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Abstract

The use of artificial agents (i.e., artificial intelligence and physical robots) is increasing
in a wide range of application contexts, many of which already concern the daily lives
of non-expert users. For artificial agents to be socially accepted, it is fundamental that
users place calibrated trust (i.e., not too much, not too little) in them. In turn, this
depends on several factors, which include artificial agents performance, accuracy and,
importantly, understandability.
This dissertation addresses a set of challenges that need to be overcome to successfully
make artificial agents explainable and understandable by non-expert users. To this end,
as explanations represent a fundamental form of social communication which has been
thoroughly studied by social sciences, the first challenge tackled by this dissertation
is of multidisciplinary nature. Here, we aim to integrate findings from social sciences
into the design of explainable artificial agents. In particular, drawing from Karl Weick’s
‘sensemaking theory’, this dissertation proposes a model for explanatory interactions with
artificial agents.
Furthermore, this dissertation identifies factors that influence trust development over time.
Additionally, the beginning of an interaction and the occurrence of unexpected events are
found to be the situations that most likely require artificial agents to provide explanations
for. Accordingly, this dissertation reports the results of an experimental study on which
these theoretical considerations are tested by means of a mixed methodology investigation.
Our main findings concern explanations’ positive role as a trust restoration strategy,
as well as the influence of ‘institutional’ cues and individuals’ personality traits (e.g.,
propensity to take risks) in determining trust development.
Finally, this dissertation discusses how explanations typically refer to either intentional
(i.e., intentions, reasons etc.) or unintentional (i.e., accidental, natural etc.) factors. This
is of particular relevance for artificial agents, as they do not possess the genuine mental
states required by biological intentionality and yet people easily attribute such qualities to
them. This dissertation states that the attribution of intentionality to artificial agents is
ethical, as long as their artificial nature is manifest. However, at the same time, artificial
agents should support users, by means of explanations, with adopting the most adequate
interpretative framework for each situation.

Keywords: Explainability, Trust, Understandability, Explainable artificial agents, Attri-
bution of intentionality
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CHAPTER 1
Introduction

The introduction of this doctoral dissertation is an adapted version of the book chapter
“Challenges and solutions for trustworthy explainable robots”, written by the author of the
dissertation for the “Doctoral College Trust Robots” book project, edited by the TU Wien
Academic Press.

1.0.1 Background and motivation
The use of robots and other AI-based systems (henceforth called artificial agents) is in-
creasing in a number of fields. This growth comes with a number of intertwined challenges
of different nature (e.g., technical, social, legal etc.) that have to be faced for artificial
agents to be accepted and integrated into society. Among these challenges, in recent years
the idea that artificial agents should be able to explain their inner workings, decisions and
actions has emerged in academic and societal debates. The intrinsic opaqueness of the
algorithmic decision-making processes (i.e., ‘black-boxes’) frequently employed represents
the main reason for the growing interest regarding explainability. This inscrutability may
negatively impact people’s understanding of artificial agents’ behaviors, decisions and
recommendations. In turn, failing to understand and predict how they behave, will likely
lead some users to misplace trust [11, 40]. In fact, as on the one hand definitions of trust
emphasize how uncertainties, vulnerability and perception of risk represent key elements
that may jeopardize trust [31, 2, 35], artificial agents’ lack of predictability may increase
people’s perception of uncertainty, hence undermining trust. On the other hand, studies
also show how people’s initial (i.e., not mediated by experience) perception of technology
is mostly guided by individual dispositions and institutional cues, which could as well
lead users to over-trust such machines.
Explanations, intended as a social communication tool that people use to justify events
and behaviors (particularly if unexpected), find meanings, transfer knowledge and sat-
isfy curiosity can support understanding and trust calibration (i.e., avoiding over- and
under-trust) by shedding light on reasons and causes behind specific behaviors and events
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1. Introduction

[21, 38, 40, 12]. The process of seeking and providing explanations has been extensively
studied within disciplines such as philosophy, sociology, psychology [21, 40]. Combining
findings from such disciplines with the need to integrate them into artificial agents’ design
lies at the heart of what can be labeled as the interdisciplinary challenge of explainability
[1].
As artificial agents are likely to permeate society on different levels that affect people’s
everyday life even more, their decision-making processes and behavior should be under-
standable not only for machine learning and robotics experts, but also for the broader
audience of domain experts (i.e., practitioners from fields where such technologies are
applied) and, importantly, non-expert users. Each of these categories of users has different
needs, interests and familiarity with the technology. Therefore, it is fundamental to
understand and acknowledge the differences between different types of users to determine
what desiderata and goals explainability should pursue in each context.
The category of domain experts concerns applications such as military operations (e.g.,
robots used for finding and removing mines, or for rescue tasks), exploration (e.g., in
space, or in the oceans), for medical purposes. This implies that most of the users will
have to undergo some sort of specific training to interact with the machines. An initial
training facilitates the creation of an adequate mental model of artificial agents which, in
turn, supports users’ understanding and trust calibration.
The category of non-expert users, on the other hand, refers to those users who mostly
have little to no previous experience with specific robotic and AI technologies. It includes
contexts such as care-giving and education, activities with recreational purpose and,
perhaps more importantly, interactions with artificial agents “in the wild” [48]. This
comprises mostly ‘first-time’ interactions that occur in open and rather uncontrolled
contexts (such as shopping malls, stations, museums). Here, users will likely not receive
any form of training and will now know exactly what to expect from the artificial agents.
This dissertation is primarily concerned with tailoring explainability to the needs of non-
expert users for, at least, three reasons. In the first place, non-expert users represent the
vast majority of the public and a large share of these technologies is designed to interact
with them on a daily base. Furthermore, in reason of the limited technical knowledge
and agency in terms of manipulating such technologies, the category of non-expert users
represents the most vulnerable one. Finally, while the interests and needs of specific
groups of users might differ, in principle an explanation that can be understood by users
without any technical expertise should be comprehensible also to more technologically
accustomed ones.
One of the main issues with tailoring explanations to the needs of non-expert users lies
in the fact that explainability is often treated as a data-driven, rather than goal-driven
quality [49]. On the other hand, social sciences have put a great deal of effort into investi-
gating how people explain events and behaviors to each other, particularly in terms causal
connections, explanations’ structure and qualities as well as communication strategies
[32, 21, 22, 40]. Hence, we claim that artificial agents’ design should integrate inputs
from other disciplines and focus on developing the capacity to communicate decisions in
terms that are easily graspable by a broad and untrained audience. Another problem
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that requires more extensive investigation is that explanations are, by their very nature,
incomplete approximations of the actual decision-making processes [27, 47, 59]. The
fact that perfect explanations do not exist is even more problematic for AI and robotics
research in light of the standardized, algorithmic and “coordinate-based” modalities of
processing information typical of artificial agents [33]. This calls for the development of
implementable solutions that maximize users’ chances of successful understanding.

1.0.2 Research questions and objectives
Committed to a multidisciplinary approach, this dissertation aims to combine findings
from social sciences regarding explanations with advancements in AI and robotics. to
do so, it addresses some of the key challenges of making artificial agents explainable
and understandable, specifically in the context of everyday interactions and with non-
expert users, to supports them with placing adequate trust in these technologies. As it
was previously noted, for artificial agents to successfully integrate in our society, it is
fundamental that users place adequate (i.e., not too much, not too little) trust in them.
To this end, researchers suggest that adequate trust calibration is mediated by, among
other things, correct understanding of artificial agents’ behavior. However, as it occurs
in human-human interactions, this process is not always straightforward.
People seek and provide explanations precisely because others’ behavior and decisions
are not always easy to interpret. However, even when provided with explanations, peo-
ple may still struggle to understand the explanations and, consequently, the causes or
reasons conveyed through the explanations. Making artificial agents explainable poses
a multidisciplinary challenge at the heart of which is the integration of social sciences’
understanding of ‘explanatory interactions’ into the design of artificial agents. To this
extent, we investigate core concepts from Karl Weick’s sensemaking theory, an interpre-
tative framework developed, within the context of organizational sciences, to understand
how people attribute meanings to events and others’ behavior, particularly when these
are ambiguous or unclear and induce the perception of uncertainty. Researchers propose
models grounded in social sciences that describe ideal ‘explanatory interactions’ with
artificial agents. However, sensemaking theory and its key proposals have not been inves-
tigated in the same context despite their relevance. Therefore, in paper 1 we investigate
this potential contribution by addressing a set of questions.
RQ1: Can the core findings of sensemaking theory apply to the development of ex-
plainable artificial agents? If so, how should "explanatory interactions" be modelled
accordingly?

Trust is a fundamental aspect of human-human interactions. It is studied by a number of
disciplines which provide different perspectives ranging from trust within organizations to
interpersonal relationships and, in recent years, in humans’ interactions with automation
and technology [46, 31, 50]. Trust is often defined as a trustor’s belief that a trustee will
help them achieve specific goals. As such, it rests on the trustor’s belief that the trustee
will behave benevolently but, at the same time, it implies accepting the risks, uncertainties
and vulnerability deriving from the possibility that trust is misplaced [31, 35]. Hence,
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trust is typically low when the perception of potential risks and uncertainties is, for one
reason or the other, strong. Furthermore, placing trust in others is not a stable process.
Rather, it should be investigated as a dynamic phenomenon. Studies in fields related to
robotics and AI show how trust plays a key role in the process of acceptance of such new
technologies [63, 33]. Therefore, what factors can influence (and how) the perception of
artificial agents as trustworthy has become a central research topic. To this extent, an
increasing number of studies relate explainability to trust in that the latter may change
depending on how predictable artificial agents are [2, 24]. Explanations can provide
useful insights to justify and clarify artificial agents’ decisions and actions, particularly
when these occur unexpectedly, and hence may support trust calibration. However, given
the dynamic nature of trust, exactly how explanations can influence trust calibration over
time remains largely uninvestigated. To this extent, the question that we investigate,
both theoretically and empirically (paper 2 and 3), is the following.
RQ2: When are explanations mostly needed to support users’ trust calibration and
understanding of artificial agents’ behavior, and how should explanatory content be
provided to maximize the chances of achieving these goals?

Several studies show how people easily attribute social and mentalistic traits, such
as reasons and intentions, to machines, despite the algorithmic nature of their decision-
making processes does not engender genuine mental states. Much of the work in this
direction refers to or is directly inspired by Daniel Dennett’s concept of the ‘intentional
stance’.
When people explain events and behavior to each other, they refer to either mental states
to clarify the reasons for specific behaviors, or to other factors that do not depend on
one’s intentions, desires and goals such as natural, mechanical and accidental causes.
Recalling the fact that artificial agents do not have genuine mental states, intuitively it
should be enough for them to explain their behavior in ‘unintentional’ terms. However,
given that people are trained to and feel comfortable with attributing intentions and
other mental states to machines, a mentalistic framework, with explanations that refer
to such mental states, may as well be the most appropriate, or at least a practical choice.
According to Dennett, modern, seemingly intelligent machines have reached a degree
of internal complexity that makes it difficult, if not impossible, to make sense of their
behavior in mechanical terms. The only chance is to adopt the intentional stance, which
means treating machines ‘as if’ they had intentions, reasons and other mental states
[13, 14]. While some researchers argue in favor of an intentional framework for artificial
agents’ explanations, others suggest that, in certain cases, trying to make sense of their
behavior from a mentalistic perspective may not be the best strategy as it could result in
cognitive conflicts [61, ?, 45, 43].
To this extent, John Searle notes that Dennett, as well as a significant share of the debate
fail to address the substantial difference between treating something (e.g., a machine) ‘as
if’ it had mental states and believing that something genuinely and intrinsically has men-
tal states. Whether an artificial agent’s behavior is treated as intentional or unintentional
changes how it is explained. Despite the abundance of studies research on the attribution
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of mental states to machines, the connection with artificial agents’ explainability is rarely
investigated in a thorough fashion. Likewise, research often focuses on the de facto
attribution of mentalistic traits to machines, overlooking ethical considerations of the
phenomenon. Therefore, papers 4 and 5 address some of these open questions.
RQ3: Given that people tend to easily attribute social and intelligent traits to artificial
agents despite these do not possess the qualities required for genuinely intelligent social
behavior, should artificial agents explain themselves resorting to mental states such as
intentions, reasons etc., or only in terms that refer to mechanistic, natural and accidental
factors? Is it ethical to treat machines ‘as if’ they had mental states? Is it possible to
take advantage of the practical benefits (in terms of explanations) deriving from the
adoption of the intentional stance without committing, as Dennett does, to behaviorism?

1.0.3 Methodology and papers’ contribution

This dissertation provides an exploratory approach to the topic of explainable artificial
agent. The contribution of this dissertation, which consists of five papers, is primarily
conceptual. However, some of the main propositions concerning explanations as a strategy
to support trust calibration have been empirically tested (paper 3). What each of these
paper entails is hereby briefly described.

Paper 1 The first paper contributes to the understanding of ‘explanatory human-agent
interactions’ from the perspective of Karl Weick’s sensemaking theory. Specifically,
the paper stresses that for explanations to be considered successful in supporting trust
calibration, they must in the first place be understood by users. To this end, three
issues intrinsic of explanatory interactions are addressed. Namely, that explanations
are, by nature, incomplete approximations of the actual decision-making processes, that
explanations’ validity is contextual and, finally, that the design of explainable artificial
agents must care for people’s limited ‘explanatory forms of understanding’ and knowledge
retention [26, 27]. To address these problems, this paper develops a model for explainable
artificial agents that is informed by the following propositions of sensemaking theory:

• Sensemaking is often taken for granted.

• The activity of sensemaking should be lifted from the implicit and private to the
explicit and public sphere.

• Meanings in social interactions result from negotiations between the concerned
parties and in specific contexts.

• Every new interaction represents a new sensemaking negotiation.

• When trying to make sense of events, people seek plausible stories, rather than
accurate ones.
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As Berland notes, the “literature in both the philosophy of science and psychology sug-
gests that no single definition of explanation can account for the range of information that
can satisfy a request for an explanation” [4, p. 27]. Accordingly, there is no single model
to describe a perfect explanatory interaction, and any attempt to modeling interactions
with artificial agents must be suitable for their algorithmic information-processing units.
Existing models suggest that an explanation request is triggered by an “anomaly de-
tection” [58] or a “knowledge discrepancy” [37, 36]. This approach expresses the idea
of explanations as isolated events, rather than, as a sensemaking-based perspective
suggests, contextual instances (see points 3 and 4 in the list above). Cawsey states that
artificial agents should not assume what users know. Rather, users should be treated
as ‘novices’ and artificial agents should update their mental model of the users as the
interaction unfolds [7]. Recalling how every new interaction represents a new sensemaking
negotiation, this paper claims that artificial agents should provide explanations about
their role and functionality at the beginning of every interaction. This is particularly
relevant considering that many future interactions are likely to occur ‘in the wild’ [48],
which means that users will likely have little to no idea of what a specific artificial agent
can and cannot do.
In regard to the approximate nature of explanations, this paper proposes a goal-driven
approach tied to the concept of explanations’ plausibility. To this extent, Weick notes that
sensemaking intended as a process, “is driven by plausibility rather than accuracy” [60,
p. 415]. Building upon Peirce’s work on abductive reasoning, Wilkenfeld and Lombrozo
rework Harman’s concept of ‘inference for the best explanation’ [20, 44, 62]. Specifically,
they postulate that the purpose of explainability should be to provide the best under-
standing of the likely causes of an event, rather than the most accurate explanation
possible.
From a sensemaking perspective, the process of building meanings is the result of a
collaborative and contextual effort involving the two parties (i.e., the explainer and
explainee) [60]. In terms of explanations’ plausibility, this entails that the explainee must
understand and agree with the explainer that a specific explanation is plausible and
sound as it sheds light on an event’s most likely causes (i.e., it is unlikely for someone to
find something plausible without understanding it in the first place).
Finally, the idea that successful explanations are those that users understand is connected
to the problem that sensemaking is often taken for granted. Rather, as Weick notes,
the activity of sensemaking should be lifted from the implicit and private to the explicit
and public sphere. Previous models either suggest that a sufficient criterion to assess
understanding is that a user states they understood an explanation [37, 36], or that users
should be questioned about their understanding [58]. This paper identifies and discusses
two strategies that may support users’ successful understanding. Respectively, these are
explanations’ ‘multimodality’ and ‘interactivity’.
The former refers to artificial agents’ possibility to convey explanatory information
not only by means of natural language, but also through the ‘combination’ of multiple
communication channels [18]. Depending on an artificial agent’s embodiment, several
techniques, such as graphical visualization, expressive bodily motion and speech are
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available beside text-based communication and may improve explanations’ quality and
understandability [23, 25, 3].
Then, ‘interactivity’ refers to making explanatory interactions more human-like by
approaching them as dialogues rather than ‘single-shot’ utterances. Importantly, interac-
tivity also represents a strategy to deal with what Keil identifies as people’s attitude to
overestimate their own understanding of explanations (i.e., the ‘illusion of explanatory
depth’) [26]. Several strategies are available to engender explanations’ interactivity.
Introducing ‘nested argumentation dialogues’ increases the interaction naturalness and
allows users to engage in multilayered explanations in which they can drift from one
question to another, for instance by asking for further details, in a back-and-forth manner
[37, 36]. Even when explanations appear sound and plausible, they may still be grounded
upon incorrect premises [58, 16, 29]. Implementing a dialectical shift in the form of
an ‘examination phase’ allows users to search for inconsistencies, potential errors and,
ultimately question explanations’ truthfulness [16, 30, 57, 58]. While this property alone
can improve explanations’ quality, another possible use for an examination phase is
to test the explainee’s understanding of an explanation [58]. Leveraging on Weick’s
intuitions (see points 1 and 2 in the list above), this paper proposes an incremental and
contextual approach, which implies that users’ understanding may be questioned, but
only proportionally to the time they can invest in the interaction.

Paper 2 This paper provides a conceptual analysis of the intertwining between trust
and explainability aiming to determine when explanations are mostly useful in supporting
trust calibration. To answer this question, we conducted a preliminary analysis of
what trust in human-agent interaction is. Specifically, this analysis focused on factors
that influence initial trust, as well as trust development over time, included violations
and restoration strategies. To this extent, we found that initial trust results from a
combination of both personal attitude toward technology and ‘institutional cues’ [54, 2].
The former is a consequence of the combination of several factors, such as cultural
background, demographics, and personality traits [41, 8], and it can result in an equally
wide range of dispositions toward new technologies, which are not necessarily mediated
by accumulated experience with such technologies. These range from high expectations
and over-trust [17, 12], to skepticism and even forms of ‘technophobia’ [28].
The notion that trust partially depends on ‘institutional cues’ refers to the role played
by ‘third parties’, such as private companies, developers, national and international
institutions, experts and regulatory bodies. Leveraging on their reliability and reputation,
such entities play a ‘proxy’ role in determining how people perceive and trust new
technologies.
Based primarily on ‘institutional cues’ and individual attitude, initial trust can be very
high or low irrespective of artificial agents’ actual performance (i.e., not calibrated). For
this reason, and contrarily to the idea that an explanatory interaction begins necessarily
with a ‘knowledge discrepancy’ or an ‘anomaly detection’ [58, 36], we emphasize the
importance of artificial agents’ initial explanations. In fact, when they have not yet
proved to be reliable and benevolent (e.g., on behalf of their makers), initial explanations
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1. Introduction

may substitute the missing previous interactions, support the establishment of adequate
mental models, and guide users toward placing calibrated trust [2, 19].
A ‘knowledge discrepancy’ or anomalous and unpredictable behavior represents the other
moment in an interaction when people seek out explanations [2, 40]. In other words,
once users establish a mental model of an artificial agent based on prior interactions,
this will be expected to perform actions within a certain range of possibilities. Within
this range, the artificial agent’s reliability will be progressively determined based on its
performance and accuracy. As reliability and trustworthiness are proven over time, users
may consolidate their positive mental model, so that explanations become superfluous if
not even damaging [15]. At this point of an interaction, an artificial agent may still act
unexpectedly or unpredictably. Such events, particularly if they turn out to be actual
mistakes, become crystallized instances of the interactions and may cause a re-calibration
of users’ mental models. In similar situations, users’ understanding of the agent’s behavior
is challenged and their acceptance and trust in the agent may be at stake [33, 10, 11, 40].
Whether it is to prevent the loss of trust (in case of a misunderstanding), or restore it
after a mistake, we claim that, whenever required by the concerned users, artificial agents
must provide reasons for their actions through explanations.

Paper 3 Based on the conceptual findings from paper 2, we designed a user study
to test our propositions about the intertwining of explainability and trust. To this
end, we mimicked using the Wizard of Oz methodology (WoZ) the functionalities of a
personalized virtual learning assistant. Its customized features included personalized
reminders, scheduling and interface as well as the choice of four different learning styles.
The assistant’s explainability and accuracy were manipulated (between-subjects variables),
with the interaction time being treated as a within-subjects variable, resulting in four
experimental conditions. Respectively, these were labeled ‘correct with explanation’,
‘correct without explanation’ ‘faulty with explanation’ and ‘faulty without explanation’.
In the study, participants had the task to interact with the assistant seven times over the
course of seven work days. The goal of the learning assistant was to provide participants
with recommendations in the form of chunks of text (i.e., abstracts) obtained from
longer texts so that they could prepare for quizzes. Participants always had access
to the full texts, but accepting the recommendations would save them time. In the
‘faulty’ conditions, the assistant would make a wrong recommendation at the fourth
interaction. Participants in both groups ‘with explanation’ could access information
about how the natural language processing (NLP) algorithms of the assistant worked at
the beginning and throughout the study. Another explanation clarifying the reasons for
the wrong recommendation was offered by the assistant to participants in the ‘faulty with
explanation’ group after the wrong recommendation. After the end of the experiment,
participants were debriefed about the purposes and nature (WoZ) of the study. Only
those who completed the procedure received a compensation. Trust was measured by
means of validated questionnaires at the beginning, throughout the study and at the
end. Additionally, qualitative data was collected by means of semi-structured interviews
(n=18) and a focus group.
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We collected a total of 171 complete observations for the quantitative analysis. Among
the main findings, we observed that, contrary to expectations, initial explanations
about the assistant’s functionality did not increase initial trust. To this extent, in
line with the idea that ‘institutional cues’ contribute to shape people’s perception of
new technologies in terms of trust, the qualitative data suggested that the researchers’
‘hidden authority’ had a favorable impact on participants’ perception of the assistant.
Furthermore, in accordance with the experimental propositions, the assistant’s wrong
recommendation affected participants’ trust negatively, as it was perceived as a trust
breach. Nevertheless, qualitative data revealed that participants tended to be quite
tolerant toward imperfect AI-based systems, as such technologies are not expected to
always function perfectly. Importantly, trust restoration was significantly faster when
the assistant provided an explanation following the wrong recommendation, rather than
not. Specifically, explanations were the most effective as a trust-restoration strategy
with risk-averse participants. Furthermore, explanations aided trust recovery, even if
the participants did not always access them. Our qualitative analysis revealed how this
may be explained, at least in part, by the fact that the very availability of explanations
increases transparency and trustworthiness. While the findings did not support all
our expectations, the role of explanations as a trust restoration strategy was validated.
Furthermore, insights from the qualitative provided us with more nuanced interpretations
of the dynamics of trust development.

Paper 4 According to Weick’s sensemaking theory, finding meanings in the social
context of everyday life entails bringing order to the chaotic stream of both intentional
behaviors and unintentional events [60]. As this also extends to artificial agents’ behavior,
in Paper 4 we conducted a conceptual analysis on the attribution of intentionality to
artificial agents and its implications. This work focuses prominently on Daniel Dennett’s
formulation of the ‘intentional stance’, primarily because a significant share of the recent
debate is informed, when not directly inspired by his work.
To this extent, while acknowledging the importance and pragmatic usefulness of an idea
such as that of the intentional stance, we note how it comes with one main problematic
aspect. This, as pointed out by authors such as John Searle And Ned Block, is the
intrinsic behaviorism of Dennett’s formulations. In his interpretation, treating a machine
‘as if’ it had mental states is equal to thinking that the machine has genuine mental
states. In other words, manifest behavior is the only significant aspect to consider,
because alternatively one would have to accept the existence of unfathomable qualities
(i.e., ‘qualia’) [?, 9]. According to Searle, the conflation of the two concepts of having
genuine mental states and treating an artificial agent ‘as if’ it had mental states is the
core problem in Dennett’s formulation [52, 56].
On top of this considerations, we then investigate the origin of the phenomenon from a
comparative perspective that extends to different forms of artificial agents’ embodiment.
While several studies address the attribution of mental states to specific groups of
artificial agents (e.g., robots or virtual agents), a more inclusive perspective has often
been overlooked. To this extent, we found that the phenomenon seems to depend on the
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1. Introduction

‘primacy of the social mindset’, which means that a mentalistic interpretative framework
is always readily available because of people’s social training and familiarity with it since
childhood [6, 34, 55, 43]. Consequently, as most people appear to lack a strategy for
interacting specifically with sophisticated technologies, this socio-cognitive process is
easily triggered when interacting with seemingly intelligent machines. Problematically,
this mechanism seems to work even when a mentalistic interpretation is not the most
adequate. Resting on the idea of ‘minimally rational’ behavior [42], from our comparative
stance we identify in the apparent rationality of artificial agents’ behavior, more than in
their appearance, internal complexity or movements, the key aspect for users to adopt
an intentional or mentalistic framework.
At the same time, when an artificial agent’s behavior does not carry any rational meaning,
attempting to understand from a mentalistic perspective is not the best strategy, and users
may have to forcefully adapt their mental model at the expense of cognitive resources [61].
Recalling the distinction highlighted by Searle, it is precisely when an artificial agents’
behavior does not appear rational (e.g., in case of a mistake) that one must be able to
tell the difference between ‘intrinsic intentionality’ and ‘observer-relative ascription of
intentionality’ [51, 52]. To avoid such cognitive conflicts, we sustain that users should
be assisted with switching to a mechanistic interpretative framework. As it is further
illustrated in Paper 5, explanations offer a tool to facilitate this process.
Finally, we discuss ethical implications of treating artificial agents ‘as if’ they had
intentions and other mental states. Working with Danaher’s notion of ‘deception’ [9]
on use cases from the human-robot and human-computer interaction (respectively, HRI
and HCI) literature, we argue that, in principle supporting the attribution of mental
states to artificial agents is not necessarily a form of deception. To the contrary, given
people’s familiarity with this interpretative framework, it can be beneficial for interactions.
However, upon the analysis of potential risks entailed by an unwarranted and uncontrolled
ascription of mental states, we also identify artificial agents’ transparency about their
nature, functionality and behavior as a key requisite.

Paper 5 This paper further develops and translate some of the main insights from
Paper 4 in terms of explainability for artificial agents and combines it with the over-
arching goal of ensuring users’ understanding of artificial agents’ behavior. Together,
these perspectives call for explainable agents that resort, depending on the circumstances,
either to mentalistic properties (i.e., reasons, intentions, desires, and beliefs), as well as
causes of a different nature (e.g., mechanical, accidental, natural). As Bossi et al. note,
“people may treat robots as mechanistic artifacts or may consider them to be intentional
agents. This might result in explaining robots’ behavior as stemming from operations of
the mind (intentional interpretation) or as a result of mechanistic design (mechanistic
interpretation)” [5, p. 1].
Prior to the discussion on explanations, we further investigate analyze the problematic
relation between intrinsic, biological intentionality and the phenomenon of ascribing
intentionality to artificial agents. To avoid the confusion that often stems from the
overlapping of these two concepts, we resort an alternative, folk-psychological definition
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according to which intentionality is not only the byproduct of biological evolution, but
also a social construct that helps people understand, explain and predict other’s behavior
and, hence may facilitate social interactions. Intended as such intentionality does not
necessarily imply consciousness or self-awareness [39, 10].
Although one may ask for an explanation out just out of curiosity [53, 1], explanations
are typically requested when users’ mental models of artificial agents are challenged by
unpredictable behaviors. An implication of this interpretative gap is that whatever frame-
work (i.e., intentional or mechanistic) users are adopting at the time of the unexpected
occurrence, their reliance in the framework’s prediction-making power might decrease.
In other words, when something unexpected happens, users may be unable to provide
themselves with reasons or causes and, hence, ask the artificial agent with whom they
are interacting for an explanation. Some cases will force a complete perspective (i.e.,
framework) switch, while others will not.
This paper claims that artificial agents must be designed to support users, by means
of explanations, in adopting the most appropriate interaction framework in any given
context. This is especially the case for the early stages of extensive adoption of artificial
agents in everyday contexts. Indeed, these times are most characterized by uncertainty
in terms of both the adoption of and narratives built around these technologies. Guiding
users toward the most appropriate framework could either mean that they are indeed
already adopting the best one, and perhaps ask for an explanation out of curiosity (or
because they are not sure about the reasons for the behavior), or they are not. In the
first case, an artificial agent should provide confirmation to the user that they are already
adopting the right framework. In the second case, the agent should support the transition
from one interpretative framework to another.
Ultimately, given that meanings in social interactions are contextually negotiated (e.g.,
by means of explanations) between the concerned parties [60, 38], we argue that it is
not only important to consider whether an artificial agent ‘intended’ to behave in a
certain way, but also how the user perceives a specific behavior. Hence, we identify and
discuss four scenarios that refer to whether a specific behavior was aligned with a robot’s
objective (i.e., intentional), as well as to how users may initially perceive it. Furthermore,
we discuss, by means of literature-based use cases, what explanations should entail in
each of the four cases, which are reported below.

• Intentional and (correctly) interpreted through an intentional framework;

• Unintentional and (erroneously) interpreted through an intentional framework;

• Intentional and (erroneously) interpreted through an unintentional framework;

• Unintentional and (correctly) interpreted through an unintentional framework;

Finally, as a limitation we acknowledge the technical difficulties that artificial agents
might encounter when trying to identify (and explain) their own errors, as well as infer
users’ mental states and interpretation of the agent’s behavior. At the same time, we also
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1. Introduction

note how specific approaches to explainability, such as ‘interactivity’ and ‘multi-modality’
may nevertheless increase users’ chances to adopt the right framework.

1.0.4 Discussion and future work
This dissertation broadens and deepens the debate on explainability in robotics and AI
by addressing several open questions and limitations in the existing literature. Specifi-
cally, this dissertation contributes to the understanding of explainability along two main
trajectories that, while addressing specific aspects of the topic are deeply intertwined.
The first one is twofold and concerns the relation between artificial agents explainability
and users’ trust and understandanding on the one hand, and the role of social sciences in
defining explainability on the other. The second addresses the relation between explain-
ability and the phenomenon of attributing mental states to artificial agents.
With regard to the first aspect, we found that, if properly designed, explanations can
prevent over- as well as under-trust. Particularly, this dissertation found that explanations
may support trust trust restoration after a violation. Contrarily to expectations, another
finding was that explanations are not always useful for initial trust calibration. However,
as paper three discusses, the ‘institutional cues’ embodied in the figures of the researchers
responsible for the study may have overridden the effect of explanations. Future work
shall investigate more thoroughly such dynamics, isolate the effect of explanations, and
that of institutional cues treating them as different variables.
Importantly, to realize their potential as a trust support strategy, it is crucial that
explanations are understandable by users which, in turn, requires addressing two issues
that are typically overlooked by research on AI and robotics. Respectively, these are ex-
planations’ approximate nature and contextual validity, and the need for human-friendly
communication (i.e., quality- rather than data-driven explanation). As these challenges
call for a deeper integration of insights from social sciences, this dissertation draws on the
core properties of Karl Weick’s ’sensemaking theory’ to model explanatory interactions
with artificial agents. Specifically, this dissertation proposes a sensemaking-based model
that leverages on approaches to explainability, such as interactivity and multi-modality,
to maximize the chances of successful understanding. Future work shall investigate the
effectiveness of these techniques in different interaction contexts. Furthermore, as this
dissertation emphasizes how complex and delicate the task of assessing one’s understand-
ing of an explanation is, further empirical validation of the available techniques is needed.
Another facet that this dissertation contributes to concerns the relation between explain-
ability and the tendency to ascribe intentions and other mental states to AI and robots.
While the latter represents a topic with a rich and long-lasting research history in itself,
at the same time it is also embedded in the study of explainable artificial agents. In fact,
whether an event (or behavior) is treated as intentional or unintentional influences how
it is explained.
To this regard, this dissertation found that the attribution of mental states incarnates
human brains’ disposition towards a mentalistic and social interpretation of artificial
agents’ behavior. The mechanism is easily triggered whenever certain conditions are
met and it has been proven helpful to make sense of artificial agents’ behavior. For this
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reason, this dissertation claims that it is in principle ethical to implement design features
that induce the adoption of the mentalistic framework. However, a precondition that this
dissertation identifies is that developers, private companies and whoever is responsible for
the introduction to the public of artificial agents should always let users be aware of the
artificial nature of the agents, to avoid not only cognitive conflicts, but also deception.
Furthermore, while in many cases a mentalistic interpretation may facilitate interactions,
other circumstances will require a different framework (e.g., a mechanistic one). To
this regard, this dissertation proposes that, by means of explanations, artificial agents
should guide users to the most appropriate framework for every circumstance. Since
the adoption of the wrong interpretative framework may cause cognitive conflict on the
side of the user, who may consequently fail to understand the causes behind the events
being explained, guiding users to adopting the right framework may also support trust
calibration. Future work shall test empirically whether explanations lead users to the
right framework under different interaction circumstances, as well as how this affects
users’ trust in the agents.
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Abstract: This article discusses the fundamental require-
ments for making explainable robots trustworthy and
comprehensible for non-expert users. To this extent, we
identify three main issues to solve: the approximate nature
of explanations, their dependence on the interaction
context and the intrinsic limitations of human under-
standing. The article proposes an organic solution for the
design of explainable robots rooted in a sensemaking
perspective. The establishment of contextual interaction
boundaries, combined with the adoption of plausibility as
themain criterion for the evaluation of explanations and of
interactive and multi-modal explanations, forms the core
of this proposal.
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1 Introduction

Socially assistive robots are progressively spreading to
many fields of application, which include health care,
education and personal services [1–3]. Whereas assistive
robots must prove useful and beneficial for the users, at
the same time their decisions, recommendations and
decisions need to be understandable. In fact, researchers
agree on the fact that social robots and other artificial
social agents should display some degree of interpret-
ability in order to be understood, trusted and, thus, used

[4–6]. Concerning this connection, Miller states that
“trust is lost when users cannot understand traces of
observed behavior or decision” [7, p. 5]. Moreover, if the
development of a trustworthy relationship is one of the
main goals in social robotics, it should be considered
that understanding and correctly interpreting automated
decisions are at least as important as accuracy levels [4].
To this extent, “no matter how capable an autonomous
system is, if human operators do not trust the system,
they will not use it” [4, p. 187].

