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Zusammenfassung
Mechanistische Modelle spielen eine wesentliche Rolle bei der Entwicklung von Bioprozessen. 
Trotz ihrer rigorosen Struktur beschreiben sie die Prozesse mit interpretierbaren 
Modellparametern und liefern eine mathematische Darstellung der zugrunde liegenden 
Dynamik. Aus diesem Grund werden sie in großem Umfang bei der experimentellen Planung, 
Überwachung und Steuerung von Prozessen eingesetzt. 

Allerdings stehen ihrer effektiven Nutzung immer noch viele Hindernisse im Wege, Modelle 
werden je nach ihren Zielen konzipiert. In einem industriellen Kontext werden Modelle mit 
Vereinfachungen erstellt, von denen einige zu diskontinuierlichen Modellen führen. Dieses 
Problem sowie die Unzulänglichkeiten und Besonderheiten der Analytik, wie z. B. die Abgas- 
und Gelöstsauerstoff Signale, und die Unterschiede in den Prozessbedingungen, wie z. B. das 
Arbeitsvolumen, können zu nicht adaptiven (unflexible Strukturen) und nicht robusten 
(unzuverlässiges Output) Modellen führen. Außerdem müssen die Modelle ähnlich wie die 
Prozesse, die sie beschreiben, im Laufe des Entwicklungszyklus angepasst werden. In dieser 
Arbeit wird die Hypothese aufgestellt, dass diese Herausforderungen durch geeignete 
wissenschaftliche Methoden gelöst werden können. 

Die These zielt darauf ab, adaptive, robuste Modelle zu entwickeln, indem Methoden 
vorgeschlagen werden, um: die reduzierten Vorhersagefähigkeiten der diskontinuierlichen 
Modelle zu überwinden, (latente) ungenutzte Informationen aus bereits existierenden 
Analysen zu extrahieren, Besonderheiten der Analysen angemessen zu berücksichtigen und 
die Übertragbarkeit zwischen verschiedenen Skalen zu erleichtern.  

Die einzelnen Ergebnisse dieser Arbeit lassen sich wie folgt zusammenfassen: Eine Methode, 
die Dynamic Time Warping (DTW) und die Least-Squares-Algorithmen (LSQ) kombiniert, 
wurde als Anpassungskriterium für die Kalibrierung von Hefekultivierungsmodellen 
entwickelt, die Abgasmessungen enthalten. Die Methode führte zu repräsentativeren, 
unverzerrten Parameterschätzungen. Eine vergleichende Analyse von 
Hefekultivierungsmodellen mit und ohne explizite Berücksichtigung der plötzlichen 
Änderungen des Reaktorvolumens ergab eine spürbare Auswirkung auf die Modellergebnisse 
und die Parameterunsicherheit aufgrund der Fehlerfortpflanzung. Es wird eine Event Driven 
Methode (EDM) zur angemessenen Berücksichtigung von Volumenänderungen 
vorgeschlagen. Eine vergleichende Studie zur Untersuchung aller möglichen 
diskontinuierlichen Verhaltensweisen in Bioprozessmodellen wird für Hefekultivierungen 
vorgestellt. Die Ergebnisse zeigen im Detail die wichtigsten Arten von Diskontinuitäten. Es 
wird ein EDM-Workflow vorgeschlagen, um diese angemessen zu behandeln, sowie ein 
allgemeiner Ansatz zur Umwandlung mechanistischer Modelle in eine matrixartige Form 
unter Verwendung eines Entscheidungsbaums und boolescher Bedingungsfunktionen. Der 
Workflow führte zu robusten Modellvorhersagen und geringer Parameterunsicherheit. Es 
wurde eine Methode zur Segmentierung des Signals der gelösten Sauerstoff (Dissolved Oxygen 
Tension DOT) für die Kultivierung von E. coli in Minibioreaktorsystemen (MBRs) 
entwickelt. Die identifizierten Segmente ermöglichten die Extraktion von diskreten 
Merkmalen. Die datengesteuerte Analyse der Merkmale ergab ein Muster von Reaktionen, 
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insbesondere sind DOT-Segmente mit bestimmten Stoffwechselzuständen verbunden. Eine 
modellbasierte Analyse ermöglichte die Schätzung der wichtigsten Modellparameter für die 
Umschaltbedingung des Overflow-Metabolismus. Außerdem wurde in der Analyse ein in der 
Literatur nicht beschriebenes DOT-Segment beobachtet, in dem die Zelle wahrscheinlich den 
Stoffwechsel drosselt.  

Die Wirkung der Arbeit kann auf zwei Ebenen gemessen werden. Auf wissenschaftlicher 
Ebene unterstreicht sie die Bedeutung eines angemessenen Umgangs mit Diskontinuitäten in 
der Bioprozesstechnik und bietet solide wissenschaftliche Methoden, um dies zu erreichen. Sie 
bietet Methoden zur Analyse und richtigen Integration der Abgas- und DOT-Signale in Hefe- 
und E. coli-Kultivierungsmodellen. Für E. coli werden außerdem Methoden zur genauen 
Überwachung der Stoffwechselaktivitäten der Zellen bereitgestellt. Auf industrieller Ebene 
stellt diese Arbeit Möglichkeiten zur Verfügung, um die Anzahl der für die Kalibrierung von 
Hefe- und E. coli-Modellen erforderlichen Durchläufe zu reduzieren und MBR-Probleme der 
Kontrolle von gelöstem Sauerstoff und der intermittierenden Feeding zu lösen, was zu einer 
Reduzierung der Kosten und des Zeitaufwands für die Prozessentwicklung führt. 



VI 

Abstract 
Mechanistic models play an essential role in the development of bioprocesses. Despite their 
rigorous structure, they describe the processes with interpretable model parameters and 
provide a mathematical representation of the underlying dynamics. That’s why they are 
employed extensively in process experimental design, monitoring and control. 

However, many obstacles still hinder their effective utilization; models are formalized 
according to their goals. In an industrial context, models are built with simplifications, some 
of which lead to discontinuous models. This issue alongside the insufficiency and peculiarities 
of the analytics such as the off-gas and dissolved oxygen tension (DOT) signals, and the 
differences in processes conditions such as the working volume, can lead to non-adaptive 
(inflexible structures) non-robust (unreliable output) models. Further, similarly to the 
processes they describe, models must be adapted along the development life cycle. This thesis 
hypothesizes that proper sound scientific methods can address these challenges. 

The thesis aims to achieve adaptive robust models by proposing methods to: overcome the 
reduced predictive capabilities of the discontinuous models, extract (latent) unexploited 
information from already-existing analytics, properly account for analytics peculiarities, and 
facilitate the transferability between different scales.  

The individual outcomes of this work can be summarized as follows: A method combining 
Dynamic Time Warping (DTW) and the Least-Squares (LSQ) algorithms is developed as a 
fitting criterion for the calibration of yeast cultivation models which incorporate off-gas 
measurements. The method resulted in more representative unbiased parameter estimates. A 
comparative analysis of yeast cultivation modelling with and without explicit consideration 
of the sudden changes in reactor volume revealed a tangible effect on model outputs and 
parameter uncertainty due to error propagation. An event-driven modelling method (EDM) 
to properly account for volume changes is proposed. A comparative study to investigate all 
possible discontinuous behaviors in bioprocessing models is presented for yeast cultivations. 
The results revealed in detail the main sorts of discontinuities. An EDM workflow to properly 
handle them. The workflow resulted in robust model predictions and low parameters 
uncertainty.  A method to segment the DOT signal for E. coli cultivations in minibioreactor 
systems (MBRs) is developed. The identified segments allowed the extraction of discrete 
features. Data-driven analysis of the features revealed a pattern of responses in particular 
DOT segments which are linked to specific metabolic states. A model-based analysis provided 
a possibility to estimate key model parameters of the metabolic overflow switching condition. 
Additionally, a DOT segment, not reported in literature, is observed in the analysis in which 
the cell is likely to attenuate the metabolism.  

The thesis impact can be measured on two levels. On a scientific level, it highlights the 
importance of proper handling of discontinuities in bioprocessing, and provides sound 
scientific methods to achieve that. It provides methods to analyze and properly integrate the 
off-gas and DOT signals in yeast and E. coli cultivation models. For E. coli, it also provides 
tools for accurate monitoring of cell metabolic activities. On an industrial level, this work 
provides tools that help to reduce the number of required runs to calibrate yeast and E. coli 
models, and to address MBRs issues of oxygen supply and intermittent feeding planning, 
leading to a reduction in process development cost and time. 
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The novelty of this thesis can be summarized by: a) the detailed analysis of the discontinuities 
in bioprocessing models, and the workflow proposed to properly handle them, b) the new 
method to improve the estimation of model parameters in yeast cultivation with off-gas 
measurements, c) the novel analysis of the DOT signal for E. coli cultivations in MBRs of 
which one of the findings was a plausible relationship between metabolic adaptation behavior 
and a newly-observed DOT segment, and d) the novel workflow to extract model parameters 
from DOT signals.  

The results of the proposed methods encourage further investigations on different organisms 
and platforms, to evaluate their generic applicability on a wider set of variable conditions. 
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Structure
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1.1 Introduction  
1.1.1 Bioprocess development and modelling 
The advancement in technology and digitization in the recent decades accompanied with the 
rapid increase in computational power and the decrease in hardware costs have accelerated the 
industry transformation. The idea of “Industry 4.0” is well established today [1]. This idea 
refers to the industry in which smart factories have different units that interact with each 
other in the real-time, exchange information and perform decisions with little to no human 
intervention [2]. However, (bio)pharmaceutical industry is still lagging behind this transition. 
Currently, (bio)pharmaceutical industry in general does not fulfill even the standards of the 
earlier generation “Industry 3.0” concept [1]. 

However, a growing emphasis by the regulatory authorities such as the U.S. Food and Drug 
Administration FDA and the European Medicine Agency EMA to accelerate the industry, to 
develop the processes, and to reduce the costs has led to initiatives such as Quality by Design 
(QbD) and Process Analytical Technology (PAT)[3], [4]. 

These initiatives encourage the voluntary development and implementation of innovative 
pharmaceutical processes, manufacturing, and quality assurance for adaptive process 
understanding, and better prediction and consistency [5]–[7]. 

The biopharmaceutical industry has complex processes, a variant operational environment, 
strict regulations and high material and operation costs. Therefore, the industry tends to rely 
on reliable but outdated methods for production rather than risking adopting new approaches. 

The development cycle for the production of biopharmaceuticals and biosimilars has three 
main stages:  in the first stage, the screening and characterization of the organisms take place. 
Second, the reaction conditions (e.g., optimizing medium and process variables) are optimized. 
In a last stage, the scale up to pilot and production scale takes place [8]. During these stages, 
a vast number of development cultivations is usually required [9]. It is important that the 
gathered knowledge in all stages and cultivations is scalable. 

Developing a pharmaceutical production cycle requires improvements in production techniques 
on two levels: one the physical component level and on the virtual component levels. While 
the first component can be transferred with little effort from other industries, the virtual 
component including process modelling is highly specific and needs to be developed 
independently [1], [10]–[13].  

In (pharmaceutical) bioprocessing industry, the challenge is to cut costs, labor, and time. 
However, bioprocess development is often too long and owes a very high failure rate [14]–[16]. 
In general, each development cycle produces high volumes of variant datasets, generated by 
the sensing and controlling systems, e.g., by the online and offline measurements methods. The 
data is usually a result of many experiments that are conducted in the design space in the 
vicinity of the desired process goal. This data is usually (pre-)processed with chemometric or 
statistical methods to extract direct process information, which is then compiled to extract 
process knowledge. A clear and effective hierarchy of data to information to knowledge (DIK) 
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is of importance for robust bioprocess development [16]–[19]. Pharmaceutical industry is 
reported to suffer from data rich information poor syndrome DRIP [20]. 

Hence, effective modelling methods with a broad scope that covers all cycle stages is of a great 
importance. These methods can promise a huge reduction in the cost and time. Some estimated 
a possibility to halve the required resources when effective in-silico methods are applied [11], 
[21]. Supported by the recent advancement of sensing technology and analytics techniques, 
robotic and high throughput systems, and high and cost-effective computational power, the 
pharmaceutical industry has all the prerequisites for the digital transformation. 

However, the effective modelling methods have to offer accurate, robust and easily 
interpretable results on the relation between the critical process parameters (CPPs) and the 
critical quality attributes (CQAs), and to enable efficient data and information management, 
knowledge transfer, and advanced process monitoring and control [22]. In the context of 
(pharmaceutical) bioprocessing industry, the models have to describe the most important, but 
not all, characteristics of the cultivated cells. Having an interpretable model structure is 
favorable to understand the metabolic interactions complexity. Such a structure is usually 
achieved with an explicit (not latent) mathematical description of cell metabolic activities and 
the affecting process conditions. This also facilitates the validation of the models in the absence 
or scarcity of the targeted analytics. Modelling methods that fit last criterion are rare.  

Different modelling methods are available to fulfill the previous requirements. In general, three 
main modelling approaches are used in bioprocessing: I) data-driven and statistical methods, 
II) mechanistic methods, and III) hybrid methods which combine both.

Data-driven and statistical methods are gaining popularity as tools to investigate 
correlations in bioprocessing. The biological nature of the bioprocesses means dynamically 
changing inter-relationships between process variables [1]. 

Standard statistical methods are used mostly in the context of Design of Experiments (DoEs) 
to provide insight into parameter correlations [23]. Multivariate data analysis methods 
(MVDA) like principal component analysis (PCA) and partial least square regression (PLSR) 
are widely used to investigate highly correlated datasets. They are widely applied to group: 
experimental runs according to process conditions and phases, process outliers and product 
quality [1], [24]–[27], and as a mean to understand the latent relationships between process 
variables and process products [28]. 

Data-driven methods require a large set of data in order to completely identify the large 
number of model parameters resulting from the large number of process critical factors that 
should be investigated [29]. The lack of such a data volume means an overfitting problem, 
which is common in data-driven methods. A possible remedy is to generate a large enough 
data set with enough process and cellular variability. This is a costly and time-consuming task 
for industries under pressure for short and cost-effective development cycles. Further, the 
generated data in the corporations in the pharmaceutical industry are not shared, and it is 
unlikely that one company will diversify its data portfolio enough to overcome the above-
mentioned problem [11]. The vaccination development for the recent COVID-19 pandemic 
shows a possible example of that. 
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Data-driven methods feature the possibility to run methods without prior knowledge, but this 
also means that model results are highly dependent on the used dataset. Extrapolation outside 
the used dataset space is therefore unreliable.  In this sense, data-driven methods can be seen 
as “tailored” rather than “standard” methods. 

M echanistic methods, on the other hand, rely on the prior knowledge gained by different 
scientific fields like biology and chemistry to form mathematical equations. These models 
represent the knowledge of the underlying physical characteristics of the process and the 
physiological behavior of the organisms using mathematical expressions and model parameters 
[30]–[32].  One could rely on literature to accumulate knowledge of different organisms or 
platforms without the need to have the experimental data. Due to the validity of the equations 
representing the underlying phenomena, the interaction between these equations is also valid. 
Hence, the extrapolation results of mechanistic models are much more reliable than the results 
of their data-driven counterparts [33]. However, mechanistic models have their own problems 
of structural rigidity and numerical complexity. Therefore, they need more effort to be 
implemented properly, they also need some basic knowledge to properly set the numerical 
solution environment. 

During the development of bioprocesses, mechanistic models play an essential role for effective 
experimental design [34]–[39], real-time monitoring and predictive control [40]–[44]. They could 
predict quantities which are hard or costly to be measured, e.g., soft sensors [45], also, they 
are increasingly used in the frame of multi-objective control to promote increased selectivity 
of products [33], making them indispensable tools in biotechnology.  

Hybrid methods which combine data-driven and mechanistic approaches are now 
gaining more interest as a nice possibility to improve the abstraction level of data-driven 
approaches with other knowledge sources [1]. A common hybrid model contains two 
components: a data-driven component; mostly neural networks, and a mechanistic 
component. The experimental data is fitted to the mechanistic model and the deviations 
are overcome by a trained neural network [23]. 

Figure 1 shows an illustration of the different modelling approaches in bioprocessing 
according to the needed pre-knowledge.  

The main interest in this thesis is the mechanistic models. The thesis embraces the notion 
that mechanistic models still have room for improvements. An improved mechanistic 
model means better modelling output for both mechanistic and hybrid methods. 



5 

Figure 1: Modelling methods in bioprocessing according to the prior knowledge needed to construct model structure 
and define model parameters, adapted from [46] 
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1.1.2 M echanistic models 
The definition of the mechanistic models in bioprocessing 

Mechanistic models are traditionally defined as “ab initio” models, physical models, or first 
principal models. However, more accurately, they are non-empirical models built upon physical, 
chemical and/or biological principles [11]. 

Mechanistic kinetic growth models use stoichiometric information, nonlinear reaction rates and 
mass and concentration balances [47]–[49], and are usually written as a set of deterministic 
and continuous Ordinary Differential Equations (ODEs). 

Figure 2: A scheme for an ideal bioreactor system with a homogenic medium and perfect mixing  

In a standard generic bioprocess, and for an arbitrary reacted component with a concentration 𝑐 in a reactor with a working volume 𝑉, the mass balance ([𝑔. ℎ−1]) is written according to 
[50]: 

𝑑(𝑉.𝑐)𝑑𝑡 = 𝐹𝑖𝑐𝑖 +𝑄𝑖𝑐𝑔,𝑖 − 𝐹𝑜 . 𝛿𝑐 − 𝑄𝑜𝑐𝑔,𝑜 + 𝑉𝑟𝐶 (1.1) 

Where 𝑄𝑖 is the inlet gas flow rate, 𝑄𝑜 is the outlet gas flow rate, 𝐹𝑖 is the medium inlet flow 
rate, and 𝐹𝑜 is the medium outlet flow rate. 𝑟 is the volumetric reaction rate, it gives a positive 
value for production and a negative value for consumption for the arbitrary component 𝑐. 
Subscript 𝑔 refers to the gas flows, 𝑖 𝑎𝑛𝑑 𝑜 refer to the inlet and outlet flows. 𝛿 is the separation 
factor, refers to the cells that are recirculated, mainly in the continuous cultivations. 

The change in the volume equals the difference between the inlet 𝐹𝑖 and outlet flow 𝐹𝑜. By 
dividing both sides of eq (1.1) by the volume, the general mass balance equation that describes 
the change in the concentration of a component 𝑐 is:  
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𝑑𝑐𝑑𝑡 = 𝐹𝑖𝑉 (𝑐𝑖 − 𝑐) − 𝐹𝑜𝑉 (𝛿𝑐 − 𝑐) + 𝑟𝐶 + 𝑄𝑖𝑉 𝑐𝑔,𝑖 − 𝑄𝑜𝑉 𝑐𝑔,𝑜 (1.2) 

This equation is valid for common process operations in batch, fed-batch, and continuous 
processes. The previous equation (1.2) can be shortened in case of batch and fed-batch cultures 

where 𝛿 = 1. The Gas Transfer Component can be written as 𝐺𝑇𝑅 = 𝑄𝑖𝑉 𝑐𝑔,𝑖 − 𝑄𝑜𝑉 𝑐𝑔,𝑜. Most of 
the components in the bioreactor don’t involve any gas transfer, and therefore their 𝐺𝑇𝑅 is 
zero. The volumetric reaction rate 𝑟𝐶 consists of the yields coefficients 𝑌 that links the specific 
reaction rates 𝑞 with the reacting components 𝑐, generally as 𝑟𝐶 = 𝑌. 𝑞. 𝑐. 
A generalized matrix-form of equation (1.2) for 𝑘 feed, 𝑗 gaseous components, 𝑚 reacting 
components (liquid and gaseous), 𝑛 independent reaction rates, and a biomass concentration 
of 𝑐𝑥 is written as:  

𝑑𝑑𝑡 [ 𝑐1𝑐2⋮𝑐𝑚] = [𝑌1,1 ⋯ 𝑌𝑛,1 𝑌1,2 ⋯ 𝑌𝑛,2 ⋮ ⋱ ⋮𝑌1,𝑚 ⋯ 𝑌𝑛,𝑚] . [
∓𝑞1∓𝑞2⋮∓𝑞𝑛] . 𝑐𝑥 +∑ 𝐷𝑘𝑘𝑚𝑎𝑥𝑘=1 . [𝑐𝑘,1 − 𝑐1 𝑐𝑘,2 − 𝑐2⋮𝑐𝑘,𝑚 − 𝑐𝑚] +   ∑ 𝐺𝑇𝑅𝑗𝑗𝑚𝑎𝑥𝑗=1  (1.3) 

Where 𝑌𝑛,𝑚 is the yield of a reaction state 𝑚 and a reaction rate 𝑛. 𝑞𝑛 denotes the biomass 
specific reaction rate. 𝐷𝑘 is the dilution rate. This representation of the mechanistic equations 
is adopted by many authors [51], [52]. It provides a concentrated view on model structure. 

