
MASTER’S THESIS

Dynamic Particle Data Structures

for Wigner Monte Carlo Simulations

Ausgeführt am

Institut für Mikroelektronik

der Technischen Universität Wien

unter Anleitung von

Associate Prof. Dipl.-Ing. Dr.techn. Josef Weinbub

durch

Alexander Adel

Matrikelnummer 01325110

Studienkennzahl 066 646

Wien, im März 2023



Abstract

The over many decades lasting and still continuing miniaturization of semiconductor devices, combined
with the subsequent increase of the integration density in microprocessors, led to minuscule device
sizes in the range of a few nanometers. Quantum transport models are the only way to describe
the plethora of quantum effects that are taking place in these systems. Among the models is the
signed-particle Wigner model, which utilizes an ensemble Monte Carlo concept to solve the Wigner
transport equation and thus offers an intuitive interpretation of quantum electron transport dynamics
and provides a clear analogy to classical notions. The stochastic nature of the signed-particle model
demands an extremely large number of numerical particles to reduce the variance of the resulting
values. Additionally, the necessary particle generation and annihilation events, which are essential
for practical utilization, modify the number of the simulated particles in every time step, further
contributing to the computational challenge. Due to these challenges, the main objective of this thesis
is an extensive quantitative performance analysis of dynamic particle data structures suitable for
signed-particle Wigner models, that store all particles of the ensemble and their assigned attributes.
The reference simulation tool ViennaWD, which utilizes a signed-particle Wigner model, is consulted
to derive the necessary particle properties. Related open source projects, especially Monte Carlo
particle simulators, are examined to obtain further possibilities for different implementations. The
emphasis lies on the utilization of modern supercomputer clusters that employ multiple layers of
parallelization techniques, such as the Vienna Scientific Cluster (VSC). A number of promising data
structure implementations and corresponding test functions, which are inspired by the operations
of the signed-particle model and necessary particle algorithms, are combined into a categorically
and rigorously designed benchmark framework. This framework is written in the C++ programming
language. It is used to perform numerical experiments on the VSC and yields execution times which
are then analyzed. The goal is to develop a software benchmark tool that is able to determine particle
data structure implementations which offer the best performance for the considered task. Even though
the runtime results at the end of this thesis feature a variety of data structure designs from which
a hierarchy of best suited implementations can be derived, the general objective lies in the usability,
reusability, maintainability, flexibility and expandability of the benchmark framework. New data
structures can be defined and easily incorporated into the framework to obtain execution runtimes
for all available test functions. These concepts support the possibility to use the application to yield
further insights beyond the implementations featured in this thesis and reinforces the principles of
modern software engineering for computational science and engineering.
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Kurzfassung

Die über viele Jahrzehnte andauernde und immer noch stattfindende Miniaturisierung von Halbleit-
erbauelementen, verbunden mit dem darauf folgenden Anstieg der Integrationsdichte in Mikroprozes-
soren, führte zu winzigen Bauelementgrößen in dem Bereich von ein paar Nanometern. Quanten-
transportmodelle sind die einzige Möglichkeit, die große Menge an Quanteneffekten, welche in diesen
Systemen stattfinden, zu beschreiben. Unter diesen Modellen ist das Signed-Particle-Wigner-Modell,
welches ein Ensemble-Monte-Carlo-Konzept verwendet, um die Wigner-Transportgleichung zu lösen
und somit eine intuitive Interpretation von Quanten-Elektronentransportdynamiken und eine klare
Analogie zu klassischen Auffassungen anbietet. Der stochastische Charakter des Signed-Particle-
Modells verlangt eine extrem hohe Anzahl an numerischen Partikeln für die Reduktion der Vari-
anz der resultierenden Werte. Zusätzlich verändern die notwendigen Generations- und Vernichtungs-
Events der Partikel, welche essenziell für die praktische Anwendung sind, die Anzahl der simulierten
Partikel in jedem Zeitschritt, womit die berechnungstechnische Herausforderung noch weiter erhöht
wird. Aufgrund dieser Herausforderungen ist das Hauptziel dieser Arbeit eine ausführliche quantita-
tive Performanceanalyse von dynamischen, für Signed-Particle-Wigner-Modelle geeigneten, Partikel-
Datenstrukturen, welche alle Partikel des Ensembles und deren zugehörige Attribute verwalten. Als
Referenz wird das Simulationsprogramm ViennaWD, welches ein Signed-Particle-Wigner-Modell an-
wendet, herangezogen, um die notwendigen Eigenschaften der Partikel zu bestimmen. Damit in
Zusammenhang stehende Open-Source-Projekte, besonders Monte-Carlo-Partikel-Simulatoren, werden
untersucht, um weitere Möglichkeiten für verschiedene Implementierungen zu erhalten. Der Schw-
erpunkt liegt auf der Verwendung von modernen Supercomputer-Clustern, welche mehrere Ebenen
an Parallelisierungstechniken anwenden, so wie der Vienna-Scientific-Cluster (VSC). Eine Anzahl an
vielversprechenden Datenstrukturimplementierungen und zugehörigen Testfunktionen, welche von den
Operationen des Signed-Particle-Modells und notwendigen Partikel-Algorithmen inspiriert sind, wer-
den zu einem kategorisch und rigoros konzipierten Benchmark-Framework kombiniert. Dieses Frame-
work ist in der Programmiersprache C++ geschrieben. Es wird verwendet, um numerische Experi-
mente auf dem VSC auszuführen und Laufzeiten zu erhalten, welche dann analysiert werden. Das Ziel
ist ein Software-Benchmark-Programm zu erstellen, welches die Bestimmung von Implementierungen
von Partikel-Datenstrukturen ermöglicht, welche die beste Performance für die betrachtete Aufgabe
bereitstellen. Obwohl die Laufzeitresultate am Ende dieser Arbeit eine große Anzahl an Datenstruk-
turdesigns beinhalten, von welchen eine Rangordnung der am besten passenden Implementierungen
abgeleitet werden kann, liegt das Hauptziel in der Anwendbarkeit, Wiederverwendbarkeit, Instandhal-
tungsfähigkeit, Flexibilität und Erweiterbarkeit des Benchmark-Frameworks. Neue Datenstrukturen
können definiert und bequem in das Framework eingefügt werden, um Laufzeiten für alle vorhandenen
Testfunktionen zu ermitteln. Diese Konzepte unterstützen die Möglichkeit, die Applikation zu ver-
wenden, um weitere Erkenntnisse zu erhalten, welche über die Implementierungen hinausgehen, die in
dieser Arbeit vorgestellt werden und bekräftigen die Prinzipien von modernem Software-Engineering
für Computational Science and Engineering-Anwendungen.
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1 Introduction and Overview

The objective of this thesis is an extensive quantitative performance analysis of dynamic particle
data structures for signed-particle Wigner simulations [1, 2]. The impact of different data structure
designs on the performance of large scale particle transport simulations is investigated. The problem
is considered from the perspective of the modern computational scientist, which assembles knowledge
from mathematics, numerics, physics and computer science to develop high quality computational
software. This chapter gives an overview of the ideas and principles of computational electronics to
establish a foundation for the main topics of this thesis. Modeling considerations, simulation aspects
and solution techniques of the Wigner transport equation in the context of computational electronics
are summarized. A short description of the Wigner signed-particle model is given to introduce the
reader to the characteristic features of this approach. Parallel application programming interfaces that
are utilized in the benchmark application are presented and their connection to the corresponding
hardware computing units is described. Finally, the research task, the general objectives and the
computational challenges of the thesis are summarized.

1.1 Transport Simulations in Computational Electronics

This section gives a short overview of computational electronics and positions it relative to the general
field of computational science and engineering. The quantum Wigner transport equation, which
governs the physical phenomena of interest, is introduced. The section is completed by mentioning
stochastic techniques for the solution of the Wigner transport equation.

1.1.1 Computational Science and Engineering (CSE). Computational electronics is a sub-
category of the field of computational science and engineering. Stevenson and Panoff [3] define
this discipline as

”
the interdisciplinary involvement in the identification and elimination of unwar-

ranted assumptions and approximations in scientific models and the complete integration of computa-
tion into these models so as to constitute a whole new scientific technique on a par with hypothesis
and experimentation“. Most of todays researchers support the notion that CSE, while inherently an
interdisciplinary field, represents a freestanding scientific discipline whose contents can be seen as
self-contained. The concentration of known superior methods in one single scientific field can help
to deminish extensive and unnecessary duplication of algorithm development efforts. Additionally it
helps to reduce inconsistent and conflicting notation for similar objects and concepts in the various –
otherwise often independently from each other – operating disciplines [4]. A key goal of CSE is to equip
scientists of specific fields with computational tools that enable the possibility to explore their research
topics in a more efficient way. They should not have to resort to non-physical approximations to reduce
the model to a tractable and closed form [3]. The field is deeply interconnected with the principles
of high performance computing (HPC). Cutting-edge HPC technology enables breakthroughs in CSE
research and modern CSE applications are the main drivers for the evolution of HPC supercomputer
and cluster systems. HPC and CSE are deeply intertwined and form a symbiotic relationship [5].
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2 Chapter 1. Introduction and Overview

Higher performance and therefore faster computation times improve the research process of scientists
in many ways. It enables accurate scientific modeling within much smaller time scales, speeds up the
scientific feedback loop of evolving and revising the employed models and provides the possibility of
wider exploration of the relevant parameter space [6]. Computational modeling, simulation and visu-
alization are inevitable in situations where real life studies are impossible or highly dangerous. They
allow us to acquire insights into problems which are too complex or difficult to study analytically, or
too expensive, big or small to access experimentally [7]. An extensive list of research fields where CSE
is applied can be found in [5, 7, 8].

1.1.2 Modeling and Simulation in Computational Electronics. The main task of com-
putational electronics is the development and use of simulation tools with the level of sophistication
necessary to capture the essential physics, while at the same time minimizing the computational bur-
den so that they can support the future development of electronic devices [9]. These tools are often
summarized under the term technology computer-aided design (TCAD), which refers to the use of
computer simulations by scientists and engineers in academia and industry to design, develop and
optimize semiconductor processing technologies and device designs. The effective use of TCAD tools
leads to minimized experimental time loss and reduction of the number of trial-and-error iterations,
as well as reduced cost and resource consumption [10]. The characterization of semiconductor devices
is part of device simulation, where the goal is to obtain devices with high performance, low power
consumption, low cost and high reliability. Effects of slight process variations on physical and elec-
tronic device characteristics can be analyzed without the execution of usually hundreds of processing
steps and the loss of months of processing time typical for semiconductor manufacturing [11]. The
over many decades lasting and still continuing miniaturization of semiconductor devices, combined
with the subsequent increase of integration density in microprocessors, led to minuscule device sizes in
the range of a few nanometers. Todays processors easily contain many billion transistors whose ultra-
small feature sizes require complicated and time-consuming manufacturing processes [9]. The scale of
these devices increasingly demand adequate quantum transport models to capture quantum transport
effects in the highly confined systems of, e.g., FinFETs, Spin-FETs, Tunnel-FETs, nanowires and
nanosheets based GAA FETs [12]. The astonishing advances towards next generation technologies in
the field of quantum electronics and subfields – such as electron quantum optics, quantum dots and
quantum cascade devices – can only continue with the help of quantum transport simulations [13].

1.1.3 Wigner Transport Equation (WTE). The Wigner transport equation can be seen as
a kind of quantum analog of the semi-classical Boltzmann transport equation. In its core it allows
to describe the evolution of a Wigner function fw(r,k, t) [14] over time. The Wigner function
itself is defined over the phase space, same as the distribution function in the Boltzmann case,
and describes the number of particles per unit volume at time t. The phase space

{
r,k

}
contains

all possible combinations of the position r and the wavevector k that can be assigned to a particle
[15]. This phase space formulation (instead of wave functions and operators) offers a more intuitive
interpretation of quantum phenomena and provides a clear analogy to classical notions. However,
the Wigner function is not a true probability density function since it may attain negative values,
which are a manifestation of the uncertainty relation in the phase space [15]. Regardless of the above
statement, the critical property ∫∫

drdk fw(r,k, t) = 1 (1.1.1)

of a probability distribution is still retained, which means that physical averages still can be calculated
using the same expressions as in the Boltzmann case, which classifies the Wigner function as a so-
called quasi-distribution function [15]. The Wigner function is obtained by applying the Wigner
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transform to the density matrix
ρ(r, r′, t) = ψ∗

t (r
′)ψt(r) (1.1.2)

which yields

fw(r,k, t) =
1

(2π)3

∫
dr′ e−ik·r′ψ

(
r− r′

2

)
ψ∗

(
r+

r′

2

)
. (1.1.3)

Similarly, a Fourier transform of the Liouville-Von Neumann equation

iℏ ∂tρ =
[H, ρ

]
(1.1.4)

which describes the evolution of the density matrix and where
[H, ρ

]
= Hρ− ρH denotes the commu-

tator bracket, ℏ the reduced Planck constant and H the Hamiltonian operator, yields the evolution
equation for the associated Wigner function, the WTE (shown here for the electrostatic case and in
the absence of scattering)

∂

∂t
fw(r,k, t) +

ℏk
2m∗

∂

∂r
fw(r,k, t) =

∫
dk′ Vw(r,k

′ − k, t) fw(r,k
′, t) (1.1.5)

where

Vw(r,k
′ − k, t) = − 1

iℏ (2π)3

∫
ds eis·(k

′−k)
{
V
(
r+

s

2

)
− V

(
r− s

2

)}
(1.1.6)

denotes the Wigner potential. Simulation domains require finite dimensions and therefore impose
bounds on the integration of the variables. A finite value of the isotropic coherence length |L| = L
yields a discretization of the momentum space k. The semi-discrete Wigner function, equation and
potential can be obtained by applying a discrete Fourier transform, which yields

fw(r,q∆k, t) =
1

L

∑
q

e−iq∆k·sρ (r+ s, r− s, t) , (1.1.7)

[
∂

∂t
+

ℏq∆k

m∗ ∇r

]
fw(r,q, t) =

∑
q

Vw(r,q− q′) fw(r,q′, t) (1.1.8)

and

Vw(r,q) =
1

iℏL

∫ +L/2

−L/2
ds e−i2q∆k·s

{
V (r+ s)− V (r− s)

}
(1.1.9)

where q is an integer multi-index and ∆k = π/L, which denotes the resolution of the discretized
wavevector [15].

1.1.4 Advantages and Applications of the WTE. The Wigner function is defined over the
phase space, which allows the semi-classical scattering models from the Boltzmann transport equa-
tion to be incorporated into the formalism. It can be shown that for both phonon and impurity
scattering the semi-classical models can be obtained as a limiting case of the full quantum models,
which opens the possibility to form a hierarchy of scattering models with different levels of accu-
racy, from which the best suited model, depending on the computational problem, can be chosen
[15]. The combination of the Wigner equation with the Boltzmann scattering mechanisms results
in the Wigner-Boltzmann equation, which unifies the two theories and ensures a seamless tran-
sition between purely quantum (ballistic) and classical (diffusive) transport. This means that the
Wigner formalism can be used for a semi-classical description of the extended contact regions and
simultaneously for the quantum description of the active region of a device [16]. Additionally, the
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Wigner function finds wide application in a large number of research fields outside of computational
electronics, such as quantum physics, quantum optics and quantum information processing [2, 17].
Another use case are applications of computational chemistry, where the formalism can be extended
to the so-called Wigner density functional theory. Single- and many-body problems such as atoms,
molecules and systems of two identical Fermions can be investigated [18].

1.1.5 Stochastic Solution Techniques for the WTE. Already in the semi-classical Boltz-
mann case, the high-dimensionality of the Boltzmann equation complicates deterministic solutions.
The curse of dimensionality leads to simulations that require enormous memory consumption and
execution times, therefore stochastic approaches such as the Monte Carlo method are utilized to solve
the Boltzmann equation. The Monte Carlo algorithm consists of the simulation of particle drift
motions, where the free flight times are generated randomly, and also of randomly selected scattering
mechanisms, which change the final energy and momentum of the particle. These particle ensemble
trajectories can be sampled at various points in time throughout the simulation to statistically esti-
mate the desired physical quantities [9]. If rare events have to be simulated or the distribution function
is needed only in a small phase space domain, the so-called Backward Monte Carlo method (BMC) is
used, where the simulation followes the particle trajectories in reverse direction back in time [16]. The
basis of stochastic solution techniques for the Wigner transport equation is also the Monte Carlo
method, which has been inspired by the great success of the application to the Boltzmann transport
equation [17]. The association of trajectories to a single or an ensemble of particles is used here as
well, either in the way of Wigner trajectories, which are defined by a quantum force formalism, or
by Wigner paths, where the action of the Wigner potential operator is interpreted as scattering.
Another approach is to map all the information of the quantum state of the system onto the amplitude
of Dirac excitations in the phase-space, which all summed up represent the Wigner function. These
amplitudes are called affinities, therefore this method is known as the affinity model [19]. The affinities
are updated by the Wigner potential during the particle evolution and can be represented by positive
or negative values, which act as weighting factors in the reconstruction of the Wigner function and
consequently in the computation of all physical averages. The signed-particle model is a modified
version of the affinity model, based on the alternative interpretation of the Wigner potential as a
generator of signed particles [1]. The signed-particle method only considers integer affinities with the
values +1 and −1, in all other aspects the evolution of the particle is field-less and classical. If two
particles with opposite sign meet in the same discretized cell of the phase space, they annihilate each
other, since they have an equivalent probabilistic future, but make an opposite contribution in the
process of averaging [15].

1.2 Wigner Signed-Particle Solution Approach

The signed-particle model is – as already stated above – a variation of the affinity model, where
only integer affinities with the values +1 and −1 are considered. The generation and annihilation
events, which occur frequently during the simulation, lead to peculiarities regarding the implemen-
tation and parallelization of this algorithm. This section describes considerations regarding the dis-
tributed memory implementation and an overview of the structure of the algorithm. The summary of
these characteristics will become important when they are compared to the simplified test functions of
the benchmark framework in Section 3.4. This section follows, unless otherwise stated, the description
of Ellinghaus [15].

1.2.1 Distributed Memory Considerations. Semi-classical Monte Carlo codes are straight for-
ward to parallelize, since the particles of an ensemble are independent of each other and, therefore,
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the subensembles on each parallel process/thread can be calculated in a self-consistent manner. The
parallelization is more difficult for Wigner Monte Carlo codes, because here the critical annihilation
step must be performed in a synchronized manner to uphold statistics. This leads to synchronized
communications during the execution. In this section the parallelization structure of the ViennaWD
[20] reference implementation is shortly discussed, which uses a MPI-based domain decomposition
approach (see Section 1.3.2) on a distributed memory architecture (see Definition 5). The global sim-
ulation domain is split into uniformly sized subdomains, as well as the entire particle ensemble into
subensembles. Every MPI process (see Definition 7) handles a subdomain and the subensemble that
is currently located in this subdomain. The phase space is decomposed in the spatial domain, but
not in the momentum domain. The reason behind this decision lies in the nature of the scattering
events: While in a generation event all new particles spawn in the same position as the already existing
particle, the wave vector of a scattered particle would most certainly lie in a part of the k-space which
would be represented on another process and would, therefore, increase the communication demand
between the processes.

1.2.2 The Solution Process. The basic steps of the solution process are the initialization of
the particles, the time loop, which consists of evolution, growth prediction, annihilation, and particle
transfer steps – which are executed alternately until the total simulation time is reached – and finally
the post processing step. The structure of the algorithm as a flowchart is shown in Figure 1.1. A
histogram records the position, wavevector and sign of each particle in the ensemble at regular time
intervals ∆t. This procedure approximates the distribution function fw(r,k, t).

➤ Initialization. First the inputs describing the geometry, potential profile and parameters are
loaded by the master process (see Definition 8). The master process initializes an ensemble of N
particles representing the initial condition of the evolution problem by setting the corresponding
position and momentum values. Then the master process distributes the particles to the worker
processes according to the domain decomposition, together with the potential profile and further
global parameters. Each process then initializes localized versions of the required data structures
with the received initial values specific to its subdomain. An often used initial condition is the
Gaussian minimum uncertainty wavepacket

fw(r,q) = N exp

[
−(r− r0)

2

σ2

]
exp

[
− (q∆k − k0)

2 σ2
]

(1.2.1)

where r0 denotes the mean position, k0 the mean wave vector, σ the standard spatial deviation
andN a normalization constant. After this step the time loop starts which tracks the trajectories
of all particles in the ensemble over the simulation time.

➤ Evolution. Each process performs the evolution of its ensemble of particles for a single time
step for itself, without any communication involved. During the drift phase the particles are
following a Newtonian trajectory according to the laws of classical mechanics, where the particles
do not accelerate due to forces and the wave vector remains constant since there appears no
explicit force term in the WTE. The position is calculated by

δr =
ℏ(q∆k)

m∗ min
{
τ, δt

}
(1.2.2)

which means the particle drifts either until the current time step ends (δt denotes the remaining
time in the time step ∆t) or until the next scattering event happens, which is represented by the
free-flight time τ . The value of τ is determined by the generation of an uniformly distributed
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random number r. If the free-flight drift is finished, a scattering event occurs, which can either
be phonon scattering or a particle generation event. The selection is again determined by the
generation of a random number r from a normalized scattering table. If a generation event is
selected, two additional particles with signs ±1 and wave vectors k ± ℓ are created, where the
offset ℓ is determined by the Wigner potential. If a scattering event (e.g., phonons) is selected,
the wave vector of the particle is modified according to the selected scattering mechanism. The
processes of drift and scattering are repeated in an iterative fashion for all particles in the
ensemble until the end of the time step ∆t is reached.

➤ Growth Prediction. The process of particle generation leads to an exponential increase in
the number of particles, simulations easily become computationally infeasible. Consequently, an
annihilation step has to be executed to reduce the number of particles. However, this annihilation
procedure is only performed when the number of particles exceeds a specific maximum in the next
time step, which reduces the computational burden and prevents undesired numerical effects.
To determine if this maximum will be exceeded in a subsequent time step, each process performs
a growth prediction for its subensemble of particles after the evolution step. It is advisable to
overestimate the particle increase, therefore, the maximum value of the generation rate γ for all
particles is used, which yields an upper bound on the particle growth and the predicted number
of particles in the next time step as

Nt+∆t = Nt

(
1 + max

i

{
γ(ri)

}
∆t

)
. (1.2.3)

➤ Annihilation. All processes have to perform their local annihilation step for the particles in the
subdomain at the same time step, otherwise the global statistics of the Wigner function would
be falsified. This means if even one single process requires an annihilation step according to its
local growth prediction, all other processes have to perform one too. To ensure this synchronized
behaviour the result of the growth prediction of every process is communicated to the master
process in the form of an annihilation flag. The master process collects all flags and checks if
at least one of them is true. If this is the case, a positive global annihilation flag is broadcasted
and all processes perform an annihilation step. Otherwise a negative flag is communicated,
therefore, no annihilation takes place. The actual annihilation is executed on the basis of phase
space cells. The phase space is divided into cells, where each cell is associated to a specific value
of the wave vector, since the semi-discrete Wigner equation (1.1.8) is used. If two particles
with opposite signs are located in the same cell, they annihilate each other and are removed
from the ensemble. This can be done because all the particles within a cell are deemed to be
identical and indistinguishable, therefore, two particles with opposite sign would make the same
contribution to the Wigner function, just with an inverted magnitude. After the annihilation,
the remaining particles are regenerated and the time loop continues.