1.1 The interdisciplinary challenge of
explainable robots

Automated decisions by robots already influence peo-
ple’s life in numerous ways. This trend is likely to be
even more prominent in the future, creating a need for
appropriate narratives to foster the acceptance of social
robots [1–3,8,9]. Making explainable robots understand-
able for users with little to no technical knowledge poses
a “boundary challenge” that calls for interdisciplinary
efforts. In light of the growing presence of social robots
and other artificial agents and of the possible con-
sequences that their massive application might have in
the future, developing an interdisciplinary approach has
been deemed one of the most pressing challenges [7–11].
Following the notion of a “boundary object,” the inter-
disciplinary issue with explainability applied to robotics
can be described as “a sort of arrangement that allows
different groups to work together without consensus”
[12, p. 603].

For the effort to be successful, the acknowledgment
and correct introduction of different disciplinary con-
tributions are necessities that have to be met. In practical
terms, this means aligning the robots’ processing of in-
formation in algorithmic and “coordinate-based terms”
[6], with the fuzziness of human systems. On the level of
knowledge production, it requires the joint effort of
several fields of research.
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Figure 1 shows that at the lowest level of granularity,
there are at least three “disciplines” that are directly
involved. Theories of explanations and causal attribution
are associated with an extensive and well-studied body
of literature in human interaction sciences like social
psychology and philosophy [7,13–16]. Recently, these
theories have received growing attention within the
field of artificial intelligence, in light of the opacity of
the underlying decision-making processes, particularly
when these depend on machine learning models
known as “black-boxes.” The research area of explain-
able artificial intelligence (XAI), particularly in its “goal-
driven” form (rather than “data-driven”), stands as the
most structured attempt in making AI systems’ decisions
understandable also by non-expert users [8,9,17,18].
Finally, the extension of the concept of explainability to
robotic technologies, especially in the forms that are
meant to be used in social contexts, calls for the
connection with the study of human–robot interaction
(HRI) [19,20]. Each of these fields of research represents
a further intersection of different disciplinary efforts. In
order to successfully make social robots explainable,
these dimensions need to be merged.

1.2 Making social robots explainable and
trustworthy: a sensemaking approach

This conceptual article aims to advance this interdisci-
plinary discussion by operationalizing the core concepts

of Weick’s sensemaking theory [21]. Sensemaking theory
is a framework from the field of organization science to
describe how people make sense and understand events
and, to the best of the authors’ knowledge, it has not
been previously applied to the domain of explainable
robots.

Therefore, the article analyzes the central assump-
tions of sensemaking in light of the goal of maximizing
non-expert users’ understanding of social robots’ ex-
planations and, consequently, fostering and supporting
trust development. Examples derived from the literature
on different fields of application of social robots are
provided to clarify and motivate the theoretical positions
expressed and to show how social robots and users can
benefit from the implementation of explainability in
different contexts.

The article is structured into two main parts. First, in
light of the connection between robots’ explainability
and their trustworthiness, a definition of trust suitable
for the discussion on explainable robots is provided.
Subsequently, the article identifies and analyzes three
main issues with explainable robots. Section 2 discusses
the approximate and incomplete nature of artificially
generated explanations in relation to alternative forms of
interpretability.

Section 3 analyzes the implicit limitations of human
forms of understanding, as they also represent a chal-
lenge for the design of explainable robots. Two main
issues are addressed. First, how people tend to over-
estimate the quality of their understanding and know-
ledge retention in relation to explanatory interactions is
investigated. Subsequently, how access someone’s in-
tentions, beliefs and goals (upon which explanations are
mostly built) is problematic is discussed, regardless of
the biological or artificial nature of the agents.

Closing the first part of the article, Section 4 shows
how the contextual nature of explanations is to be con-
sidered as an active force in the shaping of explanatory
interactions, rather than merely a situational condition
within which they occur.

The second part of the article aims to provide solu-
tions rooted in a sensemaking perspective. Whereas the
issues are approached individually, the solutions con-
verge into a holistic model, so as to facilitate its impleme-
ntation in the design phase.

Section 5 demonstrates how the contextual element
can be handled via two specific features. The first refers
to the role of explanations in building trust when users
lack previous experience and in setting contextual bound-
aries for the robot’s role and capabilities. Accordingly, the
second relates to considering users as novices as the

Figure 1: The interdisciplinary challenge of explainable robots.
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initial condition. The robot’s mental model of the user’s
should only be updated after this initial phase.

As a potential preliminary solution to the approx-
imation issue, Section 6 refers to the fact that sense-
making is driven by plausibility rather than accuracy.
This relates the concepts of inference to the best expla-
nation and explanation to the best inference. Combining
these ideas, the question to be answered is “how can
explanations be tailored and structured in order to
maximize the chances of correct – or at least the best
possible – inferences?”

Building upon this, and acknowledging the limits of
understanding, Sections 7 and 8 discuss how to make
sure that the best possible approximation triggers the
best possible understanding. This leads first to analyzing
two of the main models of iterated explanatory dialogues
and, consequently, to the combination of interactive
explanations with multi-modal explanations intended as
“combined signals.” A discussion on the conclusions
and limitations of this article closes the second part.

1.3 Trusting explainable robots

There are many possible ways to conceptualize trust.
Social robotics offers a unique interpretation. Andras et
al. analyze different disciplinary interpretations of trust
derived from psychology, philosophy, game theory,
economics and management sciences [22]. Of these,
they identify Luhmann’s reading as one of the most
comprehensive and appropriate for describing the
relationship between robots and other artificial agents.
Accordingly, this article defines trust as the willingness
to take risks under uncertain conditions [22,23].

In principle, this conceptualization can be applied
to unintentional events, where the risks to be taken are
of an environmental nature, and the causes are typically
natural, mechanical or societal. Conversely, when
embedded in interpersonal relationships, trust exposes
people to risks and vulnerability of social nature.
Following this interpretation, building trust implies
intentions, goals and beliefs rather than mechanical
causes. People project intentionality and goal-oriented
behaviors onto robots that display forms of social
agency in order to try to make sense also of their
actions [5]. Thus, this article refers to explanations of
intentional behavior, which represents the core of
interpersonal relationships, but does also apply to social
robots onto which people project intentions (and goals
and beliefs).

Explaining and understanding robotic decisions
reduce the perceived risks involved in interacting with
robots, thus fostering the development of trustworthy
relationships with them. Explanations play a dual role in
this context. On the one hand, they provide reasons to
trust a robot when individuals lack previous experience
and have not established appropriate mental models. On
the other hand, they help prevent loss of trust or restore
it when the robot’s actions are unpredictable, unex-
pected or not understood [7,22].

An example can clarify the relations between the
twofold role of explanations (or other forms of interpret-
ability), trust and willingness to interact, risk and
uncertainty. In an aging society, one promising field of
application for social robots is elder care. One of the
main goals is to help prolong elderly people’s indepen-
dence, supporting them in carrying out various tasks,
such as medication management [24]. In such a delicate
context, willingness to accept support from a robot can
be hindered by uncertainties concerning the robot’s
reliability, particularly when the user has no previous
experience. The user’s uncertainty can, therefore, trans-
late into the perception of risks, as medication manage-
ment is likely to be perceived as a high-stakes domain.
The perception of risks, especially during the first
interaction, can be reinforced by personal predisposi-
tions to not trust novel technologies. This, in turn, could
translate into fear of the robot not respecting scheduling
or dosage of the medications.

Explanations about the robot’s role as well as how
and when it will remind the users to take their medica-
tions can therefore provide reasons to trust the robot’s
reliability when the interaction is initiated. Although this
initial perception of risk is likely to decrease with
prolonged interaction, the robot might still make un-
expected recommendations, which could endanger trust if
not explained. For example, some assistive robots are
designed to adapt their recommendations in accordance
with users’ needs [25,26]. If such adaptations are not
motivated (i.e., explained), users might perceive the
robots as erratic and, ultimately, untrustworthy [4,6].

Understanding is not only fundamental for reinfor-
cing users’ willingness to interact with robots and
other types of artificial agents. The more these social
agents occupy relevant roles in our society, the more
broadly they will influence our lives in general. As
these types of “social robots” are being deployed in
environments where many potential users have little to
no understanding of how robots take decisions and
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make suggestions, it is necessary for them to be under-
stood even by users without any technical knowledge.

2 Forms of interpretability: are
explanations always needed?

On a general level, explanations or other forms of
behavior interpretability should shed light on robots’
decisions and predictions when these and the related
evaluation metrics alone are not sufficient to charac-
terize the decision-making process [7,27]. For robots’
decisions to be interpretable and understandable, their
inner workings must also be interpretable and under-
standable. In fact, the decisions represent external mani-
festations of the specific way robots process information.
To this end, robots can be considered as embodied forms
of artificial intelligence [28,29].

2.1 Direct interpretability

Practically, interpretability consists of a wide array of
techniques that grant some level of access to the robot’s
decision-making process. In principle, not all types of
artificial decision-making processes must be explained.
Debugging or tracing back decisions at the level of the
underlying model or even the algorithms might, in some
cases, offer a sufficient degree of interpretability to grasp
reasons and rationales behind a robot’s actions.

These forms of interpretability are sometimes de-
fined as “transparency,” “technical transparency” or
“direct interpretability” [27,31,32]. Among the models
that offer this type of “readability” are shallow decision
trees, rule-based systems and sparse linear models [27].
A great advantage of this type of direct inspectability is
its higher transparency, which increases the possibility
of detecting biases within the decision-making process
and implies lower chances of adversarial manipulation.
This, in turn, has a positive impact in terms of fairness
and accountability [32].

Sun reports on an experiment seeking to classify
elderly users’ emotional expressions using tactile sensors
installed on a robotic assistant so that it can give an
appropriate response [33]. Two of the classifiers used to
identify the participants’ emotional expressions are a
temporal decision tree and a naive Bayesian classifier.
Even though some of these models can be accessed
directly, this form of accessibility to the decision-making

process requires some technical expertise and is likely
to be mostly useful for expert practitioners and devel-
opers [34].

A problem emerges as one of the key criteria of this
article is to make robots’ decisions understandable for
all types of users, including non-expert users. In terms of
everyday interactions with social robots, this type of
users is likely to represent the majority [4,35]. In this
case, it should be assumed that they have little-to-no
knowledge of how even relatively simple and intuitive
models work.

The use of robotic companions like the one in the
aforementioned example, capable of recognizing emo-
tions among other tasks, can be expected to increase
markedly in the future. Hence, situations might arise in
which the response given by the robot does not match
the emotion expressed by the user. The latter might want
to know why the robot responded inappropriately to an
emotional expression. Whereas an expert practitioner
can benefit from direct forms of interpretability, the same
cannot be automatically said about non-expert users.
If anything can be assumed at all, it is that for non-expert
users, this type of accessibility would be too much
information to handle (i.e., “infobesity” [35] or require
too much time to be understood [36]). Considering the
“limited capacity of human cognition,” there is a chance
that providing this type of information would result in
cognitive overload [27, p. 35].

Returning to the example, in the best case, the user
would simply fail to understand why the robot provided
the wrong emotional response. Alternatively, failing to
understand the robot’s action might cause unsettling and
erratic feelings which, in turn, could lead to a loss of trust
in the robot [4,6]. Moreover, direct forms of accessibility to
the decision-making process are not available for all types
of models implemented in social robots.

2.2 “Post hoc” interpretability

Explanations generated “post hoc” represent an alter-
native type of interpretability. Since seeking and provid-
ing explanations is a fundamental form of “everyday”
communicative social interaction, this solution seems to
be more useful for non-expert users [7,37].

Popular complex models like deep neural networks
(often labeled “black-boxes”) process inputs to produce
outputs in opaque ways, even for expert users. There-
fore, in order for their predictions, decisions and re-
commendations to be understandable, a second simpler
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model is usually needed to clarify, through text-based
explanations or other means, how inputs are processed
into outputs [38]. This form of interpretability can
sometimes also be applied to models that are typically
considered to be directly interpretable [27,30].

The information is mostly generated in human-
friendly terms, and this is the fundamental reason that
makes explanations more suitable for the needs of non-
expert users. For a communication act to be defined as
social, the information conveyed by the robot must be
socially acceptable, rather than too technical [31,37].
Therefore, in the considered case of emotion recognition,
if the robot were to misread a user’s emotional ex-
pressions, the user would likely expect a justification
conveyed in a socially acceptable and understandable
form. For example, the robot might explain that it has
mistakenly identified and classified certain parameters
of the user’s emotional expression in a text-based form.
As the article will discuss further on, other channels of
communication can also help provide socially acceptable
and tailored explanations.

2.2.1 Explanations as approximations

A problem that rises with explainability is that the
second model (known as the explainer) provides insights
into how the complex model works, but the result is
merely an approximation of the original decision-
making process, rather than a truthful representation
of it [32,38]. Thus, the resulting explanations have a
varying degree of fidelity to the actual decision-making
process depending on factors, such as the type of task,
the models implemented in the robot and the type and
depth of the explanation.

Wang highlights the twofold essence of the problem:

First, explainers only approximate but do not characterize
exactly the decision-making process of a black-box model,
yielding an imperfect explanation fidelity. Second, there exists
ambiguity and inconsistency in the explanation since there
could be different explanations for the same prediction
generated by different explainers, or by the same explainer
with different parameters. Both issues result from the fact that
the explainers only approximate in a post hoc way but are not
the decision-making process themselves. [38, p. 1]

Post hoc interpretations are therefore problematic for
several reasons. Since explanations are open to interpreta-
tion, they can be simply misinterpreted by the explainee.
More dangerously, they can hide implicit human biases in
the training data or even adversarial manipulations and
contamination [32]. Explanations might therefore be

coherent with the premises and with the data used to
generate them; yet, those premises are wrong [39].

Nevertheless, despite the fact that such explanations
do not precisely convey how the robot’s underlying
model works, they still appear to be the most suitable
option for social robots. Despite their approximate
nature, most of the times explanations still convey
useful information, which can be tailored in user-
friendly terms. To this extent, post hoc interpretability
is the strategy that people also use to make their
decisions interpretable to others [27]. Moreover, if social
robots are in principle designed to be understandable by
users with no technical knowledge, experienced users
and developers will also be able to make sense of these
explanations. Further access to a deeper level of
information processing can still be granted if the user
requests it, depending on the availability of the imple-
mented models [30].

In conclusion, if it is true that non-expert users can
benefit from robots’ explainability, then direct forms of
interpretability pose a problem when it comes to the
fairness and accountability of robots. Accordingly, the
question to be answered is how to ensure the best level
of approximation possible. This implies explanations
that are coherent with the actual decision-making
process, understandable and meaningful for the user
and, perhaps more importantly, disputable.

3 Limits of understanding

Successful explanations are the result of contextual joint
efforts to transfer knowledge and exchange beliefs
[7,36,39]. For the explainer, this implies crafting ex-
planations that are potentially good approximations of
the actual decision-making processes, while on the other
side of the information transfer, the explainee’s knowl-
edge must be successfully updated. Thus, Section 3.1
identifies and discusses two main cognitive elements
that hinder successful understanding.

3.1 The problem of introspection

People tend to overestimate the amount and quality
of the retained information. Keil states that the first
introspection is not very reliable when it comes to
“explanatory forms of understanding.” More generally,
people’s understanding of how things work, especially
at a naive level, is far less detailed than it is usually
thought [40].
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In social psychology, this phenomenon is connected
to the concept of the “introspective illusion” [41]. Con-
sequently, when it comes to explanations’ reception,
even when the explainee consciously declares that they
have reached a sufficient level of understanding, this is
not always the case. Keil terms this the “illusion of
explanatory depth” [40]. It might also be that, despite
being aware of not having reached a sufficient level of
understanding, the explainee still claims the opposite.
This more conscious appraisal of knowledge retention
would likely be due to other reasons, such as the desire
to meet someone’s (e.g., the explainer’s) expectations. In
both cases, the result is that, when people are ques-
tioned about their understanding of something that has
been explained to them, an incorrect estimation of
retention quality emerges.

If knowledge retention is not tested, such possible
misinterpretations can remain unacknowledged. In sense-
making theory, this issue is expressed with the notion
that people tend to take sensemaking for granted,
whereas this is a subtle, ongoing process that should be
lifted from an implicit and silent to an explicit and public
level [21].

3.2 Inaccessibility of other’s intentions
(and minds)

The phenomenon of overestimating one’s own understand-
ing also plays a role in creating wrong mental pictures
of others, in the sense of a folk-psychology theory of
mind [42]. In other words, it influences people’s ability
to predict others’ behavior and the reasons, intentions
and goals behind it [40]. In accordance with the endur-
ing philosophical issue known as the “problem of
other minds” [43,44], the question arises as to how we
can be sure that we have understood other people’s
intentions and beliefs upon which explanations are
generated.

Considering this issue in light of the “information
asymmetry” proposed by Malle, Knobe and Nelson, it
becomes clear that this issue can occur also in the field
of social robotics [45,46]. The authors note that an
observer (that in the case of an explanatory interaction
would be the explainee) would not provide the same
explanation for an action as the actor who performed it.
Generally, the difference in explanations is because the
observer has to infer the other actor’s intentions from

their behavior, precisely because these intentions cannot
be accessed directly [7, p. 19].

People tend to refer to robots as social actors despite
their artificial nature, at least partially because they
perceive intentionality behind robots’ actions [5,7]. This
implies that when people interact with robots perceived
as having reasons, intentions and goals behind their
actions, the concept of “information asymmetry” over-
laps with the inaccessibility of the robot’s intentions.
Therefore, when a robot makes a suggestion, the recipient
has to initially infer what might be the reasons for this
recommendation. From the perspective of explainable
social robots, the risks of users failing to introspectively
assess their retention of knowledge and to infer the
robot’s intentions should be considered default condi-
tions that can never be ruled out [47].

As previously mentioned, a growing field of applica-
tion for social robots is elderly care. Among other tasks,
assistive robots are meant to help fight loneliness and
prolong elderly people’s independence by performing
various daily tasks such as monitoring health and
medication management, or supporting with household
duties [1,24,48]. It has been reported that elderly users
might greatly benefit from the company of these types of
robots, but only if they prove to be efficient and useful
[1]. For instance, already now IBM’s Multi-purpose
Eldercare Robot Assistant (IBM MERA) is designed to
learn users’ patterns and habits and adapt its care sugges-
tions accordingly through a combination of environ-
mental data gathered in real time through sensors (e.g.,
located on the floor, walls and ceilings) and cognitive
computing [49,50]. Similarly, other assistive robots
include functions for detecting obstacles and clutters on
the floor in 3D as well as other adaptive behaviors [25,26].

As assistive robotic technologies become more
sophisticated and adaptable to changing environments,
their recommendations will become even more nuanced.
Since successful explanations imply successful transfer
of knowledge [7,39], ensuring that users can understand
and make sense of these adaptable care services and
infer the right intentions behind robots’ actions is a high
priority in order to avoid potential negative conse-
quences. Moreover, a potential positive consequence of
correctly inferring reasons and understanding explana-
tions is that it allows the user to check whether the
explanations are based on flawed or accurate reasons.
Such situations require making the successful (or
unsuccessful) understanding of an explanation explicit,
as the sensemaking framework proposes [21].
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4 Context dependence

The previous sections have discussed how successful
explanatory interactions pose challenges for both the
explainer and the explainee. Typically, the structure of
explanations includes these two elements and the
message to be conveyed (i.e., the “explanandum”).
However, a fourth element must be considered in light
of the fact that explanatory interactions do not occur in
neutral environments. Rather, they are contextualized
events, and in the case of explainable social robots, the
context in which explanations are sought out and
provided is predominantly social. As Weick, Sutcliff
and Obstfeld note, to understand how people make
sense of events, the focus needs to be shifted “away from
individual decision makers toward a point somewhere
‘out there’ where context and individual action overlap”
[21, p. 410].

Malle identifies two main reasons why people seek
explanations for everyday behaviors: to find meanings
and to manage social interactions [42]. This twofold
approach is rooted in the folk theory of mind and
behavioral framework in which explanations are em-
bedded. In the sensemaking framework, finding mean-
ings in a context means bringing order to the chaotic
stream of both intentional behaviors and unintentional
events that constitute the social environment [21]. People
do this through the ascription of reasons and causes.
Before explaining intentional behaviors, these need to be
discerned from unintentional events, which typically
havemoremechanistic explanations (e.g., natural phenom-
ena [7]).

At the same time, as sensemaking is a social and
systemic event, influenced by a variety of contextual and
social factors, a contextual analysis can help to identify
the conditions that made an action possible [21]. There-
fore, the context cannot be reduced to the traditional

dichotomous relationship between a person and a situ-
ation (attribution theory). Explanations as contextual
events involve finding meanings in a co-constructive
process, where the context is an overarching and active
force that influences how the interaction takes place
(rather than being only “situational”), as shown in
Figure 2. It is within this context that explanations
function as a tool people use to manage communica-
tion, influence, impressions and persuasion with each
other [32,51].

4.1 Different contexts imply different
explanations

One contextual element that can deeply influence how
robots can and should explain their actions is time
availability. This refers to how much time the user is able
or willing to invest in receiving (i.e., listening to and
understanding) an explanation. The impact of this
variable varies widely depending on the field of applica-
tion of social robots.

For instance, several studies investigate how robots
can be used to assist with carrying out tasks in libraries
[52–54]. Some of these robots can recommend poten-
tially interesting reading material to users based on
feedback and reviews from other users [54]. In such a
scenario, a library customer might want to know
whether a recommended book or periodical is worth
reading and, therefore, decide to spend some time
figuring out whether she would like the book or
magazine before starting to read it. Hence, the user
would benefit from a relatively detailed explanation. On
the contrary, in other situations where decisions and
actions must be taken quickly, externally imposed time
constraints can force the explainable robot to combine
speed with a sufficient level of detail.

One such case concerns robots involved in rescue
missions, as discussed in [28,29,55]. According to Doshi-
Velez and Kim [36], explanations are not required when
no notable (typically negative) consequences are at
stake. Perceived potential consequences represent
another contextual element that can deeply influence
explanatory interactions. In the case of the robotic
librarian, a potentially negative consequence the user
might identify is that she decides to read a book that he
or she does not like. Although the user’s decision on
whether or not to read the book is a low-stakes one,
she might still want to invest some time to query the
suggestion further before deciding. Conversely, situationsFigure 2: Explanations as contextual events.
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where robots are involved in rescue missions or military
operations pose a particularly difficult challenge. In such
case, the time the user can invest is likely to be low, while
the potential consequences of a wrong choice might be
highly negative. As Section 6 discusses, applying plausi-
bility over accuracy as a key criterion for explainable
robots provides a potential solution to this problem.

In conclusion, this section sought to demonstrate
that contextual elements should not only be considered
as environmental conditions within which explanatory
interactions take place. Because the context can directly
or indirectly influence how explanations are conveyed
and received, the active role it plays must also be
considered at the implementation level as the other
issues identified in the previous sections.

Thus, the following sections address the issues
identified to operationalize sensemaking-based intui-
tions aimed at maximizing non-expert users’ under-
standing of robots’ explanations. The analysis follows
three main directions. Section 5 shows how treating
“users as novices” and explicitly constructing contextual
boundaries can support users in dealing with the
contextual nature of explanatory interactions. In accor-
dance with this, Section 6 emphasizes on the (agreed
upon) plausibility of explanations as the evaluation key
criterion. Sections 7 and 8 investigate “interactive” and
“multimodal” explanations, respectively, as related
strategies for dealing with the approximate nature of
explanations and the limitations of human under-
standing. Although their potential positive impact has
been recognized, to the best of the authors’ knowledge,
they have never before been combined in an organic
model [9,56].

5 Users as novices and contextual
boundaries

When providing explanations, people try to tailor them
to the person asking them [57]. In other words,
explanations are adapted to the (possessed) explainee’s
mental model, especially to the perceived level of
expertise [57]. As discussed in Section 4, the context
within which explanations are requested and provided
plays a fundamental role in shaping the interaction.
These elements influence several parameters of the
explanation structure, including the level of detail/
depth, the material included in the explanation and
the communication strategy, including the level of
“technicality” that can be used [57].

Both models for interactive explanatory interactions
discussed in Section 7 assume that initially the parties
involved have some degree of shared knowledge about
the topic of the explanation [39,58,59]. Accordingly, the
explanatory interaction begins when one of them
(i.e., the explainee) detects an anomaly in the other’s
account and, thus, requests an explanation [39,58,59]. In
everyday interactions, the parties involved are likely to
share at least some common knowledge about the events
being discussed (and explained). However, this can be
problematic when it comes to explainable robots.

5.1 Explainable robots in the wild

In many experimental cases in elderly care, when the
robot is introduced to the users, it is made clear that they
can count on its support in carrying out tasks. As social
robots are also meant to operate “in the wild,” many
situations will represent a “first time” and “one-shot”
interaction. In such scenarios, it is important that con-
textual boundaries are set and proper mental models
established so that interactions can proceed smoothly.
As discussed in Section 4, contextual limitations can
influence the development of an explanatory interaction
with robots. Consequently, the need to co-construct the
context should be taken into consideration. Thus,
Cawsey suggests that, at the beginning of the explana-
tion, explainees should be treated as novices, and
mental models adapted accordingly as the interaction
progresses [57].

In case of “first time” interactions in non-controlled
environments, the co-construction of the context with a
social robot already implies explanations for why the
robot has made an approach and is willing to interact.
Following Miller’s argument, people’s requests for
explanations mainly occur in the form of why questions
[7]. During an initial interaction, these questions might
be implicit.

For instance, such a situation might occur with
robotic shopping mall assistants, as discussed in
[30,60,61]. When the robot approaches a potential
customer, she might wonder why the robot is talking to
her. In this situation, if the robot were to opt for
proactive behavior, the establishment of context bound-
aries would correspond to an explanation of what the
robot’s role is and why is it approaching this particular
potential customer. By introducing itself and proactively
clarifying its role, the robot is answering the user’s
potential and typically implicit question of why the robot
wants to interact. In turn, following the “foil argument,”
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by explaining that its role is to provide shopping
recommendations, help navigating or other similar
tasks, the robot automatically rules out other possibi-
lities [7]. If the potential customer would not have asked
this question explicitly, the robot’s explanation lifts
doubts and knowledge from an implicit and private level
to an explicit and public level [21].

Setting the contextual boundaries as described could
make the robot aware of other contextual elements, such
as whether the customer has time to invest in con-
sidering to the robot’s shopping recommendations. More
importantly, in line with the dual relationship between
trust and explanations described in the first section, this
approach to contextualization is appropriate for situa-
tions in which inductive trust has not been established
yet because previous experience is lacking [22].

As the robot approaches the potential customer,
perceived “information asymmetry” would likely be at
its peak, as the user might not be able to infer the robot’s
intentions [45]. By explaining its role, the robot can
minimize this phenomenon and provide the user with
reasons to inform their decision of whether or not to
interact with the robot and trust its shopping recom-
mendations. At this point, the user can express her
understanding and intention to either continue the
interaction or not. The robot is therefore able to update
its mental model of the user accordingly without
necessarily needing to ask further questions, as sug-
gested in [57]. Finally, referring to the idea that each
interaction triggers a new sensemaking request [21],
during further approaches to the same potential cus-
tomer, the robot should be able to investigate, perhaps
by questioning the user, whether its previous mental
model is still valid.

5.1.1 Non-verbal cues

In the considered scenario with the shopping assistant,
another element can support setting initial contextual
boundaries. Specifically, the robot can let the potential
customer know that it is approaching her through non-
verbal cues (e.g., body posture and movements, gaze,
graphic interfaces and light signaling).

At the entrance to a shopping mall, the interaction
context can be crowded. The user might not understand
immediately that he or she is the target of the robot’s
attentions. In such cases, it has been demonstrated that
non-verbal behavioral cues and signals can foster the
perceived social presence of the robot and the users’
engagement and, therefore, support the establishment of

contextual boundaries before the verbal interaction
begins [62–65]. Accordingly, it has been demonstrated
that such complementary channels can help users make
sense of robots’ intentions and therefore support the
initial generation of a correct mental model of the robot.
Eventually, the user might realize before any verbal
interaction that the robot is a shopping assistant and,
thus, immediately decide whether to avoid or proceed
with the interaction.

6 Plausibility over accuracy

Section 2 demonstrated that, compared to other types of
interpretability, making robots explainable has better
chances of maximizing non-expert users’ understanding
of robotic decisions and suggestions. Post hoc interpret-
ability is also the strategy that people use to shed light
on their “biological black boxes,” although the process is
not always successful. Nevertheless, in most cases
people manage to convey meanings and information in
explanatory interactions.

How can explainable robotics make use of this to
develop a strategy for handling the approximate nature
of explanations? A possible solution is rooted in a
fundamental element of the sensemaking theory. As a
process, “sensemaking is driven by plausibility rather
than accuracy” [21, p. 415]. This is in line with the
pioneering work of Peirce on abductive reasoning [66] in
the field of explanation science. As a cognitive process,
explaining something is better described in terms of
abductive reasoning, rather than inductive or deductive
[7]. Like inductive reasoning, the abductive reasoning
process also involves proceeding from effects to causes.
However, in deriving hypotheses to explain events,
abductive reasoning assumes that something “might
be,” rather than just “actually is” [7,66].

Applied to the inference process for explanations,
this intuition has been translated as “inference to
the best explanation” [67]. Whereas in this case, the
emphasis is on explanations as a product of the
inference process, Wilkenfeld and Lombrozo interpret
the processual act of explaining as “explaining for the
best inference” [68]. This leads them to posit that even
when a correct explanation cannot be achieved, one’s
cognitive understanding of the process can still benefit
[68]. Beyond the possible “cognitive benefits” of even
inaccurate explanations, what is more important for this
article is the notion that people do not seek to obtain
“the true story.” They rather seek out plausible ones that
can help them grasp the possible causes of an event [21].
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Abductive reasoning offers a reading key where
plausibility emerges as a key criterion for the selection of
a subset of causes that could explain an event. In light of
this, the goal for explainable robots shifts from providing
“objectively good” to “understood and accepted” ex-
planations. In other words, explanations should trigger
“the best inference” possible about the causes of robots’
decisions. Recalling the idea of the co-constitution of
meanings in sensemaking theory, the plausibility of an
explanation should also be considered a joint (contex-
tual) achievement.

6.1 Explanatory qualities

What properties an explanation should have is de-
bated within the field of explanation science. In fact,
“Literature in both the philosophy of science and psy-
chology suggests that no single definition of explanation
can account for the range of information that can satisfy
a request for an explanation” [13, p. 27].

Some researchers identify simplicity as a desirable
virtue. If explaining a phenomenon requires fewer
causes, it is easier to grasp and process the explanation
[69,70]. Other researchers argue that completeness and
complexity enhance the perceived quality and articula-
tion of an explanation [69,71]. An explanation of internal
coherence and coherence with prior beliefs is generally
considered a further relevant quality [7,14,70,72].

Since explanations are contextually co-constructed
events, the joint achievement of plausibility seems to
overrule the question of simplicity and complexity.
According to the context within which explanations are
requested, their joint evaluation as plausible includes
whether the amount and complexity of information
provided were satisfying in selecting a subset of causes
but not overwhelming or too elaborated. Such a solution
might help in dealing with potentially hazardous
situations, as described in Section 4. Moreover, for an
explanation to be agreed upon as plausible, it must be
coherent with prior beliefs (particularly of the ex-
plainee), or, at least, potential contrasts between the
new pieces of information and prior beliefs must be
resolved.

Although using plausibility as a key criterion for
how explainable robots should structure their explana-
tions seems theoretically valid, a problem arises in cases
when an explanation is plausible, but nevertheless
based on incorrect premises [39,73]. For instance, if an
assistive robot were to suggest that a user avoids a

certain path through the house and motivates the
suggestion by explaining that it detected an obstacle,
then this reason might be considered plausible. How-
ever, if the premise is wrong (e.g., the obstacle detected
is a new carpet), the plausibility is rooted in an
inaccurate foundation. Importantly, this principle must
be implemented together with a strategy for challenging
the explanation in case it sounds anomalous. In Sections
7 and 8, possible solutions are proposed to ensure the
best level of approximation and tomaximize users’ under-
standing.

7 Interactive and iterative
explanations

Interactive explanations have already been successfully
developed into models and tested [39,57–59]. This
section discusses two of the most elaborate recent
models for explanatory interactions with artificial agents
in light of the issues identified in the previous sections
and with respect to their application with explainable
robots. The first is Walton’s system for explanations and
examination dialogues [39]. The second is the grounded
interaction protocol for XAI recently proposed by
Madumal et al. [58,59].

