
Visual Simultaneous Localization
And Mapping Evaluation on a

Mobile Robot Platform

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Martin Haar, BSc

Matrikelnummer 01625753

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao. Univ. Prof. Dipl.-Ing. Dr.techn. Markus Vincze

Mitwirkung: Dr.techn. Jean-Baptiste Nicolas Weibel, MSc

Wien, 4. Mai 2023

Martin Haar Markus Vincze

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Visual Simultaneous Localization
And Mapping Evaluation on a

Mobile Robot Platform

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Martin Haar, BSc

Registration Number 01625753

to the Faculty of Informatics

at the TU Wien

Advisor: Ao. Univ. Prof. Dipl.-Ing. Dr.techn. Markus Vincze

Assistance: Dr.techn. Jean-Baptiste Nicolas Weibel, MSc

Vienna, 4th May, 2023

Martin Haar Markus Vincze

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Martin Haar, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. Mai 2023

Martin Haar

v

Acknowledgements

I would like to express my sincere gratitude to all the people who supported me with my
master’s thesis. I want to specially thank . . .

. . . professor Markus Vincze who made it possible for me to write this thesis on the
Vision for Robotics group.

. . . Jean-Baptiste Nicolas Weibel for his unwavering guidance, patience and encourage-
ment. His expertise was crucial in shaping the direction of this thesis.

. . . my family and friends who always believed in me and and patiently supported me
during this whole time.

. . . all my colleagues, especially Max Geiselbrechtinger and Jan Nausner who were an
essential resource for me during the whole bachelor and master studies.

. . . the members of the faculty and the staff of the TU Wien for providing the necessary
academic environment and resources for my studies.

vii

Kurzfassung

Roboter sind unverzichtbar in unserer modernen Welt, insbesondere im industriellen
Sektor. Mit dem Fortschritt in der Hardware- und Softwareentwicklung verbessern sich
auch unsere Roboter, woraufhin sich eine Vielzahl von neuen Anwendungsgebieten
erschließt. Ein besonderes Gebiet, das an Bedeutung gewinnt, sind Personal Human
Support Robots. Damit jedoch solch automatisierte Maschinen in einem persönlichen
Kontext verwendet werden können, müssen sie in der Lage sein, sich selbst zu lokalisieren
und Karten ihrer Umgebung zu erstellen. Simultaneous Localization and Mapping (SLAM)
ist eine Algorithmusklasse, die bei diesen Problemen eine entscheidende Rolle spielt. Mit
SLAM können Roboter eine Vielzahl von Sensoren nutzen, um Karten zu erstellen,
sich zu positionieren und dies während der Laufzeit zu optimieren. Diese Posen können
in Kombination mit RGB-D Bildern verwendet werden, um 3D-Rekonstruktionen der
Umgebung des Roboters zu generieren, die später bei der Anwendung von grasping
Techniken hilfreich sein können. Um die geschätzte Trajektorie einer SLAM Methode zu
bewerten, muss die tatsächliche Trajektorie genau bekannt sein. Aufgrund ungenauer
Aktuatoren und Rauschen werden Testräume mit externen Sensoren benötigt, welche
genau kalibriert werden müssen. Solche Einrichtungen sind nicht nur komplex, sondern
auch sehr teuer und limitieren die Evaluationsszenarien. In dieser Arbeit wird deshalb
vorgeschlagen, 3D-Objektrekonstruktionen basierend auf SLAM Posenschätzungen zu
verwenden, um die Qualität von SLAM-Trajektorien zu bewerten. Im Anschluss daran
wird eine Evaluierung visual SLAM-Methoden auf der Toyota HSR Mobile Robot Platform
durchgeführt. Die Qualität und Robustheit von SLAM-Trajektorien werden gemessen,
indem 3D-Objekte, welche mithilfe von Positionsabschätzungen aus der visual SLAM-
Methode rekonstruiert wurden, mit exakten 3D-Modellen verglichen werden.

ix

Abstract

Robots are indispensable in our modern world and particularly in the industrial sector.
As the hardware and software development progresses, so do our robots which unlock a
variety of new domains. One particular field that is gaining traction is personal human
support robots. However for such automated machinery to be used in a personal context it
needs to be capable of self-localizing and creating maps of its surroundings. Simultaneous
localization and mapping (SLAM) is an algorithm class that plays a crucial role in all of
those problems. With SLAM, robots can use a variety of sensors to create maps as well
as poses and optimize those while working. Those poses in combination with RGB-D
images can be used to generate 3D reconstructions of the robot’s surroundings, and let
robots autonomously model objects within it to support grasping techniques. Creating
such models requires very accurate poses, but evaluating the estimated trajectory of a
SLAM technique depends on the availability of the real trajectory to be known exactly.
Due to inaccurate actuators and noise, measuring trajectories need test rooms to be set
up with external sensors, which need to be well-calibrated. Such setups are not only
complicated but also expensive and limit the scenarios that can be evaluated. In this
thesis, we propose to use 3D object reconstruction based on SLAM pose estimations
to assess the SLAM’s quality. In the wake of this, an evaluation of novel visual SLAM
methods on the Toyota HSR mobile robot platform is carried out. The quality, as well
as the robustness of SLAM trajectories, are measured by comparing reconstructed 3D
objects generated by poses from visual SLAM methods to high-quality 3D object models.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Challenge . 2
1.3 Contribution . 3
1.4 Outline . 4

2 Background 5
2.1 Image Processing . 5
2.2 Simultaneous Localization and Mapping (SLAM) 12
2.3 3D Reconstruction . 22
2.4 Robotic Platform . 23

3 SLAM Evaluation through 3D Object Reconstruction 29
3.1 SLAM Evaluation . 29
3.2 Object Reconstruction . 32

4 Experiments and Results 39
4.1 Experiment Setup . 39
4.2 Results . 43
4.3 Evaluation of Accomplishments and Limitations 52

5 Conclusion 57
5.1 Outlook . 58

List of Figures 61

List of Tables 62

Bibliography 63

xiii

CHAPTER 1
Introduction

The word robot was introduced more than 100 years ago in 1920 by Karel Čapek in his
play R.U.R [Ča20]. But the idea to automate tasks by the use of machines goes back
even further. The first devices which could be seen as machines in the modern sense were
steam engines which go back to the late 17th century. After mankind mastered the use
of electricity, the number of machines rose rapidly. According to the IFR (International
Federation of Robotics) [IFR23] the number of operational industrial robots has nearly
tripled in the time frame between 2010 and 2020 (see Figure 1.1).

Figure 1.1: Number of operational industrial robots according to the IFR 1

Through research and development in the fields of algorithmics, electrical engineering,
automation, image processing, etc., robots also slowly transitioned from an industrial
context into our homes. The annual conference on social robotics [CCF+23] deals with
social robots for assisted living and healthcare, it furthermore emphasizes the increasing
importance of social robotics in our daily lives. Topics from robots in educational use
cases, to robotics in clinical and caring scenarios to robot acceptance and ethics are
discussed there. This shows that researchers from various backgrounds are working on
integrating robots into our daily live.

1https://ifr.org/img/office/Digitalsheet_A4_World_Robotics_2022.pdf

1

1. Introduction

1.1 Motivation

Two of the key abilities a support robot must have are the capability to locate itself as
well as map its surrounding environment and understand everyday objects in order to
interact with them. The first of the two problems can be tackled by methods performing
Simultaneous Localization and Mapping (SLAM). Smith et al. [SC86] introduced the
first SLAM technology in 1986 and thereby created a new field of research. Since
all measurements of our surroundings are littered with noise, novel SLAM algorithms
employ a multitude of sensors and optimization methods to minimize the error of the
estimated poses and recreated maps. The availability of cheaper and smaller cameras led
to the use of cameras in all sorts of mobile robot platforms. As those sensors became
ubiquitous, researchers started to incorporate the image data into the SLAM methods. So
called Visuals SLAMs are now widely used, with algorithms like ORB-SLAM [CER+21],
RTAB-MAP [LM19] or Kimera [RACC20] just to name a few examples.

Visual SLAMs can use monocular, stereo as well as depth cameras. While monocular
cameras are the simplest and cheapest of the three, they do not give any depth infor-
mation and are therefore not suited to re-create scale-accurate representations of their
surroundings. For this purpose, stereo or depth cameras are needed. Such scale-accurate
knowledge of a robot’s trajectory can then be used to create 3D representation of its
environment. Object models can be extracted from it and can then be used by algorithms
to determine how to grasp and manipulate objects in that environment.

The research fields mentioned above are very active, producing ever more accurate and
robust systems, but SLAM system remain quite complex. To ease the R&D in this
matter Toyota has developed the Human Support Robot (HSR) [YNK+18] which is a
compact mobile robot with a variety of different sensors and actuators. The HSR is used
as primary research platform on the Vision for Robotics group, it is used for testing
software and algorithms of a variety of tasks.

1.2 Challenge

As precise positioning is required for many of these tasks, SLAM is a crucial component.
Hence, it is important to have the capability to evaluate SLAM methods on the HSR
and to determine the limits of its positioning accuracy. To guarantee the behavior of the
robot, such an evaluation should also be possible on the deployment site.

The evaluation of SLAM trajectories is a challenging task that often requires the use
of external sensors. To track the trajectory of a robot, a room-level sensor array must
be employed. While this approach provides a precise ground truth, it is also complex
and expensive. There are datasets available which provide such ground truth such as
the EuRoC dataset [BNG+16] or the TUM RGB-D dataset [SEE+12]. The methods
for obtaining ground truth are described in their respective papers and highlight the
complexity of the required setups. This type of evaluation cannot be done once deployed
because of it. Another common method to compare the quality of a SLAM-generated

2

1.3. Contribution

trajectory is to create a loop and compare the first and last pose. However, this approach
leaves significant uncertainty and should only be considered a preliminary quality estimate.

1.3 Contribution

To address these issues, this thesis proposes using the pose estimations calculated by
SLAM to reconstruct 3D objects. Comparing the reconstructed 3D objects to their
corresponding high-quality object models provides a more significant measure of the
trajectory’s quality than simply comparing the first and last pose. Fortunately, numerous
high-quality 3D models of various objects are already available, offering a reliable ground
truth that eliminates the need for a complicated sensor array to generate the entire robot
trajectory.

Figure 1.2: Method to evaluate the SLAM trajectory using 3D reconstruction

Figure 1.2 illustrates the methodology utilized to address the evaluation problem presented
above. In the leftmost block of the figure, the HSR is shown in the test environment. It is
then manually guided around the desk to collect sensor data from the RGB-D and LiDAR
sensors. This sensor data is subsequently used to generate robot poses via SLAM methods.
Using the poses and previously acquired image data, the 3D object reconstruction is
performed. The reconstructed object is then registered with the corresponding ground
truth object, and a point-to-point comparison is conducted for each test case. The
accuracy and robustness of the methods are evaluated accordingly, leading to the main
goal of this thesis: Visual Simultaneous Localization And Mapping Evaluation on a
Mobile Robot Platform.

The actual contribution can be split into three parts:

3

1. Introduction

1. Evaluation of SLAM algorithms through the evaluation of 3D object reconstruction
with real data on the HSR.

2. Evaluation of SLAM algorithm’s robustness when confronted with different object
setups.

3. Are state-of-the-art Visual SLAM methods applicable for autonomous 3D object
modeling (e.g. object grasping)?

The robustness of such algorithms is of particular importance when used in an everyday
setting. Lighting changes, varying positions and more or less feature-rich backgrounds
are situations that occur constantly when a robot is deployed. It is of major significance
that the robot is still able to extract meaningful pose estimations in such situations. To
test the robustness of given SLAM algorithms the experiments in the evaluation process
should be taken with different camera positions, different objects, etc.

1.4 Outline

The theoretical background needed for this thesis can be found in Chapter 2, which
covers the topics of basic image processing, SLAM, 3D object reconstruction and ROS.
Chapter 3 covers the methods used to conduct the necessary experiments as well as
the implementation in detail. More details about said experiments and the results are
presented in Chapter 4 and the short summary of the work as well as the conclusion can
be found in Chapter 5.

4

CHAPTER 2
Background

This chapter gives a theoretical background for this thesis and covers everything needed
from technical concepts to previous work.

Section 2.1 gives an overview about image processing. Since this work deals mainly with
visual SLAM methods, some theory regarding digital images, interest points, feature
matching, and so on is needed. The principles of SLAM methods with a special focus
on visual SLAM are explained in Section 2.2. Another key part as already stated in the
thesis title is 3D object reconstruction which is covered in Section 2.3. Finally Section
2.4 gives a short insight into the robotic platform used in this thesis.

2.1 Image Processing

When working with visual SLAM or any other imaging software, image processing is
needed. When humans or animals see two pictures of a scene with a temporal distance it
is intuitive to them to detect similarities and recognize the temporal shift. Maybe it is
even possible to make assumptions about movement, velocity, time difference and so on.
Since machines and robots do not have the capabilities for such intuitive assessments,
mathematical methods are necessary. Through the concept of image similarities, position
and movement can be estimated.

When talking about image features, the notion of global and local features needs to
be distinguished [AH16]. A global feature is represented by a single vector which gives
information about the whole image, e.g. a color histogram. This can be used to distinguish
whole images from each other or draw conclusions about the image content by the use
of one feature. Global features, however, are not helpful when trying to find objects in
images or perform odometry, such tasks require local features. Since visual odometry is
at the basis of visual SLAM methods, the theory behind local feature detection, feature
description, and feature matching is described in the following sections.

5

2. Background

2.1.1 Feature Detectors

In order to align, stitch, or compare two images it is necessary to find significant points
in them which can be compared. Significant areas are mostly edges, corners, or contours.
Szelinsky describes the three classes of basic keypoints and how they can be found [Sze22].

