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Abstract

This work compares two Nitsche-type approaches to treat non-conforming triangulations for a high-order
discontinuous Galerkin (DG) solver for the acoustic conservation equations. The first approach (point-to-point
interpolation) uses inexact integration with quadrature points prescribed by a primary element. The second
approach uses exact integration (mortaring) by choosing quadratures depending on the intersection between non-
conforming elements. In literature, some excellent properties regarding performance and ease of implementation
are reported for point-to-point interpolation. However, we show that this approach can not safely be used for
DG discretizations of the acoustic conservation equations since, in our setting, it yields spurious oscillations that
lead to instabilities. This work presents a test case in that we can observe the instabilities and shows that exact
integration is required to maintain a stable method. Additionally, we provide a detailed analysis of the method
with exact integration. We show optimal spatial convergence rates globally and in each mesh region separately.
The method is constructed such that it can natively treat overlaps between elements. Finally, we highlight the
benefits of non-conforming discretizations in acoustic computations by a numerical test case with different fluids.

Keywords: Nitsche method, non-conforming interface, non-matching grids, acoustic conservation equations, high-
order finite elements, discontinuous Galerkin methods

1 Introduction

The main benefit of non-conforming interfaces (NCIs) is the ability to handle arbitrary element connections. In
acoustic simulations, we require different element sizes in different regions of a triangulation, e.g., due to wave
propagation through inhomogeneous media. NCIs can realize the jump in element sizes without the use of transition
regions which usually contain strongly distorted elements [1, 2]. This way, it is possible to reduce degrees of freedom
(DoFs) needed without introducing errors related to elements with bad quality [3, 2]. Additionally, algorithms that
can handle NCIs can simplify mesh generation since it is possible to generate the grids in a modular way [1].

Overlapping elements further reduce the difficulties in mesh generation since they can be constructed without
paying attention to adjacent regions at all. One famous example of this is the overset grid method [4]; a structural
mesh serves as the background mesh in which complex geometries can be embedded. This is done by overlaying
the corresponding meshes and deleting the elements of the background mesh that completely overlap the embedded
mesh.

Besides mentioned advantages of NCIs, some applications, like a rotating fan, require NCIs. To compute the
aeroacoustic sound field, we need two mesh regions, one of which is rotating, see e.g. [5]. A conforming mesh at
each time step is not feasible; using NCIs in such applications is the obvious solution. However, this requires the
non-conforming interface to lie precisely on top of each other, which is only possible using curved elements, cf. [6].
A slightly different approach is to use methods that can also handle element overlaps between the triangulations.
This way, the fixed and rotating domain can still pick values for the fluxes at the overlapping boundaries, with the
difference that these values are defined inside elements of the other triangulation.

There exist three different ways to handle non-conformities. The most common method in literature is the Mortar
method, first introduced by Bernadi et al. [7]. The Mortar method is a projection-based method that typically uses
Lagrange multipliers to enforce coupling; this requires additional DoFs at the interface. Coupling of the second
order wave equation using Mortar methods has been successfully applied in [3].
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Another way to couple non-conforming meshes is through interpolation-based methods, such as INTERNODES
(INTERpolation for NOn-conforming DEcompositionS) [8].

Nitsche [9] presented the idea of including Dirichlet boundary conditions (DBCs) in the weak form. Methods using
this idea are consequently named Nitsche-type methods. Discontinuous Galerkin (DG) schemes use this idea at all
element boundaries already [10]. Therefore, we believe that using Nitsche-type methods to couple meshes via NCIs
is the most natural way to couple DG schemes. Here we can distinguish between schemes that use exact and inexact
integration. For methods with inexact integration, we use integration points dictated by elements on the NCI and
evaluate needed quantities in the non-conforming attached elements. Hermann et al. [11] used this approach in a two
dimensional DG setting for seismic waves on meshes with possibly different element types. Laughton et al. [12] refer
to this method as point-to-point interpolation method. Methods using exact integration collect integration rules
on the intersections between the connected elements. This procedure is commonly referred to as “mortaring”, and
the intersections are often called “mortars” (without any relation to the Mortar method). Nitsche-type mortaring
has been successfully applied in a FEM setting by e.g. [13, 14] for the inhomogeneous wave equation and Maxwell
equations, respectively. The procedure of mortaring is the same for Mortar and Nitsche-type mortaring methods.
The difference in both methods is that Nitsche-type methods enforce the coupling point-wise (via numerical fluxes).
On the other hand, Mortar methods enforce the coupling via an integral (using Lagrange multipliers).

Laughton et al. [12] compared the Nitsche-type mortaring method to the point-to-point interpolation method
regarding performance and accuracy in a DG setting. The advantage of point-to-point interpolation over methods
with mortaring is its ease of implementation [12]. For the compressible Euler equations in two dimensions, it is shown
that point-to-point interpolation outperforms the method with mortaring, considering polynomial degrees between 3
and 7 [12]. We expect the performance to close up for long run-times on static triangulations (the quadrature rules
of the intersections and the mapping of obtained integration points have to be setup only once). However, we
suspect the performance to diverge even more on moving meshes, where the intersections and the mappings have
to be updated every time step or Runge–Kutta stage. The disadvantage of point-to-point interpolation is that
it introduces numerical errors related to aliasing. Methods using mortaring do not face this issue. To obtain
similar errors for point-to-point interpolation compared to the Nitsche-type mortaring, [12] increases the number of
quadrature points.