These two approaches are considered because both
take into account the end users’ perspective as a central
feature; however, they do so in different ways. The
former takes a more theoretical approach, while the
latter is based on actual data collected from human-
human and human-agent interactions. Nevertheless,
while these two approaches can be interpreted as
complementary, they both lack certain elements that
are central for users’ sensemaking. As discussed in
Sections 4 and 5, one of these missing elements is a
consideration of the contextual nature of explanations
(particularly, in first interactions).

7.1 Context consideration in interactive
explanations

Before analyzing the relevant features of the models, two
reasons are identified to support the establishment of
the initial contextual condition as a means of building
a solid foundation for further interaction. First, if the
context is not established initially, possible misunder-
standings can emerge as the interaction progresses.
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At this point, it becomes more difficult to trace back what
was not understood. Potentially, this initial setting can
prevent or help to more quickly identify the causes of
what Walton named the problem of the “failure cycle,”
which occurs when the examination dialogue cannot be
closed successfully (i.e., when the explainee repeatedly
fails to understand) [39, p. 362].

Furthermore, it has been argued that lifting knowl-
edge from the private and implicit level to the public,
explicit and thus usable level is a fundamental element
of shared sensemaking and should not be implicitly
assumed [21]. Walton seems to acknowledge this. He
notes, “to grasp the anomaly, you have to be aware of
the common knowledge” [39, p. 365]. Moreover, again,
when describing deep explanations as the most fitting
for the dialogue model, he states that “the system has to
know what the user knows, to fill in the gaps” [39, p.
365]. Nevertheless, he makes clear in the development of
his model that the system makes assumptions about the
user’s knowledge.

After the initial establishment of contextual bound-
aries and conditions of explanatory interactions, this
part of the article mainly considers explanations as
embedded in prolonged interactions. For instance, this
would be the case with assistive robots used for elderly
care, particularly, as they are also meant to become
companions to fight against loneliness and therefore
object of long-term interactions [74].

7.2 Anomaly detection

Once the interaction context and initial mental models
have been mutually established, it might happen that a
user requests an explanation from a social robot,
typically for unexpected or unpredictable behaviors.

In such cases, the explanatory interaction is usually
triggered by an “anomaly detection,” as termed by
Walton [39]. Similarly, in the work by Madumal, Miller,
Sonenberg and Vetere, the identification of a “knowl-
edge discrepancy” is the initial condition for an explana-
tory dialogue [58,59]. This step reflects the second
approach to the relationship between explanations and
trust analyzed in the first section. There, it was described
how unexpected or unpredictable robotic behaviors, if
not explained and understood, could undermine trust in
the relationship.

For instance, this can be the case with advanced
assistive robots like IBM’s MERA, which is capable of
monitoring the user’s pulse and breathing [1,49]. If the
robot were to detect variations in these parameters, it

might recommend that the user take a rest. Different
elements can trigger the detection of an anomaly. This is
also linked to the perception of “information asym-
metry.” What changes is the robot aware of (that
motivate the suggestion) but the user is not? Perhaps
the user has not yet consciously recognized the varia-
tions identified by the robot, or perhaps the robot
usually recommends that the user take a rest at different
scheduled times throughout the day. In any case, the
user might find the suggestion anomalous and this
would likely trigger an explanation request.

Referring to the discussion in Section 5 about
proactive robotic behavior in the establishment of an
explanation context, the robot does not necessarily have
to wait for an explicit request. With simple, introductory
a priori explanations, the robot can act in advance of the
suggestion, hence reducing the chances of an anomaly
detection: “I have detected that your heart and breath
rates are above the norm. Maybe you should take a rest.”
Generally, such proactive explanations can be presented
in compliance with rules of conversation like the four
“Gricean maxims” [75] and can be useful in reducing the
need for questions from the explainee, although this is
not a guarantee against further discussion.

7.3 Explanations and argumentation

The model by [58,59] includes the option of embedded
argumentative dialogues, which might deviate from
the original question and are treated as cyclical. Al-
though his model draws upon argumentation theories,
Walton classifies the case of a further overlapping
dialogue (meaning one that does not contribute to the
original one) as an illicit dialectical shift. Following
Weick, Sutcliffe and Obstfeld, sensemaking is best
understood at the intersection of action, speech and
interpretation, which means that, in real-life scenarios,
argumentation often occurs within the same explana-
tory dialogue as a way to progressively refine under-
standing [21].

Considering the previous example of IBM’s MERA,
while the robot is explaining its suggestion, the user
might still ask further unrelated questions, for example,
whether the irregular parameters detected match the
symptoms of a stroke. In such cases, the robot should be
able to address new questions without necessarily consid-
ering the previous ones as closed. For this reason, as
shown in Figure 3, the option of internal and external
loops coding argumentation dialogues that are related
and unrelated to the original question, respectively,

Modeling explanatory interactions with robots  23



seems to offer a more realistic perspective than merely
labeling a shift as illicit [39].

7.4 From explanation to examination

Of particular interest for comparing the two models is
the choice of either returning or not to an “examination
phase” within explanatory dialogues. Madumal et al.
criticize the choice to implement an examination phase
described in [39]. They define this resorting to embedded
examination dialogues in Walton’s model as “idealized”
because it is not grounded on empirical data. Therefore,
according to the authors, it fails to capture the “subtle-
ties that would be required to build a natural dialogue
for human-agent explanation” [59, p. 1039]. Accord-
ingly, one of the main reasons for the alternative
approach adopted by Madumal et al. [59] is that, in
most cases of everyday explanations, there is no explicit
test of the explainee’s understanding.

As the authors note, their focus is on creating a
“natural sequence” in the explanation dialogue. There-
fore, the examination phase is fundamentally replaced
by “the explainee affirming that they have understood
the explanation” [59, p. 1038]. In light of the issues
discussed in Section 3, the explainee’s affirmation

should not in principle be considered as a sufficient
criterion, and the possibility of overestimating one’s
understanding and knowledge retention should be
explicitly addressed. Therefore, the main limitation of
the model by Madumal et al. [59] is that it lacks
evaluation strategies to assess whether the explanatory
interactions are actually successful.

7.4.1 Examination of robotic explanations

A second reason supporting the implementation of
examination dialogues is that this phase does not only
test the explainee’s understanding. Perhaps, more im-
portantly, this type of dialectical shift also provides a tool
to investigate the quality of the explanation itself. In other
words, the aim of examination dialogues is generally to
gather insights into a person’s position on a topic in order
to either test understanding or expose potential incon-
sistencies. Hence, the target of the examination can
also be the explainer’s account, and weak points of
an explanation can be identified in the form of a re-
quest for a justification for the claims made [39,73,76].
So interpreted, examination dialogues represent a useful
tool for cases in which explanations sound plausible but
are grounded in inaccurate premises or information.

Figure 3: Explanatory dialogue model.
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7.4.2 Issues of interactive explanations

Whereas implementing a shift from explanation to
examination dialogues appears to be a valid solution
to maximize users’ understanding and the veracity of
explanations, two further possible issues emerge. The
first issue, as Walton reports, is directly related to the
implementation of examination dialogues, which can
sometimes become quite aggressive [39, p. 359].

The goal of examination dialogues is to test under-
standing, not to interrogate the explainee or make her
feel uncomfortable or overwhelmed. If the explainee
perceives the robot as hostile, the robot’s trustworthiness
and further interactions might be compromised. The
second issue is what Walton labels the problem of “the
failure cycle,” which can in principle affect any type of
explanation, regardless of whether or not there is a
switch between explanation and examination.

One possible way for robots to proactively deal with
the first issue is through social signal processing and the
analysis of non-verbal cues. In social interactions,
people use a wide variety of alternative channels to
express themselves beyond verbal communication.
There are at least two complementary reasons for social
robots to use and process non-verbal communication
and social signals in order to stimulate and support
explainees’ understanding.

As discussed in [62], non-verbal behaviors provide
fundamental support to achieve “optimal” interactions
in terms of engagement. The more flexible and inclusive
the robot’s modalities of communication, the easier it is
for people to correctly read and follow robotic behaviors
[62]. The understandability and persuasiveness of a
robot’s explanation can therefore be improved by display-
ing such cues.

Perhaps more important from the perspective of
ensuring understanding is that the robots can analyze
the same types of non-verbal behaviors expressed by the
users. For instance, in order to decide whether to
examine the explainee’s knowledge retention, a robot
could ask whether an explanation was understood and
analyze the non-verbal signals accordingly. Pérez-Rosas
et al. report how people tend to show specific signals
when they lie and how these elements can be captured
by computational methods [77]. Parameters like gaze
direction and facial expressions, posture, gestures and
vocal tones can be analyzed by the robot to determine
whether or not the explainee’s claims are genuine. Such
a strategy would likely prove more efficient when users
consciously claim to have achieved a deeper under-
standing than they actually have.

If, instead, the explainee genuinely, but erroneously,
believes that they have understood an explanation,
their non-verbal signals would be more nuanced.
Furthermore, certain non-verbal signals (such as gaze
movements [78]) are not always reliable and should not
be taken by the robot as absolute evidence, but rather as
useful clues as to whether an examination might be
necessary to lift possible implicit misunderstandings to
an explicit level [21].

7.4.3 Questioning the explainee

Even if the robot determines that an examination
dialogue is needed to test the user’s understanding,
the questions should not be perceived as overwhelming
or hostile. Walton proposes a “Scriven’s test” [39, p. 357]
in the form of a dialectical shift in which questions
are posed to the explainee. Although these probing
questions should be related to the topic, they can also
help highlight connections that were not explicit in
the explanation dialogue. Furthermore, as noted above,
the dialectical shift should also allow the explainee to
analyze the explainer’s account, determine whether
the explanation is sound and plausible or whether
there are weak points that might uncover inaccurate
information.

Walton’s model does not specify how this ques-
tioning phase should be structured (e.g., how many
questions should be asked). Specifically, it might be
problematic for the user to have to answer many ques-
tions in terms of perceived hostility, particularly for very
low-level explanations.

With reference to the fact that explanatory interac-
tions are embedded in and influenced by specific
contexts, a possible solution is to proceed incrementally,
following the progression of the explanation. In other
words, if the explainee expresses her intention to obtain
deeper and more detailed insights on the reasons and
intentions behind an explanation, the robot can assume
that she is willing or able to invest time in understanding
the explanation. Alternatively, as analyzed in Section 4,
there might be practical reasons why the interaction
cannot go on for too long. Following the sensemaking
idea of focusing on the contextual conditions that make
the interaction possible [21], examination dialogues
and explanatory interactions more generally should be
calibrated to these specific contextual conditions, rather
than being decided in advance.

As social robots become more sophisticated and
connected, such a functionality will likely become easy
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to implement. Currently, similar capabilities can some-
times be achieved through systems for “questions and
answers” dialogues between the robot and the user.
For example, IBM’s MERA offers an interface to interact
with IBM’s Watson Dialogue Q&A, through its current
embodiment (in the form of a SoftBank Pepper robot)
and cloud connections [49].

8 Multimodal explanations and
the problem of the “failure cycle”

The last issue to be dealt with to maximize users’
understanding of robotic explanations is what Walton
identifies as the “failure cycle” [39]. In practice, this
translates into the explainee repeatedly failing to under-
stand an explanation. Whereas the author acknowledges
that in some cases external limitations and intrinsic
constraints can affect the number of times that an
explanation can be reiterated, he suggests rephrasing
the explanatory message as a possible solution before
moving on to the explanation closing stage. Never-
theless, he does not explicitly mention how explanations
should be rephrased [39]. This section proposes two
possible complementary solutions.

Typically, social everyday explanations take the
form of natural language acts of communication. As
such, according to Hilton, they should follow the rules of
co-operative conversation [37]. Specifically, the author
refers to “Grice’s (four) maxims of conversation,” which
are considered a useful and “implementable” model for
explainable robots and other artificial agents [7]. These
are quality, quantity, relation and manner [75]. The first
refers to saying only things that are believed to be true
with sufficient certainty. The second can be interpreted
as trying to avoid an overwhelming amount of informa-
tion, i.e., seeking the right quantity. The third refers to
what Hilton identifies as a good social explanation, i.e.,
it must be relevant to the context. Finally, the fourth
refers to the mode of presenting information, in order to
be clear (avoiding obscurity and ambiguity), brief and
orderly [7,75,79].

Several of these qualities have already been ad-
dressed in this article. As the failure cycle mostly refers
to explanations that are not understood despite the robot’s
clarification attempts, the first possible solution proposed
here refers directly to the fourth maxim.

8.1 Alternative verbal strategies

One strategy that can be adopted to “rephrase” an
explanation is to amplify the range in terms of depth and
type, as suggested by Sheh [30]. The author analyzes the
possible combinations of 3D levels of depth with five
typologies of explanations [30]. The relevance of Sheh’s
approach mainly lies in the fact that he adopts an HRI
perspective to analyze the options offered by machine
learning models. This implies that the different types of
explanations and the depth level that can be displayed
are sorted according to the models implemented in the
robot.

For example, Sheh analyzes [30] the case of a robotic
shopping mall assistant that is asked questions about
product recommendations. The explanations provided by
this type of social robot, he notes, “are mostly for the
purpose of satisfying the user’s curiosity and as a way
for the agent to further engage in dialog with the
user. Post-Hoc explanations may be quite acceptable at
Attribute Only or Attribute Use levels” [30, p. 117].
Referring to the potential need to rephrase an explana-
tion, the “Attribute Only” or “Attribute Use” levels of
explanation represent different potential strategies. In the
former case, the explanation reveals whether the robot’s
decision is based on considering reasonable factors,
rather than on irrelevant factors. In contrast, explana-
tions at the “Attribute Use” level “include the implica-
tions of the values of their attributes” [30, p. 116].

8.2 Combined signals

Complementary to presenting different typologies of
explanations and at different levels, multi-modality or
“combined signals” [80] represents a second promising
yet underrepresented direction. Anjomshoae, Najjar,
Calvaresi and Främling derive six modalities of pro-
viding an explanation from the analysis of 108 core
papers [56]. Text-based natural language explanations
cover a significant part of the spectrum. The other
explanation modalities are, in order of importance,
visualization, logs, expressive motions, expressive lights
and speech [56].

This does not mean that, in order to be understood,
a robot should display all available information in all
available formats at once. In fact, if the alternative
communication strategies would be displayed all at
once, their messages would overlap, likely resulting in
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cognitive overload. Rather, it means that while different
typologies can be integrated in a complementary and
supportive way (as “combined signals” [80]) within the
same robotic explanation, the decision should still be in
the user’s hands.

For instance, referring to the possibility of a failure
cycle, the user might request a more detailed explana-
tion that also includes graphic material. This option is
described in [81], where graphic explanations for the
recognition of images are accompanied by text captions
describing fundamental parameters influencing the
recognition process. The results indicate that such an
explanation format enhances the likelihood of users
grasping the reasons behind predictions.

Similarly, an assistive robot might use combined
signals to improve the quality of its explanations. For
example, if an elderly assistant robot recommends a user
to take rest after detecting increased heart and breathing
rates, it could corroborate the effectiveness of the mes-
sage by displaying a graphical comparison between
normal and unusual rates.

In other cases, single channel explanations (as
opposed to text-based explanations) can even be a
better choice overall. For example, in their work on
robotic behaviors, Theodoru, Wortham and Bryson claim
that, since artificial agents can take a great number of
decisions per second, providing information verbally
might be difficult for users to handle. In the case of
reactive planning considered by the authors, they
suggest that a graphical representation is more efficient
and direct for making the information available even for
less-technical users, while preventing them from be-
coming overwhelmed [35].

In conclusion, one might argue that it is impossible
to ensure success in each and every explanatory inter-
action, as an explainee might still fail to understand the
information conveyed through an explanation. Just like
in human interactions, issues like the failure cycle might
not be completely solvable. Nevertheless, when it comes
to robots, there is a chance to address these problems
ahead of practical implementations.

9 Conclusions and limitations

As social robots are becoming a daily reality, it is im-
portant for them to be able to explain their decisions in
user-friendly terms. Therefore, this article has discussed
fundamental elements of sensemaking as challenges to

be considered in order to make robots explainable for
ordinary people. Moreover, the main implications for the
development of trustworthy relationships have been
considered.

These factors, along with an analysis of existing
models for explanatory interactions, provided ground-
work for proposing a comprehensive framework to
model explanatory interactions with social robots. At
the core of this model are the contextual nature of
explanations, the possibility of iterating them and
the use of combined signals in order to maximize the
chances of successful understanding. Nevertheless, the
scarcity of long-term exposure to these novel technolo-
gies makes it difficult to precisely predict how human
parties will adapt to explainable robots in terms of trust.

Moreover, the possibility that users fail to under-
stand robots’ explanations despite repeated attempts is a
fundamental limitation of any approach to explainable
robots.

Finally, given its conceptual and theoretical nature,
the main limitation of this article is the lack of a user
study. Therefore, a continuation of this work will be to
test how the proposed model for iterated and multi-
modal explanatory interactions influences the overall
robot-user relationship, specifically how the examina-
tion phase can be calibrated through the use of com-
bined signals as the interaction develops in order to
improve users’ understanding and trust toward robots.
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Abstract

Strategies for improving the explainability of artificial agents are a key approach
to support the understandability of artificial agents’ decision-making processes
and their trustworthiness. However, since explanations are not inclined to stan-
dardization, finding solutions that fit the algorithmic-based decision-making
processes of artificial agents poses a compelling challenge. This paper addresses
the concept of trust in relation to complementary aspects that play a role in in-
terpersonal and human-agent relationships, such as users’ confidence and their
perception of artificial agents’ reliability. Particularly, this paper focuses on
non-expert users’ perspectives, since users with little technical knowledge are
likely to benefit the most from “post-hoc”, everyday explanations. Drawing
upon the explainable AI and social sciences literature, this paper investigates
how artificial agents’s explainability and trust are interrelated at different stages
of an interaction. Specifically, the possibility of implementing explainability as
a trust building, trust maintenance and restoration strategy is investigated. To
this extent, the paper identifies and discusses the intrinsic limits and funda-
mental features of explanations, such as structural qualities and communication
strategies. Accordingly, this paper contributes to the debate by providing recom-
mendations on how to maximize the effectiveness of explanations for supporting
non-expert users’ understanding and trust.

Keywords: Trust, Explainability, Artificial Intelligence, Explainable Artifi-
cial Agents
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Introduction

Trust is studied in a wide variety of disciplines, including social psychology,
human factors, science and technology studies, and industrial organization, as
understanding trust is relevant in many contexts. Each perspective implies a
different interpretation of trust, ranging from interpersonal trust (Rotter, 1971;
Simpson, 2007) and trust within organizations (Schoorman et al., 2007; Zaheer
et al., 1998; Zucker, 1987) to trust across different levels of society such as
between individuals and institutions and companies (Fulmer and Gelfand, 2012).
In particular, increasing efforts have been made recently to investigate trust
in the relationships between humans and machines. Despite multiple studies
on trust in automation, conceptualizing trust over time and reliably modelling
and measuring it remains a challenging issue Andras et al. (2018); Jacovi et al.
(2021); Lockey et al. (2021). Likewise, there is a lack of a systematic perspective
on how trust changes across different moments of an interaction and how it is
influenced by different behaviors by artificial agents.

The main purpose of this paper is to provide a conceptual analysis of the
connections between trust and explainability in the context of repeated human-
agent interaction. Specifically, this paper aims to identify when explanations
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are most useful as a trust support strategy and how they should be tailored ac-
cordingly. To meet our goal, we support our claims with use cases and examples
from the literature on different types of artificial agents.

Importantly, this paper refers to the rather broad and inclusive term of
‘artificial agents’ to extend our considerations to different forms of artificial in-
telligence (AI) embodiment. Throughout the paper, we address specific types of
agents such as virtual ones and physical robots by means of use cases to support
our claims. Furthermore, the paper primarily focuses on interactions between
non-expert users and artificial agents. We prioritize non-expert users because
they represent the vast majority of the public. To this extent, someone who is
a domain-expert in one field (e.g., a clinician or military personnel) will likely
be a non-expert user in other situations. Perhaps more importantly, non-expert
users’ lack of knowledge about artificial agents’ inner workings makes them a
more vulnerable category (compared to domain experts and expert practition-
ers) (Lockey et al., 2021). Here, ‘interaction’ is generally intended as any social
encounter between users and artificial agent, with particular attention being
paid to ‘long term’ interactions.

Section 1 presents a discussion on the multifaceted concept of trust and
those related to it such as reliability, confidence and familiarity in the context
of day-to-day human-agent social relationships.

Importantly, as trust depends on users’ capacity to predict an artificial
agent’s behavior (Jacovi et al., 2021), we identify the beginning of an interac-
tion and when artificial agents behave unpredictably as the moments in which
trust is more at stake (Andras et al., 2018). In the first case, users cannot
resort on previous experience with a specific artificial agent to generate accu-
rate predictions about the agent’s future behavior In the second case, trust may
be jeopardized by unexpected behaviors which could force users to adapt their
mental models and, hence, their expectations and predictions about an agent’s
future behavior.

Particularly in relation to initial trust and acceptance of new technologies,
the role played by ‘third parties’ responsible for the adoption and distribution
of new technologies is further discussed (Coeckelbergh, 2018; Elia, 2009).

Explanations are often pointed at as an implementable strategy that may
support trust. However, precisely why this is the case is often overlooked. There-
fore, on top of the initial considerations on trust, Section 2 critically examines
when and how explanations are most useful as a trust support strategy. We dis-
cuss what explanations are and present the idea of explanations’ plausibility as
a key quality that allows to match interactions’ contextual affordances, artificial
agents’ availability and explanations’ flexibility. We also identify ‘approxima-
tion’ and the possibility of being untruthful while being plausible as the main
limits of explainability.

Building upon this, Section 3 focuses on explanations’ communication strate-
gies that support users’ understanding while at the same time mitigating ex-
plainability’ intrinsic limits. We identify in the combination of explanations’
openness, questionability and multi-modality as a promising solution. At the
end of Section 3, the main propositions developed throughout the paper are
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graphically rendered ni the form of a model that describes the connections
between explanations and trust. Section 4 concludes the study and discusses
directions for future research.

1 Trusting artificial agents

Previous research on trust over time in human-agent interaction has primarily
focused on identifying initial trust levels and potential determinants (Hancock
et al., 2011; Salem et al., 2015). Short-term studies such as these are not neces-
sarily capable of revealing (subtle) changes over time. Given the dynamic nature
of trust (Holliday et al., 2016; Lyon et al., 2015), there is little understanding
of how trust relationships with artificial agents can form and evolve over long
periods of time. Few empirical studies investigate the fluidity of trust (Ho et al.,
2017; van Maris et al., 2017). Recent long term studies (van Maris et al., 2017;
Rossi et al., 2020) have found time to be an important factor influencing trust
in repeated interactions between humans and robots. De Visser et al. (2020)
presented a model for long-term trust calibration by providing techniques to
mitigate over-trust and under-trust effects in robots. Taken together, these
studies highlight the need to identify what aspects of a system’s design and
behavior determine the development of trust over longer periods of time. Upon
the consideration of the dynamic and context-dependent nature of trust-based
interactions (Holliday et al., 2016; Jacovi et al., 2021; Lee and See, 2004; Lyon
et al., 2015), to meet our goal we first analyze what the literature recurrently
highlights as the fundamental elements of trust in human-agent interaction that
ought to be considered throughout the design and implementation phases of
explainability strategies.

1.1 Fundamental features of trust

1.1.1 Risk, uncertainty, vulnerability

Andras et al. (2018) refer to the work of Luhmann (2018) and define trust
towards artificial agents as the willingness to take risks amid uncertain condi-
tions. Accordingly, Lockey et al. (2021) highlight how such conditions of risk
and uncertainty requires people to take a ‘leap of faith’ and expose themselves
to vulnerability. In line with these positions, (Lee and See, 2004, p. 51) define
trust as ”the attitude that an agent will help achieve an individual’s goals in a
situation characterized by uncertainty and vulnerability”.

However, Lockey et al. (2021) clarify that one’s willingness to face vulnera-
bility must be motivated by positive expectations. In other words, trust’s ‘leap
of faith’ requires ’good reasons’. Otherwise, it would be a matter of ‘blind fate’
rather than trust.
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1.1.2 Contextual nature of trust

Lee and See formulate of trust within a three-dimensional model so that trust is
influenced by a person’s knowledge (i.e., expectations and predictions) of what
artificial agents are supposed to do (purpose), how they function (process), and
their actual performance (Lee and See, 2004). In other words, people will grant
trust to an artificial agents if they think or expect that the agent will perform
according its ‘purpose’.

Accordingly, Jacovi et al. (2021) argue that an AI model (i.e., the ‘locus’ of
the decision-making processes) is trustworthy if it acts consistently according
to specific ‘contracts’ the model or artificial agent entertains with a user. With
artificial agents, these contracts may concern a wide variety of applications. For
instance, if an AI model is employed as a recommender for an online streaming
platform and does so successfully over time, then it can be considered trustwor-
thy to the extent of providing users with suggestions about music, movies and
so on.

The contractual or purpose-dependent essence of trust implies that users’ ex-
pectations, predictions and willingness to grant trust should be confined within
such specific boundaries. Holliday et al. (2016) similarly argue that people may
contextually and contractually trust other agents in some regards, but such
trust is not necessarily ‘transferable’ to other contexts.

1.1.3 Trust, reliability, and confidence

The contractual nature of trust-based interactions has an important timing-
related component. To this extent, one element of the formulation of ‘trustwor-
thiness’ by Jacovi et al. (2021) needs further discussion. The authors mention
that a model is trustworthy if it acts ‘consistently’, which implies stable perfor-
mance over time (the third element in Lee and See (2004)’s model). This recalls
definitions of reliability, a term often associated with trust and trustworthiness.
In fact, reliability can be defined as an artificial agent’s capacity to achieve a
specific goal in accordance with its purpose (Fossa, 2019; Lee and See, 2004).
Reliability, intended as the ‘capacity to act consistently’, emerges as a quality
that can be inferred only on the basis of past performance (O’neill, 2002).

Confidence, intended as the belief that a certain event will occur as expected,
represents the counterpart (on the users’ side) of reliability. As such, it is based
on high familiarity and requires no explicit decision-making (Pieters, 2011). If
an artificial agent proves to be reliable as it acts consistently in accordance
with its purpose, people become confident about how the agent will behave in
the future and will not necessarily have to explicitly assess its trustworthiness
at each interaction. Once the agent’s reliability has been established based
on positive experiences, the perception of risks decreases. In other words, one
becomes confident in the system’s competence to fulfill its purposes (Gefen,
2000; Luhmann, 2000).

However, if there is no record of past performance, one cannot directly in-
fer an artificial agent’s reliability. One can only ‘choose’ to believe, that their
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expectations and predictions about the system’s future performance are accu-
rate. In fact, unlike confidence, trust implies a decision-making process and the
commitment to the accuracy of future performance (O’neill, 2002; Pieters, 2011;
Taddeo and Floridi, 2011).

When people engage in an interaction with an artificial agent for the first
time, they lack what Mollering (2006) defines as the ‘routinary’ aspect of trust-
worthy relationships. In the absence of the routinary and predictability aspects,
trust implies the awareness that one’s commitment might be wrongly placed
(Pieters, 2011). However, if users’ willingness to grant trust to an artificial
agents is not supposed to be based on ‘blind fate’, their beliefs and expecta-
tions about how the agent will perform in the future need to be grounded on
something else than the past performance record.

To this extent, several authors suggest that initial trust is primarily estab-
lished upon individual dispositions and/or ‘institutional cues’ (Andras et al.,
2018; Siau and Wang, 2018) and that, as interactions proceed, this initial at-
titude may be discredited or consolidated (Holliday et al., 2016; Lyon et al.,
2015).

1.2 (Initial) trust establishment

A potential issue emerges here that concerns initial trust. In fact, on the one
hand, individual dispositions towards technologies (especially new ones) are
not always positive. On the other hand, institutions may operate as initial
‘trustworthiness proxies’, but the process is not always linear.

Concerning individual dispositions, various factors may contribute shaping
users’ initial attitude towards technology. Such dispositions may tend towards
either a negative or an overconfident view on technology. These result in a
wide variety of reactions that range from skepticism in the form of general
suspicion, pessimism or even ‘technophobia’ and ‘neo-luddism’ (Kerschner and
Ehlers, 2016), to high expectations about new technologies (De Visser et al.,
2020; Dzindolet et al., 2003), opinions based on subjective norms (Li et al.,
2008), age and gender differences (Morris and Venkatesh, 2000; Venkatesh et al.,
2000), and cultural and social background (Im et al., 2011).

Each of these factors alone or combined with others has the potential to
undermine the acceptance of new technologies before they have the chance to
prove their trustworthiness.

Then, regarding institutions’ role in promoting the adoption of new technolo-
gies like artificial agents, the reliability of the entity - or set of entities - that
introduce such technologies may work as a ‘proxy’ that guarantee the agents’
trustworthiness.

Trust towards these ‘third parties’ might by influenced by their reputation
and users may consequently extend trust to the newly introduced technologies as
the result of a conscious or subconscious choice. The reliability of these entities
may guarantee that the new technology will perform according to ‘agreed-upon
quality standards’ that such third parties respected up to that point.
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The idea of transferring the burden of initial trust to a third party is em-
bedded in the concept of a shared sense of moral trust, i.e., the idea that the
entity will behave with integrity and benevolence rather than in a harmful or
duplicitous way towards those who trust it (Elia, 2009; Lankton et al., 2015;
Pu and Chen, 2007; Sood, 2018). However, such influence might not suffice to
convince people (e.g., technology-averse) of the ‘benevolence’ and reliability of
a specific new technology.

To the contrary, a scandal or particular ethical concerns around a certain
product by a company may result in a loss of trust towards the company itself.
This has recently been the case with Google Duplex, an autonomous voice
assistant, capable of (among other things) booking appointments. One pecu-
liarity of Duplex is the close resemblance to a human voice, made possible by
the implementation of features such as ‘speech disfluencies’, brief interruptions
that people typically fill with noises like ‘um’ or ‘ah’ (O’Leary, 2019). The im-
plementation of similar design features that allow Google Duplex to pose as
a human, without users necessarily knowing it triggered ethical critiques and
trust-related issues concerning both the specific product and, more generally,
Google’s intentions.

Generally, these concerns about third parties’ attitudes towards the public
motivate the claim that companies and corporations should take action to imple-
ment or further improve their policies towards transparency and accountability
with respect to new technologies. Corporations and commercial entities “need
not express their concern for transparency in terms of stakeholders’ rights, but
they must care about those rights” (Elia, 2009, p. 152). Such a form of dis-
tributed responsibility (or lack thereof) for artificial agents’ transparency is
what we identify as a trust-enabling or trust-disabling factor, which has reper-
cussions for interaction between users and artificial agents. In other words, a
fair distribution of responsibility should represent a conditio sine qua non for
end-users to build trust-based interactions with artificial agents.

1.2.1 Artificial agents’ opaque processes

If trust is the result of a decision about predictability and expectations, then
it is fundamental for users to understand why artificial agents behave the way
they do. Several authors agree that understanding artificial agents’ decision-
making is fundamental for people to develop trust towards them (De Graaf and
Malle, 2017; de Graaf et al., 2018; Lomas et al., 2012; Riedl, 2019). This aspect
calls for the consideration of another element particular to artificial agents, that
has the potential to jeopardize users’ trust. In Lee and See’s model this is the
‘process’ dimension, or how an artificial agent actually functions internally (Lee
and See, 2004).

To understand the issue intrinsic of the ‘process’ dimension, a distinction
between artificial agents and other forms of automation is needed. In the latter
case a system’s behavior is pre-programmed and its performance is limited to
specific sub-sets of actions that the system is designed to perform. Instead, the
former can be defined as having ‘agentic’ capabilities, which enable them to
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respond to situations that are not pre-programmed or anticipated in their de-
sign (Zafari and Koeszegi, 2018). More and more, a large share of what can be
termed agentic capability is made possible by the algorithmic information pro-
cessing underlying decision-making processes. Generally speaking, the efficiency
and adaptability of such processes improve as systems grow more complex. Par-
ticularly for artificial agents that are powered by deep learning algorithms which
generate the so-called ‘black-box models’, their decision-making processes are
becoming progressively more inscrutable (Adadi and Berrada, 2018). While this
is primarily the case for laypeople and domain experts, i.e., professionals and
practitioners who work in the fields where AI is applied (Ferreira and Mon-
teiro, 2020; Preece et al., 2018), expert practitioners such as programmers and
developers are also affected (Kaur et al., 2020).

It is precisely this complexity that poses a major obstacle to non-expert
users’ understanding and sense-making processes and, hence to trust (Papagni
and Koeszegi, 2020). Recalling Lee and See’s model, while the quality of the
performance generally improves thanks to the use of opaque models, people’s
knowledge and understanding of how artificial agents function internally de-
creases. However, if artificial agents prove to be reliable according to their
purpose, users will likely grow confident and may not question how the decision-
making processes actually work. This is not to say that understanding is not
important when artificial agents perform well and consistently and users’ con-
fidence levels are high. It simply means that as long as artificial agents behave
according to users’ expectations and predictions, users will less likely question
the artificial agents’ reliability.

1.2.2 Unexpected events and trust violations

Even after artificial agents prove contractually reliable, users’ confidence may
still be affected and compromised forcing them to re-calibrate their expectations
when artificial agents’ behave unpredictably (Andras et al., 2018; Miller, 2019).
The mismatch between users’ expectations and artificial agents’ actual behavior
will likely result in a lack of understanding which, in turn, may negatively affect
trust (Miller, 2019). In such cases, an artificial agent’s past performance may
not be a sufficient guarantee for levels of trust to remain high. If users do not
understand artificial agents’ behavior, this might be simply because the reasons
behind such behavior are not immediately obvious.