The main characteristic of the mechanistic models, aside from having a model structure, is 
having rates and yields with interpretable parameters. The rate (named sometimes a kinetic 
or a kinetic link) is formed based on an empirical observation and matched with the simplest 
and most accurate mathematical representation. That’s why there are plenty of rate kinetics 
that describe the same phenomena. Some of these kinetics describe a continuous behavior, 
others feature a discrete behavior such as Blackman kinetics. Kinetics usually have “calibration” 
parameters, e.g., Monod term and its maximum value at saturation and the affinity constant. 
Kinetics can also differ in terms of the process and cellular condition they cover such as pH 
and temperature [53]–[55]. [56], [57] recently showed a nice review on bacterial growth rate 
kinetics. Table 1 shows some of the most common rate kinetics, and Figure 3 shows their 
behaviors. 

The main question when forming and validating a new kinetic is which metabolic activities 
and process conditions should be taken and which should be smoothed or simply neglected. 
This can be seen by the numerous publications that propose models and/or kinetics for bio-
organisms. 
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Table 1: Commonly used rate kinetic in mechanistic models, 𝑐𝒏 referred to the limiting substrate for a rate 𝑞𝑛 with a 
saturation value 𝑞𝑛 𝑚𝑎𝑥  and substrate affinity constant 𝐾𝑛. Inhibition state and affinity constant are 𝑐𝑖 and 𝐾𝒊 consequently. 

Monod [58] 𝑞𝑛  =  𝑞𝑛 𝑚𝑎𝑥 𝑐𝑛𝑐𝑛  + 𝐾𝑛
Moser [59] 𝑞𝑛  =  𝑞𝑛 𝑚𝑎𝑥 𝑐𝑛𝑝𝑐𝑛𝑝 + 𝐾𝑛

Blackman [60] 𝑞𝑛 = {𝑞𝑛𝑚𝑎𝑥2𝑘𝑛 ⋅ 𝑐𝑠  𝑖𝑓      𝑐𝑛 ≤ 2𝑘𝑛 𝑞𝑛𝑚𝑎𝑥  𝑖𝑓      𝑐𝑛 > 2𝑘𝑛 
Competitive 
inhibition 

𝑞𝑛  =  𝑞𝑛 𝑚𝑎𝑥 𝑐𝑛𝑐𝑛  + 𝐾𝑛(1 + 𝑐𝑖𝐾𝑖)
Non-competitive 

inhibition 
𝑞𝑛  = 𝑞𝑛 𝑚𝑎𝑥(1 + 𝑐𝑖𝐾𝑖) 𝑐𝑛𝑐𝑛  + 𝐾𝑛

Substrate inhibition 𝑞𝑛  =  𝑞𝑛 𝑚𝑎𝑥 𝑐𝑛𝐾𝑛  + 𝑐𝑛(1 + 𝑐𝑖𝐾𝑖)

Figure 3: Illustration of some of the common kinetic links shown in Table 1, 𝐾𝑖 = 𝐾𝑠 = 0.5 [𝑔𝐿] and inhibition state 
concentration 𝑐𝑖 = 1 [𝑔𝐿]. 
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Types of the mechanistic models 

Mechanistic models are broadly categorized into structured or unstructured models and into 
segregated or non-segregated models. Figure 4 illustrates the differences between these 
categories. 

If the cell population is considered to have equal properties, then the model is categorized as 
segregated. If not, then the model is called non-segregated. 

Figure 4: The broad categories of the mechanistic models 

Unstructured models (sometimes called Macro-models) do not incorporate a detailed 
metabolic and physiological description of the organism.  

Structured models (sometimes called Micro-models) provide a detailed description of the 
intracellular activities. However, due to the complexity and the difficulty of measuring all 
concentrations, their application in practice is still very limited [30], [61], [62].  

This is why, in the context of industrial biotechnology, model-based monitoring, control and 
characterization rely mainly on non-segregated unstructured models [63]–[65].  
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Adaptiveness and robustness of the mechanistic model 

Mainly, there are two ways to offer model flexibility with interpretable mathematical 
description in bioprocessing modeling; having a set of kinetics or having a flexible model 
structure that changes depending on certain process or cellular conditions. A combination of 
both is possible and helpful if there is no repeated description of the same phenomenon in the 
structure and the kinetic terms, so the number of model parameters doesn’t increase without 
any additional information added to the model.  

The first approach is referred to in this thesis as the “adaptive kinetics” approach, while the 
second approach is referred to as the “adaptive structure” approach. Figure 5 illustrates the 
two possibilities. 

For the “adaptive structure” approach, an additional degree of model flexibility without 
increasing the number of parameters can be afforded if the switching conditions are reformed 
from, or as the same as, some of the model’s own kinetics. This is discussed in detail in 
section 2.1.1.  

This thesis has the goals to adopt the simplest and most accurate kinetics description and offer 
more fle ibility on the model’s structure level, thus, in the thesis context, the “adaptiveness” 
is understood by aiming to achieve an “adaptive structure”. 

Figure 5: Adaptive modelling has two main approaches: Left) adaptive structure, where the different model equation sets 
are active over different time windows, and Right) adaptive kinetics, where different kinetic links are proposed to account 
for the changing cell behavior.  

The matrix-form of the model mentioned in (1.3) offers an elegant and uncomplicated way to 
implement the adaptive structure approach.  

Robustness in the context of mechanistic models is understood on the level of model prediction. 
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A robust model is expected to have almost the same output regardless of the deviations in its 
input. Robustness is defined by the IEEE standards glossary as "The degree to which a system 
or component can function correctly in the presence of invalid inputs or stressful environmental 
conditions” [66].  
Mechanistic model output is deterministically linked to the model parameters. Thus, the 
robustness is also understood on the parameter level. A robust model is expected to have 
similar parameter estimates regardless of the deviations in its input, e.g., process 
measurements. These deviations origin, among other reasons, from the noise in the 
measurements, and the way the measurements are (pre-)processed and incorporated inside the 
model. This highlights the need for robust methods for the solution of the model, and for the 
measurements data (pre-)processing.  
Model robustness and adaptiveness are linked to each other. An adaptive structure helps to 
achieve robust parameter estimates by offering more flexibility to the model in regions rich in 
information. On the other hand, the switches between the adaptive structure submodels cannot 
be accurately defined without robust model parameters. 

Figure 6: A proposed development cycle for an adaptive and robust mechanistic model 
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1.1.3 Obstacles to the effective deployment of 
mechanistic models 

An effective deployment of mechanistic models in industry is still hindered by: A) practical 
challenges such as the availability of analytics, and the transferability of models between 
different applications; e.g., changes in media composition [67], or changes in reactor working 
volume [68], and by B) theoretical challenges related to the development of the applied 
methods that must take into account the peculiarities of bioprocessing, for example the 
different nature of analytics techniques. Different methods and tools to address these issues 
have been proposed. For example, methods for the reduction of dynamic models [69], modeling 
of cellular metabolic pathways [70], structural analysis of model equations [71], dynamic and 
global optimization [72], [73].  

However, this thesis is interested in proposing solutions of the following challenges: 

1.1.3.1 Model structure formation & solution method 
Mechanistic models are formed according to their objectives. Unstructured models are common 
in industry and have the aim to provide knowledge on industrial relevant goals where the 
analytics are limited to save costs and time. Therefore, the model mathematical representation 
is simplified to the central metabolic pathways of the cultivated organism. The result is usually 
a discontinuous piecewise model. 

1.1.3.1.1  The solution of continuous and discontinuous ODE 
models 

A word on ODEs solution, stiffness and discontinuities 

From a mathematical point of view, a model simplification is considered when the underlying 
modelled differential equations have a wide variation in time and/or length. In this case, either 
the faster or the slower dynamics have to be eliminated (simplified). The decision of which 
dynamics to be simplified is usually done taking the biological meaning and importance into 
consideration. The line separating important and unimportant dynamics is itself a blurred one. 
In bioprocessing, this results in simplifying the continuous metabolism transitions into discrete 
transitions named “discontinuities”, sometimes referred to as “events”.  

Discontinuities cause difficulties for ODE solvers. Handling a discontinuity should happen on 
a solver level and a problem formulation level [74]. 

Initial value problems with a changing state 𝑐 over time 𝑡 described by a function 𝑓, reaction 
parameters p, and initial conditions 𝑐0, has a numerical time resolved solution, where the step 
size ℎ determines the accuracy of the solution. The solution exists if there is a known solution 𝑐𝑖 at each point 𝑡𝑖. The solution at the next step 𝑡𝑖+1 is: 
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𝑐𝑖+1  =  𝑐𝑖  +  𝜑 ∙ ℎ =  𝑐𝑖  + ∫ 𝑓(𝑡, c). 𝑑𝑡𝑖+1
𝑖  (1.4) 

Where 𝜑: slope, and ℎ step size. The solution is correct if for all time steps i, the following 
equality holds:  

𝜑 ∙ ℎ =  ∫ 𝑓(𝑡, c). 𝑑𝑡𝑖+1
𝑖  (1.5) 

Different methods are proposed to solve (1.5). Generally, the evaluation at different points 
from the first time point helps to adjust step size correctly. If solver estimates the solutions at 
multiple distances between 𝑡𝑖 , 𝑡𝑖+1, then it is called variable-step solver, i.e., different orders 
like in Gear's method and Adams-Bashforth-Moulton method. On the other hand, calculating 
the value of the system at the next time step starting from previous ones splits solvers family 
into implicit and explicit, where it is known that implicit solvers perform better with stiff 
problems. Table 2, Table 3, and Table 4 in the appendix show the main solvers and their 
methods that are used in MATLAB, Python and Modellica environments, these methods 
among the most effective and widely used in scientific computing [75], same algorithms are 
commonly implemented in other programming environments [76]–[78]. In an ODE solver 
context, the relative tolerance is a measure of the local error 𝜀𝑟𝑒𝑙 at each step. The absolute 
error 𝜀𝑎𝑏𝑠 can be seen as a general threshold. Both must not exceed the predefined (acceptable) 
value 𝜀𝑎𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒:  

𝜀𝑎𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 ≤  𝑚𝑎𝑥(𝜀𝑟𝑒𝑙  . |𝑐𝑖|, 𝜀𝑎𝑏𝑠) (1.6) 

Step size ℎ selection is set differently for each solver to get accurate solution steps and avoid 
approximation errors [79],[80]. These criteria that are used for error estimation are designed 
to provide solutions accurately but not necessarily in a stable manner [81]. 

In conventional ODE solvers, the exact location of discontinuities is not accurately determined. 
The solvers detect the discontinuity in the state variable (i.e., on the concentration level in 
bioprocessing models) resulting from a discontinuous constitutive equation (i.e., on the rate 
level in bioprocessing models). Because the discontinuity is located at the state level, the 
interpolating polynomial is not representative of the system behavior [74].  

 dditionally, stiff problems can form an “almost-discontinuity” behavior. This means although 
the mathematical representation is not discrete, the behavior is very similar to a discrete 

behavior. A very common example of that is Monod-like kinetics that have the form of  𝐶𝐶+𝐾. 
that mainly link growth and uptake to concentrations [30]. The problem happens with small 𝐾 values. Appendix  4.1.3.1  shows an example of: I) an “almost-discontinuity” caused by the 
stiff behavior of Monod kinetics with low K value. This leads to “non-physical” solutions. II) 
Model discontinuity caused by the bottleneck kinetics in the model of [82]. The figure shows 
exemplarily how the discontinuities in bioprocessing could happen on the rate, not the 
concentration, level. 

Appendix 4.1.3.2 shows a quantitative analysis on the simulation errors associated with 
“almost-discontinuity” behavior of Monod kinetic.  



14 

Event detection and its issues  

Event detection relies on Root Finding Methods. These methods monitor the change of the 
sign of the solution of algebraic equation between [𝑡𝑖 , 𝑡𝑖+1]. The search for roots 𝑔(𝑡, 𝑓(𝑡, 𝑦)) =0 is considered solved when there is an interval [𝑡𝑖∗, 𝑡𝑖+1∗ ] that satisfies:

g(𝑡𝑖∗) ∙ g(𝑡𝑖+1∗ )  < 0 and |𝑡𝑖∗ − 𝑡𝑖+1∗ |  < 𝛿 (1.7) 

Which implies that zero crossing is contained in a small offset 𝛿 between [𝑡𝑖∗, 𝑡𝑖+1∗ ] [83]. Error
term 𝛿 is set in most solvers including MATLAB’s to machine precision [75]. 
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1.1.3.2 Model parameters estimation 
1.1.3.2.1  Lack of sufficient analytics 
The complexity of mechanistic models depends on the availability of process analytics such as 
online gas analyzers, advanced tools such as automatic liquid handling and sampling, and 
hardware like HPLC (high-performance liquid chromatography), NIR (near infrared 
spectroscopy) and FIA (flow injection analysis) [84]. In industrial context these analytics are 
limited to cut costs and reduce development time. However, a nice opportunity to override 
this issue, is to seek to extract additional “une ploited” information from already-existing 
analytics data.  

In yeast as well as many other bio organisms, Respiratory Quotient (RQ) derived from off-gas 
information proved to be used to identify the metabolism. It is defined as: 

𝑅𝑄 = 𝐶𝐸𝑅𝑂𝑈𝑅 (1.8) 

Where CER is the carbon dioxide evolution rate, and OUR is the oxygen uptake rate. A RQ 
greater than one indicates that the yeast is producing ethanol by Crabtree effect 
(oxidoreductive growth). A RQ close to one indicates that glucose is mostly oxidatively 
consumed. RQ values around 2/3 indicate ethanol oxidative consumption. 

Dissolved oxygen tension (DOT) is a commonly obtained online signal in E. coli cultivations. 
It can be of a similar usefulness as the off-gas signals for yeast cultures to assess the metabolic 
activities. However, for E. coli, the encoded metabolic activities in the DOT signal are more 
ambiguous, and signal details have higher frequency, hence, the separation of the useful 
characteristics from the background noise is more difficult. Also, a combination of sensor time 
delay and high substrate affinity of E. coli shifts the metabolic activities nonlinearly along the 
DOT signal [85]. This shows the need for an advanced analysis to extract the relevant useful 
information from the DOT signal. 

DOT signal is influenced by two opposing components: cell oxygen demand defined by oxygen 
uptake rate (OUR) and the oxygen delivery to the medium by reactor aeration and stirring 
systems defined by oxygen transfer rate (OTR). 𝑑𝐷𝑂𝑇𝑑𝑡 = 𝑂𝑇𝑅 − 𝑂𝑈𝑅 (1.9) 

However, DOT and off-gas signals are usually more complex than other liquid concentration 
states. They contain both low and high frequency information where rapid changes represent 
mostly certain limitations or metabolic shifts, and slower changes usually are correlated with 
the active metabolic states.  
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1.1.3.2.2  M ethods for parameters estimation, identifiability & 
scalability 

Model calibration is one of the delicate tasks when having a mechanistic model. As the 
parameters have a physiological meaning, their values have to be carefully estimated and 
checked. Deviations and biases can affect model parameters and result interpretation.   

Bias in parameter estimation 

Forming an objective function is usually an undervalued step when developing models. 
Probably, the most common (error) criterion used for fitting model predictions to the data in 
bioprocessing is the Euclidean Least-Squares (LSQ) criterion. LSQ usage is valid for regression 
problems where the residuals are assumed to be normally distributed with equal variance 
(homoscedastic), and independent of one another. If any of these distributional assumptions 
are violated, several of the desirable properties of a least squares fit may not hold [86]. However, 
this should not be the only criterion to worry about. The objective function should also consider 
the nature of the data under investigation. In bioprocessing, the measurement of each single 
experimental run comes from different sensor and measurement devices. The frequency of the 
measurements can hugely vary from continuous, semi-continuous to discrete.  

Considering all these measurements in one objective function is a tough task. One common 
example is bioprocesses with on-line off-gas signals and off-line liquid concentrations 
measurements.  

Parameter estimation algorithms use LSQ to evaluate the quadratic fitting error simply by 
subtracting measurement and prediction values on the y axis for each x timepoint. Therefore, 
if the measured signals show shifts or have measurement noise, which is so common in 
bioprocessing, then the LSQ function would report a disproportionate change in the error 
value. Also, in the presence of structural model simplifications and noise, measurements are 
usually fitted by smooth curves, which are optimal in the sense of the quadratic error criterion, 
but do not mimic the shape of the measured signals. 

For 𝑁 models state, 𝑀 measurements at different time points, and with 𝜃 as unknown 
parameter vector, the minimization problem using LSQ reads:  m n𝜃   𝜙𝑁𝑅𝑆𝑆(𝜃)      w th 

𝜙𝑁𝑅𝑆𝑆(𝜃) =  1𝑀∑∑(𝑐𝑖,𝑗(𝜃) − 𝑐𝑖,𝑗𝑚)2N
𝑗=1

N
𝑖=1

(1.10) 

Dynamic Time Warping (DTW) is a method proposed in computer science and signal 
processing fields for shape recognition and signals alignment. It has a high potential to yield 
model predictions which mimic the interesting features in the measured signals and provide 
robustness against some off-gas signal peculiarities.  

To get shape preserved matching between two sequences, DTW seeks an optimal path k 
through the matrix which minimize the warping cost [87] :  



17 

m n𝜃   𝜙𝐷𝑇𝑊(𝜃)      w th 
𝜙𝐷𝑇𝑊  =  m n𝑘  (∑𝛾𝑖,𝑗𝐼,𝐽 )𝑘

(1.11) 

Where 𝛾 are the elements of the warping path. The optimal path is found by calculating the 
minimum cumulative distance of the current element and the other three adjacent cells in 
DTW matrix following:  

Figure 7 shows exemplarily the difference between LSQ and DTW algorithms output when a 
shift is introduced to the off-gas signal. 

Figure 7: Euclidean Least-Squares (LSQ) and Dynamic Time Warping (DTW) as fitting criteria for off-gas signals in 
bioprocessing 
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𝛾𝑖,𝑗 = 𝜀𝑖,𝑗+ min(𝛾𝑖−1,𝑗−1, 𝛾𝑖−1,𝑗 , 𝛾𝑖,𝑗−1) (1.12) 
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Parameters identifiability 

Another important issue when estimating mechanistic model parameters is to select an 
identifiable best fitting parameter (sub-)set. This has been shown to be addressed with different 
techniques; [88] shows a nice review and proposed a method to deal with this issue.  

The scheme of [88] is applied to check the identifiability of the parameters. This scheme 
requires estimated parameters 𝜃 and the corresponding sensitivity matrix 𝑆(𝜃). 𝜃 are obtained 
from repeated numerical solutions of a nonlinear regression, where the initial parameters are 
defined by stochastic sampling in a reasonable parameter space around initial values. 

The sensitivity matrix 𝑆 is obtained by normalizing S with the initial parameters and model 
output. Singular value decomposition (SVD) is used to detect any linear dependencies in 𝑆. 
By decomposing 

where 𝛴 matrix is found which holds the singular values of 𝑆. The singular values in 𝛴 are 
then used to calculate:  

1- the condition number (𝜅) which is a measure of the sensitivity of model results to the
perturbation of the parameters.

2- the collinearity index (𝛾) which quantifies the collinearity of the parameters.

The parameters are ranked according to their linear independence and the above metrics are 
used to perform a parameter subset selection (SsS). The identifiable parameter subset 
simultaneously satisfies both sensitivity and linear independence conditions. 

A stochastic shuffling which involves resampling of the experimental data and re-estimation of 
the parameters to assess the robustness of the model with the identifiable parameters can be 
done using bootstrapping technique [89]. 

𝑆  =  𝑈𝛴𝑉𝑇 (1.13) 
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Parameters scalability 

Models in bioprocessing should, at least theoretically, work at different scales. In reality, due 
to process and cell variations, the models don’t usually fulfill this assumption. 

Models can be adapted to different scales when their parameters are adapted accordingly [9], 
[90]. However, determining which parameters are changing and how much they change is 
challenging. Miniaturized bioreactor systems (MBRs) are common platforms for so-called 
“scaling-down” of different organisms such E. coli, S. cerevisiae and bacillus subtilis [8], [91]–
[93]. When the optimal process conditions and best organisms and/or strain candidates are 
identified, the cultivations are scaled-up. Therefore, tools that give insights on process 
dynamics or/and metabolic activities in MBRs to identify critical patterns for scale-up are 
of great importance [1]. Figure 8 illustrates the concept of scalability. The parameters set 𝑃 
differs between scales with a quantifiable change ±𝜎. 

Figure 8: Bioprocess scalability is associated with a change in the model parameter values at each scale. Therefore, 
methods should correctly quantify the parameter set 𝑃 and the change 𝜎 to achieve robust modelling across all scales. 
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1.2 Goals of the thesis 
The main aim of the thesis is to develop sound science methods for the generation of adaptive, 
accurate and robust mechanistic models. To achieve that, models have to have a flexible 
representative structure that describe the underlying biological behavior, and proper methods 
have to be applied to ensure the robustness of the models’ output.  