Solving the scalar acoustic wave equation utilizing conforming finite element methods (FEM) has some unattrac-
tive peculiarities. It requires specific time-stepping schemes and suffers from numerical dispersion (see e.g. [15, 2]).
Transforming the acoustic wave equation to a first-order system yields the acoustic conservation equations. These
acoustic conservation equations do not include a second-order temporal derivative; thus, standard time-stepping
methods, such as Runge–Kutta methods, can be applied. Furthermore, the velocities of non-harmonically vibrat-
ing surfaces natively appear in governing equations, making a straightforward application of these velocities as
boundary conditions (BCs) possible. Additionally, conservation laws are ideally suited for finite volume or DG
discretizations [16], and it is possible to find less dispersive schemes by adding numerical diffusion using numerical
fluxes.

We applied the point-to-point interpolation method in [17] and showed that it provides optimal rates of convergence
in space. Later, we observed instabilities for some element configurations using this method. Within this work,
we show that for DG discretizations of the acoustic conservation equations, it is not safe to use point-to-point
interpolation since the method is not only less accurate but yields spurious oscillations that lead to instabilities in
some cases. To the best of the authors’ knowledge, no Nitsche-type mortaring formulation exists for the acoustic
conservation laws in literature. We present a test case in which mentioned instabilities occur and show that using
exact integration via mortaring is a remedy.

Additionally, we provide in-depth convergence studies for the Nitsche-type mortaring approach and show optimal
spatial convergence rates on the global computational domain and separately on domains with coarse and high
resolution.

2 Governing Equations

The wave equation reads

1

c2
∂2p

∂t2
− ρ∇ ·

(
1

ρ
∇p
)

= f in Ω× [0, T ], (1)
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on a domain Ω ⊂ Rd of dimension d and in a time interval [0, T ]. Here, p is the acoustic pressure, c is the sound
speed, and the underlying material’s density is ρ. The wave equation is a reformulation of the acoustic conservation
equations of momentum and mass

ρ
∂u

∂t
+∇p = 0 in Ω× [0, T ], (2)

1

c2
∂p

∂t
+ ρ∇ · u = F in Ω× [0, T ], (3)

p = gp on ∂ΩD
p , (4)

u = gu on ∂ΩD
u , (5)

ρcu · n = Y p on ∂ΩY. (6)

At boundaries we can apply pressure DBCs (4), velocity DBCs (5), and admittance BCs (6) by setting the normal
component of the velocity and a certain admittance Y .

3 Numerical Method

3.1 Notation

The physical domain Ω is represented by the computational domain Ωh(t) =
⋃Nel

i=1 Ωei ∈ Rd, with the space dimension
d. Within this work, it consists of Nel possibly overlapping rectangular/hexahedral finite elements and is bounded
by Γh = ∂Ωh. A finite element spans Ωe and is bounded by ∂Ωe. The solution is continuous inside elements and,
due to the nature of DG, discontinuous between elements. The acoustic particle velocity u and acoustic pressure p
are subject to the broken polynomial spaces Vh for the corresponding test and trial functions

Vuh =
{
uh ∈ [L2(Ωh)]d : uh(x)|Ωe = ũ(ξ)|Ω̃e ∈ [Pku(Ω̃e)]d,∀e ∈ [1, Nel]

}
, (7)

Vph =
{
ph ∈ L2(Ωh) : ph|Ωe = p̃h|Ω̃e ∈ Pkp(Ω̃e),∀e ∈ [1, Nel]

}
. (8)

Here Pk is the space of polynomial functions with order k on a reference element. Coordinates in the physical space
are x = (x1, ..., xd)

T ; their representation on a reference element are ξ = (ξ1, ..., ξd)
T . To transfer between x and ξ

a bidirectional mapping

ϕ :

{
Ωe → Ω̃e

x 7→ ξ = ϕ(x,Ωe)
, ϕ−1 :

{
Ω̃e → Ωe

ξ 7→ x = ϕ−1(ξ,Ωe)
, (9)

can be used. The discrete representations of the continuous pressure and velocity fields in the reference space read

ũeh(ξ) =

n
Nku∑
i=1

Nku
i (ξ)uei , p̃eh(ξ) =

n
N

kp∑
i=1

N
kp
i (ξ)pei , (10)

with the number of shape functions nNk defined on a volume element, e.g. for the pressure in the one dimensional
case nNkp = kp+1. The shape functions Nk

i are constructed by Lagrange polynomials of degree k. Within this work,
the same polynomial orders k for velocity and pressure (ku = kp) are utilized. We denote the interior information
of an element Ωe with (·)− and the exterior information of adjacent elements with (·)+. Consequently, the current
element (from now on called “primary element”) is denoted as Ωe−, and the neighboring elements (or “secondary
elements”) are described as Ωe+. The outward pointing normal vectors of the primary element are n−, since facets
of primary and secondary elements coincide, n = n− = −n+. Accordingly, any scalar or vectorial quantity b is
implicitly defined on the primary element if no superscript explicitly assigns it to the primary or secondary element
b = b−. We choose the notation for the averaging operator {{·}}, jump operator [·], and normal jump operator J·K
according to Bassi et al. [18, 19]. They are {{b}} = (b−+b+)/2, [b] = b−−b+, and JbK = b−⊗n−+b+⊗n+. Hereinafter,
the integrals are written in the compressed notation (a, b)Ωe