However, if said behavior turns out to be a mistake, trust will be particularly
at stake (Elangovan et al., 2007). Robinette et al. (2017) conducted a study in
which participants were given the possibility to follow a robot’s guidance to exit
a risky situation. Their results show a significant decrease in self-reported trust
when the robot failed the task, compared to when it performed successfully.
Additionally, participants who experienced the failure were less prone to follow
the robot’s guidance in later interactions. Since autonomous systems are not
perfect, a trust restoration strategy seems to represent a more viable solution
compared to relying on perfectly accurate performance.

To summarize, our initial analysis showed how trust implies the expectation
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that an agent will perform with consistence in regard to its purpose. At the same
time, it always implies accepting risks and uncertainties and the the resulting
vulnerability. It also emerged how trust is mostly at stake at the beginning of an
interaction and when an artificial agent behaves unexpectedly. This is because
initial trust (or lack thereof) depends on individuals’ attitude and institutional
players (such as commercial companies, legislators etc.), rather than on the
expectations deriving from an artificial agent’s actual capabilities. Then, if an
agent behaves unexpectedly, this may cause users to fail understanding and,
consequently, re-calibrate their expectations, possibly jeopardizing their trust.

The next section argues that the implementation of explainability may not
only support users’ understanding of artificial agents’ actions and inner work-
ings, but also support initial trust establishment as well as prevent, or at least
mitigate trust losses in the context of repeated interactions.

2 Explainable artificial agents

Calls for increased transparency have been a central concern for several reg-
ulatory organs (Goodman and Flaxman, 2017; Gunning, 2017; Gunning and
Aha, 2019; Hleg, 2019). Making artificial agents explainable is one possibility
to achieve ‘transparency’ and ‘interpretability’. Interpretability itself represents
a controversial ‘umbrella term’ (Lipton and Steinhardt, 2018). Researchers tend
to group the available approaches into two main categories: direct interpretabil-
ity and post-hoc interpretability, also known as ‘explainability’ (Hagras, 2018;
Lipton, 2016; Molnar, 2020).

As direct interpretability is a quality that few models feature (e.g., linear
models such as decision trees), here we will focus only on post-hoc generated
explanation. This represents the primary approach to make ‘black-box’ mod-
els, such as deep neural networks, interpretable (Lipton, 2016; Molnar, 2020).
However, few important considerations emerge from the debate over different
approaches to interpretability that must be taken into account. Post-hoc ex-
planations are only approximations of the actual decision-making processes and
require a second, simpler model to clarify how inputs are processed into outputs
(Wang, 2019). In turn, this makes explanations potentially unreliable and open
to manipulations which may hide biases to the advantage, for instance, of the
proprietary companies that own the rights of use of specific algorithms (Rudin,
2018).

‘Hybrid interpretability’ represents a promising solution that combines the
strengths of the other two approaches. Unlike post-hoc interpretability, where
a linear model is used as the explainer (Wang, 2019), hybrid interpretability
features linear models in a ‘ante-hoc’ fashion. Specifically, this entails replacing
the black-box model with a more transparent linear one and test whether it can
produce comparatively accurate predictions with a subset of input data. If this is
not the case, the black-box model is employed together with its explainer (Wang
and Lin, 2021). This implies that in those cases which require the use of black-
box models, the chances of untruthful or biased explanations persist. Section
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3 describes how making explanations ‘questionable’ and ‘interactive’ may help
coping with this issue and maximize the chances of successful explanations.

2.1 Explanations as trust support strategy

It is often reported how explanations may be useful to support trust towards
artificial agents, particularly due to the opaqueness of their decision-making
processes. Without explanations, people may struggle to build accurate mental
models of artificial agents (Holliday et al., 2016) and to understand how decisions
and predictions are generated (De Graaf and Malle, 2017; de Graaf et al., 2018;
Lomas et al., 2012). However, exactly how explanations support trust is often
not discussed in detail. To better understand this point, we shall first discuss
what explanations are.

What constitutes a ‘proper’ explanation is an open question. In fact, “Liter-
ature in both the philosophy of science and psychology suggests that no single
definition of explanation can account for the range of information that can sat-
isfy a request for an explanation” (Berland and Reiser, 2009, p. 27). Miller re-
ports Lewis’ definition that “to explain an event is to provide some information
about its causal history. In an act of explaining, someone who is in possession
of some information about the causal history of some event — explanatory in-
formation, I shall call it — tries to convey it to someone else” (Lewis, 1986,
p. 99) in (Miller, 2019) (italic in the original version).

Furthermore, the informative content of explanations (i.e., the ‘explanan-
dum’) can be of either ‘scientific’ or ‘everyday’ type. Both concern events’
‘causal histories’, and subsets of causes are selected to generate explanations
(Hesslow, 1988; Hilton et al., 2010), but the former type refers to scientific
connections of various points in an event’s causal chain, while the latter aims
to clarify “why particular facts (events, properties, decisions, etc.) occurred”
(Miller, 2019, p. 5). As this paper focuses primarily on non-expert users’ in-
teractions with artificial agents, everyday explanations are more relevant for
our purposes. Everyday explanations are forms of social communication which,
through different means (e.g., textual, visual etc.) aim at transferring knowledge
(Hilton, 1990) and fill in information asymmetries between one or more ‘explain-
ers’ and one or more ‘explainees’ (Malle et al., 2007). By means of explanations,
people persuade each other and influence each others’ impressions and opinions
(Malle, 2011). Explanatory information is often ‘contrastive’, meaning that
people mostly ask why events and actions occur in certain ways rather than in
others (Miller, 2019). While explanations that answer ‘why-questions’ are fun-
damental to justify artificial agents’ decisions, explanations to ‘how-questions’
are central for transparency as they help understand the processes that bring
artificial agents to specific decisions (Pieters, 2011).

For knowledge transfers to be successful, it is important that explanations are
understood which, in turn, implies their coherence both internally and with the
explainee’s beliefs (Lombrozo, 2007; Thagard, 1989). Here, it emerges how ex-
planations may be helpful for supporting users’ trust towards artificial agents as
they allow a transfer of knowledge about the otherwise opaque artificial agents’
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decision making processes. We reported how standardization is not one of the
strengths of explainability (Berland and Reiser, 2009). However, this entails
that explanations are open to potential customization. As autonomous agents
increase their presence in numerous aspects of daily life, they will likely inter-
act with very diverse types of users (Hois et al., 2019; Mohseni et al., 2018).
Accordingly, each context of interaction will tend to privilege certain specific
qualities over others.

For instance, in some contexts simplicity, accompanied by a low level of tech-
nicality may be desirable explanations (Cawsey, 1993; Lombrozo, 2007; Zemla
et al., 2017). This could be the case with online recommending systems such
as those featured by streaming platforms or news websites. A rather unusual
suggestion on what to watch, read, or listen to may trigger users’ curiosity. A
similar event would likely be considered as a low-stake case, as one could simply
decide to skip the recommendation. However, studies show that even in such
rather low-stake situations users benefit from explanations in terms of percep-
tion of the system’s performance and trustworthiness (Shin, 2021). Therefore,
an explanation in a similar case should be rather simple and quick and, for
instance, refer to feature of the suggested movie or song that closely match
previous users’ choices.

Then, other situations in which the consequences at stake are significant may
require explanations to be complete and spare no details, even if their internal
complexity increases (Kulesza et al., 2013; Zemla et al., 2017). For instance, if
algorithms are employed to compute loan requests or job applications, expla-
nations for rejected requests should be rather extensive and exhaustive. They
may, for instance, show how the process was not internally biased by forms of
discrimination that have nothing to do with applicants’ merits (Bellamy et al.,
2018). Such discrimination types can follow nuanced paths and be difficult to
detect but, when exposed, they can undermine the trustworthiness of whole
processes. Consequently, if specific groups or communities (e.g., in terms of
ethnicity or gender (Zou and Schiebinger, 2018) become the target of discrimi-
natory AI-based decision-making processes due to underlying biases, members
of these groups may develop systematic distrust towards AI-based technologies.
In turn, the resulting lack of data including these discriminated groups in train-
ing data sets could further increase inequalities in automated decision-making
processes, creating a vicious circle. In light of the context-dependence of what
qualities explanations should have, we propose tailoring explanations according
to the plausibility principle to maximize the benefits of explanations’ flexibility
and personalization options.

2.1.1 Explanation plausibility

In the field of explanation science, the relevance of explanations’ plausibility
can be found in the pioneering work on abductive reasoning by Peirce (1997).
According to the author, explaining something is better described in terms of
abductive reasoning as opposed to other cognitive process such as induction
and deduction. Abductive reasoning involves proceeding from effects to causes
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(like inductive reasoning). However, in deriving hypotheses to explain events,
abductive reasoning assumes that something ‘might be’, rather than simply
‘actually is’ (Peirce, 1997).

Abductive reasoning has been interpreted as a process of ‘inference to the
best explanation’ (Harman, 1965), which implies that explanations (ideally the
best possible) are considered as the product of inferring processes. Perhaps more
importantly for our purposes, Wilkenfeld and Lombrozo (2015) reformulate the
concept emphasizing the processual nature of providing explanations. Intended
as the process rather than a product, explaining something aims to trigger ‘the
best inference’ possible. Importantly, this translates into the idea that people
do not necessarily seek ‘the true story’. They rather seek out plausible stories
that can help them grasp the likely causes of an event (Weick et al., 2005).

So interpreted, abductive reasoning offers a reading in which plausibility
emerges as a key criterion for selecting a subset of causes that could explain
an event, where the explanatory power of an explanation is not a default qual-
ity but rather co-constructed by the parties. In this sense, plausibility implies
that the soundness of the causes suggested to explain an event is determined
by both the explainer, who offers the explanation, and the explainee, who eval-
uates it as sound. Furthermore, plausibility as a joint achievement represents
the contextual sum of several explanation qualities that researchers identify as
desirable.

A study from Wiegand et al. (2019) provides an example of how to tailor ar-
tificial agents’ explanations according to the plausibility principle in the context
of autonomous vehicles in a simulated environment. Specifically, they discuss
how a self-driving car’s explanations may be designed by combining inputs, in
terms of mental model of the vehicle, from both experts and non-expert users
(i.e., the typical ‘passenger’ of autonomous vehicles). The result is a ‘target’
mental model made out of those shared features that are identified as funda-
mental. This target mental model serves as a baseline upon which the cars
explanations ought to be built. Interestingly, the authors also specify that,
since participants in the study never had to take over the steering wheel, there
was no timing limitation for interpreting the car’s explanations.

Two problematic considerations need to be addressed in relation to plausibil-
ity. Some authors note that, in principle, an explanation might appear plausible
but nevertheless be based on incorrect premises (Dunne et al., 2005; Lakkaraju
and Bastani, 2020; Walton, 2011). When explanations are generated based on
false beliefs, they can reinforce inaccuracies (Lombrozo, 2006) and thus incorrect
mental models. This is the case when the plausibility of an explanation does
not match its truthfulness. Furthermore, interpreting plausibility as ‘explaining
for the best inference’ means looking at plausibility as a dynamic concept that
is contextually negotiated between the interested parties at each explanatory
interaction, rather than a fixed property. This may represent an issue, consider-
ing artificial agents’ ‘coordinate-based’ reasoning (Lomas et al., 2012). Section
3 discusses explanations’ ‘interactivity’ and ‘questionability’ as implementable
strategies to cope with both issues.

12



2.2 Explanations’ timing

We previously noted how, in the context of long-term interactions, trust in
artificial agents is more likely to require direct support in two specific moments:
in the case of a first interaction and when something unexpected happens.

2.2.1 Explanations to support initial trust

Andras et al. stress that explanations can support both the creation of appro-
priate mental models and initial trust when there is no previous experience as
they may reduce the perception of risks and uncertainties (Andras et al., 2018).
Accordingly, Cawsey (1993) suggests that, at the beginning of an explanatory
interaction, explainees should be treated as ‘novices’. This implies that artificial
agents involved in the interaction should not infer what kind of mental model
(of the agents) users already possess. Users should rather be supported, by
means of explanations, to create an initial mental model of the artificial agents.
Only as the interaction progresses, the artificial agents may infer what users
know (Cawsey, 1993). Therefore, ‘initial’ explanations should primarily com-
prise information about the purpose of an artificial agent in a given interaction
context.

This aspect is even more significant considering that a growing number of
interactions with artificial agents will occur ‘in the wild’. This includes in-
teractions with artificial agents in ‘uncontrolled’ environments, as opposed to
controlled ones were users are introduced and briefed about the agents’ purpose
and functionality. For instance, social robots are being tested as shopping mall
assistants, with purposes that include entertaining customers, providing them
with recommendations and guidance, and supporting retailers (Chen et al., 2015;
Niemelä et al., 2017). If one such robot were to approach new potential cus-
tomers, these would likely not know the robot’s purpose. Initial explanations
tailored to answer questions such as “what is the purpose of the robot/of inter-
acting with it, why and to which extent should I trust it?” would help users
establish a more accurate initial mental model, better understand how the robot
can be helpful and, consequently, deciding whether to follow its suggestions and
guidance.

2.2.2 Trust maintenance, calibration and restoration

Existing models of explanatory interactions with artificial agents identify an
‘anomaly detection’ or ‘knowledge discrepancy’ (on the part of the explainee) in
the explainer’s account as the trigger for explanation requests (Madumal et al.,
2018, 2019; Walton, 2011). Unpredictable events represent a perfect example of
such anomalies, as they ‘abnormally’ diverge from the expected course of events
(Hilton and Slugoski, 1986; Kahneman and Tversky, 1981). Particularly, if these
unexpected events turn out to be mistakes or errors, as these become part of the
artificial agent’s performance record, its reliability and trustworthiness may be
shaken as users may be forced to re-calibrate their initially established mental
model of the agent (Elangovan et al., 2007; Robinette et al., 2017). In other
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words, after an unexpected event users may be wondering why did the agent
behave in such a way and whether it makes sense to further grant trust to it.
However, unexpected actions and behavior are not necessarily errors. It could as
well be that the actual reasons behind the agent’s behavior are not immediately
obvious to the users, while still being plausible (Papagni and Koeszegi, 2021).
Without explanations, it may nevertheless be difficult for users to determine
whether unexpected behavior is the result of an actual mistake or just of a
‘mental model mismatch’.

In similar circumstances explanations help not only restore, but also main-
tain trust. Conversely, it is likely that in ‘in-between situations’, i.e., when an
artificial agent’s performance is accurate, users will not need to update their
mental models and the agent’s trustworthiness and reliability will consolidate.
Here, and more generally when users feel confident with the interaction tasks,
explanations might be superfluous (Doshi-Velez and Kim, 2017). To this extent,
Woodcock et al. (2021) conducted a study with non-expert users who had to
evaluate explanations for diagnosis provided by an artificial intelligence-driven
symptom checker. Their results suggest that high familiarity with specific dis-
eases (e.g., migraine) may reduce explanations’ positive effect on trust. How-
ever, explanations are ultimately not only useful to justify decisions, but may
also satisfy users’ curiosity and even help them learn and discovery something
new (Adadi and Berrada, 2018). Therefore, in principle, artificial agents should
always make them available to users and display them upon request.

Additionally, explanations may prevent users from overtrusting artificial
agents (Lockey et al., 2021). In fact, some people tend to either have high
expectation of technology (automation bias) (De Visser et al., 2020; Dzindolet
et al., 2003) or to misjudge the risks implied by artificial agents’ actions (Robi-
nette et al., 2016; Wagner et al., 2018). However, at the same time skepticism
towards technology is also a relatively common phenomenon (Kerschner and
Ehlers, 2016). By providing users with a calibrated framework within which
to interpret their behavior, artificial agents’ explanations support users in both
developing more accurate mental models and expectations as well as mitigating
individuals’ more extreme and, at times unmotivated, dispositions. Conversely,
if an artificial agent does not perform very effectively over time, it is quite
understandable for people to lose their trust until proven otherwise.

Other strategies exist to restore trust that, like explainability, can be imple-
mented in human-agent relationships as well (Quinn et al., 2017). These capture
both short-term and long-term perspectives and include denial, apologies, com-
pensation and restructuring relationships (Lewicki and Brinsfield, 2017). How-
ever, we consider explainability a more appropriate strategy for at least two
reasons. As discussed above, explanations have the twofold function of support-
ing both initial trust as well as trust maintenance and restoration, and should
therefore be preferred over the application of multiple strategies. Furthermore,
while alternative strategies such as apologizing or offering compensation might,
in principle, help to regain trust, they do not offer much room for understanding
the reasons behind specific events and actions. To this extent, fixing issues (e.g.,
bugs) that cause artificial agents’ errors and the consequent improvement are
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two of the main desiderata of explainability (Adadi and Berrada, 2018).
Before discussing how artificial agents may communicate explanations ac-

cording to their specific affordances, we shall summarize the main points about
explanations as trust support strategies. As it is graphically rendered in 1, ex-
planations at the beginning of an interaction may support trust establishment by
informing users about an artificial agent’s role and introducing them to the in-
teraction. Then, during the normal course of interactions artificial agents should
be able to prove reliable, as long as they perform consistently in accordance with
their purpose. However, users may be curious throughout an interaction about
certain behaviors. Hence, even when an artificial agent performs consistently,
it should be able to provide explanations upon clarification request and as a
strategy to maintain trust. Finally, it may be that certain actions occur unex-
pectedly. To prevent (or mitigate, in case of a mistake) trust losses, artificial
agents should be able to explain the reasons why things happened a certain way.

Figure 1: Graphic visualization of explanations as trust support strategy,
throughout repeated interactions

3 Communicating explanations

We previously noted how explanations come with at least two major limitations.
On the one hand, they only represent approximations of the actual decision-
making processes. As such, they might appear plausible but nevertheless be
based on incorrect premises, hide biases and be manipulated (Dunne et al., 2005;
Lakkaraju and Bastani, 2020; Rudin, 2018; Walton, 2011). On the other hand,
explanations offer customization possibilities, but at the cost of standardization
(Berland and Reiser, 2009). For these reasons, we claim that, rather than ‘one-
shot’ messages that users can only ‘take or leave’, similar to human-human
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interaction explanations should be offered in the form of open and interactive
dialogues, where users can question an explainer’s account to expose possible
inconsistency (Dunne et al., 2005) and mistakes (Lamche et al., 2014).

Additionally, we emphasized the connections between users’ trust and their
understanding of the causes of artificial agents’ behavior. The possibility to
question explanations and, in principle, the explainee’s understanding allows
users to gather deeper insights on artificial agents’ actions maximize users’ un-
derstanding, particularly if first explanatory attempts are not successful.

3.1 Interactive explanations and questionability

Some strategies exist to make explanations interactive and questionable. In
principle, these can be applied both during or at the end of an explanation.
For instance, Pieters proposes to organize artificial agents’ explanations accord-
ing to ‘goals’ and ‘subgoals’ (Pieters, 2011). If, for instance, the main goal of
an explanation is to justify a specific decision, then a subgoal may be what
Pieters calls ‘transparency’, that is gathering further information on how the
explanation was constructed to make sure the agent didn’t make errors (Pieters,
2011). Similarly, Madumal et al. developed an explanatory model that includes
‘nested argumentation’ modules (Madumal et al., 2018, 2019). These are di-
alogues ‘nested’ within an explanation that users can entertain with artificial
agents. Importantly, such dialogues need not be related to the original question
(Madumal et al., 2018, 2019).

‘Examination phases’ at the end of an explanation are yet another possi-
bility (Dunne et al., 2005; Walton, 2011). Compared to other strategies, the
main difference is that, in principle, an examination phase give both parties
involved the chance to question and be questioned. The explainer’s account
can be questioned to evaluate if an explanation that sounds plausible is also
truthful. Conversely, considering that people tend to overestimate their own
‘knowledge retention’ capacity (Keil, 2003; Pronin, 2009), the explainee’s un-
derstanding may be tested as well. However, how exactly this should be done is
an open question. In fact, finding the right balance between certainty of success-
ful understanding and an overwhelming, inquisitorial number of questions is a
challenging task (Papagni and Koeszegi, 2020; Walton, 2011). For this reason,
some researchers propose to rely on the explainee’s self-reporting (Madumal
et al., 2019).

A reasonable compromise may be to ask the explainee to either present
their own understanding of the explanation or pick the correct explanation from
multiple choices. However, ultimately, whichever approach is the most suitable
will depend on contextual affordances, such as how much time can be invested,
or what are the consequences at stake.

While further empirical research is needed to validate this claim, early stud-
ies emphasize how interactivity and openness may improve explanations’ qual-
ity and users’ understanding. For instance, Alipour et al. (2020) conducted a
study in the context of Visual Question Answering (VQA) to compare different
explanations types in terms of users’ predictions of the system’s correctness.
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Importantly, their results show that ‘active attention explanations’ (i.e., when
the users can modify the system’s original attention to generate different an-
swers in the form of new attention maps) better supports users’ confidence and
trust towards the system, compared to other, more ‘static’ explanations.

3.2 Multi-modal explanations

In human-human interactions, explanations’ content is mostly conveyed through
natural language-based dialogues, typically in accordance with rules of cooper-
ative conversation, such as the four ‘Gricean maxims’ (quality, quantity, re-
lation and manner) (Grice, 1975; Hellström and Bensch, 2018; Hilton, 1990).
Importantly, however, interactions with artificial agents offer complementary
solutions.

Multi-modal explanations that use ‘combined signals’ (Engle, 1998) repre-
sent a promising direction and yet remain fairly uncharted terrain. Anjomshoae
et al. identify six main modalities for artificial agents to convey explanations
(Anjomshoae et al., 2019). In their analysis, text-based natural language expla-
nations cover a significant part of the spectrum because, despite the availability
of other means of communication, text encapsulates the richest (and perhaps
clearest) semantic content. The other explanation modalities are, in order of im-
portance: visualization, logs, expressive motions, expressive lights, and speech
(Anjomshoae et al., 2019). While speech, which occupies the last position, is
still based on natural language, what makes it less commonly used than other
means is the difficulty of endowing an agent with it.

The availability of multiple channels does not necessarily imply that, to in-
crease the chances of users understanding explanations, artificial agents should
display all available information in the available formats at once. In fact, this
‘infobesity’ (Theodorou et al., 2016) might ‘cognitively overload’ users, who
would then fail to understand (Lipton, 2016). Rather, the combination of dif-
ferent types of signals should be used to suit specific interaction contexts. For
instance, Huk Park et al. (2018) conducted a study in the context of image
classification graphic explanations of image recognition were accompanied by
text-based captions describing fundamental parameters influencing the recogni-
tion process. The study’s results indicate that the combination of visual and
textual elements in the explanations enhanced the likelihood of users grasping
the reasons behind specific predictions.

However, combined signals might not always be the most appropriate strat-
egy. In certain cases, single-channel explanations may still be a better choice
overall. For example, (Theodorou et al., 2016) consider the specific case of re-
active planning and claim that, since artificial agents can take a great number
of decisions per second, providing information verbally might be difficult for
users to handle. Accordingly, they suggest that a graphical representation is a
more efficient and direct way of making the information available even for less
technical users, while preventing them from becoming overwhelmed (Theodorou
et al., 2016). This again suggests that the choice of specific strategy to improve
the quality of artificial agents’ explanations strongly depends on the contextual
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conditions within which interactions occur.
Multi-modality and interactivity represent two of the most promising strate-

gies for ensuring a broad range of customization of explanations. Our final take
on these strategies is that they do not need to be considered mutually exclusive
alternatives. Instead, we claim that, depending on the contextual affordances,
combining multi-modality and interactivity can offer even more reliable and
personalized solutions to support users’ understanding and trust development.
To this extent, we close this section by showing how the combination of multi-
modality and interactivity may work in two scenarios with significantly different
interaction affordances.

3.3 Two cases for interactive, multi-modal explanations

The first example we present to demonstrate how interactivity and multi-modality
can improve explanations discusses recommender systems in the context of on-
line shopping. Recommender systems that suggest customers new products
have become a very popular feature of shopping websites. Using techniques
such as ‘collaborative filtering’, recommender systems provide customers with
personalized suggestions about items to purchase. Filtering methods are usually
based on implicit and explicit information about products or users similarities
Leimstoll and Stormer (2007). This means that the more a customer interacts
with the website by giving products rating (explicit information), clicking on
specific objects or buying them (implicit information), the more accurate the
recommendations become.

Implementing a combination of interactive and multi-modal explanations
may contribute to users’ perception of a personalized service. For instance, if
a customer would want to know the reason for a book recommendation, an ex-
plainable recommender system may initially clarify that same book is similar
to others that the customer has rated positively and that other readers with
similar taste expressed positive opinions about it. However, the customer may
ask further information before committing to spending money to buy the book.
At this point, the system could provide additional details, for instance showing
on a coarse level how the recommendation was generated, or displaying with
graphic support how similar books ‘scored’ in terms of similarity with the cus-
tomer’s previous interactions. If a deeper level of insight would be requested by
the customer, further information may be provided that show how each feature
weighed in the process of generating the recommendation.

To extend our considerations on interactive, multi-modal explanations, the
second case we discuss refers to using robots in search and rescue contexts. Re-
placing humans in ‘dirty, dangerous and dull’ jobs has historically been one of
the main goals of robotics. To this extent, robots are meant to provide sup-
port with rescue missions in case of natural disasters like earthquakes Matsuno
and Tadokoro (2004), or fires Wagoner et al. (2015) with tasks that include
locating people trapped in buildings and guide them out safely, detect, avoid or
extinguish fire.

The concerned people would likely be in a similar situation for the first time,
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not knowing exactly what to do. Hence, it would be fundamental that the robot
initially clarifies why it is there and how it may help (i.e., initial role explana-
tion). As the robot guides people out, it may guide people towards the service
staircase, rather than the main one. People could find this counterintuitive, for
instance because the way to the main stairs is faster, and ask the robot why it
is taking an alternative route. As timing would be an issue in such critical con-
texts, the robot would have to explain its decisions very quickly and effectively.
Telling how its sensors detected high temperatures on the main staircase, or that
rubble obstruct the stairs would likely be considered plausible explanations. If
one would need further reassurance (reasonably so, given the high stakes), the
robot might display a virtual map of the building showing the visualization of
its sensor scans, or pictures of the rubble blocking the way. As chances of users
correctly understanding the robot’s explanations increase, the likeliness of users
placing appropriate trust in the robot may also benefit, as well as human-robot
collaboration in general.

While these scenarios only cover a minimal part of the possible applications
of our approach explainability, the diversity of conditions that they represent
outline the range of customization options enabled by contextual combinations
of multi-modality and interactivity.

4 Conclusions

This paper discussed how explainability can support trust in human-agent in-
teraction and from a time- and context-based perspective. To this extent, this
paper focused on how to maximize the effect of explainability as a trust sup-
port strategy from the point of view of end-users, particularly non-expert ones,
rather than from a technical stance. We first analyzed possible readings of trust
relevant for this specific case. Specifically, the connections between trust, relia-
bility and confidence were addressed. This perspective sought to emphasize the
perception of risks and uncertainties implied in trust-based relationships, par-
ticularly before first interactions and after the occurrence of unexpected events.
Furthermore, the study considered how the perceived role of ‘third parties’, such
as the companies responsible for the development and distribution of artificial
agents, can influence the trustworthiness of such agents.

Furthermore, we discussed how explanations may be generated and com-
municated to support (primarily) non-expert users’ understanding of artificial
agents’ decision-making processes and trust towards them, with particular at-
tention to those moments of an interaction in which trust is more at stake.
Then, we graphically rendered our main findings into a model that displays
the connections between trust, mental model construction and calibration and
explanations throughout different phases of an interaction.

Thus, the main conclusions this paper draws are that artificial agents’ trust-
worthiness is not a stable quality. As such, it can change as an interaction
unfolds and can be influenced by several factors ranging from individual’s dis-
position and artificial agents’ capacity to perform according to their purpose,
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to external factors such as other entities that may influence artificial agents’
trustworthiness. Given that low levels of trust may hinder future interactions,
making artificial agents explain their actions and decisions can effectively sup-
port trust over time, if explanations are properly tailored according to the users’
needs and specific contextual affordances.

For future work, it is important to validate the main arguments of this
paper in experimental studies. For instance, the effect of an artificial agent’s
explanations (or lack thereof) at the beginning of an interaction and after a
mistake may be tested in terms of effect on the agent’s trustworthiness and
understandability. Likewise, different types of explanations may be tested in
relation to different users’ characteristics and contexts of interaction. Finally,
how the proposed approach to explainability fit different techniques to generate
explanation may be addressed by future work.

Paper title: May I explain? Explainability as a Trust Support Strategy for
Artificial Agents
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and transparency on trust was examined over a period of seven days. To this end, we simulated the system’s
personalized recommender features to support participants with the task of learning new texts and taking
quizzes. Using a 2×2 mixed design, the system’s malfunctioning (correct vs. faulty) and transparency (with
vs. without explanation) were manipulated as between-subjects variables, whereas exposure time was used
as a repeated-measures variable. A combined qualitative and quantitative methodological approach was
used to analyze the data from 171 participants. Our results show that participants perceived the system
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examples include antecedents of trust [21], cognitive and emotional components of trust [41], trust
in organizations [57, 68], and trust in interpersonal relationships [52, 59].

In recent decades, artificial intelligence (AI) has been increasingly used in a growing number of
application contexts. As many applications of AI-based technologies, ranging from email services
to online banking, social media and recommender systems, affect people’s everyday lives in a
direct or indirect way, the concept of trust has come to occupy a central position in academic and
institutional discussions related to AI-based autonomous systems. Specifically for recommender
systems as the "frontiers of Human-centered AI research" [20, p.1], theorists and researchers aim to
understand the dynamics of trust formation with respect to these systems, how trust changes over
time [33, 55, 58], and whether and how these processes relate to trust in human-human interaction.

Transparency,or the lack thereof, is considered one of the idiosyncratic yet most relevant features
of AI that may influence how much trust people place in it [5, 28, 56]. This is particularly the case
with complex models such as neural networks (black-box models), which are currently increasing
in popularity [1]. In this regard, researchers argue that making the causal chains behind models’ de-
cisions interpretable and transparent is likely to help people understand the rationales behind those
decisions and calibrate their expectations and trust [10, 23, 47]. This, in turn, increases the chances
that users decide to interact further with a system [49]. Given that trust is dynamic and changes
throughout different phases of interactions, still-open questions concern how exactly trust forms
and evolves in the context of repeated interactions with AI-based systems, as well as the conditions
under which transparency affects trust in these systems. The experimental work presented here
contributes to the literature by investigating trust dynamics in the context of repeated interaction
with an assistive system. To this end, we simulated the system’s personalized recommendations
in order to assist users preparing for quizzes by providing them with recommendations on which
portions of text to focus on. Specifically, this study focuses on comparing participants’ trust ratings
at the beginning, over the course of the study, and after a system malfunction. Furthermore, the
system provided explanations of how it functions to one group of participants, while another
group was not provided with this explanation. Trust ratings between these conditions are also
compared. Finally, trust in the system at the very end of the study is also measured and compared.
Our study shows that, even after the system has proven its reliability, a faulty recommendation is
perceived as a trust violation. Accordingly, participants who experienced the system’s malfunction
attributed significantly lower trust to it than those who interacted with an always accurate system.
Furthermore, in the case of a faulty recommendation, providing explanations to clarify the causes
of the system’s malfunction results in significantly faster trust recovery compared to when no
explanation is offered by the system.

The remainder of this paper is divided into five parts. Section 2 discusses previous work related
to the notion of trust as a dynamic process, connecting it to the concept of explainability, while
identifying open challenges and questions. Then, Section 3 describes the methodology and design of
the 2x2 study inwhich the system’s accuracy and explainability weremanipulated to investigate how
trust in the system is affected. Section 4 presents the results from the quantitative and qualitative
analysis. The study’s contributions to the literature on trust and explainability are then discussed
in Section 5, together with final considerations and limitations in section 6.

2 THEORETICAL BACKGROUND AND HYPOTHESES
Definitions of trust have repeatedly emphasized certain elements. Namely, trust implies a trustor
who is willing to be vulnerable, face risks and uncertainties in expectation that the trustee will
provide support in achieving specific goals [19, 59]. As such, trust is a fundamental phenomenon
that characterizes human relationships on multiple levels. Trust in technology represents just one
of these levels (albeit a multifaceted one), and researchers emphasize how trust plays a role in
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determining technology acceptance [37, 58]. In this respect, trust towards an assistive system can
be operationalized as the probability of an individual following the system’s recommendations,
predictions, and classifications [56].

2.1 Initial trust
The dynamic nature of trust necessitates studying it at different moments of an interaction [11,
39, 42, 46]. Certain factors may influence people’s initial trust in new technologies before any
interaction takes place. As antecedents of trust, individuals’ characteristics, environmental factors
and features of the technology in question play a role in determining people’s initial trust towards
new technologies [58]. Taken together, these factors contribute to determining people’s initial
attitude and expectations, or else initial trust would be a ‘blind leap of faith’ [36].

Environmental factors include social and cultural background and institutional cues. The latter
is particularly relevant for AI-based technologies, as it refers to entities that are involved in the
introduction of new technologies, such as developers and experts, companies that market the
technology, and national and international organizations that contribute to shaping the narratives
around new technologies [4, 35, 42]. Before any interaction is established, institutional cues can
determine whether people perceive new technologies as benevolent or malicious [32, 60]. To this
extent, [44] show how AI experts’ expressions of pessimistic positions on AI on Twitter, perhaps
more significantly than the technology’s actual progress, influenced people’s perception of growing
risks, both existential and not (e.g., job replacement), related to the recent surge of AI applications.