➤ Particle Transfer. After the annihilation step each process checks if particles are located
in the overlapping boundaries of the different subdomains. If this is the case, the particles are
collected and sent to the adjacent processes. Particles are also received from other processes.
A synchronization barrier is used to ensure all transfers are complete before the next time-
step commences. The reason for performing the transfer after the annihilation is that after
an annihilation step the size of the particle ensemble will be significantly smaller, consequently
the number of particles to be transferred will have been reduced, which is beneficial for the
communication burden.
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➤ Post-Processing. The above described steps are repeated until the total simulation time has
been reached. To avoid a central communication bottle neck at the end of the simulation, there
is no global reduction step issued by the master process to collect the resulting data. Instead,
the simulation results of each subdomain are written to disks locally by each process. After the
merging of the simulation results, handled by external scripts, different post-processing steps
such as analysis, examination and evaluation can take place.

1.3 Parallel Computing Definitions

One of the computational challenges of stochastic solution techniques is the enormous number of
numerical particles in the simulated particle ensemble, which guarantees that the variance of the
resulting physical quantities of interest is as small as possible (see Section 1.1.5). This number lies
in the here considered case in the range of 106 to 108 particles. In combination with the necessary
operations of the Wigner signed-particle model (described in Section 1.2), it demands a parallel
solution scheme, as previously hinted, to realize practically relevant simulation runtimes. Therefore,
parallelization techniques have to be employed to boost the performance of the application. This
section establishes a number of important definitions as a reference for later chapters and describes
the connections between the computer architecture terms cluster, node, socket and core and the
concepts of processes and threads that are essential for the utilized parallel APIs. The way how
these components are assigned to each other (sometimes called pinning or affinity [21]) is crucial for
understanding the different configurations (see Section 4.1.2) of the benchmark results in Chapter 4.
The section first mentions the hardware aspects and definitions, followed by the parallel APIs that are
relevant for this thesis. At last, a few remarks regarding the execution time as a general measurement
of performance are given.

1.3.1 Hardware. Large-scale supercomputers designed for high-performance computing tasks are
composed of a hierarchy of elements, which in turn can be classified by a number of technical terms.
The definitions of these terms, as far as they are used in this thesis, are now presented in a top-down
manner. The complete system, the supercomputer, is often also called a cluster.

Definition 1 (Cluster). A system that consists of a large number of connected computing units is
called a cluster. The computing units are controlled and scheduled by specific software and connected
to each other through fast local area networks.

The individual computing units of a cluster are called nodes.

Definition 2 (Node). A (compute) node is the building block of a cluster. It usually possess its own
memory block. Nodes contain at least one CPU and potentially a number of additional accelerators
(e.g., GPUs). If a combination of CPUs and accelerators are present on a node, it is called a hybrid
node.

The sweetspot of compute node configurations with respect to cost vs. performance is often a two-
socket setup, that is, a system offering two CPUs [21]. The CPUs are connected via a coherent link
and each CPU has its own locality domain (NUMA effects, see Definition 6).

Definition 3 (CPU). A CPU (central processing unit) is an integrated circuit that reads and executes
program instructions. While in a traditional single-core design the terms CPU and core can be used
synonymously, modern multicore CPUs contain several cores which execute code concurrently. They
share resources like memory interfaces or caches to varying degrees, dependent on the chip design.

Definition 4 (GPU). A (GP)GPU (general-purpose graphics processing unit) is an accelerator card
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that is designed to perform certain classes of parallel computations particularly efficient. It typically
contains an order of magnitude more parallel computing units (compared to a CPU) and is typically
connected to the node via the peripheral component interconnect express bus, which allows communi-
cation between the CPU and the GPU [22].

The hardware components above can also be classified by the type of their memory system. For this
thesis two types are important, the distributed and the shared memory system.

Definition 5 (Distributed memory system). A distributed memory system is a group of computing
units where each unit is connected to exclusive local memory, which means that only the specific unit
has direct access to it and all other units are not able to fetch data from this memory block. As there is
no remote memory access on these systems, data transfer has to be executed cooperatively by sending
messages back and forth between the units [21].

Definition 6 (Shared memory system, UMA, ccNUMA). In a shared memory system, all computing
units work on a common, shared physical address space. There are two varieties possible. Uniform
Memory Access (UMA) systems provide the same latency and bandwidth for all computing units and
all memory locations. UMA systems are from a hardware perspective not scaleable, since the bandwidth
decreases when the number of sockets increase. The memory of cache-coherent Nonuniform Memory
Access (ccNUMA) machines is logically shared, but physically distributed. This leads to varying mem-
ory access performance, depending on which computing unit accesses a particular part of the memory.
Memory of ccNUMA systems is partitioned in so-called locality domains (sometimes called memory
domains) that locally resemble UMA building blocks and are linked via a coherent interconnect [21].

Since the system of all nodes combined represents a distributed memory machine, the cluster can be
classified as a so-called hierarchical hybrid system that allows for different layers of parallelism. While
the VSC-4 cluster [23] employs nodes with CPUs only, the VSC-5 cluster [24] also contains hybrid
nodes with both CPUs and GPUs (see also Section 4.1.1). These characteristics are represented by
the names of the build options of the benchmark framework in Section 3.2.5.

1.3.2 Software. Modern computing hardware allows the developer to manage multiple comput-
ing units in parallel with the help of specific application programming interfaces (APIs), provided
by software libraries that can be included in the source code of the application to utilize the offered
functionality. Some of them are based on international standards which ensure (to a large degree)
the same behaviour of the library functions, independent of the concrete – often open source – imple-
mentation. Others are developed and maintained by corporate vendors, where the code is classified
as closed source and not available to the public. The following APIs are relevant for the benchmark
framework described in Chapter 3.

➤ Message Passing Interface (MPI). If a plethora of distributed computing units which are
partly connected via a network are utilized to perform computations in parallel, they need a
way to communicate with each other. The preparation, post processing and updating of the
data between time steps of the here considered stochastic solution method necessitates methods
to transfer the data between the computing units. If a distributed memory system is used, the
computing units cannot access the same memory, therefore, the data has to be explicitly sent and
received between the accessable memory of the individual parallel units. The Message Passing
Interface (MPI), an international standard [25], is a communication layer for so-called processes
and is provided by different software libraries.

Definition 7 (Process). Executing computer programs consist of instances called processes
and can contain at least one thread (see Definition 9). Processes manage the scheduling of
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operations and the allocation of processor resources [22]. Processes don’t have direct access
to the memory block of another process, calling out for explicit communication to realize data
transfer, as previously hinted.

Each process is assigned to a distinct index inside the MPI communicator, the rank. Depending
on the problem at hand, one or more processes are considered for each node. For instance,
compare a pure MPI approach, where typically as many processes are created as there are cores
available on the node’s CPU(s), with a hybrid approach, where, for instance, one MPI process
is spawned on each node and the remaining cores are utilized with a shared-memory paralleliza-
tion approach. Regardless, a straightforward basic approach to initialize a MPI program and
distribute the workload among the available processes is the master-worker model.

Definition 8 (Master-worker model). Usually one specific process out of all spawned processes
has a unique task in parallel applications. This process is called the master, the other processes
are called workers. The master, e.g., manages the input and output, sends instructions and
receives results from the workers and performs reduction operations at the end of a simulation.
The workers on the other hand execute the desired operations in parallel during the simulation
[22].

The master-worker model is also used in the ViennaWD reference implementation (see Section
1.2.2) (and the ParticleStackBenchmark application, see the later discussion in Section 3.4.8).
As previously indicated, a hybrid parallelization approach is sometimes used, e.g., using MPI
for inter-node communication and a shared-memory model (such as OpenMP) for intra-node
parallelization.

➤ Open Multi-Processing (OpenMP). As previously discussed, each process can have at least
one thread. When more than one thread is being used, possibilities open up for thread-based
parallelization by making use of the shared memory system. In this case the Open Multi-
Processing (OpenMP) library can be utilized, which is – similar to the MPI library – based on
a standardized specification [26] that ensures consistent behaviour. OpenMP spawns so-called
threads on the CPU, where the library assignes each thread to a core.

Definition 9 (Thread). A thread of execution presents another level of parallelism control
within a process and can be seen as the smallest sequence of programmed instructions that can be
managed independently by a scheduler [22]. Usually one thread is executed per core. Simultane-
ous multithreading (SMT, sometimes also called hyperthreading) utilizes multiple architectural
states in the core and allows for the execution of multiple instruction streams in parallel and,
therefore, allows for multiple threads to be executed on a single physical core (typically 2 threads
per core) [21].

Considering shared memory programming, with OpenMP the fundamental programming model
is the fork-join model.

Definition 10 (Fork-join model). If a region of a sequential algorithm, executed by a thread, can
be parallelized, a so called parallel region is generated. In the fork phase, a number of threads are
created. These threads now perform the work concurrently until all threads are finished. Then in
the join phase, the results of those concurrent operators are accumulated into a single resulting
operator. The process is then executing in sequential order until a new parallel region can be
generated [22].
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In contrast to the master-worker model of MPI processes, the fork-join model of OpenMP threads
does not necessarily select a specific thread for managing tasks. All threads inside the parallel
region are working on the same task concurrently. All OpenMP instructions are realized by
preprocessor directives, which are often single line commands, indicated by the #pragma omp

directive. A large number of different operations are available, for example one possibility to
achieve data parallelism is through SIMD (Single Instruction Multiple Data) instructions, which
are part of instruction set extensions of modern cache-based processors. They issue identical
operations on a large number of arguments of the same type to perform concurrent executions
of arithmetic operations in special wide registers [21].

➤ Compute Unified Device Architecture (CUDA). Another type of processors that give
the developer the possibility to utilize parallelism techniques on the software level is the graphics
processing unit (see also Definition 4). Historically these processors were used for efficient
manipulation of computer graphics and image processing algorithms. Although they are still used
today for these tasks, recent improvements in the hardware architecture allow to use GPUs in all
sorts of applications where high performance is in demand. These tasks are often summarized
under the term general-purpose computing on graphics processing units (GPGPU) [27]. The
advantage of using a GPU instead of a CPU for specific, suitable parallel problems is the fact
that GPUs possess a much larger number of computing units than CPUs, which of course leads
to a beneficial effect regarding the performance if the parallel problem can be optimally fitted to
the GPU. If not only CPUs, but also other processor architectures such as the GPU are available
on a compute node, we need libraries that offer the functionality to communicate between the
CPU (in this context called the host) and GPU (in this context called the device) and to develop
source code that can be executed on the GPU. The native toolkit for NVIDIA acceleration cards
is the Compute Unified Device Architecture (CUDA), a C++ language extension and maintained
by NVIDIA itself [28]. The library offers functionality for the allocation of memory on the GPU
and methods to send and to receive data between the host and the device. Functions that
should run on the device possess a specific syntax and are called kernels. The existence of
CUDA has simplified the development of scientific software significantly and is one of the most
important reasons why the GPU architecture has found its way into the world of general purpose
applications.

➤ Heterogeneous-Computing Interface for Portability (HIP). Besides NVIDIA, the
currently most prolific vendor of GPU acceleration cards, other companies provide similar prod-
ucts. One of them is Advanced Micro Devices (AMD), which maintaines the Radeon Open
Compute (ROCm) framework, a software stack for GPU programming. It provides an alter-
native GPU library to CUDA, which includes a tool to transform CUDA code files to general
portable source code files, which can be compiled on both the NVCC compiler by NVIDIA and
the HCC compiler by AMD. This tool is called Heterogeneous-Computing Interface for Porta-
bility (HIP) [29]. The syntax for both CUDA and HIP are almost identical (where mostly the
cuda term has to be substituted by hip in the source code), which is part of the intention to
convince software developers to switch to the new alternative.

1.3.3 Measurement of Performance. Since this thesis compares the performance of different
data structures, a few remarks regarding the measurement of the performance should be made. Two
fundamental quantities for performance are the floating-point operations per second [Flops/Second],
which measures the number of add and multiply operations on floating-point data per time unit,
and the bandwidth [Bytes/Second], which measures the amount of data that is transferred between
the caches and main memory per time unit [21]. For general benchmarking, the straightforward
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execution time [Seconds/Program] (sometimes also called elapsed time or wall clock time) is used,
which measures the time between the start and completion of a specific task. The execution time
is inversely proportional to the performance. This time adds (in contrast to the CPU time) also
the contributions from disk accesses, memory accesses, input/output activities and operating system
overhead to the amount of time that is needed to complete the task [30]. The execution time can
be affected by three key factors, namely the number of instructions executed by the program (called
instruction count), the average number of clock cycles per instruction (sometimes abbreviated as CPI)
and the number of seconds per clock cycle (called clock cycle time). If these three parameters are
combined

Execution time =
Instructions

Program
· Clock cycles

Instruction
· Seconds

Clock cycle
=

Seconds

Program
(1.3.1)

we obtain the already established unit of seconds per program. The only complete and reliable
measure of computer performance is time. When comparing the performance, one must look at all
three components, which combine to form the execution time [30]. There are different software libraries
available that offer functions for the measurement of the elapsed time by a wall clock, for example
the std::chrono::system clock class from the <chrono> header in the C++ standard library, the
omp get wtime() function from the OpenMP library and the MPI Wtime() function from the MPI
library. The last option was utilized for the ParticleStackBenchmark application (see Section 3.4.7).

1.4 Thesis Overview and Outline

The computational scientist views a computational problem from different perspectives. The scientist
has to find answers for diverse questions and has to make decisions based on given characteristics
and limitations. This introductory chapter discussed the engineering applications of computational
electronics in general and the Wigner signed-particle model in particular, as well as the description
of the affinity between the utilized hardware components and the parallel application programming
interfaces. With this preliminary information in mind, the general objectives of this thesis can be
treated.

1.4.1 General Objectives. As previously mentioned, particle Wigner simulations are compu-
tationally highly challenging. Particularly, the optimal choice of the data structure for the significant
particle stack sizes (e.g., > 107) is unknown. The primary goals of this thesis are thus:

➤ Selection of Promising Data Structures. The enormous number of simulated numerical
particles and the necessary dynamic memory management demand data structures with appro-
priate memory layouts and specific access methods. The relation between the data structures
(also called particle stacks) on the one hand and the possible parallelization techniques, the
communication and memory access patterns and the algorithmic time complexities on the other
hand should be analyzed in detail to find a selection of promising data structures that can then
be benchmarked.

➤ Development of Flexible Benchmark Framework. Different implementations of po-
tential data structures and corresponding test functions, which are inspired by the operations
of the Wigner signed-particle model, should be combined into a benchmark framework. The
goal is to develop a benchmark tool that is able to determine data structure implementations
which offer the best performance for the desired computational task. The objective lies in the
usability, reusability, maintainability, flexibility and expandability of the benchmark framework.
New data structures can be defined and easily incorporated into the framework to obtain exe-
cution runtimes for all available test functions. This feature facilitates the so-called inversion of
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control property, where the user customizes specific framework components and the framework
itself undertakes the actual execution of the application [31].

➤ Identification of Optimal Data Structures. The benchmark framework should be used
to perform numerical experiments and yield execution times which are compared and examined.
The runtime results should feature a variety of diverse data structure designs from which a
hierarchy of best suited particle stack implementations can be derived. Optimally the detailed
investigations should yield one specific data structure that performes superior than the others
under the vast number of circumstances that are tested by the framework.

1.4.2 Outline of the Thesis. This thesis is composed of five chapters, where the first chapter
presented the reseach topics of interest by giving an overview of the important aspects and referencing
the existing literature. The four following chapters describe the undertaken research, as well as the ob-
tained results and insights. Chapter 2 analyzes the design of data structures in the context of particle
transport simulations. Theoretical aspects such as algorithmic time complexity are investigated and
used for the determination of promising particle stack containers. Also data structure implementations
of related open source Monte Carlo particle simulators are analyzed and compared to the theoretical
principles. Chapter 3 describes the software structure of the developed benchmark framework, which
is written in the C++ programming language. The utilization of modern programming paradigms in
combination with software engineering techniques to yield flexible and expandable software is illus-
trated. All components of the benchmark application and their interactions and dependencies are
described in detail. Chapter 4 presents the surrounding conditions regarding benchmark execution on
clusters and the obtained execution runtimes, augmented with discussions and interpretations of the
output data. Chapter 5 summarizes the content and the findings of the thesis. Future extensions are
discussed and an outlook for further investigation possibilities is given. The final conclusion gives a
statement about the insights that were obtained from the analysis of the benchmark runtimes.



2 Data Structure Design

The research behind data structures – combined with algorithms – is one of the corner stones of the
field of computer science in general. The organization of data in memory and the corresponding access
methods are extremly important with regards to performance optimization. This chapter investigates
the selection of the data structures that are contenders for the implementation of Wigner signed-
particle simulators. First the inner components of the data structures – in the following denoted
as containers – have to be selected. This is done with the help of the theory of algorithmic time
complexity. Then the arrangement between these containers has to be examined. For this task
other approaches used in available open source simulators are considered and evaluated. Lastly the
chosen data structures are discussed in more detail. These data structures are implemented in the
ParticleStackBenchmark framework, which will be described in Chapter 3.

2.1 Algorithmic Complexity Measures

The first question that has to be answered is the choice of the containers that will hold all particle in-
formation. These containers will then be combined in different memory layouts to yield data structure
concepts that can be used inside the benchmark application. Strictly speaking, the containers them-
selfs are also data structures. Therefore we can utilize the theory behind algorithmic time complexity
to compare the efficiency of the methods of different containers. This section first defines the idea
behind time complexity, emphasises the methods that are important for the algorithm at hand and
then compares a number of data structures with the desired methods with the help of the established
theory. This procedure will yield the best suited containers for our endeavor.

2.1.1 Algorithmic Time Complexity. The idea behind algorithmic time complexity is to find
a clear notation for the efficiency of algorithms in a general sense. The notation should be dependent
on the amount of data that is processed during the execution of the algorithm, since this quantity
is proportional to the executed operations. In our case the algorithms of interest are represented by
methods of data structures that modify the data members inside them. First we give a definition for
the utilized notation.

Definition 11 (Asymptotic notation). Let A(n) and f(n) both be real and positive valued functions
of the size n (which represents the input in units of bits or elements), where A(n) denotes the time
complexity of a given algorithm and f(n) describes a specific time complexity class. The asymptotic
notation A(n) = O{f(n)} represents the condition that A(n) is at most a positive constant multiple
of f(n) if n → ∞. This is the case if and only if there exists a positive real number M and positive
integer n0 such that A(n) ≤ Mf(n) for all integers n ≥ n0 [32].

Although the time complexity represents a continuous measurement tool, it is advantageous to define
a number of complexity classes that are distinct enough from one another so that the identification
and assignment of a time complexity class to a specific algorithm yields a practical estimation of the
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efficiency. We will need the following time complexity classes in this section.

Definition 12 (Time complexity classification). The time complexity of order O{1} is called con-
stant, the order O{log(n)} is called logarithmic and the order O{n} is called linear [33]. This sequence
of complexity classes is sorted in increasing order, which means that O{1} is the best achievable com-
plexity, O{log(n)} is desirable and O{n} is the worst possible (from the here presented) complexities.

These are just a small selection of the large classification system that is available, but since only these
orders appear in Table 2.1, the others are omitted. These definitions give us a tool to determine in a
fast and efficient way which data structures are performing the best and which should be avoided for
an actual implementation.

2.1.2 Data Structure Interface. Different data structures are appropriate for different appli-
cations. Here we distinguish between two types of data structures, namely the sequence and the set
data structures, where both of them have a specific interface [34]. The term interface denotes in this
context the supported methods to modify the contained data.

➤ Sequence Data Structures. These data structures organize their data in a sequential way,
where the data can be, but does not have to be, contiguously stored inside the memory. The idea
behind the sequential structure is the assignment of a specific index to every element, which can
be used as an enumeration. This functionality is often implemented with the help of a specific
index operator and guarantees the possibility of random access to and subsequent modification
of all elements of the data structure. Examples for these data structures are arrays, lists and
specific tree structures. Important methods of this type are the setAt(), getAt(), insertAt()
and deleteAt() functions.

➤ Set Data Structures. These data structures are convenient for the sorting and finding of
specific data of interest. Often the elements of the data structures are unique, which means
that every element has a unique value, but this does not necessarily have to be the case. The
organization of the data is not based on a sequence, but on more sophisticated methods, such as
key-value pairs. Examples for these data structures are sorted arrays, hash tables and specific
tree structures. Important methods of this type are the sort() and find() functions, often
with specific use cases such as findMin(), findMax(), findPrev() and findNext().

The description of the Wigner signed-particle method in Section 1.2 shows us which methods are the
most useful for a data structure that should be used for the implementation of a particle stack. In every
time step of the time loop, all particles have to be modified, for example the position and momentum
values. Additionally scattering events lead to the modification of specific elements in the particle
stack, which is best supported by random access functions such as setAt() and getAt(). Generation
events create new particles, which can be added by the insertAt() function and annihilation events
erase specific particles, which again need random access functions such as deleteAt(). On the other
hand functionality such as find() and sort() are not essential in our considered application case,
since the particles cannot really be sorted in a fashion that would be beneficial for the solution process.
Even scenarios where for example all particles with positive annihilation flags would be sorted to the
end of an array for faster deletion are not really beneficial, since the sorting algorithm would have
to iterate over the elements in one way or another as part of the method, and this iteration alone
would suffice for the deletion of the particles. The considerations in this section lead to the conclusion
that sequence data structures are better suited for the Wigner signed-particle method. Therefore,
only data structures of this type are investigated and considered as contenders for particle containers
below.
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2.1.3 Data Structure Comparison. Now we use the time complexity measure to compare dif-
ferent data structures with a sequential interface to find containers that are useful for the Wigner
signed-particle solution approach. The results can be found in Table 2.1.

Table 2.1 Time complexity of methods of interest for different data structures with a sequential in-
terface. The variable n determines the index of the element in the data structure and E represents the
element data. The number of elements of a data structure is denoted by n and the height of a tree data
structure by h. Complexities with the exponent O{·}A mean amortized time costs. The time complexities
are taken from the information in [34, 35, 36].

Data Structure

Random Access First and Last Element

setAt(n,E) insertAt(n,E) insertFirst(E) insertLast(E)

getAt(n) deleteAt(n) deleteFirst() deleteLast()

Dynamic Array O{1} O{n} O{n} O{1}A
Linked List O{n} O{n} O{1} O{n}
Binary Tree O{h} O{h} O{h} O{h}
AVL Tree O{log(n)} O{log(n)} O{log(n)} O{log(n)}
std::vector O{1} O{n} O{n} O{1}A
std::deque O{1} O{n} O{1} O{1}

Compared are the random access methods setAt(), getAt(), insertAt() and deleteAt(), which
can be used to modify specific particles inside the particle stack. This kind of methods are the
most important for the algorithm. Additionally methods that modify the first and the last element
of the containers are also compared, namely insertFirst(), insertLast(), deleteFirst() and
deleteLast(). From these eight methods four are of especially high interest for us. The methods
setAt() and getAt() are used every time step for the evolution and scattering modules, deleteAt()
is used for the deletion of particles inside the annihilation module and insertLast() is used when
new particles are created in a generation event and they need to be attached to the particle stack.
The specific functions are colorized in blue in Table 2.1 and therefore only the efficiency of these four
methods will be discussed in the following.