=
∫

Ωe
a · b dΩ and (a, b)∂Ωe

=
∫
∂Ωe

a · b dΓ, where
the operator · indicates an inner product and a represents an arbitrary quantity of the same dimension as b. All
operators are given in the notation considering element boundaries; therefore, each facet becomes a primary and
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secondary element. For numerical integration, we employ Gaussian quadrature. On an element of spatial dimension
d we use nq = (k + 1)d quadrature points for the volume integrals and nq = (k + 1)d−1 on element faces. Boundary
conditions are applied using a mirror principle, cf. [16]. While pressure and velocity DBCs are defined as

p+ = −p− + 2gp; u+ = u− on ∂ΩD
p , (11)

u+ = −u− + 2gu; p+ = p− on ∂ΩD
u . (12)

Admittance BCs read

u+ =

(
2Y

ρc
p− − u− · n

)
n; p+ = p− on ∂ΩY. (13)

Reflecting BCs and first-order absorbing BCs [20] (ABC) are achieved by setting the admittance to Y = 0 and Y = 1,
respectively. If the first order ABC is insufficient, a corresponding perfectly matched layer (PML) formulation is
provided in [21] for conforming FEM formulations.

3.2 Spatial Discretization

The numerical method, without non-conformities, has been described briefly in [22]. Within this section, we will
recall it in a more detailed manner to be able to extend the formulation.

The semi-discrete system is obtained as usual (cf. [16]). The governing equations are multiplied by the test
functions wh and qh, and integrated over the computational domain Ωh. For DG schemes, it is crucial to perform
the integration by parts to ensure boundary terms exist. With this, we end up with a corresponding weak formulation.
For given equations, it is also possible to perform a second integration by parts to obtain the strong formulation,
cf. [16], which is used in [23]. Eventually, numerical fluxes (denoted by the superscript ∗) are introduced into the
boundary integrals. This results in the semi-discrete system of equations(

wh,
∂uh
∂t

)
Ωe

−
(

1

ρ
∇ ·wh, ph

)
Ωe

+

(
1

ρ
wh · n, p∗h

)
∂Ωe

= 0 ∀wh ∈ Vuh , (14)(
qh,

∂ph
∂t

)
Ωe

−
(
ρc2∇qh,uh

)
Ωe +

(
ρc2qh · n,u∗h

)
∂Ωe =

(
c2qh, f

)
Ωe ∀qh ∈ Vph. (15)

We use Lax–Friedrichs fluxes, as also done in [24, 23, 25, 26],

p∗h = {{ph}}+
τ

2
JuhK ,

u∗h = {{uh}}+
γ

2
JphK .

(16)

The penalty parameters τ and γ are derived using the Rankine–Hugoniot condition when solving for the Riemann
solution [27, 23], resulting in τ = ρc and γ = 1

ρc . These penalty parameters are consistent in terms of a dimension

analysis which demands τ ∼ ρc and γ ∼ 1
ρc . Element boundaries are either located inside the domain ∂Ωeinner,

at non-conforming boundaries ΓeNCI, or subject to BCs (∂ΩD,e
p , ∂ΩD,e

u , or ∂ΩY,e). The explicit notation of the
discretization at element boundaries reads(

1

ρ
wh · n, p∗h

)
∂Ωe

=

(
1

ρ
wh · n, p∗h

)
∂Ωe

inner

+

(
1

ρ
wh · n, gp

)
∂ΩD,e

p

+

(
1

ρ
wh · n, p−h + τ(u−h − gu)

)
∂ΩD,e

u

+

(
1

ρ
wh · n, p−h + τ

(
u−h · n−

Y

ρc
p−h

))
∂ΩY,e

+

(
1

ρ
wh · n, p∗h,NCI(p

−
h , p

+
h ,u

−
h ,u

+
h ))

)
Γe
NCI−

,

(17)

and (
ρc2qhn,u

∗
h

)
∂Ωe =

(
ρc2qhn,u

∗
h

)
∂Ωe

inner

+
(
ρc2qhn,u

−
h + γ(p−h − gp)

)
∂ΩD,e

p
+
(
ρc2qhn, gu

)
∂ΩD,e

u

+
(
cqh, 2Y p

−
h

)
∂ΩY,e +

(
ρc2qhn,u

∗
h,NCI(p

−
h , p

+
h ,u

−
h ,u

+
h )
)

Γe
NCI−

.
(18)
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Ω̃1
−
ξ−

x

Ω̃2
+

ξ+

Ω1
− Ω2

+

ϕ−1(ξ−,Ω1
−) ϕ(x,Ω2

+)

Γ1
NCI−

ϕ[ϕ−1(ξ−,Ω1
−),Ω2

+]

Figure 1: Point-to-point interpolation: Shown is the mapping of a exemplary quadrature point ξ− (associated to
the primary element Ω1

−) to the the non-conformingly connected secondary element Ω2
+. Adapted from [17].

