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Influence of Tyre Characteristics on Periodic Motions for an
Understeering Vehicle
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We investigate the dynamics of a two-wheel vehicle model after deviating from an unstable steady powerslide motion. For
a model with brush tyre characteristics we observed that for a range of constant driver inputs (front steering angle, driving
torque) the motion converges to a periodic oscillation around a circular path with a very small radius of curvature. In this paper
we investigate, how a modified tyre model with decreasing friction coefficient for large slip velocities influences the stability
and domain of existence for these periodic motions. We also compare the obtained solutions with those using Pacejka’s Magic
Formula for the tyre characteristics and find a remarkable good agreement.
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1 Introduction

We investigate the stationary and periodic solutions of a two-wheel vehicle model [1] shown in Fig. 1. As state variables
we use the speed v, vehicle side slip angle β, yaw rate ψ̇ and angular velocity ωR of the rear wheel. The (constant) control
parameters are given by the front steering angle δF and the drive torque MR at the rear wheel. The equations of motion of the
system read ( [1])

mv̇ cosβ −m(ψ̇ + β̇)v sinβ = FxR − FyF sin δF , (1)

mv̇ sinβ +m(ψ̇ + β̇)v cosβ = FyR + FyF cos δF , (2)

Iψψ̈ = lFFyF cos δF − lRFyR, (3)
Iωω̇R =MR − rRFxR. (4)

The horizontal tyre forces FyF , FxR, FyR depend on the tyre slip angles αF , αR and are described by a modified brush
model:

Fi = µiFzif(σi/σi,sat), i ∈ {F,R},

where σi denotes the slip, σi,sat the saturation limit and

f(σ) =

{
3σ − 3σ2 + σ3 forσ ≤ 1

µi∞ + 1−µi∞
1+rf (σ−1)2 forσ > 1

, (5)

where µi∞ denotes the limiting value for σ → ∞. The decay constant rf can be estimated by comparing the function shape
with Pacejka’s magic formula [2], here we use rf = 0.25. For µi∞ = 1 we obtain the classical brush model, where the friction
coefficient f(σ) remains constant for σi ≥ σi,sat. The friction coefficients µif(σi/σi,sat) for the choosen tyre parameters
with µi∞ = 0.75 are displayed in Fig. 2.

According to Fig. 1 the relative velocity vFr of the front wheel w.r.t. the direction of the wheel is given by

vFrx = cos δF vFx + sin δF vFy, (6)
vFry = sin δF vFx − cos δF vFy, (7)

where the velocity of the front wheel is given by

vF =

(
vFx
vFy

)
=

(
v cosβ

v sinβ + lF ψ̇

)
.

Since sometimes we encounter extreme situations, where vFrx becomes negative, we use the expression

σF =
vFry
|vFrx|

(8)

for the front slip σF , which gives the proper signs compared to the usually applied formula σF = tanαF = vFry/vFrx.

∗ Corresponding author: e-mail Alois.Steindl@tuwien.ac.at, phone +43 1 58801 325208, fax +43 1 58801 9325208
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

PAMM · Proc. Appl. Math. Mech. 2022;22:1 e202200289. www.gamm-proceedings.com 1 of 6

https://doi.org/10.1002/pamm.202200289 © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fpamm.202200289&domain=pdf&date_stamp=2023-03-24


2 of 6 Section 5: Nonlinear oscillations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

n
o
rm

al
iz

ed
 a

x
le

 f
o
rc

e 
F

i/
F

zi

slip σi

i=F
i=R

Fig. 1: Two-wheel vehicle model with state variables v, β, ψ̇,
ωR and control parameters δF and MR (not depicted).

Fig. 2: Modified brush tyre model with µi∞ = 0.75

For the rear slip σR we use

σR =
√
v2Rrx + v2Rxy/(rRωR) (9)

with the relative velocity at the contact point at the rear wheel
(
vRrx
vRry

)
=

(
v cosβ − rRωR
v sinβ + lRψ̇

)
.

Table 1: Parameters of vehicle and tyre/axle model

parameter abbr. value unit

vehicle mass m 2000 kg
vehicle yaw inertia Iψ 2650 kg m2

axle inertia Iω 6 kg m2

front axle position CGF lF 1.45 m
rear axle position CGR lR 1.50 m
effective tyre radius rR 0.35 m
front axle slip stiffness 2cpFa

2
F 2.6 · 105 N

rear axle slip stiffness 2cpRa
2
R 3.6 · 105 N

max. friction coefficient µF , µR 0.95, 1 –

For our calculations we use the vehicle parameters displayed in Table 1, which are quite the same as in [1], except that we
interchange the effective axle slip stiffness values of the front and rear tyre and consider a smaller maximum friction coefficient
for the front wheel µF = 0.95; with these parameter choices the vehicle handling behaviour becomes understeering.