(a) Corner (b) Edge (c) Textureless region

Figure 2.1: Aperture problems for different image patches from [Sze22]

Figure 2.1 shows three different scenarios of image patches. The first one in Subfigure
2.1a shows a corner, which means that the image has a strong contrast change in both
x and y directions. This is also reflected in the gradient of the image, and therefore a
corner can be easily located. The second scenario shown in Subfigure 2.1b shows an edge
which has a gradient change only in one direction, which makes it only possible to localize
the image patch along a line. The last image in Subfigure 2.1c shows a featureless plane.
There are no gradient changes in the whole patch, therefore it is not possible to localize
the point in another picture.

Harris Detector

A particularly famous feature detector which is also quite foundational is the Harris
detector [HS+88]. Since it is such a widespread method and also captures the essence
of feature detection in a good way, it is described in more detail here. A good and
comprehensive derivation of the Harris detector can be found in Szeliski et al. [Sze22]

To find good corner or edge features like in Figure 2.1 the auto-correlation of the image
needs to be performed:

EAC(Δu) =
�

i

w(xi)[I(xi + Δu) − I(xi)]
2 (2.1)

6

2.1. Image Processing

Using the Taylor expansion I(xi+Δu) ≈ I(xi)+∇I(xi)Δu where ∇I(xi) =
�

∂I
∂x

, ∂I
∂y

�
(xi)

is the image gradient at xi. Thus the auto-correlation can be approximated by:

≈
�

i

w(xi)[I(xi) + ∇I(xi) · Δu − I(xi)]
2 (2.2)

=
�

i

w(xi)[∇I(xi) · Δu]2 (2.3)

= ΔuT AΔu (2.4)

where the auto-correlation matrix A = w ∗

�
I2

x IxIy

IxIy I2
y

�

Stable features can be found by analyzing the two Eigenvalues δ0 and δ1 of the Autocor-
relation matrix.

SIFT Detector

Another established feature detector is the scale invariant feature transform (SIFT) [Low04].
As the name suggests, it gives scale invariance through a pyramid of scaled images, as
shown in Figure 2.2. The scale space images on the left are generated by repeatedly
convolving the image with a Gaussian function. Adjacent images are then subtracted
from each other to get the difference-of-Gaussians (DoG), for the next octave the image
is down-sampled.

Figure 2.2: Image scale pyramid to produce DoG images [Low04]

According to Lindeberg [Lin94] the Gaussian kernel is, under reasonable assumptions,
the only one which can be used for scale-space comparisons. From this follows that the

7

2. Background

scale-space of an image can be defined as a convolution of a variable scale Gaussian with
the input image:

L(x, y, γ) = G(x, y, γ) ∗ I(x, y) (2.5)

where G(x, y, γ) is the Gaussian and I(x, y) the input image. With this function L(x, y, γ)
the DoG can simply be calculated by image subtraction:

D(x, y, γ) = (G(x, y, kγ) − G(x, y, γ)) ∗ I(x, y) (2.6)

= L(x, y, kγ) − L(x, y, γ) (2.7)

Lowe shows in [Low04] a derivation why the DoG method is a good approximation of
the Laplacian of Gaussian as proposed by [Lin94].

To find local extrema each keypoint has to give a strong response not only in image space,
but also in scale space. This ensures that if the image gets scaled, it will still be possible
to find the corresponding SIFT keypoints. To detect local extrema each sample point is
compared to its eight immediate neighbors and to its nine neighbors in the DoG image
above and below. Should the keypoint be larger or smaller than all of the other points in
the comparison, a local extrema has been found.

Some Further Detectors

There are a lot of different approaches to find stable keypoints, a few well known feature
detectors are shortly outlined in following paragraphs. There is a lot of activity in this
research field, and therefore a lot of different methods and improvements are presented
regularly.

Another widely used feature detector is used in SURF [BTVG06]. It uses the Fast-
Hessian Detector to find stable keypoints. Bay et al. use here a similar concept as Lowe
used in SIFT, but they approximate the Gaussian with box filters, which speeds up the
localization of keypoints by more than a factor of 3 when compared to DoG.

To speed-up the process of keypoint detection even more Rosten et al. introduce the FAST
descriptor [RD06]. The abbreviation FAST stands here for Features from Accelerated
Segment Test. The FAST method is to take image patches only and check, if there is
a certain structure, in particular specific pixels in each patch are checked for intensity
contrast. This method, however, introduces several problems, which are solved by using
machine learning on top of this method.

Rublee et al. developed the ORB feature detector [RRKB11] which has become popular
through the usage in ORB-SLAM [MAMT15] and its two successors ORB-SLAM2 [MAT17]
and ORB-SLAM3 [CER+21]. The ORB feature detector uses FAST for keypoint finding

8

2.1. Image Processing

and filters the output with a Harris corner measure. The number of keypoints is set
beforehand to a value N , with the use of FAST the number of N keypoints found in
a frame is usually surpassed. To reduce the number of keypoints the Harris filter is
applied to the detected keypoints, which are ordered accordingly and the N best are
kept. Furthermore, a scale pyramid similar to SIFT is generated, and the filtered FAST
features are extracted at every pyramid level to get better scale invariance. This detection
method is called oFAST: FAST Keypoint Orientation.

2.1.2 Feature Descriptors

After a stable keypoint has been found, it must be possible to match it with the same
keypoints in different images. For this reason each keypoint also comes with a feature
descriptor. A feature descriptor is a combination of the pixels in the image patch around
the keypoint which takes into account the orientation, the scale, or affine transformations.
This reassembling of the image patches can be done in a great variety of different ways.
In the following paragraphs a few of those techniques are briefly outlined.

To get rotation invariance the simplest approach would be be to create the average of
gradient directions of the image patch. This approach, however, has the problem that
due to its simplicity different looking patches get mapped to the same keypoint. Another
method would be to establish a dominant orientation for each keypoint.

SIFT Descriptor

The SIFT feature extractor [Low04] not only has a very famous feature detector, but also
a famous feature descriptor which has been used extensively in all sort of fields. To not
only counteract the influence through rotation, but also the effects of affine distortion
Lowe introduced in the SIFT feature detector a histogram of edge orientations.

Figure 2.3: Keypoint descriptors calculated from image gradients [Low04]

Figure 2.3 shows the basic concept of the histogram approach. Affine distortions can
be introduced through a variety of events, such as changes in illumination or viewpoint
position. Especially position changes can introduce shifts in the gradient position,

9

2. Background

therefore a slight positional shift should still yield the same keypoint. Lowe introduces a
gradient field around the keypoint which can be seen on the left in Figure 2.3. In the
Figure this 8 × 8 gradient field is then condensed into 2 × 2 bins which can be seen on the
right. Furthermore, all gradients are smoothed by a two-dimensional Gaussian function
in order to weight them depending on their distance to the keypoint. The histogram has
the great advantage that gradients which shift their position slightly still contribute to
the same bin and therefore do not change the feature descriptor. If, however, a gradient
spills over to a neighboring bin, the transition is smoothed by further weighting the
gradients by a factor 1−d where d represents the distance to the bins center. A remaining
problem are non-linear illumination changes, these can change some gradients massively
in their magnitude, but not their orientation. To get a hold of this problem the gradients
are normalized, clipped at 0.2 and then re-normalized. This thresholding reduces the
influence of gradient magnitudes and emphasizes the weight of the orientation. The
value 0.2 was determined experimentally by Lowe [Low04]. Moreover, the optimal result
was accomplished by using 4 × 4 bins consisting of 8 × 8 sample regions resulting in 128
gradients used for one feature descriptor.

Some Further Descriptors

The research field on feature point descriptors is still a very active field. In the following
paragraphs a few interesting feature descriptors are outlined.

The feature descriptor of SURF [BTVG06] is composed of two parts. Orientation
invariance is ensured through the calculation of Haar-wavelets of a circular region around
the point of interest. They are then further processed to get a final orientation vector.
The feature vectors are then computed from an aligned rectangle around the feature
point.

BRIEF [CLSF10], which stands for Binary Robust Independent Elementary Features,
uses pixel comparisons to find unique keypoints. To achieve this an image patch of size
S × S is taken and a number of pixels inside the patch are compared to each other. If
the intensity of the first pixel is larger than pixel two, the result is 1 and 0 vice versa.
This comparisons are saved in a binary vector and used as feature descriptors. For this
method to work, it is important to smooth the image patch before comparison with some
kernel, the choice of this kernel gives some implementation margin.

The ORB feature extractor [RRKB11] uses a method called rBRIEF: Rotation-Aware
BRIEF. This modified version of BRIEF, where Rublee et al. used the PASCAL data
set [EZW+06] to find the best pixel contestants for binary matches which are independent
of rotations. The combination of oFAST and rBRIEF outperforms SIFT and SURF as
well as BRIEF.

Gao et al. [GZ21] summed up four characteristics each feature should have:

1. Repeatability: It should be possible to find each feature also in different images.

10

2.1. Image Processing

2. Distinctiveness: The features are defined through different expressions.

3. Efficiency: The computational effort for each feature should be feasible and the
number of pixels much larger than the number of features.

4. Locality: Each feature should refer to a comparatively small part of the image.

2.1.3 Feature Matching

Once keypoints are found and the respective descriptors calculated, they can be used for
a variety of applications. Depending on those applications the right strategy for matching
the features must be selected [Sze22].

One of the most common ways to match features is to compare the Euclidean distance of
descriptors in feature space to each other. The distance can then be used for ranking
the found matches. A threshold is then defined to filter possible matches. If the chosen
value of this threshold is too large, no matches are found, but if it is chosen too small,
too many possible matches are taken into consideration. Therefore, the selection of this
threshold value is very important. To pick this value more generally a normalization or
in this context whitening of the axis in feature space can greatly improve the results.

To measure the quality of a matching, some performance metrics are needed. The
important values to calculate such metric are the rates of true positives (tp), false
positives (fp), true negatives (tn) and false negatives (fn). Theses values classify how
many feature descriptors are correctly matched, how many are wrongly matched and vice
versa. Figure 2.4 summarizes the concept of feature matching metrics.

Figure 2.4: Feature matching metrics [Faw06]

Based on those metrics a receiver operating characteristic (ROC) can be drawn, it shows
the fp rate on the X axis and the tp rate on the Y axis. As the threshold is varied, a
curve is generated and can be displayed in the form of a ROC. Tom Fawcett explains in
his paper [Faw06] how to read and analyze ROCs correctly. Figure 2.5 shows an example
of such a graph.

11

2. Background

Figure 2.5: Example of a ROC [Sze22]

The performance of the threshold is measured by the area under the curve, i.e. the closer
the curve is to the upper left corner of the diagram, the better the performance. The
diagonal line (x = y) represents the case of random guessing, which colloquially said
means a fifty-fifty chance to get a tp or fp.

Another important topic after describing how to measure the quality of a feature match
is on how to perform it efficiently. In the most basic case each descriptor of one image is
compared to each descriptor in the other image, this, however, can turn out to be quite
computationally expensive. Modern GPUs can help to speed up the matching process,
but in general this method is not feasible. Therefore, a lot of different strategies have
been introduced which utilize indexing structures such as kd-trees [LWH10] or FLANN
tree structures [ML14] to accelerate the feature searching process. Furthermore, it can
be useful to only consider a subset of the descriptors when for example performing an
object search. Szeliski [Sze22] describes several methods on efficient feature matching
and provides a comprehensive list of examples.

2.2 Simultaneous Localization and Mapping (SLAM)

The abbreviation SLAM stands for Simultaneous Localization and Mapping and is an
essential technology for all sorts of autonomous robot systems in unknown environments.
Like the name suggests, it is used by robots to create a map of their surroundings and
simultaneously place themselves on this map. The first SLAM technology was introduced
in 1986 by Smith et al. [SC86]. They already suggested that the information gathered by
sensors is inaccurate and not complete. Therefore SLAM algorithms use a multitude of

12

2.2. Simultaneous Localization and Mapping (SLAM)

sensors and filters to reduce said errors and optimize the map, the position as well as the
relation of the seen objects to each other.

Since then a multitude of different SLAM algorithms have been developed. These
algorithms utilize all sorts of available sensors like LiDAR, RaDAR, odometry, cameras,
IMUs, and so on. The goal of this thesis is to benchmark the performance of SLAM
methods for object reconstruction with visual SLAM methods being of particular interest.

A lot of the recent SLAM implementations are summarized in Barros et al. [MBMM+22],
Zhang et al. [ZZT21] and Servieres et al. [SRD+21].

Both of the tasks, mapping and positioning, are done incrementally and rely on the
precision of each other. Therefore, the location and map estimation are in contrast
with each other, similar to the chicken and egg problem [LCW+12]. The convergence of
these contradicting problems has been proven by Csorba [Cso97], and more novel works
regarding the topic are more focused on optimizing the computational efficiency.

The basic functionality of a visual SLAM framework has been explained by Gao et
al. [GZ21]. They propose a simple SLAM pipeline shown in Figure 2.6

Figure 2.6: Classic visual SLAM framework from Gao et al. [GZ21]

The pipeline consists of four blocks which roughly outline the parts of the VSLAM
system.

1. Sensor Data: The first blocks reflect the acquisition of sensor data. This mainly
refers to visual data like mono, stereo and RGB-D images, but it also includes
additional data like IMU, encoders, or LiDAR.

2. Visual Odometry: In this block the camera pose can be roughly estimated
through the comparison of adjacent images, and a coarse sketch of the map can be
generated.

3. Filters/Optimization: The third stage receives the camera pose at different
time stamps and can use various optimization methods to calculate an optimized
trajectory.

13

2. Background

4. Loop Closing: In order to reduce drift over time some SLAM algorithms check,
if a location has already been visited and hence a loop has been created. This
information can then be used to further optimize the map quality and with that
also the positioning.

5. Reconstruction: The actual creation of the map based on the before estimated
and optimized camera trajectory.

The following three chapters will take a deeper look at blocks 2, 3 and 4 of the VSLAM
pipeline.

2.2.1 Visual Odometry (VO)

One of the first papers which also gave the notion of VO its name was written by Nister
et al. [NNB04], and since then VO is an integrative part of the R&D in the robotic sector.
The name visual odometry is derived from wheel odometry due the their similar role of
incrementally estimating a robots movement [SF11].