This work seeks to overcome the obstacles that still hinder an effective exploitation of the 
models in industry and academia. These obstacles are described in detail in section 1.1.3. To 
overcoming these obstacles, this works aims to achieving adaptive robust models by:   

1. Highlighting the importance of proper handling of discontinuities in bioprocessing 
models, as shown in sections 2.2.2, 2.2.3, and 2.2.4.

2. Providing a workflow to support the solution of discontinuous mechanistic models, and 
to overcome the problem of the reduced predictive capabilities of the models due to 
model simplifications as shown in sections 2.2.3 and 2.2.4.

3. Extracting the unexploited knowledge from already-existing analytics, as shown in 
sections 2.2.1 and 2.2.5.

4. Reducing model parameters uncertainties, by obtaining accurate and representative 
(unbiased) parameters against numerical and measurement noise, as shown in section 
2.2.3.

5. Providing model-based tools to observe process dynamics and metabolic activities in 
lab and milliliters scales reactors to facilitate the transferability between different 
scales, as shown in section 2.2.5.

To check the validity and the transferability of the developed workflows and methods, 
applications had to be tested at the university and by the industrial partner at different process 
platforms, both at liter and milliliter scale with different production hosts (Saccharomyces 
cerevisiae and E. coli).  
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1.3 Structure of the thesis 

Figure 9: The thesis structure and main elements 

The structure of the thesis is presented in Figure 9. The cumulative thesis contains five papers 
arranged into two main categories. However, a distinctive separation between these categories 
is not possible. The two challenges of achieving an adaptive and a robust model are strongly 
correlated. Model structure flexibility (adaptiveness) and the reliability of the model output 
(robustness) usually influence each other. 

The first part (section 2.1.1) has the goal to highlight the importance of proper handling 
discontinuities. Therefore, a comparative analysis is provided in this part. Also, a workflow 
and modelling example of yeast in lab-scale are provided in this part. The conclusion of this 
analysis is seen on three levels: a summary on the origin of the discontinuous behavior in 
bioprocessing, a comprehensive analysis on the possible consequences of overlooking these 
discontinuities in bioprocessing, and a workflow to deal with discontinuities in bioprocessing 
models.  

The second part (section 2.1.2) has the goal to achieve better model output in terms of
accuracy and robustness. This section is a collection of different methods applied on yeast 
and E. coli cultivations in different scales to improve model calibration and offer more 
representative parameters that can work hand by hand with the methods shown in the first 
part.  
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2  Results 
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2.1 Achievements and findings 
2.1.1 Accurate location of model events for adaptive 

modelling  
2.1.1.1 Challenges 
Biological processes are difficult to describe by mathematical models, due to the complex 
biological nature (e.g., tens or thousands of biochemical reactions, different metabolic pathways 
…), and the limited understanding of kinetic links between biology and process parameters. 
The complexity of the mechanistic models depends on the availability of process analytics. In 
unstructured and simplified structured models, internal reactions are often lumped together 
and represented as one overall metabolic pathway. Only the most important metabolic 
pathways are considered. In the context of industrial biotechnology, unstructured or simplified 
structured models are commonly used [63]–[65]. 

These models primarily focus on the description of simplified metabolic pathways transitions. 
However, in reality, transitions are mostly continuous, highly nonlinear, and dependent on 
intracellular mechanisms, but as dynamics happen in very different timescales, most of the 
transitions are simplified into discontinuous behaviors. Therefore, switches expressed as logical 
operations often need to be incorporated in the model [94]. This results in a discontinuous 
piecewise model. Examples of that are models that describe the Crabtree effects in yeast [95], 
and overflow metabolism in E. coli [96]. 

Discontinuous (piecewise) models can be mathematically expressed as a combination of a set 
of continuous differential equations with discontinuous right-hand side, and a set of time-
dependent and/or state-dependent conditions. 

2.1.1.2  State of the art 
There are two main approaches to solve ODEs with discontinuous right-hand side [97]: the 
time stepping method (TSM) and the event driven method (EDM).  

The time stepping method: in which solvers assume sufficient smoothness of the right-hand 
side of the ODEs and rely on the local error estimator to control the step size and keep errors 
in the generated solution low [80]. This approach can fail or become inefficient in discontinuous 
and very stiff regions. This is because the solution in these regions does not fulfill the main 
assumption of smoothness [97]. 

The event driven method: uses events functions to locate discontinuities (called also events 
[97]) by defining discontinuity surfaces of the differential system. When the solution reaches a 
surface, an event is located. The result is the solution of a sequence of initial value problems 
(IVPs), described by differential equations and interspersed by instantaneous events that cause 
a discrete change to the initial value problem currently being solved [98]. 
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State of the art IVP solvers in MATLAB’s [83] ,Python [99] or SUNDIALS [100] provide the 
option to monitor and locate time and/or state and parameter dependent event functions. To 
account for the complexity of different events and switches, [101] proposed a general 
formulation where classical propositional logic is used for the representation of state conditions 
as it can represent conjunctions and/or disjunctions of relational expressions effectively. This 
general formulation of models can be used in different modeling languages and software 
systems. A review on the applications of the formulation for the analysis of differential and 
hybrid (continuous/ discrete) systems is given by [102]. 

More information on the solution environments in GPROMS, Modelica/Dymola, Assimulo, 
deSolve, Mathematician are found in [103]–[108]. 

A nice review on the available software toolboxes on the solution of differential systems with 
time or state (and possible parameter) dependent event functions in the context of systems 
and computational biology is given by [94]. 

The successful implementation of EDM in other fields highlights the potential of proposing an 
EDM-based method to properly handle discontinuities in ODEs mechanistic models. Such a 
method has to be tailored to fit bioprocessing modelling needs. 

2.1.1.3 Findings 
Identifying the roots of discontinuities in a generic 
bioprocessing model 

The following discontinuities which affect the solution are identified: 

A- Metabolic discontinuities: these are the switches that happen between the metabolic
pathways. They are located by monitoring the metabolic conditions. The inaccuracy in locating
these may lead to deviations in the model output.

B- Process-related discontinuities: these are the sudden changes that happen in the process
conditions or environment and have a direct effect on the cultivation. For example, when
samples or substrates are withdrawn or fed suddenly (especially with intermittent bolus feeding
strategies and lower reactor volumes), disturbances in reactor working volume and substrates
concentrations happen. When the system is modelled, these disturbances in the corresponding
states e.g., volume and substrates, should be modelled with events and conditions, where states
are corrected after each change, otherwise the resulting errors might propagate and corrupt
the model output.

C- Discontinuities caused by highly nonlinear kinetic terms (Non-physical solutions): nonlinear
kinetic such as Monod-like kinetics can exhibit stiff behaviors, especially when the affinity of
the organism to the used substrates is high [30], indicated by a small affinity constant. For
that, corresponding zero crossing conditions should be considered.
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Identifying the consequences of improper handling of 
discontinuities in bioprocessing models 

The improper handling (or ignoring) model discontinuities in bioprocessing leads to a higher 
model prediction uncertainty, a higher uncertainty in locating the metabolic switches, a higher 
model parameters uncertainty, and possibly a lower parameter identifiably. The reason is that 
the optimization surface generated by the model predictions is distorted and affected by the 
noise and errors resulting from the above-mentioned discontinuities. A simplified 
video explanation is shown in 4.1.4. 

Proposing a general formulation for proper handling of 
discontinuities in bioprocessing models with an adaptive 
structure

A robust modelling approach has been developed for the growth of S. cerevisiae. This has been 
achieved by the consideration of metabolic switches as events in the framework of a well-
established model [82]. A modelling tool (codes library) is built for MATLAB to achieve this 
purpose. The following generic mathematical description is proposed: 𝑐̇(𝑡) = 𝑌 ⋅ 𝒜(𝒞(𝑡)) ⋅ 𝑟(𝑐(𝑡), 𝑢(𝑡), 𝜃) (2.1) 

(2.2) 

where 𝑐(𝑡) ∈ ℝ𝑁𝑚 is the vector of time-dependent state variables, 𝑡 ⊆ ℝ is the independent 
variable time, 𝑢(𝑡) ∈ ℝ𝑁𝑢 is the time-varying input vector, and 𝜃 ∈ ℝ𝑁𝑝  is the parameter 
vector. The conversion matrix 𝑌 with dimension 𝑁𝑛 × 𝑁𝑚 contains all stoichiometric 
coefficients for 𝑁𝑚 reacting state and 𝑁𝑛 reaction rate in the network; 𝑟(⋅) is a reaction vector 
of dimension 𝑁𝑛 containing the reaction rates. The adaptive switching between different 
pathways is considered a so-called activation matrix 𝒜 of dimension 𝑁𝑛 × 𝑁𝑛.  𝒜 is a diagonal 
matrix whose elements {1,0} are used to activate/deactivate kinetic reactions. Each diagonal 
element represents a discrete-time variable which activates/deactivates columns in 𝑌. Changes 
of 𝒜 are triggered by events, which are located based on the monitoring of certain conditions 𝑐𝑜𝑛𝑑𝑖 which complement the model:  

𝑐𝑜𝑛𝑑𝑖(𝑐(𝑡), 𝑢(𝑡), 𝜃, 𝑡) = 0      for      𝑖 = 1, ⋯ , 𝑁𝑐𝑜𝑛𝑑 
Complementary details on the numerical solution are shown in appendix 4.1.1. 

2.1.1.4 Impact of the work 
The impact of this work can be measured on two levels: 
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Scientific level: highlighting the importance of proper handling of discontinuities in 
bioprocesses and proposing a method to properly handle discontinuities in bioprocessing 
models. 

The proposed method improves solution numerical stability against numerical noise, 
measurements uncertainty, deviations in both initial model states and parameters, and 
improves the convergence of the optimization algorithm to the optimal solution.  

Industrial level: improving the calibration of the models, possibly leading to less calibration 
runs by providing accurate model predictions and model parameters estimates. This allows for 
better model deployment in process monitoring, design and control. 

2.1.1.5 Publications 

Citation: Jouned, M . A., Kager, J., Herwig, C., & Barz, T. (2022). Robust 
modelling of S. cerevisiae fed -batch cultures by proper handling of model 
discontinuities. The 33rd VH-Yeast Conference, self-published by the Research 
Institute for Baker's Yeast, Berlin. Accepted/ to be published soon. 

M y contribution: Design and conduct the experiments and analytics with Julian Kager. 
Collect and pre-process the data. Building the model, designing the EDM workflow, performing 
the identifiability analysis, Monte Carlo simulation, DoE analysis and uncertainty 
quantification analysis. Writing the paper, managing other authors' contributions. Revising 
and proofreading. 

Citation: Jouned, M . A., Kager, J., Herwig, C., & Barz, T. (2022). Event driven 
modeling for the accurate identification of metabolic switches in fed-batch culture 
of S. cerevisiae. Biochemical Engineering Journal , 180, 108345. 

M y contribution: Design and conduct the experiments and analytics with Julian Kager. 
Collect and pre-process the data. Preparing and building the numerics MATLAB Libraries 
with Tilman Barz. Building the model, designing the EDM workflow, performing the 
identifiability analysis, Monte Carlo simulation, DoE analysis and uncertainty quantification 
analysis Writing the paper, managing other authors' contributions. Revising and proofreading 
with the rest of the authors. 
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2.1.2 Improve model calibration and scalability for 
robust modelling 

2.1.2.1 Challenges  
Model scalability in bioprocessing is generally associated with a change in values of the model 
parameter at each scale, therefore, modelling methods should accurately quantify the values 
in the parameter set 𝑃 (i.e., model calibration), and the change 𝜎 at each scale to achieve a 
robust model across all scales. 

Inaccuracies in parameters estimation in small scale reactors happen mainly because of the 
lack of sufficient samples to represent the system, i.e., low sampling frequency. However, unlike 
larger scales, also when high sampling frequency is possible, e.g., by the means of HTP and 
autosamplers, the accuracy of the parameters can be affected by the radical changes in the 
working volume because of the relatively low initial volume. In small scales like minibioreactor, 
and lab-scale bioreactors systems, the change in the working volume is not neglectable. Sudden 
changes in the volume due to withdrawal or addition of reacting component or reaction medium 
do have transient temporary effects on the system dynamics. The nonlinear, stochastic, and 
propagation properties of these effects can alter model predictions. 

These obstacles show the need for methods that can accurately extract parameters information 
in both low and high sampling frequency scenarios. 

A possible remedy, when the sampling frequency is low, is to exploit the information encoded 
in the already-existed semi-/continuous (online) data resources, e.g., off-gas signals for yeast 
[46] and dissolved oxygen tension signal for E. coli. However, the encoded metabolic activities
in these signals (especially in case of E. coli cultivations) are ambiguous, and the separation
of the useful characteristics from the background noise may be difficult. For the DOT, a
combination of sensor time delay and high substrate affinity of the organisms shifts the
metabolic activities nonlinearly along the signal [85].

On the other hand, when the sampling frequency is high, solution methods could overlook the 
high frequency characteristics of the volume signal and look mainly at the overall signal shape, 
therefore, working volume changes are generally smoothed. 

However, in both scenarios a robust criterion to fit model predictions to the measurements of 
the samples is needed. For online measurements, this is far from being a simple task. Off-gas 
and dissolved oxygen online signals are usually more complex than other off-line/at-line 
discrete state measurements, contain both low and high frequency information, and have their 
own patterns of errors and uncertainties because of the completely different physical and 
chemical phenomena in their sensors. While for liquid samples, variance in the measurements 
is witnessed, off-gas and DOT signals suffer from shifts, offsets, and drifts. These are usually 
caused by different factors including possible sensor delay, possible interactions with other 
process conditions such as humidity, pH, and temperature. 

The commonly applied criteria to fit model prediction to the online measurements use objective 
functions derived from the Euclidean Least-Squares (LSQ) distance. These criteria don’t 
account for the peculiarities of the online signals. The standard LSQ criterion evaluates the 
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quadratic fitting error by comparing measurements and predictions point-by-point. Interesting 
features like kinks and sharp changes in the measured signals are not in the focus.  

2.1.2.2  State of the art 
To extract information from already-exist analytics, when the sampling frequency is 
insufficiently low, the following possibilities are there: 

For yeast cultivations, off-gas information proved to be used to identify different metabolic 
pathways and provide information about some parameters like maximum growth rate [109]–
[111]. 

For E. coli cultivations, many contributions reported on the strong correlation between 
metabolic activities of E. coli and certain segments of the DOT signal [112]–[117]. 

More information on the off-gas signals and DOT signal is provided in section 1.1.3.2.1. 

A responsible remedy, when the sampling frequency is high, is to properly account for volume 
changes, so the volume change errors do not propagate and affect model accuracy. 

In both cases, with a low or a high number of samples, a possible solution to overcome the 
problems associated with using objective function with least squared terms is to use a shape-
matching algorithm which is commonly applied in other fields. Dynamic Time Warping is one 
of the most famous algorithms. It is used as a non-linear mapping tool between signals, which 
reduces the distance and matches the shape. [111] showed the applicability of DTW to identify 
different phases of off-gas signals in S. cerevisiae. However, this concept has not been 
integrated yet in a modelling method to match simulation and measurement signals and 
improve the accuracy of model parameters. 

2.1.2.3 Findings 
An analysis and a modelling method to segment DOT signal in minibioreactor systems are 
proposed and applied to 8 E. coli cultivations. The method accounts simultaneously for both 
high and low frequency characteristics.  

As a result of the analysis, a DOT segment, not reported in literature, is observed. The 
corresponding metabolic state is referred to as the “adaptation state”. In this time window, the 
cell is likely to pause or attenuate the metabolism.  

The quantitative analysis shows the possibility to obtain key model parameters from the DOT 
signal. The estimation of model parameters of the overflow switching condition was possible 
using only DOT signal and biomass samples. 
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A comparative analysis of yeast cultivations modelling with and without explicit consideration 
of the sudden changes in reactor volume revealed a tangible effect on model outputs and 
parameter estimation uncertainty. A simple method to account for volume changes correction 
based on the EDM concept is proposed. 

A method combining Dynamic Time Warping and the Least-Squares algorithms is developed 
as a fitting criterion for the identification of S. cerevisiae fermentation models. The method is 
applied to different lab-scale yeast runs with a pre-planned feeding plan designed to trigger 
certain metabolic changes. The results showed clearly more reliable parameters estimates of 
the new methods compared to the standard LSQ fitting approach. It turned out that model 
predictions generated by only LSQ fitting tend to smooth the off-gas signals, leading to a loss 
of specific details of the signals shape that might represent important metabolic changes.  

2.1.2.4 Impact of the work 
On a scientific level: 

• Reveals a new dissolved oxygen signal segment (characteristics), linked to
metabolic adaptations state.

• Provides a systematic method to analyze DOT signal for minibioreactor systems
to monitor cell metabolism and calculate model parameters in E. coli cultures.

• Proposes a new method to consider the online signals of DOT and off-gas in the
mechanistic models of E. coli and yeast.

On an industrial level: 

• Improves the calibration of an industrially relevant mechanistic model for yeast
cultivation to accurately locate metabolic changes, by integrating the commonly
obtained off-gas signals.

• Improves the calibration of the model by providing a straightforward method to
extract E. coli model parameters from the commonly obtained DOT signal.

• Provides model-based tools to better address MBRs issues of oxygen supply and
intermittent feeding in E. coli cultivations.

Proper analysis and integration of the online signals generally increases the information 
content of the models, leading to a reduction in costs and time. 

2.1.2.5 Publications 

Citation: Jouned, M . A., Kager, J., Rajamanickam, V., Herwig, C., & Barz, T. 
(2023). A unique response behavior in the dissolved oxygen tension signal of E. 
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coli in minibioreactor system equipped with intermittent bolus feeding .  M DPI 
Bioengineering Journal. Submitted. 

M y contribution: Design the experiments with Julian Kager. Collect and pre-process the 
data. Propose the idea of the analysis and segmentation algorithms, write required MATLAB 
code libraries for the analysis and modelling. Writing the paper, managing other authors' 
contributions. Revising and proofreading. 

Citation: Jouned, M . A., Kager, J., Herwig, C., & Barz, T. (2021). Event  driven 
analysis to enhance model calibration of experiments with high offline sampling 
rates. In Computer Aided Chemical Engineering  (Vol. 50, pp. 463-468). Elsevier. 

M y contribution: Design the experiments with Julian Kager. Collect and pre-process the 
data. Prepare and build the numerics MATLAB Libraries with Tilman Barz. Build model, 
design the EDM workflow, identifiability analysis, Monte Carlo simulation, DOE analysis 
and uncertainty quantification analysis. Writing the paper, managing other authors' 
contributions. Revising and proofreading with the rest of the authors. 

Citation: Jouned, M . A., Kager, J., Herwig, C., & Barz, T. (2020). Improving 
the Calibration of Kinetic Growth Models using Dynamic Time W arping. In 
Computer Aided Chemical Engineering (Vol. 48, pp. 1651-1656). Elsevier. 

M y contribution: Design and conduct the experiments with Julian Kager. Collect and pre-
process the data. Propose the idea, conduct the comparative analysis. Writing the paper, 
managing other authors' contributions. Revising and proofreading.  
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Abstract 
Off-gas measurements give valuable information on the respiratory activity of organisms 
during fermentation processes. Measured oxygen consumption and carbon dioxide 
production is usually linked to the overall metabolic activity of the cultivated cells. 
Together with offline measured nutrient and metabolite concentrations reaction 
parameters of growth models can be determined. Standard algorithms for parameter 
estimation use the least-squares (LSQ) error criterion for fitting model predictions to 
measured data. However, their application does not necessarily yield off-gas 
representative model predictions and parameters. This is especially true for off-gas 
signals with rapid variability and corresponding sharp bends and kinks. Off-gas signals 
include clear indicators for nutrient limitations and metabolic shifts of the culture. Using 
the LSQ error criterion the fitting tends to smooth out these informative details leading to 
poor model predictions and parameter estimates.  

This contribution presents a comparative analysis of the performance of standard 
nonlinear LSQ algorithms and an adapted algorithm using the Dynamic Time Warping 
(DTW) criterion. Both algorithms are applied to fit off-gas signals for the calibration of 
the kinetic model of Saccharomyces cerevisiae (Sonnleitner and Käppeli 1986) on three 
experimental datasets. The data represents high dynamics with rapid variations and covers 
yeast fermentation through Batch and Fed-Batch phases including time windows where 
the organisms are forced to produce ethanol through the “Crabtree effect” by overfeeding. 
It turns out that, compared to results using LSQ criterion, the application of the DTW 
criterion yields a better shape matching of the data. In addition, results are also discussed 
comparing the performance in terms of convergence to the best fitting parameters and the 
robustness of algorithms against structural modelling errors. 