2.1.4 Interpretation and Discussion. The first data structure, namely the dynamic array,
shows constant time complexity for both set and get functions and also for the insertion method.
Only the deletion method is linear in complexity. The linked list has linear complexity in all for us
interesting methods, which leads to inferior efficiency in contrast to the dynamic array. The binary
tree, which can be interpreted as a more complex linked list, shows time complexity for all methods
that is dependend on the height h of the tree. This can be in detrimental situations a value close to
the number of elements n, which leads to linear complexity. Even tree structures that try to optimize
the complexity by transforming the tree regularly to preserve a height of h = O{log(n)} – such as
the AVL tree [33] – lead to logarithmic time complexities for all methods [34]. Although the deletion
method is now faster than for the dynamic array (logarithmic versus linear complexity), one has to
keep in mind that the deletion method is called a lot less then the other functions. The setAt() and
getAt() functions are called in every time step because of the evolution module and the insertLast()
method is used every time a generation event happens, which is highly probable to happen also every
time step. The annihilation events on the other hand are only happening if the number of particles is
exceeding a specific number, which does not has to happen every time step. Therefore, even though
the deletion method is more efficient in the case of the AVL tree, the dynamic array has overall the
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highest efficiency of the methods that are called the most frequent. This leads to the conclusion that
the dynamic array – although a rather simple data structure – still represents the best choice for the
particle container.

2.1.5 Concrete Implementations. The last two rows of Table 2.1 show two sequential containers
of the C++ standard library. The first container is a concrete implementation of the dynamic array,
called std::vector, and will be used in the benchmark application. It possesses the same time
complexities as the theoretical dynamic array structure [35]. The second container, which is also part
of the options of the benchmark framework, is the std::deque, which can be described as follows:

”
As

opposed to std::vector, the elements of a deque are not stored contiguously: typical implementations
use a sequence of individually allocated fixed-size arrays, with additional bookkeeping, which means
indexed access to deque must perform two pointer dereferences, compared to vector’s indexed access
which performs only one“ [36]. The information in Table 2.1 shows that the time complexities for the
important methods are equal to the std::vector. Only the insertion and deletion of the first element
is faster, but since this is not one of the four frequently used functions, this difference is not relevant
for our case.

2.2 Related Open Source Material

After the selection of the best suited containers for the particle stack we now have to investigate the
question of how to arrange the containers in the most efficient way. First we should determine the
number and type of particle properties that are necessary for a Wigner signed-particle simulation. For
this task we take inspiration from the ViennaWD reference implementation and additionally reconstruct
the memory access patterns of the particle properties inside the application for further insight. With
this information in mind we analyse a number of other open source simulators to see what concepts
they use to organize all particle properties in different container combinations.

2.2.1 ViennaWD Particle Attributes. The ViennaWD reference assignes – if every entry in the
higher dimensional attributes is counted independently – in total 15 properties to a single numerical
particle. Some of them represent physical features, others are numerical values necessary for the
operations of the algorithm. All attributes that each particle in the ensemble carries are now described,
together with the variable name and data type that were used to represent the specific property in
memory. The list of 15 attributes are organized in two different property groups to emphasise the
utilities of and the dependencies between the properties.

➤ Phase Space Attributes. The particles are modeled inside the phase-space
{
r,k

}
, therefore

the basic attributes are the two-dimensional position vector of positive real numbers (float
position[2]) and the up to three-dimensional momentum vector of integer multipliers of the
discretized momentum values (short int momentum[3]). The algorithm groups all particles
into phase space cells, which can be accomplished with a discretized position variable that
represents the space cell closest to the particle (short int i x, j y). An ensemble sorting
algorithm for memory demand reduction utilizes an additional index variable that is calculated
from the discretized position and momentum values (int i5d).

➤ Evolution Mechanism Attributes. The position calculation inside the evolution module
(see Equation (1.2.2)) requires the free-flight time τ until the next scattering event happens
(float flightTime) and the remaining time δt (float detT) in the current time step, both
positive real numbers. The energy level necessary for the scattering table look-up is stored in a
real number (float energy) and a valley parameter (short int valley) assigns the particle
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to one of the three available L, X or Γ valleys of the band structure. Additionally, the number
associated to the Wigner potential (short int wp num) assigned to the particle is used for self-
force cancellation mechanisms. Each particle is marked by an activation flag (char active) to
indicate whether the particle is still active in the stack or not. If two new particles are generated,
they possess an integer sign (short int sign) with the values a = ±1.

2.2.2 ViennaWD Particle Stack. The particle attributes described above are implemented as
member variables of a classic C-style struct, which can be seen in the following code fragment.

1 typedef struct {

2 char active;

3 short int sign;

4 short int wp_num;

5 short int i_x, j_y, valley;

6 short int momentum[3];

7 float position[2];

8 float flightTime, delT;

9 float energy;

10 int i5d;

11 } particle_t;

Each struct represents one individual numerical particle. Multiple numerical particles can be com-
bined to model a wave packet. Each wave packet is also implemented as a struct, where one of the
member variables is a pointer to an particle t array.

1 typedef struct {

2 particle_t *stack;

3 /* ... */

4 } wavepacket_t;

The concept of organizing all available attributes first in a seperate structure, that is then placed
continuously in memory in the form of an array is called Array Of Structs, often abbreviated as AOS
(see Section 2.3). This is the first possibility to arrange the containers and constitutes one of the
available data structures in the benchmark framework.

2.2.3 Open Source Monte Carlo Particle Simulators. To find further possible data struc-
ture concepts for the particle stack, a closer look into the source code of available particle transport
simulators with a similar solution approach to the Wigner signed-particle method is taken. In partic-
ular Monte Carlo particle simulators are of high interest, as these compare the most to the fundamental
solution approach of the here considered particle Wigner solution approach. Although there is a large
number of closed source simulators available, such as BOSS [37], FLUKA [38], MCNP [39], PHITS [40],
Serpent [41] and TRIPOLI [42], they are not useful for our endeavor because we cannot analyze the
concrete implementation of the particle stack. Table 2.2 presents a collection of open source Monte
Carlo particle simulators. References to the fundamental papers, the website and the source code
(often available through an online repository) are given. The field of application, the programming
language and the parallelization techniques are also specified for further information. Finally the data
structure concept of the implemented particle stack is denoted in the last column to compare and
analyze further possible memory layouts of the particle containers.



Table 2.2 Overview over open source Monte Carlo particle simulators.

Name Paper Website Code Field of Application Language Parallelization Particle Stack

BRICK-CFCMC [43] [44] [45] Phase and Reaction Equilibria Fortran None Struct Of Arrays (SOA)

Cassandra [46] [47] [48] Atomistic Thermodynamic Properties Fortran OpenMP Array Of Structs (AOS)

CP2K [49] [50] [51] Electronic Structure Calculations Fortran MPI, OpenMP, CUDA Array Of Structs (AOS)

DLMONTE [52] [53] [54] Force Field Calculations Fortran MPI Array Of Structs (AOS)

EGSnrc [55] [56] [57] Particle Transport Processes Fortran None Array Of Structs (AOS)

ESPResSo [58] [59] [60] Soft Matter Research C++ MPI, CUDA Array Of Structs (AOS)

Etomica [61] [62] [63] Molecular Simulation Java None Array Of Structs (AOS)

FEASST [64] [65] [66] Particle-Based Molecular Simulations C++ OpenMP Array Of Structs (AOS)

GATE [67] [68] [69] Emission Tomography C++ None Array Of Structs (AOS)

GEANT4 [70] [71] [72] Particle Transport Processes C++ MPI Array Of Structs (AOS)

GGEMS [73] [74] [75] Emission Tomography C++ CUDA Struct Of Arrays (SOA)

GOMC [76] [77] [78] Phase Equilibria of Fluids C++ OpenMP, CUDA Array Of Structs (AOS)

HOOMD-blue [79] [80] [81] Hard Particle Simulations C++ MPI, CUDA Struct Of Arrays (SOA)

LAMMPS [82] [83] [84] Particle-Based Materials Modeling C++ MPI, OpenMP, CUDA Array Of Structs (AOS)

MolFlow+ [85] [86] [87] Ultra-High Vacuum Radiation C++ None Array Of Structs (AOS)

ms2 [88] [89] [90] Atomistic Thermodynamic Properties Fortran MPI, OpenMP Array Of Structs (AOS)

mVMC [91] [92] [93] Interacting Fermion Systems C++ MPI, OpenMP Struct Of Arrays (SOA)

OpenMC [94] [95] [96] Particle Transport Processes C++ MPI, CUDA AOS (CPU) / SOA (GPU)

OpenMM [97] [98] [99] Molecular Dynamics Simulation C++ CUDA Struct Of Arrays (SOA)

QMCPACK [100] [101] [102] Electronic Structure Calculations C++ MPI, OpenMP, CUDA Struct Of Arrays (SOA)

RASPA [103] [104] [105] Adsorption and Diffusion in Materials C++ None Array Of Structs (AOS)

SCONE [106] [107] [108] Neutron Transport Calculations Fortran None Array Of Structs (AOS)

SPPARKS [109] [110] [111] Materials Science Applications C++ MPI Struct Of Arrays (SOA)

Tinker [112] [113] [114] Molecular Mechanics Simulations Fortran MPI, OpenMP, CUDA Struct Of Arrays (SOA)

WARP [115] N/A [116] Neutron Transport Calculations C++ CUDA Struct Of Arrays (SOA)
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The source code of every simulator was examined and analyzed to yield the desired information. Table
2.2 contains a diverse collection of applications, languages and parallelization techniques, nevertheless
we recognize a specific pattern of only two different types for the utilization of data structure concepts
for the particle stack. The majority of the presented simulators (16 projects colored in blue) use the
same arrangement of the particle attribute containers, namely the Array Of Structs (AOS) concept.
This means that they, similar to the ViennaWD reference implementation, define a seperate structure
for every particle. These structures are then concatenated to form an array in the memory. The
other concept, which is utilized by fewer simulators (10 projects colored in green), is the so-called
Struct Of Arrays (SOA) concept that reverses the idea of AOS (see Section 2.3). In this case, not
all particle attributes are combined into one single struct, but a seperate array for every attribute
is allocated in memory. This means that for example an array is allocated for the first component
of the position vector, the same is done for the second component, and so on. In the case of the
ViennaWD reference implementation, where in total 15 attributes are implemented, also 15 arrays
would have to be allocated. These 15 arrays (or pointers to the first element of them) would then
be used as member variables of a single struct that contains all particles of the ensemble. The SOA
is the second option for a data structure in the benchmark application. AOS and SOA seem to be
the standard for Monte Carlo particle simulator implementations and will, therefore, be implemented,
benchmarked and analyzed in detail in Chapters 3 and 4.

2.3 Derived Data Structure Concepts

The analysis of data structure design in this chapter has led us to the conclusion that dynamic
arrays are the best suited containers to store particle attributes for algorithms where these properties
are modified in every time step. Additionally we know from the examination of source code of the
ViennaWD implementation and other open source Monte Carlo particle simulators, that both the
Array Of Structs (AOS) and the Struct Of Arrays (SOA) concepts are, although being old concepts,
still the go-to approaches for particle stack designs. This section summarizes the ideas behind these
data structures to give a clear reference for the following chapters, where the implementation of the
benchmark application is discussed in detail. Additionally a third concept is introduced, that bases
on the idea that all attributes possess the same data type and can therefore be stored inside one single
array.

2.3.1 Array Of Structs (AOS). This data structure is the classical implementation of a particle
stack. It follows the mindset of humans in general to store data that belongs conceptually together
also locally close together in the memory. Therefore the attributes of a single particle are combined to
a struct that arranges the attributes one after another. The following code snippet gives a simplified
example for an implementation in C++.

1 struct Particle

2 {

3 char active;

4 int momentum;

5 float position;

6 };

7
8 struct ArrayOfStructs

9 {

10 std::vector <Particle > particleArray (100);

11 };
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In this section we assume a pseudo particle that only contains three attributes with different data
types, an activation flag, a discrete momentum and a continuous position variable. If we want to
store 100 particles in our pseudo particle stack, we would generate a dynamic array (in this exam-
ple std::vector) with 100 Particle elements, which themselfs are structs. This data structure is
therefore an Array Of Structs (AOS).

2.3.2 Struct Of Arrays (SOA). If on the other hand we want to generate a single struct that
contains not only one particle, but all particles of the ensemble, the following concept is implemented.

1 struct StructOfArrays

2 {

3 std::vector <char > activeArray (100);

4 std::vector <int> momentumArray (100);

5 std::vector <float > positionArray (100);

6 };

Since our pseudo particle only possesses three attributes, only three distinct dynamic property arrays
have to be created. We want to store 100 particles, therefore every dynamic array has also the length
100 to have enough memory to store all attributes of all particles.

2.3.3 Array Of Floats (AOF). Additionally to the already defined data structures we introduce
a third possibility, where we assume that all particle attributes are implemented by the same data
type, in this case float. Then the opportunity arises for an alternative memory layout, where only
one single dynamic array is sufficient to store all particle properties.

1 struct ArrayOfFloats

2 {

3 std::vector <float > attributeArray (300);

4 };

One has to keep in mind to allocate the space not only for 100 elements, but for 300 elements, since
every single one of the 100 particles contains three distinct attributes. This data structure concept
is also available in the benchmark application and part of the runtime measurements. It should
be mentioned that certain issues can arise when char and int variables are stored as float. The
conversion between the different data types could lead to imprecise values, especially when the char

flag is used as a simplified boolean variable that differs between zero and other values. Also particle
attributes that should only be realized as integer values could now potentially contain improper values,
which are (due to rounding errors) close, but not exactly equal, to the desired int values.

2.3.4 Container Variation. The examples of the pseudo particle stacks above only contain
std::vector objects as containers, but in Section 2.1 we mentioned that not only dynamic arrays
should be available as containers for particle attributes, but also other classes that feature an inter-
face with an overwritten index operator, for example the std::deque class from the C++ standard
library. To ensure the flexibility of the particle stacks to utilize a variety of different containers, tem-
plate parameters and other C++ features are applied in the data structure class definitions. For more
information on the implementation of the benchmark application see Chapter 3.



3 Benchmark Framework

After the establishment of all necessary facts and information in the chapters above it is now time to
present the ParticleStackBenchmark application. This benchmark framework is based on fundamental
ideas of software engineering and tries to give the user as much freedom as possible when the software
is employed for different tasks. This is accomplished by a multitude of input parameters and other
options that are described in this chapter. Also the concepts of flexibility and expandability lead
to features that allow the user to develop custom modules that increase the functionality of the
framework and which help to improve the quality of the benchmark execution sequences in general.
Therefore, although this application has been developed with a concrete context in mind (particle
Wigner simulations), the fundamental framework and its design can be applied to other contexts as
well. The source code of the framework is available on TUgitLab [117].

3.1 Software Specification

This section gives a short specification of the ParticleStackBenchmark application that was developed
and used to yield the results of this thesis. After the definition of the main objective and the description
of the most important requirements, a few aspects regarding the design of the software are mentioned.
The section closes with a list of the utilized implementation methods and tools for all modules of the
application, including the pre-processing of the input parameters, the main execution of the framework
and the post-processing of the output data. Figure 3.1 shows all parameters and components of the
framework, together with references to the corresponding sections and algorithms.

3.1.1 General Description and Objective. The objective of the ParticleStackBenchmark ap-
plication is to provide the means to determine the best suited particle stack implementations in terms
of performance for a specific context, here the Wigner signed-particle method. The application mea-
sures the runtime of different particle stack implementations regarding the execution of specific test
functions which are motivated by the context in mind. The software user can choose between different
input parameters to adjust the application output to the particular research needs. The raw output
files of the application are not adequate for the determination of the performance hierarchy. Therefore,
the extraction of the runtime values from the output files is automated by additional visualization
tools, which support the analysis and the comparison of the results.

3.1.2 Practically Inspired Test Functions and Data Structures. The executed test func-
tions should perform operations that either can be used to deduce reference values for performance
ranges and are easy to check for correctness, or that are similar to the operations that are performed
in the algorithm of interest. Test functions of the first kind are reference functions for correctness
and should give a feeling for the performance measure in general. The second kind should try to
emulate the frequency and specific patterns of memory access of the actual algorithm to yield precise
insights. The application incorporates both kinds of test functions, which are discussed below (see
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Compiler Options
(see Section 3.2.5)
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ALL

Build Options
(see Section 3.2.5)
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DEBUG

VISUA

Mode Parameters
(see Section 3.2.6)

TIM

PAR

AVG
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(see Section 3.2.7)

PSB::Array

std::vector
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Container Types
(see Sections 3.2.1 and 3.3.2)
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(see Sections 2.3 and 3.3.3)
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SIMD / OPENMP

CUDA / HIP

Hybrid MPI Parallelization
(see Sections 1.3 and 3.2.3)

ReadAndWrite

SimulateParticles
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(see Sections 3.2.2 and 3.3.4)

Configuration
(see Section 3.3.5)

Datastructure Class

(see Sections 3.4.1 – 3.4.5)

Benchmark Class

(see Sections 3.4.6 – 3.4.8

and Algorithms A – D)

SimulateParticles Class

(see Sections 3.4.9 – 3.4.13

and Algorithms E – K)

Benchmark
(see Section 3.3.6)

Figure 3.1 Components of the ParticleStackBenchmark application.
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Section 3.2.2). Also the data structures for the particle stack should be inspired by the investigated
algorithm and adjusted to the utilized hardware. The exploration of different data structures above
(see Section 2.1) suggests particle stacks that have the ability to perform random access operations on
all simulated particles and their member variables. Therefore, only data structures with this property
are implemented and tested.

3.1.3 Requirements for Cluster Execution. The application should be able to be executed
directly on high-performance computing hardware, specifically on supercomputer clusters. This fact
leads to the following requirements regarding the user interface and the software design.

➤ Command Line Input. Almost all modern supercomputers utilize a member of the family
of open-source operating systems based on the Linux kernel. All these so-called distributions
provide a terminal with a command line interface (CLI) which is used for user interaction, in
contrast to a graphical user interface (GUI) which is commonly found on personal workstations.
Therefore, all interactions between the user and the cluster need to be performed via command
line instructions.

➤ Text File Output. The output of the application is written into human-readable text files,
following a comma-separated-values (CSV) format. This allows for command-line level inspection
of the output (already on remote clusters) and straightforward, external post-processing due to
the structured format.

➤ Specific Parallelization Techniques. The particular hardware of the cluster determines
the possibility of the utilization of different parallelization techniques. Therefore, the application
incorporates all techniques that are available, but also ignores methods that are not supported
by the cluster.

Additionally, it should be noted that all components of the application have to be compatible with the
software modules that are available on the cluster. This also includes the used build tools, compilers
and libraries. Therefore, it is advantageous to design the application around and on top of established
open source standards and up-to-date library versions.

3.1.4 Software Engineering Aspects. A software specification does not only include the gen-
eral objective of the application. It also has to define the software engineering principles that are
applied to design a software structure that is not only useful for a few specific cases, but for a wide
range of different tasks. The remainder of this section discusses the characteristics and perspectives
on which the development of the application was based on.

3.1.5 Correctness Investigation Tools. Even though the output of interest are the runtime
values, it should be ensured that the results of the measured test functions are also correct, otherwise
the execution times lose their meaning and are worthless for further processing. Therefore, different
tools for the testing of the test function results are implemented. Deterministic test functions can be
checked by a comparison of the output values with correct pre-calculated values, and if the magnitudes
of the variables do not coincide, the application terminates. However, this method is not feasible for
test functions with a stochastic component. One possibility for these test functions is the visualization
of the calculations, which can be verified by visual inspection of the user to conclude plausible results.
Both methods are implemented and are discussed below (see Sections 3.2.2 and 3.2.9).

3.1.6 Framework Characteristics. The ParticleStackBenchmark application is designed with
flexibility and expandability in mind, which are desirable for software frameworks in general. These
characteristics ensure that scientific software is of greater usefulness for both the specific investigation
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at hand and for the whole research community at large. The organization of the application provides
usability and reusability by utilizing a component-based structure, where the individual modules
can be combined to custom benchmark execution files (for an example see Section 3.3.9). Abstract
interface guidelines for data structures (see Section 3.4.3) and test functions allow the design and
implementation of custom particle stacks and even complete new test functions (see Section 3.4.14),
which increases the flexibility and expandability of the application.

3.1.7 Software User Perspective. Not every software user has the same education, experience
or goals while utilizing software frameworks. The software engineer has to take this fact into account
when the design of the application should incorporate the framework characteristics described above.
Weinbub [31] identifies three different software user groups, the end user, who has no interest in the
technical details of the tool and views it as a black box with specific input and output parameters,
the advanced user, who is inclined to modify the utilized software for specific tasks by changing
mostly easily accessible software components, and the developer, who generates scientific software and
views applications from both the low-level and the high-level design perspectives. These three groups
are sorted in increasing order of assigned software engineering capabilities and skills. The different
perspectives of these software users constitute the content of the following sections in this chapter,
which describes the benchmark application in three different levels of precision (Section 3.2 for the
end user, Section 3.3 for the advanced user and Section 3.4 for the developer perspective).

3.1.8 Implementation Methods and Tools. The implementation of the ParticleStackBenchmark
application is based on different open source software tools and programming languages that should be
mentioned in this section. Without the help of these sophisticated tools it would have been impossible
to develop a benchmark application with such a wide variety of options for the user.

3.1.9 Implementation of the Benchmark Module. The application is written in the C++

programming language [118], which offers a number of advantages in the context of the concrete
implementation. The framework is implemented as a so-called header-only library, which means
that – if all necessary header files are available – the central header file can also be included into
other programs to add further functionality to them. All classes and functions are available under
the namespace PSB (ParticleStackBenchmark). The following characteristics of C++ support different
implemented features of the application, which are discussed in detail in the remainder of this chapter.

➤ Preprocessor. Even though the C++ preprocessor is nowadays mostly seen as a relict of the
past, it still has a specific functionality that is very useful for the implementation of the bench-
mark application. The definition of preprocessor variables in combination of the conditionally
compilation of parts of the source code is used to implement different parallelization techniques
in the same files, classes and methods. If libraries are for some reason not available, a preproces-
sor variable can be undefined and the dependent part of the source code is ignored (an example
can be seen in Section 3.4.7).

➤ Standard and Parallel Libraries. The application makes heavy use of the C++ standard
library up to the C++17 standard. Many of the functionalities, often based on the programming
paradigms discussed below, are incorporated in these library classes and methods. C++ also
supports all well-established parallelization libraries such as implementations of MPI, OpenMP,
CUDA and HIP.

➤ Object-oriented Programming. This programming paradigm allows the organization of
source code into seperable modules, which are called classes, where data (class members) and
functionality (class methods) can be grouped together. Different classes can also rely on one
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another by simple or complex dependencies. Object-oriented features such as inheritance and
polymorphism are utilized to support the expandability of the application (see for example
Section 3.4.4).

➤ Generic Programming. Almost all classes and methods of the application use the power of
template programming to shorten and structure the source code. It also provides more flexibility
for custom benchmark execution files by establishing a concise interface of the specific benchmark
methods (see Section 3.3).

➤ Functional Programming. Specific function objects are used to deduce the data types of
the class members of the particle stack inside the benchmark methods (see for example Section
3.4.5). This allows further compactness of the source code and allows to design custom data
structures without much overhead.

3.1.10 Implementation of the Additional Modules. Before and after the execution of the
main benchmark module there are pre- and post-processing steps necessary to complete the application
workflow and to yield meaningful output results that match with the given input parameters. The
most important auxiliary modules are listed in the following.

➤ Build Process with CMake. The utilization of CMake [119] should specifically be mentioned
in the context of this application, since the well-arranged implementation of the different build
options (see Section 3.2.5) are only possible by the defined and undefined CMake variables which
are transferred to the C++ preprocessor. This is also the case for all used parallelization libraries.