In this notation ΓeNCI− are the faces of the primary elements. A more detailed description of how integrals are
computed in the non-conforming case is provided in Section 3.3 and 3.4.

To be able to consider different materials, we have to adapt the fluxes at the NCIs. To this end, we use the LDG
fluxes with special self-adapting upwinding parameters and penalty terms as an additional stabilization mechanism
to increase the numerical diffusion [23]

p∗h,NCI = p−h −
τ−

τ− + τ+
[p] +

τ−τ+

τ− + τ+
JuhK ,

u∗h,NCI = u−h −
γ−

γ− + γ+
[uh] +

γ−γ+

γ− + γ+
JphK .

(19)

We can see, that the fluxes simplify to the Lax–Friedrichs fluxes of (16) for homogenous materials, i.e. c−ρ−=c+ρ+

and therefore, γ− = γ+ and τ− = τ+.

3.3 Point-to-Point Interpolation

Non-conformity can be easily handled by the evaluation of all quantities in consistent quadrature points [11, 12];
i.e., we have to evaluate fluxes at the same point in the physical space. The primary element dictates the used
quadrature points; see Figure 1. For conforming DG this leads to the same quadrature points in the reference space
ξ− = ξ+. However, if non-conformities in the mesh are present, quadrature points that correspond to the same
coordinate in the physical space differ, and we have to find quadrature points on the secondary element as

ξ+ = ϕ(x,Ωe+). (20)

Therefore, we can explicitly state that an arbitrary physical flux F∗h is a function of arbitrary quantities b, evaluated
at the same physical coordinates x = ϕ−1(ξ−,Ωe−) (provided by the integration rule of the corresponding primary
element face)

F∗h(b−, b+) = F∗h
(
b−(ξ−), b+(ξ+)

)
. (21)

The integration over a non-conforming face of a primary element subsequently reads∫
∂Ω

F∗(b−, b+) dΓNCI− ≈
nq∑
q=1

wqF∗h(b−(ξ−), b+(ξ+))|Jq|. (22)

wq are the weights of the Gauss quadrature, and the Jacobi determinants |Jq| in quadrature points q correspond to
the primary element face.
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Ω̃1
−

×

ξ−
×

×

×

x

Ω̃2
+

Ω̃3
+

ξ+

Ω1
−

Ω3
+

Ω2
+

Γ1
NCI−

Figure 2: Nitsche-type mortaring: In contrast to point-to-point interpolation, quadrature points are not dictated
by the primary element. Instead, the mortars between elements are computed, and quadrature points, weights, and
Jacobians correspond to the mortar patches. This way, there is no aliasing, and values form a smooth representation
in each quadrature. Intersections are computed between the face of the primary element and the secondary volume
elements to ensure the method works for overlaps without modification.

3.4 Nitsche-Type Mortaring

In contrast to point-to-point interpolation, Nitsche-type mortaring computes the integration over primary element
faces at NCIs as the sum of collected quadrature rules on the mortars, see Figure 2. Thus the integral computes as∫

∂Ω

F∗(b−, b+) dΓNCI− ≈
nm∑
m=1

nq∑
q=1

wqF∗h(b−(ξ−), b+(ξ+))|Jmq |. (23)

In (23), nm is the number of found intersections. The Jacobi determinants |Jmq | in quadrature point q is now
determined on mortar m. This way, the integral on the NCI is computed exactly (if enough quadrature points nq are
chosen) without aliasing. Constructing the mortars is more challenging to implement and reduces performance [12].
In our formulation, intersections are computed between the face of a primary element and the secondary volume
elements, cf. Figure 2; in 2D simulations, intersections are computed between a quadrilateral and a line. This way,
we can seamlessly handle overlaps between elements (see Section 5.1.3).

4 Remarks on Implementation

Our implementations will be freely available as a part of the open source software project EXADG [28] and the software
library deal.II [29].

In the case of point-to-point interpolation, we are collecting all quadrature points on the NCIs mapped to the
physical space. After that, we perform a global search based on distributed bounding boxes for secondary elements
that hold these integration points and store the corresponding quadrature points in the reference space. In each
time step, we evaluate pressure and velocities on the secondary elements and use the results to compute the fluxes
over the NCIs. If a quadrature point is found on multiple elements, we use the average value in the computation of
the fluxes. This approach works on curved elements without further ado.