Keywords: dynamic programming, signals matching, parameter estimation, kinetic 
modelling 

1. Introduction
Kinetic modeling plays an essential role in bioprocess development because it provides 
not only information about changing quantities and rates, but also gives valuable insights 
about the underlying reactions scheme. Hence, the parameters reflect biological meaning 
apart from being mathematical coefficients. Model calibration is considered to be a 
complex task especially for problems with a high number of interdependent parameters 
and a low number of samples. In addition to that, available information is often 

Sauro Pierucci, Flavio Manenti, Giulia Bozzano, Davide Manca (Eds.) 
Proceedings of the 30  European Symposium on Computer Aided Process Engineering th

(ESCAPE30), May 24-27, 2020, Milano, Italy. © 2020 Elsevier B.V. All rights reserved.  
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concentrated in certain time ranges or only available at distinct time points. For example, 
for practical reasons it is often the case that offline samples are concentrated in the Fed-
batch phase while no/less data is available for the Batch-phase. The parameters estimated 
in these cases may not reveal the actual underlying behavior and may result in 
“Observation Biased” models where the quality of the model in experimental design and 
control can be questionable. This issue can be improved when semi-/continuous (online) 
data resources are introduced such as off-gas information or spectral information 
(Golabgir and Herwig 2016). 
In yeast fermentations processes off-gas information proved to be used to identify 
different metabolic pathways and to provide information, like maximum growth rate 
(Petkov and Davis 1996, Anderlei et al. 2004, Gollmer and Posten 1996). On the other 
hand, off-gas signals are usually more complex than other states and contain both low and 
high frequency information where rapid changes represent mostly certain limitations or 
metabolic shifts and slower changes are usually corelated to the respiration of the culture. 
Moreover, off-gas signal errors arise completely from different sources compared to other 
states such as component concentrations. While for concentration samples, variance in 
the measurements is witnessed, off-gas signal suffers - among different errors types - 
from shifts, offsets and drifts. These usually caused by different factors including possible 
sensors delay, not-proper accounting for humidity and high interactions with other 
conditions/states such as pH and temperature (Frick and Junker 1999). Fitting criteria able 
to account for these characteristics are necessary to obtain representative model 
parameters. 
Parameter estimation algorithms using Least-Squares (LSQ) as a criterion to fit off-gas 
signals, could potentially perform better if another criterion that accounts for these 
characteristics is used. The reason is that the standard criterion evaluates the quadratic 
fitting error by comparing measurements and predictions point-by-point. Interesting 
features like kinks and sharp bends in the measured signals are not in the focus. 
Accordingly, in the presence of structural model simplifications and measurement noise, 
off-gas signals are usually fitted by smooth curves (which are optimal in the sense of the 
quadratic error criterion, but do not mimic the shape of the measured signals). A possible 
solution to this is parameter estimation implementing an error criterion derived from 
Dynamic Time Warping (DTW) method (Gollmer and Posten 1996) (Srinivasan and Qian 
2007). The method is applied in shape recognition. It has a high potential for yielding 
model predictions, which mimic the interesting features in the measured signals, and to 
overcome the limitations of algorithms using LSQ error criterion.  
The applicability of DTW as a non-linear mapping tool between signals, which reduces 
the distance and matches the shape, has been shown in the field of chemistry and 
bioprocessing (Srinivasan and Qian 2007; González-Martínez, Ferrer, and Westerhuis 
2011). (Gollmer and Posten 1996) actually used DTW to identify different phases of off-
gas signals in S. cerevisiae fermentation two decades ago, but according to author 
knowledge, this concept has not been exploited to match simulation/observation signals 
to improve model parameters estimation consequently. This work exemplarily validates 
this improvement by a comparative analysis of the performance of standard nonlinear 
LSQ algorithms and an adapted algorithm using the Dynamic Time Warping (DTW) 
criterion. 

2. Materials and Methods
To understand the effect of using an error criterion derived from DTW on parameters 
estimation, two algorithms with different error criteria are used to fit three different 
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experimental datasets. The well-known model for baker’s yeast fermentation (Sonnleitner 
and Käppeli 1986) is used where we try to get best parameter-set 
௦ǡ௠௔௫ݍ) ௘௧௛௔௡௢௟ǡ௠௔௫ߤ, ǡ ௦, ௕ܻ௜௢௠௔௦௦Ȁ௚௟௨௖௢௦௘௢௫௜ௗ௔௧௜௩௘ܭ, ைమǡ௠௔௫ݍ , ௕ܻ௜௢௠௔௦௦Ȁ௚௟௨௖௢௦௘௥௘ௗ௨௖௧௜௩௘ , ௕ܻ௜௢௠௔௦௦Ȁ݈݁݋݄݊ܽݐ). The selection 
of the parameters and initial values has been done recursively based on importance 
ranking and sensitivity information (López et al. 2013) (Ulonska et al. 2018). Details on 
the model structure, nomenclature and parameter values are shown in the original paper 
(Sonnleitner and Käppeli 1986). 
Around thousand initializations with various initial guesses of selected parameter-set 
were established, passed to an optimizer (“fminsearch”, MATLAB R2017b, stopping 
criterion is set to 100 iterations, all other options are set to default) to find parameter 
values yielding lowest error criterion. 
In order to find a reference base to compare both results, the solutions from both 
algorithms are accepted among best fitting parameters-set, when the metabolic states 
calculated back from the model match the ones that have been pre-identified by experts, 
error of the state estimation is between 0-5% NRMSD and the error of off-gas signals 
estimation is between 0-50% NRMSD of any off-gas signal of each metabolic state. 
The three fermentation experiments consist of Batch and Fed-Batch phases where 
overfeeding is applied after some hours in the Fed-Batch phase to force the cells 
deliberately to produced ethanol through “Crabtree effect”.  Data presented in Figure 1 
shows clearly high dynamics in the off-gas signals with some rapid changes reflecting the 
time-varying behavior of the cells. 
2.1. S. cerevisiae fermentation model 
In this model derived from (Sonnleitner and Käppeli 1986) the growth is described on 
two substrates glucose and ethanol with fermentative and oxidative pathways, based on 
three metabolic pathways with correspondent yield parameters ௕ܻ௜௢௠௔௦௦Ȁ௚௟௨௖௢௦௘௢௫௜ௗ௔௧௜௩௘ ǡ ௕ܻ௜௢௠௔௦௦Ȁ௚௟௨௖௢௦௘௥௘ௗ௨௖௧௜௩௘  ��� ௕ܻ௜௢௠௔௦௦Ȁ௚௟௨௖௢௦௘ .   Total growth is the growth based
on all forms of biomass specific intake (ݍ௦௢௫௜ௗ௔௧௜௩௘ǡ ௦௥௘ௗ௨௖௧௜௩௘ǡݍ   :௘௧௛௔௡௢௟) asݍ 

௧௢௧௔௟ߤ  ൌ  ௕ܻ௜௢௠௔௦௦Ȁ௚௟௨௖௢௦௘௢௫௜ௗ௔௧௜௩௘ ή ௦௢௫௜ௗ௔௧௜௩௘ݍ  ൅   ௕ܻ௜௢௠௔௦௦Ȁ௚௟௨௖௢௦௘௥௘ௗ௨௖௧௜௩௘ ή ௦௥௘ௗ௨௖௧௜௩௘ݍ  ൅   ௕ܻ௜௢௠௔௦௦Ȁ௘௧௛௔௡௢௟  ή ௘௧௛௔௡௢௟ݍ  (1) 

Mass balances equations are (x: biomass, s: glucose, e: ethanol, V: volume and F: feed) ���� ൌ  	ୗ  ൅  	୆ୟୱୣ  ൅  	୅ୡ୧ୢ  െ   	ୋୟୱ  � �୶��  ൌ  Ɋ୲୭୲ୟ୪ Ǥ �୶  െ  	ୗ� Ǥ �୶  � �ୱ�� ൌ െ൫�ୱ୰ୣୢ୳ୡ୲୧୴ୣ ൅ �ୱ୭୶୧ୢୟ୲୧୴ୣ൯ ή ௫ܥ െ 	ୗ� ή ௦ܥ ൅ 	ୗ
ݐ௘݀ܥ ܸ݀( ௦ǡ௜௡ܥ/1) ൌ ൫ݍ௦௥௘ௗ௨௖௧௜௩௘ െ ௘ݍ  ൯ ή ௫ܥ െ 	ୗ� ή ௘ܥ

(2) 

Additionally, off-gas equations of Carbon Dioxide Evolution Rate (CER) and Oxygen 
Uptake Rate (OUR) can be derived from the original model taking into consideration 
elemental balance, which can be derived from oxidative and reductive reaction 
stoichiometry: 

ܱܷܴ ൌ  ሺݍ௦௢௫௜ௗ௔௧௜௩௘ ή ௦ܻைమ ൅ ݍ௘௧௛௔௡௢௟ ή ௘ܻைమሻ ܥ௫ ή ܸ (3) 

ൌ ܴܧܥ ሺݍ௦௢௫௜ௗ௔௧௜௩௘ ή  ௦ܻǡ௢௫஼ைమ ൅ ௘௧௛௔௡௢௟ݍ ή ௘ܻ஼ைమ ൅ ௌ௥௘ௗ௨௖௧௜௩௘ݍ ή  ௦ܻǡோ௘ௗ஼ைమ ሻݔܥ ή ܸ (4) 
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2.2. Objective functions 
Two objective functions are formulated, in which the first uses standard LSQ. The second 
uses a combination of LSQ and DTW derived terms. The two functions differ from each 
other by how they calculate the similarity of the off-gas signals, i.e. the sampled and 
simulated ܱܷܴǡ  .ܴܧܥ

2.2.1. LSQ criterion 
For M samples, ܰ ൌ ௅ܰ ൅ ீܰ liquid and gas states, and ߠ as unknown parameter vector,
LSQ is defined as ߶௅ௌொ. Assuming all model states have the same weight in the objective
function the fitting problem reads:  ���ఏ  ߶௅ାீ௅ௌொሺߠሻ Ǣ       ����      ߶௅ାீ௅ௌொ ሺߠሻ ൌ  ෍ ෍ ሺ ௜ܻǡ௝௠ െ ௜ܻǡ௝ ሺߠሻሻଶேಽାேಸ

௝ୀଵ
ெ

௜ୀଵ (5) 

2.2.2. Combined LSQ and DTW criterion 
Replacing ߶௅ீௌொሺߠሻ by ߶஽ீ்ௐሺߠሻ where all deviations from off-gas measurements are
calculated based on DTW. For both, OUR, CER, two sequences are needed to build DTW 
distance matrix. The matrix size is defined by the sizes of both sequences ܻீ௠ and ܻீ ሺߠሻ,
in which each matrix element ߝ௜ǡ௝  represents the distance according to the chosen metric,
which is in our case the squared Euclidian distance. To get shape preserved matching 
between two sequences DTW seeks an optimal path k through the matrix which minimize 
the warping cost (Ratanamahatana and Keogh 2004) ߶஽ீ்ௐ  ൌ  ���௞  ቌ෍ ௜ǡ௝ூǡ௃ߛ ቍ௞ (6) 

Where ߛ are the elements of the warping path. The optimal path is found by calculating 
the minimum cumulative distance of the current element and the other three adjacent cells 
in DTW matrix 

Using ߙ as a weighting coefficient to scale the DTW term to the same magnitude of the 
LSQ term, the combined objective function reads 

3. Results and discussion
Figure 1 shows model estimation results of two experiments after 100 optimization 
iterations. While the fitting of the states is similarly good for both objectives, larger 
differences can be seen when examining the off-gas signals and by comparing the active 
metabolic states. We can notice that the metabolic states sequence differs. It can be seen 
that with standard LSQ criterion the optimizer overlooks some intermediate details in 
order to get a good fitting along the whole time horizon. 
This is problematic, as different metabolic states are assigned along the process, where 
metabolic states are indicated by sharp changes in the off-gas signal. 

௜ǡ௝ߛ ൌ ௜ିଵǡ௝ିଵǡߛ௜ǡ௝+ min൫ߝ  ௜ିଵǡ௝ǡߛ ௜ǡ௝ିଵ൯ߛ (7) 

���ఏ  ቀ߶௅௅ௌொሺߠሻ ൅ ߙ ڄ ߶஽ீ்ௐሺߠሻቁ (8) 
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Figure 1: Model fits two experimental datasets out of three after 100 optimization iterations with 
standard LSQ-based objective function (dashed line) and LSQ/DTW-based objective function (solid 
line). The corresponding metabolic states are presented below with the reference solution (identified 
by an experienced field expert based on the visual inspection of CER, OUR signals and offline 
measurements).  

The length of a metabolic state is strongly determined by the parameters related to maximum 
reaction rates and the corresponding conversion coefficients (yields), which needed to be 
correctly assigned during model parametrization. Figure 2 shows clearly that the algorithm using 
DTW/LSQ criterion had a twice higher success rate in finding the exact parameters out of 1000 
model calibrations, each with differently perturbed initial parameter sets. 
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4. Conclusion
Using DTW (Dynamic Time 
Warping) as a fitting criterion 
for the identification of S. 
cerevisiae fermentation 
models clearly leads to more 
reliable parameters estimates 
compared with the standard 
LSQ fitting approach. This 
has been quantitatively 
proved for three experimental 
datasets with different metabolic states. For the presented case study, it is shown that 
model predictions generated by LSQ fitting tend to smooth out measured off-gas signals 
losing specific details of the signals shape that might represent important metabolic 
changes. The results clearly indicate a superior performance using DTW, i.e. the more 
accurate shape matching of the signals yields improved model predictive performance 
and provides more accurate model parameters.  
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Abstract 
The use of autosamplers connected to high throughput analytical devices allows for a high 
sampling frequency and analytics with reduced manual labor, leading to better process 
characterization (Maurer et al., 2015; Hofer et al., 2020). Increased sampling often leads 
to a significantly increased information content in the generated data. However, in 
combination with miniaturized or lab-scale reactors, the effect of volume change by the 
frequent sampling becomes challenging.   

Sampling leads to fast, almost instantaneous volume changes in the reactor. This process 
represents a discontinuous behavior in the continuous-time kinetic model. A commonly 
applied so-called “time stepping” method ignores the discrete behavior and relies on the 
solver’s local error estimator to solve continuous-time differential equations. Therefore, 
in regions where discontinuities of the solution or its derivative occur, the method may 
fail to deliver an accurate solution. An alternative is the so-called “event driven” method, 
which explicitly accounts for discontinuities in the model. During the solution 
(integration) of the model, the method accurately locates time points, where 
discontinuities occur (event detection), e.g., volume changes and continues the solution 
process (Dieci and Lopez, 2012). It is well-known that  proper handling of discontinuities 
can significantly increase the models' accuracy and reduce simulation runtime 
(Alsoudani, 2016). Still, bioprocesses developers often ignore or tolerate discontinuities 
when implementing models in simulation software. Hence, this contribution highlights 
the importance of a proper handling of discontinuities in a relevant common case study 
for bioprocess development. Results are presented for the determination of kinetic 
parameters of Sonnleitner and Käppeli’s (1986) Saccharomyces cerevisiae growth model 
on a lab-scale fed-batch process with fast volume changes caused by frequent sampling. 
It turns out that the “time stepping” method misses several volume changes. In contrast, 
the “event driven” method does not. Accordingly, the “event driven” method yields 
accurate model predictions which are not affected by the reactor volume’s prediction error 
and thus improves the model calibration, lowers parameters uncertainty, and supports a 
robust convergence to the best fitting model parameters. 

Keywords: parameter estimation, kinetic modelling, event driven modelling 

1. Introduction
The acceleration of bioprocess development for decreasing time to market (TTM) of 
biopharmaceuticals has not only been known since the COVID-19 pandemic. For this 
purpose, mechanistic models represented by systems of ordinary differential equations 
(ODE’s) are indispensable tools for bioprocess design, monitoring, and control 
(Narayanan et al., 2020). However, the challenge of underfitting these models is present 
when an insufficient number of observations is used for model calibration. This problem 
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usually leads to correlated model parameters, which could hinder clear interpretations of 
the results. Autosamplers and automated analytical devices allows for tackling this 
challenge by increasing the sampling frequency without additional manual labor (Maurer 
et al. 2015; Hofer et al. 2020). Frequent sampling inevitably leads to significant volume 
changes in the reactor, which besides being a bottleneck in miniaturized systems, needs 
to be properly considered during modelling steps.  
Volume changes of an ideal stirred tank reactor are usually modeled by considering mass 
balance equations. The changes in the volume over time is calculated as the difference 
between input and output flow rates (Doran, 2012). It is widely accepted to consider 
sampling volume Fୗୟ୫୮୪୧୬୥ as a part of the flows that are leaving the reactor (Rocha, 2003; 
Callewaert and De Vuyst, 2000; Kager et al., 2020). Hence, volume changes are written 
usually as (where V: volume, F: liquid mass flow rates):  dVdt =   F୧୬ −  F୭୳୲ = F୊ୣୣୢ + F୆ୟୱୣ + F୅ୡ୧ୢ − Fୗୟ୫୮୪୧୬୥ (1) 

In usual fed-batch fermentation, the measured flow rates (except Fୗୟ୫୮୪୧୬୥) usually show 
comparatively smooth curves. These curves are represented by discrete signals and can 
be transformed to smooth functions with relatively little effort, e.g., by applying a 
smoothing filter and by subsequent interpolation using piece-wise spline interpolation. 
Avoiding discontinuities on the right-hand-side of eq. 1 can significantly improve the 
efficiency and accuracy of its solution (Alsoudani, 2016). Fୗୟ୫୮୪୧୬୥ represents strongly 
discontinuous curves defined by (negative) pulse signals. A transformation of these sharp 
peaks by smoothing is not a viable solution. The result is highly nonlinear terms, which 
would require an (inefficient) dense time grid for accurate integration of eq. 1.  
In the “time stepping” method (TSM), which is implemented by using standard ODE 
solvers, the sampling volume is calculated by the integration of eq. 1 considering a 
(negative) pulse signal. The method relies on the solver error estimator to determine the 
step size (Dieci and Lopez, 2012). Hence, in regions where discontinuities of the solution 
or its derivative occur, i.e., sampling timepoints, there is a probability to miss certain 
events such as sampling volume, causing inaccurate volume calculation. This is 
exemplarily shown in Figure 1. This results in a wrong volume mass balance and therefore 
affects subsequent calculations. The extent of the errors resulting from improper handling 
of samples volumes depends on the ratio of the sampled volume to the reactor volume. 
The errors are expected to have a bigger influence on smaller platforms, e.g., miniaturized 
bioreactor systems (< 0.3 L), where often no reactor volume measurement is available. 

Figure 1: Modeling of volume changes due to sampling. Sampling volumes are considered by a 
“sampling” flow rate represented by a flow pulse signal. The time stepping method (TSM) does 
not accurately track the sudden changes in the flow pulse signal. The ODE solver steps miss the 
second pulse (overstepping problem), which has an immediate effect on the volume.  
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In contrast, the “event driven” method (EDM) accurately locates time instances (so-called 
events) where instantaneous sampling happens. At these time points, the integration is 
stopped, the volume is updated, and the integration is restarted with the updated volume 
as initial condition. By this, the EDM efficiently prevents missing any sample, leading to 
a correct and robust volume balance during model simulations.   
It is noted that established simulation software like gProms and Modelica/Dymola use 
built-in routines to automatically detect discontinuities, locate events, and restart 
integration (Process Systems Enterprise Limited, 2013; Dynamic Modeling Laboratory, 
2004). However, in low-level modeling languages such as the frequently used MATLAB 
(ODE Suite, 2020) or Python (SciPy package, 2020), the proper handling of 
discontinuities needs tailored solutions and special programming efforts as the ODE 
solvers provide only the basic functionalities by the so-called “event functions”.  