➤ Cluster Execution with Slurm. The job scheduler Slurm [120] allows with a few simple, but
powerful commands the generation of job submit scripts which help to execute the application
on supercomputer clusters with the correct options and parameters. The features of Slurm were
essential for the creation of the results of this thesis, especially for the management of the process
and thread configuration (see Section 4.1.2).

➤ Output Visualization with Python. The visualisation of the output text files is accom-
plished with the help of Python [121] scripts that take the text files as input and automatically
generate bar chart diagrams for runtime files (see Figure 3.3) and animations of the particle sim-
ulation for visualization files (see Figure 3.2). The diagrams allow a comparison of the yielded
runtimes and the animations serve as a plausibility check for the dynamic test functions with a
stochastic component.

3.2 The End User Perspective

The end user is only interested in the execution of an application to yield information that can be used
to advance the investigation at hand. The specific technical methods and tools inside the application
are not important. Therefore, this section gives an overview of all input options and output file
types that are available for the ParticleStackBenchmark application. The data structures with their
containers and the test functions with their parallelization methods, which can be combined in every
possible way to yield benchmark results for a specific test case, are presented. After the description of
the features, the user is guided through the execution steps of the application, where simultaneously
all relevant options are discussed and illustrated with simple examples.
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3.2.1 Container Implementations. The three already discussed data structures AOS, SOA and
AOF (see Section 2.3) are available in the application. The above mentioned containers inside the data
structures can be specified via a template parameter (see Section 3.3.3). In theory every container
that supports the interface of the dynamic sequence containers of the C++ standard library [122] with
an overwritten index operator can be used in this fashion. There are currently the following dynamic
container types supported (see also Section 2.1.5):

➤ PSB::Array. This container uses in its core a classic C-style array, which allocates memory on
the heap. The dynamic features are added by further reallocation member functions. Therefore,
this container can be seen as a wrapper class. The namespace PSB indicates functionality of the
ParticleStackBenchmark application.

➤ std::vector. The dynamic array implementation of the C++ standard library.

➤ std::deque. The doubly ended queue implementation of the C++ standard library.

3.2.2 Test Function Implementations. The above data structures use the test functions for
the benchmarking process inside a time loop, which itself is executed multiple times to calculate an
average value of the runtime (see Section 3.4.7). These test functions are available:

➤ ReadAndWrite. This test function reads the properties of each particle from the data structure,
increments it by one and writes it back into the same space in memory (see also Section 3.4.11).
The number of different properties that should be modified can be selected by a seperate template
parameter. The correctness of this deterministic test function is checked by specific assert()

function calls that compare the result values with pre-calculated values.

➤ SimulateParticles. Here the particles are moving inside a simulation area according to
classic Newtonian mechanics which results in a drift trajectory. Additional simple scattering,
generation and annihilation events try to test the performance of the dynamic data structures in
use (see also Section 3.4.12). The output files can be processed into an animation of the particle
evolution which can be used for visual inspection to ensure the plausibility of the calculations.

The test functions can be executed in serial or they can use different parallelization techniques. The
test functions can be run on architectures which use a distributed memory system (see Section 1.3.2).
This means the different processes do not share the memory on which the operations are calculated.
Therefore, they have to use a framework that helps communicate the data between them. In this
application the MPI library is used to fulfill these requirements.

3.2.3 Parallelization. On the basic parallelization level the test functions are executed on mul-
tiple MPI processes in serial. But inside each MPI process another parallelization method can be used
to further improve the performance. These parallelization methods are sometimes also called imple-
mentations in this thesis. The following implementations for all testfunctions are currenty available
(see also Section 1.3):

➤ SERIAL. This implementation does not use any parallelization technique, its just uses one single
thread on one core of the CPU per employed compute node of the cluster. This case represents
the reference value for all other implementations regarding the speedup and performance.

➤ SIMD. Here the calculations are augmented by vectorization operations if they are supported
by the used CPU architecture. These allow to use specific instructions on multiple data objects
at once.
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➤ OPENMP. In this implementation multiple threads are used by the OpenMP library in parallel
to perform the required tasks. The calculations are parallelized, but are still running only on
the CPU.

➤ CUDA. Now the operations are not only running on the CPU, but also the performance of the
GPU can be taken into account. The CUDA programming toolkit is an extension of C++ and
is supported by most GPU architectures. The calculations itself can experience an excellent
speedup if executed on the GPU, but the data migration between the CPU and the GPU can
cause performance drops.

➤ HIP. This implementation also runs on the GPU (similar to the CUDA case), but here the
HIP programming toolkit is used, which is distributed by AMD (where CUDA is maintained by
NVIDIA).

3.2.4 Application Workflow. Additionally to all possible benchmark combinations discussed
above there are a variety of options that can be chosen by the user to specialize the execution of the
application even further. All available build options, mode and input parameters are listed below,
followed by a short description of the different output files and the post processing step.

3.2.5 Build Options. This software project uses CMake as a building tool to support the user.
The CMakeLists.txt file defines different variables which are connected to preprocessor constants
that are given to the compiler as input parameters. These constants define which parts of the source
code should be compiled. There are three different C++ compilers that can be selected for the building
process:

➤ GCC. The GCC compiler [123] can be selected by defining the CMake flag GCC.

➤ CLANG. The CLANG compiler [124] can be selected by defining the CMake flag CLANG.

➤ INTEL. The INTEL compiler [125] can be selected by defining the CMake flag INTEL.

Furthermore, there are CMake flags for different implementations. The reason behind these is the fact
that not every computer owns the required architecture or utilizes all the necessary libraries which
are needed for all available implementations. The SERIAL implementation is always compiled, all
other methods can be selected with the flags USE SIMD, USE OPENMP, USE CUDA and USE HIP. While it
is possible to combine these four flags in every way possible, it is easier to use these predefined flags
in the compilation process:

➤ VSC4. Parallelization only on the CPU, which means the SERIAL case and additionally the
USE SIMD and USE OPENMP flags, can be selected by defining the CMake flag VSC4.

➤ VSC5. All three implementations from VSC4 and additional parallelization on the GPU with
USE CUDA can be selected by defining the CMake flag VSC5.

➤ ALL. All five implementations, this means the VSC5 flag and additionally USE HIP, can be
selected by defining the CMake flag ALL.

The names of the VSC4 and VSC5 flags are based on the VSC-4 [23] and VSC-5 [24] clusters (see also
Sections 1.3.1 and 4.1.1). If the user wants to compile the benchmark application with, for example,
the GCC compiler only with implementations working on the CPU, the following command is used

1 cmake -DGCC=ON -DVSC4=ON .. && make
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As another example, if the user wants to compile the benchmark application with the INTEL compiler
and with all implementations available, the following command is used

1 cmake -DINTEL=ON -DALL=ON .. && make

3.2.6 Mode Parameters. There are different modes available for the ParticleStackBenchmark

executable. These are given to the file by command line parameters. Currently there are three modes
implemented:

➤ BENCH. This is the benchmark mode. It measures the runtime of the execution of the test func-
tions with the corresponding data structures. Currently all nine data structure combinations ex-
ecute the three test functions readAndWrite(1), readAndWrite(15) and simulateParticles()

with 1000 timesteps, 1000 particles and 3 execution runs for the average value. This mode can
be selected by the parameter BENCH.

➤ DEBUG. This is the debugging mode. It checks if the resulting values from the calculations are
correct. If this is not the case for at least one value, the programm is exited by an assert() func-
tion call. Here all nine data structure combinations execute the test functions readAndWrite(1)
and readAndWrite(15) with 10 timesteps, 10 particles and 1 execution run for the average value.
This mode can be selected by the parameter DEBUG.

➤ VISUA. This is the visualization mode. Since the simulateParticles() test function contains
random generated values, it is not possible to check the results with an assert() function call
as in the debugging mode. Therefore, an output file is generated which can be processed into
an animation of the simulation for visual expection and sanity checking. Here only one data
structure combination is executing the test function simulateParticles() with 500 timesteps,
100 particles and 1 execution run for the average value. This mode can be selected by the
parameter VISUA.

This means for example if the user wants to execute the benchmark application with only 1 MPI
process in BENCH mode, the following command is used

1 mpirun -np 1 ParticleStackBenchmark -BENCH

As another example, if the user wants to execute the benchmark application with 8 MPI processes in
VISUA mode, the following command is used

1 mpirun -np 8 ParticleStackBenchmark -VISUA

There are further input parameters available, which are discussed next.

3.2.7 Input Parameters. As can be seen above, every mode is executed with default values. If
the user wants to change these values, the following parameters from the command line can be used:

➤ TIM. This parameter defines the number of time steps that are used inside the time loop that is
executing the selected test function. This value can be changed by the command -TIM=X, where
X is an integer between 1 and 9.

➤ PAR. This parameter defines the number of particles that are used as starting value for the
execution. In the case of the readAndWrite() test function this number is fixed, but for the
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simulateParticles() test function it can potentially be modified every time step. This value
can be changed by the command -PAR=X.

➤ AVG. This parameter defines the number of execution runs of the time loop to calculate the
average runtime. After all execution runs, the runtime is divided by this number to yield the
average. This value can be changed by the command -AVG=X.

Integer values in the interval between 1 and 9 are valid for all three input parameters. One has to be
careful in the case of the TIM and PAR parameters (but not the AVG parameter), where this value is
the exponent in scientific notation. This means if one uses the commands

1 -TIM=3 -PAR=4 -AVG=2

the number of time steps equals 103 = 1000, the number of particles equals 104 = 10 000 and the
number of average runs equals 2. All three input parameters can be used in any order and any given
number of them can also be omitted. If the parameter is omitted, the default value of the chosen
mode (see Section 3.2.6) is used instead. For example if the user wants to execute the benchmark
application with only 1 MPI process in BENCH mode, but with 105 = 100 000 time steps instead of
the default 103 = 1000 the following command is used

1 mpirun -np 1 ParticleStackBenchmark -BENCH -TIM=5

The number of particles and the number of average runs are then still the default values 103 = 1000
and 3. As another example, if the user wants to execute the benchmark application with 8 MPI
processes in VISUA mode, but with 104 = 10 000 time steps, 104 = 10 000 particles and 8 average
runs, the following command is used

1 mpirun -np 8 ParticleStackBenchmark -VISUA -TIM=4 -PAR=4 -AVG=8

As described above, the input parameters are optional, but at least one of the three mode parameters
BENCH, DEBUG or VISUA has to be specified. If a command line call is not valid, an error and usage
message is displayed on the command line. All used input parameters are also written into the output
files for later inspection. These output files are discussed next.

3.2.8 Output Files. If the ParticleStackBenchmark application is executed, the progress is
printed to the command line for visual inspection. This is helpful if the user wants to estimate
how far the benchmarking process is away from finishing. An example progress output for a VISUA

mode execution is given below:

1 user@workstation:path$ mpirun -np 1 ParticleStackBenchmark -VISUA

2
3 USING VISUA MODE.

4
5 1 MPI RANK(S) WITH 16 OPENMP THREAD(S) EACH AVAILABLE.

6
7 [ 20%] (1/5) simulateParticles () AOF std:: deque SERIAL 0.078187 finished.

8 [ 40%] (2/5) simulateParticles () AOF std:: deque SIMD 0.048343 finished.

9 [ 60%] (3/5) simulateParticles () AOF std:: deque OPENMP 0.077729 finished.

10 [ 80%] (4/5) simulateParticles () AOF std:: deque CUDA 0.655052 finished.

11 [100%] (5/5) simulateParticles () AOF std::deque HIP 0.396987 finished.



3.3. The Advanced User Perspective 31

12
13 COMPLETE RUNTIME = 1.3 SECONDS

The progress in percent, the absolute number of executed test functions, the data structure combina-
tion, the test function implementation and the runtime is displayed on the command line. Additionally
the executed mode, the available number of MPI processes and OpenMP threads and the complete
runtime of the application can also be inspected. All three modes also generate an output file in .txt

format. All modes write the input parameters into the output file, which are the mode itself, the
number of MPI processes, the number of OpenMP threads, the number of time steps, the number
of particles and the number of average runs. Additionally, for the visualization of the simulation,
the length of the simulation area, the minimum distance for the annihilation step and the length of
a single time step are also included. These are the header lines which all output files include. The
BENCH mode output file also lists the executed test function, the data structure combination, the test
function implementation and the runtime, similar to the progress output. The DEBUG mode output
file lists the result value of all properties of all particles inside the data structures for reference and for
correctness. The VISUA mode output file lists for every time step the complete number of particles,
the position in two dimensions and the generation index for every particle. The names of the output
files are automatically generated and use the input parameters as reference. The output files for the
BENCH and VISUA modes can be visualized, which is discussed next.

3.2.9 Post Processing. It is possible to study the output files in text format. But to get an
overview of the results it is practical to visualize the output data. For this task a Python script called
PLOT.PY is ready for usage. The script automatically recognizes if a BENCH or a VISUA output file is
given as input. If the output file FILE.txt should be visualized, the following command is used

1 python3 PLOT.PY FILE.txt

If a DEBUG output file is given, an error message appears on the command line. An example for a
VISUA output file visualization screenshot can be seen in Figure 3.2. The animations have the format
.mp4. The left plot shows a screenshot at the time step t = 499, where currently N = 684 particles
are present in the simulation region. These values are shown in the top middle. The colors of the
particles themselfs indicate the number of generation events that were necessary to construct them.
The plot on the right displays the same information, but as a density plot, where the colorbar on
the far right indicates the density in a specific space region. The resolution of the density plot is
changeable inside the script. An example for a BENCH output file visualization can be seen in Figure
3.3 (detailed discussions on benchmarks are given in Chapter 4). The runtimes are sorted from the
slowest on the left to the fastest execution on the right. The runtime is plotted on the y-axis in
logarithmic scale. The x-axis displays the data structure combination and the implementation. The
name of the test function can be seen in the top right of every plot. The colors of the bars indicate the
used data structure. The numbers over the bars display the speedup of a specific implementation in
relation to the SERIAL reference value. This means that the SERIAL implementations always display
the value 1. The values inside the bars are the inverse values to the ones on the top.

3.3 The Advanced User Perspective

The advanced user has the interest to investigate the application that is utilized and requests the
possibility to modify specific components of the software to customize the input parameters and,



Figure 3.2 Screenshot of the animation of the particle evolution calculated by the
simulateParticles() test function. If the VISUA mode is selected, an output file is generated,
which can be processed by the Python script PLOT.PY to generate the animation. A description of the
screenshot is given in Section 3.2.9.
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Figure 3.3 Visualization of a BENCH mode output file. The configuration of the processes and threads
and the input parameters can be seen at the top. A description of the content is given in Section 3.2.9.
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therefore, the execution and the output data. The ParticleStackBenchmark application supports the
feature of custom benchmark sequence generation with the help of the class system that is located
inside the core of the implementation. This feature is established by first discussing all the necessary
classes and their dependencies via heavy use of template parameters and then describing the required
commands to assemble the execution file.

3.3.1 Class System Dependencies. Behind the different input options discussed above lies a
system of classes which use themselfs as parameters in an interlaced structure. This system is described
in the following and serves as an overview for the possibility of custom benchmark execution file
generation. In the end all classes are incorporated into the Benchmark class as template parameters
or constructor arguments. Additionally to the class definition all class interfaces are formulated in
a pseudo-notation to construct an abstract scheme for the reader. The basic notation pattern is
represented by Class⟨Template Parameter⟩.
3.3.2 Container Classes. All containers offer the same class interface, where a template parame-
ter defines the data type of the container elements. As representative example only the class definition

1 template <typename Type>

2 class Array

3 { /* ... */ };

of the wrapper class for a classic C array with additional member functions for dynamic memory
allocation is shown here, the definitions for std::vector and std::deque are similar and can be
found in the header files of the standard library. The pseudo-notation for the container classes is
C = C⟨t⟩, where C stands for the class itself and t denotes the type parameter. The type parameter
is omitted in the following discussion.

3.3.3 Data Structure Classes. All data structure classes are derived from an abstract class
called Datastructure, which only contains virtual member functions which should be overwritten by
implementations which are derived from this class (see Section 3.4.3). Also the specific data types for
the particle properties (see Section 2.2.1) should be specified as template parameters by the derived
classes. This can be seen in the class definition

1 template <template <typename> typename ContainerType>

2 class ArrayOfStructs

3 : public Datastructure<

4 char, // activeType

5 int, // i5dType

6 short int, // momentumType

7 short int, // signType

8 short int, // wp_numType

9 short int, // i_xType

10 short int, // j_yType

11 short int, // valleyType

12 float, // positionType

13 float, // flightTimeType

14 float, // delTType

15 float> // energyType

16 { /* ... */ };

for the ArrayOfStructs class, the other particle stack class definitions possess the same kind of
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interface. Every data structure takes a container type as template parameter as input, where C
denotes the container class and D the data structure class, which leads to the pseudo-notation D⟨C⟩.
3.3.4 Test Function Classes. Both the static test function ReadAndWrite() and the dynamic
test function SimulateParticles() possess the same class interfaces regarding the data types and
template parameters. As representative example only the first test function

1 template <long numberOfVariables>

2 class ReadAndWrite

3 { /* ... */ };

is shown here. The pseudo-notation T ⟨n⟩ represents this interface, where T denotes the test function
class and n stands for the numberOfVariables template parameter. It denotes the number of variables
that are read, incremented and written back into memory. The range of n lies between 1 and 15, the
maximal number of implemented particle properties (see Section 2.2.1). The SimulateParticles()

test function also uses a template parameter of data type long, but in this case it represents the
number of maximal particles before the annihilation mechanism is started. Therefore, the parameter
can theoretically accept all values greater than 1. The individual parallelized versions of the test
function are implemented as nested classes inside the test function class, in the case of ReadAndWrite()
for the SERIAL implementation as

1 template <long numberOfVariables>

2 template <typename DataStructureType>

3 class ReadAndWrite<numberOfVariables>::SERIAL

4 { /* ... */ };

where the other implementations SIMD, OPENMP, CUDA and HIP possess the same interface and
are omitted here.

3.3.5 Configuration Class. This class manages the input parameters, the output file generation,
the MPI communication and further functions which set up the benchmark environment. It organizes
the MPI processes and the corresponding command line output. Furthermore, it transfers all input
variables such as the number of time steps, the number of particles and the number of benchmark
executions for the averaging process to the executed test function classes. The mode parameters are
processed and the corresponding flags are set. The class also writes the results of the benchmarks
together with progress information into the output stream for command line inspection. The class
has to be instantiated before the benchmarks are executed, where the constructor initializes the MPI
methods and the destructor finalizes them. The class definition

1 class Configuration

2 { /* ... */ };

possesses no template parameters, therefore it has no dependency on any other class. It rather
constitutes one of the input parameters for every benchmark instantiation. It is represented by the
pseudo-notation Con.

3.3.6 Benchmark Class. This class manages the MPI communication between the different MPI
processes, runs and benchmarks the selected test function and generates the output files which are
used for further post-processing steps by other applications or scripts. A type deduction mechanism
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(see Section 3.4.5) allows to benchmark data structures with different data types as input. It also
contains the methods for correctness checking. The class definition

1 template <typename DataStructureType, typename TestFunctionType>

2 class Benchmark

3 { /* ... */ };

shows that the data structure and the test function classes of interest are taken as template parameter
input. The Configuration class object is given as a function argument. This can be represented
by the pseudo-notation B

<
D⟨C⟩, T ⟨n⟩>(Con) and serves as the main interface for custom benchmark

execution, which is discussed next.

3.3.7 Custom Benchmark Execution. If the user is interested in specific benchmark sequences
that are not part of the three default modes described above (see Section 3.2.6), then there is the
possibility to generate custom benchmark execution files. The class structure of the application en-
ables the potential to use simple commands as building blocks for individually generated benchmark
sequences. After the presentation of these building blocks a short example is given to illustrate this
useful feature.

3.3.8 Execution File Building Blocks. To generate a custom benchmark file, the header file
for the ParticleStackBenchmark library has to be included into the source file, which is accomplished
with

1 #include "ParticleStackBenchmark.hpp"

Then the Configuration class object has to be created. The constructor

1 Configuration(int argc, char** argv) { /* ... */ }

takes the argument counter and vector of the executable file as input, therefore the instantiation is
obtained with the command

1 PSB::Configuration c(argc, argv);

After these two simple preliminary steps the user is free to construct a custom benchmark sequence,
where every combination of the above mentioned options can be incorporated. The constructor of the
Benchmark class

1 Benchmark(Configuration& configuration) : configuration{configuration} { /* ... */ }

uses the Configuration object Con as argument. Additionally the data structure class D with the
corresponding container template parameter C and the test function class T with the corresponding
number of particles template parameter n are given, which can for example be done by

1 PSB::Benchmark<PSB::ArrayOfStructs<std::vector>, PSB::ReadAndWrite<15>> b(c);

where the pseudo-notation B
<
D⟨C⟩, T ⟨n⟩>(Con) can be recognized. In this example the data struc-



3.4. The Developer Perspective 37

ture is chosen as the ArrayOfStructs class with std::vector container, while the test function
ReadAndWrite() is selected, where all 15 particle properties are modified.

3.3.9 Execution File Example. The instruction steps above are now illustrated by a short ex-
ample. The following source file includes the header file, creates the necessary Configuration class
and defines the benchmarks that should be performed. It should be noted that the constructor and the
destructor of the Configuration class initialize and finalize the MPI library, therefore it should always
be instantiated in a scope that encompasses the parallelization methods that utilize MPI functions.

1 // Include for all ParticleStackBenchmark classes

2 #include "ParticleStackBenchmark.hpp"

3
4 // Main function for custom benchmark execution

5 int main(int argc, char** argv)

6 {

7 // Creating Configuration object

8 PSB::Configuration c(argc, argv);

9
10 // Benchmark sequence for all modes

11 PSB::Benchmark<PSB::ArrayOfStructs<PSB::Array>, PSB::ReadAndWrite<1>> b1(c);

12
13 // Benchmark sequence for BENCH mode

14 if (c.inputManagement.benchFlag)

15 {

16 PSB::Benchmark<PSB::StructOfArrays<std::vector>, PSB::ReadAndWrite<15>> b2(c);

17 PSB::Benchmark<PSB::ArrayOfFloats<std::deque>, PSB::SimulateParticles<100>> b3(c);

18 }

19 }

While the first benchmark (b1 in line 11) is executed for all three modes, the other two (b2 in line
16 and b3 in line 17) are only performed when the BENCH mode is activated by the corresponding
command line parameter. If benchmark sequences for the other two modes should be defined, the flag
debugFlag for the DEBUG mode or the flag visuaFlag for the VISUA mode have to be utilized in
a simple conditional statement similar to line 14, instead of the benchFlag for the BENCH mode as
shown in the example.

3.4 The Developer Perspective

The last kind of software user in our hierarchy is the developer, the user that does not only utilize
software as a black box, but also tries to understand the ideas behind the concrete implementation.
The developer wants to change and improve the scientific software that is available, and often generates
complete new software projects with an own objective in mind. This section discusses all classes of
the application in detail, describes all methods and mechanisms and gives examples and new ideas for
further extensions.

3.4.1 Implementation of the Datastructure Class. The Datastructure class represents the
core of the whole benchmark application. All desired features determine the characteristics of the
other classes in the framework. In the following, the general features of the utilized particle stacks
are discussed, the concrete implementation of the abstract class from which all data structures are
derived is presented and a few examples for custom data structure designs are given. Also specific
mechanisms for data type and member function deduction are discussed to illustrate the connections
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between the Datastructure class and the benchmark execution classes of the application.