In the case of Nitsche-type mortaring, we first create the mortars between the primary and secondary elements.
We are computing the d − 1 dimensional intersections between d and d − 1 geometric entities. The d − 1 element
is a face of a primary element. This way, quadrature rules are defined on the primary element faces, independent
if elements overlap or not. Thus, our implementation is the same in case of element overlaps or standard NCIs. In
our implementations, we extract the vertices of the non-conforming faces of the primary elements and all vertices of
possibly connected secondary elements. We then use CGAL [30] to compute the inter-dimensional intersections and
eventually create mapped quadrature rules on each mortar patch. The rest of the implementation is nearly the same
as for the point-to-point interpolation: Additionally to the quadrature points, we store the Jacobi determinants at
the quadrature points. Normal vectors are not stored; instead, we use the negative normal vectors of the primary
element during flux evaluation. We evaluate pressure and velocity on the primary and secondary elements in each
time step and use the stored Jacobi determinants to compute and test the fluxes over the NCIs. This approach limits
us to non-curved elements at NCIs. Since CGAL is working with triangular/tetrahedral elements, mortar patches are
always triangular in the 3D case (even if the patch could be rectangular). Note that the number of created mortars
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Figure 3: Computational mesh consisting of two mesh regions which are connected via a non-conforming interface.

and thus the number of quadrature points highly depends on the element configuration.

5 Numerical Results

This section provides numerical results using point-to-point interpolation and Nitsche-type mortaring. First, we show
instabilities related to non-smooth representations of values at NCIs for the point-to-point interpolation method.
We show that these instabilities do not occur if we use Nitsche-type mortaring instead. For Nitsche-type mortaring,
we provide in-depth convergence results for different mesh regions, quantify the error introduced at the NCI, and
provide results for a test case with heterogeneous material. Additionally, we show that the method also works if
elements are overlapping. From now on, all spatial values are given in m.

5.1 Vibrating Membrane

To be able to compute errors exactly, we use the test case of a vibrating membrane which has also been used, amongst
others, in [24, 31]. For this test case, the analytical solution at each time t is known, and for a two-dimensional
domain, it reads for the pressure

p = cos(M
√

2πt) sin(Mπx) sin(Mπy), (24)

and for the acoustic particle velocity

u =
− sin(M

√
2πt)√

2

(
cos(Mπx) sin(Mπy)
sin(Mπx) cos(Mπy)

)
, (25)

assuming no acoustic loads F = 0 kg ·m−3 · s−1, as well as ρ = 1 kg ·m−3 and c = 1 m · s−1. Our simulations’
computational domain Ω consists of two mesh regions connected via NCIs, as shown in Figure 3. The outer region
Ωo is a rectangular domain with a rectangular hole in which the inner region Ωi is embedded. Thus, Ω = Ωo ∪ Ωi

and within the following Ωo = (0, 0) × (0.1, 0.1) \ Ωi and Ωi = (1/30, 1/30) × (2/30, 2/30). We use M = 120 modes,
which leads to p = 0 Pa at the boundaries of the computational domain Ω and we apply homogenous pressure DBCs
gp = 0 Pa. All computations use the low storage Runge–Kutta version RKC84 [32]. The CFL condition

∆t =
Cr

k1.5

hmin

cmax
, (26)

gives the required time step size ∆t needed for a stable temporal discretization. We use the minimum edge length hmin

of all existing elements, the polynomial degree k, and the largest value of the speed of sound cmax for its computation.
To account for the different spacing between Legendre–Gauss–Lobatto (used as quadrature points) we are using the
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m
J

k = 1

k = 5

k = 2

k = 6

k = 3
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(a) Point-to-point interpolation.

0 100 200 300

t in ms

0.2

0.6

1.0

1.4

E
in

m
J

k = 1

k = 5

k = 2

k = 6

k = 3

exact

k = 4

(b) Nitsche-type mortaring.

Figure 4: Sound energy over time computed for orders k = 1 to k = 6. The given setup for the vibrating membrane
test case is perfectly energy conservative and thus energy has to be constant over time. For point-to-point interpo-
lation, instabilities form after some time while the simulation stays stable for exact integration with Nitsche-type
mortaring.

superscript 1.5 as proposed in [33]. For a detailed discussion on the CFL condition for explicit Runge–Kutta methods,
we refer to [34]. From this point forward, all computations use time step sizes computed by the CFL condition with
a Courant number Cr = 0.2.

5.1.1 Instabilities

The test case perfectly conserves the sound energy

E =

∫
Ω

(
p2

2ρc2
+
ρ(u · u)

2

)
dΩ. (27)

Since the analytic solution exists, we can compute the exact sound energy contained in the system as Eexact =
1.25 mJ. The mesh (cf. Figure 3) has element edge lengths of hΩi = 1/30·13 on the NCI for the inner domain
and hΩi

= 1/30·7 on the NCI for the outer domain. Figure 4a shows the sound energy in the system over time for
point-to-point interpolation. After a certain time, instabilities manifest as an non-physical rapid increase of sound
energy.

Obviously, the approach suffers from aliasing; the integration of the primary elements only includes information
from each connected element if quadrature points are found in every element. One can regard this as a Dirichlet-
Dirichlet approach, where the values are picked from the secondary domain instead of, e.g., an analytical function.
This reasoning does not explain the observed instabilities.