Gao et al. [GZ21] classify VO into two common methods:

1. Feature/Indirect methods

2. Direct methods

Zhang [ZZT21] also adds the class Hybrid Methods, but this is not dealt with specifically
here.

Feature Method

Like the name already suggests when applying the feature method each image is scanned
for keypoints and descriptors. How a basic keypoint with an affiliated descriptor can be
calculated is explained in Section 2.1, afterwards a feature matching is applied to two
successive images.

Depending on which image types are matched: 2D-2D, 2D-3D or 3D-3D, different methods
are used to estimate the movement from one frame to the next [GZ21].

1. 2D-2D Epipolar Geometry: The two cameras and the object of interest form a
triangle which is called the epipolar plane. The intersection of the epipolar plane
with the image plane forms the epipolar line, and the point of interest in the second
image lies on this epipolar line. Along the line of interest the given point can be
searched by using feature matching like already explained in Section 2.1.

2. 2D-3D Perspective-n-Point (PnP): To find the pose of a 2D camera in contrast
to a 3D scene, a set of 3D points which are non-colinear is chosen from the 3D scene.

14

2.2. Simultaneous Localization and Mapping (SLAM)

Provided the camera intrinsics are known, those 3D point can be projected to the
2D plane and thereby get the camera extrinsics. One way to efficiently calculate the
camera pose is to apply an iterative method which aims to minimize the projection
error, which is the distance of the observed 2D image and the 3D → 2D projection.

3. 3D-3D Iterative Closest Point (ICP): The 2D-2D as well as the 2D-3D method
rely on feature detection and feature matching to find the camera pose. ICP on the
other hand uses the whole pointcloud to find the optimal pose. A common way way
to get the camera pose from one point cloud to another pointcloud is to iteratively
minimize the distance between them. The first step is to find correspondences
between the two pointclouds and register them accordingly. Secondly the two
pointclouds can be aligned using the information gained by the registration. The
transformation acquired from the alignment can then be applied to the camera
pose of the first pointcloud to get the absolute pose of the second pointcloud. This
method can be executed iteratively, until the pose converges.

Direct Method

As already explained in Section 2.1 the calculation of feature descriptors and the subse-
quent feature matching used in the feature method can be extremely resource-intensive.
Furthermore, the feature method relies heavily on the gradient of the image, henceforth if
there are no edges or corners, there are no good features. The direct method is intended
to provide a remedy to this problem by taking advantage of a notion called optical
flow [GZ21].

Optical flow is used to track pixels or keypoints in subsequent images. From this follows
that it is still useful to calculate keypoints when using a direct method, but the calculation
of feature descriptors can be left out.

The whole concept of optical flow relies on the assumption that the pixel intensities are
constant for short duration. Mathematical concepts can be reviewed in Gao et al. [GZ21]
or Beauchemin et al. [BB95]. As an example the derivation of the Lucas-Kanade optical
flow [LK81], a representative of the sparse methods and important basis, is summarized
here:

I(x, y, t) = I(x + dx, y + dy, t + dt) (2.8)

Where I(x, y, t) is the image regarded as a function of the pixel coordinates x and y at
the time t, if the pixels are shifted in time and space by dx, dy and dt, the intensities
stay the same. This can further be approximated in a first order tailor series:

I(x + dx, y + dy, t + dt) ≈ I(x, y, t) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt (2.9)

15

2. Background

Since it was assumed in the first place that the pixel intensities are constant and therefore
a pixel with a small change in space and time does not change its intensity, the derivation
part of the tailor series becomes zero.

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt = 0 (2.10)

By some re-arranging this can be written as:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
= −

∂I

∂t
(2.11)

In this equation the dx
dt

and dy
dt

denote the pixel speed in 2D space which can be denoted
as u and v. Written in matrix form this yields:

�
Ix Iy

 �
u

v

�
= −It (2.12)

This equation contains two unknowns, namely u and v which can of course not be solved
in the traditional matter. To solve this under determined linear equation it has to be
assumed that all pixels in immediate vicinity move with the same speed in the same
direction. Thereby several pixels in a w × w area can be used to create a solvable linear
system of equations.

A =

�
Ix Iy

1�

Ix Iy

2

...�
Ix Iy

w

 , b =

It1

It2

...
Itw

 (2.13)

A

�
u

v

�
= −b (2.14)

This is now an over-determined linear system of equation and can be solved by applying
least-squares. �

u

v

�
= −(AT A)−1AT b (2.15)

Optical flow methods are used to track certain feature points from one image view to
another which can for example be used for object tracking.

In visual odometry however the interesting part is the camera pose, and this can be
achieved by minimizing the photometric error over the whole images. Consider two
consecutive images I1 with point p1 at time t and the second image I2 at t + dt with
point p2 which is shifted by some translation and rotation T . To find the values of this
transformation the photometric error needs to be minimized. Since the pixel intensity

16

2.2. Simultaneous Localization and Mapping (SLAM)

assumption from the optical flow is still force, the error can be defined by a simple
subtracting:

e = I1(p1) − I2(p2) (2.16)

In order to find dx and dy the this error needs to be minimized. For this an objective
function J is defined which corresponds to the sum of the squared differences between
the pixel intensities of the first and of the second images over T .

min
T

J(T) =
N�

i=1

eT
i ei with ei = I1(p1,i) − I2(p2,i) (2.17)

When solving this optimization problem the camera pose of second image in contrast
to the first one has been found. Since the whole notion of optical flow and the direct
method is based on the pixel intensity assumption, large changes the intensities (e.g.
sudden lighting changes) can severely worsen the pose estimation. This derivation was
taken from [GZ21] where more details can also be found. There are also explanations on
how to solve this minimization and how to implement and use such directed methods.

2.2.2 Backend Optimization

Every sensor and actuator used in the real world is prone to noise and exposed to a
continuously changing environment. Temperature changes, lighting fluctuations, radiation
from surrounding devices, and so on can affect the sensor output and influence the overall
behavior of hardware, albeit very little. If ignored, this noise causes an error in the pose
estimation which accumulates rapidly and can, in order of minutes, render the SLAM
output completely unusable.

Through the notion of optimization this noise is modelled mathematically as a stochastic
state estimation problem. The noise is treated as a random variable which certain
distributions and the actual pose can then be approximated with these uncertainties in
mind.

The first SLAM methods introduced over 35 years ago dealt almost exclusively with
this problem. Just to name a an example, Smith et al. [SC86], who are considered the
founder of SLAM, called their paper On the Representation and Estimation of Spatial
Uncertainty.

In order to apply such state estimation methods the general problem of SLAM needs to
be formulated in a mathematical form. Gao et al. [GZ21] does this in a simplistic and
generalized way. To describe the SLAM problem some pose variables and map variables
are needed. In this case xk with k = 1 . . . N describe the pose where k denotes the
timestamp and the map is described by a number of landmarks yj with j = 1 . . . M where
j denotes the landmark number. Furthermore the observations, which are also prone to
noise, need to be modelled, which is reflected in zk,j . The whole problem can now be

17

2. Background

written in the form of two equations:

xk = f(xk−1, uk) + wk (2.18)

zk,j = h(yj , xk) + vk,j (2.19)

Equation 2.18 is called the motion equation. In this case the function f(·) describes a
general motion of the robot, where xk−1 is the pose at the last time stamp and uk is the
input vector. The noise is introduced with wk which integrates all uncertainties of the
motion part in one random variable.

Equation 2.19 is called the observation equation. The robot sees from pose xk a subset of
landmarks yj with the observation noise vk,j . The function h(·) represents the generalized
observation of the robot.

Since the poses as well as the landmarks are now random variables some assumptions
about their distribution has to be made. In this case they are both regarded as Gaussian
random variables and are therefore completely determined by their mean and covariance.
The mean of the Gaussian can therefore be regarded as estimated value and the variance
as its uncertainty. If all the past and future values of x and z are regarded the whole
estimation becomes non-linear.

To simplify further equations, some simplifications of the underlying formulas 2.19 and
2.19 are done.

xk �= {xk, y1, . . . yM } (2.20)

xk = f(xk−1, uk) + wk (2.21)

zk = h(xk) + vk (2.22)

This simplification puts all the landmarks yj into the xk vector which makes the observa-
tion zk only depended on xk. With the Gaussian random variables and the simplifications
from Equations 2.20 to 2.22, the motion and observation equation can now be written as
a likelihood:

P (xk|x0, u1:k, z1:k) ∝ P (zk|xk)� �� �
likelihood

P (xk|x0, u1:k, z1:k−1)� �� �
prior

(2.23)

Most novel SLAM algorithms use non-linear estimation as optimization method, but also
linear optimization is widely used as they lay the foundation for this kind of optimization.

To get from the non-linear to the linear estimation problem the Markov assumption has
to be applied. From this follows that in the linear case the motion estimation and the
observation are only depended on the state k − 1, everything earlier can be omitted, since
it has no longer any effect on the next state k. This simplification yields the famous
Kalman filter as well as the extended Kalman filter (EKF).

xk = Akxk−1 + uk + wk (2.24)

zk = Ckxk + vk (2.25)

18

2.2. Simultaneous Localization and Mapping (SLAM)

Although the Kalman filter is a widely used tool and gives a good foundation for
optimization in the context of SLAM, there are of course many other methods.

One method which is used a lot in 2D-laser SLAMs are particle filters, in particular Rao-
Blackwellised particle filters (RBPF) [Mur99]. Particle filtering introduces a mechanism
of considering several possible solutions of the current position simultaneously (the
particles). Each particle is sampled from the proposal distribution, and the next state
is predicted for each particle. Then the weights are updated based on how good they
explain the sensor measurement. The best particles are used to estimate the robot’s
trajectory. Rao-Blackwellization means in this context that the joint probability of the
robot’s trajectory and the map are factored and, only the current position needs to be
estimated. The map is then updated based on the full trajectory of the robot.

Bundle adjustment is another method that is used to refine the estimates of camera poses
and landmark positions obtained from image data. It is a technique which adjusts the
camera poses as well as the landmark poses in order to minimize the error between the
estimated 3D points and their 2D projection [GZ21]. This is done by minimizing the
error of the pixel position of a landmark and the 2D projection of the 3D estimate of
given landmark:

e = z − h(T , p) (2.26)

In this equation e is the error to be minimized, z is the observed 2D point from the
camera, h(·) is the 3D → 2D projection, T is the estimated camera pose and p refers to
the corresponding estimated 3D landmark pose.

Pose graph optimization can be viewed as a sort of derivation of bundle adjustment.
The main idea is that the landmark poses take a lot of time to optimize, although after
several iterations most of them converge to a nearly constant value. This leads to a lot of
computational load which doesn’t really improve the overall pose and map information.
With a pose graph optimization each robot pose is represented by a node in the graph
and edges between those are the constraints which stem from observations. Of course
the position of each landmark is initially optimized, but after this the landmark poses
are no longer updated and considered constant [GZ21].

2.2.3 Loop Closure

In Section 2.2.1 and 2.2.2 the notions of initial pose estimation as well as optimization
with regard to uncertainties due to noise are introduced. However, both of those methods
only work on a few adjacent frames, and therefore, each error that still persists after the
optimization stage is accumulated. This leads to a consistent drift of the estimated poses
away from the ground truth, and there is no way to prevent this without looking further
into the past.

Loop closure is used to detect previous visited positions in the robot’s trajectory. This
additional information can then be used to correct drift error which has accumulated
since the loop beginning.

19

2. Background

Gao et al. [GZ21] gives a good overview on why loop detection is needed and how it works.
The first question is how can loops be detected in the first place. One obvious solution
would be to use feature detection and feature matching like explained in Section 2.1 for
every frame. This would require to extract the features from every image like for example
used in the feature method of VO and then compare it to every past frame. Of course this
approach has a complexity of O(n2) which becomes rapidly computationally unfeasible.
Another simple approach according to [GZ21] would be to compare the current frame to
a fixed number of random frames. Although the computational burden stays in check
the efficiency in loop detection decreases over time which is also not desirable.

Since those basic and naive approaches are impracticable, some more structured notions
are needed. There are two big classes of loop closing approaches out there:

1. Odometry based

2. Appearance based

The odometry based methods rely on the pose estimation of the robot. There is already
a pose estimation from the VO and the optimization part of the SLAM, therefore this
positional information can be used to estimate, if a loop is forthcoming or not. Due to
the error of the trajectory accumulated over time this approach contradicts itself.

The appearance-based method is more reliable in this regard and is therefore the more
prominent in novel SLAM algorithms. With this method visual features in the frames are
used to find potential loops. As already mentioned, simple feature matching as explained
in Section 2.1.3 is too expensive. Therefore, a faster compare mechanism needs to be
introduced.

Bag of Words (BoW)

Most of the loop closing methods use some form of BoW to find candidates for a potential
loop. The exact details on how the word dictionary is composed and which words are
used and how the comparisons are optimized vary, but the overall concept stays the same.

The BoW method is used to represent the answer to the question What is in that picture
in a mathematical form which is fast to generate and, more importantly, fast to compare.
The word Word is in this context some form of image feature and the word Bag is a
synonym for unordered list. In the BoW sense each frame consists of a number of words
which is just a synonym for high level feature. To make the concept more understandable
let’s use animals as high level features (in reality the features are of course more abstract).
Lets assume that our dictionary consists of cat, dog, bird and horse. An image is now
scanned using the notion of feature detection if there are any of the before defined words
in the image. The result of this feature detection is then packed into a histogram which
can be represented by a 1-dimensional vector like for example:

2 × cat + 0 × dog + 1 × bird + 1 × horse �= �
2 0 1 1

(2.27)

20

2.2. Simultaneous Localization and Mapping (SLAM)

The fictional frame in the above example contains two cats, zero dogs, one bird and one
horse which is then saved in a vector. If there is now an image with the same or a similar
histogram, a possible loop is detected and further steps can be taken. The big advantage
of this 1-dimensional vector is that the exact position of the word does not matter and
also that changes in illumination and contrast do not affect the result too much.