3.4.2 General Features. The particle stack has the task to contain all attributes of the simulated
particle ensemble, which includes all physical quantities of interest, such as the position, the momentum
and the energy of the particles. To maximize the flexibility of the benchmark application, it should
be possible to adjust the particle properties of the particle stack to the specific simulation at hand.
The idea of this customization can be represented by three measures that should be incorporated into
the structure of the data structure class to allow for sophisticated comparison of these designs.

➤ Memory Layout of Particle Properties. Modern hardware architectures, especially the
nowadays established complex multilevel memory layouts, demand the possibility of more in-
tricate allocation of memory for the different particle properties. The user should for example
have the freedom to combine multiple properties into one single container or to split one single
property into a number of containers. Also the possibility of the usage of more than one kind of
container should be supported. All in all the memory layout should as much as possible depend
only on the choice of the user of the framework.

➤ Data Types of Particle Properties. The data types of the properties depend either on
the mathematical model of the physical process or on the level of abstraction of the calculation
that is utilized for the simulation. The user should face no limitation regarding the choice of the
concrete data type for each attribute. It could be a fundamental data type or a custom defined
struct or class.

➤ Number of Particle Properties. Additionally to the data types it should also be possible
to modify the absolute number of properties of each particle to adapt the particle stack to the
physical model that lies behind the simulation. While the other two measures are realized in
the current version of the framework, this feature is currently fixed to 15 particle properties
(deduced from the ViennaWD reference implementation in Section 2.2.1) due to the statically
typed characteristics of the C++ programming language and the inherent restrictions of the type
deduction mechanisms at compile time (see also Section 5.1.1).

3.4.3 Abstract Datastructure Class. All particle stack implementations are derived from the
abstract Datastructure class that defines the interface that is necessary to be compatible with the
other classes of the application. For further reference, the complete definition of the class is discussed
in the following. As already mentioned above, every particle possesses 15 properties that represent
either specific physical or numerical quantities. Every property can be modeled by a data type of
choice. These options are incorporated into the class definition as template parameters

1 template <typename activeType ,

2 typename i5dType ,

3 typename momentumType ,

4 typename signType ,

5 typename wp_numType ,

6 typename i_xType ,

7 typename j_yType ,

8 typename valleyType ,

9 typename positionType ,

10 typename flightTimeType ,

11 typename delTType ,

12 typename energyType >

13 class Datastructure

14 { /* ... */ };
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which are assigned when the derived class is defined, as can for example be seen in Section 3.3.3 for
the ArrayOfStructs class. Besides the obligatory constructor and destructor methods

1 public:

2 Datastructure () = default;

3 virtual ~Datastructure () {};

the abstract class contains pure virtual member functions for the access to the particle properties

1 virtual activeType& active(long n) = 0;

2 virtual i5dType& i5d(long n) = 0;

3 virtual momentumType& momentum_0(long n) = 0;

4 virtual momentumType& momentum_1(long n) = 0;

5 virtual momentumType& momentum_2(long n) = 0;

6 virtual signType& sign(long n) = 0;

7 virtual wp_numType& wp_num(long n) = 0;

8 virtual i_xType& i_x(long n) = 0;

9 virtual j_yType& j_y(long n) = 0;

10 virtual valleyType& valley(long n) = 0;

11 virtual positionType& position_0(long n) = 0;

12 virtual positionType& position_1(long n) = 0;

13 virtual flightTimeType& flightTime(long n) = 0;

14 virtual delTType& delT(long n) = 0;

15 virtual energyType& energy(long n) = 0;

that constitute the basic class interface. For every property exists a seperate method that has to
be implemented in the derived particle stack. All member functions take an index integer as input
parameter, which specifies the specific particle of interest. This uniform input interface simplifies the
implementation of the data type deduction in the other classes, as it is described below (see Section
3.4.5). All methods return a reference to the attribute, which allows for the method to be used on
both sides of the assignment operator, or in other words, both as ℓ-value and r-value. Additionally
there are another three member functions included:

1 virtual std:: string print() = 0;

2 virtual void resize(long n) = 0;

3 virtual void erase(long n) = 0;

The print() function returns all particle properties of all particles in the data structure for the
generation of the debug file in the DEBUG mode, and the other two functions are necessary for the
operations in dynamic test functions where the number of particles can change every time step.

3.4.4 Custom Data Structure Design. The definition of the abstract Datastructure class
allows for a custom memory layout and the free choice of the data types for the particle properties. This
design permits the user to generate custom data structures in an efficient way. After the selection of the
memory layout all virtual member functions have to be implemented, which makes the data structure
compatible with the benchmark execution and the test functions. To illustrate this feature, the
significant source code of the three already implemented data structures are presented and discussed
in the following. The user can use these examples as incentive for further data structure designs. For
brevity only the first of the 15 properties (the active flag) is shown here, the other access functions
are implemented in a similar way.
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➤ Array of Structs (AOS). First we look at the implementation of the ArrayOfStructs class.

1 // Class member variable

2 ContainerType<Particle> particleArray;

3 /* ... */

4 // Inside class constructor

5 particleArray = ContainerType<Particle>(numberOfParticles, Particle());

6 /* ... */

7 // Class member function

8 char& active(long n) { return particleArray[n].active; }

9 /* ... */

10 // Inside resize() method

11 particleArray.resize(n, Particle());

12 /* ... */

13 // Inside erase() method

14 particleArray.erase(particleArray.begin() + n);

The Particle class is a simple nested class inside the ArrayOfStructs data structure that
contains the particle properties similar to a classical struct. This example shows that even
custom nested classes inside the particle stack can be used for the memory layout. As the name
suggests, these Particle objects are arranged inside the container of choice and initialized by
the constructor. The access function for the active flag, as well as the resize() and erase()

methods, are adjusted to the memory layout.

➤ Struct of Arrays (SOA). Similar to above is the implementation for the second data struc-
ture. This time a seperate container is used for every particle property. Only the first is shown
here, in total there are 15 containers implemented. The member functions are again adapted to
the concrete implementation.

1 // Class member variable

2 ContainerType<char> activeArray;

3 /* ... */

4 // Inside class constructor

5 activeArray = ContainerType<char>(numberOfParticles, 0);

6 /* ... */

7 // Class member function

8 char& active(long n) { return activeArray[n]; }

9 /* ... */

10 // Inside resize() method

11 activeArray.resize(n, 0);

12 /* ... */

13 // Inside erase() method

14 activeArray.erase(activeArray.begin() + n);

➤ Array of Floats (AOF). Now the same data type for all properties is used, which is
float in this case. This can also be seen on the return type of the access function. All at-
tributes are now stored inside one single array, which contains now numberOfParticles times
numberOfVariables elements. Again only one single line in every member function has to be
changed to adjust the abstract data structure to the new particle stack design.

1 // Class member variable

2 ContainerType<float> variableArray;
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3 /* ... */

4 // Inside class constructor

5 variableArray = ContainerType<float>(numberOfParticles * numberOfVariables, 0.0);

6 /* ... */

7 // Class member function

8 float& active(long n) { return variableArray[n * numberOfVariables + 0]; }

9 /* ... */

10 // Inside resize() method

11 variableArray.resize(n * numberOfVariables, 0.0);

12 /* ... */

13 // Inside erase() method

14 for (long i = 0; i < numberOfVariables; i++)

15 variableArray.erase(variableArray.begin() + (n * numberOfVariables));

3.4.5 Data Type and Member Function Deduction. The assignment of the data types of
the properties and the concrete implementation of the access member functions in the derived data
structure classes is only one half of the implementation to ensure that the interface is compatible with
the other classes of the framework. The other half is the deduction of the correct data types and access
functions in the methods of the other classes. This section emphasises the techniques that were used to
implement this feature. The discussed source code is part of the Benchmark and SimulateParticles

classes, but is described here to demonstrate the connection to the Datastructure class definition.

➤ Data Type Deduction. In both the Benchmark and the SimulateParticles classes the data
type of the particle properties is derived from the information that is given by the data structure
template parameter, here named DataStructureType.

1 using activeType = typename std::remove_reference_t<

2 decltype(std::declval<DataStructureType>().active(long{}))>;

The std::declval method (defined in header <utility>)
”
converts any type to a reference

type, making it possible to use member functions in decltype expressions without the need to go
through constructors“ [126], which can be seen in the code above. Since all return types of the
access functions are reference types, the std::remove reference t method (defined in header
<type traits>) is used before the data type is saved as a type alias for simplicity. Now the
data type of every property is known to the class and can be used accordingly.

➤ Member Function Deduction for MPI Communication. The Benchmark class uses the
MPI library to distribute the particles between the different worker processes (see below in
Section 3.4.8). This is performed in the MPIMEM() method (see also the later discussion on
Algorithm D), which takes std::function objects (defined in header <functional>) as input
parameters.

1 template <typename Type>

2 void MPIMEM(std::string mode,

3 std::function<Type& (long)> completeParticleProperty,

4 std::function<Type& (long)> particleProperty)

5 { /* ... */ }

The first function object is the access function of the particle stack in the master process,
the second the access function of the particle stack in the specific worker process. The access
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functions are called via the method std::bind, which
”
generates a forwarding call wrapper for

the function“ [127], as can be seen here

1 MPIMEM<activeType>(mode,

2 std::bind(&DataStructureType::active, &completeDataStructure, _1),

3 std::bind(&DataStructureType::active, &dataStructure, _1));

”
Calling this wrapper is equivalent to invoking the function with some of its arguments bound to

args“ (arguments of std::bind) [127], which are represented by the std::placeholders:: 1

object. This mechanism allows the MPIMEM() method to call the correct access functions when
assembling the arrays for the communication between the processes.

➤ Member Function Deduction for CUDA Communication. Similar to the MPI com-
munication in the Benchmark class the SimulateParticles class utilizes the communication
supported by the CUDA library to send and receive data between the CPU and the GPU.
The CUDAMEM() method (Algorithm K in Section 3.4.13) again needs to bind the correct access
function for every particle property to the specific function object. Therefore, the method

1 template <typename Type>

2 void CUDAMEM(std::string mode, Type** cuda_array,

3 std::function<Type& (long)> particleProperty)

4 { /* ... */ }

is called by

1 CUDAMEM<activeType>(mode, &cuda_activeArray,

2 std::bind(&DataStructureType::active, &dataStructure, _1));

for the active flag. The other particle properties are called in a similar way. The communication
in the case of HIP is performed by the function HIPMEM(), which possesses the same structure
as the here presented CUDAMEM() method.

3.4.6 Implementation of the Benchmark Class. This class manages the MPI communication
between the different MPI processes, runs and benchmarks the selected test function and generates
the output files which are used for further post processing steps by other applications or scripts.
The class takes, as already mentioned in Section 3.3.6, two template parameters as input. The
DataStructureType selects which data structure class should be used and TestFunctionType selects
the benchmarked test function class.

3.4.7 Benchmark Algorithm. All benchmarkTestfunction() methods (Algorithm A) are called
inside the Benchmark class constructor. This means that the instantiation of the class is also au-
tomatically performing the benchmarks. The constructor executes all benchmarks for the chosen
test function, depending on the preprocessor definitions that select the used implementations. The
OpenMP implementation for example is called by

1 #ifdef USE_OPENMP

2 benchmarkTestfunction<typename TestFunctionType::OPENMP<DataStructureType>>();

3 #endif
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where the corresponding preprocessor variable definition of USE OPENMP is visible. The other imple-
mentations are called in a similar way. This function uses the MPI Wtime() function to measure the
runtime of the selected test function, which is executed inside a time loop. To yield a mean value of
the runtimes, the resulting value is divided by the number of average runs before it is stored. After
the execution, the progress is printed on the command line. If the BENCH flag is set, the names of the
test function, the data structure and the implementation, together with the runtime, are written to
the benchmark output file. The function runTestfunction() (Algorithm B) between the MPI Wtime()

Algorithm A Function benchmarkTestfunction() which benchmarks the selected test function.

1 start ← MPI Wtime() ▷ Synchronized with MPI Barrier()
2 runTestfunction() ▷ Algorithm B
3 end ← MPI Wtime() ▷ Synchronized with MPI Barrier()
4 runtime ← (end− start) / numberOfAverageRuns ▷ Calculate averaged runtime
5 if mpiRank ∈ {0} then ▷ If master MPI process
6 writeOutputFile(runtime) ▷ Write runtime to text file
7 printProgress(runtime) ▷ Print runtime to command line
8 end if

function calls first utilizes the setMemberVariables() function that sets the correct number of parti-
cles for all MPI processes. The complete number of particles (set by the PAR input parameter) is
divided by the number of MPI processes. If there is a non-zero remainder of the division present,
then these remaining particles are added to the last MPI process with the highest rank index. At last
the setMpiParticleLengths() function is called to broadcast the calculated number of particles to the
other processes. Then it initializes the global data structure class (completeDataStructure) with all
particles on the master process, a smaller data structure class (dataStructure) with a chunk of the
particles on the master and all worker processes and the test function with the selected implemen-
tation type. Then the data is sent from the master to the worker processes, where the testfunction
is initialized, executed in the time loop and post processed. If the VISUA flag is set, then the vi-
sualization output file is written in every time step. After the execution the resulting data is sent
back from the workers to the master process. If the DEBUG flag is set, the results are checked for
correctness and written to a debug output file. The names of the test function, the data structure and
the implementation are returned for the process printing function and the benchmark output file.

Algorithm B Function runTestfunction() which runs the selected test function inside a time loop.

1 setMemberVariables() ▷ Set the correct number of particles for all MPI processes
2 if mpiRank ∈ {0} then ▷ If master MPI process
3 DataStructureType completeDataStructure ▷ Initialize global data structure object
4 end if

5 DataStructureType dataStructure ▷ Initialize local data structure object
6 ImplementationType testFunction ▷ Initialize test function object
7 MPIALL(send) ▷ completeDataStructure → dataStructure, Algorithm C
8 testFunction.initialization() ▷ Initialization of testFunction, see Section 3.4.12
9 for a ∈ {0, . . . , numberOfAverageRuns} do ▷ numberOfAverageRuns set by AVG parameter

10 for t ∈ {0, . . . , numberOfTimeSteps} do ▷ numberOfTimeSteps set by TIM parameter
11 testFunction.run() ▷ Execution of testFunction, see Section 3.4.12
12 end for

13 end for

14 testFunction.postProcessing() ▷ Post-processing of testFunction, see Section 3.4.12
15 MPIALL(recv) ▷ completeDataStructure ← dataStructure, Algorithm C
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3.4.8 MPI Memory Management. The MPIALL(mode) (Algorithm C) function manages the
communication between the different MPI processes. First the setMpiParticleLengths() function is
called which broadcasts the number of particles from every MPI process to all other processes and saves
them in the mpiParticleLengths array. Additionally the number of all particles in the application is
determined by summing all elements in the mpiParticleLengths array. This means that the lengths
of the particle arrays on each process are communicated to all other processes and especially to the
master process to guarantee no segmentation faults if the data is transferred back to the global data
structure. Then the MPIMEM(mode) functions are called for all particle properties to send or receive
the selected data to the other processes. The mode parameter determines the MPI communication
direction. If mode equals " SEND", the data is sent from the master process to the worker processes.
If mode equals " RECV", the data is sent from the worker processes back to the master process.

Algorithm C Function MPIALL(mode) which manages the MPI memory requirements for the test
function execution.

1 setMpiParticleLengths() ▷ Broadcasts the number of particles to all other MPI processes
2 if mpiRank ∈ {0} then ▷ If master MPI process
3 completeDataStructure.resize() ▷ Resize the global data structure to the new length
4 end if

5 MPIMEM(mode) ▷ First particle property, Algorithm D
6 /* ... */ ▷ Call MPIMEM(mode) for all particle properties in between
7 MPIMEM(mode) ▷ Last particle property, Algorithm D

The MPIMEM(mode) function (Algorithm D) manages the extraction and assignment of the particle
properties for the MPI communication. It collects the particle property data from the given data
structure class in an allocated array and sends or receives this data via the MPI Send() and MPI Recv()
functions. If the data is sent, the complete array from the master process is divided into smaller chunks
for the different worker processes. If the data is received, the smaller worker arrays are combined
together in the complete array on the master process. This functionality is achieved with the help of the
index and length variables which are defined inside the method. The std::function<Type& (long)>

object completeParticleProperty(n) is bound to the function that manages the particle property for the
master process and particleProperty(n) is bound to the function that manages the particle property
for the worker processes, as described in Section 3.4.5. When functions from the MPI library, such as

1 MPI_Send(mpi_array, length, mpi_get_type<Type>(), rank, 0, MPI_COMM_WORLD);

are called, the deduced data type for the particle property is only available as a fundamental data
type in standard C++ syntax, but the MPI library uses special data types that are defined inside the
library. Therefore, the function mpi get type<Type>() is called which receives a fundamental data
type as a template parameter and searches in an if-else-construct for the equivalent MPI data type
which can be used in the functions from the MPI library. This mechanism is achieved with the help of
the std::is same method (defined in header <type traits>). For example the conditional statement
for the fundamental char data type is implemented as follows

1 MPI_Datatype mpi_type = MPI_DATATYPE_NULL;

2 /* ... */

3 if (std::is_same<T, char>::value) { mpi_type = MPI_CHAR; }

4 /* ... */

5 return mpi_type;
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Algorithm D Function MPIMEM(mode) which manages the MPI memory requirements for the
individual particle properties.

1 index ← 0 ▷ Initialize index variable
2 for rank ∈ {0, . . . , numberOfMpiRanks} do
3 length ← mpiParticleLengths

[
rank

]
▷ Initialize length variable for specific MPI process

4 if mode ∈ {send} then ▷ Master MPI process → Worker MPI process
5 if mpiRank ∈ {0} then ▷ If master MPI process
6 for n ∈ {index, . . . , index+ length} do
7 mpi array

[
n− index

] ← completeParticleProperty(n) ▷ Extract particle properties
8 end for

9 if mpiRank /∈ {0} then ▷ If worker MPI process
10 MPI Send(mpi array, rank) ▷ Master sends MPI array to worker process
11 end if

12 index ← index + length ▷ Increment index variable for next rank
13 end if

14 if mpiRank ∈ {rank} then
15 if mpiRank /∈ {0} then ▷ If worker MPI process
16 MPI Recv(mpi array, 0) ▷ Worker receives MPI array from master process
17 end if

18 for n ∈ {0, . . . , length} do
19 particleProperty(n) ← mpi array

[
n
]

▷ Obtain particle properties
20 end for

21 end if

22 else if mode ∈ {recv} then ▷ Master MPI process ← Worker MPI process
23 /* ... */ ▷ Reverse operations as in send mode
24 end if

25 end for

3.4.9 Implementation of the SimulateParticles Class. The Benchmark class calls the three
execution methods initialization(), run() and postProcessing() inside the time loop of the runTestfunc-
tion() (see Algorithm B) method. The remainder of this section describes the structure behind these
functions by the example of the SimulateParticles() test function. Emphasis lies on the rela-
tion between the original Wigner signed-particle algorithm and the extreme simplifications that are
incorporated into the SimulateParticles() test function. Also the possibility of custom test func-
tion design is discussed at the end (see Section 3.4.14) to illustrate another feature to maximize the
flexibility of the application.

3.4.10 Relation to the Wigner Signed-Particle Method. One of the objectives discussed
in Section 3.1.2 is the implementation of practically inspired test functions that try to reproduce the
memory access of the physical algorithm of interest, in our case the Wigner signed-particle method
described in Section 1.2. The simulateParticles() test function incorporates all important modules
of this solution approach, namely the initialization, the evolution, the growth prediction and the anni-
hilation modules (see Section 3.4.12). Some mechanisms, for example the broadcast of the annihilation
flag between the MPI processes, is relatively similar to the ViennaWD reference implementation, while
other modules are extremly simplified, often to such a degree, that the calculations are not repre-
senting any physical process anymore. However, physical meaning is – as mentioned above – not the
objective of this test function. As long as the read and write operations to the member variables of
the particle stack resemble the memory access pattern in the original algorithm to some extent (in
terms of order and frequency), the test function can be used to determine the performance of the data
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structure on which it is applied. Improvements of the seperate modules to converge to operations
that resemble real physical processes is one possibility for future extensions of the framework (see also
Section 5.1.2).

3.4.11 Relation to the ReadAndWrite Class. The ReadAndWrite() test function possesses the
same structure as this test function in terms of parallelization implementations and execution func-
tions, namely the three modules initialization(), run() and postProcessing(), which are called by the
Benchmark class inside the runTestfunction() method (Algorithm B). The initialization() and postPro-
cessing() functions of ReadAndWrite() are only used for CUDAALL() calls (see Section 3.4.13) for data
transfer when the GPU is involved in the calculation and the run() function only contains a for-loop
over all particle properties, where they are read, incremented and written back into the same place in
memory. Therefore, it seems sufficient to only discuss the SimulateParticles() test function in the
following, since almost all implementation details of the readAndWrite() test function can be derived
from simulateParticles() by simplifying specific implementation modules.

3.4.12 Implementation on the CPU. All three modules are called by every MPI process and run
partially in parallel. The implementation called SERIAL is a pure MPI parallelization where the test
function is executed serial on every process. The SIMD and OPENMP implementations are a hybrid
technique, where every MPI process utilizes the OpenMP library for the parallization of for-loops
by employing vectorization instructions (SIMD) or multiple threads on the CPU (OPENMP) with
the help of #pragma omp compiler directives discussed in Section 1.3.2. The simulateParticles()

function (Algorithm E) and the corresponding methods are discussed in the following. The comments
next to the pseudo-code denote if the module is parallelizable or if it is a critical section, which means
that it always has to be executed in serial to prevent segmentation faults and race conditions.

Algorithm E Test function SimulateParticles() executed on the CPU only.

1 initialization() ▷ Parallelizable section on the CPU
2 evolution() ▷ Parallelizable section on the CPU, Algorithm F
3 generateParticles() ▷ Critical section
4 growthPrediction() ▷ Communication between MPI processes, Algorithm G
5 if annihilationFlag ∈ {true} then
6 annihilation() ▷ Parallelizable section on the CPU, , Algorithm H
7 eraseParticles() ▷ Critical section
8 annihilationFlag ← false ▷ Reset annihilationFlag
9 end if

➤ Initialization. This module initializes the particle properties for all particles inside the used
data structure. This function generates random values and assignes them to the position and
momentum variables of all particles, where the position values are located inside a rectangu-
lar two-dimensional simulation domain and the momentum values lie in the range between -1

and +1. In contrast to the ViennaWD implementation that uses Gaussian minimum uncertainty
wavepackets described by Equation (1.2.1) as an initial condition for the particles, these ran-
dom values are distributed uniformly with the help of the std::uniform real distribution

class [128] and are generated by the general-purpose pseudo random number generator module
std::mersenne twister engine [129], both defined in the header <random>. The random val-
ues for the free-flight time and the scatter mechanism probabilities in the evolution module are
generated in the same way, only within other ranges.

➤ Evolution. This function (Algorithm F) manages the evolution step of the particles. Inside
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a for-loop the following functions are applied to every particle in the ensemble. The function
sampleFreeFlightTime(n) first checks if the free-flight time parameter is zero. If this is the case,
this means that the particle was part of a scattering event in the last time step and a new random
value for the next free-flight time is generated and assigned to it. If this is not the case, then
the free-flight time is decremented by one to indicate the time period that has expired during
the last time step. The ViennaWD implementation differentiates between the remaining time δt
in the time step ∆t and the free-flight time τ (see Equation (1.2.2)). This module simplifies the
mechanism by setting the duration of the free-flight time τ to an integer-multiple of the time
step length ∆t and omits the remaining time δt completely. This means that scattering events
can only happen at the end of every time step and particles can drift on a trajectory over the
duration of multiple time steps.