2. Materials and Methods
2.1.  Cultivation process and Sampling
A S. cerevisiae fermentation process is considered as an experimental case study. Samples 
were withdrawn from the fermentation medium at irregular time intervals either by-hand 
(10 samples of roughly 20 ml per sample) or automatically using (Numera from 
Securecell) autosampler (20 samples of roughly 7 ml per sample) and distributed along 
the time of the experiment. The reactor's initial volume was 1.5 liter. The experiment 
consists of a batch and a fed-batch phase with different feed regimes.   
2.2. S. cerevisiae fermentation model 
The model from (Sonnleitner and Käppeli, 1986) considers the growth on glucose and 
ethanol substrates. It describes fermentative and oxidative growth based on all forms of 
biomass specific intake (𝑞௦௢௫௜ௗ௔௧௜௩௘ ,  𝑞௦௥௘ௗ௨௖௧௜௩௘ ,  𝑞௘௧௛௔௡௢௟) using (𝑌௕௜௢௠௔௦௦/௚௟௨௖௢௦௘௢௫௜ௗ௔௧௜௩௘, 𝑌௕௜௢௠௔௦௦/௚௟௨௖௢௦௘௥௘ௗ௨௖௧௜௩௘ , 𝑌௕௜௢௠௔௦௦/௚௟௨௖௢௦௘)  yields parameters. Total growth is written as: 𝜇௧௢௧௔௟  =  𝑌௕௜௢௠௔௦௦/௚௟௨௖௢௦௘௢௫௜ௗ௔௧௜௩௘ ∙ 𝑞௦௢௫௜ௗ௔௧௜௩௘ + 𝑌௕௜௢௠௔௦௦/௚௟௨௖௢௦௘௥௘ௗ௨௖௧௜௩௘ ∙ 𝑞௦௥௘ௗ௨௖௧௜௩௘+ 𝑌௕௜௢௠௔௦௦/௘௧௛௔௡௢௟ ∙ 𝑞௘௧௛௔௡௢௟ (2) 

Mass balances equations are (x: biomass, s: glucose, e: ethanol, F: flow rate) 

2.3. Time-stepping method (TSM) versus event-driven method (EDM) 
Eq. 1 is used to model volume changes in both methods. In EDM, Fୗୟ୫୮୪୧୬୥ is omitted 
from eq. 1, and an external algebraic equation is used instead to account for volume 
changes.  Figure 2 illustrates the working principles of the TSM and EDM. In the EDM, 
to accurately locate each sampling timepoint 𝑡௦ , the simulation time interval is separated 
into k sub- intervals, where for each sampling point 1, 2, 3 …. K, the volume is corrected 
outside the ODE system using the additional algebraic equation; 𝑉 = 𝑉 − 𝛥𝑉. Following 

d Cୱdt = −൫qୱ୰ୣୢ୳ୡ୲୧୴ୣ + qୱ୭୶୧ୢୟ୲୧୴ୣ൯ ∙ 𝐶௫ − F୧୬𝑉 ∙ 𝐶௦ + F୊ୣୣୢ𝑉 ∙ 𝐶௦,௜௡𝑑 𝐶௘𝑑𝑡 = ൫𝑞௦௥௘ௗ௨௖௧௜௩௘ −  𝑞௘൯ ∙ 𝐶௫ − F୧୬ 𝑉 ∙ 𝐶௘d C୶dt  =  μ୲୭୲ୟ୪ . C୶  − F୧୬ 𝑉 . C୶ 

(3) 
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the integration is restarted with the 
updated volume. In TSM, the 
sampling volume rate is integrated 
into eq. 1 without special treatment. 
The same initial conditions applied 
to both methods. 
2.4. Convergence analysis of 
parameter estimation 
To highlight the negative effects of 
improper handling of sampling 
volume, the model predictions are 
fitted to the experimental data. The 
performance of the fitting is 
assessed by applying either TSM or 
EDM. The following parameters  𝜃 = [ 𝑞௦௠௔௫, 𝑞ைଶ௠௔௫, 𝑌௕௜௢௠௔௦௦/௚௟௨௖௢௦௘௢௫௜ௗ௔௧௜௩௘ , 𝑌௕௜௢௠௔௦௦/௚௟௨௖௢௦௘௥௘ௗ௨௖௧௜௩௘ , 𝑌௕௜௢௠௔௦௦/௘௧௛௔௡௢௟]  
are selected for estimation based on 
the local parameter sensitivities and 
an identifiability analysis based on importance ranking (López et al., 2013). The 
robustness of both methods is assessed through a Monte Carlo approach. 500 uniform 
distributed initial parameter guesses are generated over a +/- 25% interval around the 
literature's nominal values (Sonnleitner and Käppeli, 1986). For each parameter 
realization, an estimation problem was solved using MATLAB R2017b “ODE15s” solver 
and the nonlinear fitting algorithm “lsqnonlin”. Normalized residual sum of squares 
(NRSS) between model predictions and measurements was used as an objective function. 

3. Results and Discussion
Figure 3 (right) shows a visual comparison of one simulation run to highlight the 
differences in the calculated volume using both methods. It can be noticed that TSM 
oversteps certain sampling times and consequently doesn’t update volume correctly. The 
wrong volume affects the other model states (concentrations) described in eq. 3 and 
displayed in Figure 3 (right) for two identical model simulations. The error becomes more 
pronounced towards the end of the simulation as its effect accumulates over time. 
In TSM, to account for sampling volume changes correctly, solver steps must exactly 
locate sampling times. However, TSM locates solver steps based on the integrator's local 
error estimator, which is a tool to control approximation error at each step. If the solver 
oversteps a sampling time interval, the local error estimator does not indicate an 
approximation error. Consequently, sampling instances are located by chance. Therefore, 
by evaluating the model at slightly different initial conditions or with slightly different 
parameter values, the solver may overstep very different sets of sampling timepoints. The 
accuracy of model simulations might be strongly affected. This is also critical for model 
parametrization, as the deviations in model volume and predictions are different at each 
optimization run, which adds artificial noise to the optimization problem. This is shown 
in Figure 3 (left).  
In contrast, EDM accurately locates all sampling events and uses an external algebraic 
equation to correct the volume and to restart the integration at each sampling timepoint. 
By doing this, it suppresses the noise and provides accurate and reproducible model 
simulations. This behavior is illustrated in Figure 3 (left), which shows the optimization 

Figure 2: TSM and EDM for handling instantaneous
volume changes because of sampling.
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surface for two selected parameters. The noisy nature of the surface in TSM reduces the 
effectiveness of the gradient-based optimizer to seek an optimum. Tables 1 & 2 highlight 
this observation by comparing the means of prediction errors of the calibrated models 
obtained by both methods. The two-tailed p-value of the t-test is less than 0.0001, 
indicating a strong statistical significance. The results clearly indicate a higher probability 
to obtain better predictions using EDM and to converge to the best fitting parameter 
estimates. Reducing the solver tolerance in TSM might reduce these effects but not 
completely avoid them, as the error estimator still does not directly address the underlying 
reason of the problem, aside from increasing the computational cost.  

Figure 3: Left) States, flow rates and volumes calculated by the same model and parameters using 
EDM and TSM. Using TSM certain sampling times are overstepped. EDM delivers accurate results 
by accurately locating sampling times. Right) Optimization (NRSS) surfaces are smoother in case 
of EDM compared to standard TSM, allowing for a better convergence and efficiency of gradient-
based optimization algorithms. 

Table 1 & 2: Results of Monte Carlo procedure (n=500). EDM shows a statistically significant 
lower mean of the model prediction errors. 

𝜃ଵ 𝜃ଶ 𝜃ଷ 𝜃ସ 𝜃ହ 

Mean of Estimated. 𝜃 TSM 3.28 6.81 0.46 0.05 0.70 
EDM 3.30 6.56 0.44 0.05 0.69 

95% confidence 
interval 

TSM 0.97 2.50 0.16 0.018 0.24 
EDM 0.92 2.25 0.14 0.016 0.24 

TSM EDM 
Mean of prediction error 3.1 2.3 
Standard deviation ( 𝜎 ) 1.65 1.35 
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4. Conclusion
Using EDM to consider sampling volume in S. cerevisiae fermentation models delivers 
more reproducible and accurate model predictions. Moreover, for model calibration, the 
quantitative analysis reveals a significantly improved convergence of the parameter 
estimation algorithm. Accordingly, EDM results are obtained with a lower prediction 
error and parameters uncertainty. The reason is a smoother optimization surface that leads 
to more robust convergence to the best fitting model parameters. 
EDM is ready-for-use in high-level symbolic modelling languages such as gProms and 
Modelica/Dymola. In low-level languages, e.g., MATLAB or Python, EDM can be 
implemented with a reasonable effort using available initial value solvers with event 
detection. Hence, this method is simple to implement for fermentation processes with 
high sampling rates and platforms where explicit weight measurements are crucial but 
not available or hard to obtain, e.g., mini multi-bioreactor systems. This will allow for 
more consistent results, resulting in reduced iterations in bioprocess development and, 
therefore, a decreased time to market (TTM) of biopharmaceuticals.  

Acknowledgment  
This work was partially funded by the Austrian Research Funding Association (FFG) 
within the program Bridge 1 in the project ”AdaMo” (No. 864705). 

References 
Alsoudani. 2016. Discontinuities in Mathematical Modelling : Origin , Detection and Resolution. 

University College London Department. 
Callewaert & De Vuyst. 2000. “Bacteriocin Production with Lactobacillus Amylovorus DCE 471 

Is Improved and Stabilized by Fed-Batch Fermentation.” Applied and Environmental 
Microbiology 66 (2): 606–13. 

Dieci & Lopez. 2012. “A Survey of Numerical Methods for IVPs of ODEs with Discontinuous 
Right-Hand Side.” Journal of Computational and Applied Mathematics 236 (16): 3967–91. 

Doran. 2012. Bioprocess Engineering Principles: Second Edition. Bioprocess Engineering 
Principles: Second Edition. Vol. 9780080917. Academic Press. 

Dynamic Modeling Laboratory. 2004. “Dymola.” Dynasim AB. Lund, Sweden: Dynasim AB. 
Hofer, Kroll, Barmettler, & Herwig. 2020. “A Reliable Automated Sampling System for On-Line 

and Real-Time Monitoring of CHO Cultures.” Processes 8 (6): 637. 
Kager, Tuveri, Ulonska, Kroll, & Herwig. 2020. “Experimental Verification and Comparison of 

Model Predictive, PID and Model Inversion Control in a Penicillium Chrysogenum Fed-
Batch Process.” Process Biochemistry 90 (March): 1–11. 

López, Barz, Peñuela, Villegas, Ochoa, & Wozny. 2013. “Model-Based Identifiable Parameter 
Determination Applied to a Simultaneous Saccharification and Fermentation Process 
Model for Bio-Ethanol Production.” Biotechnology Progress 29 (4): 1064–82. 

Maurer, Skerker, Arkin, Miller, Biksacky, & Huether-franken. 2015. “Automated Bioreactor 
Sampling – Process Trigger Sampling for Enhancing Microbial Strain Characterization.” 

Narayanan, Luna, von Stosch, Cruz Bournazou, Polotti, Morbidelli, Butté, & Sokolov. 2020. 
“Bioprocessing in the Digital Age: The Role of Process Models.” Biotechnology Journal. 
Wiley-VCH Verlag. 

Process Systems Enterprise Limited. 2013. “Model Developer Guide.” London, UK. 
http://www.psenterprise.com. 

Rocha. 2003. “Model-Based Strategies for Computer-Aided Operation of a Recombinant E . Coli 
Fermentation.” Braga: Escola de Engenharia Universidade do Minho. 

Sonnleitner & Käppeli. 1986. “Growth of Saccharomyces Cerevisiae Is Controlled by Its Limited 
Respiratory Capacity: Formulation and Verification of a Hypothesis.” Biotechnology and 
Bioengineering 28 (6): 927–37. 

468 M.A. Jouned et al.



45 

2.2.3 Event driven modeling for the accurate 
identification of metabolic switches in fed -batch 
culture of S. cerevisiae  



Biochemical Engineering Journal 180 (2022) 108345

Available online 20 January 2022
1369-703X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Event driven modeling for the accurate identification of metabolic switches 
in fed-batch culture of S. cerevisiae 
M. Adnan Jouned a,b, Julian Kager c, Christoph Herwig a,c, Tilman Barz b,*

a ICEBE, TU Wien, Gumpendorfer Straße 1a 166/4, 1060 Vienna, Austria 
b Center for Energy, AIT Austrian Institute of Technology GmbH, Giefinggasse 2, 1210 Vienna, Austria 
c Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria   

A R T I C L E  I N F O

Keywords: 
Event driven modeling 
Piecewise kinetic growth models 
Yeast cultivation 
Metabolic pathways 
Metabolic switches 

A B S T R A C T

Mechanistic model-based methods are indispensable tools for characterization, monitoring and control in bio
pharmaceutical industry. However, the complexity of mechanistic models is restricted by the availability of 
process analytics. As a result, biological reactions are often lumped and only central metabolic pathways and 
extracellular analytics are considered. Moreover, due to process dynamics during typical batch and fed-batch 
cultivations, intracellular phenomena can often not be neglected. Typical examples are the Pasteur effect, 
Crabtree effect, and diauxic growth. A solution to this is to formulate discontinuous (piecewise) growth models 
and to incorporate metabolic switches expressed as logical operations. This contribution discusses the application 
of a piecewise kinetic growth model in the context of an industrial relevant case study. Targeted Saccharomyces 
cerevisiae lab scale experiments were conducted with different glucose and ethanol fluxes to trigger switches 
between metabolic pathways. We propose to use an event driven method to accurately identify the location and 
sequence of these switches, and the duration of active metabolic pathways during the time course of an 
experiment. It turns out that, compared with a standard implementation without active event location, the 
proposed approach leads to more accurate identification of switches and model parameters and thus, to more 
accurate model predictions.   

1. Introduction

Mechanistic growth models: During the development of biotechno
logical processes, mechanistic models play an essential role for effective 
experimental design [1–6], real-time monitoring and predictive control 
[7–11]. These models represent the knowledge of the underlying phys
ical characteristics of the process and the physiological behavior of the 
organisms using mathematical expressions and model parameters 
[12–14]. Mechanistic models usually show better extrapolation 
compared to data-driven models [15]. They could predict quantities 
which are hard or costly to be measured, e.g., soft sensors [16], also, 
they are increasingly used in the frame of multi-objective control to 
promote increased selectivity of products [15], making them indis
pensable tools in biotechnology. 

Mechanistic kinetic growth models use stoichiometric information, 
nonlinear reaction rates and mass and concentration balances [17–19], 
and are usually written as a set of deterministic and continuous Ordinary 
Differential Equations (ODEs). Unstructured models do not incorporate a 

detailed metabolic and physiological description of the organism. They 
are mainly used to predict the dynamics of cell density, viability, 
nutrient/metabolite concentrations, and product titer [20], without a 
detailed description of cell internal reactions or compartmentalization. 
Internal reactions are often lumped together and represented as one 
overall metabolic pathway. 

In contrast, structured models like metabolic flux analysis models or 
extended kinetic models derived from (genome-scale) metabolic net
works [21] provide a more detailed mathematical description of the 
intracellular metabolic regulation and control. However, due to the 
complexity of the metabolic networks, the difficulty of measuring all 
metabolite concentrations, and the limited understanding of the reac
tion sequences and enzymes involved in some areas of metabolism, their 
application in practice is still either impossible or very costly and 
demanding [12,21,22]. 

This is why, in the context of industrial biotechnology, model-based 
monitoring, control and characterization of microbial cultivations rely 
mainly on unstructured (or purely data-driven) models [23–25]. The 
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complexity of these models depends on the availability of process ana
lytics, such as online gas analyzers, advanced tools such as automatic 
liquid handling and sampling, and hardware like HPLC (high-
performance liquid chromatography), NIR (near infrared spectroscopy) 
and FIA (flow injection analysis) [26]. A major challenge (addressed in 
this contribution) is related to the difficulty to parametrize and the 
reduced predictive capabilities of the models due to simplifications in 
modeling central metabolic pathways. 

Unstructured (or simplified structured) models primarily focus on 
the description of simplified pathways (e.g., product synthesis, oxidative 
growth, interconversion and degradation of components), and simpli
fied biological transitions. However, in reality, transitions are mostly 
continuous, highly nonlinear, and dependent on metabolic regulation, 
gene expression, and other intracellular mechanisms, but as cell dy
namics happen in very different timescales, most of the transitions are 
simplified into discontinuous behaviors. Therefore, switches expressed 
as logical operations often need to be incorporated in the model [27]. 
The result is a (discontinuous) piecewise growth model. Examples of 
such models are the models that describe the Pasteur effect [28], 
Crabtree effects [29], and diauxic growth, or the models that consider 
sudden external changes such as pulse feeding and culture induction. 

S. cerevisiae and pharmaceutical production: In the context of bio
pharmaceutical production, S. cerevisiae, among other organisms, is a 
good production platform because of its fast growth rate, low cost of 
medium and downstream processing, its good secretory capacity [30], 
and the well-understood metabolism. It’s used to produce pharmaceu
ticals like insulin, blood factors, and vaccines [30], and is recently used 
also for SARS-CoV-2 vaccine production [31]. 

Biopharmaceutical upstream production processes are usually split 
into three phases: (I) batch phase with pre-defined initial substrate and 
biomass concentrations, (II) fed-batch phase, where the substrate is 
added to the reactor, (III) and production phase which starts usually by 
an external inducer. The aim of the first two phases is to maximize 
growth to obtain a high amount of viable cells that are used for pro
duction in the third phase. Aerobic growth is preferred as it assures 
highest biomass conversion yields and growth rates. The aim of the 
production phase is to maximize product titers and to provide a constant 
product quality for the subsequent process steps. 

Potentially accumulated ethanol in the medium is known to affect 
growth rate, as it reduces the mitochondrial membrane integrity and 
therefore impacts cell metabolism [32]. Therefore, for efficient phar
maceutical bioprocesses, it is important to keep high growth rates 
without the formation of inhibitory by-products (ethanol in case of 
S. cerevisiae) to ensure high amounts of healthy viable cells for the
production of the target product. One possible approach for that is to use
the predictive power of growth models to optimize the process
conditions.

Solution methods: Discontinuous (piecewise) growth models can be 
mathematically expressed as a combination of a set of continuous dif
ferential (and algebraic) equations with discontinuous right-hand side, 
and a set of time-dependent and/or state-dependent conditions, also 
referred to as event functions. If a condition is fulfilled, an event is 
triggered, and the model is switched. A switch can mean a change to 
another model structure, e.g., switching to a different growth model or 
to a different metabolic pathway. A switch can also mean an update of 
the system states, e.g., updating the reactor volume after sampling, or an 
update of model parameters, e.g., accounting for changes in cell affinity 
during time. The discrete nature of these phenomena can radically 
change the future evolution of the overall system behavior [33–35]. 

According to Dieci and Lopez [36], there are mainly two possible 
approaches to deal with ODEs with discontinuous right-hand sides: the 
time stepping method and the event driven method. 

The time stepping method simply ignores discontinuities and uses 
solvers for continuous initial value problems (IVPs). These solvers as
sume sufficient smoothness of the right-hand side of the ODEs and rely 
on the local error estimator and the step size control techniques to keep 

errors in the generated approximate solution acceptably low [37]. 
Although this approach is very simple to be implemented, it can be 
expected to fail (or at least to become inefficient) in discontinuous re
gions as the solution there violates the crucial assumption of smoothness 
[36]. 

In contrast, the event driven method locates discontinuities (defined 
as events [38]) using event functions which define discontinuity sur
faces in the state space of the differential system. When the solution 
reaches a surface, an event is located. Thus, the solution is a result of a 
sequence of IVPs, described by differential equations and interspersed 
by instantaneous events that cause a discrete change to the initial value 
problem currently being solved [34], i.e., when the solution reaches an 
event, the solver updates states, parameters or the model structure and 
restarts at this point. Applications following this approach have been 
proposed for discontinuous problems in many fields; in mechanics (e.g., 
see [39,40]), electrical and control engineering (e.g., see [40–42]), 
chemical engineering and thermodynamics (e.g., see [33,43,44]), ecol
ogy (e.g., see [45]) and neuroscience (e.g., see [27]), but are still limited 
in the bioprocessing context. 

Available software and algorithms: State of the art IVP solvers in 
MATLAB ODESUIT [46], or SUNDIALS [47] provide the option to 
monitor and locate time and/or state events using parameter dependent 
event functions. This is realized by a root finding algorithm where the 
event is defined by a change of sign in the function [48,49]. The user 
then specifies what is done when an event is found, i.e., the processing of 
events [49]. To account for the complexity of different events and 
switches, Park and Barton [38], proposed a general formulation where 
classical propositional logic is used for the representation of state con
ditions as it can represent conjunctions and/or disjunctions of relational 
expressions effectively. This general formulation of models can be used 
in different modeling languages and software systems. A review on their 
application for the analysis of general differential and algebraic hybrid 
(continuous/ discrete) systems is given by Barton et al., [35], where the 
authors also discuss the consistent reinitialization after detection of state 
events, the parametric sensitivity analysis, and open problems related to 
systems with changing sequence of modes. More information and 
comparison of simulation tools for the analysis of hybrid systems, such 
as GPROMS, Modelica/Dymola, Assimulo, deSolve, Mathematica can be 
found for example in [39,50–54]. Fröhlich et al. [27] presented a recent 
review in the context of computational biology on available software 
toolboxes for the solution of differential systems with time or state (and 
possible parameter) dependent event functions. It turns out that most 
toolboxes consider only time-dependent events which can be triggered 
by external changes, such as changes to the reactor feed and are not 
useful for the consideration of state events that are triggered when 
certain critical cell internal conditions are reached. In addition, the 
authors also identify a lack of functionalities for sensitivity analysis with 
respect to parameters in the model and/or event functions and propose 
an extension of the maximum likelihood fitting criterion in order to 
account for model predictions with missing events. 

This contribution considers the recent work by Fröhlich et al. [27] on 
the identification of dynamical biological systems with discrete events 
and logical operations, where the authors present the development of a 
mathematical framework and provide an analysis on the accuracy of the 
numerical simulation and the benefit of accurate sensitivities for 
parameter estimation. While Fröhlich et al. present applications with 
rather simple examples (small linear or quadratic ODE’s) in neurosci
ence and mRNA transcription, this contribution presents results from 
parameter estimation for a more complex nonlinear example for 
Saccharomyces cerevisiae yeast growth [55]. 

The model in this contribution consists of three different metabolic 
submodels and is fitted to data from targeted lab scale experiments 
where ethanol and glucose fluxes are indirectly controlled to trigger 
switches between different metabolic pathways. The paper highlights 
the consequences when not explicitly accounting for discontinuities 
during model implementation and its numerical solution. It turns out 
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that the solution might be heavily corrupted by noise which can affect 
not only the accuracy of simulation results but also the convergence of 
the model fitting algorithm. This has a negative impact on the identifi
ability of the estimated parameters and increases the model prediction 
uncertainty. 