Precision

Since the two images which are taken into account for loop closing are never exactly the
same, there is always some remaining uncertainty whether there is actually a loop or a
false positive. The notion of TP, FP, TN and FN was already described in Section 2.1.3
and can be seen in Figure 2.4.

For the notion of loop closing a very high accuracy is needed, while a bad recall can be
forgiven. This comes from the fact that a loop which is not detected neither changes the
actual pose estimation nor the map, but a wrongly detected loop leads to an adjustment
of all the past estimations in a completely wrong direction.

2.2.4 Relation to Structure from Motion (SfM)

SfM is a technique to estimate the 3D structure of a scene from a series of 2D images and
is therefore closely related to traditional SLAM. To get a good comparison in this thesis
a SfM algorithm was used beside the SLAM techinques. The images given as input to a
SfM method are unordered and the camera intrinsics as well the extrinsics are estimated
simultaneously.

The SfM used in this thesis is called Colmap [Sch23] and counts to the incremental SfM
methods [SF16].

Figure 2.7: Pipeline of an incremental SfM algorithm [SF16]

Figure 2.7 shows the pipeline of an incremental SfM algorithm. The pipeline starts
with feature detection and subsequent matching followed by a geometric verification.
These three steps form the correspondence search which gives a so-called scene graph as
output which serves as foundation for the incremental reconstruction. The reconstruction
consists of an image registration, triangulation, outlier filtering and bundle adjustment.

21

2. Background

2.3 3D Reconstruction

3D reconstruction constitutes one of the most important fields in computer vision. There
is a variety of 3D reconstruction methods, a big subset of those deals with 3D object
reconstruction from a series of 2D images, such as for example the SfM explained in
Section 2.2.4.

Since the object data acquisition in this thesis is done with a RGB-D camera, this section
focuses on the reconstruction using RGBD images, especially the reconstruction using a
truncated signed distance function.

2.3.1 Truncated Signed Distance Function (TSDF)

The TSDF is based on the Signed Distance Function (SDF) introduced by Curless et
al. [CL96], they proposed this method to reconstruct a 3D model from multiple depth
images. Werner et al. [WAHW14] give a good explanation of SDF as well as TSDF and
conduct some interesting experiments on how changes in the parameters influence the
outcome of a 3D volume integration.

A d-dimensional grid is used to represent a d-dimensional environment, where each grid
point is called voxel. The position of a such a voxel is defined by its centre, in the 3D
case the position would be x = (x, y, z). The signed distance function would then look
as follows:

di(x) = ri(x) − cz(x) (2.28)

Where di(x) corresponds to the SDF for the voxel at x from the viewpoint i, ri(x) is
measured depth between the camera and the nearest object surface and cz(x) represents
the distance between the camera and the voxel centre along the optical axis. The SDF
becomes the TSDF, if it is truncated at ±t which reduces the memory usage and is does
not influence the surface reconstruction. This results to the equation:

tdi(x) = max
�

−1, min
�

1,
di(x)

t

��
(2.29)

where tdi(x) now designates the TSDF for the voxel at x from the viewpoint i. Fur-
thermore, each voxel has a weight wi(x) which describes the uncertainty of each voxel
according to the SDF di(x). In order to do a full object reconstruction from several view-
ing angels the variables TDi(x) and Wi(x) need to be introduced. Those two variables
represent the iteratively updated TSDF volume with according weights. Both TDi(x)
and Wi(x) are initialised with zero and the update step looks as follows:

22

2.4. Robotic Platform

TDi(x) =
Wi−1(x)TDi−1(x) + wi(x)tdi(x)

Wi−1(x) + wi(x)
(2.30)

Wi(x) = Wi−1(x) + wi(x) (2.31)

Two very important parameters of the TSDF are the voxel size and the truncation
distance t. The voxel size directly impacts the memory usage as well as the resolution of
the resulting reconstructed 3D scene. If for a fixed 3D voxel grid the voxel size is halved,
the number of voxels increase by the factor of eight and vice versa. Furthermore, with
decreasing voxel size the computation time for a TSDF reconstruction increases rapidly.
Henceforth it is important to find a good balance between a good memory footprint,
computation time and scene resolution.

The second value is the truncation distance which influences the quantisation error of
the TSDF. Werner et al. [WAHW14] suggest a two byte integer representation per voxel
which would result in a quantisation of t

32767
. This would suggest to choose the truncation

distance as small as possible, but on the other hand it should be larger than the voxel
diagonal and the noise level.

2.4 Robotic Platform

Since modern hardware grows increasingly complex, some sort of underlying software
environment is needed to facilitate the work of the developer. Even simple systems like
for example a single RGB-D camera needs extensive driver development and sophisticated
input- output software. If the system grows larger and forms a whole robot as for
example the HSR, said complexity increases even further. To develop a monolithic driver
with comprehensive IO management for such versatile hardware becomes completely
unfeasible.

ROS is a widely used open-source operation system for not only robots, but all sorts
of embedded hardware [QCG+09]. It reduces the development complexity by giving
the tools to create reusable components with precisely defined boundaries. Moreover, a
well-designed communication system further eases the implementation expenditure of
the developer.

2.4.1 Human Support Robot (HSR)

The specific mobile robot platform used in this thesis is the HSR from Toyota [YNK+18].
The HSR is designed to accelerate research and development (R&D) for support robots
which can be used for nursing and geriatric care. Especially the demand for care for the
elderly and assistance for people with disabilities has increased rapidly in the past due to
people living longer and declining birth rates. Yamamoto et al. [YNK+18] hope that the
compact and practical design of the HSR and the R&D coming with it will contribute to
solving this problem and improve quality of life across the board.

23

2. Background

Hardware Platform

The most important sensors and actuators used in this thesis are listed in table 2.1.

Drive system Omnidirectional moving mechanism (max. 0.8km/h)
IMU 6DOF
Laser measuring range sensor UST-20LX
RGB-D sensor Xtion PRO LIVE

Table 2.1: Relevant sensors and actuators on the HSR

There is also a stereo camera as well as a wide-angle camera installed on the HSR, but
these are not used in the course of this thesis, the reason for that will be explained in
Section 3.2.1.

The HSR is running Ubuntu 20.04 with ROS Noetic. All the drivers are already
implemented and installed.

2.4.2 Robot Operating System (ROS)

As already stated in the introduction of Section 2.4, a software framework is needed to
help abstract the complexity of the robot system. ROS offers exactly this functionality,
is used on the HSR and therefore also for this project. Quigley et al. [QCG+09] describe
ROS to have the following philosophical goals:

1. Peer-to-peer

2. Tools-based

3. Multi-lingual

4. Thin

5. Free and Open-Source

The first point refers to the communication system on which ROS is based and which
also reflects the heart of ROS. Through a peer-to-peer system it is possible to run a great
number of ROS nodes not only on one, but on multiple machines with a heterogeneous
network. Figure 2.8 shows an example of such a distributed ROS system.

There are nodes running directly on the robotic platform which can be seen on the right,
and there are also nodes running off-board on a computing cluster. A ROS master is
running on one of the system to establish peer-to-peer connections, all of these nodes
can then seamlessly communicate with one another without the need to send messages
over a central data server. The ROS communication is based on a publish-subscriber
model using messages, topics and services. Every node can subscribe to and publish on

24

2.4. Robotic Platform

Figure 2.8: Example of a ROS network topology [QCG+09]

an arbitrary number of topics. Each of the topics has a message type which is defined
with an language-neutral interface definition language (IDL). The nodes themselves are
not aware, if there are any other modules subscribing or publishing on their topics. If
the broadcasting routing scheme is not appropriate for a given tasks and synchronous
communication between two nodes is needed, services can be used. A service can be
advertised only by one single node, it needs a request as well a response message type
and can be used by an arbitrary number of subscribers.

In this paragraph items two to five from the above enumerate are described only briefly,
for more details on those points the paper by Quigley et al. [QCG+09] gives an in-depth
look.

ROS is multi-lingual, tool-based and thin, this gives a lot of advantages when working
with robot systems and projects of various sizes. Furthermore, the fact that ROS is
multilingual opens up more application possibilities. Just to name two examples: Should
the user work very close to the hardware and wants to implement efficient code down to
the instruction level, C++ can be used. If the user on the other hand works more with
complex mathematical concepts or vector arithmetics, python or matlab are possibilities.
For the implementation of the underlying project of this thesis python was used to utilize
libraries such as numpy [HMvdW+20], open3d [ZPK18] or matplotlib [Hun07].

The ROS implementation uses a modular design which pushes practically every function
into its own module. Even essential functionalities e.g. global clock or loggers are
implemented in separate modules instead of inside the master module. This highly
modular design yields a very stable system with excellent complexity management with
the drawback of efficiency loss.

A thin implementation means that the functional code used in ROS is completely
outsourced to libraries. Modular builds by the use of CMake create small executables
which are then exposed to ROS. Henceforth all the implementation complexity is fully
independent from any ROS hooks and can therefore easily be reused or external code
can easily be integrated respectively.

25

2. Background

Transformation Library (/tf)

A very challenging part of robotics development are different coordinate frames. When
working with a system consisting of several modules, sensors, and actuators, they will
with a high probability not use the same coordinate frame. From this follows that the
developer has to know the coordinate frame of the current information and transform
it correctly into the desired one. This particular problem was also apparent to the
developers of the tf library. Through the implementation of tf the user needs to know
the names of the source and target coordinate frame, and the transformation is executed
through a library call [Foo13].

Figure 2.9: Example of a tf tree taken from the ROS turtle tutorial [Foo13]

Figure 2.9 shows an example of the tf tree used in the ROS Turtle tutorial. The vertices
in such a tree represent the different coordinate frames and the edges their dependencies
to predecessor frames. Furthermore, information of the most recent update as well as the
aveage update rate for each coordinate frames is given for each edge. In this particular
example there are three different coordinate frames: world, turtle1 and turtle2. The
tf tree of HSR is with 53 vertices much larger and more complex than this illustrative
example.

The tf implementation is composed of two parts, the listener and the broadcaster. All the
data is collected through the listener and stored to comply incoming queries. Through
the broadcaster the tf information is distributed through the system.

As already explained in Section 2.4.2 most ROS systems tend to be very distributed,
therefore there are a variety of broadcasters and listeners. Each node which integrates
the tf library has its own buffer which is filled by the listener part of the implementation.
If new broadcasters arise in the system, they are automatically added to each listener
and extend the tf structure.

Since a lot of tf broadcasters are bound to hardware components like sensors or actuators,
the publishing rate of the tf information is not consistent. Due to these inconsistencies
the tf library has to cope with missing and delayed data. It is imminent that in the case
of missing data a valuable error message instead of invalid data is returned.

In order to ensure high quality transformation results the tf data between available time
stamps can be interpolated using a spherical line interpolation (SLERP) [Kre08]. This

26

2.4. Robotic Platform

interpolation also ensures precise transformation for tf broadcasts with low frequency,
although a higher frequency increases accuracy.

Repeatability through ROS Bags

When using a robot system to evaluate algorithms or testing new software it can be
become cumbersome or expensive to always make use of the hardware. One solution to
this problem are simulations, through a virtual environment tests become quick, cheap,
reproducible, and easy to execute. Unfortunately this method also introduces drawbacks.
First of all such a simulation environment must be implemented, and it is not trivial
to design the simulation framework in a way that it reflects the real world well enough
for the developer’s needs. Secondly, the simulation framework is not necessarily fed real
world data which further increases the sim-to-real gap. Finally, simulations can be very
resource hungry, because in the robot case the simulation environment has to reflect
some parts of the physical world which is certainly not trivial.

Since ROS fully relies on its message oriented publish-subscriber model described in
Section 2.4.2, it can simply save those messages and replay them. This can be done
with a ROS feature called rosbags [FLB+23]. When using rosbags the developer can
specify a number of topics which should be saved and collect them when working with
the hardware. Later on the rosbag can be replayed and from ROS point of view there is
no different between live hardware data and rosbag data. This can then be used to test
and evaluate software without needing the hardware for each run. Henceforth the exact
same movements of a robot can be replayed several times, and the results are therefore
perfectly comparable.

27

CHAPTER 3
SLAM Evaluation through 3D

Object Reconstruction

The goal of the thesis is to evaluate the quality of estimated trajectories from SLAM
algorithms on a specific mobile robot platform by performing a 3D object reconstruction.
To do this the camera poses provided by a SLAM algorithm are used in combination with
a depth sensor to perform a volume integration of objects captured from several angles.

The main motivation to use reconstructed 3D data for the evaluation of SLAM trajectories
is the complexity of ground truth trajectory acquisition. The process needed to obtain the
ground truth for a corresponding robot trajectory requires a well calibrated room-level
sensor array, constraining the situation where they can be deployed. However, there
already exists a multitude of high quality 3D models of a variety of objects. Such models
can serve as ground truth when using 3D reconstructed objects for a quality assessment.

Section 3.1 of this chapter contains the general methodology used to answer the questions
asked of this work including an explanation of the chosen positioning methods. The
overall software pipeline implemented to solve the given task as well as details regarding
the different implementation parts is explained in Section 3.2.

3.1 SLAM Evaluation

Several SLAM methods are set up and executed on the robot. As already stated in the
introduction of this chapter the acquisition of the ground truth for a given robot trajectory
is a hard problem.objects Therefore, a method relying on a 3D object reconstruction is
introduced in this thesis and tested in the corresponding experiments.

29

3. SLAM Evaluation through 3D Object Reconstruction

3.1.1 Evaluation through 3D Reconstruction

Ground truth refers to a collection of accurate and reliable measurements or reference
data, which is necessary for conducting evaluations and benchmarks. Without ground
truth, evaluating certain methods becomes difficult, if not impossible. The difficulty of
acquiring ground truth varies for each task, but generating ground truth for a robot’s
trajectory is non-trivial.