Algorithm F Function evolution() which executes the drift and scattering mechanisms.

1 for n ∈ {0, . . . , numberOfParticles} do
2 sampleFreeFlightTime(n)
3 if flightTime

[
n
]
/∈ {0} then

4 drift(n)
5 else if flightTime

[
n
] ∈ {0} then

6 scattering(n)
7 end if

8 end for

If the free-flight time is not zero, then the particle drifts away according to Newtonian mechan-
ics. The function drift(n) manages the drift of the particles. This function updates the position
values of all particles by adding the momentum value multiplied with the time step length ∆t.
This simulates a Newtonian trajectory where the particles do not accelerate and the wave vector
remains constant, similar to the ViennaWD implementation (see Section 1.2.2). If the particle
reaches the boundary of the simulation area, it is reflected back into the region. If on the other
hand the flight time equals zero, a scattering event takes place. The function scattering(n) man-
ages the scattering events of the particles. This function defines the scattering probability and
samples a random number which chooses the next event. If the probability is smaller than the
defined value, a phonon scattering event is chosen, otherwise a generation event is executed.
The phonon scattering function modifies the momentum values of the particle. In this case it
is just multiplying the momentum vector with the value -1, which should imply a simple hypo-
thetical scattering event. This operation only resembles the memory access operation between
the scattering module and the particle stack and is not meant to imply a physical process. The
SimulateParticles() test function utilizes – in contrast to the ViennaWD implementation –
the activation flag not only in the case of an annihilation event (where it is set to a specific
value), but also for the marking of particles that are part of a generation event (where it is set
to another value as in the annihilation event). In the case of a generation event, this module
sets the active flag to another value, but the real generation (which means the addition of new
particles to the particle stack) takes place later in the generateParticles() module, because the
generation mechanism itself is a critical section and should not be parallelized.

➤ Generate Particles. After the first for-loop over all particles in the evolution step a second
for-loop occurs where the new particles are generated. This function manages the generation
event of the new particles. It resizes the data structure which holds the particles and assignes
new initial values to the two new generated particles. The position values are the same as for
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the old particle, but the momentum values are taken from the old particle and modified by
multiplying them with a number smaller than one. Both the free-flight time and the active

flag are set to zero and the generation number is incremented by one. The so-called generation
number denotes the number of generation events that had to be executed to spawn the specific
particle. This is only relevant in the case of the visualization of the particle evolution as part
of the VISUA mode and determines the color of the particle in the resulting animation. It is,
therefore, not present in the ViennaWD implementation. The value of the generation number
is stored inside the i5d variable, since this index is not used by the ParticleStackBenchmark
application. The signs of the new particles are chosen between two opposite values, where for
each generation event always two particles with opposite signs are generated. This is a critical
section that has to be executed in serial, because the length of the particle stack is modified.
Otherwise this step can lead to race conditions or segmentation faults. After the generation of
the new particles the activation flag of the original particle is set back to the default value.

➤ Growth Prediction. This module (Algorithm G) manages the growth prediction for every
MPI process. The function checks if the number of particles inside the MPI process has reached
the maximal defined value. In contrast to the ViennaWD implementation, this module does
not perform a growth prediction based on the maximum value of the generation rate γ (see
Equation (1.2.3)) to determine the maximal number of particles. This number can be given as
the template parameter maximumOfParticles to the test function (see Section 3.3.4). In the
benchmark measurements of this thesis (see the results in Chapter 4) this value was specifically
set to the global number of particles of all MPI processes combined, divided by the number
of MPI processes, to enforce annihilation steps in the execution as soon as possible, since the
particles are uniformely distributed over all MPI processes.

Algorithm G Function growthPrediction() which determines if an annihilation step has to be
performed in this time step.

1 if numberOfParticles > maximumNumberOfParticles then

2 annihilationFlag ← true ▷ Set annihilationFlag
3 end if

4 for rank ∈ {0, . . . , numberOfMpiRanks} do
5 annihilationFlagArray

[
rank

] ← annihilationFlag ▷ Store annihilationFlag in array

6 MPI Bcast(annihilationFlagArray
[
rank

]
, rank) ▷ Broadcast annihilationFlag

7 if annihilationFlagArray
[
rank

] ∈ {true} then

8 annihilationFlag ← true ▷ Set annihilationFlag
9 end if

10 end for

If the maximum number of particles is reached, then the annihilation flag is set to true. This
annihilation flag is then broadcast to all other MPI processes and stored in an array. If at
least one of the MPI processes set the annihilation flag to true, then all processes perform an
annihilation step. If all annihilation flags are false, then the annihilation step is ignored for
this time step.

➤ Annihilation. This function (Algorithm H) manages and performes the annihilation step for
the particles. A nested loop over all particles checks three conditions, first if the particles do not
have the same index, second if the distance between them is smaller than a defined value ε and
third if the signs of both particles are different. The distance is calculated from the positions of
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the particles by the Pythagoras theorem. If all these three conditions are true, the active

flags of both particles are set to the corresponding value for the annihilation flag. Similar to the
evolution module this step only sets the activation flags, the actual deletion of the particles is
performed in the eraseParticles() method due to the prevention of race conditions.

Algorithm H Function annihilation() which determines the particles that have to be erased.

1 for n ∈ {0, . . . , numberOfParticles} do
2 for m ∈ {0, . . . , numberOfParticles} do
3 if n /∈ {m} and distance < ε and sign(n) /∈ {sign(m)} then
4 setAnnihilationFlag(n, m)
5 end if

6 end for

7 end for

The annihilation step in the ParticleStackBenchmark application is different from the ViennaWD
implementation in the sense that here only the position space is taken into account for the deter-
mination if the two particles are in the same space cell or not. The ViennaWD implementation
additionally is checking if the values of the momentum vector are also close enough to each
other, since the Wigner signed-particle method is simulated in the phase space

{
r,k

}
and has

to include both quantities.

➤ Delete Particles. This function loops over all particles and checks if the active flag is set
to the specific value of the annihilation event. If this is the case, the particle is deleted from the
data structure and the number of the particles in the particle stack is reduced to the new number
of particles. The for-loop begins at the last element of the particle stack and counts back to
the first element to prevent false elimination of particles due to erroneous index assignments if
the loop would run in the normal direction. This is, similar to the generateParticles() module,
also a critical section that has to be executed in serial, because the length of the particle stack
is modified.

Finally, it has to be mentioned that the domain decomposition of the position space (or the sim-
ulation area) of the ViennaWD implementation is not incorporated into the ParticleStackBenchmark
application. Here, the parallelization is operating only on the number of particles. This means that
the particles are distributed before the time loop starts and merged at the end of the execution. In
between these two points of time (which includes the entire time loop) the particles are always assigned
to the same MPI process, independent of where the particles are currently situated in the simulation
space. Therefore, the SimulateParticles() test function does not possess an implementation of the
particle transfer module of the Wigner signed-particle method, since the particles are not changing
the MPI process.

3.4.13 Implementation on the CPU and the GPU. If the GPU is incorporated as a paral-
lelization device, the data has to be sent and received between the host (the CPU) and the device (the
GPU), similar to the communication between the different MPI processes (see Section 3.4.8). This
type of parallelization is implemented in the application via the CUDA and the HIP libraries. If every
node on a cluster possesses a CPU and a GPU, one MPI process per node can be spawned, which in
turn can now access the GPU on the same node. This kind of hardware is in mind for this implemen-
tation (the reason behind this is discussed in Sections 4.1.5 and 5.1.4). The source code is divided
into the same modules as for the CPU only case (Algorithm E), but some additional functions are
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now necessary, most prominent the functions CUDAALL(mode) (Algorithm J) and CUDAMEM(mode)
(Algorithm K), which perform in essence the same tasks as the MPIALL(mode) (Algorithm C) and
MPIMEM(mode) (Algorithm D) functions in the Benchmark class. Also the generateAndSendRandom-
Numbers() function is now part of the test function, and the evolution() and annihilation() modules,
which can be parallelized, are realized as so-called kernels, which are suitable for execution on the
GPU device.
The hybrid CPU and GPU implementation (Algorithm I) is now discussed in more detail. First
the generateAndSendRandomNumbers() is executed. Then the data is sent to the GPU, where the
evolution step is performed. Then the data is sent back to the CPU. On the CPU the generation step
is performed in serial, since it is a critical section. The growthPrediction() function determines if the
annihilation flag is set. If this is the case, the data is again sent to the GPU, where the annihilation
step is performed. Then the data is again sent back to the CPU. At last the CPU performes the
deletion step, again in serial to prevent race conditions.

Algorithm I Test function SimulateParticles() executed on the CPU and the GPU. The addi-
tional functions which are necessary for the GPU communication are colored in blue.

1 generateAndSendRandomNumbers() ▷ Generate random numbers on CPU for GPU
2 CUDAALL(send) ▷ CPU → GPU, Algorithm J
3 evolutionCUDAKernel() ▷ Parallelizable section on the GPU, Algorithm F
4 CUDAALL(recv) ▷ CPU ← GPU, Algorithm J
5 generateParticles() ▷ Critical section
6 growthPrediction() ▷ Communication between processes, Algorithm G
7 if annihilationFlag ∈ {true} then
8 CUDAALL(send) ▷ CPU → GPU, Algorithm J
9 annihilationCUDAKernel() ▷ Parallelizable section on the GPU, Algorithm H

10 CUDAALL(recv) ▷ CPU ← GPU, Algorithm J
11 eraseParticles() ▷ Critical section
12 annihilationFlag ← false ▷ Reset annihilationFlag
13 end if

Besides the modules of the CPU implementation, there are now a few additional functions for the
GPU version available, which are now described in more detail. While the cudaMemcpy() functions
are represented in the pseudo-code in a non-formal fashion, the cudaMalloc() functions for memory
allocation on the GPU are omitted for brevity.

➤ Generate and Send Random Numbers. This module manages the random sampling for
the free-flight time values and the scattering probabilities. It generates random numbers for
these quantities for all particles in advance on the CPU and stores them in seperate arrays.
These arrays are then transferred to the memory of the GPU with the help of the cudaMalloc()
and cudaMemcpy() functions, where they will be used inside the evolution step module. The
random values could also be generated on the GPU itself (which would reduce the communication
overhead between the CPU and GPU). The idea behind this specific implementation is to use the
same random number generator as in the CPU only case to improve the possibility of comparison
between both implementations.

➤ CUDAALL. This function (Algorithm J) manages the CUDA memory requirements for the test
function execution and the communication between the CPU and the GPU. First the lengths of
the particle arrays on each MPI process are communicated to all other MPI processes via the
setMpiParticleLengths() function. If the data is sent to the GPU, the number of particles of the
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particle stack has to be transferred to the GPU as well to be able to know the correct size of the
memory block on the device. If the data is received from the GPU, the new number of particles
after the calculation on the GPU has to be obtained because the annihilation step on the GPU
reduces this number. Then the CUDAMEM(mode) functions are called for all particle properties
to send or receive the selected data on the CPU or GPU. The mode parameter determines the
CUDA communication direction. If mode equals " SEND", the data is sent from the CPU to the
GPU. If mode equals " RECV", the data is sent from the GPU back to the CPU. The calls of the
CUDAMEM(mode) functions, where the correct access functions of the particle attributes have
to be bound to std::function objects, are discussed in Section 3.4.5.

Algorithm J Function CUDAALL(mode) which manages the data transfer between the CPU
and the GPU for all particle attributes.

1 setMpiParticleLengths() ▷ Broadcasts the number of particles to all other MPI processes
2 if mode ∈ {send} then ▷ CPU → GPU
3 cudaMemcpy(numberOfParticles, HostToDevice) ▷ Send number of particles to GPU
4 else if mode ∈ {recv} then ▷ CPU ← GPU
5 cudaMemcpy(numberOfParticles, DeviceToHost) ▷ Receive number of particles from GPU
6 end if

7 CUDAMEM(mode) ▷ First particle property, Algorithm K
8 /* ... */ ▷ Call CUDAMEM(mode) for all particle properties in between
9 CUDAMEM(mode) ▷ Last particle property, Algorithm K

➤ CUDAMEM. This method (Algorithm K) manages the CUDA memory requirements for the
individual particle properties and therefore the communication between the CPU and the GPU.
If the data has to be sent to the GPU, the particle property data from the given data structure
class is collected in an allocated CPU array, which is then transferred to an allocated array on the
GPU. If the data has to be received, the reverse mechanism takes place. The particleProperty(n)
calls are the corresponding access functions to the member variables of the particle stack, which
are given as input parameters (see Section 3.4.5).

Algorithm K Function CUDAMEM(mode) which manages the data transfer between the
CPU and the GPU for a specific particle attribute.

1 if mode ∈ {send} then ▷ CPU → GPU
2 for n ∈ {0, . . . , numberOfParticles} do
3 array

[
n
] ← particleProperty(n) ▷ Extract particle properties

4 end for

5 cudaMemcpy(array, HostToDevice) ▷ Send particle attributes to GPU
6 else if mode ∈ {recv} then ▷ CPU ← GPU
7 cudaMemcpy(array, DeviceToHost) ▷ Receive particle attributes from GPU
8 for n ∈ {0, . . . , numberOfParticles} do
9 particleProperty(n) ← array

[
n
]

▷ Obtain particle properties
10 end for

11 end if

3.4.14 Custom Test Function Development. Similar to the design of custom data structure
classes (see Section 3.4.4) it is also possible to develop custom test function classes. The emphasis lies
on the modularized structure of the test function classes that allow for expandability. There are two
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cases possible (see also Section 5.1.2):

➤ Custom SimulateParticle() Modules. The simulateParticle() test function is divided
into multiple modules which work mostly independent from one another. This structure can be
used to enhance the functionality of single or multiple modules. For example more sophisticated
calculations, which describe the physical phenomena more accurate, could be implemented. One
idea could be to improve the phonon scattering mechanism, which currently is just a simple
modification of the momentum vector by multiplication with a constant value.

➤ Complete New Test Functions. Another possibility is the development of complete new
test functions. All particle stack classes are derived from the abstract Datastructure class.
This is not the case for the test functions, since there is currently no abstract Testfunction

class implemented. But similar to the interface with the access functions in the case of the
Datastructure class, there is also an interface for test functions available, namely three neces-
sary components have to be incorporated into a new test function class to be compatible with
the other classes of the application. First there has to be a template parameter with the data
type long (used for example for numberOfVariables or maximumOfParticles), then there have
to be between one and five nested implementation classes available (SERIAL, SIMD, OPENMP,
CUDA, HIP) and finally all implemented nested classes have to contain the three execution
methods initialization(), run() and postProcessing() for the time loop execution.



4 Results

The applicability of the ParticleStackBenchmark framework – which was described in the last chapter
– will now be demonstrated by using it directly as a sophisticated measurement tool for the deter-
mination of the best suitable data structure for the directly implemented test functions. First the
general setup – which includes the hardware specification, software library versions, MPI process and
OpenMP thread configuration and input parameters – is discussed in detail to ensure reproducibility
of the presented results. The output of the benchmark measurements are organized in a structured
fashion, which utilizes compact table representations and visualization methods, such as diagrams, to
simplify the classification and analysis of the large number of output values. These representations are
the basis for the subsequent analysis of the results, which concludes in considerations and recommen-
dations regarding the best suitable data structure for implementations of the Wigner signed-particle
method. An additional section investigates the upsides and downsides of the two implemented GPU
parallelization techniques, since only one of them is currently available on the cluster on which the
majority of the benchmark measurements were performed.

4.1 General Setup and Output

This section describes the general setup and the resulting output of the performed benchmark mea-
surements. The specification of the hardware and software on which the application was executed is
discussed and structured in an organized fashion to ensure reproducibility of the presented results.
All configuration and input parameters are listed and explained for the same reason. Lastly, the re-
sults of the measurements, which contain a large number of values, are presented and described. An
interpretation and discussion of the output is given in Section 4.2.

4.1.1 Hardware and Software Specification. All benchmark application executions were
performed on the VSC-5 system, which is part of the Vienna Scientific Cluster infrastructure [130].
To guarantee the reproducibility of the presented results, all necessary information of the system,
including the utilized CPU and GPU hardware and the operating system, compiler and software
library versions are assembled in Table 4.1. The specification details in this section are based on the
VSC-5 system documentation [24] and the TOP500 list [131]. The VSC-5 cluster features 770 compute
nodes, where 710 of them are pure CPU nodes and the remaining 60 are hybrid CPU/GPU nodes.
Each of the hybrid nodes of the VSC-5 cluster is equipped with two AMD EPYC 7713 CPUs and
two NVIDIA A100 GPU cards, combined with 512 GB of memory for the CPUs and additionally
40 GB of memory for each GPU. Each CPU has 64 cores available and is operating at a base clock
frequency of 2 GHz. Out of the 60 hybrid CPU/GPU nodes 16 nodes were utilized for the benchmark
measurements. VSC-5 employs the operating system Alma Linux [132], which is a distribution based on
the Linux kernel. The benchmarks utilize three different compilers, namely the g++ compiler from the
GNU Compiler Collection (GCC) [123], the CLANG C++ compiler [124] and the INTEL C++ compiler
[125]. For all benchmarks the compiler flags -std=c++17 (using the C++17 standard) and -O3 (the
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Table 4.1 VSC-5 Specification, based on [24] and [131].

AMD CPU Cores per CPU Nvidia GPU Cores per GPU
EPYC 7713 64 A100 6912

Alma Linux GCC CLANG INTEL
8.5 11.2.0 12.0.1 2021.5.0

MPI OpenMP CUDA HIP
2021.4 5.0 11.5.50 None

highest optimization level) were activated. The Intel MPI library [133] was utilized. The MPI Wtime()

function, which is included in this library, was used for the resulting runtime determination. For the
OpenMP standard the GNU OpenMP implementation (which is part of GCC [134]) was utilized. The
CUDA library is distributed and maintained by NVIDIA [135]. One peculiarity is the fact that there is
currently no version of the HIP library – which is distributed and maintained by AMD and part of the
ROCm software development platform [136] – available on the VSC-5. Therefore, this parallelization
library was not compared with the other implementations on the VSC-5. A seperate analysis using
HIP measurements, executed on other hardware, is given in Section 4.3.

4.1.2 Process and Thread Configuration. As previously mentioned, in total 16 hybrid nodes
(CPU and GPU) were utilized for the benchmarks on the VSC-5. The distribution of the spawned
MPI processes across the available hardware nodes and the corresponding thread assignment to every
process is a very important decision by the user because of the nature of shared ccNUMA memory
systems (see Definition 6). To investigate the impact and the ramifications of this choice, three distinct
configuration types were selected and benchmarked:

➤ One MPI Process per CPU. Since every node contains two CPUs, the configuration with
one MPI process for every CPU is realized by 32 processes (2 MPI processes per node; 16 nodes
in total) with 64 threads each, represented in the following by the notation 32 Processes × 64
Threads or 32 × 64. This configuration reduces NUMA effects as all threads of a particular MPI
process operate within the same NUMA domain of the given CPU.

➤ One MPI Process per Node. This configuration utilizes 16 processes (1 MPI process per
node; 16 nodes in total) with 128 threads (combined number of cores of two CPUs) each,
represented in the following by the notation 16 Processes × 128 Threads or 16 × 128. This
configuration maximizes NUMA effects as half of the threads are assigned to the NUMA domain
of the second CPU.

➤ One MPI Process per Node with Simultaneous Multithreading. The here considered
CPUs support SMT and as such favor the execution of two threads per core, in this case, 128
threads per CPU and 256 threads per node. This configuration results in 16 processes with
256 threads each, represented in the following by the notation 16 Processes × 256 Threads or
16 × 256. Again only one MPI process per node is active. The NUMA effects related to this
configuration are the same as in the 16 × 128 case.

The Slurm Workload Manager, which manages the job schedule on the VSC-5, supports different
methods to select these process and thread configurations. The desired results can either be achieved
by utilizing a so-called bit-mask, were each thread is activated by flipping the corresponding bit in
the mask, or by defining the number of tasks per core and node and additionally the number of
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processes and threads manually in the job script. For the generation of the results in this thesis the
second method was chosen. The debug output option of the MPI library (activated with the command
export I MPI DEBUG=4 in the Slurm job script) was utilized to ensure that the correct number of
processes and threads were assigned to the corresponding CPUs.

4.1.3 Application Parameters. Section 3.2 lists all available options for the execution of the
ParticleStackBenchmark application. For the results presented in this section the following options
were chosen.

➤ Build Options. All three compiler build parameters GCC, CLANG and INTEL were benchmarked,
while only the VSC5 implementation parameter was activated. The reason behind this choice is
the fact that the HIP library is currently not available on the VSC-5. Therefore, only the four
parallelization implementations SERIAL, SIMD, OPENMP and CUDA were benchmarked.

➤ Mode and Input Parameters. Since only the main benchmarking feature of the application
is used for the results, the BENCH mode was activated. Every benchmark execution selected
104 = 10 000 timesteps in the time loop (-TIM=4), 106 = 1000 000 particles in the global particle
ensemble (-PAR=6) and 5 individual benchmark measurements over which the resulting value is
averaged (-AVG=5).

4.1.4 Output Overview. The following runtime values contain not only the operations of the test
functions, but also the communication between the nodes via MPI (see Algorithm D in Section 3.4.8)
and the communication between the CPU and GPU via CUDA or HIP (see Algorithm K in Section
3.4.13). The reason behind this decision are the access functions of the data structures (see Section
3.4.5), which are used in the aforementioned operations and are, therefore, also affecting the runtimes.
All results are organized in three tables, one table for each benchmarked test function and page, namely
ReadAndWrite(01) (Table 4.2), ReadAndWrite(15) (Table 4.3) and SimulateParticles() (Table
4.4); for a discussion on the test functions see Section 3.2.2. This structure enables the possibiliy to
compare all configurations and all implementations at once and to select the best suited combination
of all available choices. Every row contains the benchmark results for a concrete combination of
a data structure, a container and a parallelization technique (also called implementation). Every
parallelization method is a hybrid implementation with a MPI component, therefore, SERIAL stands for
example for a hybrid MPI/SERIAL implementation, where MPI communicates between the multiple
compute nodes of the cluster and the test function is run in serial on the compute nodes itself. This
holds in similar fashion also for the SIMD, OPENMP and CUDA implementations. Since there are three
data structures, three containers and four implementations available, there are 36 combinations and,
therefore, 36 rows present in every table. Every combination was benchmarked with all three process
and thread configurations discussed above (see Section 4.1.2) and all three considered compilers,
which results in 9 different runtime values, represented by 9 columns in every table. The fastest of all
runtimes in every single row is colored in green and the slowest runtime in red. This emphasises the
comparison between the different compilers and configurations (columns) for every specific combination
of data structure, container and implementation (rows). The fastest runtime of every column is framed
in a blue box, which indicates the fastest data structure for a specific configuration and compiler
combination. These runtimes are also plotted in Figure 4.1 (see Section 4.1.6).

4.1.5 Missing Runtime Values. One specific benchmark test case is not available in the result
tables. This is the exception where the one MPI process per CPU (32 Processes × 64 Threads)
configuration is combined with the CUDA implementation. All runtimes for this test case are replaced
by a placeholder symbol (X). The reason behind this incompleteness is the fact that every node contains
not only two CPUs, but also two GPUs. If every CPU has one MPI process attached to them, then
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every CPU should also use one of the two available GPUs for themself, otherwise there would arise
communication inefficiencies and therefore performance drops. This feature requires the utilization of
the multiple device programming methods provided by CUDA. Unfortunately these are currently not
supported by the ParticleStackBenchmark application and therefore this test case was not possible to
execute, since the results would not be reliable. All for the results executed Slurm job scripts defined
the number of utilized GPUs per node as one (with the command #SBATCH --gres=gpu:1). The
feature of multiple GPU devices per node utilization could be one of the possible extensions of the
application in the future (see also Section 5.1.4).