The difference in the applied Dirichlet boundary values is that in the case of an analytical function, the boundary
values form a smooth representation of the solution. In the case of using values from the secondary domain, boundary
values are not necessarily smooth. If quadrature points are located in different elements, we might face jumps in
the solution representation. While these jumps are assumed to be less distinctive in the case of continuous FE
methods, the nature of the DG method intensifies this issue. Nevertheless, the same also happens in the case of
continuous FE methods, in the case where whole secondary elements are not sampled by any quadrature point of
the primary element. The jumps between Dirichlet values introduce spurious oscillations that eventually lead to
unstable simulations. To quantify that this is indeed the source of instabilities, we tested to interpolate solution
values between domains into the DoFs. This way, there are no jumps between quadrature points since the shape
function of the primal element enforces a smooth representation of the values. Nevertheless, we observed instabilities
in the case of high polynomial degrees. These instabilities are related to Gibbs’ phenomena. Significant differences
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between DoFs and the high-order shape functions lead to ringing modes, typically observed in shock capturing.
Applying techniques to interpolated values that are usually used in shock capturing, such as modal filtering [16],
lead to stable schemes. However, this also leads to a drop in the obtained spatial convergence rates; therefore, we
are not further discussing those approaches.

According to the previous discussion, the phenomenon is not expected in the case of Nitsche-type mortaring. Since
the integrals are evaluated on intersections between elements, the representation of values is forced to be continuous
in each quadrature rule. The results are depicted in Figure 4b; we do not observe instabilities. From this point
forward, we will only consider the Nitsche-type mortaring approach.

Note that the main focus of the test case is to show instabilities for any polynomial degree. However, the
mesh resolution for low polynomial degrees k is chosen too poor for a good approximation of the primal variables.
According to [35], the element size h has to be chosen such that

k +
1

2
>
ωh

2
+ C(ωh)1/3. (28)

In (28), C is a constant that can be chosen unity in practice [35] and ω is the wave-number. For the vibrating
membrane test case ω = 2πM . Using the maximum element size in used triangulation, we obtain ωh

2 +(ωh)1/3 ≈ 3.44
for current investigations. Thus, we fulfill (28) with polynomial degrees k > 2, for k = 2 we are slightly off, and for
k = 1 we have a substantial deviation. Consequently, we can see constant sound energy over time for orders greater
than k = 2. For k = 2, we see a slight drop in energy due to numerical dispersion originating from the slightly too
coarse resolution. For k = 1, the resolution is so poor that the sound energy can not be resolved from the beginning,
and we observe non-physical oscillations. These results are in accordance to [35], in which it is reported that results
might even become qualitatively incorrect for insufficient resolutions. Within the next sections the mesh resolutions
are chosen such that (28) is fulfilled for k = 1 which successfully removes any non-physical oscillations.

5.1.2 Convergence Results

We use the setup of the previous section with M = 30 modes. However, we alter the mesh sizes compared to
Figure 3. The elements in the outer domain have initial edge lengths of ho,initial = 1/30·2; in the inner domain initial

element edge lengths are hi,initial = 1/30·3. We compute the relative L2 error for the pressure EL2,rel
p,R on region R

after 1 s for different mesh refinements

EL2,rel
p,R =

√∫
R(ph − pana)2 dΩ√∫

R p
2
ana dΩ

, (29)

with the analytical solution of the pressure pana, see Eq. (24). The velocity error EL2,rel
u,R is computed accordingly.

Regions are either the global region Ω, the inner region Ωi, or the outer region Ωo. The mesh refinement is realized
by replacing each quadrilateral cell by four children cells, and the corresponding edge lengths h at refinement level
r compute as

h =
hinitial

2r
. (30)

We observe optimal convergence rates of order k + 1 in space on the global domain Ω, see Figure 5a. The
outer domain has a coarser spatial discretization and dominates the errors on the global domain. Therefore, it is
not surprising that the errors on the outer domain (Figure 5b) behave similar to the ones on the global domain
(Figure 5a). The inner domain has a finer spatial discretization; thus the errors obtained in the inner domain might
be shadowed by the errors obtained in the outer domain. However, errors propagate from the outer domain to the
inner domain. We also observe optimal convergence rates computing the errors on the inner domain (see Figure 5c).
Errors obtained in the inner and outer domain are similar. Thus errors from the outer domain entirely propagated
to the inner domain after 1 s. Therefore, in practical applications, one should aim to choose mesh sizes that yield
approximately the same errors in each domain. In conclusion, we obtain optimal convergence rates in all regions of
the non-conforming mesh and can confidently apply the proposed method, keeping in mind that a jump in element
sizes has to be justified, e.g., due to different materials.
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Figure 5: Spatial convergence study for the vibrating membrane testcase with M = 30, defined on the rectangular
domain of Figure 3 (with hi,initial = 1/30·3, and ho,initial = 1/30·2) using Nitsche-type mortaring: Shown are the

relative L2 errors for pressure EL2,rel
p,R and velocity EL2,rel

u,R on different domains R. The domain R might be the global
domain Ω, the inner domain Ωi, or the outer domain Ωo.
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(a) Curved interface (b) Small overlap (c) Overset mesh

Figure 6: Three different meshes that have a circular mesh embedded in a rectangular mesh.

