . . 150

12.1 a False-color atomic force microscopy image of the measured
device. Overlay depicts schematic measurement setup for
both two- and four-terminal measurements. b Schematic
cross-section of the stacked devices. . . . . . . . . . . . . . 152

12.2 Schematic representation of a a single moiré (tBLG) and b
two superimposed moiré lattices (tBLG aligned with hBN). 153

12.3 a Schematic of the real space moire super cell of the graphene/hBN
system. Colored circles (I,II,V) correspond to centers of
Gaussians used in the effective moiré potential in Eq. (12.1)
as taken from [423]. b Schematic explanation of the su-
perposition of the two moiré lattices. Light grey lines in-
dicate edge character of the unit cells. Assuming a small
graphene/hBN twist angle of θhBN ≈ 0.7◦ brings the two
moire cells to the same periodicity. c Moiré lattice constant
of the graphene/hBN moire as a function of their relative
twist angle θhBN. . . . . . . . . . . . . . . . . . . . . . . . 153
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12.4 a Two-terminal differential conductance dI/dV2T as a func-
tion of the charge carrier density n for different temperatures
measured along the entire Hall bar structure. b Arrhenius
representation showing the differential resistance dV/dI2T

of the band insulating states as a function of the inverse
temperature. The data is taken at charge carrier densities
of n ≈ −2.4 × 1012 cm−2 and n ≈ 2.25 × 1012 cm−2 for the
hole and electron insulating state, respectively. c Same as
(b), but for the correlated insulating features at charge car-
rier densities of n ≈ −1.2 × 1012 cm−2 (hole doping) and
n ≈ 1.1 × 1012 cm−2 (electron doping). . . . . . . . . . . . 155

12.5 Band structure and density of state for a ribbon with a width
of 10 tBLG moire unit cells of a just tBLG (θBLG ≈ 0.987◦

and b tBLG (same θBLG) with additional alignment (θhBN ≈
0.7◦) to an hBN layer. . . . . . . . . . . . . . . . . . . . . 156

12.6 a Finite bias spectroscopy measurement of the band insulat-
ing state at hole doping. Instead of a clean gap, we observe
the formation of roughly 130 individual Coulomb diamonds
indicating a disordered system. b Same as in (a) but for the
band insulator at electron doping. Striking is the asymmetry
in the applied bias compared to the hole-doped band insu-
lator. c Schematic representation of the measurement. The
Hal bar consists of individual areas of tBLG with slightly
different twist angles. . . . . . . . . . . . . . . . . . . . . . 157

12.7 left column: tBLG with non-aligned hBN, right column:

tBLG with aligned hBN (θhBN ≈ 0.7◦). a Schematic of
the onsite energy corresponding to the different moiré super
lattices. (relative sizes are to scale!) b Magnetoresistance
simulation of the tBLG/hBN system with a BLG-twist-angle
θBLG of 0.987◦. Landau levels emerge from the charge neu-
trality point (ν = 0) and the single-particle band gaps at full
filling of the BLG moiré superlattice unit cell (ν = 4). Align-
ment with hBN introduces additional Landau level features
at non-integer filling factors (ν ≈ 2.5). c Magnetotransport
measurements showing the B derivative of the longitudinal
resistance as a function of filling factor ν and the normalized
flux quantum per moiré super lattice unit cell of a tBLG moiré
device (θexp. ≈ 0.97◦. Landau fans emerge from integer-values
of the filling factor. For additional hBN alignment (right)
we observe additional lines starting at non-integer fillings
(ν ≈ 2.5). d Zoom-ins of (c) e Dashed black lines (integer
fillings) and dashed blue lines (non-integer fillings) as guide
to the eye for (d). . . . . . . . . . . . . . . . . . . . . . . . 159

A.1 BS comparison for ML parametrizations (double vacancy)
of different sparsity (indicated as xNN) with DFT BS as
reference. Bands that are not explicitly part of the loss
function Lϵ are drawn in a fainter color. . . . . . . . . . . . 168
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A.2 BS comparison for ML parametrizations (flower defect) of
different sparsity (indicated as xNN) with DFT BS as refer-
ence. Bands that are not explicitly part of the loss function
Lϵ are drawn in a fainter color. . . . . . . . . . . . . . . . . 169

A.3 DFT results vs. double vacancy ML parametrizations of
different sparsity (sparsity indicated by xNN and line colors).
a DOS over a limited energy range b Cosine similarity of the
c LDOS distribution within the supercell. . . . . . . . . . . 170

A.4 DFT results vs. flower defect ML parametrizations of different
sparsity (sparsity indicated by xNN and line colors). a DOS
over a limited energy range b Cosine similarity of the c LDOS
distribution within the supercell. . . . . . . . . . . . . . . . 171