The novelty of this contribution lies in the systematic thorough 
quantitative analysis of the performance of the event driven method 
(EDM) in the context of a biotechnological process and the detailed 
presentation of a proposed state-of-the-art method for a sound imple
mentation of a typical and well-accepted mechanistic growth model 
with discontinuous and continuous behaviors for a realistic industrial- 
relevant use case. 

Structure of the paper: Differential equation systems with disconti
nuities and corresponding solution methods are summarized in Section 
2, this section also contains the model for yeast growth taken from [55], 
the model calibration procedure as well as details on the conducted 
experiments and the reference analytics. 

Section 3 presents the results. In Section 3.1 details are given on the 
numerical implementation following the proposed event driven method 
(EDM) and the time stepping method (TSM) to account for model dis
continuities. In Section 3.2 the EDM is used for the model parametri
zation of experimental data, considering the quality of the fits and the 
parameter identifiability. 

Section 3.3 presents the comparative analysis of the results obtained 
by TSM and EDM including the model prediction accuracy, parameters 
identifiability, convergence of the numerical algorithm for model fitting, 
and discusses practical aspects in a bioprocessing context. Finally, Sec
tion 4 provides the discussion and conclusions. 

2. Methods

2.1. Differential equation systems with discontinuities

2.1.1. Time stepping method
Time stepping methods are widely used for the solution of contin

uous ordinary differential equation systems (ODEs). The simulation re
quires the solution of an initial value problem (IVP) described as: 
ẋ(t) = f (x(t), u(t), θ ) with t ∈ [

t0, tf
] (2.1)  

where t⫅R is the independent time variable, x(t) ∈ RNx is the vector of 
dependent state variables, u(t) ∈ RNu is the time-varying input vector, 
and θ ∈ RNp is the parameter vector. Initial conditions are given as 
x(t0) = x0. 

Using time stepping methods for the solution of ODEs with discon
tinuous right-hand sides means to ignore the discontinuities. Time 
stepping methods rely on the local error estimator of the solver to ensure 
that the integration errors remain acceptably small. Therefore, in re
gions where discontinuities of the solution or its derivative occur, the 
time stepping method may become either inaccurate or inefficient, or 
both. The reason is that the local error analysis of the step size control 
fails because there is not sufficient smoothness of the right-hand side of 
the ODE [36]. It is noted that modifications of these methods have been 
proposed to account for ODEs with discontinuities, see e.g., [36]. 
However, in this contribution, we refer to the “standard” time stepping 
method that uses the (standard) routines of the MATLAB ODE SUITE 
package for the solution of continuous ODEs without option for event 
handling. 

2.1.2. Event driven method 
Event driven methods use event functions, which define the occur

rence of discontinuities in the state or time space of the differential 
system [36]. During numerical solution of the ODE, the exact locations 
of events are located by solving the conditions equations system outside 
the ODE system, and the numerical integration is restarted at this point. 
Barton and Pantelides [33] define the mathematical formulation for this 

simulation problem as a sequence of IVP’s interspersed by the occur
rence of discontinuities (known as events): 
ẋ(k)(t) = f (k)

(
x(k)(t), u(k)(t), θ(k) ) with t ∈ [

t(k−1), t(k)
) ∀k = 1…. , NCD

(2.2) 
In eq. (2.2) the time domain of interest [t0, tf ] is partitioned into NCD 

continuous subdomains [t(k−1), t(k) ]. 
While the initial time t0 is given, the end of each sub-interval is 

determined by the occurrence of an event. Events are detected during 
the course of a simulation. The superscript k indicates that the set of 
variables and the set of equations may vary from subdomain to sub
domain in a completely general manner. 

The model equations and initial conditions of the first subdomain are 
determined by an individual simulation description. For the succeeding 
subdomains they will be determined from a combination of the final 
state of the system in the preceding subdomain and the consequences of 
the corresponding event(s) [33]. 

Time and state events: Discontinuities in ODE models can either be 
defined by “implicit (or state) events” or by “explicit (or time) events”. 
In the first, the time of occurrence is not known in advance because it is 
dependent on the system fulfilling certain conditions. Therefore, the 
numerical solution of the equations must be advanced speculatively 
until the state condition becomes satisfied. In contrast, for explicit 
events the exact time of occurrence is known in advance. Thus, the so
lution can proceed to these events in time order [33]. Both, implicit and 
explicit events can trigger (implicit or explicit) switches in the model 
structure, state variables or parameter values. These switches are trig
gered by predefined conditional statements (or simply “conditions”) 
which for explicit switches are defined by exact time points and for 
implicit switches by a suitable threshold defined by the state variables 
and parameters. 

Conditions: Conditions or trigger functions define the time point of 
occurrence of an event. The general form of these conditions which can 
trigger both, time and state events, can be defined as: 
c(x(t), u(t), θ, t ) = 0 (2.3) 

In the standard mathematical description in eq. (2.3) the “critical 
threshold” of the condition is zero. However, as the condition c(⋅) is a 
general relation of states, controls and parameters, the critical threshold 
might also be represented by any other value including nonlinear re
lations, e.g., for limiting concentrations or uptake rates. In contrast, 
conditions for explicit events (such as sudden changes in the reactor 
volume due to sampling) can be simply written as t − ts = 0. Details on 
the numerical implementation of the event-driven method can be found 
in Appendix A. 

2.2. Model fitting, identifiability analysis and uncertainty quantification 

The model is fitted to the experimental data by nonlinear regression 
considering the normalized residual sum of squares (NRSS) of the 
measured and predicted liquid and gas concentrations. For NL liquid 
concentrations which were measured in ML samples taken from the 
reactor at different time points, and for NG gas concentrations which 
were continuously monitored and evaluated at MG time points, and with 
θ as unknown parameter vector, the unconstrained and unbounded 
minimization problem reads: 
min

θ
ϕNRSS(θ) with

ϕNRSS(θ) = 1
ML

∑NL

i=1

∑ML

j=1

(
Yi,j(θ) − Ym

i,j

)2

+ 1
MG

∑NG

k=1

∑MG

l=1

(
Yk,l(θ) − Ym

k,l

)2 (2.4) 

Parameter initial guesses and estimates are given in Table 4. CO2 and 
O2 content in the off-gas was obtained from online gas analyzer and 
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mass flow measurements. The carbon evolution rate (CER) and the ox
ygen uptake rate (OUR) were calculated from these measurements and 
considered in eq. (2.4). Glucose, ethanol and biomass liquid concen
trations were measured offline by sampling, see section 2.4 for details. 

Fitting of the growth model and parameter identifiability analysis are 
carried out following the scheme of [56]. The scheme requires estimated 
parameters θ̂ and the corresponding sensitivity matrix S(θ̂). θ̂ are ob
tained from repeated numerical solutions of a nonlinear regression, 
where the initial parameters of each run are defined by stochastic 
sampling in a reasonable parameter space around values taken from 
literature [55], [57]. The sensitivity matrix S̃ is obtained by normal
izing S with the initial parameters and model output. Singular value 
decomposition (SVD) is used to detect any linear dependencies in S̃. By 
decomposing S̃ = UΣV ̀, Σ matrix is found which holds the singular 
values of S̃. The singular values in Σ are then used to calculate: 1- the 
condition number (κ) which is a measure of the sensitivity of model 

results to the perturbation of the parameters. 2- the collinearity index (γ) 
which quantifies the collinearity of the parameters. Empirical values for 
thresholds of κ and γ are chosen based on [58]. 

The parameters are ranked according to their linear independence 
and the above metrics are used to perform a parameter subset selection 
(SsS). The identifiable parameter subset simultaneously satisfies both 
sensitivity and linear independence conditions. Based on the results 
some parameters are set to active while the others are deactivated and 
not considered for nonlinear regression. The solution of the nonlinear 
regression problem and the SsS are computed repeatedly until conver
gence to the best overall parameter values. 

Parameter’s uncertainty quantification: The uncertainty of the pa
rameters is analyzed using bootstrapping technique [59], which in
volves resampling of the experimental data and re-estimation of the 
parameters. For each experiment 500 Monte Carlo (MC) datasets are 
generated based on the measurement’s uncertainty. The perturbation is 
chosen to be three standard deviations of the nominal values of the error 
for each measurement device for both liquid concentrations and off-gas 
signals. The measurement error (normal non-correlated error, given as 
three standard deviations) for biomass is 5%, for ethanol 4%, glucose 1, 
3% and for the off-gas is 3.75%. The model is fitted, and parameters are 
estimated for all 500 datasets individually. The probability distribution 
of the resulting 500 parameter estimates is assumed to be normal. The 
95% parameter confidence regions are used to quantify the accuracy of 
the estimates. 

Convergence analysis: Bootstrapping is also used to analyze the 
convergence of the parameter estimation algorithm for the solution of 
eq. (2.4). For each experiment a set of 500 Monte Carlo (MC) datasets is 
generated based on the measurement’s uncertainty (same as above). In 
addition, the initial guesses of the parameters were perturbed. The 
perturbations are chosen by uniform sampling in a ±10%, ±30% and 
±50% interval around the parameters’ nominal values which were 
defined by the best estimates. The model is fitted 500 times and the 95% 
parameter confidence regions are calculated. The confidence regions are 
used as a measure for the robustness of the convergence of the fitting 
algorithm. 

Prediction uncertainty: The distribution of the simulated output is 
calculated by a sampling considering the 500 parameter estimates from 
the convergence analysis. Results in Section 3.3.1 are given for ±30% 
perturbation of the initial parameter guess. The depicted ranges of the 
prediction uncertainty correspond to ±2σ (95% confidence interval). 

The calculated parameters and prediction uncertainties as well as the 
results of the convergence analysis are affected not only by perturba
tions in the measured data sets but also by possible errors in the 
approximate numerical solution of the model. As mentioned before, 
using TSM the accuracy of the numerical solution might be low as the 
errors in the event location are not controlled. As a consequence, the 
solution of the model can be corrupted by significant “numerical noise”, 
and the parameter estimation problem is characterized by so-called 
“noisy functions” [60]. Applying bootstrapping and repeatedly solving 
the parameter estimation problem the results depend on two factors: the 
perturbations in the measurements, and the numerical noise in the 
model prediction. Using bootstrapping technique, the impact of both 
factors is analyzed for the TSM and EDM. 

2.3. Hardware and software 

All computations were carried out in MATLAB R2017b on an Intel (R) 
Xeon(R) (CPU E5–2690 V4@ 2.60 GHZ) with 64 GB RAM using 64x-bit 
operating system. Parallel processing is used. The ODEs (initial value 
problems) have been solved using MATLAB “ODE suite”, mainly by 
ODE15S solver. On average, the computation time for one simulation 
using the solver’s default settings for the absolute and relative error 
tolerances, takes roughly 1.6 [s] for EDM, and 1.4 [s] for TSM. A 
detailed comparison of the computation times is given in Appendix E. 
The unconstrained nonlinear regression problem eq. (2.4) was solved 

Table 1 
List of symbols.  

Term Description Unit 
α1  Consumed O2 for oxidative growth on glucose mol/mol 
α10  Produced biomass for oxidative growth on ethanol mol/mol 
α11  CO2 yield for oxidative growth on ethanol mol/mol 
α12  H2O yield for oxidative growth on ethanol mol/mol 
α2  Produced biomass for oxidative growth on glucose mol/mol 
α3  CO2 yield for oxidative growth on glucose mol/mol 
α4  H2O yield for oxidative growth on glucose mol/mol 
α5  Produced biomass for fermentative growth on glucose mol/mol 
α6  CO2 yield for fermentative growth on glucose mol/mol 
α7  H2O yield for fermentative growth on glucose mol/mol 
α8  Ethanol yield for fermentative growth on glucose mol/mol 
α9  Consumed O2 for oxidative growth on ethanol mol/mol 
Ce Ethanol concentration g/L 
Cs,in Glucose concentration in the feed g/L 
Cs Glucose concentration g/L 
CX Biomass concentration g/L 
CER  Carbon dioxide evolution rate mol/h 
FAcid Acid feed rate L.h−1 

FBase Base feed rate L.h−1 

Fgas Gas in/out flow L.h−1 

FS Glucose feed rate L.h−1 

HX  Mass fraction of hydrogen in biomass mol H/mol C 
Ke Time affinity constant of the ethanol g/L 
Ki Inhibition parameter of ethanol consumption because of 

glucose 
g/L 

Ks Time affinity constant of the glucose g/L 
μtotal Total growth rate h−1 

Mwe Molecular weight of the ethanol g/mol 
Mws Molecular weight of the glucose g/mol 
Mwx Molecular weight of the biomass g/mol 
NX  Mass fraction of nitrogen in biomass mol N/mol C 
OUR  Oxygen uptake rate mol/h 
OX  Mass fraction of oxygen in biomass mol O/mol C 
qO2  Specific oxygen uptake rate per unit of biomass mmol⋅h−1⋅g−1 

qs Specific glucose uptake rate per unit of biomass g⋅h−1⋅g−1 

qe Specific ethanol uptake rate per unit of biomass g⋅h−1⋅g−1 

V  Liquid volume L 
Yo2/e Oxygen (stoichiometric) yield on ethanol mmol/g 
Yo2/s Oxygen (stoichiometric) yield on glucose mmol/g 
Ye/s Ethanol (stoichiometric) yield from glucose 

fermentation 
g/g 

Yx/e(ox) Biomass yield for oxidative growth on ethanol g/g 
Yx/s(ox) Biomass yield for oxidative growth on glucose g/g 
Yx/s(red) Biomass yield for reductive growth on glucose g/g  
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using MATLAB’s “Optimization Toolbox” lsqnonlin/trust-region- 
reflective algorithm. 

2.4. Fed-batch experiments 

Three Saccharomyces cerevisiae (wildtype, CBS8340) experiments 

were conducted in a 3 L aerated and stirred glass-reactor (Infors AG, 
Switzerland). The reactor temperature was controlled at 30º C using a 
water jacket heating system. Experiments were realized in aerated (1,5 
vvm compressed air) batch (starting with roughly 1.5 L medium), and a 
subsequent fed-batch cultivation was used with different glucose feed 
rates to reach subcritical and supercritical glucose fluxes (qs). Stirring of 
the medium is considered, implying the fermentation media is homo
geneous. Fermentation initial concentrations and feeding characteristics 
are shown in Table 2. Exact media composition and process conditions 
are shown in Appendix B; Table B.1 and B.2. 

For online analytics, CO2 and O2 content in the off-gas was measured 
by a gas analyzer (BlueVary, Bluesens GmbH, Germany) using infrared 
and paramagnetic principle. The conversion of O2 to CO2 was calculated 
by the difference between mass inflow and outflow, assuming an equi
librium between liquid and gas phase, giving the carbon evolution rate 
(CER) and the oxygen uptake rate (OUR) in mol/h [61]. 

For offline analytics, glucose, ethanol and biomass concentration 
were measured. Samples were taken both manually and by an auto
sampler at irregular basis and the sample volume (ranging from 
~4–20 mL) was logged. Sugar and ethanol concentrations of the filtered 

Table 2 
Fed-batch experimental conditions given as initial biomass and glucose con
centrations CX0 and CS0, glucose feed concentration Cs,in, feed start time t0,feed, 
duration of overfeeding toverfeed, and total volume of all samples taken.  

No. CX0 
[g/L]  

CS0 
[g/L]  

Cs,in 
[g/L]  

t0,feed[h]  toverfeed[h]  Total 
sampling 
volume [L] 

Experiment 
1  

0.7  18.9  220  15  1  0.25 

Experiment 
2  

0.5  19.9  200  16.3  1.8  0.3 

Experiment 
3  

0.5  18.7  198  15.7  2.1  0.39  

Fig. 1. Bioreactor image, and scheme indicating all 
collected data to simulate and to parametrize the model. 
Time-dependent inputs are determined as glucose, acid and 
base feed rates and are calculated from the respective 
balance signal (mGlucose, mAcid, mBase). Online CER and OUR 
is calculated based on gas composition (XCO2, XO2) in the 
off-gas stream as well as input gas stream (Fair) and oxygen 
content (FO2). Biomass, ethanol and glucose concentrations 
(CS, CX, Ce) are measured from offline samples.   

Fig. 2. The “bottleneck” concept in Sonnleitner and Käppeli [51] yeast fermentation model. If the sum of substrate fluxes does not exceed, or equals, the cell’s 
maximum oxidative uptake rate (shown as two rings in the figure), then the flux is subcritical, or critical, (left). If the glucose flux is higher than the maximum 
oxidative uptake rate, then the flux is supercritical. The residual part of glucose is metabolized reductively to produce ethanol (right). If the sum of substrate fluxes 
exceeds the maximum oxidative uptake rate then the flux is supercritical, but ethanol uptake is limited to the maximum oxidative capacity (middle). 
The figure is adapted from [55]. 
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supernatant were analyzed by HPLC (Thermo Fischer, USA) with a 
Supelco gel C-610 H ion exchange column (Sigma-Aldrich, USA) and a 
refractive index detector (Thermo Fischer, USA). The mobile phase was 
0.1% H3PO4 with a constant flow rate of 0.5 mL/min at a temperature of 
4 ◦C. Biomass concentration was determined gravimetrically by sepa
rating the cells from 5 mL culture broth via centrifugation at 4800 rpm 
for 10 min at 4 ◦C. The cell pellet was dried at 105 ◦C after a washing 
step with 5 mL of water in weighted glass tubes and the weight of the 
dried pellet was determined on an analytical balance. Fig. 1 shows a 
scheme of the used setting. 

2.5. Growth model of S. cerevisiae 

In Sonnleitner and Käppeli [55] yeast fermentation model, the au
thors describe how Saccharomyces cerevisiae grows using different 
metabolic pathways. Three reactions (metabolic routes) are distin
guished by the following equations with the stoichiometric coefficients 
(α1-α12): 

-Oxidative conversion of glucose (into biomass and CO2)
C6H12O6 + α1 O2 + α2 NX [NH3] →α2ClHHXOOXNNX + α3CO2 +α4 H2O

(2.5) 
-Reductive conversion of glucose (into biomass, CO2 and ethanol)

C6H12O6 + α5 NX [NH3]→ α5 ClHHXOOXNNX + α6CO2 +α7 H2O + α8 C2H6O
(2.6) 

-Oxidative conversion of ethanol (into biomass and CO2)
C2H6O+α9O2 +α10 NX [NH3]→α10 ClHHXOOXNNX + α11CO2 + α12 H2O

(2.7) 
The formula ClHHXOOxNNX denotes the biomass, where the molecular 

composition HX, OX, NX can be determined by elemental analysis of the 
dried biomass. Note that it is assumed that the elemental compositions 
of ethanol-grown biomass and glucose-grown biomass are the same as 
the difference is within the analytical errors [62]. The yield coefficients 
Yx/s(ox),Yx/s(red) and Yx/e(ox) are determined as model parameters by fitting 
the model predictions to the measurements. The stoichiometric co
efficients α2, α5, and α10, can be determined retrospectively, assuming 
that the molecular weights (Mw) of biomass, glucose and ethanol are 
known using the relations: Yx/s(ox) = α2Mwx/Mws, Yx/s(red) =
α5Mwx/Mws, Yx/e(ox) = α10Mwx/Mwe. All remaining stoichiometric co
efficients in eqs. (2.5),(2.6) and (2.7) and the corresponding (stochio
metric) yield coefficients that are used later (YO2/s, YO2/e and Ye/s) can be 
determined by considering the elemental balance of carbon, oxygen, and 
hydrogen and solving a linear system as described in [55] (see 
Appendix B). The values of αi are later used in Eqs. (2.19) and (2.20). 

The specific uptake rates of glucose (substrate) qs, ethanol qe and 
oxygen qO2 are assumed to follow Monod kinetics: 

qs = qmax
s

Cs

Cs + Ks
(2.8)  

qe = qmax
e

Ce

Ce + Ke
⋅ Ki

Ki + Cs
(2.9)  

qO2 = qmax
O2

Co

Co + Ko
(2.10) 

where qmax
s , qmax

e and qmax
O2 represent the maximum rates with the 

respective half saturation rates Ks, Ke and Ko in dependence of the 
respective concentrations Cs, Ce and Co. In addition, ethanol uptake is 
inhibited by glucose concentration Cs via competitive inhibition with Ki 
as an inhibition constant. 