1.1 Handling behaviour for the classical brush model

In Fig. 3 the control parameter δF depending on the speed v for the steady state of a vehicle negotiating a curve with radius
ρ = 50m is depicted. The regular and overdraw steering branch of the handling behaviour for µi∞ = 1 is plotted in green; it
corresponds to the normal driving state in the part of the branch with ‘small’ steering angles. Since along this part the steering
angle increases with the velocity, the vehicle is understeering; the branch is throughout stable, as typical for vehicles with
understeering handling characteristics. The blue dashed curve corresponds to the powerslide manoeuvre, where the control
parameter MR is large, the vehicle side slip angle β is negative, and the front wheels point toward the outer side of the curve
(the vehicle turns into a different direction compared to the steering wheel) ( [3]), and the second overdraw steering branch.
That branch is mostly unstable, but it contains a short part, indicated by a dotted line, where one eigenvalue vanishes. This
zero eigenvalue is caused by the saturation of both tyres, such that the equations for the yaw rate ψ̇ and the rear wheel angular
velocity ωR become linearly dependent. In the view of dynamics this situation is highly degenerate: For a given value of δF
there exists a ray of steady motions for a certain value of MR; for different values of MR this branch is missing.

Fig. 4 shows the relation between δF and MR along both branches for the steady cornering state. The green branch for
small steering angles until the slight ‘kink’ at a drive torque demand of about 500 Nm corresponds to the full regular driving
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Fig. 3: Handling behaviour for the classical brush model Fig. 4: Handling behaviour for the same parameters as in the
left figure displaying the relation between steering angle and
the driving torque

part of this branch. It becomes obvious that the drive torque demand for other steady driving conditions is considerable higher
and those are thus less energy efficient.

In the diagrams below, which display the periodic solutions depending on δF , like e.g. Fig. 7, the corresponding value MR

on the powerslide branch is selected.
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Fig. 5: Trajectories starting close to a point on the powerslide
branch for different values of the steering angle δF

Fig. 6: Handling behaviour for the regular and powerslide
branch and further stationary and periodic solution branches
for the modified brush model with µi∞ = 0.75.

Fig. 5 shows trajectories in (v, β)-space, which start close to a stationary point on the powerslide branch and converge to a
stable periodic solution encircling a further stationary point; the coordinates of that new stationary point, which coexists with
the stationary solution along the powerslide branch for the same control parameter values, is displayed as curve ‘branch 2’
in Fig. 3 and correspond to very small radii of curvature (‘donuts’). The stationary solutions along this branch undergo Hopf
bifurcations at the pointsH1 andH2, with stable stationary points at very large steering angles and corresponding drive torques
from Fig. 4.

2 Existence of periodic solutions for the modified brush model with µi∞ = 0.75

If the vehicle operates in a regime with large slip values (|σi| > σi,sat), the tyre forces predicted by the modified brush
model (5) will decay, leading to different dynamics. The corresponding handling behaviour is displayed in Fig. 6: The regular
and powerslide branch look the same as in Fig. 3. The stationary velocity along the powerslide branch is shifted towards
smaller speeds. As before there exists a ‘branch 2’ of stationary solutions, which becomes unstable for δF ≈ −58◦ due to
a Hopf bifurcation, and an initially supercritical family of periodic solutions bifurcates from this branch. The branch soon
becomes unstable by a pair of turning points – which are visible in Fig. 6 as tiny wobbles along the lower part of the branch of
periodic solutions – and a flip bifurcation, after which the unstable eigenvalue grows very rapidly in size. The unstable branch
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Fig. 7: Period T along the branch of periodic solutions for
varying values of δF

Fig. 8: Homoclinic orbit close to a Shilnikov szenario

of periodic solutions extends to δF ≈ −38◦ and undergoes a sequence of turning point bifurcations until it approaches a
homoclinic orbit. The period T along this branch is shown in Fig. 7; the wiggly line in this diagram indicates, that a Shilnikov
szenario ( [4]) occurs: As can be seen in Fig. 8, the homoclinic orbit approaches a saddle point along the stable manifold for
a complex pair of stable eigenvalues and departs from the saddle along an unstable direction.

As it is explained in [5], a Shilnikov szenario can lead to strongly chaotic dynamics, because an infinite family of Smale’s
horsehoes occurs leading to infinitely many period doubling sequences. Since the periodic orbit in our system is already
strongly unstable close to these parameter values, the chaotic dynamic doesn’t occur for the considered driving parameters.
Moreover, in contrast to Fig. 3, a third branch of steady conditions is found that requires further attention in forthcoming
investigations.

2.1 Comparison of the results for the brush model with those for Pacejka’s formula

We are now interested to compare the obtained results for the system model with the modified brush tyre model with those
using an analogous setup for the basic formulation of the Magic formula tyre model

f(σ) = D sin(C arctan(Bσ − E(Bσ − arctan(Bσ)))) (10)

by Pacejka ( [2]), which is used very frequently in vehicle dynamics applications since it is able to map measured tyre
characteristics while its parameters still may be interpreted w.r.t. particular tyre properties.
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Fig. 9: Comparison of Pacejka’s magic formula with the mod-
ified brush model for µi∞ = 0.75

Fig. 10: Handling behaviour for the regular and powerslide
branch and further stationary and periodic solution branches
for Pacejka’s Magic Formula with µi∞ = 0.75.