5.1.3 Embedding of Circular Domain

Being able to handle overlaps has two useful properties. Mesh generation gets more straightforward, and rotating
interfaces can be handled without the need for curved elements. We provide results for three different grids, depicted
in Figure 6, that are prototypical in the context of rotating interfaces. The rectangular domain spans Ωo = [0, 0.1]2

and the circular domain Ωi has a radius of 0.5.
In this particular case, it is easily possible to manually compute quadrature rules on the curved intersections since

the NCI is a circle (cf. Figure 6a). Note that this does not work for arbitrary shapes in our implementations since we
rely on CGAL to compute the intersections. Nevertheless, this approach becomes relevant for large-scale computations
with sliding interfaces since the computational cost to create mortars is heavily reduced, cf. [36]. For the version
with a slight overlap (cf. Figure 6b), the radius of the hole is slightly smaller than the radius of the circular domain,
i.e., 0.5 − 2 · 10−3. Using overset meshes (cf. Figure 6c) is particularly helpful in generating structured meshes in
regions connected to complex geometries.

All meshes have similar numbers of DoFs. Note that the methodology works for arbitrary overlaps. However, the
same physical fields are computed in the overlap; thus, redundant work is done if the overlap exceeds one element.
Table 1 shows the errors obtained after 1 s for the vibrating membrane test case with M = 5 modes. In this case,
we apply inhomogeneous pressure DBCs with gp obtained from the analytical solution. We can see that the errors
are in the same order of magnitude for the overlapping and overset mesh. Even though we used fewer DoFs in the
overset mesh, we can see slightly better errors, with an outlier at polynomial degree k = 5. This relates to the
element distortions in the overlapping case. The curved interface setup produces more significant errors than the
overlapping setup, the most distinct deviations are for polynomial degree k = 3 and k = 4. This is not expected
and needs further investigation before application to sliding rotating interfaces. One possible explanation is that

Table 1: Relative L2 errors EL2,rel
Ω = EL2,rel

p,Ω + EL2,rel
u,Ω for different polynomial degrees k computed on the meshes

depicted in Figure 6.

Curved interface Overlap Overset

k DoFs EL2,rel
Ω DoFs EL2,rel

Ω DoFs EL2,rel
Ω

1 6,720 2.915 · 10−2 6,720 2.779 · 10−2 6,432 2.053 · 10−2

2 15,120 8.303 · 10−4 15,120 5.444 · 10−4 14,472 4.641 · 10−4

3 26,880 4.304 · 10−5 26,880 8.536 · 10−6 25,728 7.428 · 10−6

4 42,000 1.666 · 10−6 42,000 2.220 · 10−7 40,200 2.200 · 10−7

5 60,480 6.974 · 10−8 60,480 2.328 · 10−9 57,888 2.367 · 10−9

6 82,320 2.650 · 10−9 82,320 1.286 · 10−9 78,792 1.096 · 10−9
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round-off errors are introduced while computing the curved intersections.
Overall, we conclude that our methodology works as expected if elements overlap.

5.2 Application
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s
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s
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�
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Figure 7: Application: Domain with heterogeneous fluids clipped in x1-x2 plane. The speed of sound in both fluids
differs, while the density is ρΩ1

= ρΩ2
= 1 kg ·m−3 = const. A pressure pulse � is located in the center of the

domain as an initial condition.

As pointed out, NCIs are especially desirable if different spatial resolutions are required. Imagine two fluids
with different speeds of sound c. We need different element sizes to resolve the acoustic pressure up to a specific
frequency. We use the test case with heterogeneous acoustic material, also simulated by [37, 38, 39]. We adapt the
computational domain to show that our implementations work in the 3D case. A wave travels over the interface
between two materials. At the interface, the wave is partially transmitted and partially reflected, and an additional
wavefront emerges due to the Huygens–Fresnel principle. A sectional view of the setup for this test case is depicted
in Figure 7. The domain Ω = Ω1 ∪ Ω2 spans from Ω = (−1,−1,−1) × (1, 1, 1). In the left part of the domain
the speed of sound is cΩ1

= 1 m · s−1 while it is cΩ2
= 3 m · s−1 in the right part. The density of both fluids is

ρΩ1
= ρΩ2

= 1 kg ·m−3. As an initial condition, a pressure pulse is chosen

p(t = 0) = e−104 x·x, (31)

u(t = 0) = 0. (32)

The test case is subject to homogenous pressure BCs.
In the right domain, we use element sizes that are three times as big compared to the left domain to resolve both

domains up to the same frequency. In the left domain we use elements with maximum edge length hmax,Ω1
= 0.0167

and accordingly hmax,Ω2
= 0.05. The used polynomial degree is k = 3. The pressure field at different times can be

seen in Figure 9.
To quantify the effect of the NCI we also run the simulations on a domain with hmax,Ω1 = hmax,Ω2 = 0.0167

and hmax,Ω1 = hmax,Ω2 = 0.05. We record the pressure at 1000 points along x1, x2 = 0, x3 = 0 at t = 0.2 s.
The discretization with the smallest mesh size hmax,Ω1

= hmax,Ω2
= 0.0167 serves as a reference. It is supposed

to produce the most accurate solution but uses too many DoFs if we want to resolve the same frequencies in both
fluids.