B.1 In Fig. 8.3 of the main text we observe strain-independent
lines in the PL energy range between 1.55 − 1.6eV that we
assign to defect-related excitons. This assignment is sup-
ported by the detailed analysis of excitation power and VG

dependence of PL spectra. a PL vs. excitation power for an
unstrained membrane (VG = 0) measured on device 2 at 77
K. We identify neutral (X0) and charged exciton (X-) and
three other peaks labelled 3 − 5 in decreasing energy order
(black dashed lines). b PL spectra at selected excitation
power densities. Spectra are normalized and offset for clarity.
Peaks 3 − 5 dominate the PL spectrum at lower excitation
powers while X0 and X- dominate at higher powers. c PL in-
tegrated intensities of the five peaks marked with dashed lines
in (a) as a function of excitation power density. PL intensities
are obtained by fitting the PL spectra to five Lorentzians.
X0 and X- show an approximately linear dependence with
excitation power. This behaviour is typical for free excitons
[324]. PL intensities of peaks 3, 4 and 5 saturate with power
indicating the defect-related character of the emission at
those energies. d PL spectra of devices 1 and 2 featuring
the same set of defect peaks, confirming their reproducibility.
Spectra for device 1 (black) and device 2 (red) are extracted
from the white lines in (e) and (d), respectively. Typically
fitted spectra for device 2 corresponding to peaks 3−5 shown
in (a)-(c) are plotted with dashed lines. e PL spectra vs.
VG for device 1. The energies of defect-related states are
almost strain-independent, as expected from theory. (a)−(e)
are measured at excitation 532nm. (d) and (e) are measured
at excitation power density 250Wcm−2. . . . . . . . . . . . 173
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B.2 a PL spectra of the suspended WSe2 monolayer (device 1) at
T = 100 K and positive VG. Here the spectra are offset for
clarity to allow for tracking individual peaks as a function of
gate voltage / strain. In b Normalized PL spectra measured
at T = 10 K (device 1) in the electron doping (red line), hole
doping (blue) and charge neutrality (black) regimes under
negligible strain. We identify a bright neutral exciton (X0) at
1.769 eV, positive (X+, binding energy 29 meV) and negative
trions (X-

T and X-

S, 32 and 38 meV) and a dark neutral
exciton (X0

D, 17 meV below X−
S ). We observe a lower energy

PL band peaking at 80 meV and 87 meV below (X0) for hole
and electron doping, respectively. We assign this PL band to
dark trions (X±

D) and their phonon replicas. c Selected PL
spectra measured at T = 10 K (device 1) at different voltages
(strain values), offset for clarity. We mark the excitonic
species identified in (a) with dashed lines and track their
PL signatures upon increasing voltage. PL intensity of dark
trions and their replicas and dark neutral exciton increase 6
and 20 times, respectively, as compared to their unstrained
values when their energies approach the D1 hybridization
energy 1.52 eV. . . . . . . . . . . . . . . . . . . . . . . . . . 174
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B.3 In the main text, we obtain strain at each gate voltage by
measuring the shift in the energy position of the neutral ex-
citon compared to its unstrained position. Here, we confirm
the assignment of strain via an independent interferomet-
ric measurement. a Schematic of the device used in the
main manuscript seen as an interferometric cavity. A circular
monolayer WSe2 membrane of radius a = 2.5µm is suspended
over a hole in SiO2 and actuated (displacement h) by ap-
plying gate voltage VG between WSe2 and a Si substrate
underneath (see Methods for details). The device is mea-
sured at room temperature by recording the reflected laser
intensity of the laser beam (λ = 633nm, P = 10µW) focused
on the membrane’s center vs. VG b. The interference of the
laser beam in the optical cavity consisting of vacuum, SiO2

and Si results in the changes of absorption by the membrane.
With increasing |VG|, the membrane moves downwards and
the reflected intensity changes depending on the position of
the membrane with respect to the nodes of the interference
pattern. Quantitatively, a displacement of the membrane by
λ/4 produces a change of π (half a period) in the phase of the
sinusoidal modulation of the reflected signal. In this way we
extract the position of the membrane’s center h vs. VG from
the observed intensity of reflected light. Next, we convert
the displacement into mechanical strain using the formula
ε = 2h2

3a2 obtained from the analysis of the system’s geometry
[332]. The resulting data are plotted in c as black dots. For
comparison, in the same graph we plot as red circles the val-
ues of strain obtained from the photoluminiscence energetic
shift of the excitonic peaks following the same procedure as
in the main text. Both approaches to estimate strain produce
very similar strain values. . . . . . . . . . . . . . . . . . . . 175
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B.4 To confirm the validity of the model of strain induced by
electrostatic force used in the main text, we extract the
mechanical constants of WSe2 from PL measurements at room
temperature. To do this, we first calculate the electrostatic
pressure P acting on the suspended WSe2 at a particular gate
voltage. Modelling the system as a parallel plate capacitor
(WSe2/Si) with two media inside of it (vacuum, SiO2), we

obtain P =
ϵ0ϵ

2

SiO2

(ϵ0dSiO2
+ϵSiO2

d0)2

V2

G

2 . We then calculate the

displacement of the central point of the membrane h from
strain obtained via PL measurements using ε = 2h2

3a2 , where
a is the radius of the membrane. Finally, P(h) data obtained
this way is plotted for two different devices (1 and 2). This
data is fitted using an analytical model for P(h) that is
based on the well-known bulge-test equation in thin-film
mechanics [332, 437]. This model describes the deflection of
a uniform circular membrane under uniform pressure using
Young modulus E2D and built-in strain ε0 as free parameters
as P = 4E2Dε0

a2 h + 8E2D

3(1−ν)a4h
3, where ν = 0.2 is the Poisson

ratio for WSe2 [438]. All data points agree quite well with the
analytical fits (dashed lines). We obtained E2D ∼ 74 N/m and
ε0 = 0.04 % for device 1 and E2D ∼ 140 N/m and ε0 = 0.12 %
for device 2. The values are consistent with the mechanical
constants typically reported for WSe2 at room temperature
[319]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

C.1 Husimi distributions Q(r, k) for the third (a) and fourth (b)
eigenstate of the first Landau level, averaged over several
positions of maximal real space probability density ρ(r) = |ψ|2

(indicated as r|ρ=max). . . . . . . . . . . . . . . . . . . . . 177
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