Human factors refer to the disposition to trust, propensity to take risks, individual abilities and
personality traits [29, 55, 58]. [8] investigated the effect of cultural differences and personality
traits on trust in automation and demonstrated that both play a role, individually and combined.
Interestingly, with respect to the five-factor model of personality, their results highlight how high
agreeableness and conscientiousness correspond with high levels of trust in automation. Since most
definitions of trust include risk taking as a core aspect, some existing studies focus specifically on
how the trust and risk dimensions are intertwined. For instance, [2] report on a study conducted to
evaluate the effects of risk perception on trust in autonomous vehicles. They found that not only
did interacting with an autonomous vehicle in a risky scenario significantly reduce participants’
trust and delegation of control to the vehicle, but also that initial trust was significantly higher than
trust levels after interacting with the vehicle in high-risk conditions. Another study investigating
risk aversion in accommodation context suggests that trust and risk are constructs that may be
closely related in personal exchange contexts [18]. Accordingly, the authors found that risk-averse
individuals are more likely to weigh the loss associated with trusting a system over the potential
gain. Thus, we expect risk attitudes plays an important role in trust development.

Concerning technological features, [33] identify three factors that can influence people’s trust in
automation. These are performance, process and purpose. Researchers argue that AI-based system
may be considered trustworthy if it acts within the ‘contractual preconditions’ of its use [28], that is,
if an AI-based system successfully performs in accordance with its purposes, which are contextually
recognized by users.

However, before or at the beginning of an interaction, it is difficult for people to judge whether
an AI-based system will perform in accordance with its purposes. This means that initial trust is
likely not based on the AI-based system’s actual capabilities. Rather, it is influenced by individuals’
background and disposition and how the technology is presented by external entities. This may
translate into unreasonably high or low levels of initial trust [15, 30]. In this regard, explainability
may help to calibrate initial trust by compensating for the lack of previous experience necessary to
evaluate performance in accordance with purposes [4, 36, 58]. As [4] note, during the first phases
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of the adoption of specific AI-based technologies, explaining how they operate may reduce users’
perception of risks.

Accordingly, we propose:
H1a: Transparency by means of explanations about the system’s inner workings leads to higher
initial trust levels.
H1b: Participants with higher risk propensity will tend to have higher initial trust towards the
system.

2.2 Trust development over time
Once initial trust is established and the interaction with an AI-based system proceeds, people are
unlikely to completely lose trust without a specific reason. However, researchers suggest that trust
dynamics change gradually [58] and that initial trust levels usually adjust after an interaction begins
as the result of a calibration of individuals’ attitudes and other factors involved in determining
initial trust, intertwined with an AI-based system’s behavior [24, 26, 27, 39]. Recalling Lee and
See’s model, as an interaction unfolds, an AI-based system will likely be considered trustworthy if
it performs in accordance with its purpose and the ‘contracts’ established with users [28, 33]. For
an AI-based system to be considered reliable, behavioral consistency over time is required. In fact,
reliability is a property that can be attributed to a system only in relation to its past performance
[17, 45]. In turn, when an AI-based system proves reliable, people grow confident in its capacity
and trust and familiarity stabilize [31, 38, 66].

Researchers suggest that in this phase, explanations may be superfluous [9, 13], if not detrimental
for trust [56]. For instance, a study conducted to test how various explanation types satisfy expla-
nation quality criteria showed how counterfactual explanations, a type of explanation very close to
human experience (see [43]), did not improve trust calibration among participants [65]. Moreover,
[6] argue that explanations may reveal an AI-based system’s limited capabilities, breaking the
illusion of intelligence and hindering trust. On the other hand, too complex explanations (i.e., not
calibrated to users’ expertise) have been shown to undermine acceptance of recommender systems
[25].

However, other studies point out that explanations during an interaction may help people make
sense of specific decisions or predictions generated by AI-based systems [50] and are therefore
fundamental to continuous trust calibration [58]. For instance, Jacovi et al. claim that the benefits
of making AI explainable include increasing an AI-based system’s trustworthiness, the trust people
place in a trustworthy system, as well as the distrust triggered by a non-trustworthy system (i.e.,
trust calibration) [28]. Turning to empirical studies addressing continuous trust and explanations,
[34] report on an experiment in which an explainable AI was used to support decision-making
in a high-stakes context. Participants were introduced to an app-based system for recognizing
specific mushrooms as edible or not. Their results indicate that explanations of how the AI-based
system worked did not improve task performance, but explanations of specific predictions did.
Interestingly, results from another study on explanations by autonomous vehicles show how
explanations’ timing plays a central role in determining users’ trust. The researchers found that
explanations provided before the vehicle acted had a positive influence on participants’ attribution
of trust, while explanations that were given after a specific action did not affect trust ratings [14].

Accordingly, we propose:
H2: System transparency by means of explanations provided throughout the study accelerates
trust development as compared to non-transparent systems.
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2.3 Trust violation and restoration
As part of the dynamic nature of trust, it may be that, during an interaction with an AI-based
system, after the system proves reliable, something happens that compromises people’s trust in
it. Not only that, if people lose trust in an AI-based system due to a specific event, acceptance of
the system and future interactions with it may also be hindered. In their taxonomy of events that
can cause trust breaches, [62] identify four types of failures related to poor design choices, system
failure, behavior that goes against users’ expectations, and users’ misbehavior.

Several studies support the idea that different types of failure may affect trust in different ways.
For instance, in an empirical study of real-time evaluations of trust, Desai et al. found that mistakes
by a robot that occur early in an interaction (i.e., before the robot has fully established its reliability)
have more negative effects on trust than mistakes that occur later [12]. In another experiment
[51], participants could choose whether to follow a robot to escape a dangerous situation. The
results indicate how the robot’s failures triggered significantly lower trust ratings compared to
the condition in which the robot carried out the task successfully. Robotic failures also reduced
motivation to interact further with the robot, which the authors suggest may indicate an increased
perception of risk [51]. Another study that investigated the effect of a robot’s performance (i.e.,
successful or faulty) on participants’ trust produced similar results in that the faulty robot was
considered significantly less trustworthy and reliable than the one that performed successfully.
However, in this case, the robot’s mistakes did not affect participants’ willingness to follow the
robot’s instructions [53]. Results from other studies suggest that people’s perception of the risk
involved in the interaction as well as their individual disposition towards takings risks may explain
this discrepancy [18, 48].

In their taxonomy, [62] also suggest trust restoration strategies. They identify approaches such
as apologies, promises, remedial trustworthy behavior, and explanations that have the power to
repair trust after a violation. Unlike many of these trust restoration strategies, explainability comes
with two major advantages. First, as previously noted, explanations may support trust calibration
not only in the case of a system’s mistakes or malfunctioning, but also at the beginning of and
throughout an interaction. Second, if properly tailored, explanations can shed light on the causes
of a mistake, rather than just offering a restructuring of the relationship [46]. Furthermore, studies
suggest that transparency achieved by means of explanations may not only restore trust after a
violation, but also dampen it in case people over-trust a non-trustworthy system [11, 28].

Several empirical studies corroborate the idea that explanations, particularly if provided after
mistakes or malfunctions, can mitigate negative effects on trust. For instance, [15] conducted a
series of studies to investigate reliance on and trust in an automated decision aid by manipulating
the automated aid’s accuracy, task completion feedback, transparency about potential mistakes
and other features. In one of these studies, they found that when the system provided explanations
for why mistakes (i.e., false alarms or missed targets) might have occurred, trust in the system and
reliance on its decisions increased in comparison to when the system provided no explanations.
However, they conclude that high levels of trust in a faulty system may be dangerous, even if the
system can explain its mistakes. Accordingly, they suggest that more informative explanations (e.g.,
about how the system takes correct decisions) and instructions about how the system operates
may mitigate such unwanted effects.

In another study, [63] tested the effect of different explanation types (confidence-level explanation,
observation explanation and no explanations) on trust in a simulated human-robot interaction
study in the context of reconnaissance missions. Importantly, they also manipulated the robot’s
ability level (low and high ability). Their results show that both types of explanations yielded higher
trust ratings compared to the no explanation condition, particularly in the low-ability case. Their
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interpretation is that when interacting with a robot that is not always accurate, people have to pay
more attention to explanations, which in turn become fundamental for people to decide whether to
trust the robot or not. Alternatively, if a robot’s performance is always accurate and the robot is
hence perceived as reliable, explanations are not likely to positively affect trust.

Accordingly, we propose:
H3a: A system malfunction leads to a significant trust reduction.
H3b: System transparency by means of an explanation accelerates trust restoration after a malfunc-
tion.
H3c: Trust restoration depends on people’s attitude towards risk.

3 METHOD
3.1 Experimental design
To test our hypotheses, a 2×2 mixed design with the following independent variables was im-
plemented: system malfunctioning (correct/faulty), transparency (with/without explanation) and
exposure time (measured over seven days). The system’s malfunction and transparency were
manipulated as between-subjects variables and exposure time was a within-subjects variable. For
this purpose, we mimicked an abstract-generating recommender system named PLANT.

3.1.1 Use case: PLANT as a personalized recommender system. The system’s main goal in our study
was to support participants with the task of learning new technology-related texts and taking
multiple short quizzes (five questions each). To meet its goal, the system provided personalized
recommendations on the most relevant parts of a long text (i.e. abstracting support) to prepare
participants for upcoming quizzes about the full text. While participants always had the option to
access the full texts, accepting PLANT’s recommendations allowed them to save time in preparing
for the quizzes.

Importantly, the system’s functionalities were mimicked through Wizard of Oz methodology.
When participants were introduced to the system, they were explained that the recommendations
were generated through the system’s Natural Language Processing (NLP) algorithms, while in
reality the researchers behind the project produced and controlled them. Furthermore, participants
were told that the goal of the experiment was to test the system’s functionalities in order to provide
feedback to the developers. The mimicked nature of PLANT ensured the controllability of the study,
as no actual malfunctions could occur.

Given that PLANT was a personalized recommender system with an abstracting function, one of
its key features was the range of customization options. These included alerts and notifications,
via either email or (optionally) SMS, with reminders of upcoming quizzes and suggestions to
change the scheduling and timing of one’s preparation. Additionally, participants could receive
performance-based insights into their use of the recommendations, switch between ‘light’ and
‘dark’ themes for the interface and personalize the text font. Perhaps more importantly, participants
could personalize their learning style by choosing among four different options (see Figures 1, 2, 3,
4). Specifically, these were:

• Kinesthetic: Full text with highlights.
• Auditory: Reading and listening to the summary.
• Reading/Writing: Bullet points.
• Visual: Graphical representation.
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Fig. 1. Kinesthetic learning style

Fig. 2. Auditory learning style

Fig. 3. Reading/writing learning style
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Fig. 4. Visual learning style

What each of the four learning styles respectively entails will now be briefly described. The
‘kinesthetic’ learning style presented the full text with essential sentences highlighted. The ‘auditory’
style was a shortened version of the full text consisting of the highlighted text passages only.
Additionally, the summary featured headings and sub-headings corresponding to the sections of
the full text. Participants could also listen to an auditory version of the summarized text. The
‘reading/writing’ style was adapted from the summary, with the essential passages slightly changed
or shortened to create a list of appropriate bullet points. The headings and sub-headings of the
summary were also shown in the list of bullet points. The contents of the ‘visual’ were derived
from the bullet points by shortening and modifying the essential passages. In order to distinguish
between different parts of the text, the sections were colored differently and icons were used to
support the text. The infographic would automatically switch to a different set of colors if the
user turned on the dark theme. The highlights, summary and bullet points were designed by the
researchers responsible for the study using the edit tab in the back-end of the web application. The
visualization was created with CSS classes based on the Flexbox Grid 1 system.

1http://flexboxgrid.com, last accessed September 2021
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Based on how participants answered an initial questionnaire, the VARK Questionnaire Version
8.01 2, PLANT suggested one of these learning styles to each user. However, participants did
not have to follow the system’s recommendation and it was up to them to decide at this point
which learning style they felt most comfortable proceeding with. Importantly, the full text was
always available to all users, regardless of which learning style they selected. To keep experimental
conditions controlled, the initial learning style choice could not be changed during the course of
the study. Furthermore, participants using different learning styles were evenly distributed across
all experimental conditions.

In order to investigate how malfunctions and explanations (or lack thereof) influence trust
towards the system, we designed a within- and between-subjects study in which the system’s
accuracy and explainability were manipulated. The main study was preceded by a pre-test conducted
in February 2021 and a pilot study. The pilot and the main study had the same number of texts and
quizzes (i.e., seven).

3.1.2 Participants. The pilot study was conducted between April and July 2021. Over a period of
seven weeks, each participants had a total of seven interaction sessions with PLANT, with one text
and quiz per week. Participants were recruited from TU Wien. 75 participants took part in the pilot
study, but only 13 participants completed it (2 female and 11 male). Their age ranged between 22
and 54 years old (M = 26, SD = 8,51). The highest educational degree completed by the participants
was a general qualification for university entrance (46 %), bachelor’s degree (46 %) and master’s
degree (1 %). The majority of participants were of Austrian nationality (85 %).

Participants for the main study were recruited through the online platform Probando 3 and were
redirected to the PLANT website. Of the 205 participants who took part in the study, 171 completed
it. Thus, the sample used for quantitative analysis consisted of 171 participants. In order to reduce
the number of dropouts, in the main study, which was conducted between June and August of
2021, each participant had a total of seven interaction sessions with PLANT over a period of seven
working days.

The majority of participants had Austrian nationality (72.5%) Participants’ age ranged between 19
and 69 years old, with an average age of 29.3 years (M = 29; SD = 9.11). The majority of participants
(71 %) identified as female The majority of participants had a general qualification for university
entrance as their highest educational degree (51 %).

Before taking part in the study, participants were provided with information about the study
and a consent form, which was approved by the Research Ethics Coordinator of TU Wien. After
creating an account and logging in, participants were directed to the homepage of PLANT, where
introductory information about PLANT, a timeline and assignments (quiz and questionnaire) were
listed. Upon registration, they were asked to fill out a demographics questionnaire and learning
style questionnaires. After submitting these questionnaires, PLANT suggested a learning style to
each participant.

3.1.3 Experimental Conditions. Participants were then randomly assigned to one of the four
experimental conditions. Hereby, we briefly describe each of them.

• Correct with explanation (CwE) PLANT provides correct recommendations throughout
the entire study. From the beginning and throughout the study, the system allows partici-
pants to access a short explanatory description of how recommendations are generated.

• Correctwithout explanation (CwoE) PLANT provides correct recommendations through-
out the entire study but does not offer any explanation concerning its inner workings.

2https://vark-learn.com/the-vark-questionnaire/, last accessed December 2021
3https://www.probando.io, last accessed September, 2021
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• Faulty with explanation (FwE) PLANT initially provides three correct recommendations
to let participants familiarize themselves with the system and to support trust formation.
At the fourth interaction, the system provides a faulty recommendation (i.e., trust violation)
and offers an explanation focused on the inaccuracy of one of the algorithms used by the
system. The final three recommendations are again correct.

• Faulty without explanation (FwoE) PLANT initially provides three correct recommen-
dations to let participants familiarize themselves with the system and to support trust
formation. At the fourth interaction, the system provides a faulty recommendation (i.e.,
trust violation) and offers no explanation for the malfunction. The final three recommenda-
tions are again correct.

3.1.4 Procedure. Each participant was required to prepare for seven quizzes over the next seven
working days. The texts that participants had to study were all related to emerging technologies
and carefully selected by the team of researchers running the study. The order of the texts presented
to participants across the four experimental treatments was fixed to mitigate the possibility of
cheating (i.e., participants talking to each other about the previous quizzes). The order of the texts,
respectively labeled from ’A’ to ’G’, plus ’X’ and ’Y’ (same text, but ’X’ faulty, ’Y’ correct) is reported
in Table 1 below.

Table 1. Order of the texts in the different experimental treatments

Order Participants
’A’,’B’,’C’,’X’,’D’,’E’,’F’,’G’ even userID
’A’,’D’,’E’,’X’,’F’,’B’,’C’,’G’ odd userID
’A’,’D’,’F’,’B’,’C’,’Y’,’E’,’G’ even userID
’A’,’B’,’D’,’F’,’E’,’Y’,’C’,’G’ odd userID

Each day over the following seven days, according to the provided timeline, a new text to study
was made available on the homepage under the ‘assignment’ section. After studying the text,
participants were asked to take a short quiz that consisted of five multiple-choice questions about
the text. Participants could take the quiz whenever they wanted during that day. After clicking on
the quiz, they only had five minutes to complete it. After each quiz, participants were asked to fill
out a post-test questionnaire that contained questions about trust and satisfaction levels.

Upon completion of the seventh quiz, the study concluded with a final questionnaire that
contained questions about participants’ perceived trust in the system and perception of the system’s
usefulness. After finishing the study, they received an email informing them of the review and
payment process and inviting them to participate in an online interview and focus group about
their perception of the whole experience (participation in the interview and focus group were
optional and unpaid).

As a token of gratitude for participants’ time and support, all those who completed all the
questionnaires (demographic & learning style, post-test, final questionnaire) received a fix payment
of 35 Euro. Additionally, for each correct response to a quiz question, they received a bonus payment
of 0.5 Euro (i.e. if a participant answered all five questions correctly in all seven quizzes, they received
a bonus of 17.5 Euro, yielding a total compensation of 52.5 Euros.) However, participants in the
pilot study received a participation certificate signed by the head of the research group. In addition,
everyone who completed all questionnaires was entitled to participate in a lottery with ten prizes
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worth 200 Euro each. The lottery drawing was a live online event conducted in July under the
supervision of a member of the research ethics coordination team at TU Wien.

Eventually, participants were debriefed via email about the actual purpose of the study and the
fact that the system was not actually autonomous and was operated by humans.

3.2 Measurements
Questionnaires. Trust perception was measured by means of an adapted version of the short,

validated ‘Trust Perception Scale-HRI’, consisting of twelve items [54]. We used the short version
as it is suitable for “trust measurement specific to measuring changes in trust over time, or during
assessment with multiple trials” [54, p.214] and because it is specific to systems’ functional capabil-
ities. A sample item was "What % of the time did PLANT perform exactly as instructed". Three
negatively worded items (Items 1.8, 1.10, 1.11) were reverse coded. Two items that directly and
specifically referred to physically embodied robots were excluded from our questionnaire.

At the end of seven-day study, participants were asked to rate the trustworthiness of PLANT.
Trustworthiness was measured by means of an adapted version of the ‘Multi-Dimensional Measure
of Trust’ [40], which consists of 16 items divided into four groups (namely capable, reliable, ethical,
sincere). Only the scale’s wording was adapted to fit our specific use case. Participants were asked
to report how closely they associated PLANT with each item on a five-point scale ranging from
“strongly disagree” to “strongly agree". A sample item was "Predictable". Cronbach’s alpha for the
four sub-scales were: capable= 0.86, reliable= 0.78, ethical= 0.89, sincere= 0.88.

General risk propensity was measured with the ’General Risk Propensity Scale’ (GRiPS), consist-
ing of eight items [67]. A sample item was "Taking risks makes life more fun". Cronbach’s alpha
was 0.88. The participants indicated their level of agreement with statements on a five-point scale
ranging from “strongly disagree” to “strongly agree".

As previously noted, participants were suggested a learning style based on their responses to the
VARK Questionnaire Version 8.01 Finally, demographic information such as age, gender, highest
educational degree, and country of citizenship was acquired.

Interviews and focus groups. We conducted 18 semi-structured interviews and a focus group
discussion. The interviews focused on the following topics: the functionality and purpose of PLANT,
the personalized learning styles, experiences concerning reliability, explanations and interpretability
of PLANT. However, since the interviews were semi-structured, other topics emerged as well. The
focus group concerned the same topic; however, there was a stronger emphasis on the explanations
and malfunctions of PLANT, since the focus group allowed for fruitful discussions on these topics.

We conducted the interviews and focus groups online with the help of video conference software
4. The data was collected in the form of audio recordings, which were subsequently transcribed
using transcription software 5. Both the audio recordings and transcripts were stored in a pro-
tected database at TU Wien. Only PLANT team members had access to this database. After the
transcription of the interviews and focus group, we analysed the textual data with the help of
the Atlas.ti 6 qualitative data analysis software. The analysis was conducted using a qualitative
coding methodology in order to increase the validity of the findings and decrease bias. Furthermore,
this analysis was conducted by two different people. Several meetings were organized in order to
discuss the direction of the coding process. Furthermore, the functionalities of the qualitative data
analysis software gave us a good overview of the major topics that played a role in the qualitative
research.
4https://zoom.us, last accessed December, 2021
5https://www.otter.ai, last accessed December, 2021
6https://atlas.ti, last accessed December, 2021
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4 RESULTS
4.1 Quantitative analysis
The software SPSS (Statistical Package for the Social Sciences) version 26 (IBM Corp, 2019) was
used to conduct a series of one-way ANOVAs, t-tests, repeated measures ANOVAs and subsequent
pairwise comparisons (Bonferroni corrections applied) to explore how trust develops over the
course of repeated interactions and is restored after a violation.

According to Figure 5, the distribution of risk propensity was bi-modal, which implies two
separate classes among the participants in the sample (M = 2.90, Md = 2.87, SD= 0.71).

Fig. 5. Bimodal distribution of risk propensity

Table 2. Frequency distribution of treatment groups

Group Frequency Gender Learning style
male female other Kinesthetic Visual Auditory Reading

CwE 37 (22%) 14 23 0 18 8 8 3
CwoE 52 (30%) 14 38 0 21 12 5 14
FwE 46 (27%) 8 37 1 21 8 5 12
FwoE 36 (21%) 12 24 0 18 10 6 2
Total 171 (100%) 48 122 1 78 38 24 31

After filling out the demographics and learning style questionnaires, participants were randomly
assigned to one of the four groups. Table 2 shows the frequency distribution of the groups. As each
group was nearly equal in size (52/36=1.44 < 1.5), the multivariate test results are fairly robust.
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4.1.1 Initial trust perception. An independent samples t-test was conducted to compare the initial
trust level (day 1) in groups with and without the explanation. There was no significant effect of
the explanation on initial trust level, t(169) = -0.59, p = 0.56, even though both groups with the
explanation (namely, correct, i.e., CwE and faulty, i.e., FwE) (M = 86.15, SD = 10.99) exhibited higher
trust scores than the groups without the explanation (CwoE and FwoE) (M = 84.99, SD = 14.32).
Thus, H1a is not supported. Moreover, no significant correlation was found between risk attitude
and initial trust level (r= - 0.40, p = 0.60). Therefore, H1b is also not supported.

4.1.2 Trust development over time. To assess the effect of explanations on trust development over
time, we looked at trust scores in both groups with no system malfunction (i.e. CwE and CwoE)
(See Figure 6). A repeated measures ANOVA with a Greenhouse-Geisser correction indicated that
mean trust level did not differ significantly during the 7 days within these two groups (CwE: F(3.82,
133.77) = 1.86, p = 0.12; CwoE: F(4.37, 222.94) = 2.03, p = 0.08). Thus, our results do not support H2.

Fig. 6. Trust development in each group

4.1.3 Trust violation and restoration. Figure 6 shows how trust developed over time among all four
groups. The trust level was lower on day 4 in groups with the malfunction (FwE: Mean = 73.84;
FwoE: Mean = 75.19) compared to groups without the malfunction (CwE: Mean = 86.64; CwoE:
Mean = 83.59). An independent t-test revealed that this difference among groups with and without
the malfunction is significant (t(168) = 3.74, p < 0.01). Thus, H3a is supported.

On day 5, while descriptive statistics revealed that participants’ trust was higher in the faulty
with explanation group (FwE: Mean = 84.55) compared to the faulty without explanation group
(FwoE: Mean = 79.85), an in-dependent t-test showed that this difference was not significant (t(79)
= 1.02, p = 0.31) (see Table 3).

In the FwE group, a repeated measures ANOVA with a Greenhouse-Geisser correction determined
a significant difference in trust level from day 4 to day 5 (F(1, 45) = 25,06, p < 0.001). Post hoc
analysis with a Bonferroni adjustment revealed that trust level statistically significantly increased
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Table 3. Mean scores for trust perception by groups (day 3-5)

Day Group Mean SE LB UB
3 CwE 89.93 2.32 85.34 94.52

CWoE 86.61 1.93 82.79 90,43
FWE 83.87 2.06 79.81 87.93
FWoE 84.57 2.39 79.85 89.30

4 CwE 86.64 2.96 80.79 92.49
CwoE 83.59 2.46 78.72 88,46
FwE 73.84 2.62 68.66 79.01
FwoE 75.19 3.05 69.17 81.20

5 CwE 89.27 2.68 83.97 94.57
CwoE 85.69 2.23 81.28 90.10
FwE 84.55 2.37 79.86 89.23
FwoE 79,85 2.76 74.40 85.30

(10.71 % CI, 6.40 to 15.02, p < 0.001). In contrast, we found no significant difference in trust level
from day 4 to day 5 for the FwoE group (F(1, 34) = 2,92, p = 0.10). Thus, H3b is supported.

In light of the bi-modal distribution of risk propensity among participants, we classified the
participants in two groups: i) risk averse with low risk propensity (mean < 2.90), and ii) risk tolerant
with high risk propensity (mean ≥ 2.90). As Figures 7 and 8 show, the trust level in the faulty with
explanation group improved significantly from day 4 to day 5 only among risk-averse individuals
(14.07 % CI, 1.07 to 27.07, p < 0.05), not for the risk tolerant group (8.12 % CI, -0.09 to 16.34, p = 0.06).
For the faulty without explanation group, the differences from day 4 to day 5 were non-significant
for both risk-averse (5.29 % CI, -11.91 to 22.49, p = 1.00) and risk-tolerant individuals (3.95% CI,
-5.04 to 12.95, p = 1.00). That implies that an explanation about a malfunction repaired trust to a
greater extent among risk-averse compared to risk-tolerant participants. Taking all this together,
H3c is supported, as risk propensity affected trust restoration.
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Table 4. Mean scores for trust perception in the risk averse and risk tolerant groups (day 4 to day 5)

RP Day Group Mean SE LB UB
< 2.90 4 CwE 85.29 4.03 77.28 93.30

(Risk averse) CwoE 86.67 3.40 78.90 92,44
FwE 74.46 4.03 66.45 82.47
FwoE 76.03 4.24 67.59 84.47

5 CwE 90.49 3.07 84.37 96.60
CwoE 89.35 2.60 84.18 94.52
FwE 88.54 3.07 82.42 94.65
FwoE 81,32 3.24 74.87 87.77

≥ 2.90 4 CwE 88.33 4.46 79.45 97.21
(Risk tolerant) CwoE 81.16 3.64 73.91 88.41

FwE 73.36 3.50 66.39 80.32
FwoE 74.23 4.46 65.35 83.12

5 CwE 87.75 4.52 78.76 96.74
CwoE 81.42 3.69 74.08 88.76
FwE 81.48 3.54 74.43 88.53
FwoE 78.19 4.52 69.20 87.18

RP= Risk propensity

Fig. 7. Trust development in each group - risk averse
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Fig. 8. Trust development in each group - risk tolerant

4.1.4 Trustworthiness and time spent studying. As described in the procedures section, participants
were asked to rate the trustworthiness of PLANT at the end of study. Table 5 shows the mean,
median and standard deviation of four different dimensions of trust: reliable, capable, ethical,
and sincere. These four dimensions were organized into two broader trust concept:capacity trust
(reliable, capable) and moral trust (ethical, sincere). A one-way ANOVA revealed that the ratings
for capacity trust and moral trust did not statistically differ by groups (capacity trust: F(3,167) =
1.59, p = 0.19; moral trust: F(3,164) = 0.65, p = 0.58).

We also measured the time spent studying for each quiz. As shown in Figure 9, there was a
downward trend in the average time spent studying with PLANT after day 5 in the FwoE group
(day 4: M = 24.42; day 5: M = 24.28; day 6: M = 21.08; day 7: M = 19.64). However, in the FwE group,
no increase or decrease was observed (day 4: M = 16.98; day 5: M = 15.93; day 6: M = 16.28; day 7:
M = 16.26).
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Table 5. Mean, median and standard deviation of multidimensional measure of trust by group

Trust dimension Group M Median SD
Capable CwE 4.24 4.25 0.60

CwoE 4.14 4.25 0.75
FwE 4.13 4.00 0.62
FwoE 3.96 4.00 0.80

Reliable CwE 4.33 4.25 0.52
CwoE 4.02 4.00 0.69
FwE 4.04 4.00 0.70
FwoE 4.04 4.00 0.58

Ethical CwE 4.02 4.00 0.73
CwoE 3.92 4.00 0.75
FwE 3.99 4.00 0.75
FwoE 3.85 3.75 0.69

Sincere CwE 4.06 4.00 0.72
CwoE 3.96 4.00 0.83
FwE 3.94 3.75 0.67
FwoE 3.78 3.87 0.68

Fig. 9. Time spent studying in faulty without explanation group
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Fig. 10. Time spent studying in faulty with explanation group

4.2 Qualitative analysis
After finishing the study, participants received an email and were asked whether they wanted to
provide us with further feedback and insights by participating in optional interviews and focus
groups. As indicated above, we conducted 18 semi-structured interviews and one focus group
discussion. The results from the qualitative research provided useful insights that supplemented the
quantitative results. In what follows, we focus on three different major outcomes of the qualitative
research, namely the perceived accuracy and reliability of PLANT, perceptions of the malfunctions
of PLANT, and how participants experienced system transparency in terms of explanations.

4.2.1 PLANT’s accuracy and reliability. First of all, as already indicated in the theoretical back-
ground section above, experiences regarding a system’s accuracy and reliability are central com-
ponents of the general process of building trust in a system. Participants generally provided
constructive and positive feedback about their experiences with the assistance offered through
PLANT´s recommendations. Their experience of PLANT’s accuracy was a central element in
that regard. Furthermore, perceived accuracy was also directly connected to their descriptions of
PLANT’s reliability. Naturally, both of these aspects are important for trust building and trust repair.
Therefore, our qualitative research focuses less on proving the relation between experiences of
accuracy and reliability and trust, but rather on gathering complementary insights and explanations
about how this affected participants’ trust in PLANT’s assistive features.

A first topic that came to the fore concerning the experiences participants reported about the
accuracy of PLANT was the participants’ level of understanding about the output of PLANT’s
assistive features. That is to say, the more people compared the original text with the raw text
input, the better their impression of PLANT’s accuracy. Several participants explained that after
reading the original text, they gained an increased understanding of PLANT’s accuracy with regard
to its assistance for the quizzes and thus also started to appreciate PLANT as a reliable assistant.
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However, in some cases, this also led to a strong curiosity, which could in turn lead to certain
suspicions about how this was done in an automated manner.

Furthermore, in this context, people used language expressing the importance of both accuracy
and reliability as components of their individual aims in using PLANT. In that regard, the experience
of accuracy and reliability was described as something relative to the user’s needs. In our case,
participants who were focused on receiving assistance for the test were mostly happy with the
system’s accuracy, even if they had read the full text beforehand. However, other participants were
instead focused on getting a better understanding of the text content in general (and less focused
on the test). Since texts can always be read in different ways, they would occasionally complain
about the accuracy of the assistance.

Furthermore, something that came up in relation to the phenomenon of trust were participant’s
speculations about the role of PLANT’s automated element. This is a recurring topic that will also
be mentioned below. In terms of accuracy, an important outcome was that several participants
expressed a desire to gain more insight into how PLANT could achieve this kind of accuracy. In
other words, such people were looking for more explanations, regardless of whether the system
malfunctioned or not. This provides an important lesson about the experience of trustworthiness
in the sense that trust in the system is not just an outcome of the experience of accuracy itself, but
is likely influenced by the larger context within which people interpret this accuracy. This could be
particularly interesting in terms of achieving better explanations to improve the interpretability
of assistive recommender systems, since curious users can be provided with clearer insights into
how such systems function. To provide just a few examples, this can include information about the
systems’ developers, insights into the choices made during the development phase, and so on.

4.2.2 Perception of malfunctions. PLANT’s malfunctions were a central element of the experiment
and the subsequent quantitative analysis. Interestingly however, malfunctions were not always
explicitly experienced as a prominent issue by the participants. In fact, even if PLANT provided a
wrong recommendation and the participants were asked about this, they were not always bothered
by the malfunction. Instead, some participants were rather forgiving, generally due to the fact that
PLANT was framed as an automated system. The very notion that the system was fully automated
served as an explanation for behavior perceived as a mistake from a human perspective. That
is to say: the automated system did something that could be experienced as a malfunction by
participants, but at the same time, some participants were implicitly aware that these kinds of
malfunctions are normal in cases where humans and automated systems need to adjust to each
other. This emphasis on two different types of intelligence, human versus artificial, can therefore
be considered important for the way people interpret and judge such malfunctions.

4.2.3 Transparency through explanations. Finally, with regard to PLANT’s explanations, several
interesting insights emerged in the qualitative research. The focus group provided particularly
interesting results here, where a discussion emerged regarding the general role of explanations in
automated systems. First of all, the word “black box” played an important role in this context, as
it was used to emphasize how it was still not clear to participants how exactly the mechanisms
behind PLANT’s assistance worked. Even though this was obviously related to the fact that this
was a Wizard of Oz study, in hindsight, a good solution would have been to provide clear, additional
insights into the way NLP systems develop text summaries.