To obtain precise trajectory information of a robot, external measurements are required,
typically through the use of a room-level sensor array, which can be both complex and
expensive. Two very prominent data sets are the EuRoC dataset [BNG+16] as well
as the TUM RGB-D dataset [SEE+12], both of which include sensor data as well as a
ground truth. The methods for obtaining ground truth are described in their respective
papers. In the case of EuRoC, two datasets were recorded using a Leica Multistation
laser tracker and a Vicon motion capture system, respectively, to provide highly accurate
3D poses. The TUM RGB-D dataset uses a Raptor-E Digital RealTime System, which is
a room-spanning motion capture system.

Those examples showcase the difficulty of acquiring ground truth for robot trajectories.
From this follows that an easier method is needed to obtain ground truth data.

High quality object models are easily available. One particularly prominent object data
set is the Yale-CMU-Berkeley (YCB) dataset [CSB+17]. It contains 77 objects where the
objects can be downloaded from their website, and the real objects themselves are cheap
and easy to purchase. It is therefore straightforward to obtain a ground truth when
reducing the trajectory problem to an object problem. The method used in this thesis is
based on comparing reconstructed object models to such high quality 3D models.

For the data collection the objects will be placed on a flat elevated surface. The robot
circles the object setup and takes RGB-D images and collects other sensor data. In
order to get repeatable and comparable results the sensor data will be saved and later on
applied to the given algorithm. This ensures that every SLAM configuration is confronted
with the exact same sensor data and therefore, the results can be compared directly.

The acquired camera poses from the estimated SLAM trajectory of the robot are used
to perform a volume integration using a truncated signed distance function. From each
reconstructed scene the objects are extracted, registered with a corresponding high quality
object model, and compared using point-to-point distances. The object extraction is
done by removing the supporting plane and combining the multiple depth images of
the object. The reconstructed 3D models obtained have then to be clustered to get the
single objects before comparing to their high-quality counterparts. Finally the quality
of the estimated SLAM trajectory can be concluded from the error magnitude of the
point-to-point comparison. To get significant results several different experiments are
set up. These setups take into account different camera angles, object count, or feature
richness.

This comparison will certainly not yield the same accuracy as a direct comparison to the

30

3.1. SLAM Evaluation

trajectories ground truth using external sensors, but it is way more flexible, simpler as
well as cheaper due to availability of high quality object models.

3.1.2 Method Selection and Evaluation

Even though the visual odometry component is the central tasks to be measured, other
sensors can be used to increase the robustness of the SLAM algorithm. If a robot is
used for tasks like object grasping or tight maneuvering, some sensors might acquire
more accurate data than others, so the robot should use all available ones to increase
the precision. Therefore, we include the planar LiDAR data to the input of some of the
methods to evaluate more diverse sensor setups, suitable for a variety of tasks.

One necessity for the chosen algorithms is the availability of an open source implementation
for ROS. The implementation of every algorithm from scratch for the HSR would go
beyond the scope of this thesis. There is already a comprehensible list of open source
SLAM implementation on Github [Int21].

The following SLAM configuration were used to extract pose information

1. Hector SLAM [KMvSK11]

2. RTAB-Map [LM19] visual only

3. RTAB-Map [LM19] visual+laser scan

4. Colmap [SF16] [SZPF16]

Hector SLAM is a purely LiDAR based SLAM and available as standard ROS node for
ROS Noetic and Melodic. It is used as baseline for the comparisons, since it only relies
on the laser scanner and is therefore independent of camera position, number of objects,
and object type. Also, changes in lighting are hardly influencing a purely LiDAR based
method.

A second SLAM is RTAB-Map which is a representative of feature based visual SLAMs
and has a great compatibility with ROS. One advantage of RTAB-Map is the possibility to
combine a variety of sensors. This feature is also used in this thesis, because RTAB-Map
is used with a RGB-D only configuration as well as in a RGB-D plus LiDAR configuration.
This second configuration should make this feature based visual SLAM more robust to
viewing angles, object types, and lighting.

The last algorithm used in the comparison is Colmap which is strictly speaking not a
SLAM method, but a SfM as explained in Section 2.2.4. Henceforth it needs all of the
input images at once and can therefore not work with live data. Nevertheless the general
functionality is the same and as SfM algorithm it gives a good contrast to RTAB-Map
which is a feature based SLAM. One difference of Colmap is that it does not take the
image depth as input. Therefore, the pose estimation relies only on the RGB images of

31

3. SLAM Evaluation through 3D Object Reconstruction

the RGB-D camera which introduces a scaling problem. More details on this problem
are elaborated in the following section.

Pose Generation from Colmap

As already explained in Section 2.2.4 a SfM method takes all the RGB images from all
the viewing angles at once and runs them through the SfM pipeline shown in Figure 2.7.
The output of this pipeline is a sparse 3D model of the given scene. This sparse model is
exported as a text document which consists of the camera poses, the 3D keypoints, as
well as the camera intrinsics. Since the camera intrinsics of the RGB-D camera used on
the HSR are already known, they are fixed beforehand and are not estimated by Colmap.

Due to the missing depth info the scale of the camera poses are only correct relative
to each other, but do not have a correct absolute value. This poses a problem when
employing a 3D reconstruction using the RGB-D images from the rosbags. Therefore the
scale factor for each reconstruction must be estimated and applied to the camera poses
before attempting a reconstruction. This is done by taking two RGB-D images n steps
away from each other, calculate the corresponding PCDs and register those. With this
the transformation from the first to the second PCD can be calculated. In a second step
the transformation between the two corresponding 2D images is calculated by using the
camera poses extracted from Colmap. The ratio of the Frobenius norm of the translation
estimated from the PCDs and the translation from Colmap gives the desired scaling
factor:

s =
||tpcd||

||tcol||
(3.1)

Where s is the scale factor, tpcd the translation between two sequential PCDs, and tcol

the translation between two Colmap poses. This procedure is done over all images and
the median is then used as end result. Unfortunately, this scaling factor does not give a
result of the desired quality and, therefore a correction factor is applied to the depth
values from the RGB-D images, and some of the scale values are adjusted manually to
improve the reconstruction result.

3.2 Object Reconstruction

The details of the modules used to reconstruct objects from the SLAM poses are presented
here. This section explains how these modules are interfacing with each other and how
the pipeline looks like.

Figure 3.1 shows a block diagram of all the modules used in this thesis and their interfaces
to each other.

32

3.2. Object Reconstruction

Sensor Data SLAM

3D-Reconstruction

Select
Table-Plane

Extraction

Volume

Integration

Clustering
Filter

Outliers
Evaluation

data.bag

data.bag

pose.txt

pcd.ply

ROS-PCD O3D-RGBD

pcd.ply pcd.ply

Figure 3.1: Object reconstruction pipeline from data collection to result evaluation

3.2.1 Data Collection

Since the HSR is running ROS all the modules are implemented in the form of ROS
modules. The task requires no real-time capability, therefore relaxing the performance
constraints of the system. Both the platform and the HSR use the same OS, namely
Ubuntu 20.04 with ROS Noetic.

There are several parts which are needed to get from the raw sensor recordings to a 3D
object. More details to these modules can be found in Sections 3.2.2-3.2.4.

The pipeline starts with the data collection on the HSR which is saved in ROS bags. For
each test case one bag with seven topics was recorded, their details can be observed in
table 3.1.

Topic ROS Type

/hsrb/base_scan sensor_msgs/LaserScan
/hsrb/head_rgbd_sensor/depth_registered/camera_info sensor_msgs/CameraInfo
/hsrb/head_rgbd_sensor/depth_registered/image_rect_raw sensor_msgs/Image
/hsrb/head_rgbd_sensor/rgb/camera_info sensor_msgs/CameraInfo
/hsrb/head_rgbd_sensor/rgb/image_rect_color sensor_msgs/Image
/tf tf2_msgs/TFMessage
/tf_satic tf2_msgs/TFMessage

Table 3.1: Collected ROS topics with corresponding types

The RGB image in image_rect_color has three color channels with a depth of 8-bit each
and a resolution of 640 × 480. The depth information in image_rect_raw comes also in

33

3. SLAM Evaluation through 3D Object Reconstruction

the form of an image, but with only one 16-bit grayscale channel which encodes the depth
in meters. Both of those image topics are accompanied by camera_info topics. Finally
the proprioceptive information of the HSR is saved with the topics tf and tf_static which
is particularly useful to recover the relative pose of the cameras and LiDAR during the
trajectory execution.

Image data collection has been carried out using only an RGB-D camera. This has been
done for two reasons. An RGB-D camera achieves generally a better precision than a
stereo camera when measuring distances, especially when the distance to the objects gets
larger [Rod21]. The second reason is a limitation of the used robot platform. Because
of the robots design, the arm with gripper is always in the field of view of the stereo
camera. There is the possibility to lower the arm, but then the distance to the objects of
interest increases significantly.

(a) RGB image (b) Depth image (c) Pointcloud

Figure 3.2: RGB-D sensor data

Subfigure 3.2a and 3.2b show the actual sensor data of the RGB-D camera and Subfigure
3.2c shows the resulting PCD. So Figure 3.2 shows the output of one view of one test
case.

The bag file is used as input for the SLAM algorithms, and they are run with different
configurations. Each run of a SLAM yields some sort of database output from which the
poses can be extracted. These poses are then saved in csv format as text file and can be
used as input for the 3D reconstruction.

The 3D reconstruction is one short pipeline in itself which consists of three functions.
Firstly, the right images from the ROS bag files must be extracted by the use of the pose
data from the SLAM algorithm. This is done by using ROS time stamps which have a
resolution up until the nano second range.

When a RGB-D image with valid time stamp and pose is reached, the rgb- and depth
part of the image are converted into a ROS PCD. This PCD is then given as argument
to the Table-Plane-Extraction service which returns ROS PCDs for the objects.

Those PCDs are converted to open3d RGB-D objects which can be used in the TSDF
integration and receive the reconstructed 3D object. The reconstructed objects are saved
as standard PCD in .ply format for further processing.

34

3.2. Object Reconstruction

Figure 3.3: Finished reconstruction of the baseball+canister test case with RTAB-Map
visual only and camera lift down

An example of a finished reconstruction is presented in Figure 3.3. All the camera views
have been integrated using their respective poses and the table plane has been extracted
for every scene pointcloud. In this finished reconstruction both objects are in the same
PCD, and there are still artefacts from the table plane. The final step required before
object comparison and result evaluation is to cluster and filter out the outliers from the
reconstructed PCD. Two scripts are employed to accomplish this, both of which output
a PCD in .ply format.

(a) Baseball (b) Canister

Figure 3.4: Clustered and filtered objects

The final result of the object reconstruction can be observed in Figure 3.4. Through
clustering and filtering the artefacts were removed and the PCDs separated in two
individual pointclouds. Both objects can now be evaluated in order to judge the quality
of the SLAM pose estimation. The details about the result evaluation and the particular
experiment setups are explained in Chapter 4.

35

3. SLAM Evaluation through 3D Object Reconstruction

3.2.2 Table Plane Extraction

In order to separate the objects on the desk from the surroundings and from the other
objects respectively a plane extractor is needed. Since the table is completely flat,
Random Sample Consensus (RANSAC) [FB81] can be used to find the dominant plane.

The institute already provides a ROS node for this task [vt22]. This module uses already
several details known about the test environment. First, all points below the table surface
are removed since the geometry of the table is fixed and known to the node. Moreover,
the position of the camera relative to the floor is obtained through the /tf tree. Therefore,
results obtained from RANSAC that are not parallel to the table surface are discarded.
Once all the points which are not above the table plane are removed, the remaining
points are clustered with the use of DBSCAN. Finally, the point cloud of each object on
the table is returned.

3.2.3 Object Reconstruction

For the object reconstruction the Truncated Signed Distance Function (TSDF) from
Open3d [ZPK18] is used. A TSDF volume is created for each object, and all the views
are integrated to said volume using the poses extracted from SLAM. Furthermore, the
volume generation requires two tunable parameters for the reconstruction:

1. Voxel Length: Specifies the length of a voxel. The smaller the voxel length,
the higher the resolution of the resulting 3D image. One big drawback of a small
voxel length is an increase in computational overhead as well as memory usage as
explained in section 2.3.1. Furthermore, with a shorter voxel length the result is
more prone to noise induced by the depth sensor. For the 3D models reconstructed
in this project, a voxel length of 0.0005m has been chosen.

2. SDF Truncation: Is the truncation value for the SDF. A small truncation
value reduces the error when performing the volumetric integration, due to a finer
quantization. But as described in Section 2.3.1, the SDF truncation value should
also be chosen according to the noise level. If the value is set too small, the SDF
algorithm has less freedom when matching the PCDs which can drastically worsen
the result. Signs of a too small truncation value are double edges or double surfaces
in the reconstructed value. If the value is too large, the algorithm has more freedom
when integrating. Henceforth the integrated surfaces can become distorted and
contain bulges. The truncation value for this project was chosen as 0.0175m.

A good combination for those parameters was found through trial-and-error. Several 3D
models with different parameters were reconstructed and the results inspected visually.
Once a good trade-off between resolution, noise, and surface quality was found, the values
were fixed for all further experiments.

36

3.2. Object Reconstruction

3.2.4 Clustering

Following a successful reconstruction step, the resulting pointclouds contain several
objects as well as artefacts of the table surface (see Figure 3.3). To get rid of these
artefacts and split off each object into its own point cloud, a clustering is necessary.
In this project DBSCAN [EKS+96] from the open3d library is used which is a density-
based clustering algorithm. Schubert et al. [SSE+17] argue in their article why and how
DBSCAN is still a good and important algorithm.

There are two reasons why this algorithm in particular was chosen for this project. Firstly,
the simplicity of the density based clustering only has two tunable parameters which are
very intuitive to set:

1. eps: The ϵ value denotes the distance each point in a cluster must have to a certain
number of neighbours in order to still belong to said cluster. The smaller this value
is chosen, the finer the clusters will get. If it is too small, a lot of clusters will be
split up. If the value is chosen too large, different clusters are grouped together.
Furthermore, a too large eps value results in a lot of memory usage when executing
the clustering. When the pointclouds are as dense as in this project, the calculation
of the eps-neighbourhood can easily use up more than 16GB of memory when the
eps value is not chosen carefully. For the clustering in this project eps was chosen
as 0.0085.