To map the basic tyre properties, as a first step we choose the parameters B,C,D,E in (10), such that we obtain a similar
limiting behaviour.

Usually E is selected close to 1, say E = 1− ε; for 0 < ε≪ 1 the function

y1 = Bσ − E(Bσ − arctan(Bσ)) = εBσ + (1− ε) arctan(Bσ)
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rises slowly after the arctan-term is exhausted; therefore y2 = arctan(y1) increases from (1 − ε) arctan(π/2) ≈ 1.0039 to
π/2 for very large values of Bσ. In order to avoid this very slow decay of sin(Cy2) we choose E = 1.

Next we can select C to obtain the intended limit for σ → ∞: With

C = (π − arcsin(µi∞)) / arctan(π/2)

the function y3 = sin(Cy2) decays to µi∞ after it has reached the maximum value of 1. Now we can adjust B, such that y3
reaches its maximum for σi = σi,sat:

C arctan(arctan(Bσi,sat) = π/2 ⇒ B = tan tan(π/(2C))/σi,sat.

Finally we obtain D as µiFzi.
A comparison of the two model characteristics is shown in Fig. 9 for the normalized slip σ = σi/σi,sat. For σ ≤ 1 the

functions agree almost perfectly, whereas for greater values the difference is significantly larger, but the overall shape is quite
similar.

The numerical results with Pacejka’s tyre model are displayed in Fig. 10. These results are in remarkably good agreement
with the corresponding results shown in Fig. 6: For initial values near the powerslide branch and δF < −56◦ there exists a
branch of stable stationary solutions, which attracts the trajectories. This branch undergoes a supercritical Hopf bifurcation
and the periodic solutions soon become unstable due to a flip bifurcation. The periodic branch terminates at a homoclinic
orbit.

2.2 Small periodic solutions for µR∞ = 1 and varying values of µF∞

In this section we briefly investigate the behaviour of the vehicle, if the rear tyre is modelled with the usual brush model and
the front tyre displays a decaying friction force for |σF | > σF,sat. As can be seen in Fig. 11, the periodic solutions depend
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Fig. 11: Small periodic solutions for the modified brush model
with µR∞ = 1 and different values of µF∞

Fig. 12: Switching behaviour of periodic branches for slightly
differing values of µF∞.

strongly on the parameter µF∞: For µF∞ close to 1 the periodic branch extends close to δF = 0◦, whereas for smaller values
of µF∞ the branches end at Hopf bifurcation points at small values of δF . The location of these Hopf bifurcation points is
displayed in Fig. 11 as dot-dashed curve. Since at the Hopf bifurcation point H1 in Fig. 3 the slip σF at the front wheel is
below the saturation value, this Hopf point and the first part of the bifurcating branch of periodic solutions is common for all
branches. It should be noted, that for the displayed values of µF∞ there exists also another short branch of periodic solutions
near δF = 0◦ connecting two further Hopf bifurcation points. These branches are not shown in Fig. 11, because they are hard
to distinguish.

If the modified brush model approaches the classical one, i.e. for µF∞ ≈ 1, we observe a quite interesting switching
behaviour close to the Hopfpoint H2: As can be seen in Fig. 12, there exists also a branch of periodic solutions emanating
from this Hopf point. Either this branch connects to a third Hopfpoint nearby or it is connected to the periodic solution branch
from the Hopf bifurcation point H1. The branches undergo a transcritical bifurcation for periodic solutions.

Conclusions and further research

In addition to findings from the well-known handling diagram, [2], we observed that solutions starting close to the unstable
powerslide cornering motion may end up in a periodic or stationary solution corresponding to a very narrow circular path
of the vehicle. These solution branches exist for a range of tyre models described by the modified brush model and depend
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6 of 6 Section 5: Nonlinear oscillations

sensitively on the parameter values. Also when using Pacejka’s tyre model these solutions have been observed and may be
related to so-called ‘donuts’ known from race driving.

There still remains a number of open questions: For the classical brush model the periodic solution branch ends up in an
orbit, which looks similar to a homoclinic orbit, but instead of a saddle point a singular manifold governs the slow dynamics.

It would of course also be of (practical) interest to study the domains of attraction of the observed solutions and learn more
about the limiting behaviour of the vehicle starting at unstable initial states. Also the connections between different observed
branches need more attention.

For some choices of parameters we observe states along the periodic branch, where the vehicle rotates around the touch-
down point of the front wheel, while the rear wheel rotates with high speed and moves sidewards. The side slip angle β
approaches 90◦ and the velocity vFr becomes very small, such that the front slip (8) behaves singularly. In this case also the
brush model for the tyres needs to be modified to properly take account of the transient deformations.

In [6] we observed, that the height of the center of gravity has a strong influence on the driving behaviour, especially for
situations close to stability limits. In view of these results the CG height shouldn’t be neglected in the calculations, although
it introduces an algebraic equation for the angular momentum balance.

Another important aspect of research is the control of the vehicle and respective trajectories, either by a human or robot
driver.
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