Generalizing the statements above to assistive recommender systems, it is interesting to see that
several participants exhibited strong curiosity regarding the explanations of how such systems
work, as described above. When asking for more clarification about this curiosity in the focus
group, a consensus emerged that different types of users should be provided with different kinds of
explanations. That is, people agreed that users with different backgrounds are likely to be looking
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for a divergent range of insights. For instance, the technical details behind the system might be
interesting for a specific group of users, whereas others are likely to focus more strongly on the
application’s user-friendliness. It is therefore recommended that different explanations be able
to be accessed through different channels. An example would be to implement explanations in
the system itself, but also provide further explanations on the website about how such automated
systems work, through social media channels or as part of personalized insights. Explainability
in this sense can be seen as a term denoting a general tendency to provide explanations in many
different ways.

Furthermore, a topic that came up in the qualitative research was the availability of explanations.
Several participants argued that even if they would not access such explanations or insights into
the data, they would prefer such explanations and insights to be available nevertheless. This is
an important insight from the qualitative research, since it shows that even though explanations
are not always accessed immediately (since people lack the time or the motivation to go through
them), their very availability could help to create the impression of a system that is embedded in a
larger framework of transparency.

Finally, in relation to such a larger framework, a topic that came up concerned the authority
embedded in the explanation. Crucial here is to understand the way in which explanations are
embedded in a larger array of expectations about a system’s quality. Explanations can help to build
and restore trust when they are seen as dependent on the perceived authority of the entity that
provides the explanation. In other words, if the explanations are provided by people, institutions or
companies that are already seen as reliable and transparent, participants reported that they would
be much more likely to take the explanations for malfunctions or irregularities seriously.

5 DISCUSSION
Prior research has stressed the importance of longitudinal studies for understanding the develop-
ment of trust over time [11, 22, 58]. To this end, our work extends previous work on trust dynamics
in human interaction with AI-based systems. More specifically, our investigation sheds light on
the combined effects of a recommender system’s level of performance and explainability (or lack
thereof) on people’s trust over the course of repeated interactions.

Contrary to expectations and to part of the literature [4, 58], this study did not find a significant
difference in terms of trust formation and continuous trust development between groups with
and without explanations in the absence of any malfunctioning. Participants’ propensity to take
risks also did not significantly influence initial trust ratings. A possible explanation for these
results regarding initial trust comes from the qualitative analysis. In fact, in the interviews and
the focus group, the role of ‘institutional cues’ in the form of a ‘concealed authority’ behind the
system’s explanations emerged. It was not possible to determine with certainty how the researchers’
authority influenced participants’ perception of the system, particularly in terms of initial trust
(e.g., in whether the system would behave benevolently). However, the fact that participants
brought up the topic, specifically in relation to the reliability and transparency of such a ‘concealed
authority’, corroborates the idea that environmental factors and external entities play a crucial role
in determining people’s initial perception of new technologies [4, 42].

Concerning continuous trust development, several studies (e.g. [9, 13]) suggest that explanations
are unnecessary or even detrimental in some cases. For instance, [56] found that when a system’s
prediction are correct, providing more insights into the agent’s decision-making process negatively
affected trust. This perspective may offer a possible interpretation of our findings. When a system
performs accurately over repeated interactions, people’s expectation that the system will behave
reliably consolidates [17, 45]. Accordingly, in such cases explanations become superfluous and do
not necessarily increase people’s trust in a system. Supporting this position, the qualitative analysis
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demonstrated that some participants read the original text alongside PLANT’s recommendations
to check the system’s accuracy, particularly during the first interactions. In other words, they
did not immediately rely solely on the recommendations to prepare for the quizzes. Rather, they
trusted them after checking them for themselves and after their accuracy was confirmed by the
initial quizzes. On the other hand, the qualitative research also demonstrated that the availability
of (different kinds of) explanations can be beneficial as a component of the overall contextual
framework of a system’s transparency and trustworthiness.

In this regard, we also found that not all participants who had the option accessed the explanations
providing insights about how the system worked. While this may, in part, also explain why
explanations did not yield higher trust in the initial phases, the qualitative analysis also indicated
that even when participants did not access such explanations, their very presence added to the
positive perception of the system. A possible interpretation for this is that explanations should
not be forced upon users, particularly during the initial phases of an interaction and as long as
a system performs accurately. Rather, they should be made available and it should be up to the
users themselves to decide whether they need them or not [47]. Furthermore, it can be beneficial to
provide a range of different kinds of (personalized) explanations.

With regards to trust violation and restoration, this study found that system malfunctions
negatively influence trust ratings, as they are perceived as trust violations. These results corroborate
findings from the literature about the negative effects of errors and malfunctions on trust [53, 62].
Interestingly, however, during the interviews and focus groups, some participants reported that they
were not too negatively surprised by the system’s faulty recommendation. Because they were aware
of its non-human nature, they expressed forgiveness. The results from [12] suggest that mistakes
and malfunctions that occur early on during an interaction affect trust more negatively than later
ones. This may reconcile the apparent discrepancy in our findings, as the system provided a faulty
recommendation only at the fourth interaction (i.e., after three correct ones). In turn, PLANT’s
initial accuracy may clarify why several participants were so tolerant towards the system’s faulty
recommendation, even though it still yielded significantly lower trust ratings.

Furthermore, we found that when the system made a faulty recommendation, transparency in
the form of explanations generally led to significantly faster trust restoration. These results further
support the notion of explanations as a trust restoration strategy [4, 16, 43, 51]. As previously
discussed, if events such as mistakes and malfunctions are not dealt with, they are likely to
undermine trust and negatively affect acceptance of technology [37]. In our study, this was reflected
by the downward trend in the average time spent studying with PLANT in the faulty without
explanation group after the system’s faulty recommendation. The fact that participants did not stop
using the system completely could be related to the reward scheme, as dropping out during the
study would have led to no payment. Furthermore, findings from the qualitative analysis suggest
that to maximize explanations’ positive effect on trust, they should be tailored to the needs of
specific groups of users. Specifically, comments from participants with different levels of familiarity
and expertise with the technology suggest the need for different explanations that provide insights
at different levels of complexity. This supports the results of studies showing how different types
of explanations lead to different user reactions [63]. In addition, our qualitative research indicated
that the feeling of familiarity with the system’s features is likely to influence the perception of
trustworthiness. These insights corroborate previous work suggesting that personalization of a
system’s features may have a positive impact on overall acceptance by increasing familiarity with
the system [61].

Finally, another important finding was that the system’s explanations about the malfunction
were most effective in terms of restoring trust when participants were risk averse. This finding
suggests that the success of trust repair through system transparency is tightly connected to a
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person’s risk attitudes and is consistent with [7], who found a negative effect of risk aversion on
the relationship between perceived usefulness and trust.

6 CONCLUSIONS AND OUTLOOK
This paper analyzed how people’s trust in a assistive recommender system evolves over time. Our
main findings show that people perceive a system’s malfunctioning, such as a faulty recommen-
dation, as trust violation events, and it negatively affects trust ratings even after the system has
proven reliable. To this extent, we observed a downward trend in time spent studying only in the
faulty group without explanation. If, as Lomas et al. suggest [37], participants’ use of the system
can be considered an indicator of trust and technology acceptance, we can conclude that after a
malfunction, users will start spending less time with the system if no explanation is provided.

Furthermore, while explanations did not yield greater trust at the beginning and throughout the
interaction, they led to faster trust restoration after the mistake. This finding adds to the ongoing
effort to understand the dynamics of people placing trust in AI-based systems as they relate to
explainability. Another contribution of this study stems from its inclusion of risk aversion as a key
user characteristic in relation to trust in the system. Determining subjects’ risk attitude can help to
optimally calibrate the level of transparency for human-AI interaction.

The results of the quantitative and qualitative investigations also suggested questions that are
worth exploring in future work. For instance, reflecting the idea that ‘institutional cues’ may affect
how people place trust in new technologies, an open question concerns how the researchers behind
the study may have influenced participants’ perception of the system (and its explanations) in terms
of trustworthiness. Future work may wish to investigate in more detail the extent to which such
external entities contribute to determining how people trust new AI-based systems, particularly in
the initial phases of an interaction.

Another aspect that deserves more attention concerns explanations’ personalization. Since AI-
based systems are employed in a wide range of contexts, the needs of users will also likely vary
noticeably in terms of depth, level of details and expertise. Accordingly, future work should address
what AI-based system functionalities may offer such customization options, for instance in terms of
explanations’ ‘interactivity’ and ‘multi-modality’ [3]. Furthermore, future research would need to
be conducted to understand the particularities of different types of transparency and explainability
and how they affect trust in assistive systems.

The generalizability of these results is subject to certain limitations. For instance, this study
did not find a difference in the ratings of capacity trust and moral trust between groups. This
finding was unexpected, as it was speculated that groups who experienced a malfunction would
rate PLANT lower than groups that did not experience a malfunction. This inconsistency may
be due to the fact that the system’s correct behavior after malfunction itself positively affected
participants’ trust that PLANT is capable of completing a task (i.e. capacity trust) and will not
exploit the trustor’s vulnerability (i.e. moral trust), as these constructs were assessed at the end of
the study (after the seventh interaction) and not after the malfunction (on day 4). Perhaps a study
design in which either these facets of trust are investigated immediately after the malfunction,
or in which the system makes multiple mistakes throughout the interaction would yield higher
consistency in trust ratings.

Finally, another possible limitation concerns participants’ understanding of the causes of the
faulty recommendation in relation to the quality of the explanations provided by the system. In fact,
some participants noted that it was not clear how the system worked, even after the explanation.
This perspective can be attributed in part to the fact that any explanation is only an imperfect
approximation of an actual decision-making process [64], leaving room for misinterpretation. At
the same time, it is important to acknowledge that an explanation which is not understood serves
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little to no purpose in terms of proper trust calibration. Perhaps such a failure to understand the
explanation of the system’s inner workings was the reason why initial trust was marginally higher
in the groups with the explanation. A study designed to explicitly assess how people understand
different types of explanations (e.g., at different levels of depth and complexity) would help to shed
light on the dynamics of understanding explanations.
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Abstract
Artificial agents are progressively becoming more present in everyday-life situations 
and more sophisticated in their interaction affordances. In some specific cases, like 
Google Duplex, GPT-3 bots or Deep Mind’s AlphaGo Zero, their capabilities reach 
or exceed human levels. The use contexts of everyday life necessitate making such 
agents understandable by laypeople. At the same time, displaying human levels of 
social behavior has kindled the debate over the adoption of Dennett’s ‘intentional 
stance’. By means of a comparative analysis of the literature on robots and virtual 
agents, we defend the thesis that approaching these artificial agents ‘as if’ they had 
intentions and forms of social, goal-oriented rationality is the only way to deal with 
their complexity on a daily base. Specifically, we claim that this is the only viable 
strategy for non-expert users to understand, predict and perhaps learn from artificial 
agents’ behavior in everyday social contexts. Furthermore, we argue that as long 
as agents are transparent about their design principles and functionality, attributing 
intentions to their actions is not only essential, but also ethical. Additionally, we 
propose design guidelines inspired by the debate over the adoption of the intentional 
stance.

Keywords Intentional stance · Robots · Virtual agents · Ethics

1 Introduction

Artificial agents (i.e., physical robots, virtual agents and embodied virtual agents) 
capable of taking decisions autonomously are being employed in a growing number 
of fields. Several applications of such agents directly influence everyday life for a 
growing number of people, most of whom can be considered non-expert end-users. 

 * Guglielmo Papagni 
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To properly address the challenges posed by the integration and acceptance of arti-
ficial agents within society, coordinating the contributions of various disciplinary 
fields is necessary and a challenge within the challenge.

Being able to correctly understand and predict the behavior of artificial agents 
is necessary for the development of trustworthy relationships (De Graaf & Malle, 
2017; Miller, 2019). In this regard, one fundamental feature addressed by the ongo-
ing interdisciplinary efforts concerns whether people consider artificial agents’ 
actions and decisions as intentional. Contributions on this topic are embedded into 
the broader framework of discussion over the attribution of anthropomorphic and 
social traits to artificial agents (Nass et al., 1994; Reeves & Nass, 1996; Dreyfus 
et al., 2000; Nass & Moon, 2000). However, in recent times, the idea that artificial 
agents’ actions might be interpreted as intentional is emerging as a structured and 
semi-autonomous debate. A significant share of research on this issue is informed by 
Daniel Dennett’s concepts of ‘intentional systems’ and ‘intentional stance’ (Dennett, 
1971, 1981, 1989). The latter represents a strategy that people can adopt to make 
sense of and predict the behavior of complex rational (or intentional) systems, being 
them human agents or machines (Dennett, 1988). As the inner complexity of arti-
ficial agents grows, researchers in the fields of human–robot and human–computer 
interaction (HRI and HCI respectively) are investigating from multiple perspectives 
how people ascribe intentions to artificial agents.

Objections to the concept of intentional stance have been raised over the years. 
We recognize part of this criticism, specifically that which targets Dennett’s com-
mitment to a behaviorist perspective as reasonable. However, some of these objec-
tions tend to conflate biological definitions of intentionality with the attribution of 
intentions to artificial entities (Thellman et al., 2017), hence overshadowing what we 
consider Dennett’s most relevant contribution. Our aim is to build upon the original-
ity of his intuition without committing to Dennett’s behaviorism. First, this paper 
provides a critical analysis of Dennett’s concept, particularly in light of definitions 
of intentionality and some of the main objections. Moving beyond Dennett’s posi-
tion, we emphasize that the ascription of intentionality does not necessarily imply 
artificial agents to have genuine mental states in the human sense. Rather, we claim 
that the main quality of this strategy is to help people to manage social interactions 
with artificial agents, and that research should focus on how to maximize this posi-
tive aspect.

Furthermore, some scholars note a pressing lack of comparative analysis (Thell-
man et al., 2017). We argue that only through such a systematic approach it is pos-
sible to trace the point of origin of the attribution of intentions to artificial agents. 
Therefore, the paper analyzes relevant cases from the HRI and HCI experimental 
literature. From this comparative perspective, we discuss and refine Dennett’s idea 
that complex rational behavior is the spark that ignites the process of intention 
ascription.

The idea of deceptive anthropomorphism offers another criticism of features that 
trigger the attribution of intention. The last section investigates ethical implications 
of the concept, particularly in light of recent calls for machine transparency and the 
risks of ‘deceptive design’. Our claim is that the implementation of features that 
make artificial agents’ behavior ‘seemingly intentional’ is not only ethical, but can 
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be desirable, as it can positively contribute to the overall quality of social interac-
tions. However, we also identify a key condition for this assumption to hold. Users 
must be made aware of the nature of the agent they are interacting with before the 
interaction unfolds. Failing to fulfil this condition, as our examples show, can have 
negative consequences that could jeopardize the successful societal integration of 
artificial agents.

2  Critical Approach to the Intentional Stance

Each of the stances discussed by Dennett represents a strategy for understanding and 
predicting how certain entities work (Dennett, 1981, 1988, 1989). People adopt the 
physical stance to make sense of and predict the future behavior of certain systems, 
via their knowledge of physical laws. The design stance allows predictions to be 
made based on the assumption that systems work as they are meant to by design. 
In certain cases, however, these two strategies do not suffice. In particular, it may 
not be possible, let alone practical, to predict how rational systems (or agents) will 
behave based on the two previous strategies. To address this limitation, Dennett 
introduces the intentional stance. This is a predictive tool that relies on the assump-
tion that rational systems will behave in accordance with their intentions, beliefs and 
desires in order to achieve specific goals (Dennett, 1981, 1988, 1989).

Dennett is neither the only one, nor the first to refer to artificial agents in “anthro-
pomorphic” or social terms. One of the most relevant contributions in this direction 
is represented by the pioneering study from Heider and Simmel on the attribution 
of social meanings to the motion of geometric shapes (Heider & Simmel, 1944). 
Ever since the initial establishment of computing-related disciplines, researchers 
have spent significant efforts in trying either to make artificial agents appear and 
behave more like humans, or to explain why people tend to adopt social interpreta-
tive frameworks to understand and predict artificial agents’ actions (Caporael, 1986; 
Nass et al., 1994; Breazeal & Scassellati, 1999; Breazeal, 2002).

2.1  Complexity of Intentional Systems

After this initial contextualization of his work, it is important to note that the rea-
son why Dennett includes (certain types of) artificial agents as targets of the inten-
tional stance lies in the complexity of these systems. In fact, referring to a chess-
playing computer, Dennett says that such systems are “practically inaccessible to 
prediction from either the design stance or the physical stance; they have become 
too complex for even their own designers to view from the design stance.” There-
fore, one assumes “that the computer will ‘choose’ the most rational move” (Den-
nett, 1981, p. 5). In other words, Dennett emphasizes the idea that treating certain 
types of agents ‘as if’ they had intentions might in some cases be the only fruitful 
strategy to understand and predict their behavior. In fact, he continues, “when one 
can no longer hope to beat the machine by utilizing one’s knowledge of physics or 
programming to anticipate its responses, one might still be able to avoid defeat by 
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treating the machine rather like an intelligent human opponent” (Dennett, 1981, p. 
5). Again, elsewhere he clarifies that we adopt the intentional stance because “it 
gives us predictive power we can get by no other method” (Dennett, 1997, p. 66). At 
the same time, he also points out the difference between “those intentional systems 
that really have beliefs and desires from those we may find it handy to treat as if they 
had beliefs and desires” (Dennett, 1997, p. 66).

However, other positions expressed by Dennett on the topic contribute to further 
articulating the debate and give rise to some of the main critiques. In fact, in several 
occasions Dennett remarks the fact that if one were to infer and attribute any mental 
states to another agent, doing so through the analysis of the observable behavior of 
the agent would be the only way to go (Dennett, 1991, 1993). Dennett claims that 
there is no ineffable quality of the mind and that mental states can be discerned 
through the recognition and analysis of behavioral patterns. Furthermore, he argues 
that not only robots and artificial agents can be, in principle, referred to as “phil-
osophical zombies”, but that for the concerns of consciousness and mental states, 
everyone is such a zombie. This fictional entity is something that is functionally, 
i.e., behaviorally identical to a human being, but which lacks any form of actual con-
sciousness (Dennett, 1993, 1995).

For the purposes of this paper, such considerations represent the problematic 
node in Dennett’s framework. It is problematic because it implies the commit-
ment to forms of “behavioral realism”. Hence, from Dennett’s perspective, either 
both humans and artificial agents can be considered conscious, at least as long as 
they behave in a qualitatively comparable way, or neither of them should. Not only 
that, the fact that Dennett subscribes to such positions triggers several critiques, so 
that the debate takes, at least partially, the direction of a diatribe on the overlapping 
of genuine intentionality (and mental states more in general) and the attribution of 
intentions to artificial agents (Thellman et al., 2017). The reason for this lies in the 
fact that, as Dennett poses that perceiving patterns of intentionality in the behavior 
of an agent corresponds to saying that those patterns are the one and only real thing, 
the only possible consequence is to match humans and artificial agents under the 
sign of the intentional stance. To clarify this fundamental point, the next paragraphs 
briefly discuss what in the literature is referred to as genuine intentionality, to then 
focus on some of the main critiques proposed against Dennett’s arguments.

2.2  Biological Intentionality and Objections to the Intentional Stance

John Searle, for instance, refers to intentionality as a feature of an evolution-based 
mind that allows people to relate in the first place to each other, but also to the envi-
ronment. “My subjective states relate me to the rest of the world, and the general 
name of that relationship is ‘intentionality.’ These subjective states include beliefs 
and desires, intentions and perceptions [...] ‘Intentionality,’ to repeat, is the general 
term for all the various forms by which the mind can be directed at, or be about, 
or of, objects and states of affairs in the world.” (Searle, 1980, p. 85) Similarly, 
other philosophical definitions emphasize aspects of mind’s relatedness to the world 
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(Jacob, 2019) and one’s mental states as a function of their goals and aims (Miller, 
2019).

Consequently, it might sound reasonable that in order to interpret and predict the 
behavior of even sophisticated devices such as robots, or conversational agents, it 
would be enough to know the purpose behind their design. As artificial entities, they 
are not endowed with the evolution-based features that contribute to the emergence 
of biological intentionality. Hence, from this perspective, it would not make sense 
to adopt the intentional stance when interacting with such machines. However, as it 
was previously noted, Dennett explicitly refers also to artificial agents in his formu-
lations of the intentional stance and of intentional systems.

One of the shortcomings of Dennett’s theory is addressed as the “ideal rationality 
of intentional systems”. To this extent, it is argued that intentional biological agents 
do not always behave in full accordance with the ideal rationality implied by Stich 
(1985). Indeed, notes Stich, irrationality is a cornerstone of human behavior (Stich, 
1985). If an intentional agent in Dennett’s terms is one that always acts rationally, 
then intentionality and rationality necessarily go together, and if one acts irration-
ally, one cannot be an intentional agent, argues Stich. His main point is that this is 
not a valid argument to say that if one’s behavior is not fully rational, then no inten-
tions, beliefs etc. can be attributed.

Another line of argument directly targets Dennett’s ‘behaviorist’ positions con-
cerning intentionality and intelligence. What is criticized is the idea that if some-
thing behaves ‘as if’ it were intelligent (e.g., having intentions), then it should be 
considered as such, precisely because intelligence can be identified only through 
manifest behavior (Dennett, 1995; Danaher, 2020). Block makes the point that 
human-like behavior is not sufficient to characterize an agent as having human-like 
intelligence because, as a matter of fact, such behavior does not mirror actual men-
tal states or intelligence. Rather, it is merely the manifestation of its programmers’ 
intelligence (Block, 1981). Such machines, continues Block, lack “the kind of ‘rich-
ness’ of information processing requisite for intelligence” (Block, 1981, p. 28). In 
a similar fashion, Slors notes that Dennett never clarifies what the adoption of the 
intentional stance means without referring to intentions and hence winding up in a 
kind of circular argument (Slors, 1996).

At this point, one might note how the debate tends to be oriented towards a res-
olution of the contrast between genuine conceptions of intentionality (and intelli-
gence), and the adoption of the intentional stance. In other words, it tends to relin-
quish the pragmatic usefulness of attributing intentions to artificial agents, as they 
can only display something that looks like intentionality, but lack the very substra-
tum, processes and semantic richness that make up genuine intentionality. Whereas 
this might partially be Dennett’s own fault in light of his behaviorism, we argue that 
this conflating attitude is itself part of the problem (Thellman et al., 2017).

If one aims to move beyond Dennett’s behaviorism, why should a property unique 
to the mind be attributed to artefacts without minds? Furthermore, if certain types 
of machines, i.e., artificial agents, can be treated as if they were intentional, where 
should the line be drawn between them and devices whose behavior can be predicted 
only as a function of their design? And how is this boundary (if one exists) defined? 
These are the main questions addressed in this paper. Arguably, their relevance is 
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not merely philosophical. Since it is believed that artificial agents will play a central 
role in our society, it is fundamental to figure out appropriate design strategies to 
improve interactions with them and avoid ethically dangerous trends.

Based on the previous considerations, we argue that, for the purpose of social 
interactions with artificial agents, the usefulness of Dennett’s proposal should not 
concern whether a machine could have genuine intentions. As the above mentioned 
critiques have shown, supporting the intrinsic behaviorism of the intentional stance 
might create more problems than it solves.

2.3  Alternative Semantics, Alternative Approach

In line with the position expressed by Thellman and Ziemke, we claim that rather 
than focusing on and committing to hard-to-prove ontological statements about the 
nature of mental states, the attention should be shifted towards the idea that, from a 
user perspective, treating a sophisticated agent ‘as if’ it were intentional might be 
the most appropriate strategy (if not the only one available). Attributing intentions 
to machines should be more about the mental states of the one doing the ascribing 
rather than the mental states (or lack thereof) of the machine itself (Thellman & 
Ziemke, 2019). To this extent, recalling Searle’s definition of intentionality, Thell-
man and colleagues note that, in addition to reading intentionality as a function of 
relatedness (of subjective states to the world), Searle also refers to recognizing oth-
ers as intentional agents as fundamental to predicting how they will behave (Thell-
man et al., 2017). Such a complementary (in Searle’s terms) perspective reflects 
what we claim to be the most fruitful aspect of Dennett’s formulation. People attrib-
ute intentions not necessarily or not exclusively to recognize conspecifics, but rather 
to understand and predict how people (and agents) behave (Dennett, 1988). This 
seems to reflect “folk-psychological” definitions which consider intentionality not 
only objectively (i.e., biologically) but also as a social construct that functions as a 
‘tool’ to ease social interactions and thus also to make sense of or predict the behav-
ior of sophisticated artificial agents (Dennett, 1988; Malle & Knobe, 1997).

In support of this idea, studies suggest that the general attitude to anthropomor-
phize artificial agents might be the default approach that people adopt, as a socio-
cognitive construct, when they recognize human-like patterns in other agents’ 
(human or non-human) behavior (Caporael, 1986; Nass et al., 1994; Caporael & 
Heyes, 1997; Breazeal & Scassellati, 1999; Nass & Moon, 2000). Within this per-
spective, the attribution of mental states to other agents emerges as an automatic, 
bottom-up process caused by the activation of brain areas responsible for social cog-
nition as a response to the perception of human-like patterns and traits (Buckner 
et al., 2008; Looser & Wheatley, 2010; Spunt et al., 2015). Therefore, while it is true 
that such mechanisms are rooted in social cognition processes that humans devel-
oped in order to interact with each other, they are available also when interacting 
with artificial agents. At the same time, recognizing patterns does not necessarily 
imply believing that they reflect the same mental states, or any mental state at all.

Hence, we claim that for the consideration of the intentional stance to be fruit-
ful, it should be interpreted as a strategy that people adopt, consciously or not, to 
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navigate the world of social interactions with other rational agents, human or arti-
ficial. To avoid the risk of conflation of the intentional stance with biological defi-
nitions of intentionality, ontological statements and commitment about artificial 
agents’ hard-to-prove mental states should be left aside accordingly. As Breazeal 
states, referring to the Kismet robot, people treat it “as if it were a socially aware 
creature with thoughts, intents, desires, and feelings. Believability is the goal. Real-
ism is not necessary” (Breazeal, 2002, p. 52).

Therefore, we suggest that perhaps an alternative, machine-specific semantic 
approach is more appropriate. One might argue that people attribute or infer inten-
tions to other humans as well, so that attributing intentions to machines does not 
involve any different process. In a way, such overlap cannot be avoided, as the men-
tal processes involved in the persons doing the ascribing are qualitatively the same, 
with the only difference being one of quantity. However, in light of the previous 
discussion about distancing from Dennett’s behaviorism, what does differ qualita-
tively is how biological intentions and machine seemingly intentional behavior are 
generated. Whether or not users attribute intentions to such agents is supported and, 
to a certain extent, made possible by certain design strategies (as suggested in Wiese 
et al. (2017)).

Therefore, we claim that the emphasis should be put on the artificial and imple-
mented nature of the features that trigger the ascription of intention in order to sig-
nificantly mark the difference to biological instances. For instance, one could adopt 
formulations like artificial agents’ ‘seemingly intentional behavior’. This alternative 
approach should be accordingly interpreted as a pragmatic measure for researchers 
to work with, rather than as a specific ontological declaration. Following this prem-
ise, this strategy aims to describe the visible result, in terms of resembling inten-
tional behavior, of specific implemented features. Since the ultimate goal of this dis-
cussion is to improve the quality of the interactions users undertake with artificial 
agents, if an agent’s behavior appears to be intentional, we sustain that it should be 
possible to describe it in such terms without risking to bring out the implications of 
the previously discussed trend of ‘conflating notions’.

On the side of users’ experience, we deem the use of terms such as ‘attributed’ or 
‘ascribed’ intentionality more appropriate than others like ‘perceived’. ‘Perceiving’ 
intentions recalls the idea of the perceptual apparatus that people are endowed with, 
which collects, processes and reconstructs data from the surroundings (Malle, 2011). 
For instance, when an event occurs, the observable changes in the environment are 
perceived by our senses, recorded and processed. When it comes to social percep-
tion, perceptual information is combined so that people form impressions of each 
other and base their mutual judgement. Depending on the type of event or action 
that is perceived and processed, different types of causes (or reasons) are attributed 
as the result of a deliberative process (Parkinson, 2012). While the idea is in prin-
ciple the same for both “object perception” and “person perception” (in which case 
intentions might be involved), the latter situation poses a more complex challenge, 
as the data and possible causes to be analyzed are more nuanced (Malle, 2011). It 
must be noted that such processes might not always occur on a fully conscious level. 
Rather, we might expect that the more people engage in relationships with artifi-
cial agents, the more specific mental models will be activated subconsciously, as 
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such interactions start belonging to implicit social cognitive processes (Evans & 
Stanovich, 2013). Such considerations aim to highlight the mental states of the peo-
ple interacting with the agent. They emphasize that people resort, consciously or 
not, to the specific strategy of attributing intentionality in order to understand and 
predict the behavior of complex social machines, when other alternatives fail or can-
not apply. As such, one can refer to the ascription of intentions without mentioning 
beliefs, desires and intentions themselves, as Slors argues (Slors, 1996).

Furthermore, we note how formulations such as ‘simulated intentionality’ might 
be proposed, in line with the idea of ‘simulated social interactions’ as opposed to 
‘fictional interactions’ formulated in Seibt (2017). While it might be true that a given 
implemented feature aims to simulate intentional human behavior, labeling an inter-
action or implemented characteristics as ‘simulated’ suggests a potential expression 
of a negative bias, as expressed by Turkle when saying that simulated feelings are 
not real feelings (Turkle, 2010). This might in turn generate negative feelings in 
users who perceive their engagement as genuine leading them to scale back involve-
ment and interactions with these agents. We propose that a similar approach could 
undermine the quality of social relationships with agents.

As previously mentioned, another objection refers to the ‘ideal rationality’ of 
intentional agents. What we perceive as intentional behavior in machines does not 
necessarily have a non-rational counterpart, as it is the case for biological inten-
tional agents. Stich notes how intentional systems in Dennett’s sense are unavoid-
ably rational. In most cases, robots and virtual agents are not designed to have the 
option of irrational behavior and what is perceived as such is likely caused by errors 
or malfunctions. Hence, we argue that to come to terms with Stich’s position, a solu-
tion must be found that allows people to treat agents as intentional when they behave 
rationally as long as this is beneficial for the interaction, and yet to switch to an 
alternative mechanistic approach if they observe (apparently) irrational behavior. 
This idea is supported by Wiese and colleagues, who call for the development of 
design strategies that support interactive flexibility. In other words, it must be pos-
sible to alternate between intentional and mechanistic mental models depending on 
one’s specific interaction needs and contextual behavior (Wiese et al., 2017). Simi-
larly, other authors argue that people treat robots alternatively as things or agents 
during different moments of an interaction (Alač, 2016).

We previously noted how adopting one or the other framework might not be 
always a conscious choice and that chances are that people interpret artificial agents’ 
behavior socially as a default option. Therefore, the suggestion of developing design 
solutions that allow users to switch from one framework to the other should be con-
sidered under this assumption of a “primacy of the social mindset”. In other words, 
while in certain cases it might be beneficial for the interaction to support the attri-
bution of intentions and other mental states, other circumstances might require the 
opposite approach. In general, following Weick’s sensemaking theory, it is impor-
tant that the process of meanings co-construction (i.e., sensemaking) is lifted from 
the private and implicit sphere to a public and explicit level (Weick, 1995; Weick 
et al., 2005). This supports the notion of a more active involvement by users and 
the adoption of alternative semantics that support users’ awareness, as we propose. 
This approach can also offer people a strategy to reduce the risk of wrongly adopting 
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one framework (e.g., the mentalistic one) instead of the other, which would lead to 
incorrect predictions when an artificial agent’s behavior does not match the adopted 
mental model (Wiese et al., 2017). The next sections consider under what circum-
stances one or the other framework might be the most appropriate.

However, such considerations on ideal rationality do not necessarily imply that 
every time an agent’s behavior leads to an unpredictable outcome from an inten-
tional perspective, this is necessarily the result of a system error or malfunction. It 
might well be that the user simply cannot make sense of certain actions because she 
cannot immediately grasp the reasons behind them. It is in such cases that the user 
typically asks for an explanation (Miller, 2019). This can still be provided by the 
agent within an intentional framework, thus highlighting an “information asymme-
try” according to which the agent’s decision-making process was simply not obvious 
(Malle et al., 2007). Alternatively, the explanation could clarify whether an inter-
nal failure has occurred, thus letting users know that a mechanistic model would 
be more appropriate. In conclusion, this transition to non-intentional frameworks is 
likely to proceed more smoothly if users are made aware of the necessity to switch. 
We shall return and provide further support to this assumption in the last section 
where we discuss ethical implications.

2.4  AlphaGo: A Case Study

Here, we briefly discuss how the elements discussed so far are not only a matter 
of theoretical debate or experimental testing, but also apply to real life. To do so, 
we analyze a few aspects related to the case of Deep Mind’s AlphaGo. One of the 
main reasons to reflect upon this case is that it offers an ‘updated’ direct comparison 
with Dennett’s original example of the chess-playing computer. However, we can 
expect the future to provide further examples as this type of technology becomes 
more broadly present in our society.

Go is a very old board game and among the most complex ones, where ‘human 
intuition’ plays a fundamental role. Deep Mind’s Go-playing system is not prepro-
grammed by expert players to perform a set of specific moves. Rather it is trained 
(or trains itself) through reinforcement learning. Through mimicking human strate-
gies first, and then playing against different versions of itself (Silver et al., 2017), the 
system is able to improve and adapt its strategies autonomously. When challenged 
by some of the best human players, AlphaGo has repeatedly proved its efficacy in 
the game (Andras et al., 2018; Curran et al., 2019).