2. min_points: Is the number of minimum points required to form a cluster. The
value for min_points was chosen as 10.

The definition of the two parameters is not completely equal in the open3d version used
in this project and the original paper [EKS+96].

The second reason this clustering was chosen is the open3d implementation. It can be used
directly with the point clouds, and there is no compatibility or additional configuration
necessary.

After the point clouds are clustered, the statistical outliers are removed from the image.
The Open3d function for this takes two parameters the number of neighbours which
are taken into accounts for the average distance calculation and the maximal standard
deviation from the average distance. The parameters for this filter are chosen to be
non-aggressive, because the purpose of this function is not to change the 3D object, but
to remove the remaining artefacts which would influence the point-to-point distance
measurement.

37

CHAPTER 4
Experiments and Results

The general method and the implementation details of the project accompanying this
thesis have already been introduced in Chapter 3. Section 4.1 of this chapter gives an
in-depth look into the experiment setup and Section 4.2 depicts the final results of this
project. A discussion of the results, accomplishments, and limitations of the proposed
method can be found in Section 4.3.

4.1 Experiment Setup

As already explained in Section 3.1.1 the objects for each test case were arranged on an
elevated surface around which the HSR could move. A simple beige side table which is
45cm high and has a 55 × 55cm square surface was used.

Figure 4.1: Experiment setup with HSR, elevator up and down as well as picture from
behind

39

4. Experiments and Results

Figure 4.1 shows the room in which the experiments were conducted with the cracker
box on the desk. The leftmost and the middle image show the HSR looking down on the
object of interest once in the elevator down and once in the elevator up position. The
right image shows a picture in the other direction with the big window for natural light
as well the desks which also influence the SLAM results due to additional features.

4.1.1 Objects

The object selection is a crucial part in designing the experiment. Therefore, it is essential
to choose objects with varying shapes, sizes, colors, and surface textures. Moreover, the
objects should be common enough to ensure that the outcomes are comparable to those
of other researchers. The YCB [CSB+17] dataset provides a broad range of objects that
meet most of these requirements. Additionally, several objects with high-quality 3D
object models are available at the institute. Ultimately, the following six test subjects
were chosen for the experiments:

1. Cracker box (YCB)

2. Mustard (YCB)

3. Baseball (YCB)

4. Canister (Institute)

5. Champagne glass white (Institute)

6. Champagne glass transparent (Institute)

(a) Cracker box (b) Mustard (c) Baseball (d) Canister (e) Glass

Figure 4.2: Reference objects

Figure 4.2 displays images of the reference objects used in this study. The cracker box and
mustard bottle are both common objects that possess large size, rich color, and surface
information, and thus are expected to yield good pose data. Conversely, the baseball has
relatively few features due to its small size, smooth surface, and lack of significant color
information, making 3D reconstruction more challenging. Similarly, the canister has very
few discernible features, aside from small tubes at the top, and is entirely gray in color.
Of particular interest is the glass, as two versions were used, a matte white version that

40

4.1. Experiment Setup

is not translucent and a transparent version. Compared to the other objects, the glass
has the worst color and surface information, and is expected to result in relatively poor
3D reconstruction accuracy.

Before commencing experiments, it was hypothesized that the objects could be ranked
in terms of 3D reconstruction difficulty as shown in Figure 4.2, with the cracker box
(Figure 4.2a) being the easiest object to reconstruct and the transparent glass (Figure
4.2e) being the most challenging.

4.1.2 Number of Objects

As just explained it is expected that the quality of the estimated trajectory and thereby
the quality of the 3D reconstruction is proportional to the feature richness of the object
of interest. The number of features can of course be increased by increasing the number
of objects on the table.

The idea is to increase the 3D reconstruction quality of a small featureless object like for
example the baseball by adding additional objects like the cracker box or the mustard
and thereby improving the pose estimation.

Of course more objects mean more occlusion which should also be avoided, because this
would then create holes in the reconstructed objects which would aggravate the object
comparison.

4.1.3 Robot Position

The object reconstruction quality is not only dependent on the feature richness of the
objects and the algorithm used, but also on a variety of external parameters. Two of the
most prominent parameters are the robot position and the lighting source. The impact
of the lighting source is discussed in Section 4.1.4.

The HSR has an elevator where the head position can be adjusted vertically by 32cm

which can change the pose estimation as well as the picture quality drastically. For the
experiments two different lift positions were chosen, once the bottom position which
places the camera at 97cm of the ground and once at the fully up position which places
the camera at a height of 127cm. When the elevator is at the up position, the head of
the HSR must be tilted further to look directly on the desk. Therefore, when measuring
the camera position the lift height of 32cm gets reduced to a difference of 30cm.

The camera position in vertical direction changes two aspects of the 3D reconstruction.
Firstly, the viewing angle on the objects is changed, which also changes the occlusions.
When the lift is at the bottom position, the occlusions for single objects are generally less,
if the number of objects is increased, however, the occlusions can occur more frequently.
With a raised lift, the occlusions for single objects (e.g. Baseball) can intensify, but due
to the steeper viewing angle the occlusion induced through multiple objects decreases.

41

4. Experiments and Results

The second difference emerges in the pose estimation. Through the shallow viewing angle
of the camera in the bottom position a lot of the surrounding office is also in the frame,
which can enhance the SLAM performance. Additional feature points detected in the
background can make a big difference, when the test object has poor features. This
number of background features decreases when using a steeper viewing angle through a
raised lift.

4.1.4 Lighting

Lighting is one of the most important factors when working with image capturing or
video recording. Since the pose estimation depends heavily on the image quality, the
quality of the light source is very interesting. In the ideal case there is a large areal
diffuse light source which would illuminate the objects from all sides equally and would
reduce shadows nearly completely.

The lab where all the experiments for this project were conducted is unfortunately very
limited in terms of different lighting methods. There are two fluorescent tubes on the
ceiling and a large window. For this reason only two lighting scenarios are sensible.
Firstly, an experiment with controlled light, which means the window shutter for the large
Window closed and both fluorescent tubes turned on. The second set of experiments
could be taken with natural light, which means turned off room light and fully opened
window shutters.

Since the results of experiments with natural light fluctuate heavily due to the dependence
on day time and weather condition, it was decided to omit this test case. Furthermore,
the image quality does not change noticeably during daytime because of the window size,
bright room, the automatic white balancing, and exposure time selection.

4.1.5 Experiment Runs

According to the above mentioned criteria a number of test cases were defined. As already
discussed in Section 4.1.4, all of the data was collected using controlled light. This leads
to the following test cases:

1. Single objects & lift down: Each of the objects was placed in the middle of the
table, and the robot was moved around the desk. For this set of test the lift and
thereby the camera was at the bottom position.

2. Single objects & lift up: The same was repeated with all objects, but the camera
lift up.

3. Multiple objects: Three test cases were created with two or three objects on the
table, namely:

a) baseball & canister

b) cracker box & mustard

42

4.2. Results

c) baseball & canister & cracker box

Each of those tests was conducted with the camera lift down.

The trajectory of the HSR was created by hand using a remote control to guide it around
the table and retrieve a video sequence of ≈ 1 − 1.5min per test case.

4.2 Results

Figures 4.3 to 4.5 show three examples of how the reconstructed objects and the compar-
isons look like. The pictures of the RGB objects as well as the Cloud-to-Cloud (C2C)
scalar field objects were taken with a software called CloudCompare. This software was
used for quick manual comparisons and debugging. The actual comparisons that are
presented below were generated with a python pipeline which is purely based on open3d,
numpy and matplotlib.

(a) RGB object (b) C2C scalar field

Figure 4.3: Results for 3D reconstruction on the cracker box

The comparison was taken from reconstructed image to optimal image which means that,
if there are points missing in the reconstructed object, like in Figure 4.3, the cracker
box bottom, it does not influence the comparison. Each object is registered with its
corresponding optimal object (see Figure 4.2), and a point to point (P2P) comparison is
conducted. The result of this P2P comparison is given in meters, which corresponds to
the distance of any given point to the optimal one. In the example figures the results
can be seen in the C2C scalar field where those distances are encoded with colors.

At the bottom of each reconstructed object a kind of ragged edge can be observed,
especially the baseball in Figure 4.5 shows this behavior very prominently. Due to the

43

4. Experiments and Results

(a) RGB object (b) C2C scalar field

Figure 4.4: Results for 3D reconstruction on the mustard

(a) RGB object (b) C2C scalar field

Figure 4.5: Results for 3D reconstruction on the baseball

limited depth accuracy of the used RGB-D camera and image noise, the objects and the
table plane fuse together and the table plane extractor cannot completely remove all
the points which belong to the table. Since the baseball is rather small and completely
round, this problem intensifies.

Unfortunately, the object reconstruction did not work for the transparent version of the
glass (Figure 4.2e). Due to limitations of the used RGB-D camera only a few points
per view are captured which is not enough for the volume integration. Therefore, the

44

4.2. Results

transparent glass object is excluded from the following evaluations. The matte version
of the glass is detected to a large part, but only with the camera in the down position.
With a raised lift the reconstruction result is again not usable for further comparison.

(a) Elevator down (b) Elevator up

Figure 4.6: Results of 3D object reconstruction on the matte glass with RTAB-Map
visual only

Figure 4.6 illustrates the result of an object reconstruction using only the matte version
of the glass from both camera positions. The reconstruction result with the camera down
in Figure 4.6a is good enough for further comparison. The missing glass bottom does not
influence the evaluation, since the object comparison is done from reconstructed object
to optimal object. Issuing the reconstruction with an elevated camera the results become
completely unusable, as can be observed in Figure 4.6b.

The diagrams in Figures 4.7 to 4.11 illustrate the results of this thesis. On the x-axis of
each diagram, the distance of each point to the optimal one is depicted. The range of
the x-axis ends at 15mm, as the error of most points is below this threshold. On the
other hand, the y-axis displays the number of points at each distance. Since the number
of points per object varies due to their size, the y-axis is normalized and presented in
percentage. Each curve corresponds to a cumulative histogram, which starts at 0% and
increases up to 100%. Once the distance reaches 15mm, each curve jumps to 100%,
and the height of this jump is proportional to the number of points that have an error
larger than 15mm. The distance resolution for each curve is 0.0293mm, considering
that the histograms were generated using 512 bins. The speed at which a curve reaches
100% reflects the quality of the corresponding reconstructed object. A faster approach
to reaching the maximum value indicates a better reconstruction quality and thereby a
more accurate SLAM trajectory.

4.2.1 Single Object Comparison

The Figures in 4.7 show the results when placing a single object on the table. The
experiment has been conducted with all five objects (see Figure 4.2), all four pose

45

4. Experiments and Results

estimation configurations, and the elevator in the down position.

(a) Average (b) Cracker box

(c) Mustard (d) Baseball

(e) Canister (f) Glass

Figure 4.7: Single object comparison

As can be seen, the results of all the reconstruction configurations are relatively close
together. The errors of all the diagrams are to a large part below 15mm, the worst case
being Hector SLAM with the canister object in Figure 4.7c where less than 96% of the
points have an error below this threshold. This worst case, however, is not caused by the

46

4.2. Results

canister object itself, since Hector SLAM is a LiDAR only method. The quality of this
result is most probably caused by some unfortunate robot trajectory which hampers the
localization.

hector rtabmap_viz rtabmap_full colmap Avg

Number of points with an error below 5mm in percent
Cracker box 75.84 92.58 92.33 93.61 88.59
Mustard 70.58 76.54 90.59 89.92 81.91
Baseball 72.21 85.87 81.12 79.31 79.63
Canister 67.18 95.20 95.55 96.92 88.71
Glass 67.40 83.71 80.10 81.64 78.21
Avg 70.64 86.78 87.94 88.28 83.41

Number of points with error below 7mm in percent
Cracker box 89.38 98.36 98.27 98.46 96.12
Mustard 81.39 89.66 92.81 92.70 89.14
Baseball 82.58 92.00 87.63 89.06 87.82
Canister 81.23 99.80 99.11 99.20 94.84
Glass 83.85 92.46 86.86 89.62 88.20
Avg 83.69 94.46 92.94 93.81 91.22

Number of points with error below 12mm in percent
Cracker box 97.82 99.96 99.78 99.95 99.38
Mustard 94.86 95.70 96.09 97.79 96.11
Baseball 96.73 98.55 95.55 97.41 97.06
Canister 93.49 100.00 100.00 99.96 98.36
Glass 96.57 99.92 97.17 99.33 98.25
Avg 95.89 98.83 97.72 98.89 97.83

Table 4.1: Values for thresholds 5mm, 7mm and 12mm from the diagrams in Figure 4.7

The number of points with an error below the thresholds 5mm, 7mm and 12mm has
been summarized in Table 4.1. This table contains the same results as Figure 4.7 in a
numerical form. It can be seen that apart from two exceptions, with 76.54% and 79.31%,
more than 80% of the points have an error below 5mm when employing visual SLAM
methods or SfM. This drops to around 70% when using no visual data but only LiDAR
with Hector SLAM. When looking at a threshold of 7mm every algorithm with every
objects performs above 80% with RTAB-Map with LiDAR data on the canister even
reaching a maximum of 99.80%. After the threshold is further increased to 12mm, all
the VSLAM methods perform above 95%, only Hector SLAM has two objects with a
lower performance. Furthermore, the Table 4.1 shows the average performance for each
object which cannot be read directly from the diagrams.

Overall, the ranking of the pose estimation methods is plausible, but not quite as
expected. The RTAB-Map with additional LiDAR measurements outperforms the visual
only RTAB-Map, but only by a small margin. It was expected that the additional LiDAR

47

4. Experiments and Results

measurements would influence the quality of the estimated trajectory and thereby the
3D object quality more. Furthermore, it was anticipated that Colmap would outperform
the SLAM methods, since it works on all the available images at once which gives it a
considerable advantage over SLAM which works on live data. However, this is not the case,
the quality of the trajectory estimated by SfM is approximately equal to RTAB-Map with
LiDAR information if not worse. This could stem from the fact that only one RGB image
per second was used for the camera pose estimate in Colmap. Furthermore, the scale
factors which are necessary for the reconstruction were tuned manually which is certainly
not optimal. Another explanation is that the pose estimation with RTAB-Map as well as
with Colmap have reached the limit of the RGB-D camera in terms of depth accuracy,
and the errors are induced only by sensor noise. The significantly worse performance
of Hector SLAM fully met the expectations, since it only uses the LiDAR without any
visual data.