4.1.6 Fastest Implementation Comparison. The comparison between the different process and
thread configurations and chosen compilers for every combination of data structure, container and
implementation is possible by the analysis of every row in the runtime tables. The colorization of the
fastest and slowest runtime per row supports this endeavor. However, the more important question
(and the primary objective of this thesis) is the comparison between the combinations (or the rows)
themselfs. This means that not the contained values of the rows, but the contained values of the
columns of the tables have to be compared against each other. This task is simplified by Figure 4.1
which contains the fastest (and, therefore, the most interesting) implementations measured by the
benchmark runtimes. The selection was achieved by comparing all runtimes in a single column and
choosing the fastest implementation. The corresponding runtimes are framed in blue colored boxes
in the tables. This was done for all 9 columns of a table, which results in 9 values for every test
function. Every bar represents a combination of a data structure, a container and an implementation,
as described on the x-axis. One has to keep in mind that the parallelization has always a MPI
component incorporated, which means that OPENMP represents a hybrid MPI/OpenMP and CUDA a
hybrid MPI/CUDA implementation. The selected process and thread configuration, as well as the
chosen compiler, are shown on top of the bar. The color of the bar identifies the represented data
structure, namely blue for AOS, green for SOA and red for AOF. The height of the bars constitute the
value of the runtime, as described on the y-axis. The bars are sorted in a decreasing order from
left to right. This means that the slowest implementation is placed on the left side and the fastest
combination can be found on the right side of the plot. At the top the results for ReadAndWrite(01),
in the middle for ReadAndWrite(15) and at the bottom for SimulateParticles() can be found and
analyzed. A detailed discussion of the results represented in the Tables 4.2, 4.3, 4.4 and Figure 4.1
can be found in Section 4.2.

4.2 Interpretation and Discussion

After the presentation of the results it is now time to analyze the specific runtime output of every test
function and deduce a hierarchy of best suited data structures, since this is the defined objective of
this thesis. The different configurations and test functions are discussed in detail. Also the memory
consumption of the data structures is investigated. At the end further considerations and recommen-
dations regarding the implementation of future test functions is given. The conclusion of the analysis
is given at the end of Section 4.3 in Section 4.3.6, which combines all the findings of this Chapter.

4.2.1 Configuration Analysis. First we take a look at the Tables 4.2, 4.3 and 4.4. If we compare
the fastest runtimes for every process and thread configuration by emphasising the distribution of the
green colored runtimes – which represent the fastest runtime of every row respectively – we can deduce
that almost all green values are achieved by utilizing the configuration where one MPI process per CPU
is spawned (32 × 64). For both ReadAndWrite() test functions it holds that for the majority of test
cases the 32 × 64 configuration is the fastest. Only when the CUDA implementation is benchmarked,



Table 4.2 Benchmark results for test function ReadAndWrite(01).

Data Structure Container Implementation

Runtime in seconds

32 Processes × 64 Threads 16 Processes × 128 Threads 16 Processes × 256 Threads

GCC CLANG INTEL GCC CLANG INTEL GCC CLANG INTEL

Array of Structs PSB::Array SERIAL 0.457732 0.468985 0.458598 0.887131 0.912620 0.878505 0.893393 0.901364 0.899631
Array of Structs PSB::Array SIMD 0.413857 0.421301 0.669194 0.803658 0.824274 0.795725 0.825249 0.803926 0.813960

Array of Structs PSB::Array OPENMP 0.139047 0.963229 1.033120 0.434735 1.685375 1.601594 1.089784 5.490309 5.168051
Array of Structs PSB::Array CUDA X X X 0.631669 0.541207 0.705183 0.628786 0.641874 0.654232
Array of Structs std::vector SERIAL 0.460675 0.467224 0.458054 0.884493 0.868285 0.891558 0.878767 0.872817 0.878006
Array of Structs std::vector SIMD 0.411120 0.426531 0.413030 0.815021 0.798734 0.816932 0.804451 0.805668 0.805113
Array of Structs std::vector OPENMP 0.150433 0.224255 0.271598 0.368444 0.523172 0.326577 1.235229 3.301992 3.469730

Array of Structs std::vector CUDA X X X 0.080370 0.079859 0.081065 0.083261 0.076005 0.086445
Array of Structs std::deque SERIAL 1.308396 1.303436 1.312692 2.541368 2.542933 2.600217 2.552244 2.548420 2.595579
Array of Structs std::deque SIMD 1.101619 1.100817 1.115126 2.197446 2.135427 2.174730 2.146426 2.140804 3.411833
Array of Structs std::deque OPENMP 0.237862 0.146511 0.152596 0.493659 0.438037 0.416689 1.270155 2.770612 2.904901
Array of Structs std::deque CUDA X X X 0.114593 0.123776 0.122292 0.120317 0.120947 0.121202

Struct of Arrays PSB::Array SERIAL 0.418437 0.426145 0.424554 0.790518 0.798071 0.795520 0.819509 0.794432 0.796891
Struct of Arrays PSB::Array SIMD 0.337228 0.358384 0.344066 0.700157 0.639554 0.648908 1.710798 0.670761 0.666639
Struct of Arrays PSB::Array OPENMP 0.152973 0.074385 0.074836 0.348352 0.144043 0.117542 0.861617 2.103056 2.135650

Struct of Arrays PSB::Array CUDA X X X 0.078005 0.084947 0.082160 0.074742 0.085065 0.087424
Struct of Arrays std::vector SERIAL 0.407608 0.422946 0.418981 0.817209 0.805174 0.805577 1.734317 0.791577 0.792045
Struct of Arrays std::vector SIMD 0.344902 0.334921 0.344367 0.689955 0.674291 0.632733 0.640049 0.642102 0.678632

Struct of Arrays std::vector OPENMP 0.155648 0.073713 0.070775 0.301390 0.146231 0.120491 0.824047 1.709740 1.555469

Struct of Arrays std::vector CUDA X X X 0.080582 0.081291 0.083255 0.082499 0.075505 0.085225
Struct of Arrays std::deque SERIAL 1.137080 1.039646 1.201322 2.103521 2.020247 2.139515 2.121276 2.055263 2.112740
Struct of Arrays std::deque SIMD 0.724899 0.734315 0.753571 1.456397 1.750505 1.437926 1.434787 1.749329 1.434895
Struct of Arrays std::deque OPENMP 0.193834 0.103488 0.105834 0.324026 0.188558 0.147975 0.870147 1.632865 1.236739
Struct of Arrays std::deque CUDA X X X 0.094641 0.093746 0.094814 0.090061 0.097584 0.095964

Array of Floats PSB::Array SERIAL 0.617587 1.440998 0.626946 1.284593 1.267080 1.274878 1.278625 1.265397 1.298389
Array of Floats PSB::Array SIMD 0.574814 0.558241 0.574139 1.099617 1.113973 1.085364 1.090460 1.123925 1.089662
Array of Floats PSB::Array OPENMP 0.156245 0.085986 0.086313 0.438668 0.398371 0.396746 1.073461 1.229098 1.095750
Array of Floats PSB::Array CUDA X X X 0.086124 0.089615 0.088003 0.087741 0.085530 0.090968
Array of Floats std::vector SERIAL 0.655289 0.654750 0.658541 1.284764 1.336666 1.328810 1.264110 1.257457 1.268667
Array of Floats std::vector SIMD 0.553791 0.555534 0.561083 1.094388 1.088435 1.093719 1.106735 1.102396 1.086867
Array of Floats std::vector OPENMP 0.154872 0.088455 0.086015 0.319392 0.422412 0.418779 1.063931 1.158445 1.008450
Array of Floats std::vector CUDA X X X 0.083536 0.086848 0.083097 0.084337 0.084329 0.085676
Array of Floats std::deque SERIAL 1.343441 1.440598 1.351862 2.792476 2.598803 2.789148 2.790317 2.598782 2.789703
Array of Floats std::deque SIMD 0.940017 0.944502 0.938542 1.783632 1.859449 1.766143 1.768265 1.857879 1.763804
Array of Floats std::deque OPENMP 0.245439 0.168551 0.170642 0.493769 0.465485 0.423864 1.159292 0.968661 1.036914
Array of Floats std::deque CUDA X X X 0.136056 0.137931 0.138283 0.137876 0.138637 0.142314
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Table 4.3 Benchmark results for test function ReadAndWrite(15).

Data Structure Container Implementation

Runtime in seconds

32 Processes × 64 Threads 16 Processes × 128 Threads 16 Processes × 256 Threads

GCC CLANG INTEL GCC CLANG INTEL GCC CLANG INTEL

Array of Structs PSB::Array SERIAL 3.116669 3.139926 3.123519 6.236134 6.134870 6.326255 6.230377 6.163986 6.238513
Array of Structs PSB::Array SIMD 3.076619 3.085092 3.071778 6.226409 6.130307 6.143784 6.201618 6.198635 6.157267

Array of Structs PSB::Array OPENMP 0.237147 0.192138 0.178906 0.497347 0.487703 0.481934 1.108498 0.871848 0.985905
Array of Structs PSB::Array CUDA X X X 0.114883 0.119505 0.116462 0.116223 0.114849 0.116451
Array of Structs std::vector SERIAL 3.147183 3.205678 3.126000 6.219506 6.264529 6.315171 6.243988 6.178398 6.241619
Array of Structs std::vector SIMD 3.072508 3.123163 3.098771 7.115581 6.159002 6.148811 6.209414 6.179470 6.164037
Array of Structs std::vector OPENMP 0.249425 0.183376 0.181789 0.430923 0.553254 0.514381 1.144756 0.766570 0.884779
Array of Structs std::vector CUDA X X X 0.116055 0.116790 0.115814 0.114090 0.114488 0.114799
Array of Structs std::deque SERIAL 14.177690 14.183935 14.193981 28.413084 28.626732 28.374220 28.414353 28.403722 28.411690
Array of Structs std::deque SIMD 14.911833 14.892112 14.917002 29.817708 29.711669 29.840975 29.852844 29.828177 29.832264
Array of Structs std::deque OPENMP 0.596308 0.641538 0.613861 0.974698 0.891122 0.907601 1.460621 1.221803 1.311098
Array of Structs std::deque CUDA X X X 0.149692 0.154999 0.152279 0.149875 0.154910 0.156219

Struct of Arrays PSB::Array SERIAL 3.323874 3.369289 3.325028 6.612227 6.763664 6.705127 6.630714 6.737588 6.626820
Struct of Arrays PSB::Array SIMD 3.289219 3.285429 3.288848 6.541215 6.534361 6.566457 6.566415 6.568734 6.561883
Struct of Arrays PSB::Array OPENMP 0.654026 0.713173 0.722072 2.372818 2.849406 2.798488 4.226420 3.230773 3.537382

Struct of Arrays PSB::Array CUDA X X X 0.113933 0.114356 0.115404 0.114030 0.112152 0.115236
Struct of Arrays std::vector SERIAL 3.328596 3.343892 3.328706 6.602922 6.597269 6.624094 6.644959 6.634773 6.638861
Struct of Arrays std::vector SIMD 3.287704 3.293656 3.290005 6.531261 6.548367 6.608469 6.569319 6.556911 6.562185
Struct of Arrays std::vector OPENMP 0.649826 0.768279 0.797697 2.867980 2.535125 2.961164 5.203920 3.436591 3.725362

Struct of Arrays std::vector CUDA X X X 0.114756 0.114092 0.115153 0.110074 0.110208 0.113681
Struct of Arrays std::deque SERIAL 8.679403 8.469171 8.742727 16.680474 16.819599 16.714022 16.665886 16.897598 16.649501
Struct of Arrays std::deque SIMD 8.397686 8.053313 8.525329 16.422218 16.236787 16.416944 16.407541 16.215607 16.310581
Struct of Arrays std::deque OPENMP 0.952910 0.994305 0.927001 3.405608 2.694437 2.648398 5.978980 3.912891 4.142196
Struct of Arrays std::deque CUDA X X X 0.124322 0.125133 0.122590 0.119855 0.120043 0.123340

Array of Floats PSB::Array SERIAL 4.332103 4.620412 4.348031 8.633983 9.254074 8.695243 8.676253 9.243069 8.675694
Array of Floats PSB::Array SIMD 3.837673 3.829642 4.244954 7.597779 7.601120 7.612005 7.646457 7.606337 7.632053

Array of Floats PSB::Array OPENMP 0.257808 0.171603 0.175150 0.639425 0.613047 0.527983 1.278056 0.943323 0.827358
Array of Floats PSB::Array CUDA X X X 0.124473 0.124015 0.122303 0.121558 0.120599 0.122808
Array of Floats std::vector SERIAL 4.356219 4.384214 4.376465 8.659169 8.657746 8.680905 8.700146 8.698281 8.673510
Array of Floats std::vector SIMD 3.854321 3.837226 3.837524 7.597645 8.356654 7.688619 7.634566 7.621771 7.606615
Array of Floats std::vector OPENMP 0.241868 0.171789 0.178554 0.481220 0.610383 0.549228 1.220104 0.918931 0.847906
Array of Floats std::vector CUDA X X X 0.121288 0.127484 0.126101 0.120043 0.120754 0.122737
Array of Floats std::deque SERIAL 9.508559 9.670529 9.526885 18.917669 19.217253 18.932457 18.981559 19.318114 18.914692
Array of Floats std::deque SIMD 9.419043 9.419558 9.426668 18.717035 18.740028 18.792696 18.809197 18.817382 18.730441
Array of Floats std::deque OPENMP 0.489622 0.445981 0.495990 0.839741 0.888250 0.843586 1.555052 1.044985 1.151183
Array of Floats std::deque CUDA X X X 0.177997 0.180715 0.181273 0.179347 0.173047 0.179384
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Table 4.4 Benchmark results for test function SimulateParticles().

Data Structure Container Implementation

Runtime in seconds

32 Processes × 64 Threads 16 Processes × 128 Threads 16 Processes × 256 Threads

GCC CLANG INTEL GCC CLANG INTEL GCC CLANG INTEL

Array of Structs PSB::Array SERIAL 5.331124 5.475082 4.937634 13.475420 10.645546 11.229779 14.662764 15.045219 11.003683
Array of Structs PSB::Array SIMD 4.456276 4.551413 4.345412 8.331934 8.527541 11.320744 14.196852 11.621248 8.942292
Array of Structs PSB::Array OPENMP 1.656929 1.596196 1.607270 3.327176 3.446201 2.518103 4.784864 3.224199 4.114763
Array of Structs PSB::Array CUDA X X X 2.024625 2.019987 2.062608 2.001690 1.689898 1.737098
Array of Structs std::vector SERIAL 5.316554 5.653298 5.652371 15.009832 15.091612 11.322432 14.247304 10.365909 10.595783
Array of Structs std::vector SIMD 3.839422 4.381981 4.522960 11.688818 10.401151 11.366694 11.981425 12.134481 9.072254

Array of Structs std::vector OPENMP 1.530713 1.776325 1.582187 2.902887 1.853137 2.714634 3.696442 3.244535 3.841945

Array of Structs std::vector CUDA X X X 1.590693 1.746834 2.105113 1.679893 1.667049 2.114228
Array of Structs std::deque SERIAL 12.479969 9.723861 12.044876 37.719940 38.916448 25.117052 26.313136 24.840291 27.115389
Array of Structs std::deque SIMD 12.061620 12.299322 14.585397 26.004621 36.677808 24.537716 24.363000 23.815195 36.351527
Array of Structs std::deque OPENMP 1.815832 1.865860 1.751742 3.186296 1.841846 2.544277 2.659702 3.291943 4.192757
Array of Structs std::deque CUDA X X X 1.828134 2.040005 1.976306 1.918187 2.260447 1.909636

Struct of Arrays PSB::Array SERIAL 5.121765 4.944207 4.872241 9.996845 13.789164 10.463962 14.069569 13.008827 14.074064
Struct of Arrays PSB::Array SIMD 4.494763 4.624082 4.135408 11.445183 9.148217 10.961268 9.443676 9.575235 8.310635

Struct of Arrays PSB::Array OPENMP 1.612535 1.555954 1.372640 1.306023 0.911932 0.920160 2.565937 1.448484 1.311291
Struct of Arrays PSB::Array CUDA X X X 1.615404 1.778450 1.764623 2.138220 1.749069 1.741641
Struct of Arrays std::vector SERIAL 4.468304 5.061011 4.957840 13.100005 13.049391 21.691707 13.220595 9.104831 9.641598
Struct of Arrays std::vector SIMD 5.083694 4.146402 4.209819 9.246434 9.147441 8.386445 13.053994 13.130813 9.759229

Struct of Arrays std::vector OPENMP 1.606581 1.508192 1.390090 1.506844 0.829616 0.844267 2.239108 0.951428 1.017524
Struct of Arrays std::vector CUDA X X X 1.851947 2.147906 1.996769 1.968813 1.996794 1.687569
Struct of Arrays std::deque SERIAL 9.064107 9.051824 8.925147 18.644264 18.946930 18.677280 26.760789 18.565405 27.950492
Struct of Arrays std::deque SIMD 8.205970 8.001376 8.304281 21.991095 24.189879 16.852514 16.423158 23.661990 22.450797

Struct of Arrays std::deque OPENMP 1.752750 1.671213 1.662319 1.276387 1.059315 1.004321 2.215526 1.185153 1.390503
Struct of Arrays std::deque CUDA X X X 1.766972 1.877533 1.854629 1.764237 2.260108 1.819025

Array of Floats PSB::Array SERIAL 3.779481 3.745582 3.800920 40.024265 52.730134 50.418760 43.052271 43.471049 44.904507
Array of Floats PSB::Array SIMD 3.162301 7.044269 5.417287 36.266418 42.176508 43.840188 31.090973 35.982775 32.244692
Array of Floats PSB::Array OPENMP 3.215605 2.803443 2.680192 6.992914 7.079965 4.888709 7.637238 6.541488 4.283998
Array of Floats PSB::Array CUDA X X X 6.122040 5.870267 5.906017 6.590609 6.615529 5.838548
Array of Floats std::vector SERIAL 3.708120 3.678987 3.611078 41.521067 46.409881 51.845963 49.251292 49.031777 56.847085
Array of Floats std::vector SIMD 8.640221 3.146025 3.079745 40.780423 39.602934 54.060208 36.532806 34.704579 36.035049
Array of Floats std::vector OPENMP 2.830008 2.536741 2.754950 4.185551 4.530164 4.316428 4.512930 3.414711 3.162391
Array of Floats std::vector CUDA X X X 7.889313 6.843924 5.732355 5.985912 6.131568 5.819965
Array of Floats std::deque SERIAL 23.906199 16.592667 6.207858 84.892967 92.920757 91.243691 89.312068 98.453161 103.982232
Array of Floats std::deque SIMD 19.676385 5.605011 5.639963 77.928292 83.527906 77.702176 83.196668 73.677960 91.352416
Array of Floats std::deque OPENMP 3.746804 3.287081 3.513153 4.711795 5.270743 6.119451 12.404846 9.395570 9.744684
Array of Floats std::deque CUDA X X X 8.778522 8.695047 10.330003 7.197701 8.244961 7.874044
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the runtime is faster for the 16× 128 or 16× 256 configurations, but this is inevitable since currently no
CUDA parallelization is available for the 32 × 64 configuration. Only in the case of the last test function,
namely SimulateParticles(), with the utilization of the StructOfArrays data structure and the
OPENMP implementation, it happens that the 16 × 128 configuration is faster. The distribution of the
fastest runtimes according to the utilized configuration are 78 runtimes for the 32 × 64, 12 runtimes for
the 16 × 128 and 18 for the 16 × 256 configuration, where one has to keep in mind that the CUDA option
for 32 × 64 was not included. If the CUDA implementation would be added to the application, it seems
possible that the number of best runtimes for the 32 × 64 configuration would increase even more.
Therefore, it can safely be assumed that the 32 × 64 configuration provides the best performance and
should be chosen for further implementations. This is because of NUMA overhead in the case of the
16 × 128 configuration, as threads being executed on the second CPU would have to face memory
overhead when accessing data residing in the domain of the first CPU. This effect is further multiplied
if SMT in the case of the 16 × 256 configuration is activated, which doubles the number of operating
threads and the communication between them and, therefore, between both CPUs. The results in the
Tables 4.2, 4.3 and 4.4 show that the performance loss from these communication operations is very
significant and has to be taken into account.

4.2.2 ReadAndWrite(01) Analysis. Six of the nine implementations in Figure 4.1 are utilizing the
StructOfArrays data structure. Even more significant is the fact that the five fastest implementations
are all using the StructOfArrays class, which leads to the conclusion that StructOfArrays is the
best suited data structure. Regarding the containers we see that PSB::Array and std::vector

are represented, but std::deque is missing. The two fastest implementations use std::vector.
The fastest parallelization is OPENMP, which could be connected to the fact that the workload of
ReadAndWrite(01) is minimal (only one single particle property is read and written). Therefore, it
is faster to let the CPU itself execute the operations, instead of transferring the data between the
CPU and GPU, before the calculation can be performed. But, it should be noted that the CUDA

implementation is not available for the 32 × 64 configuration and that this implementation could be
even faster. Both the CLANG and INTEL compilers show better performance for OPENMP, while the
GCC compiler is faster in combination with CUDA. For this test function the 32 × 64 configuration is
the fastest, which coincides with the general analysis of the process and thread configurations above.
All discussed results considered, the recommended combination of data structure and container for
this test function is StructOfArrays with std::vector.

4.2.3 ReadAndWrite(15) Analysis. The middle of Figure 4.1 contains the fastest implementa-
tions for the ReadAndWrite(15) test function. The six fastest implementations are utilizing again
the StructOfArrays data structure and the top three implementations employ the std::vector con-
tainer. This time the CUDA parallelization technique is faster than OPENMP, which could coincide with
the increased workload of the ReadAndWrite(15) test function (now all 15 particle properties are
modified). Therefore, the communication period between CPU and GPU is not that significant in
comparison with the calculation period, since more operations have to be performed on the GPU.
The GCC compiler shows the best performance if combined with the CUDA implementation, as already
mentioned above. Interestingly this time the 16 × 256 configuration seems to be the fastest, but this
could again be a consequence of the fact that the CUDA implementation is not available for 32 × 64.
Again the StructOfArrays and std::vector combination seems to be the best option.

4.2.4 SimulateParticles() Analysis. Similar to the other two test functions above, it can be
seen at the bottom of Figure 4.1 that the StructOfArrays data structure in combination with the
std::vector container is the best performing implementation, measured by the yielded benchmark
runtimes. The big difference between the design of the ReadAndWrite() test functions and the



Figure 4.1 Visualization of the fastest data structure implementations for every test function, measured
by the benchmark runtimes obtained by the ParticleStackBenchmark application. The results are sorted in
descending order from left to right, which means the fastest data structure for every test function can be
found on the far right of the bar charts. Additional information can be found in Section 4.1.6.
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SimulateParticles() test function is the frequent communication between the CPU and the GPU.
While the ReadAndWrite() test functions only send the data one time at the beginning and one time
at the end of the time loop between the CPU and the GPU, the SimulateParticles() test function
has to communicate every single time step, once for the evolution step, and possibly another time for
the annihilation step. This leads to a tremendous communication overload, which is represented by
the fact that eight of nine implementations in Figure 4.1 utilize the OPENMP parallelization technique
instead of CUDA. The CLANG and INTEL compilers should be used if the OPENMP implementation is
employed. The fastest implementation is now achieved by the 16 × 128 configuration, which could
be the case because the higher number of threads that can be used by the OPENMP implementation is
more beneficial than the additional communication overload between the two CPUs. All in all we see
that StructOfArrays with std::vector is yet again the winner.