Curran and colleagues conducted a content analysis of how the Chinese and 
American press approached AlphaGo’s games. Beside the predictable cultural 
differences, they also highlight how it is not unusual to attribute qualities such 
as ‘intuition’ and ‘creativity’ to the system (Curran et al., 2019). Furthermore, 
they argue, if such qualities “are no longer the sole domain of humans, there 
is a demand for a reconceptualization first and foremost of what it means to be 
human” (Curran et al., 2019, p. 733). In other words, they note, observing traits 
typical of human intelligence in a machine (whose nature is always transparent) 



514 G. Papagni, S. Koeszegi 

1 3

might even lead to an ontological reconsideration of what it means to be human 
(Severson & Carlson, 2010; Kahn, et al., 2011).

Another interesting aspect is the fact, that “some moves are made that are 
novel and inexplicable to human Go-playing experts and yet are effective, leading 
to more wins and new insights into the game” (Andras et al., 2018, p. 79). Few 
things can be noted. Heider differentiates intentional actions from unintentional 
events by saying that the former exhibit ‘equifinality’ (Heider, 1983). While 
AlphaGo can employ new and unpredictable moves, the apparent intention to win 
the game remains the same, i.e., oriented towards the same goal, i.e., ‘equa-final’ 
(Heider, 1983).

A second remark emerges that concerns and further explains the previously 
discussed distinction between perceiving and attributing intentions, particularly 
with those AlphaGo’s moves that are inexplicable and yet effective (especially 
move 37 of the second match against Lee Sedol (Metz, 2016)). The reason why 
certain moves were difficult to predict is that human players would have hardly 
ever used them in those circumstances. The commentators of the game even won-
dered whether move 37 was a mistake. In pragmatic terms, what AlphaGo did 
was to opt for a very uncommon (among human players) strategy, whose out-
come was a almost certain victory, although with a very small margin. Beyond 
uncovering new possible approaches to the game, the point we aim to make here 
concerns the fact that a move initially perceived as possibly erroneous turned out 
to be a winning one. In other words, the audience attributed the ‘equifinality’ of 
winning the game only in hindsight, while the initial perception was unclear. Fur-
thermore, recalling the previous considerations on systems’ ideal rationality, part 
of the audience was prone to attributing move 37 to a system mistake, highlight-
ing the persistence of mechanistic interpretations of the system’s behavior. How-
ever, such a possibility was later discarded as the move proved to be successful, 
although initially hard to predict and explain.

Finally, it can be noted that it would probably be very difficult for laypeople to 
obtain new insights into the game and learn new gaming strategies from a math-
ematical (i.e., design) perspective (for a similar analysis see Ling et al. (2019)). 
It might, however, be possible to interpret (or predict) those moves as if they had 
been made by a human whose goal is to win. In this regard, Curran and colleagues 
report a professional player commenting on one such move by saying that “almost 
no human would’ve thought of it” (Curran et al., 2019, p. 733).

In conclusion, Curran and colleagues observe how the type of narrative used by 
the media was influenced by the journalists’ lack of domain-specific expertise, which 
allegedly led them “to relay on broad and undifferentiated frames” (Curran et al., 
2019, p. 734). However, as we argued previously and partially in line with Dennett, 
a more plausible explanation is that the complexity of systems like AplhaGo does 
not leave laypeople (included most journalists and professional players) much room 
for interpreting the moves as the result of programming strategies. Rather, attribut-
ing to AlphaGo the intention (and desire) to win the match, the rationality needed to 
achieve this goal and the belief that a specific strategy would have been successful 
as it would be done with human players, is the only viable strategy for non-experts 
to understand, predict and perhaps learn from the system’s behavior.
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3  Tracing the Point of Origin of Intention Ascription in Artificial 
Agents: A Comparative Analysis of HCI and HRI

Dennett’s original formulation of the intentional stance hinges on the complexity 
of sophisticated systems and the apparent rationality of their behavior as the main 
trigger for the ascription of intentions. Today’s AI-based technologies are far more 
complex and advanced compared to those described by Dennett. Therefore, the issue 
of whether or not to treat today’s machines as intentional agents is extremely press-
ing and relevant for their successful introduction into our society. How can complex 
rational behavior be unpacked and articulated to come up with implementable strate-
gies? And how is this issue interpreted and studied in the empirical literature?

We approach this issue considering that attributing intentionality and other men-
tal states to artificial agents is a flexible process (Abu-Akel et al., 2020). Further-
more, we acknowledge the intrinsic nuances of the process, which can very sensibly 
according to the already existing variety of artificial agents. According to Thell-
man and colleagues, how the attribution of intentions and other mental states var-
ies depending on the type of agent represents an open challenge (Thellman et al., 
2017). To this extent, they note, “there has been very little comparative research 
on how people actually interpret the behavior of different types of artificial agents” 
(Thellman et al., 2017, p. 1). Therefore, in this section, we analyze relevant exam-
ples from the experimental literature on virtual and embodied agents to investigate 
these assumptions from a comparative perspective. Based on this analysis, we argue 
that only by adopting a transversal approach does it become possible to grasp the 
nuances of this flexibility.

However, it is important to acknowledge that situations in real life might soon 
become even more nuanced, especially as the number of typologies and the diver-
sification of artificial agents to interact with increase. Whereas we circumscribe the 
analysis to virtual and embodied agents, variants of each category already exist (e.g., 
anthropomorphic and machine-looking robots) that are worth examining individu-
ally and in comparison with other forms of social presence (Cassell, 2000; Bartneck, 
2003; Kiesler et al., 2008; Li, 2015). Furthermore, there is in the literature a lack of 
long-term studies, which would help building a better understanding of how pro-
cesses such as the attribution of intentions and other mental states evolve over time.

An initial distinction that emerges from the comparative analysis highlights how 
the phenomenon depends on intrinsic features of the agents, people’s dispositions 
and external and contextual conditions. Furthermore, how the combination of these 
factors influences the overall process is rarely taken into consideration (Marchesi 
et al., 2019; Schellen & Wykowska, 2019).

3.1  Contextual Conditions

Several contextual elements that contribute to triggering the attribution of intentions 
can be identified. For instance, as illustrated by the example of AlphaGo, a society’s 
cultural background can have repercussions for its perception of artificial agents 
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(Haring et al., 2014; Curran et al., 2019). Even more, attribution of anthropomor-
phic traits appears to be influenced by whether people perceive artificial agents to be 
members of the same in-group (e.g., in terms of nationality or gender) rather than of 
out-groups (Eyssel & Kuchenbrandt, 2012; Eyssel et al., 2012; Kuchenbrandt et al., 
2013). Another relevant avenue of research investigates how attribution of anthropo-
morphic traits to physically present artificial agents can influence people’s success 
in carrying out social and cognitive tasks (Riether et al., 2012; Spatola et al., 2019, 
2019).

However, one element that occupies a central position is the type of tasks 
involved in the interaction (Epley et al., 2007; Marchesi et al., 2019). The fact that 
many artificial agents are meant to be employed in social contexts makes this aspect 
particularly relevant. For instance, Chaminade et al. (2012) conducted an fMRI 
study involving a competitive scenario (rock-paper-scissors) to compare attitudes 
towards the competitors—a human, an ‘intelligent’ robot and a ‘random agent’ (that 
did not base its moves on any strategy). Their results show that while participants 
treated the human competitor as being intentional, their reactions towards the robot 
were not significant in terms of intention attribution (Chaminade et al., 2012). As a 
possible explanation for this, the authors point to participants’ lack of a clear cogni-
tive strategy to interact with the agent, which resulted in them relying mostly (or 
exclusively) on individual opinions about the robot’s inner mechanisms (Chaminade 
et al., 2012).

However, a different explanation is provided by Thellman et al. (2017), who sug-
gest that the simple experimental scenario was the reason why no significant attri-
bution of intentions was detected. While it is true that individual expectations do 
indeed play a central role (as discussed later), considering that a game like rock-
paper-scissors does not involve much strategy (unlike other games, such as chess or 
Go), it becomes clear that the same type of agent might be treated as being either 
intentional or mechanical depending on the interaction affordances. This interpreta-
tion further refines the idea of people adopting a default social mindset when inter-
acting with artificial agents. Specifically, the last consideration suggests that peo-
ple tend to adopt a mentalistic approach as a default option when other cognitive 
processes are involved (e.g., strategic thinking and social cognition) (Spunt et al., 
2015). However, the different interpretations of the results obtained by Chaminade 
et al. (2012) highlight another contextual factor we ought to consider.

Researchers’ attitudes when investigating this phenomenon (or any phenom-
enon) might play a part in influencing how participants perceive an agent. This 
aspect seems to be largely underestimated in the literature. Perhaps this is because 
researchers’ attitudes are not believed to have a direct impact on real social interac-
tions. However, the way a researcher approaches a topic surely influences what can 
be found (i.e., when a researcher studies a phenomenon, the divergences and biases 
introduced by his or her unique point of observation may go unnoticed). Conse-
quently, as researchers are among the people in charge of designing artificial agents, 
their approach findings can influence the societal perception of a specific topic in an 
indirect way, particularly in the longer term.

Another example stems from the analysis by Lim and Reeves (2010). The authors 
discuss levels of engagement in gaming experiences when playing with or against 
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‘avatars’ and ‘agents’. Based on several studies, they state that when people believe 
they are interacting with a digital avatar of a real person, perceived social presence 
is higher compared to when interacting with an artificial agent. While in principle 
this might be a sound assumption, the authors hypothesize that a negative attitude 
towards the agents arises because players cannot ‘mentalize’ their opponent when 
this is an agent (rather than an avatar) (Lim & Reeves, 2010). In particular, their 
assumptions rest on a description of agents rooted in their (lack of) biological inten-
tionality (Lim & Reeves, 2010). However, as we discussed previously, attributing 
intentions to an agent does not necessarily imply biological forms of intentional-
ity. In conclusion, whereas relying on biological definitions of intentionality might 
explain negative dispositions towards agents, if engagement and ascription of inten-
tions are detected and measured, this implies that people can and do mentalize arti-
ficial agents. Hence, the explanation provided by Lim and Reeves (2010) does not 
hold and, to the contrary, shows an underlying bias in addressing the topic.

3.2  Human Attitudes

We have previously noted how, alongside objective biological interpretations, inten-
tionality (and the ability to infer and ascribe intentions to others’ behavior) can also 
be read as a socio-cognitive construct (that makes social interactions possible). The 
intertwining of these two processual levels starts at very early stages of life. In fact, 
“when infants follow others in adopting the intentional stance, they acquire better 
interpretational resources, which increases their incorporation into the adult envi-
ronment, and this, in turn, furthers the process of enculturalization.” (Perez-Osorio 
& Wykowska, 2019). Furthermore, the ability to mentalize others might be part of 
a cerebral network labeled “the brain’s deafult network”, which has been shown to 
activate when one tries to mentally anticipate and explore social scenarios (Buck-
ner et al., 2008). Consequently, people are trained to mentalize and recognize inten-
tional patterns (Frith & Frith 1999, 2006; Chaminade et al., 2012; Perez-Osorio & 
Wykowska, 2019) and, more generally, to attribute anthropomorphic traits to non-
human entitites (Caporael & Heyes, 1997; Nass & Moon, 2000; Nass et al., 1994), 
meaning that these strategies are widely available if necessary, according to the 
interaction affordances. We shall now discuss what it means for a strategy to be 
available if necessary.

Importantly, it can be noted that for people, it still makes a difference whether 
they interact with conspecifics or with artificial agents. In other words, brain acti-
vation is stronger in human–human interactions. However, reported differences can 
vary greatly from case to case (Thellman et al., 2017; Marchesi et al., 2019; Perez-
Osorio & Wykowska, 2019). To this extent, an interesting perspective is provided 
by Bossi and colleagues, who conducted a study analyzing how brain activity in 
the ‘resting state’, i.e., when not engaged in a task, biases the perception of robots 
during interaction. They found that if mentalizing processes are present during the 
resting state, people are more likely to treat robots mechanistically later when inter-
acting with them (Bossi et al., 2020). They explain these counterintuitive results by 
arguing that “if participants were involved in thinking about other people, and their 
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intentions or mental states in general, before they took part in the task, the con-
trast with a robotic agent might have been larger” (Bossi et al., 2020, p. 4). Hence, 
although the attribution of intentions is a strategy that is always available, its adop-
tion (or lack thereof) might be affected by the preceding neural activity, showing a 
non-linear correlation with other variables such as the type of activity or the general 
disposition of individuals towards artificial agents.

Despite quantitative differences, there seems to be a certain degree of agreement 
on the possible cause for this differential activation of mentalistic schemata. The 
idea is that it is fairly easy for people to interpret certain artifacts as material objects 
and humans as intentional agents. Everything in between lacks a specific ontologi-
cal categorization, forcing people to adopt a familiar framework, which often turns 
out to be the intentional one (Davidson, 1999; Thellman et al., 2017; Marchesi et al., 
2019; Abu-Akel et al., 2020). Consequently, as previously argued, people adopt 
this strategy when it proves to be the most efficient or reliable (Perez-Osorio & 
Wykowska, 2019). To this extent, according to Weick, if previously adopted sense-
making strategies have been successful, they will be retained and reenacted in future 
interactions (Weick, 1995). However, this is likely to not always be the most fruitful 
approach, but only in cases where tasks require social cognition (Epley et al., 2007; 
Spunt et al., 2015; Wiese et al., 2018; Ohmoto et al., 2018; Schellen & Wykowska, 
2019). It is in such cases that treating artificial agents as intentional tends to improve 
the quality of the interaction (Wiese et al., 2017; Schellen & Wykowska, 2019).

Furthermore, in line with Dennett’s idea of complexity, it should also be consid-
ered that approaching artificial agents from a mechanistic perspective is generally 
difficult for many people (Dennett, 1981). The reason is that it may be cognitively 
too demanding, especially for non-expert users, to try to make sense of artificial 
agents behavior from a mathematics-based, design stance. This highlights a connec-
tion between the concept of systems’ complexity and the idea of necessity. How-
ever, such a relationship should be read in light of the type of tasks and interactions 
involved, as previously discussed. Before drawing any conclusion, the next para-
graph will consider the last set of relevant elements that can influence the attribution 
of intentions and other mental states. Additionally, it should still be considered that 
cultural or personal dispositions towards technology might still override the availa-
bility of an intentional framework, encouraging people to adopt either a mechanistic 
or an anthropomorphic approach (Waytz et al., 2010; Haring et al., 2014).

3.3  Intrinsic Features

Analyses of internal or exhibited features of agents that factor into the attribution 
of intentions (and more broadly of social skills) converge towards two categories of 
qualities: appearance and behavior (Wiese et al., 2017). This, supported by advances 
in neurosciences, particularly the availability of fMRI techniques, has led some 
researchers, especially in the field of human–robot interaction, to emphasize the 
importance of anthropomorphic embodiment as a trigger for the use of mentalistic 
descriptions (Marchesi et al., 2019). Of particular interest, in this direction is the 
discovery of mirror neurons (Rizzolatti & Craighero, 2004). These appear to play a 
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role in the processes of attributing intentionality based on embodiment, so that simi-
larity to human physical presence triggers higher activation.

Consequently, research on physical appearance has focused on endowing agents 
(particularly robots) with human-like features. Some features, such as a face (John-
son, 2003; Looser & Wheatley, 2010; Balas & Tonsager, 2014), gazing eyes (Khalid 
et al., 2016; Willemse et al., 2018), a non-symmetric ratio between the head and the 
body, smooth bodily transformations as opposed to rigid and linear changes, (John-
son, 2003), and the visibility of the entire body (Chaminade & Cheng, 2009) have 
been highlighted as preeminent. This approach is rooted in the idea that “humans 
might be able to understand the behavior of human-like robots more easily than, for 
example, the behavior of autonomous lawnmowers or automated vehicles” (Thell-
man et al., 2017, p. 2). This is a plausible explanation, as feature similarity is likely 
to more effectively and quickly activate the brain areas involved in mentalizing and 
motor resonance (Chaminade et al., 2007; Wiese et al., 2017).

However, if the attribution of intentions mostly depends of appearance, this 
would not explain positive results in the absence of a body or with very different 
forms of embodiment. Interestingly, Ziemke (2020) reports one such case in rela-
tion to a road accident involving an autonomous vehicle. The accompanying report 
by the U.S. National Transportation Safety Board notes how some people were 
surprised that “Uber’s self-driving car didn’t know pedestrians could jaywalk” 
(Ziemke, 2020, p. 1). This is explained as “an expectation-probably shared by many 
people that driverless cars should have a human-like common sense understanding 
of human behavior.” (Ziemke, 2020, p. 2) More generally, this implies that behavio-
ral elements might be at least as important as appearance, if not more (Terada et al., 
2007; Wiese et al., 2017). Among qualities in this category, studies have focused on 
the reciprocity and contingency of the behavior in relation to the environment and to 
other agents (Johnson, 2003; Pantelis et al., 2014, 2016). Furthermore, autonomous, 
rational and seemingly biological motion play a central role (Castelli et al., 2000; 
Gazzola et al., 2007; Oberman et al., 2007; Pantelis et al., 2016; Abu-Akel et al., 
2020).

In this respect, experiments in the tradition of a well-known study by Heider 
and Simmel make an important contribution. Heider and Simmel argued how peo-
ple attribute social skills to geometric shapes in motion (Heider & Simmel, 1944). 
Developing this concept further, Pantelis and colleagues analyzed the relationship 
between the goal-directed motion of similarly simple, autonomous geometric objects 
in a two-dimensional virtual environments and the attribution of mental states (Pan-
telis et al., 2014, 2016). The results of the first study show that people tend to esti-
mate agents’ states (e.g., when they are ‘attacking’ another agent, or ‘fleeing’ from 
it) correctly and coherently with one another (Pantelis et al., 2014). Perhaps more 
revealing are the results of a follow-up study, where an evolutionary factor is intro-
duced into the agents’ behavior. In fact, the authors hypothesize that the ascription 
of mental properties is at least partially related to how artificial agents adapt to their 
environment (Pantelis et al., 2016). One of their main arguments is that people’s 
ability to correctly infer the agents’ states increases concurrently with the rational-
ity of the agents’ behavior. Their results show that people tend to infer more accu-
rately the mental states of agents that adapt their behavior. These studies not only 
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corroborate the relevance of motion for appropriate judgements of the behavioral 
information that motion itself conveys. Arguably, they support the idea of a pri-
macy of ‘pro-social rational content’ over the means of conveyance (i.e., in this case, 
motion itself). Thus, in the absence of such minimal rationality, artificial agents’ 
behavior does not communicate any mental state (Pantelis et al., 2016).

This last proposition is supported by the fact that appearance and biological 
motion alone (or combined) cannot explain the ascription of intentions and the acti-
vation of brain areas responsible for mentalizing in cases where both features are 
missing. The study conducted by Abu-Akel et al. (2020) is in line with this position. 
The authors investigate the ascription of intentions to a virtual agent in a competi-
tive scenario, with the participants not able to see their competitor. They hypoth-
esize that the activation of brain areas involved in mentalizing operations does not 
require motion. Instead, they claim that abstract information about the opponent is 
sufficient as long as it is considered an intentional and rational agent of either natu-
ral or artificial nature. Thus, their results show how “activation of the ’mentalizing 
network’ might be specific to mentalizing, but it is not specific to mentalizing about 
humans.” (Abu-Akel et al., 2020, p. 8). Interestingly, conclude the authors, “such 
flexibility in the attribution of intentionality (whether to active or passive, human or 
computer agents) can be manipulated volitionally and even strategically” (Abu-Akel 
et al., 2020, p. 8). As it will be addressed in the next section, this has have ethical 
implications.

Another study pointing in a similar direction was conducted by Pinchbeck (2008). 
Here, the authors analyze how to enhance gaming experiences by implement-
ing simple behavioral tricks in non-player characters, rather than relying on more 
complex AI techniques to drive more nuanced individual behaviors. Referring to a 
group of non-player characters (human mercenaries), they describe a ‘breakdown 
of intentionality’ as a consequence of the characters’ incoherent behavior. Under 
certain conditions, these characters enter a ‘combat state’ (i.e., ‘seemingly inten-
tional’ behavior of actively seeking enemies). Instead, when they are in the water 
they engage in a sort of ‘rest state’ (‘the pool party effect’, in the terminology used 
in the paper), making themselves vulnerable to attacks. Furthermore, the characters 
seem to be uninterested in solving this issue, an attitude that the authors identify as 
totally irrational. This negatively affects the attribution of intentions and rational-
ity to the characters (and the gaming experience). This, the authors note, happens 
because people tend to grant intentionality when actions are recognized as ecologi-
cally valid (Pinchbeck, 2008). By contrast, another kind of non-player character 
(i.e., mutated monkeys called Trigens) display more ecologically valid behavior by 
avoiding entering the water, which would cause them to drown. This rational atti-
tude appears to suggest a higher degree of intentionality despite the characters’ less 
human appearance.

In conclusion, as the examples show, our analysis identifies a few concepts that 
are useful for the design of artificial agents. Implementing features that support the 
attribution of intentions can be a desirable strategy, as it may enhance the overall 
quality of the interactions. In this way, manifest behavior that conveys a message of 
contextual, pro-social rationality serves as the main spark that ignites the processes 
of attributing mentalistic qualities to artificial agents. This is supported by the fact 
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that the ascription of intentions and other mental states is a widely available mental 
process that people are trained to engage in beginning at an early age. Hence, this 
also clarifies our previous point on necessity. While the ontological classification 
of most objects is not problematic, as soon as more sophisticated devices’ behavior 
appears as minimally rational and pro-social, the combination of the availability of 
a mentalistic approach and the likelihood of a cognitive overload that might derive 
from trying to make sense of such machines from a mechanistic perspective result in 
the default adoption of mentalistic schemata.

Whenever they can be implemented, features like a human-like appearance or 
biological motion are fundamental tools to support the process, and as such, they 
should always be considered as a possible design strategy. Nevertheless, human-like 
appearance and motion alone are not sufficient conditions (e.g., a highly anthropo-
morphic robot that does not act in a contextually rational way is likely to be treated 
as a sophisticated mannequin). They need to be accompanied by (appearance) or 
convey (motion) some sort of rational message with ecological validity. Accord-
ingly, artificial agents that do not display either of these qualities (appearance or 
motion) can still be treated as intentional, as is for instance the case with AlphaGo or 
conversational agents. As the perceivable rationality of agents’ behavior increases, 
the attribution of intentions becomes more likely. Additionally, as the interactions 
with artificial agents increase in number and variety, the attribution of intentions and 
other mental states may become part of implicit social cognition processes. Refer-
ring to models of the mind proposed within the context of “dual processes” and 
“dual systems” theories, this would further reduce the cognitive load, and make the 
process more automatic (Evans & Stanovich, 2013).

However, it is important to note that depending on the interaction context, the 
tasks to be carried out and the type of machine, a mentalistic approach might not 
always be the most appropriate. If no social cognition is involved (e.g., as with 
autonomous vacuum cleaners or lawnmowers), more mechanistic mental models are 
adequate. Referring to design features that allow users to switch from one interpre-
tative framework to another, it is fundamental that such design strategies consider 
said transition in both directions. For instance, if a robotic vacuum cleaner crashes 
or malfunctions, adopting a mentalistic approach is counterproductive. More gen-
erally, even when such machines function properly treating them as intentional 
agents would likely not be very beneficial to the interaction. This further supports 
the emphasis on social cognition and the idea of seemingly rational behavior as trig-
gers. Similar considerations are to be accounted for in the design phase of artificial 
agents, also in light of the fact that people tend to attribute human traits to machines 
even when, in principle, mechanistic approaches would be more appropriate (Car-
penter, 2013).

4  Ethical Considerations: Attribution of Intentions and Deception

This section of the paper takes a twofold approach to the ethical aspects of adopting 
the intentional stance. On the one hand, we acknowledge that, as artificial agents’ 
presence in a growing number of everyday contexts increases, it is important that 
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interactions with them become progressively more efficient, pleasant and trustwor-
thy. Accordingly, design strategies that support users’ adoption of the intentional 
stance in contexts that involve social cognition might be sought after (Spunt et al., 
2015; Schellen & Wykowska, 2019), particularly with respect to mutual connec-
tions, joint human–agent efforts, and, more generally, social acceptance of artificial 
agents (Wiese et al., 2017). On the other hand, these efforts aimed at improving the 
overall quality of human–agent interactions should not translate into design strate-
gies that make the categorization of artificial agents ambiguous (Hackel et al., 2014; 
Mandell et al., 2017). In fact, extreme anthropomorphic attributions might have 
a negative impact on the quality of the interaction (Mandell et al., 2017; Ziemke, 
2020) if, for instance, people start perceiving artificial agents as a threat rather than 
valuable resources (Spatola & Normand, 2020). It is therefore important to find a 
proper balance between these two necessities in advance, so as to not leave the bur-
den of evaluation entirely on the people interacting with the agents.

4.1  Layers of Deception in Human–Agent Interaction

Before analyzing whether the implementation of features that resemble intentional 
behavior should be labeled a deceptive design strategy, it is first necessary to briefly 
consider what deception means in the first place. According to Danaher, at the low-
est level of analytical granularity, “deception involves the use of signals or repre-
sentations to convey a misleading or false impression. Usually the deception serves 
some purpose other than truth, one that is typically to the advantage of the deceiver.” 
(Danaher, 2020, p. 118) According to this interpretation, deception centers around 
three main elements: the person being deceived, the agent directly responsible for 
perpetrating the deception, and the signal or misleading information. Another layer 
must be considered. It is represented by the interests of what we call a ‘third party’, 
which typically is the entity or set of entities (e.g., companies, designers, malicious 
users etc.) that act from ‘behind the curtain’ to provide the conditions necessary for 
the agent to perform deceptive acts. These are often the actors that ultimately gain 
the greatest advantage, for instance, in terms of data use (Kaminski et al., 2016; 
Hartzog, 2016) or for unethical commercial or even criminal purposes (O’Leary, 
2019). It is important to acknowledge this aspect within the context of human–agent 
interaction, for reasons that are mostly related to responsibility distribution, as it will 
be addressed further on.

The issues with attributing intentions to artificial agents and the implementa-
tion of strategies meant to trigger such attributions are at the heart of the debate 
on deception. The first consideration in this regard is quite nuanced. As Danaher 
notes, it has to do with the fact that what exactly constitutes a deceptive act among 
humans is defined by the intentions, desires and beliefs of the deceiver. Arguably, 
taking such a perspective in human–agent interaction is problematic, since whether 
agents have intentions and other mental states or not is itself part of the debate on 
deception (Danaher, 2020). Most of the debate concentrates on interpretations of 
intentionality that are in line with or similar to Searle’s. Often, this type of criti-
cism is also directed at features that express emotional engagement (such as care 
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or love). Therefore, anthropomorphic cues that do not reflect actual qualities (e.g., 
mental states) are fundamentally seen as deceptive. Some authors argue that anthro-
pomorphic behavior and ‘simulated qualities’ are designed to trick and fool people 
precisely because they let people believe robots (and other agents) have those quali-
ties that they lack (Sparrow & Sparrow, 2006; Sharkey & Sharkey, 2010; Turkle, 
2010; Elder, 2016). More broadly, it is argued that the implementation of features 
that express seemingly intentional behavior could trigger categorical uncertainty (in 
ontological terms) and therefore undermine social interaction (Hackel et al., 2014; 
Mandell et al., 2017).

Not only researchers but also institutions that oversee the development of AI and 
robotics have highlighted the potentially negative aspects of excessive anthropomor-
phization/personification of artificial agents. The EU High Level Group’s call for 
trustworthy AI is one such example, but several other bodies have moved in a simi-
lar direction (Coeckelbergh, 2019; Floridi, 2019; HLEG, 2021). For instance, The 
UK Engineering and Physical Sciences Research Council’s (EPSRC) Principles of 
Robotics clarifies that robots should not be designed to deceive users and should 
always be clear and transparent about their artificial nature (Theodorou et al., 2016; 
Boden et al., 2017). Similar efforts highlight that robots and other artificial agents 
should not pose as humans (Shahriari & Shahriari, 2017; Heaven, 2018).

However, it is important to note that not all researchers agree with these positions. 
In fact, some consider at least some forms of deception to be an intrinsic feature of 
robotics and AI, as they offer the best possibility of successfully developing socially 
integrated artificial agents. As such, deception is seen as an acceptable, even desir-
able phenomenon (Wagner & Arkin, 2011; Shim & Arkin, 2012; Isaac & Bridewell, 
2017; de Oliveira et al., 2020). Indeed, one might argue that deception even lies at 
the foundation of the Turing test, the many versions of which share the assumption 
that, in order to pass the test, a machine must succeed in convincing a human jury 
that they are actually interacting with another human.

Danaher highlights a further possible distinction. He regards what he calls ‘hid-
den state deception’ as the most dangerous layer. This form of deception occurs 
when agents hide capacities they possess by means of deceptive signals (Danaher, 
2020). Collecting personal data without users knowing it or, even worse, pretending 
it is not happening falls into this category. While it is reasonable to share such con-
cerns, this paper primarily aims to discuss another level of potential deception, what 
Danaher calls ‘superficial state deception’. This entails that an agent “uses a decep-
tive signal to suggest that it has some capacity or internal state that it actually lacks.” 
(Danaher, 2020, p. 121) Indeed, implementing features that resemble intentionality 
is a form of superficial state deception, although the main beneficiaries of the two 
levels are roughly the same (i.e., the aforementioned third parties).

4.2  Seemingly Intentional Behavior is not (Necessarily) Deception

The thesis we defend here is a twofold one. First, we argue that in principle, it is 
not unethical to opt for design strategies that support the adoption of the intentional 
stance. However, to avoid feelings of deception, a fundamental prerequisite is that 
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users are put in a position to, if not consciously decide, at least be aware of the nature 
of the agent. We approach this discussion based on the aspects introduced in the 
first part of this section and in light of the alternative approach previously proposed. 
Regarding the recursive argument pinpointed by Danaher, we identify two levels of 
interpretation. If to say that someone is a deceiver implies the intention to deceive, 
then we argue that this is not the case with artificial agents. By speaking of ‘seem-
ingly intentional behavior’, we mean to emphasize the conscious attempt to emulate 
human behavioral traits for the sake of interactional quality. As such, the term spe-
cifically seeks to avoid conflation with biological, evolution-based interpretations of 
intentionality. Artificial agents do not have genuine intentions (e.g., to deceive) in 
the biological sense, which implies that they cannot be genuinely deceptive.

However, we also introduced the idea of a possible involvement of third parties. 
Artificial agents can, in principle, stand for the interests of said actors. Accordingly, 
in addition to what was previously reported, Jacob states that if “a speaker utters 
words from some natural language or draws pictures or symbols from a formal lan-
guage for the purpose of conveying to others the contents of her mental states, these 
artifacts used by a speaker too have contents or intentionality.” (Jacob, 2019, p. 1) 
We consider it problematic if these actors seek to deceive users through the agents 
(i.e., the artifacts that convey the actor’s intention). As such, artificial agents could 
well be ‘tools of deception’ by these third parties.

For this reason, we deem it fundamental to make an ethical distinction between 
the promotion of illusions such as personification and the implementation of fea-
tures that trigger the ascription of intentions. Recalling that intentionality is not 
only an objective quality, but also a social construct that makes interactions possible 
and even increases the overall quality of the relationships, we cannot consider the 
implementation of features that aim to resemble intentionality in itself as ethically 
problematic. Accordingly, the attribution of intentions should be seen as a strategy 
that people can adopt to better predict and interpret agents’ behavior and to navigate 
social interactions with them. From this perspective, design strategies that facilitate 
this process should be regarded as worth striving for. Furthermore, one may even 
argue that if users feel more at ease treating agents as intentional in certain cases (as 
the experimental literature shows), telling them that this feeling is part of a decep-
tion could negatively affect their social interactions with the agents. In other words, 
similarly to what we argue about terms such as ‘simulated intentionality’, ‘ethically 
exclusivist’ positions could dissuade users from engaging in meaningful interactions 
with the agents if the only interpretative and predictive framework they can use or 
that seems to work is the intentional one. However, whether artificial agents should 
employ emotional terminology (such as ‘I care’), for instance, is open to debate. 
In fact, such solutions may lead to the perception of ontological ambiguity (Hackel 
et al., 2014; Mandell et al., 2017).

4.3  Users’ Awareness

The other point we highlight is the concerning possibility of artificial agents act-
ing deceptively on behalf of third parties. As previously mentioned, we consider it 
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among the most pressing aspects of the present debate. Therefore, here we address 
the idea of ‘promoting the illusion of personification’. In accordance with regulatory 
institutions that have called for greater transparency, we argue that users’ aware-
ness should be a conditio sine qua non for the design phase. In other words, for the 
implementation of specific features to be ethical and successful in fostering social 
engagement, people should be made aware of the nature of the agents they inter-
act with. We also consider this a prerequisite for people to be given the possibility 
to switch to mechanistic approaches when necessary. Furthermore, we claim that 
building such awareness is the specific responsibility of the third parties in charge 
of the design of artificial agents. Coeckelbergh (2018) takes a relevant position 
with respect to this issue stating that although deception can be seen as a co-created 
performance, designers and other third parties have the responsibility to ultimately 
reveal the ‘trick’ behind it. In other words, they are responsible for the performative 
affordances of the agents they introduce into society (Coeckelbergh, 2018).

In accordance with Coeckelbergh, we consider performance as a co-construc-
tion (Coeckelbergh, 2018). An agent behaves in a seemingly intentional manner; 
a person then attributes intentionality to the performed act, and together, the two 
co-construct the interaction. However, we further claim that the tricks performed 
by an artificial agent should be revealed beforehand. It makes it possible to still be 
meaningfully engaged without necessarily thinking that the agent has intentions (in 
the biological sense) or, even worse, being surprised that one is interacting with an 
artificial agent. This last point is fundamental for a simple reason. The more sophis-
ticated artificial agents become, the more difficult it will be for people to tell the dif-
ference (between a human and a machine) in advance. In order to shed greater light 
on our position, we now provide an example concerning the well-known topic of the 
‘uncanny valley’.