The main concept to switch between these regimes is the “bottleneck” 
of the respiratory capacity of the cells. The maximum glucose oxidation 
capacity qmax

s(ox) is determined by the current oxygen uptake and the 

stoichiometric conversion yield YO2/s: 

qmax
s(ox) =

qO2

YO2/s
(2.11) 

Based on qmax
s(ox) it is possible to differentiate between subcritical/ 

supracritical substrate flux. The bottleneck to select between a rate lim
itation by oxygen and substrate availability can be written as: 
qs ≤ qmax

s(ox) (2.12) 
If (2.12) is fulfilled, then the substrate flux is subcritical and can be 

entirely converted by the oxidative pathways, qs(ox) = qs is given by Eq. 
(2.8), i.e., the actual rate qs(ox) is equal to the specific rate. Moreover, 
whether or not ethanol is present in the medium, no reductive reaction 
happens and therefore neither ethanol production nor fermentative 
growth exists, i.e., qs(red) = 0, according to eq. (2.6). Similar to glucose, 
maximum ethanol oxidation capacity can be computed as: 

qmax
e(ox) =

qO2 − YO2/s ⋅ qs(ox)
YO2/e

(2.13) 

were qs(ox) is the oxidatively consumed glucose. YO2/s and YO2/e are 
the respective O2 stoichiometric conversion yields for glucose and 
ethanol. Similar to glucose oxidation two cases can be distinguished for 
the ethanol consumption: 
qe ≤ qmax

e(ox) (2.14) 
If (2.14) is fulfilled, then ethanol can be oxidized at current 

maximum rate qe(ox) = qe as described in equation (2.9). Otherwise, the 
potential ethanol flux exceeds the oxidative capacity, and ethanol up
take rate qe(ox) is limited to maximum oxidative capacity qe(ox) = qmax

e(ox). 
On the other hand, if: 
qs > qmax

s(ox) (2.15) 
then glucose substrate flux is higher than the oxidative capacity, and 

growth based on glucose corresponds to maximum possible oxidative 
capacity qs(ox) = qmax

s(ox), the remaining sugar uptake is reduced to ethanol 
and can be determined by: 
qs(red) = qs − qmax

s(ox) (2.16) 
Once the cells are in the reductive pathway, ethanol cannot be used 

as a substrate for growth anymore qe(ox) = 0. 
Overall, the model considers an “oxidative” growth by a co- 

metabolized glucose and ethanol under the conditions of subcritical 
substrate flux (reaction routes in eqs. (2.5) and (2.7)), “oxidoreductive” 
growth under aerobic conditions of critical and supracritical glucose flux 
(eqs. (2.5) and (2.6)), and “reductive“ growth under anaerobic conditions 
only (eq. (2.6)). 

Based on the selected regimes the overall growth can be expressed by 
the usage of the respective conversion yields of the single pathways: 
μtotal = Yx/s(ox).qs(ox) + Yx/s(red).qs(red) + Yx/e(ox).qe(ox) (2.17) 

The mass balances for a fed-batch reactor with a glucose feed, 
assuming an open system, isothermal operation and homogenous me
dium result in the following system of ODE’s: 
dCx

dt
= μtotal⋅Cx − Fs

V
⋅Cx

dCs

dt
= −

(
qs(red) + qs(ox)

)
⋅Cx − Fs

V
⋅Cs + Fs

V
⋅Cs,in

dCe

dt
=

(
Ye/s⋅qs(red) − qe(ox)

)
⋅Cx − Fs

V
⋅Ce

dV
dt

= FS + FBase + FAcid − Fsampling (2.18) 
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Based on the derived stoichiometric coefficients in eqs. (2.5),(2.6) 
and (2.7), produced carbon dioxide (CER) and oxygen uptake (OUR) can 
be added as additional model outputs: 

OUR =
(

qs(ox)⋅α1
Mwo2
Mws

+ qe(ox)⋅α9
Mwo2
Mwe

)
Cx⋅V (2.19)  

CER =
(

qs(ox)⋅α3
Mwco2
Mws

+ qe(ox)⋅α11
Mwco2
Mwe

+ qs(red)⋅α6
Mwco2
Mws

)
Cx⋅V

(2.20) 
The Respiratory Quotient (RQ), which is considered a valid indicator 

for different metabolic pathways [59], is defined as: 

RQ = CER
OUR

(2.21) 

A RQ greater than one indicates that the S. cerevisiae is producing 
ethanol by Crabtree effect (oxidoreductive growth). A RQ close to one 
indicates that glucose is mostly oxidatively consumed. RQ values around 
2/3 indicate ethanol oxidative consumption. Summing up, the ODE 
model includes biomass, substrate and ethanol concentrations, and 
volume as states x(t). Glucose, acid and base addition are considered as 
time-dependent inputs u(t). Initial estimates of the model parameters (θ) 

are taken from [55,57] and given in Table 4. Table 1 shows all symbols 
and meanings. 

3. Results

3.1. Growth model implementations

Section 3.1 discusses the implementation of the kinetic growth 
model of S. cerevisiae (Section 2.5) which describes growth on three 
different pathways. Two methods for the implementation of the ODE 
system are used (see Section 2.1 for details): 

(I) time stepping method (TSM): uses the routines of the MATLAB
ODESUITE package without event detection option. 

(II) event driven method (EDM): uses the routines of the MATLAB
ODESUITE package with an event detection option. This means that, 
during the solution of the ODEs, conditions are monitored, and corre
sponding events are detected using MATLAB’s ODE event location al
gorithm. If an event is detected, the integration is terminated, and the 
model is switched. The integration is then restarted with the new sub
model and/or adapted initial conditions. 

Fig. 3 shows in detail the computational schemes of both methods. 

Fig. 3. Computational schemes of the standard time stepping method (TSM) and the proposed event driven method (EDM). The EDM scheme accounts explicitly for 
any discontinuities in the model by monitoring conditions and switching to the corresponding submodels (or updating state values). 
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3.1.1. Model implementation following the time stepping method 
For TSM, the implementation of different submodels is straightfor

ward using the standard programming language expressions. For the 
conditions equations (2.12) and (2.14), extrema functions {MIN ,MAX}, 
or alternatively conditional statements {if, switch, while, match…} 
[63–65] are used. The generic syntax for the equations (2.12) and (2.14) 
are written for example as: 

qs(ox) = MIN
(

qs, qmax
s(ox)

) ⃒⃒⃒
qe(ox) = MIN

(
qe, qmax

e(ox)
)

(3.1)  

or: 

If
(

qs ≤ qmax
s(ox)

)
qs(ox) = qs

else
qs(ox) = qmax

s(ox)
end

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒

If
(

qe ≤ qmax
e(ox)

)
qe(ox) = qe

else
qe(ox) = qmax

e(ox)
end

(3.2) 

It is noted that for eqs. (3.1) and (3.2), the only difference is the 
syntax; the execution of both statements gives the exact same results. 

Sampling volumes are incorporated in the model simply by consid
ering “sampling” flow rate Fsampling (i.e., flow negative pulse signal) in eq. 
(2.18). As the changes in the overall volume over time is calculated as 
the difference between input and output flow rates [12], it is widely 
accepted to consider sampling volume Fsampling as a part of the flows that 
are leaving the reactor [65–67]. 

In the TSM method, the conditional statements are computed at each 
evaluation time point of the ODE solver. While the time steps are 
adaptively chosen based on the integration error estimate, there is no 
active control on the location of events. The solver is therefore likely to 
miss the exact time point when a switch between metabolic pathways 
occurs, or the samples are taken. In addition, in the TSM implementation 
positivity of the ODE solution is not enforced. 

3.1.2. Model implementation following the event driven method 
The kinetic growth model by Sonnleitner and Käppeli [55] describes 

how Saccharomyces cerevisiae grows based on different metabolic path
ways, i.e., regimes with different substrate uptake. Switches between 
these pathways are triggered by events. They are actively located by 
monitoring of the conditions (2.12) and (2.14), whose threshold is given 
by equations (2.11) and (2.13), respectively. 

Adopting the event driven method (given in Section 2.1.2) requires 
the model to be separated into: a) conditions and b) submodels. 

The growth model including the three metabolic pathways (as three 
submodels) can be represented by the general mass balances equations 
(2.18) written in matrix form as: 

where the conversion matrix containing the yield coefficients is 
multiplied by the reaction vector containing the current reaction rates q 
(t). A ∈ RNq×Nq is the activation matrix, whose elements {1,0} are used 
to activate/deactivate submodels. Table 3 shows all possible submodels, 
the corresponding diagonal elements of A , and the selection criteria. 

The selection process is illustrated as a decision tree in Appendix C. The 
Boolean trigger function C 1(t) considering condition (2.12) reads: 

C 1(t) :=
⎧⎨⎩ 1,

0,
if qs(x(t), u(t), θ, t ) − qmax

s(ox)(x(t), u(t), θ, t ) ≥ 0
if qs(x(t), u(t), θ, t ) − qmax

s(ox)(x(t), u(t), θ, t ) < 0

⎫⎬⎭
(3.4) 

The Boolean trigger function C 2(t) considering condition (2.14) 
reads: 

C 2(t) :=
⎧⎨⎩ 1,

0,
if qe(x(t), u(t), θ, t) − qmax

e(ox)(x(t), u(t), θ, t) ≥ 0
if qe(x(t), u(t), θ, t) − qmax

e(ox)(x(t), u(t), θ, t) < 0

⎫⎬⎭ (3.5)  

3.1.2.1. Accounting for additional discontinuities and non-physical solu
tions in the model. Non-physical solutions and highly nonlinear kinetic 
terms: Nonlinear kinetic models such as Monod-type growth models can 
exhibit stiff behaviors, especially when the affinity of the microorgan
isms to the used substrates is high [12], and the affinity constant (K) is 
small (roughly < 0.2). While these models predict a maximum growth 
rate for most substrate concentrations, rate limitation occurs in a very 
limited substrate range close to 0 and the reaction is stopped at zero 
concentration. Accordingly, the growth rate curve exhibits a very steep 
slope for low substrate concentrations whereas it is almost constant 
elsewhere. For changing substrate concentrations, from low to high, or 
vice-versa, the steepness of the response appears to change suddenly, the 
model shows an “almost-discontinuous” behavior. In addition, while 
Monod is defined for positive substrate concentrations, for negative 
concentrations it gives non-physical solutions, i.e., positive rates below 
−K and negative rates between −K and 0. Because of this, an 
often-encountered issue in the numerical solution of ODEs with 
Monod-type models are the negative substrate concentrations. The 
consequences range from inaccuracies in the computed model pre
dictions, to instability of the ODE model which might lead to simulation 
failure. These non-physical solutions can be avoided by following the 
event driven implementation [68]. It is noted that some ODE solvers, 
such as in the SUNDIALS ODE suite [47], directly provide an option for 

Table 3 
Selection of submodels according to the state of the Boolean trigger functions 
(True or False) and corresponding values of the activation matrix A in equation 
(3.3).  

Metabolic pathway 
(activated sub-model) 

Trigger function Activation Matrix 
A (C (t) )

C 1(t) C 2(t)

A - Glucose and Ethanol oxidation 
(The sum of fluxes is less or equals the 
maximum oxidative uptake rate) 

TRUE TRUE A =
diag[1 0 0 1 0]

B - Glucose and Ethanol oxidation 
(The sum of fluxes exceeds the maximum 
oxidative uptake rate. Ethanol uptake is 
limited to the maximum oxidative 
capacity) 

TRUE FALSE A =
diag[1 0 0 0 1]

C- Crabtree effect 
(oxidoreductive pathway) 

FALSE TRUE A =
diag [0 1 1 0 0]FALSE FALSE  

d
dt

⎡⎣Cx
Cs
Ce

⎤⎦ =
⎡⎣Yx/s(ox) Yx/s(ox) Yx/s(red) Yx/e(ox) Yx/e(ox)

−1 −1 −1 0 0
0 0 Ye/s −1 −1

⎤⎦⋅A ⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qs

qmax
s(ox)

qred
s

qe

qmax
e(ox)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Cx − D

⎡⎣Cx
Cs
Ce

⎤⎦+ Fs

V

⎡⎣ 0
Cin
0

⎤⎦ (3.3)   
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the computation of non-negative solutions. However, some MATLAB’s 
ODE solvers for stiff and nonlinear problems such as ODE23S and 
ODE15i, do not provide this option. Therefore, corresponding zero 
crossing conditions (state events) were considered in the EDM 
implementation. 

Feeds and samples: Volume changes of an ideal stirred reactor are 
usually modeled by mass balance (differential) equations. In fed-batch 
fermentation, the measured flow rates (except FSampling) usually show 
comparatively smooth curves. These curves are represented by discrete 
signals and can be transformed to smooth functions with relatively little 

Fig. 4. Fitting the model following the EDM implementation to data from experiment 1. Above: Trigger functions (blue) and condition thresholds (dotted line). 
Detected events (blue line crosses dotted line) trigger a switch between submodels. Submodel C indicates a metabolism described by the Crabtree effect, submodel B 
indicates oxidative growth on glucose and limited uptake rate of ethanol, submodel A indicates normal oxidative growth on ethanol and glucose. Below: Simulated 
and measured liquid and off-gas concentrations, feed signal and RQ signal. Because the metabolic activities between ~13 − 15 [h] stop, OUR and CER are almost 
zeros, and the ratio RQ is unreliable. Therefore, RQ is not shown in this time-window. 
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effort, e.g., by applying a smoothing filter and by subsequent interpo
lation using piecewise spline interpolation. Avoiding discontinuities on 
the right-hand-side of eq. (2.18) can significantly improve the efficiency 
and accuracy of its solution [69], [70]. Hence, the volume changes due 
to sampling are modeled as instantaneous changes using time events and 
switches in the volume Vnew = Vold − ΔVsampling, and the term Fsampling in 
eq. (2.18) therefore is omitted. 

All conditions for metabolic switches, non-physical solutions and 
sampling are combined in one vector of switching conditions which are 
monitored for any root. 

3.2. Model fitting adopting the event driven method 

Fig. 4 shows results of the first S. cerevisiae fed-batch cultivation. The 
model was fitted simultaneously to the data of all three experiments 
using EDM. The model parameters are given in Table 4. Overall, five 
events were detected (Fig. 4 upper part). This means that after initiali
zation of the simulation with submodel C, the following submodels were 
activated sequentially: B, A, C, B, A. 

From the simulated and measured data shown in Fig. 4 (and later in 
Fig. 5 for the three experiments) the following conclusions can be 
drawn, during the batch phase (roughly between 0 and 15 h), three 
different phases were recognized: 

I) From the beginning of the fermentation with glucose concentra
tion being at maximum until the point of glucose depletion that
limits the glucose inflow, cells metabolize glucose both oxida
tively and reductively, leading to the so-called “Crabtree effect” 
(metabolic pathway C) also indicated by a high RQ.

II) Directly after glucose depletion, the previously produced ethanol
is oxidized (metabolic pathway B). The metabolic transition be
tween these first two phases is associated with an instant drop in
CER whereas OUR remains unchanged due to the usage of the full
oxidative capacity of the cells and leads to a RQ below 1.

Upon ethanol depletion, metabolic activity stops (OUR and CER ~ 0) 
and the model changes to glucose oxidation (metabolic pathway A), 
which is set as the default. After the end of the batch phase, different 
feeding phases were started (15–23 h):  

III) After feed start (~15 h) subcritical glucose flux (metabolic
pathway A) is aimed by a small exponential ramp. An RQ of ~1
indicates that glucose consumption is purely oxidative.

IV) After that, an increased glucose feed leads to ethanol formation
through the “Crabtree effect” (metabolic pathway C) similar to
time window (I) but for a shorter time.

V) After sensing significant ethanol accumulation, the feed is
changed to subcritical glucose fluxes and co-utilization of pro
vided glucose and the produced ethanol can be observed (RQ < 1

Fig. 5. Fitting the model to data from experiment 1, 2, and 3. The black solid lines and markers represent measurements, the colored lines represent the best fit 
(reference solution obtained by EDM). Uncertainties in the model predictions and in the location of switches between submodels are depicted by shaded areas for 
TSM (pale) and EDM (dark). The prediction uncertainty is obtained by a sampling considering the uncertainty in the parameter estimates, see section 2.2 for details. 
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& metabolic pathway B). After depletion of ethanol only the 
added glucose is metabolized (RQ ~1 & metabolic pathway A). 

The model predictions are well aligned with measured concentra
tions and the off-gas signals with an overall normalized root-mean- 
square error below 4.5%. The location of switches and the identified 
submodels are in good accordance with the indications by the computed 
RQ, compare the switches between the identified submodels (Fig. 4 
above) with the computed RQ values (Fig. 4 below). 

When RQ is greater than 1, cells are, in parallel to the oxidative 
route, also consuming glucose in a fermentative regime causing ethanol 
production (metabolic pathway C). When RQ ≈ 1, this is a clear indi
cator of purely glucose consumption in an oxidative regime (corre
sponding to metabolic pathway A at higher glucose concentrations, and 
B at lower ones). RQ ≈ 2/3 is a clear indicator of purely ethanol con
sumption in an oxidative regime (metabolic pathway B at higher ethanol 
concentrations, and A at lower ones). 

The simulation results imply an immediate change in cell meta
bolism after each event. This is due to the assumption of Sonnleitner and 
Käppeli’s that cells can instantaneously change between metabolic 
pathways. Although some authors prefer to consider adaptation times 
after metabolic changes [57], it was reported that cells remain bio
chemically active during these times but cell division is highly affected 
[71]. Therefore, we restrict ourselves to the Sonnleitner and Käppeli’s 
assumption, as this discussion goes beyond the paper’s purpose. 

The results from the parameter identifiability analysis and uncer
tainty quantification of the three experiments are shown in Table 4. Nine 
parameters are considered and ordered starting with the most identifi
able parameters. Five parameters are selected as identifiable. It is noted 
that the same ranking and selection was also found for the individual 
fitting of the two different experiments considered in the following 
subsection. An interesting finding is that qmaxe is not identifiable 
although it plays a role in one of the conditions (see eq. (2.13)), the 
reason might be the direct correlation between qmaxe and Yx/e(ox) in eq. 
(2.17). Hence, only one of both parameters is uniquely identifiable. 

A detailed analysis of the impact of uncertainties in the parameter 
estimates is given in section 3.3.3. 

3.3. The advantages of using the event driven method over the time 
stepping method 

Section 3.3 presents results for all three experiments. Note that the 
best fitting results obtained from the EDM are here referred to as the 
reference solution. Corresponding parameter estimates are reported in 
Table 4. 

Table 4 
Parameter identifiability analysis and parameter uncertainty quantification 
considering data from experiment 1, 2, 3 and following the event driven method 
for model implementation. The subset selection method selects the identifiable 
parameter subspace. Non-identifiable parameters are fixed to their initial guess 
values and are not considered in the fitting problem. The lower bound of the 
confidence interval (LB-CI) and upper bound of the confidence interval (UB-CI) 
of the parameters are presented for 95% confidence interval ( ± 2σ). The symbol 
%σ represents the relative standard deviation of the estimated parameters.    

Identifiability 
analysis 

Uncertainty quantification  

Initial 
guess 

Parameter subset 
Selection 

Estimated 
value μ

%σ LB-CI UB- 
CI 

qmax
s   3.5 Identifiable, 

Active  
1.68 3.52 1.56 1.80 

qmax
O2   7.5 Identifiable, 

Active  
8.70 2.94 8.24 9.26 

Yx/s(red) 0.05 Identifiable, 
Active  

0.10 25.74 0.048 0.15 

Yx/s(ox) 0.5 Identifiable, 
Active  

0.53 5.94 0.46 0.59 

Yx/e(ox) 0.72 Identifiable, 
Active  

0.4 3.62 0.37 0.43 

qmaxe   0.24 Not identifiable, 
Non-active  

0.24 – 

Ks 0.1 Not identifiable, 
Non-active  

0.105 – 

Ko 0.1 Not identifiable, 
Non-active  

0.105 – 

Ki 0.1 Not identifiable, 
Non-active  

0.1 –  

Fig. 6. NRSS (normalized residual sum of 
squared errors) optimization surfaces of a 
reduced two-dimensional parameter estimation 
problem for the model implementation 
following TSM (left) and EDM (right). The sur
faces are constructed by evaluations (repeated 
simulations) for a grid of parameters. The 
optimal solution is around qmax

s(ox) = 1.7g⋅h−1⋅g−1 

and qmax
O2 = 8.7 g⋅h−1⋅g−1. (Note: that oxygen 

uptake is limiting and therefore maximum 
glucose uptake rate is a non-sensitive param
eter). The TSM produces stochastic errors 
which produce a noisy surface. This noise is not 
static but dynamically changes throughout the 
evaluation procedure and impedes the optimi
zation algorithm to converge to the minimum. 
Note that for TSM, the large peaks result mostly 
from “non-physical solutions”, see section 
3.1.2.1.   

Table 5 
Relative error (%σ) of the estimated parameters at different perturbation levels 
of the initial parameter guess. Low errors indicate a good parameter identifi
cation, whereas high errors indicate a poor identification.   