The predictions made in Section 4.1.1 were fulfilled, and the best reconstruction quality
was achieved by using the cracker box in Figure 4.7b and got worse for every following
object except for the canister. It was expected that the canister due to its smooth surface
lack of features would perform in the vicinity of the glass or the baseball but it performs
as good as the cracker box. But overall, it seems that SLAM as well as SfM could make
significantly better pose estimations due to the feature richness of the bigger objects.

One especially noteworthy object in the single object comparison is the mustard bottle in
Figure 4.7c. In this reconstruction Hector SLAM outperforms the visual RTAB-Map for
the first 65% of the points and furthermore, the visual only SLAM scores considerably
worse than the SLAMs with LiDAR data or SfM. After reviewing the video sequence
saved in the rosbag, it was discovered that the robot motion is very jerky. Furthermore,
a person is walking through the robot’s field of view during the recording which is a
dynamical object to SLAM. It seems that the additional LiDAR data or the SfM approach
respectively eradicates this poor sensor data, but the visual only approach suffers.

4.2.2 Impact of Elevator

The results in Figure 4.8 show the impact of the camera position on the quality of the
estimated trajectory. In Section 4.1.3 it was predicted that the overall pose estimation
would be better with the camera lift position down.

The results presented here suggest otherwise. The cracker box in Figure 4.8b and the
baseball in Figure 4.8d confirm the expectations. With the cracker box being a rather
big object and having a lot of features the camera height does not have a noteworthy
impact on the resulting poses. The baseball on the other hand is very small and round
with very little features, therefore, the down position works considerably better. Due to
the features introduced by the background visible caused by the steep viewing angle the
SLAM performance is improved. The trouble case is the reconstruction of the mustard
shown in Figure 4.8c. In this test case the quality of the estimated trajectory with the
elevator up position outperforms the down position substantially. As already stated in

48

4.2. Results

(a) Average (b) Cracker box

(c) Mustard (d) Baseball

Figure 4.8: Impact of Elevator with rtabmap_viz

Section 4.2.1 this probably stems from the jerky video sequence as well as the person
walking through the field of view.

Figure 4.9 shows the result with RTAB-Map and additional LiDAR measurements. When
comparing 4.8 and 4.9 the differences are only marginal. In the average case shown in
Figure 4.9a both cases perform slightly better and are closer together. Furthermore, the
performance of the mustard bottle test case is significantly better than without LiDAR
data. Overall, the elevated camera position still outperforms the test cases with the
camera down position.

It is interesting to see that even with this difficult condition the SLAM algorithm is still
able to estimate the trajectory within an reasonable framework.

49

4. Experiments and Results

(a) Average (b) Cracker box

(c) Mustard (d) Baseball

Figure 4.9: Impact of Elevator with rtabmap_full

4.2.3 Impact of Number of Objects

The last set of test cases presented in Figure 4.10 shows the impact of different numbers
of objects on the estimated trajectory. As explained in Section 4.1.2 the quality of the
estimated trajectory should increase with the number of objects.

Again the predictions are not completely true for this test case. The test case was taken
once with every single object, which means these are the same results as in Figure 4.7,
once with two objects (baseball+canister and cracker box+mustard) and once with all
three objects (baseball+canister+cracker box).

When inspecting the average diagram in Figure 4.10a the reconstructions with different
number of objects do not really have an influence on the resulting quality. With the
cracker box in Figure 4.10b the influence of the number of objects is negligible, which is
not surprising, since the cracker box already has a lot of features. For the canister in
Figure 4.10d the influence is also only marginal, which would contradict the predictions,
since the canister is a smooth gray featureless object. Only the baseball in Figure 4.10c
shows a difference with the number objects, which makes sense considering the poor
features on the baseball. On the other hand it was not expected that the two-object test

50

4.2. Results

(a) Average (b) Cracker box

(c) Baseball (d) Canister

Figure 4.10: Impact of multiple objects with rtabmap_viz

case outperforms the three-object test case. This could also stem from the data quality
in the rosbag.

Figure 4.11 shows again RTAB-Map with additional LiDAR data. Similar as with the
elevator test cases the result between RTAB-Map visual only and full RTAB-Map are
practically the same. For the baseball test case in Figure 4.11c the two and three objects
curves are in the expected order in contrast to Figure 4.11c where the two figure test
case outperforms the one with three figures. Nevertheless, the difference with a peak at
3% is so minimal that it is hardly noteworthy.

Overall, it can be said based on the results that the features of the background are more
important for the trajectory estimation than the number of objects. Moreover, for the
test cases with varying camera position as well as for the multiple object test cases it can
be said, that the additional LiDAR data hardly makes a difference at all.

51

4. Experiments and Results

(a) Average (b) Cracker box

(c) Baseball (d) Canister

Figure 4.11: Impact of multiple objects with rtabmap_full

4.3 Evaluation of Accomplishments and Limitations

In the final section of this chapter, the results of the conducted experiments are summa-
rized. Answers regarding the accomplishments as well as about the limitations of the
proposed method are discussed and further outlined.

4.3.1 Object Grasping Evaluation

Since one particularly important task of human support robots is the manipulation of
objects in their operational environment, the applicability in this area is very interesting.
The question is, if the quality of the reconstructed object models suffices for novel grasping
techniques. For this reason the methods proposed by ten Pas et al. [TPGSP17] were
used to test the possible grasping solutions for some of the reconstructed objects.

The objects used for grasp pose detection where the cracker box, the mustard, and the
baseball. The pose estimation was done with the RTAB-Map visual only SLAM and the
camera in the down position. Figures 4.12 and 4.13 show possible grasping solutions
generated by an open source implementation of the proposed paper [mar22].

52

4.3. Evaluation of Accomplishments and Limitations

Figure 4.12: Grasping solutions from the front

Figure 4.13: Grasping solutions from the top

The gripper arm is shown in the position prior to closing. The solutions produced for
the cracker box are mostly usable. There are some attempts to grasp the box diagonally,
but in general the solutions are reasonable. The same applies for the baseball although
it is smaller in size. In the case of the mustard there are some attempts which would
obviously fail, but nevertheless, the grasp pose detector finds some good solutions overall.

In general it can be said that the errors observed in the evaluation suggest that the
reconstructed object models are sufficient for grasp pose detection. Furthermore, the
results presented in Figures 4.12 and 4.13 strengthen this assessment.

4.3.2 Sensor Limitations

In Chapters 3 and 4 the depth noise of the used RGB-D camera is mentioned several
times. Nguyen et al. [NIL12] wrote a comprehensive paper where the axial as well as the
lateral noise of the Kinect sensor is modeled empirically.

Figure 4.14 shows a diagram from said paper where both the axial and lateral noise
components are displayed dependent on z-distance and viewing angle. It can be observed
that the lateral noise increases linearly with increasing z-distance of the object, while the
axial noise changes in a quadratic manner. In the range 0.5m to 1.5m the lateral noise

53

4. Experiments and Results

Figure 4.14: Lateral and axial noise model of the Kinect sensor from [NIL12]

component has a maximum of around 4mm and the axial noise component of around
2mm. This corresponds well with the findings from Section 4.2. Around 80% of the
points of each reconstruction employing the depth sensor have an error below 5mm.
This leads to the conclusion that a large part of the inaccuracies in the SLAM poses,
and therefore in the reconstruction quality, do indeed stem from the RGB-D sensor.
Furthermore, it can be assumed that a reduction in sensor noise, through the use of a
different depth sensor, would improve the trajectory estimation, while still using the
same methods as employed in this thesis.

A limitation which can also be traced back to the Kinect sensor is the detection of
transparent surfaces. As explained in 4.2 the champagne glass used in the evaluation
had to be coated with white paint in order to get meaningful depth data.

4.3.3 Limitations of the Performed Experiments

For all the experiments conducted, the HSR is driving a full circle around each object
setup and collects detailed sensor information from all viewing angles. This is, however,
not always possible when deploying a robot in real live scenarios. By always completing
the full cycle the object is not only viewed from all possible sides, but the loop closing of
the employed SLAM can improve the result.

Nevertheless, nothing of the data produced in this project suggests that the proposed
method, to evaluate the a trajectory by reconstructing a 3D model, should not work when
the circle around the object setup is not completed. If only a few viewing angles of the
object of interest are collected, a reconstruction can still be executed. Since the evaluation
used in the experiments compares the reconstructed object against the reference, the

54

4.3. Evaluation of Accomplishments and Limitations

missing 3D points of the PCD should not hamper the evaluation. However, there is
the possibility that through those missing points the object registration becomes more
difficult. Furthermore, if the reconstructed models should be used for object grasping,
the number of possible solutions is limited in contrast to using the reconstruction of the
whole object.

For SLAM to work as expected in the proposed setup, the scene has to be static. Dynamic
objects inhibt the quality of the estimated trajectory drastically. This can for example
be observed in Figure 4.7d. In this test case, a person is walking through the field of
view for a brief moment, and the quality of the estimated trajectory already decreases
substantially. This can, however, be countered by employing additional sensors for the
evaluation. The same sensor data (with the person walking through the scene) was used
for a RTAB-Map run with additional LiDAR data, and the quality increased to the same
level as the static test cases shown in figure 4.7.

4.3.4 Engineering Constraints

Finally, some remarks about the general implementation of this project: While SLAM is
a crucial algorithm for various mobile robot tasks, it suffers from a lack of compatibility
and documentation. Although a large number of SLAM and VSLAM implementations
are available, many of them are difficult to build and use. However, if ROS packages
are available, the difficulty of employing them is significantly reduced. Therefore, the
SLAM community should concentrate on improving documentation and software version
compatibility to facilitate further research and development in the field of mobile robotics
and navigation.

In summary, the experiments conducted in this thesis met the expectations in general.
The evaluation of the pose estimation using SLAM with RGB-D sensor data and 3D
object reconstruction was successful, with most of the distance errors originating from
the depth noise of the Kinect. The reconstructed objects were accurate enough to be
used as input for a grasp pose detector. However, challenges arose when dealing with
transparent objects or dynamic scenes, which remained unresolved.

55

CHAPTER 5
Conclusion

The goal of thesis was to evaluate visual SLAM algorithms on the mobile robot platform
Toyota HSR and test the overall limits as well as the robustness against camera position
and object configurations. Since the procurement of a ground truth for each robot
trajectory requires an external room-level sensor array, it is not only complicated, but
also very expensive. Therefore, the evaluation of VSLAM is done through the notion
of 3D object reconstruction. In doing so the SLAM poses of each trajectory are used
to create a 3D object model with the use of a TSDF. Those reconstructed objects are
then compared against a high quality 3D object model from which the quality of the
SLAM trajectory can be inferred. For this method a lot of ground truth is available (e.g.
YCB dataset [CSB+17]) and therefore, it is simple and cheap in contrast to generating a
ground truth of the trajectory itself.

The accompanying project integrates such SLAM and SfM techniques on the HSR. For
the data collection, RGB as well as depth images were taken using the HSR’s RGB-D
camera. Furthermore, LiDAR data was recorded for a comprehensive comparison. Four
different algorithm configurations were used to estimate the trajectory on several different
test cases using a LiDAR only SLAM, a visual only SLAM, a combination of both as
well as a SfM method. An object reconstruction pipeline was implemented to generate
said 3D object reconstructions from the collected image data and the SLAM poses. The
quality of those reconstructed objects was then compared against high quality models
by registering them with the according ground truth object and issuing a point-to-point
distance comparison.

The results of this thesis have indeed shown that it is possible to infer the quality of the
robots trajectory by evaluating the corresponding reconstructed 3D object models. More
sensor information with additional LiDAR data or more feature-rich objects also resulted
in a better reconstruction quality. Therefore, it can be assumed that the pose estimate
has been more precise which leads to an overall better trajectory.

57

5. Conclusion

In general ∼ 80% of the points of each reconstructed point clouds have an error below
5mm using visual SLAM, going down to ∼ 70% when only employing a LiDAR sensor
(see Table 4.1). When increasing the number of objects or only using big and feature-rich
objects this number even increases. In terms of robustness the results speak in favour of
VSLAM. The camera position in z-direction as well as the number of objects influence
the results only marginally. The fluctuations in 3D object quality mostly stem from
differences in rosbag data quality. State-of-the-art visual SLAM methods can be used
for automated 3D modelling for most applications. If, for example, the objects should
be used in a grasping pipeline for everyday rigid objects like cracker boxes or mustard
bottles, errors in the vicinity of 5mm are certainly low enough to employ such techniques.
This can be observed in Figures 4.12 and 4.13. For high precision applications the error
of the chosen algorithms together with the limitations of the depth sensor available on
the HSR may be too large.

The presented method to evaluate estimated robot trajectories with the method of 3D
reconstruction has been proven to work. Furthermore, it has been shown that the SLAMs
on the HSR are robust in terms of vertical camera position, different object types, and
object setups. This method can be used to accelerate the research in the area of personal
robotics. The introduction of a fast and simple way to effectively evaluate trajectory
estimations without the need of expensive external sensor can be used, after a support
robot is deployed.