The recorded pressure profile is plotted in Figure 8a. Figure 8b shows a detailed view around the interface. We
observe great differences to the reference for the discretization with the biggest mesh size hmax,Ω1 = hmax,Ω2 =
0.05. However, using the biggest and smallest mesh size for the different regions, employing the non-conforming
formulation, gives a result that is in good agreement with the reference solution. In this case, the finest domain
has 442, 368, 000 DoFs while the domain with different element sizes has 271, 974, 400 DoFs, i.e. the problem size
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Figure 8: Application: Pressure values along x1 at x2 = 0, x3 = 0 and at t = 0.2 s. The position of the NCI is
indicated by the vertical line.

is reduced approximately by 40% in comparison the fine problem while keeping the same accuracy. This highly
encourages to use NCIs for this kind of problems to effectively reduce the number of DoFs.

6 Conclusion

Using Nitsche-type mortaring, we proposed a stable non-conforming DG discretization for the acoustic conservation
laws. We showed that point-to-point interpolation is unsuitable in this setting since it introduces errors related to
non-smooth representations of values in quadrature rules. Therefore, we can not avoid the expensive computations
of element intersections between primary and secondary elements.

The proposed method collects integration rules on the intersections between secondary volume elements and facets
of primary elements. This way, the method naturally extends to overlapping elements and is a perfect starting point
for problems with rotating interfaces. The method is subject to optimal spatial convergence rates. Measuring
the error region-wise, we can show that the method converges optimally in all sub-domains. Nevertheless, errors
are propagating in the domain; therefore, optimal spatial convergence can only be applied in a meaningful way
if triangulations are constructed such that errors are of the same magnitude in all parts of the domain. Thus,
we recommend using element sizes that resolve the same frequencies in all sub-domains in acoustics. With an
application, we demonstrated that this procedure efficiently reduces needed degrees of freedom while maintaining
accuracy.
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(a) x1-x2 plane, t = 0.1 s. (b) x1-x2 plane, t = 0.2 s.

(c) x1-x2 plane, t = 0.3 s. (d) 3D view, t = 0.38 s.

Figure 9: Application: Snapshot of acoustic pressure at different times. At t = 0.3 s the transmitted, the reflected
and the Huygens wave can be seen.



Non-Conforming DG Methods for Acoustic Heinz, Munch, Kaltenbacher, p. 15

References

[1] Quiroz L, Beckers P. Non-conforming mesh gluing in the finite elements method. International Journal for
Numerical Methods in Engineering 1995; 38(13): 2165–2184. doi: 10.1002/nme.1620381303

[2] Kaltenbacher M. Numerical simulation of mechatronic sensors and actuators: Finite elements for computational
multiphysics. Heidelberg, New York, Dordrecht, London: Springer. 3rd ed. 2015

[3] Flemisch B, Kaltenbacher M, Wohlmuth BI. Elasto-acoustic and acoustic-acoustic coupling on non-matching
grids. International Journal for Numerical Methods in Engineering 2006; 67(13): 1791–1810. doi:
10.1002/nme.1669

[4] Benek J, Buning P, Steger J. In: .

[5] Schoder S, Junger C, Kaltenbacher M. Computational aeroacoustics of the EAA benchmark case of an axial
fan. Acta Acustica 2020; 4(5): 22. doi: 10.1051/aacus/2020021

[6] Pezzano S, Duvigneau R. A fully-conservative sliding grid algorithm for compressible flows using an isogeometric
discontinuous Galerkin scheme. Computer Methods in Applied Mechanics and Engineering 2022; 395: 115000.
doi: 10.1016/j.cma.2022.115000

[7] Bernardi C, Debit N, Maday Y. Coupling finite element and spectral methods: First results. Mathematics of
Computation 1990; 54(189): 21–39. doi: 10.1090/s0025-5718-1990-0995205-7

[8] Deparis S, Forti D, Gervasio P, Quarteroni A. INTERNODES: an accurate interpolation-based method for
coupling the Galerkin solutions of PDEs on subdomains featuring non-conforming interfaces. Computers &
Fluids 2016; 141: 22–41. doi: 10.1016/j.compfluid.2016.03.033
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[23] Hochbruck M, Pažur T, Schulz A, Thawinan E, Wieners C. Efficient time integration for discontinuous Galerkin
approximations of linear wave equations. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift
für Angewandte Mathematik und Mechanik 2014; 95(3): 237–259. doi: 10.1002/zamm.201300306

[24] Nguyen N, Peraire J, Cockburn B. High-order implicit hybridizable discontinuous Galerkin methods for
acoustics and elastodynamics. Journal of Computational Physics 2011; 230(10): 3695 - 3718. doi:
https://doi.org/10.1016/j.jcp.2011.01.035

[25] Kronbichler M, Schoeder S, Müller C, Wall WA. Comparison of implicit and explicit hybridizable discontinuous
Galerkin methods for the acoustic wave equation. International Journal for Numerical Methods in Engineering
2016; 106(9): 712-739. doi: 10.1002/nme.5137
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