4.2.5 Memory Consumption. The Configuration class contains a method that determines the
size of a data structure in bytes with the help of the sizeof() operator and prints it to the command
line. If we perform this operation on all available data structures, we obtain the following values in
Table 4.5.

Table 4.5 Memory Consumption of the available data structures in bytes.

Data Structure Container Size in Bytes

ArrayOfStructs PSB::Array 88
ArrayOfStructs std::vector 72
ArrayOfStructs std::deque 128

StructOfArrays PSB::Array 648
StructOfArrays std::vector 408
StructOfArrays std::deque 1248

ArrayOfFloats PSB::Array 96
ArrayOfFloats std::vector 80
ArrayOfFloats std::deque 136

The results show that both ArrayOfStructs and ArrayOfFloats require about 6 to 10 times less
memory than StructOfArrays. This fact can be explained by the memory layout of the differ-
ent data structures in mind. While both ArrayOfStructs and ArrayOfFloats data structures only
utilize one single container for the memory allocation, the StructOfArrays data structure needs
one container for every particle property, in our case 15 containers in total. This fact can be il-
lustrated with, for example, the difference between ArrayOfStructs<std::vector> (72 bytes) and
StructOfArrays<std::vector> (408 bytes). Since SOA possesses 14 additional containers – in this
case std::vector with three pointers as member variables (in total 24 bytes) – in comparison to AOS,
the number of bytes results in 72+14 ·24 = 408 bytes. From the point of view of the containers we see
that both the PSB::Array and std::vector containers need about two thirds of the memory of the
std::deque container. The reason behind this result is the more complicated design (which results in
a larger number of member variables) of the std::deque in comparison to the other two containers
(see Section 2.1.5).

4.2.6 Further Considerations and Recommendations. A few additional considerations and
recommendations concerning the implementation of the test functions are now mentioned. Some of
the weaknesses of the parallelization methods described above could be prevented by changing the
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design of the particle distribution inside the test functions. The OPENMP implementation could be
extended by not using only one single data structure per MPI process, but multiple particle stacks
per MPI process by generating thread specific data structures, where every thread possesses its own
data structure (see also Section 5.1.3). This feature would make it possible to parallelize the growing
operations from the generation events and the shrinking operations from the annihilation events, since
now all potential race conditions and segmentation faults are circumvented. On the other hand there
could be overhead at the end of every time step, where all these thread specific data structures have
to be merged together to one MPI process specific data structure for further operations. Another
recommendation would be the possibility to allocate the memory of the data structure combinations
not only on the CPU, but also on the GPU itself (see also Section 5.1.4). Instead of the set of arrays
that are transferred back and forth between the host and the device, all modules of the time step could
now be performed on the GPU itself, where of course still special attention has to be spent on the
critical sections with potential race conditions. This would prevent almost all of the communication
overhead and therefore reduce the runtime of the test functions significantly.

4.3 GPU Libraries Comparison

Since the HIP library is not available on the VSC-5, another hardware, namely the personal workstation
of the author, was chosen to measure the runtime of this implementation. This section describes,
similar to the sections above, the general setup of the benchmark execution, the output and the
discussion of the results. The emphasis lies on the comparison between the CUDA and the HIP
implementation, since both are the libraries for GPU utilization.

4.3.1 Hardware and Software Specification. The workstation contains one CPU, an Intel
Core i7 11800H, providing 8 cores and 16 threads with SMT. Since only one CPU is used in the
benchmark execution, also only one MPI process is assigned to it. Therefore, no MPI communication
is incorporated in the following benchmark results. Also one GPU, a Nvidia GeForce RTX 3060, is
part of the workstation. This GPU performs the CUDA and HIP implementations. The hardware and
software specifications and versions can be found in Table 4.6. All library implementations are the
same as for the VSC-5 specification in Table 4.1, only with different versions. The only new additional
library is HIP, which allows for another GPU parallelization implementation besides CUDA.

Table 4.6 Workstation Specification.

Intel CPU Cores per CPU Nvidia GPU Cores per GPU
Core i7 11800H 8 GeForce RTX 3060 3584

Ubuntu GCC CLANG INTEL
20.04.4 9.4.0 10.0.0 2021.6.0

MPI OpenMP CUDA HIP
2021.6 4.5 11.4.48 4.5.2

4.3.2 Process and Thread Configuration. The specific hardware results in a configuration of
1 process with 16 threads, represented by the notation 1 Process × 16 Threads or 1 × 16.

4.3.3 Application Parameters. For the results presented in this section the following options
for the ParticleStackBenchmark application were chosen.
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➤ Build Options. Again all three compiler build parameters GCC, CLANG and INTEL were bench-
marked, while now the ALL implementation parameter was activated. In contrast to the VSC5

parameter, which only considers the first four implementations, now all five implementations,
including HIP, are compiled and ready for measurement.

➤ Mode and Input Parameters. The BENCH mode was activated for benchmark measure-
ments. Every benchmark execution selected 104 = 10 000 timesteps in the time loop (-TIM=4),
105 = 100 000 particles in the global particle ensemble (-PAR=5) and 5 individual benchmark
measurements over which the resulting value is averaged (-AVG=5). The only difference to the
input parameters in Section 4.1.3 is the number of particles, which is 10 times smaller due to
the much weaker computational power of the workstation in comparison to the VSC-5 cluster.

4.3.4 Output Overview. Table 4.7 contains all results of the performed benchmark executions.
The test function, data structure and container are defined for each row. The selected compiler
and the GPU implementation (CUDA or HIP) are defined by the corresponding column. The other
implementations (SERIAL, SIMD and OPENMP) are omitted to emphasise the comparison of both GPU
implementations. Similar to the tables for the VSC-5 results the fastest runtime of a row is colored in
green and the slowest runtime in red. Also the fastest runtime of every column of every test function,
similar to above, is framed in a blue box, which indicates the fastest data structure for a specific
compiler and CUDA/HIP combination. These values in blue boxes are plotted in Figure 4.2.

4.3.5 Interpretation and Discussion. The distribution of the fastest runtimes regarding the
utilized GPU libraries is the following. From a total of 27 test cases, 23 implementations have the
fastest runtime (green values) when HIP is utilized. In contrast only 4 runtimes are the fastest if
CUDA was chosen. 13 of the 23 fastest runtimes were achieved by using the GCC compiler, which
coincides with the above mentioned positive correlation between the utilization of the GCC compiler
and GPU libraries. On the other hand 24 runtimes were the slowest version (red values) for the CUDA

implementation, while only 3 were the slowest for HIP. This measurements lead to a very interesting
result: Even though a GPU from NVIDIA was used, the native NVIDIA programming library (CUDA)
is in the majority of the test cases slower than the programming library from another vendor, in this
case HIP from AMD. From the results above it would be plausible to prefer the HIP implementation
over CUDA, even though a NVIDIA card is used. Of course one has to keep in mind that the results
in this section are only performed on a small workstation with only one MPI process and therefore
no MPI communication. Further benchmark measurements on a cluster similar to the VSC-5 with
different process and thread configurations have to be performed, before more precise statements can
be given.

4.3.6 Conclusion and Recommendation. The main objective of this thesis is the choice of the
best suited data structure for the implementation of a particle stack. The optimal data structure
should perform well in vastly different environments with varying conditions and diverse requirements
to give developers a wider range of possible options and choices regarding the implementation aspects.
The results in Figures 4.1 and 4.2 show that the StructOfArrays data structure provides without
exception the fastest runtimes for all benchmarked test functions. One possible explanation for the
large difference in performance between StructOfArrays and the other data structure classes could
lie in the way the data is transferred between the seperate MPI processes and between the CPU and
GPU. Both parallelization techniques use simple C-style arrays as data packets that are allocated,
filled and then communicated from the source to the destination (see Algorithm D for the MPI and
Algorithm K for the CUDA implementation). Since every array can only hold elements of the same
data type, all arrays are filled with the same attribute from all particles. This feature leads to the
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advantage of the StructOfArrays data structure. The StructOfArrays class is the only out of the
three data structures that organizes the data in a way where the particle attributes are

”
ready for

shipping“, since they are already stored consecutive for each property in memory and only have to
be shifted in the same order into the array for the MPI or CUDA communication. This situation is
optimal for load operations, since every entry in the current cache line can be used. The other data
structures store the attributes in a non-consecutive manner, which leads to non-optimal load access
patterns when the arrays are filled and, therefore, results in increased execution times. All in all,
the data structure StructOfArrays in combination with the container std::vector shows the best
performance for all measured test functions, parallelization techniques, compilers and configurations.
The only theoretical downside of this combination is the increased memory consumption of the data
structure itself. But since this class size only considers the pointers to the containers and not the
particle elements of the containers itself, this downside is insignificant in practical simulations due to
the large number of particles in an ensemble.



Table 4.7 Comparison between the CUDA and HIP implementations for all three test functions.

Test Function Data Structure Container

Runtime in seconds

GCC CLANG INTEL

CUDA HIP CUDA HIP CUDA HIP

readAndWrite(01) Array of Structs PSB::Array 0.116091 0.070767 0.140513 0.091909 0.138887 0.071717
readAndWrite(01) Array of Structs std::vector 0.084040 0.064734 0.117830 0.095650 0.097543 0.071222

readAndWrite(01) Array of Structs std::deque 0.082752 0.067486 0.102443 0.067560 0.111095 0.081463
readAndWrite(01) Struct of Arrays PSB::Array 0.090326 0.064322 0.108044 0.082125 0.139193 0.083782
readAndWrite(01) Struct of Arrays std::vector 0.095564 0.063988 0.134137 0.092577 0.106538 0.091609

readAndWrite(01) Struct of Arrays std::deque 0.091628 0.062531 0.130437 0.079662 0.116310 0.082599

readAndWrite(01) Array of Floats PSB::Array 0.088659 0.073456 0.132609 0.108239 0.096743 0.066468
readAndWrite(01) Array of Floats std::vector 0.088456 0.063556 0.126699 0.069530 0.112472 0.066267

readAndWrite(01) Array of Floats std::deque 0.101720 0.067650 0.114502 0.076159 0.100775 0.065632

readAndWrite(15) Array of Structs PSB::Array 0.360370 0.322608 0.364878 0.322568 0.385759 0.323244
readAndWrite(15) Array of Structs std::vector 0.367524 0.322573 0.374494 0.322752 0.369175 0.322728

readAndWrite(15) Array of Structs std::deque 0.377467 0.324289 0.361549 0.324983 0.372396 0.324388

readAndWrite(15) Struct of Arrays PSB::Array 0.363733 0.322250 0.364626 0.322454 0.377794 0.322574

readAndWrite(15) Struct of Arrays std::vector 0.391204 0.322258 0.389660 0.322460 0.356553 0.322288

readAndWrite(15) Struct of Arrays std::deque 0.356324 0.323864 0.374155 0.323843 0.383680 0.323596
readAndWrite(15) Array of Floats PSB::Array 0.491371 0.438380 0.505128 0.438654 0.499095 0.438492
readAndWrite(15) Array of Floats std::vector 0.474463 0.438186 0.476764 0.438614 0.489361 0.438164
readAndWrite(15) Array of Floats std::deque 0.474183 0.439874 0.485285 0.439444 0.492163 0.439871

simulateParticles() Array of Structs PSB::Array 2.905858 2.957178 2.066991 3.119318 3.109964 3.100532
simulateParticles() Array of Structs std::vector 2.226115 2.273706 3.128318 2.295857 2.120903 2.985961
simulateParticles() Array of Structs std::deque 2.400249 2.437826 2.456295 1.463314 1.494810 2.416379
simulateParticles() Struct of Arrays PSB::Array 3.278752 4.032866 4.156770 3.895215 4.249961 4.100079
simulateParticles() Struct of Arrays std::vector 3.329704 4.168434 4.075359 3.247387 3.337892 3.352701

simulateParticles() Struct of Arrays std::deque 1.481348 2.187278 2.420544 1.436203 1.469413 1.447461
simulateParticles() Array of Floats PSB::Array 10.932758 12.413404 11.618637 11.804590 12.745600 11.806431
simulateParticles() Array of Floats std::vector 12.139223 10.765740 10.695360 12.287901 11.781323 10.304378
simulateParticles() Array of Floats std::deque 4.666979 4.602924 4.699635 4.829878 4.898854 4.761504

6
6



Figure 4.2 Visualization of the fastest data structure implementations utilizing the CUDA and HIP

libraries for every test function, measured by the benchmark runtimes obtained by the ParticleStackBench-
mark application. The results are sorted in descending order from left to right, which means the fastest
data structure for every test function can be found on the far right of the bar charts.
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5 Outlook and Conclusion

This chapter describes future extensions which would be interesting possibilities to increase the func-
tionality of the ParticleStackBenchmark application. Further implementation ideas and recommen-
dations for future improvements are presented. These include improvements regarding the already
existing data structure and test function classes, but also potential implementation extensions for the
parallelization techniques to increase performance. The last section gives a summary of the investiga-
tions performed within the scope of this thesis and closes with the final conclusion of the analysis of
the benchmark measurement results.

5.1 Future Extensions and Outlook

One of the objectives of the ParticleStackBenchmark application is the flexibility and expandability of
the framework. This section discusses a collection of possible extensions – some of which were already
mentioned throughout the thesis – that would increase the functionality of the framework, raise the
investigative potential for future research ventures and lead to further results and insights.

5.1.1 Additional Data Structure Classes. The abstract Datastructure class (discussed in
Section 3.4.3) enables the user to design custom data structures with the freedom to implement
different memory layouts (see Section 3.4.4). The three already implemented data structures are
conceptualized from the investigations in Chapter 2 and tailored for the utilization in Wigner signed-
particle simulations, but this is just a small fraction of all accessible designs. Specifically the following
improvements are possible.

➤ More Sophisticated Containers and Data Structures. The first step could be the
utilization of better suited containers inside the already implemented data structures. As long
as the new container possesses the same interface as the sequential containers in the C++ standard
library (especially an implementation of the index operator for random element access), only the
template parameter for the container type has to be changed. Already existing containers could
also be organized into other, more sophisticated data structures, that possess features that could
be beneficial for the algorithm at hand. Further investigations regarding other data structures
could lead to new ideas and implementations.

➤ Adjustable Number of Particle Attributes. It was already mentioned in Section 3.4.2
that currently the number of physical or numerical properties of every particle is fixed to 15 (this
number is deduced from the ViennaWD reference implementation in Section 2.2.1). Since the data
types of the properties are changeable, it would also be very useful if the number of properties
could be selected by the software user. Unfortunately, the statically typed characteristics of
the C++ programming language make this endeavor a rather complicated problem regarding the
concrete implementation (see Section 3.4.5 for the current data type deduction). The data type
of every property has to be deduced from the data structure class definition by the Benchmark
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class for further operations. If the number of particle properties is not known at the time of
implementation, it can also not be deduced by the Benchmark class, since the data type and
member function deduction relies on this information. Another problem is the fact that an
adjustable number of particle properties would have to be handled by a loop construct, either
by iterating over an array of data types or over an array of std::function objects. The
problem in the first case is that data types per se cannot be saved as elements inside an array,
and the problem in the second case is the fact that the std::function objects would have
different types themselfs for different access functions. Although there are constructs in the
language that offer the possibility to store different data types in one single array (for example
std::any [137], std::variant [138] and std::optional [139]), the type deducing class still
has to know the number, order and the data types itself of the deduced types at compile time.
Further investigations regarding different C++ language features of interest, for example variadic
templates in the context of parameter packs [140], could maybe lead to a possible implementation
of this feature in the future.

5.1.2 Additional Test Function Classes. Currently there are two test functions available,
which are appropriate for benchmark measurements that should help to determine which data struc-
tures are best suited for the Wigner signed-particle method. The next step would be to enhance
these test functions to yield more precise and practical results. This can be done with the following
ideas (see also Section 3.4.14).

➤ More Sophisticated Modules. The SimulateParticles() test function contains all impor-
tant modules that are also present in the Wigner signed-particle algorithm, but the modules
itself consist of very basic operations. These operations try to emulate the memory access pat-
tern of the algorithm, but do not really have any physical interpretation (see also Section 3.4.10).
It would be very interesting to extend the functionality of these modules to the point where the
operations resemble mechanisms that are closer to real physical processes. One example would
be the phonon scattering module, which currently just modifies the momentum vector of the
particles by multiplying it with a real number. Here more realistic methods such as random
number generation for scattering angles could be an upgrade. Another example is the annihila-
tion condition, which currently only considers the position space, but not the momentum space.
This condition could be expanded to resemble the algorithm more closely.

➤ New Test Functions. The next step would be the development of completely new test
functions that are not based on the two already existing. This would include test functions with
more modules than already available or with entire different functionalities. It would also be
interesting to not try to emulate the complete Wigner signed-particle algorithm in one single
test function, but to divide the algorithm into a number of different test functions and measure
the runtimes for all of them in a systematic manner. This could lead to results where different
data structures are best suited for different steps of the algorithm. The simulator would then
transfer the data between various data structures after the end of the previous module and before
the beginning of the next module of the algorithm to yield optimal performance.

5.1.3 Improved OpenMP Implementation. The current OpenMP implementation of the test
functions is rather basic. The only parallelization technique utilized is the ordinary #pragma omp

parallel for construct which works on the elements of one single data structure per MPI process.
This simple test function structure can be improved by the following ideas.

➤ Thread specific Data Structures. Currently only one single data structure per MPI
process is utilized. This means that a large number of OpenMP threads work concurrently on the
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same elements in the containers. As long as the workload can be distributed between the threads
and the operations do not affect the working space of the other threads, this is not a problem.
For example the evolution step or the marking of the active flag are parallelizable in a straight
forward manner. But this is not true for the critical sections in the generateParticles()

and eraseParticles() modules. In this sections the number of particles and, therefore, the
length of the containers are changed. If this is done in parallel, it is highly probable that a
race condition or a segmentation fault occurs, since a large number of threads is concurrently
changing the indices of the remaining particles. One way to solve this problem would be the
implementation of thread specific data structures (see also Section 4.2.6). This means that every
OpenMP thread possesses a seperate data structure for itself. Now the working space is evenly
divided between the threads and the problems discussed above do not arise anymore, which
means that all modules, even the critical sections, could now be executed in parallel. Of cource
further investigations regarding the splitting and merging of the small thread data structures
from and to the large MPI process data structure have to be performed, since this operations
could also lead to a performance drop in total.

➤ Advanced OpenMP Features. The OpenMP library offers a large number of different pre-
processor directives that help to optimize the performance. It would be interesting to employ
some of these features and keywords to investigate the impact on the runtime measurements.
One example would be the utilization of the OpenMP scheduling mechanism that allows for
a specific scheduling concept of the iteration partition (such as static, dynamic and guided)
when the elements of the parallelized loop construct are processed.

5.1.4 Improved CUDA Implementation. Similar to the OpenMP implementation of the test
functions there is also further potential for the CUDA implementation. Some enhancement possibilities
for the GPU parallelized test functions are now discussed.

➤ Device Memory Specific Data Structures. Currently the data structures are located on
the memory of the host device, namely the CPU. This means that if a module of the test function
should be performed in parallel, the data has to be transferred from the CPU to the GPU and
back. This communication overhead can lead to tremendous performance drops, especially in
the current SimulateParticles() implementation, where the data is sent and received every
single time step due to the critical sections of the generation and annihilation events. These
critical sections have to be performed in serial on the CPU, because the data structures are
located in the memory of the CPU itself. The communication overhead could be prevented by
the implementation of seperate data structures which are located directly on the device memory,
namely the GPU (see also Section 4.2.6). Now all operations can be performed directly on the
GPU, even the critical sections, which would then employ only one single thread for the critical
operations. Therefore, the communication between the CPU and GPU would only be necessary
at the beginning and at the end of the complete time loop, not in every single time step.

➤ Multiple Device Programming. As already mentioned in the last chapter (see Section
4.1.5), the results indicate that the 32 × 64 configuration shows the most promising performance.
Unfortunalely, there is currently only the OpenMP implementation available, but the CUDA
implementation is still missing. The reason behind this inconvenience is the fact that the current
implementation only considers one single GPU as a possible device. This means that both MPI
processes on the compute node will utilize the same GPU, while the other GPU would stay idle.
The solution to this problem is the multiple device programming feature of the CUDA library.
This feature allows to redirect the communication to more than one single GPU device and to
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manage the transfer between two CPUs (or rather two MPI processes) and two GPUs on the
same compute node. It would be very promising to implement this parallelization method for
the 32 × 64 configuration, since all results in the last chapter point to the possibility that this
implementation could provide even faster runtimes than currently available.

5.2 Thesis Summary and Conclusion

This closing section recapitulates the content of the thesis and summarizes the developement of the
ParticleStackBenchmark application. The last section gives a final conclusion which is based on the
interpretation from the results of the benchmark measurements presented in Chapter 4.

5.2.1 Thesis Summary. Within the scope of this thesis a software application was developed to
measure the runtime of different test functions while utilizing a variety of distinct data structures.
The objective was to determine a hierarchy of the best suited data structures for the execution of the
Wigner signed-particle method. The Wigner signed-particle solution approach was introduced and
the corresponding operations of the algorithm were described to establish a basic understanding for
the peculiarities of the simulation method. One of the challenges of the algorithm is the necessity of
a large number of particles inside the simulation ensemble to yield values for the physical quantities
of interest that are reliable. Therefore, it is inevitable to utilize modern hardware architectures that
provide parallelization methods and other performance boosting techniques. The most important and
widely-used architectures and the corresponding parallel APIs and software libraries were discussed.
Investigations regarding the design of adequate data structures were performed, starting with the
analysis of the algorithmic complexity of the methods of the considered data structures. The Vien-
naWD reference implementation was consulted to derive the necessary particle properties. Related
open source projects, especially Monte Carlo particle simulators, were examined to obtain further
possibilities for different implementations. With the algorithm, the hardware and the data structure
design in mind, the already mentioned benchmark framework was developed. The software specifica-
tion including the objectives and requirements was formulated as a basis. The software was described
from the point of view of three different software user types, starting with the end user, followed by the
advanced user and finished with the developer perspective. The input parameter and output options,
the possibility of custom data structure and test function design and the implementation of the class
system was described and discussed in detail. This benchmark application was then used for a series of
runtime measurements, where a large quantity of different options and parameters were combined to
a plethora of test cases. The results of these measurements were organized in a structured manner by
combining the large number of values in tabulated representations and diagram visualizations. These
results were interpreted and discussed to obtain the best suitable data structures for the solution
method at hand. At last a number of future extensions of the framework were mentioned.

5.2.2 Final Conclusion. The objective of this thesis was the derivation of a number of data struc-
tures, sorted by a specific performance measure – in this case the execution runtime –, which show the
most potential for the use inside scientific software that performs Wigner signed-particle simulations.
The analysis of the benchmark results, especially the fastest implementations displayed in Figure 4.1,
leads to the conclusion that from all combinations of data structures and containers measured, one
specific combination shows by far the most potential regarding the ability to execute the desired
operations in the shortest runtime. This combination consists of the StructOfArrays (SOA) data
structure (see Sections 2.3.2 and 3.4.4) with the std::vector container [35]. This specific combination
performes better than all other measured data structures under vast different environments, including
varying compilers, diverging process/thread configurations and diverse parallelization techniques.
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