4.3.1  The ‘Uncanny Valley’ Case

The ‘uncanny valley’ hypothesis posits that extreme anthropomorphism can trig-
ger negative reactions in people (Mori et al., 2012). In this view, the ‘valley’ of the 
curve represents the point where human-like appearance and behavior do not quite 
reach total resemblance, but are still enough to trigger rejection mechanisms. Many 
hypotheses have been proposed to explain the phenomenon. One argument in line 
with our position centers around the idea of rejection as the expression of violated 
expectations (Saygin et al., 2012; Urgen et al., 2018). Urgen and colleagues con-
ducted a study with a highly anthropomorphic android. Whereas the android was 
human-like enough to generate high initial expectations through its appearance 
alone (e.g., by looking at a picture or a video of it), as soon as the android began to 
move its artificial nature became evident, triggering feelings of rejection. This con-
nection between movement and eeriness or uncanniness was previously raised by 
Mori et al. (2012), but not investigated thoroughly.

Urgen and colleagues argue that, although participants generate an initial mental 
model (and expectations) based on appearance alone, when the robot’s movements 
reveal its true nature, the established model fails to hold, contributing (in this case) 
to an increase in uncanny feelings (Urgen et al., 2018). A similar mismatch between 
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appearance and motion is reported in Saygin et al. (2012). Also in this case, partici-
pants were exposed to videos of different types of agents, while their neural activity 
was monitored. Respectively, the agents were a robot with mechanical appearance, 
an android and a human. They conclude that while “the android used in our study 
is often mistaken for a human at first sight, longer exposure and dynamic view-
ing has been linked to the uncanny valley” in reason of the participants’ prediction 
error that the mismatch generates (Saygin et al., 2012, p. 420). Interestingly, while 
in Saygin et al. (2012), Urgen et al. (2018), participants are shown only videos of 
the robot, in other studies with similar androids people interact directly with them 
(Bartneck et al., 2009). Importantly, in this last case people are always aware of the 
fact that, regardless of how extremely anthropomorphic, the agent is artificial. In the 
previously cited cases, they are not. They only become aware of this when the robot 
moves.

The different records in terms of feelings of uncanniness reported by the stud-
ies can be explained by the abrupt failure of expectations (reported in the first two 
studies). When the conditions for behaving ‘as if’ are not made explicit, people (in 
the considered case) are likely to simply behave as they would with other humans. 
But when the illusion is broken, so are the mental models, generating feelings of 
rejection.

4.4  ‘Third Parties” Responsibility

These considerations support our claim that users need to be made aware of the 
nature of the agent and that this awareness contributes to the quality of the interac-
tion. Thus, our final point for reflection concerns our last claim, that responsibility 
for ensuring users’ awareness of the nature of an artificial agent should fall on the 
‘third parties’ in charge of designing what kind of performance the agent is capa-
ble of providing. This issue, notes Coeckelbergh, is seldomly considered in robot-
ics, because “the designer (and especially the company) needs to sell the device as 
magic” (Coeckelbergh, 2018, p. 80). Fundamentally, in order to have the chance to 
switch to behaving ‘as if’, people must be aware of the type of performance that 
has been created. At the same time, treating agents ‘as if’ does not mean that there 
is nothing real to be gained from interacting with them. The thoughts, impressions 
and feelings one experiences are real, rather than ‘simulated’ (Turkle, 2010; Seibt, 
2017).

Furthermore, not only should ensuring such awareness be third parties’ responsi-
bility but, as we noted, the underlying trick should be revealed before the interaction 
takes place. In fact, as artificial agents become progressively more sophisticated, 
the decision to automatically behave ‘as if’ might become less obvious. This is par-
ticularly the case with virtual technologies like conversational agents and chatbots. 
In fact, in most cases it is still possible and fairly easy to determine the artificial 
nature of a physical robot. No matter how well crafted modern androids might be, it 
is particularly difficult to flawlessly replicate an extremely human-like appearance, 
the smoothness of human movements, non-verbal cues, etc., so that, as in the con-
sidered example, only through an indirect medium (i.e., pictures or videos) and in 
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absence of movement could said androids be mistaken for humans. The same cannot 
be taken for granted when the interaction occurs in a fully virtual environment, as 
the next examples show.

4.4.1  Google Duplex and GPT-3

Google Duplex is a conversational agent endowed with natural language features to 
handle tasks such as making reservations and appointments (O’Leary, 2019). The 
most relevant aspect here is that the system does not only engage in natural lan-
guage conversations. It also incorporates what (O’Leary, 2019) calls ‘speech dis-
fluencies’, conversational elements that break the flawless pace of a conversation 
(such as ‘hmm’s’ and ‘uh’s’). These kinds of ‘interruptions’ are very common in 
human–human interactions, because people do it often as they try to gather their 
thoughts (Leviathan & Matias, 2018). Nevertheless, including such disfluencies has 
attracted criticism, precisely because such behavior can be interpreted as deceptive. 
Consequently, Google’s design choices have generated ethical concerns (Lomas, 
2018). However, as we have already argued, conducting conversations by employing 
fluent natural language capabilities or even displaying sophisticated ‘speech disflu-
encies’ are not themselves the problem. As previously noted, such features could be 
worth striving for, as they can improve the overall quality of interactions. However, 
what is being debated here is the lack of a specific form of transparency that sup-
ports users’ awareness of the kind of agent they are interacting with. Therefore, hav-
ing the agent (Duplex, in this case) identify itself at the beginning of an interaction 
seems to be a reasonable solution (Bay, 2018; O’Leary, 2019). It should then be up 
to users to decide whether they want to continue under the specified conditions, i.e., 
once they have been put in the condition to behave ‘as if’.

Another technology holding similar potential is GPT-3 (Generative Pre-
trained Transformer 3) (Damassino & Novelli, 2020). This deep learning-based 
natural language processing model can generate text that is often indistinguish-
able from something a human would write. In their commentary, Floridi and 
Chiratti show the possibilities and limits of this tool (Floridi & Chiriatti, 2020). 
They note that in many cases, people might not recognize or even care whether 
a piece of text has been written by an artificial agent. While this might certainly 
be true, at least in the very near future, we believe that regulations should not 
only apply to ideal cases, but also to extraordinary ones. In other words, reg-
ulations requiring such artificial agents to make their nature clear in advance 
are likely to be necessary, especially in cases that could create ambiguity. Con-
sequently, we agree with (Floridi & Chiriatti, 2020)’s conclusions that people 
should be able (i.e., put in the conditions) to discern what is what. One early 
example of the dual nature of this point is the use of GPT-3-powered bots on 
Reddit, a popular online platform. In fact, one of these bots was active under a 
normal username with almost no one noticing it. While most of its comments 
were reportedly unharmful, the bot also engaged in conversations about sensi-
tive topics, such as suicide (Heaven, 2020). The bot’s real nature was discovered 
when its text outputs were compared to those of the so-called ‘Philosopher AI’, 
another GPT-3 based bot (Heaven, 2020). The main difference between the two 
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is that in the case of the ‘Philosopher AI’ the artificial nature of the bot has been 
made clear from the beginning, allowing users to engage in entertaining ques-
tion and answer sessions with the bot (including about the nature and the coding 
of the bot itself).

As a closing remark, a relevant concept for our last claim is represented by the 
process of dehumanization, as opposed to that of anthropomorphization. Dehu-
manizing is typically intended as failing to attribute human-like traits to other 
humans (Haslam, 2006; Epley et al., 2007; Haslam & Loughnan, 2014). Hence, 
in human–human interaction it often comes with negative connotations. However, 
in the context analyzed here (i.e., human–agent interaction), the idea of dehuman-
izing agents has positive consequences, at least as long as it is meant to coun-
ter the default anthropomorphizing trend. To this extent, Haslam and Bain note 
how a concrete (rather than abstract) mental ‘construal’ of other people could 
help reducing such a dehumanization process (Haslam & Bain, 2007; Haslam & 
Loughnan, 2014). Additionally, we previously noted how the lack of an agent-
specific ontological categorization is among the main causes that trigger the attri-
bution of anthropomorphic traits. Therefore, we assume that, in specific circum-
stances, supporting a more concrete mental ‘construal’ of artificial agents will 
let people engage in a specular process of dehumanizing artificial agents. To 
this extent, we claim that specific design features, such as endowing the agents 
with machine-like traits, having them identifying themselves as artificial enti-
ties, or pointing out the ‘mechanical’ nature of malfunctions, would support this 
process of dehumanization. In turn, this will help the switch from a mentalistic 
approach to a mechanistic one, when the latter is more pragmatically or ethically 
appropriate.

Hence, whereas some researchers’ concerns about what is unethical for artifi-
cial agents may be too extreme, this last reflection leads us to agree with regula-
tory attempts to require companies and other third parties to adopt an approach 
that makes people aware of the type of performances displayed and the artificial 
nature of the performer. In principle, this paper calls for pre-performance forms 
of transparency, i.e., the nature of the agents’ ‘tricks’ should be revealed before 
they are performed. This is at least partially in line with those researchers and 
institutions that promote higher transparency and, consequently, a distribution 
of responsibility that calls for explicit commitments by third parties. However, 
the important role played by machine seemingly intentional behavior in enhanc-
ing the quality of social interactions must be acknowledged. Therefore, we con-
clude that, as long as users are made aware of the nature of the agent they are 
interacting with, the implementation of strategies that support the attribution of 
intentions to those artificial agents meant to be employed in contexts that involve 
social cognition and skills should be considered not only ethically acceptable, 
but also ethically desirable. On the other hand, mentalistic frameworks appear 
to be the default approach that people resort to while interacting with seemingly 
rational artificial agents that do not clearly fall into objectual ontological cat-
egorizations. When no social cognition is involved, an opposite dehumanizing 
approach is more adequate. This could be pursued by, for instance, emphasizing 
the artificial nature of the agents and their machine-like traits.
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5  Conclusions and Limitations

The main aim of this paper is to discuss why the attribution of intentions is effec-
tive and desirable and to identify corresponding design suggestions. To do so, we 
propose an analysis in three main directions, corresponding to the three main sec-
tions of the paper. First, we discussed semantic implications of the concept, in light 
of definitions of intentionality and of some objections directed at Dennett’s idea, 
with particular attention to the behaviorism that informs it. We emphasized how the 
notion that the intentional stance is a strategy to understand and predict the behavior 
of sophisticated artificial agents represents the most useful aspect of Dennett’s for-
mulation. This led us to suggest the adoption of alternative terminology, in order to 
reduce the risk of conflation between the attribution of intentions to artificial agents 
and biological approaches to intentionality.

Furthermore, we traced the point of origin of the process of intention attribution 
by examining experimental literature about robots and virtual agents. Our conclu-
sion is that contextually valid rationality represents the most important feature in 
order for agents to be treated as intentional. However, we also identified how this 
can and should be supported by other features and contextual conditions. Addition-
ally, we considered how a mentalistic approach is not the most appropriate when no 
social cognition is involved and suggested possible strategies to counter excessive 
anthropomorphization accordingly.

Finally, we discussed possible ethical implications of the attribution of intention-
ality to artificial agents. While acknowledging the possible benefits of an intentional 
framework for social engagement with agents, we also identified a prerequisite for 
the ethical acceptability of such a framework. In line with most regulatory institu-
tions, we argue that is necessary for users to be made aware of the agents’ artificial 
nature and provide examples to support our claim.

One question that we leave open concerns to what extent the actual implemen-
tation of features that trigger the ascription of intentions and other mental states 
should be pushed. Referring to the case of Google Duplex, we said that the speech 
disfluencies employed by the system are not themselves the problem. Is the same 
true for the use of ‘more sensitive’ and openly mentalistic terms like ‘I understand’, 
‘I think’, or their emotional counterparts like ‘care’ ‘love’, etc.? The risk we iden-
tify in this case is an extreme and perhaps ‘deceptive’ form of anthropomorphism. 
Where should the line be drawn? We question the necessity to employ such emo-
tionally and semantically rich terminology for the ascription of intentions and other 
mental states to be successful. Perhaps, a critical analysis of such issues in light of 
other, related concepts, such as that of a “phenomenal stance” will help shed greater 
light on the debate.
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Abstract. This paper addresses the question of whether robots should adhere to
the same social norms that apply to human-human interaction when they explain
their behavior. Specifically, this paper investigates how the topics of ascribing in-
tentions to robots’ behavior, and robots’ explainability intertwine in the context of
social interactions. We argue that robots should be able to contextually guide users
towards adopting the most appropriate interpretative framework by providing ex-
planations that refer to intentions, reasons and objectives as well as different kinds
causes (e.g., mechanical, accidental, etc.). We support our argument with use cases
grounded in real-world applications.

Keywords. Explainable social robots, Intentionality, Explainability

1. Introduction

Recently, interest in explainable artificial intelligence (AI) and robots has been grow-
ing, aiming to shed light on AI and robots’ otherwise opaque decision-making processes
[1-3]. As users’ interactions with robots in social contexts will only increase in the fu-
ture, the understandability, trustworthiness and, ultimately, acceptance of robots at least
partially depend on their capacity to explain and justify their behavior [4-6].

In human-human interaction, everyday explanations represent fundamental forms of
social communication that people use to transfer knowledge, find meaning regarding the
causes of events, influence each other’s opinions and manage social interactions [7-10].
People seek explanations primarily when something unexpected, anomalous or abnormal
happens [4, 5], which means events or behavior that appear to depart from what social
norms would dictate to be the normal and expected course of events in a given situation.
People’s attribution (or lack thereof) of mental states to other actors, as well as how
responsibility and blame are distributed [11, 12], depend on how unexpected behavior
and events are explained [7].

In this context, one crucial element concerns whether such events are explained as
resulting from ‘intentionality’, reasons, intentions, beliefs, desires and goals or external
and ‘unintentional’ (natural, mechanical or accidental) factors [4, 12, 13]. Intentional-

1Corresponding author: Guglielmo Papagni, Institute of Management Science, TU Wien, Theresianumgasse
27, 1040 Vienna, Austria; e-mail: guglielmo.papagni@tuwien.ac.at
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ity is typically interpreted as a byproduct of biological evolution. It represents the rela-
tionship between one’s internal states (i.e., intentions, desires and beliefs) and the state
of things in the world [14, 15]. Despite a certain degree of mutual ‘inscrutability’ that
makes it difficult to infer others’ mental states accurately [16, 17], people are accustomed
to acknowledging and recognizing each other’s intentions (and reasons, goals and beliefs
accordingly).

However, with respect to explainable robots, the distinction between ‘intentional’
and ‘unintentional’ events is even more blurred and unclear. In fact, even if robots’ ‘in-
ternal architecture’ is known, how they compute information represents a very different
‘black-box’ compared to humans’ cognitive processes, which makes it difficult for peo-
ple to relate to. Perhaps more importantly, being robotic artefacts, they cannot possess
‘genuine’ or ‘intrinsic’ intentionality and other mental states. Due to their artificial na-
ture, robots act and make decisions only as a consequence of their programming. They
have no actual mental states that relate them to the world and, therefore, no ‘genuine in-
tentionality’. Hence, intuitively a mechanistic framework should always suffice to inter-
pret and understand robots’ behavior. Accordingly, robots’ explanations draw upon de-
sign or programming features should be adequate. However, a growing number of studies
shows how people tend to attribute intentions and other mental states to robots and other
artificial agents regardless of their nature [18, 19]. Furthermore, researchers argue that
robots should be aware of and explain their behavior in relation to people’s expectations
and social norms concerning intentional and unintentional events, or else they may be
considered not only erratic and untrustworthy, but also ‘immoral’ [6, 20, 21].

This paper provides a novel perspective on how to deal with the phenomenon of
ascribing intentions to robots’ behavior in relation to robots’ explainability. After dis-
cussing relevant work concerning ‘genuine’ (or ‘intrinsic’) intentionality and ‘ascribed
intentionality’ in Section 2, in Section 3 we argue that robots should not only explain
events with reference to intentions and other mental states. Rather, because people tend
to easily adopt an intentional, mentalistic framework, when needed, robots should also
provide explanations that refer to factors and causes of a different nature (e.g., accidental
and mechanistic). Furthermore, an observer perceiving a robot’s behavior as abnormal
and unexpected may imply that the observer is adopting the wrong framework. Hence,
we aim to integrate human perception of events into the loop and illustrate, by means of
literature-based use cases, how robots should explain events based on these conditions.
Section 4 presents final considerations and directions for future work.

2. Related Work

While the idea of attributing intentionality to the behavior of robots and artificial agents
has become the object of increasing academic interest recently, it has deep and exten-
sive roots. First, the phenomenon falls within the broader tendency to ascribe anthro-
pomorphic and social attributes to machines [22, 23]. Additionally, study of the topic
can be traced back to, at least, work by Heider and Simmel demonstrating how peo-
ple attribute social significance even to the seemingly ‘autonomous’ motion of simple
geometric shapes (such as triangles, squares and circles) [24].

Much of the recent work on human-robot and human-computer interaction (HRI
and HCI respectively) is related to, if not directly inspired by Daniel Dennett’s ideas
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of ‘intentional systems’ and the ‘intentional stance’ [25, 26]. Dennett suggests that it is
possible to make sense of certain events by resorting to either the ‘physical stance’ or the
‘design stance’ alone. This means that to explain and understand such events, it is enough
to appeal to physical laws or an object’s function as intended by its design. However,
when it comes to sophisticated machines such as robots, due to the very complexity
of their inner workings, people can only make sense of their behavior by attributing
intentions and rationality to them (i.e., adopting the ‘intentional stance’) [25-27].

2.1. Instrinsic Intentionality and Ascription of Intentions

The attribution of mental states to robots and computers has subject of extensive debates.
One of the most contested points in the formulation of the intentional stance is the under-
lying ‘behaviorism’ that Dennett expresses commitment to on several occasions. In fact,
while he is aware of the difference between genuinely intentional systems and “those we
may find it handy to treat as if they had beliefs and desires” [28: 66], he stresses that
manifest behavior is the only way to infer other’s mental states, and that behavioral ex-
pressions are all that is real. From this perspective, humans are as much ‘philosophical
zombies’ as robots that behave in a seemingly rational manner [29-31]. Then, following
up on Putnam’s early positions, functionalist and computationalist accounts express the
more radical idea of mental states as something independent from biological brains, so
that ‘zombie robots’ may also attain the status of cognitive agents with ‘original’ inten-
tionality and mental states [32, 33].

In contrast with these views, Searle notes that the attribution of intentionality from an
observer’s perspective (i.e., ‘derived intentionality’) should not be confused with ‘the real
thing’ (i.e., ‘intrinsic intentionality’). According to Searle, not only do robots and other
artefacts not possess intrinsic intentionality, they do not possess any kind of intentionality
[34]. Furthermore, referring to Dennett, he observes that “the whole point of his theory of
The Intentional Stance is to deny that there is any genuine, real, or intrinsic intentionality
at all. On Dennett’s view there is only as if intentionality” [27: 527]. Similarly, Block
points out that an artificial entity that looks just like a human could interact just like a real
person if adequately pre-programmed and yet lack the very ‘essence’ (the ‘absent qualia’)
of what it is and feels to be intelligent or have intentions. Lacking the required depth
and richness of information processing, seemingly intelligent machines only simulate
intelligence and, at best, reveal the intelligence of their programmers [35].

Beyond stressing the fundamental difference between genuine intentions and ob-
servers’ ascriptions of intentions, Searle also notices how much of the debate seems to
be informed by a fundamental misconception regarding this distinction. Interpreting ma-
chines’ actions as intentional does not necessarily correspond to thinking that machines
actually have any intentions [34]. Rather, conflating the two notions may be counterpro-
ductive for understanding the phenomenon and its implications [36].

For HRI, this distinction is of fundamental importance for—at least—two reasons.
First, as de Graaf and Malle suggest, ascribing intentions and mental states to machines
does not necessarily involve attributing any ‘self-awareness’ or ‘consciousness’ to them
[37]. Rather, the phenomenon can be explained by the social training people are exposed
to from an early age, which results in a ‘primacy of the social mindset’ [38, 39]. The
availability of this interpretative framework makes it easy for people to ascribe inten-
tions and mental states but also rationality and subjectivity. This is particularly the case
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whenever certain prerequisites (taken alone or combined) are met. These include interac-
tion tasks involving social cognition [38, 40], the level of agency expressed by artificial
agents [19], physical embodiment, and anthropomorphism more specifically [36, 41].
Therefore, such an intuitive mechanism may ease social interactions by helping people
to make sense of robots’ behavior within a familiar human framework [39, 42].

The second reason is that, whatever framework people may find useful to interpret
robots’ behavior, they fundamentally remain programmed entities, and attributing mind
features to them may not always be the best strategy. Particularly, note Weise et al., if a
robot’s behavior induces ‘categorical uncertainties’ (i.e., when users cannot tell for sure
the nature of the agent), or if it “deviates strongly enough from human behavior so that
an anthropomorphic model would lead to incorrect predictions (...) Trying to resolve this
cognitive conflict takes up cognitive resources” [41: 8]. Stich identifies the source of the
problem in Dennett’s understanding of intentional agents, since he posits that intentional
agents are agents that always act rationally. However, continues Stich argues, people
often behave irrationally. If, according to Dennett’s view, intentionality and rationality
are necessarily paired, then someone who behaves irrationally cannot be bestowed the
status of ‘intentional agent’ [43].

To summarize, the attribution of intentions and other mental features does not nec-
essarily entail any ontological commitment. Rather, it can be read as a strategy people
intuitively adopt to cope with robots’ otherwise difficult-to-interpret behavior. Adopting
a mentalistic strategy may therefore benefit human-robot interaction but, at least in cer-
tain cases, it is important for people to be able to adopt a mechanistic alternative. The
next section identifies and discusses four scenarios that require robots to explain events
either ‘intentionally’ or ‘unintentionally’. Additionally, as the attribution of intentions to
behavior is a subjective experience, the use cases aim to bring human perception into the
loop, by considering how subjects may initially perceive and interpret the events in need
of explanation.

3. Intentional and Unintentional Explanations

As an alternative to functionalist and behaviorist positions, as well as perspectives that
conflate the idea of ascribing intentions with that of ‘biological’ intentionality, this paper
stresses that robots should be able to contextually guide users towards the most appro-
priate interpretative framework (i.e., mechanistic or mentalistic) for each event that re-
quires an explanation. To illustrate this position, the scenarios discussed further on rest
on Heider’s idea of ‘equifinality’ as an antecedent of intentionality [44]. This means that
an agent will resort to different means to achieve a goal and that an event may be ex-
plained by referring to intentions if, even as the circumstances change, the final objective
remains the same. Heider’s definition is corroborated by ‘folk-psychological’ readings
of intentionality as a social construct, a tool that people use not only to recognize (bio-
logical) conspecifics, but also to correctly interpret and predict how others (both humans
and not) act [36], as well as to facilitate social interactions [45]. Hereafter, when we de-
scribe robots’ behavior as ‘intentional’, this means that a specific action is aligned with
a robot’s overall purpose, rather than implying any actual mental state behind it.

Furthermore, the argument that an observer can only infer others’ (humans or robots)
intentions should in principle also be applicable to behavior that is best interpreted as



March 2022

unintentional (e.g., if a robot stops carrying out its task because of an obstruction). To
cope with this (double) limitation in the actor-observer interaction, robots “must be able
to distinguish intentional from unintentional behaviors” and, at the same time, they “must
be able to explain each of these classes of behavior in the expected way—unintentional
behaviors with (mere) causes, intentional behaviors with reasons” [37: 19].

We identify two main reasons that support this argument. First, while an intentional
or ‘mentalistic’ interpretation may actually be preferable in many interaction instances,
such as tasks that involve social cognition and, specifically, when a robot’s behavior dis-
plays ‘equifinality’, not all events can and should be explained with respect to intentions
and other mental states. To the contrary, designing robots to explain certain events and
behavior with respect to accidental, natural or mechanistic causes is particularly impor-
tant precisely because, as previously shown, people tend to easily adopt an intentional
framework, even when it’s not the most appropriate one.

The second reason refers to the fact that explanations are mostly requested when
something unpredictable or unexpected happens. A robot’s behavior may be perceived as
unexpected simply because users cannot immediately and correctly ascribe reasons and
intentions in relation to what they perceive the robot’s goal to be. Alternatively, the possi-
bility exists that the interpretative framework a user has adopted is not the most appropri-
ate one to interpret the event that triggers the explanation request. In this regard, if users
cannot make sense of the reasons, intentions or causes behind robots’ behavior, users’
understanding and trust will likely be at stake [4-6]. If adequately tailored, explanations
can not only avoid or mitigate trust losses, they may also prevent users predisposed to
having high expectations from over-trusting robots [4, 46]. Explanations’ success in cal-
ibrating users’ expectations and trust inevitably depends, among other things, on robots’
capability to guide users towards the most appropriate framework for each interaction
context.

3.1. Four Use Cases for Explainable Robots

Thellman and Ziemke suggest that only events such as a robot running out of battery
should be explained by adopting a more mechanistic approach (or the ‘design stance’)
[47]. However, this is a reduction to an ideal and simplified scenario, while everyday
interactions typically pose more nuanced challenges. Furthermore, we argue that a di-
chotomy, with events labeled only as either ‘intentional’ or ‘unintentional’, is not suffi-
cient. Whether a robot’s behavior is considered the result of intentions or of other causes
does not only depend on the robot’s actual action plan, but also on how observers per-
ceive the event in regards to their expectations and contingent social norms. In other
words, a specific action by a robot that is actually aligned with its plan may be initially
perceived by users as accidental, or vice versa. In this regard, Bartneck and Forlizzi ar-
gue that social robots should be aware of the knowledge about the world they possess
as well as, whenever possible, of what they do not know [21]. Hence, the value of our
argument is found particularly in the grey areas, as these signify that users may need to
switch from one interpretation to another.

It is important to note that the need for guidance regarding the most appropriate
framework is likely to be particularly fundamental (but not exclusively so) in interactions
with robots ‘in the wild’. In fact, these kinds of encounters are likely to be ‘one-time’
events, mostly involving laypeople who have little to no chance of undergoing specific
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training and preparation for the robots they encounter. This lack of previous experience
implies that people will often not know what to expect from robots, making it more
difficult to infer what should be considered ‘intentional’ and what should not.

The next paragraphs present four interaction scenarios that require explanations, in
which a robot’s behavior is:

• Intentional and (correctly) interpreted through an intentional framework;
• Unintentional and (erroneously) interpreted through an intentional framework;
• Intentional and (erroneously) interpreted through an unintentional framework;
• Unintentional and (correctly) interpreted through an unintentional framework;

3.1.1. Shopping for Books with a Robot

We previously noted how unexpected events are the main trigger for explanation re-
quests. However, people may have other reasons, such as curiosity about how a robot
generates specific decisions or suggestions, to ask for an explanation [1]. Social robots
are employed as shopping assistants in book stores, shopping malls and other social
spaces [48, 49]. Here, a customer may want to know, for instance, the reasons for a spe-
cific book recommendation because they are not familiar with the author or the title, and
therefore ask for an explanation. Importantly, as long as the customer is aware of the
robot’s role in the store (i.e., to assist people with their purchases), the robot’s behavior
of recommending specific books in accordance with customers’ preferences would likely
not be considered unusual or a violation of social norms. Rather, the customer would
likely treat the robot’s recommendation as intentional behavior and yet still be interested
to know how the robot came up with that specific recommendation (perhaps before de-
ciding whether to buy the book or not). Accordingly, the robot may explain that the rec-
ommendation was (intentionally) generated on the basis of the customer’s previous pur-
chases and books’ ratings, combined with those of other customers with similar tastes. In
this specific case, the intentional framework emerges as the most adequate to make sense
of the robot’s behavior and no switch is required or should be promoted by the robot’s
explanation.

Unintentional Recommendation The previous case is also helpful to understand the
second scenario, in which unintentional behavior is initially interpreted as intentional.
Importantly, Heider’s original argument on ‘equifinality’ involves repeated observations
to establish whether or not to attribute intentionality to a specific act or behavior [44].
Considering the same customer going back to the book store to look for more books,
one can assume that, after the first interaction, they would have likely formed an idea
of how the robot operates to reach its intended purpose. It is important to stress that
the robot’s intended purpose is not to provide ‘just any’ book recommendations, as this
would be equal to picking out books randomly. Rather, it is to provide ‘individually
tailored’, useful recommendations. As in the previous scenario,ifs the robot suggests a
book unknown to the customer, they may want to know how the robot came up with that
specific recommendation, initially assuming that the robot’s behavior is ‘normal’ and
aligned with its plan (i.e., intentional), as in the previous interaction. The robot would
then show how various features were weighed in generating the book recommendation,
with the difference that, in this case, the features do not match the customer’s actual
data, but rather those of another person. At this point, the customer’s expectations have
likely been violated, as they realize that the recommendation is not accurate. To help the
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customer avoid a ‘cognitive conflict’, when they ask for further clarification, the robot
should support them in switching to a mechanistic framework to interpret the ‘wrong’
recommendation. For instance, the robot could explain that a mistake in data processing
may have occurred and that the last recommendation was not aligned with its intended
purpose.

3.1.2. Medicines Delivery Robots

One area of application for assistive robots is in elderly care contexts (at home, or in
nursing facilities) with tasks that include monitoring people’s health, reminding them
of and delivering scheduled medicines [50]. In a similar context, the task of remind-
ing patients and residents to take medicine is meant to support people affected by old
age-related memory loss. For instance, a robot may have to remind a user to take their
medicine every day after meals. However, if the user has forgotten this schedule, they
may find the behavior abnormal, wonder whether the robot made a scheduling mistake,
and ask for an explanation accordingly. At this point, the robot should help the user re-
member by clarifying that they are supposed to take their medicines after every meal.
In other words, by clarifying that it was acting in accordance with plan of reminding
and delivering medicines according to a prescribed schedule, the robot should guide the
user’s interpretation from an unintentional framework (i.e., the robot made a mistake) to
an intentional one.

3.1.3. Pick up Failure

Finally, there are situations in which users will likely see immediately that a robot’s be-
havior is caused by external factors and should not be interpreted as intentional. Referring
to the previous case of a service robot reminding patients of and delivering medicines,
it may happen that, as the robot approaches a user, it fails to pick up and hand over the
medicines. The user would likely realize quickly that the robot’s behavior (failing to pick
up) is not intentional, as it is not in any way useful to reach the robot’s intended pur-
pose (delivering the medicine). Yet, they might ask the robot to explain why it could not
pick up the medicine, to figure out whether to call for help or not. While it might not be
possible for the robot to identify the causes with certainty (or else it would have likely
succeeded), it could nevertheless explain with a certain degree of confidence that an ob-
ject may be obstructing its view of the medicines to deliver, making it difficult to cor-
rectly estimate their position and, consequently, pick them up. In other words, the robot
should emphasize the accidental causes and let users know that no switch is required, as
a mechanistic framework is the most appropriate to make sense of the event.

As a closing remark, it is important to recall that people and robots can only infer
others’ intentions or lack thereof. Concerning explanations, we argued that robots should
help users adopt the best interpretative framework. However, in light of both the general
inaccessibility of others’ minds, and robots currently limited capabilities, they may not
always be able to correctly infer whether people adopt the most appropriate framework
at specific points of an interaction. Hilton notes that a good social explanation is one that
provides context-relevant information [1]. Additionally, when providing explanations,
people try to adapt them to the explainee in terms of complexity, amount of information,
and clarity [51]. Following these principles, and given the nuances of everyday interac-
tions, what robots can do is try to guide users towards adopting the most appropriate
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framework in each situation, particularly when it may be unclear whether an event or
behavior should be interpreted as intentional or not. This can be done by tailoring expla-
nations to contextual conditions and implementing specific strategies that improve their
quality. In this regard, studies show that explanations’ multi-modality, interactivity and
questionability represent promising strategies that have not yet been fully investigated
[52, 53]. For instance, when reminding a user to take their medicines, a robot may cor-
roborate a text-based explanation with a graphic visualization of the schedule prescribed
by a doctor.

4. Conclusions

This paper discussed how social robots should provide explanations in relation to attri-
bution of intentions. We argued that, while robots have no ‘genuine intentionality’ per
se, in many instances, it may be helpful for users to interpret robots’ behavior ‘as if’ it
resulted from intentions and other mental states. Ascribing intentions is an easily trig-
gered cognitive mechanism which may help users interpret robots’ otherwise inscrutable
inner workings.

However, precisely because it is so easy for people to ascribe intentions to others’
behavior (whether human or not), certain situations that may be better interpreted as
caused by external, non-intentional factors will require robots to support users in adopt-
ing a mechanistic framework by means of explanations. At the same time, the opposite
scenario (i.e., that robots may have to guide users towards an intentional interpretation)
could also occur. Through use cases based on real-world applications of social robots, we
illustrated how, in general, the intrinsic nuances of everyday interactions require robots’
explanations to be finely tuned to guiding users towards adopting the most appropriate
interpretative framework for each situation.

The nature of the arguments this paper proposes are fundamentally conceptual, al-
beit discussed with the support of use cases inspired by real-world applications. There-
fore, the main direction for future work is to test how the nuances of robots’ behavior
are interpreted by users in terms of intentions or lack thereof. At the same time, how
robots’ explanations may support users’ adoption of the most appropriate framework and
how this kind of explanations affect users’ trust in the robots must also be empirically
assessed.
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