5.1 Outlook

Of course the work for researchers in this field is far from completed. Beside the further
development of additional SLAM and SfM methods, additional research platforms are
needed to test different algorithms for dissimilar application areas. Furthermore, the
method presented here is limited by the constraints of the depth sensor used, as explained
in Section 4.3.2. The low resolution of the Xtion PRO LIVE employed on the HSR limits
its ability to perform certain high precision tasks, which, in turn, limits the accuracy of
the trajectory quality estimation. Of course, RGB-D cameras are not the only possible
sensors for SLAM systems as stereo or even monocular cameras can be used. Depth
estimated with stereo cameras is less accurate than RGB-D, especially when the object
distance increases. Stereo depth estimation methods can also be used with monocular
cameras based on consecutive camera shots. A similar approach is already used in this
thesis with SfM which introduces a scaling problem explained in Section 3.1.2. Increasing
the accuracy of such depth estimation methods would be a good way to increase the
applicability of the proposed trajectory quality estimation. Finally, none of the depth
estimation methods are applicable to objects with non-lambertian surfaces. This includes
transparent and reflective objects, for which obtaining depth is very challenging. Methods
to estimate depth for such objects would enable the evaluation of trajectories for scenes
containing only such objects.

Further work can certainly extend the results of this thesis by adding additional SLAM

58

5.1. Outlook

methods, test cases in different environments, additional sensor information and different
object configurations. Another particularly interesting result would be to employ different
cameras and compare those to results of the Xtion PRO LIVE. The results acquired in
the experiments conducted suggest that further reconstruction quality is limited by the
RGB-D camera’s depth resolution as well as the depth noise. A direct comparison of the
evaluation methods proposed in this thesis against a direct trajectory comparison using
ground truth trajectories would also further deepen the knowledge gained by this thesis.

59

List of Figures

1.1 Number of operational industrial robots according to the IFR 1
1.2 Method to evaluate the SLAM trajectory using 3D reconstruction 3

2.1 Aperture problems for different image patches from [Sze22] 6
2.2 Image scale pyramid to produce DoG images [Low04] 7
2.3 Keypoint descriptors calculated from image gradients [Low04] 9
2.4 Feature matching metrics [Faw06] . 11
2.5 Example of a ROC [Sze22] . 12
2.6 Classic visual SLAM framework from Gao et al. [GZ21] 13
2.7 Pipeline of an incremental SfM algorithm [SF16] 21
2.8 Example of a ROS network topology [QCG+09] 25
2.9 Example of a tf tree taken from the ROS turtle tutorial [Foo13] 26

3.1 Object reconstruction pipeline from data collection to result evaluation . 33
3.2 RGB-D sensor data . 34
3.3 Finished reconstruction of the baseball+canister test case with RTAB-Map

visual only and camera lift down . 35
3.4 Clustered and filtered objects . 35

4.1 Experiment setup with HSR, elevator up and down as well as picture from
behind . 39

4.2 Reference objects . 40
4.3 Results for 3D reconstruction on the cracker box 43
4.4 Results for 3D reconstruction on the mustard 44
4.5 Results for 3D reconstruction on the baseball 44
4.6 Results of 3D object reconstruction on the matte glass with RTAB-Map visual

only . 45
4.7 Single object comparison . 46
4.8 Impact of Elevator with rtabmap_viz . 49
4.9 Impact of Elevator with rtabmap_full . 50
4.10 Impact of multiple objects with rtabmap_viz 51
4.11 Impact of multiple objects with rtabmap_full 52
4.12 Grasping solutions from the front . 53
4.13 Grasping solutions from the top . 53

61

4.14 Lateral and axial noise model of the Kinect sensor from [NIL12] 54

List of Tables

2.1 Relevant sensors and actuators on the HSR 24

3.1 Collected ROS topics with corresponding types 33

4.1 Values for thresholds 5mm, 7mm and 12mm from the diagrams in Figure 4.7 47

62

Bibliography

[AH16] Ali Ismail Awad and Mahmoud Hassaballah. Image feature detectors and
descriptors. Studies in Computational Intelligence. Springer International
Publishing, Cham, 2016.

[BB95] Steven S. Beauchemin and John L. Barron. The computation of optical
flow. ACM computing surveys (CSUR), 27(3):433–466, 1995.

[BNG+16] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern
Rehder, Sammy Omari, Markus W Achtelik, and Roland Siegwart. The
euroc micro aerial vehicle datasets. The International Journal of Robotics
Research, 35(10):1157–1163, 2016.

[BTVG06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up
robust features. In Aleš Leonardis, Horst Bischof, and Axel Pinz, editors,
Computer Vision – ECCV 2006, pages 404–417, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg.

[CCF+23] Filippo Cavallo, John-John Cabibihan, Laura Fiorini, Alessandra Sor-
rentino, Hongsheng He, Xiaorui Liu, Yoshio Matsumoto, and Shuzhi Sam
Ge. Social Robotics: 14th International Conference, ICSR 2022, Florence,
Italy, December 13–16, 2022, Proceedings, Part II, volume 13818. Springer
Nature, 2023.

[CER+21] Carlos Campos, Richard Elvira, Juan J. Gómez Rodríguez, José M. M.
Montiel, and Juan D. Tardós. Orb-slam3: An accurate open-source library
for visual, visual–inertial, and multimap slam. IEEE Transactions on
Robotics, 37(6):1874–1890, 2021.

[CL96] Brian Curless and Marc Levoy. A volumetric method for building complex
models from range images. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, pages 303–312, 1996.

[CLSF10] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
Brief: Binary robust independent elementary features. In Kostas Daniilidis,
Petros Maragos, and Nikos Paragios, editors, Computer Vision – ECCV
2010, pages 778–792, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

63

[CSB+17] Berk Calli, Arjun Singh, James Bruce, Aaron Walsman, Kurt Konolige,
Siddhartha Srinivasa, Pieter Abbeel, and Aaron M Dollar. Yale-cmu-
berkeley dataset for robotic manipulation research. The International
Journal of Robotics Research, 36(3):261–268, 2017.

[Cso97] Michael Csorba. Simultaneous localisation and map building. PhD thesis,
University of Oxford Oxford, 1997.

[EKS+96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In kdd, volume 96, pages 226–231, 1996.

[EZW+06] Mark Everingham, Andrew Zisserman, Christopher KI Williams, Luc
Van Gool, Moray Allan, Christopher M Bishop, Olivier Chapelle, Navneet
Dalal, Thomas Deselaers, Gyuri Dorkó, et al. The 2005 pascal visual object
classes challenge. In Machine Learning Challenges. Evaluating Predictive
Uncertainty, Visual Object Classification, and Recognising Tectual Entail-
ment: First PASCAL Machine Learning Challenges Workshop, MLCW
2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers, pages
117–176. Springer, 2006.

[Faw06] Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters,
27(8):861–874, 2006. ROC Analysis in Pattern Recognition.

[FB81] Martin A Fischler and Robert C Bolles. Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[FLB+23] Tim Field, Jeremy Leibs, James Bowman, Dirk Thomas, and Perron
Jacob. rosbag. http://wiki.ros.org/Bags, Febuary 2023.

[Foo13] Tully Foote. tf: The transform library. In 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA), pages 1–6, 2013.

[GZ21] Xiang Gao and Tao Zhang. Introduction to Visual SLAM : From Theory
to Practice. Springer Singapore Imprint: Springer, Singapore, 1st ed. 2021.
edition, 2021.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane,
Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-
Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020.

64

http://wiki.ros.org/Bags

[HS+88] Chris Harris, Mike Stephens, et al. A combined corner and edge detector.
In Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[IFR23] IFR. International federation of robotics. https://ifr.org/, 2023.

[Int21] IntRoLab. List of open source slam projects.
https://github.com/introlab/rtabmap/wiki/

List-of-Open-Source-SLAM-projects, July 2021.

[KMvSK11] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexible
and scalable slam system with full 3d motion estimation. In Proc. IEEE
International Symposium on Safety, Security and Rescue Robotics (SSRR).
IEEE, November 2011.

[Kre08] Verena Elisabeth Kremer. Quaternions and slerp. Embots. dfki.
de/doc/seminar_ca/Kremer_Quaternions. pdf, 2008.

[LCW+12] Jie Li, Lei Cheng, Huaiyu Wu, Ling Xiong, and Dongmei Wang. An
overview of the simultaneous localization and mapping on mobile robot. In
2012 Proceedings of International Conference on Modelling, Identification
and Control, pages 358–364, 2012.

[Lin94] Tony Lindeberg. Scale-space theory: A basic tool for analysing structures
at different scales. Journal of Applied Statistics, 21:224–270, 09 1994.

[LK81] Bruce D Lucas and Takeo Kanade. An iterative image registration tech-
nique with an application to stereo vision. In IJCAI’81: 7th international
joint conference on Artificial intelligence, volume 2, pages 674–679, 1981.

[LM19] Mathieu Labbé and François Michaud. Rtab-map as an open-source lidar
and visual simultaneous localization and mapping library for large-scale
and long-term online operation. Journal of Field Robotics, 36(2):416–446,
2019.

[Low04] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, November 2004.

[LWH10] Minjie Li, Liqiang Wang, and Ying Hao. Image matching based on sift
features and kd-tree. In 2010 2nd International Conference on Computer
Engineering and Technology, volume 4, pages V4–218–V4–222, 2010.

[MAMT15] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-
slam: a versatile and accurate monocular slam system. IEEE transactions
on robotics, 31(5):1147–1163, 2015.

65

https://ifr.org/
https://github.com/introlab/rtabmap/wiki/List-of-Open-Source-SLAM-projects
https://github.com/introlab/rtabmap/wiki/List-of-Open-Source-SLAM-projects

[mar22] markusltnr. gpd. https://github.com/markusltnr/gpd, June
2022.

[MAT17] Raúl Mur-Artal and Juan D. Tardós. Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Transactions on
Robotics, 33(5):1255–1262, 2017.

[MBMM+22] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre,
and Frédérick Carrel. A comprehensive survey of visual slam algorithms.
Robotics, 11(1), 2022.

[ML14] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms
for high dimensional data. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(11):2227–2240, 2014.

[Mur99] Kevin P Murphy. Bayesian map learning in dynamic environments. In
S. Solla, T. Leen, and K. Müller, editors, Advances in Neural Information
Processing Systems, volume 12. MIT Press, 1999.

[NIL12] Chuong V. Nguyen, Shahram Izadi, and David Lovell. Modeling kinect
sensor noise for improved 3d reconstruction and tracking. In 2012 Second
International Conference on 3D Imaging, Modeling, Processing, Visualiza-
tion & Transmission, pages 524–530, 2012.

[NNB04] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings
of the 2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004., volume 1, pages I–I, 2004.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[RACC20] Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. Kimera: an
open-source library for real-time metric-semantic localization and mapping.
In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 1689–1696, 2020.

[RD06] Edward Rosten and Tom Drummond. Machine learning for high-speed
corner detection. In Computer Vision–ECCV 2006: 9th European Confer-
ence on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings,
Part I 9, pages 430–443. Springer, 2006.

[Rod21] Julian Rodriguez. A comparison of an rgb-d cameras performance and
a stereo camera in relation to object recognition and spatial position
determination. ELCVIA Electronic Letters on Computer Vision and
Image Analysis, 20:16, 01 2021.

66

https://github.com/markusltnr/gpd

[RRKB11] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb:
An efficient alternative to sift or surf. In 2011 International Conference
on Computer Vision, pages 2564–2571, 2011.

[SC86] Randall C. Smith and Peter Cheeseman. On the representation and
estimation of spatial uncertainty. The International Journal of Robotics
Research, 5(4):56–68, 1986.

[Sch23] r Johannes Schönberge. Colmap. https://colmap.github.io/,
2023.

[SEE+12] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and
Daniel Cremers. A benchmark for the evaluation of rgb-d slam systems.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 573–580, 2012.

[SF11] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial].
IEEE Robotics & Automation Magazine, 18(4):80–92, 2011.

[SF16] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-
motion revisited. In Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016.

[SRD+21] Myriam Servieres, Valerie Renaudin, Alexis Dupuis, Nicolas Antigny, and
Stelios Potirakis. Visual and visual-inertial slam: State of the art, classi-
fication, and experimental benchmarking. Hindawi Journal of Sensors,
2021.

[SSE+17] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and
Xiaowei Xu. Dbscan revisited, revisited: why and how you should (still)
use dbscan. ACM Transactions on Database Systems (TODS), 42(3):1–21,
2017.

[Sze22] Richard Szeliski. Computer vision: algorithms and applications. Springer
Nature, 2022.

[SZPF16] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm. Pixelwise view selection for unstructured multi-view
stereo. In European Conference on Computer Vision (ECCV), 2016.

[TPGSP17] Andreas Ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp
pose detection in point clouds. The International Journal of Robotics
Research, 36(13-14):1455–1473, 2017.

[vt22] v4r tuwien. Table plane extractor. https://github.com/

v4r-tuwien/table_plane_extractor, June 2022.

67

https://colmap.github.io/
https://github.com/v4r-tuwien/table_plane_extractor
https://github.com/v4r-tuwien/table_plane_extractor

[WAHW14] Diana Werner, Ayoub Al-Hamadi, and Philipp Werner. Truncated signed
distance function: Experiments on voxel size. In Aurélio Campilho and
Mohamed Kamel, editors, Image Analysis and Recognition, pages 357–364,
Cham, 2014. Springer International Publishing.

[YNK+18] Takashi Yamamoto, Tamaki Nishino, Hideki Kajima, Mitsunori Ohta, and
Koichi Ikeda. Human support robot (hsr). In ACM SIGGRAPH 2018
emerging technologies, pages 1–2. 2018.

[ZPK18] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern
library for 3D data processing. arXiv:1801.09847, 2018.

[ZZT21] Shishun Zhang, Longyu Zheng, and Wenbing Tao. Survey and evaluation
of rgb-d slam. IEEE Access, 9:21367–21387, 2021.

[Ča20] Karel Čapek. R.U.R (Rossum’s Universal Robots). 1920.

68

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Challenge
	Contribution
	Outline

	Background
	Image Processing
	Simultaneous Localization and Mapping (SLAM)
	3D Reconstruction
	Robotic Platform

	SLAM Evaluation through 3D Object Reconstruction
	SLAM Evaluation
	Object Reconstruction

	Experiments and Results
	Experiment Setup
	Results
	Evaluation of Accomplishments and Limitations

	Conclusion
	Outlook

	List of Figures
	List of Tables
	Bibliography