Perturbation of the initial parameter guess 
0% 10% 30% 50% 

Reference 
%σ

TSM 
%σ

EDM 
%σ

TSM 
%σ

EDM 
%σ

TSM 
%σ

EDM 
%σ

qmaxs  3.52 8.5 6.72 20.84 3.7 30.22 6.36 
qmax

O2  2.94 7.26 4.16 15.41 5.71 22.04 4.16 
Yx/s(red) 25.74 16.10 26.43 30.68 18.56 41.33 26.71 
Yx/s(ox) 5.94 12.53 8.55 28.54 12.27 38.99 8.5 
Yx/e(ox) 3.62 6.14 5.14 12.04 5.94 17.34 5.14  
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3.3.1. Prediction uncertainty of the identified models implemented using 
EDM and TSM 

Fig. 5 shows results from fitting the model to the three experiments. 
The solid lines represent the best fit, i.e., the reference solution. The 
shaded areas represent the 95% confidence interval of the EDM (dark) 
and the TSM (pale) implementation. Overall, the solid line obtained by 
EDM describes nicely the discrete measurements of biomass, ethanol 
and glucose as well as the continuous CER and OUR measurements with 
an average normalized root-mean-square error below 5%. Towards the 
end of the fermentations the off-gas signals show slightly higher model 
mismatches which could be due to slower mass transfer by higher cell 
concentrations and/or sensor saturation or decreased sensitivities by 
higher CO2 and lower O2 concentrations in the off-gas stream. 

The prediction uncertainty (see Section 2.2 for details) is a measure 
for the reliability of the model predictions and critically depends on the 
uncertainties in the parameter estimates. These uncertainties result from 
poor parameter sensitivities, parameter correlations and measurement 
errors (EDM and TSM). Using TSM, these uncertainties might be addi
tionally increased by inaccuracies in the event detection and location of 
model switches. Note that these inaccuracies are also referred to as 
numerical noise (see Section 3.3.2). 

Overall, it seems that the TSM implementation has a lower predictive 
power compared to the EDM implementation. This can be attributed to 

the effects of numerical noise. Thus, it is not surprising to see that for all 
three experiments in Fig. 5 the prediction uncertainties are higher for 
TSM compared to EDM. These results give a first indication that EDM 
produces more robust (reproducible) model predictions for liquid, gas 
and metabolic pathways. 

3.3.2. Numerical noise and its implications for fitting the model to the 
measurements 

Inaccurate and possibly non-physical solutions are highly undesir
able for numerical analysis. Using TSM the errors in the event location 
are not controlled, the solution of the model can potentially be corrupted 
by noise. This affects the computed states as well as any quantity derived 
from them, such as the residuals (in a parameter estimation problem). In 
this situation, the objective function is a “noisy function”. This is also a 
problem for the computation of sensitivities and gradient information 
during optimization iterations, e.g., in the perturbation gradient esti
mation methods (using finite difference approximations), gradients are 
computed by evaluating the objective function in several points in the 
neighborhood of the current guess, using finite step sizes. Stochastic 
errors (noise) in the objective function values leads to errors in the 
computed gradients. This can be problematic for the solution of the 
optimization problem. 

The consequences of these errors in the simulation are illustrated in 

Fig. 7. Pairwise parameter estimates obtained by fitting 500 simulated data sets (generated by resampling the data from all experiments). For each fit the initial 
parameter guess was perturbed (perturbation levels 30%) from the best fitting parameter values in Table 4 (reference solution). The scatter plot shows the individual 
parameter estimates together with an approximation of the parameter confidence regions using ellipsoids. The confidence regions obtained by TSM are significantly 
larger when compared with results from EDM. 
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Fig. 6. For TSM and EDM, the objective function surfaces are evaluated 
considering a simplified parameter estimation problem with two un
known parameters, the maximum oxygen (qmaxO2 ) and substrate (qmaxs ) 
uptake rates. EDM produces a continuous and differentiable surface, 
whereas the surface produced by TSM is noisy, discontinuous and non- 
differentiable. This reduces the effectiveness of the gradient-based 
optimization. 

A quantitative analysis is given in Appendix D where the model is 
fitted to 500 simulated data sets (fitting problem in Section 3.3.1 
considering all three experiments and all active parameters given in 
Table 4). Each parameter estimation problem was initialized with a 
perturbed parameter initial guess. The distribution of the NRSS values at 
the solution was used to assess the convergence of the parameter esti
mation, i.e., low values, close to the reference NRSS, indicate good 
convergence. It turns out that the results obtained by EDM are very 
similar indicating a robust convergence to the optimum. In contrast, the 
results of the TSM are clearly affected by the numerical noise produced 
by the inaccuracies in the location of events. Using TSM, the optimizer 
often gets stuck (does not converge) which results in solutions with very 
high residual values (NRSS). 

The performance of EDM and TSM is described in a more general 
perspective in Appendix E where the results obtained by TSM and EDM 
are compared in terms of the fitting error and computation times for 
different ODE solver types and their error tolerances. Again, the results 
indicate a lower fitting error when EDM is used. However, this comes at 
the price of a relatively small increase in the computation times. 

3.3.3. Numerical noise and its implications for the identifiability of 
parameters 

Table 5 shows the relative errors of the estimated parameter which 
were selected by the parameter identifiability analysis, see section 2.2. 
The first column shows results for the reference solution (column 
“Reference” in Table 5 is taken from Table 4). All columns show results 
obtained by fitting 500 simulated data sets. The fitting was done for 
EDM and TSM for perturbed parameter initial guesses (and at increasing 
perturbation levels). It can be noted that the results for the EDM are not 
significantly affected by the perturbation in the initial parameter guess. 
The reported parameter errors are similar to the errors obtained for the 

best reference solution. These results again proof the robust convergence 
of the optimization algorithm. In contrast, for TSM, with higher 
perturbation levels, the errors in the parameter estimates increase 
significantly. 

These observations are confirmed by the scatterplots in Fig. 7 which 
shows the parameter confidence regions obtained by TSM and EDM for a 
perturbation of the initial parameter guesses by 30%. As to be expected 
the confidence regions obtained by TSM are significantly larger when 
compared with results from EDM. This can be seen for example for the 
pair qmaxs and qmax

O2 , which are also important triggers to switch between 
the different growth pathways (see equations (2.12) and (2.14)). Inter
estingly enough, the confidence ellipsoids obtained by TSM are not only 
larger, but their location is also different (e.g., Yx/s(red) and Yx/s(ox)). This 
means that besides a larger parameter uncertainty, the usage of TSM also 
leads to different estimates. 

The inflated confidence regions found by TSM mean in practical 
terms, that the TSM is not able to accurately determine the key physi
ological characteristics of the cell, namely maximum rates and conver
sion yields. This could extend by collinearity to influence other 
important parameters. Hence, it is not feasible for bioprocessing engi
neers who rely on TSM modeling to identify a reliable set of model pa
rameters for such a process. 

3.3.4. Numerical noise and its implications for the uncertainty in model 
predictions 

In this section, different initial concentrations are evaluated to pre
dict the potential process behavior. 

Fig. 8 shows the isolines (contours) of two different objectives: the 
biomass gain and the reached ethanol concentration. Both quantities are 
related to the initial biomass and glucose concentrations which define 
the two-dimensional design space. 

The combined goal is to avoid excessive ethanol formation (oxidor
eductive pathway) while at the same time maximizing the cell growth 
(biomass concentration). Considering the isoline based on EDM, the 
optimal operating point is around: 1 [g/L] initial biomass and 19 [g/L] 
initial glucose concentrations. The isolines of the TSM model are shifted 
with an optimum at 0.5 [g/L] initial biomass and 17 [g/L] glucose. 
Compared to EDM, this yields a reduced process performance with 25% 

Fig. 8. Demonstration of the usage of the model for effective model-based DoE to optimize experiment 2. Right) The maximum accumulated ethanol, Left) The gain 
of biomass concentration during the time course of the experiment. Both are plotted against initial biomass and glucose concentrations. Lines: -solid line (EDM), 
-dashed line (TSM). All units are [g/L]. Models implemented with TSM produces shifted and curvy isolines compared to the ones implemented with EDM, when the
model is evaluated at different initial concentrations.
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lower biomass. Besides that, another effect can be seen within Fig. 8. 
Compared to the EDM, the TSM model shows a curvy behavior (dashed 
isolines), i.e., repeated evaluation of the model with small differences in 
the initial concentrations produces significant shifts in the isolines 
which makes them harder to interpret. It can be concluded that pre
dictions based on TSM implementation are unreliable and therefore 
cannot be recommended for simulation-based optimization. 

As in many other biotechnological upstream processes which aim 
mostly for maximum cell yield, this process must run close-to-optimal 
conditions, e.g., oxidative metabolism close to the boundaries of 
oxidative capacity of the cell, which implies running very close to the 
metabolic (boundaries) switches, e.g., bottleneck kinetics, and causes 
the simulation to be highly sensitive to inaccurate event location. 

EDM by explicitly accounting for these switches, ensures the simu
lation to run without any deviations and therefore keeping the pre
dictions on track. 

4. Discussion and conclusions

Although successfully employed in other fields, the explicit consid
eration of events and switches in bioprocess modeling seems under
estimated and still not sufficiently exploited. Different sources of 
discontinuities still limit the usage of process models in biotechnological 
processes. This includes operational discontinuities, such as instanta
neous feed addition or offline sampling as well as metabolic changes 
triggered by inducer addition or internal process dynamics during the 
batch and fed-batch operations. Besides the need to explicitly account 
for these sudden changes, a sound implementation allows for more 
reliable and generically applicable models which can be used for process 
design, monitoring and targeted control of cell metabolism in an in
dustrial context. 

A robust modeling approach has been developed for the respiro- 
fermentative growth of S. cerevisiae. This has been achieved by the 
consideration of metabolic switches as events in the framework of an 
earlier established model [55]. The comparative analysis of the pro
posed EDM for model implementation, and the simpler and often used 
TSM underlines that models implemented with EDM deliver more 

accurate location of metabolic switches, lower prediction error and 
lower parameter uncertainty. 

The results of the presented case study encourage further in
vestigations using EDM modeling with other interesting discontinuous 
behaviors. The S. cerevisiae growth model could be adapted to multi- 
substrate mixtures by considering additional pathways and potential 
interactions such as diauxic growth. Switches in the reaction routes 
(similar to the switches in this contribution) are conceivable for the 
consideration of overflow metabolism for E. coli [65], [72], or for 
Crabtree-positive P. pastoris [73], [74]. External and auto-induced pro
duction switches in recombinant protein production in S. cerevisiae, 
E. coli or P. pastoris and other organisms imply critical changes in cell
metabolism. The induction itself might be externally triggered (e.g.,
[73], [74]), and formulated as a process related switch, or, in case of
auto-induction (e.g., phosphate starvation for E. coli and P. pastoris [75],
[76]), an implicit switch could be formulated (e.g., depending on
available substrate), which triggers a change to a new reaction route for
product formation.
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Appendices 

Appendix A. Numerical implementation of the event driven method 

Boolean trigger functions 
Events are triggered when the sign of the condition in (eq. 2.3), changes, i.e., a zero crossing in c(⋅) is detected. It is noted that [38] use a more 

general definition of state conditions which represent logical propositions. These logical propositions may contain a number of relational expressions 
and sets of connectives (e.g., NOT, AND, OR). However, in this contribution Boolean trigger functions C (t) are used [27]. For C (t), output values 
true are mapped to positive values and output values false are mapped to negative values such that the corresponding state condition c(⋅) has a root at 
every change of the corresponding Boolean values: 

C (t) :=
{ 1,

0,
if c(x(t), u(t), θ, t ) ≥ 0
if c(x(t), u(t), θ, t ) < 0

}
(A.1) 

Moreover, in this contribution, a decision tree is formulated out of the values of the Boolean functions which links different conditions. This 
approach allows for a more straightforward implementation where the monitoring of conditions and detection of events is decoupled from the 
evaluation of logical operations. Thus, once, one or more events are detected, the new active submodel is selected based on the evaluation of the 
decision tree. 

Discontinuity locking 
In the event driven method, the system of equations for each subinterval is locked throughout the solution. This means that the system of equations 

cannot change even if one or more state conditions are satisfied [38]. The state conditions are monitored continuously, and if any of them are satisfied, 
the exact time of occurrence is then located, equations are switched, new initial states might be calculated, and the integration is restarted. This 
approach is efficient and correct provided that the system of equations employed before the state event is mathematically well behaved in a small 
interval following the state event (even if the solution is not physically meaningful) [77]. 
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Chattering control 
When there are many discontinuity points in a small-time interval, the system is said to have a chattering behavior. In this situation, the use of an 

event location routine can lead to an expensive procedure [36]. Chattering can be observed for solutions which produce a sliding along the critical 
threshold of a certain condition without a clear threshold crossing. Measured noisy signals as time dependent inputs to the model, e.g., a measured 
feed, might also produce chattering. In this contribution, chattering was found for signals with high frequent noise when the monitored conditions are 
close to a critical threshold. 

In order to reduce chattering, in this contribution, a hysteresis band is defined for the threshold in each condition as follows: 
c(x(t), u(t), θ, t ) = −ϵ if C (t) = 1
c(x(t), u(t), θ, t ) = +ϵ if C (t) = 0 (A.2)  

where the magnitude of ϵ defines the magnitude of the hysteresis band. It can be seen that the sign of ϵ depends on the current state of the Boolean 
trigger function C (t). Alternatively, the hysteresis band could also be defined based on the sign of the rate of change of c(⋅). Here, for positive rates, 
dc/dt ≥ 0, a positive +ϵ is used, while for negative rates, dc/dt < 0, a negative −ϵ is used. ϵ is a tuning parameter, its value needs to be chosen 
individually for the specific problem, keeping in mind that using small values avoids any delay effects in the event detection. 

Appendix B. Experimental design and calculation of stoichiometric coefficients calculations 

Yeast fermentation media and process parameteres are shown in Tables B1-B2. 
The calculations of the stoichiometric coefficients for known molecular weights of HX, OX, NX , can be done by solving the linear system in eq. 

(B.1). 
r1 r2 r3

V

x

s

e

co2

o2

NH3

H2O

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
α2 α5 α10

1 1 0
0 α8 −1
α3 α6 α11

−α1 0 −α9

−α2 −α5 −α10

α4 α8 α12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

V x s e co2 o2 NH3 H2O⎡⎢⎢⎢⎢⎢⎣
0 1 6 2 1 0 0 0
0 HX 12 6 0 0 3 2
0 OX 6 1 2 2 0 1
0 NX 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
C

H

O

N

= 0 (B.1)  

Table B.1 
Yeast fermentation media.   

Batch (1,5 L) Fed-Batch (1 L) 
Glucose monohydrate 33 g 220/200/198 g 
(NH4)2SO4 7,5 g 5 g 
KH2PO4 4,5 g 3 g 
MgSO4 * 7H2O 0,75 g 0,5 g 
Struktol J 650 0,1 mL 0,1 mL 
Trace Elements 750 x 1995 mL 1,33 mL 
Vitamins* 750 x 1995 mL 1,33 mL  

Table B.2 
Process parameters.  

Culture Saccharomyces cerevisiae, CBS 8340, Wild type 
pH setpoint 4,8 
Temperature set 30 ◦C 
Agitator Speed 1000 rpm 
Air flow 2,25 L/min (1,5 vvm) 
Base 2 M NaOH 
Base density (2 M NaOH) 1080 g/L 
Feed density 1078 g/L  
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Appendix C. Decision tree 

See Fig. C1. 

Appendix D. Numerical noise and its implications for the convergence of the optimization algorithm 

Fig. D1 shows the normalized residual sum of squared errors (NRSS) for models implemented by TSM and EDM, and obtained from fitting 500 
simulated data sets at different perturbation levels of the initial parameter guesses of the identifiable parameter subset. These initial guesses were 
perturbed at three levels, 10%, 30% and 50%, as described in Section 2.2. While the NRSS obtained by EDM is very similar for all perturbation levels, 
the results of the TSM clearly increase for increased perturbation levels. 

Appendix E. Fitting errors versus computation times 

Table E1 shows comparative results of fitting errors and computation times using TSM and EDM, and using different ODE solvers and error tol
erances for their numerical solution. The analysis is based on the results obtained by fitting 50 simulated data sets (due to the very long computation 
times needed at lower error tolerances). The perturbation level of the parameter guesses is set to 50%. The performance is defined by the ratio of the 
means of the prediction error as: ΔJEDM/TSM = μ(NRSS(θ)EDM)

μ(NRSS(θ)TSM), and the ratio in the simulation time as: ΔtEDM/TSM = μ(tEDM)
μ(tTSM). 

The results always show a better chance for EDM to get smaller fitting errors. However, this comes at the cost of increased computation times, here 
usually between 14% and 54%. 

The table also shows that the fitting error difference for non-stiff solvers such as ODE45 and ODE23 is less than for their counterpart stiff solvers. 
This is because of the very small step size adopted by non-stiff solvers when applied to stiff problems. Using TSM, a smaller step size means more 
accurate detection of switches, less numerical noise. This improves the convergence and therefore the fitting error. For ODE23s, the problem was not 
solvable at many initializations with TSM. Here the solver “runs forever” without giving any results. 

Fig. C1. Decision tree with two Boolean trigger functions C 1(t), C 2(t) and three submodels 
for the Saccharomyces cerevisiae fermentation model. Switches are made based on the 
metabolic flux capacity “bottleneck concept”. The decision tree is part of EDM computational 
scheme. EDM monitors the switching conditions, when an event is located, the submodel 
is switched. 

Fig. D1. Normalized residual sum of squares (NRSS) box 
plots obtained from fitting 500 simulated data sets 
(generated by resampling the data from all experiments) 
and starting with initial parameter values at different 
perturbation levels (10%,30% and 50%) from the best 
fitting parameter values in Table 4. The reference solution 
was obtained by EDM using the best fitting parameter 
values as initial parameter guess. Each box plot shows the 
interquartile range (IQR), lower and upper 1.5 *IQR 
whiskers, median and outliers results.   
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ABSTRACT 
Mechanistic ordinary differential equation (ODE) models are important tools for the 
characterization, monitoring and control of yeast cultivations. However, a simplified 
representation of the cell metabolism and process dynamics can cause mathematical 
discontinuities in the models which can have crucial implications on the model’s output. 
A solution to this is to formulate discontinuous (piecewise) growth models and to incorporate 
metabolic and process-related switches expressed as logical operations.  
This contribution discusses the application of a piecewise kinetic growth model for targeted 
Saccharomyces cerevisiae lab scale cultivations that were conducted with different glucose and 
ethanol fluxes designed to trigger switches between metabolic pathways. The so-called Event 
Driven Method (EDM) is proposed to properly handle metabolic and process-related 
discontinuities, in addition to nonlinear kinetic model terms that exhibit discontinuous 
behavior. 
The results show that compared with a standard implementation without active event location, 
the proposed approach leads to more accurate identification of the switches and model 
parameters and thus, less predictions uncertainties.  

Keywords: event driven modelling, piecewise kinetic growth models, yeast cultivation, 
metabolic discontinuities, process-related discontinuities. 



1 INTRODUCTION 
Mechanistic models play an important role for effective experimental design [1], [2], real-time 
monitoring and predictive control [3]. These models represent the knowledge of the underlying 
physical characteristics of the process and the physiological behavior of the organisms using 
mathematical expressions and model parameters [4].  
Mechanistic kinetic growth models use stoichiometric information, nonlinear reaction rates and 
mass and concentration balances [4], and are usually written as a set of deterministic and 
continuous Ordinary Differential Equations (ODEs). Unstructured models do not incorporate 
a detailed metabolic and physiological description of the organism. Internal reactions are often 
lumped together and represented as one overall metabolic pathway. In contrast, structured 
models like metabolic flux analysis provide a more detailed mathematical description of the 
intracellular metabolism but due to their complexity and the difficulty to measure cell internal 
reactions, their application in practice is still very limited [4], [5]. Therefore, in the context of 
industrial biotechnology, unstructured or simplified structured models are commonly used [4]. 
These models primarily focus on the description of simplified pathways and simplified 
biological transitions. However, in reality, transitions are mostly continuous, highly nonlinear, 
and dependent on intracellular mechanisms, but as dynamics happen in very different 
timescales, most of the transitions are simplified into discontinuous behaviors. Therefore, 
switches expressed as logical operations often need to be incorporated in the model [6]. The 
result is a (discontinuous) piecewise growth model. Examples of that are models that describe 
the Crabtree effects [7], or models that consider sudden external changes such as pulse feeding 
and sampling. 
Discontinuous (piecewise) growth models can be mathematically expressed as a combination 
of a set of continuous differential (and algebraic) equations with discontinuous right-hand side, 
and a set of time-dependent and/or state-dependent conditions, also referred to as event 
functions. If a condition is fulfilled, an event is triggered, and the model is switched or updated. 
There are mainly two possible approaches to deal with ODEs with discontinuous right-hand 
sides [8]: the time stepping method (TSM) and the event driven method (EDM). 
The TSM simply ignores discontinuities and uses solvers for continuous initial value problems 
(IVPs). In discontinuous regions the solution might violate the crucial assumption of 
smoothness [8]. In contrast, the EDM locates discontinuities (defined as events [9]) using event 
functions. The solution is a result of a sequence of IVPs, described by differential equations 
and interspersed by instantaneous events that cause a discrete change to the initial value 
problem currently being solved. 
This paper shows parameter estimation and model prediction results of a Saccharomyces 
cerevisiae cultivation model [10]. The model is fitted to data from targeted lab scale 
experiments where ethanol and glucose fluxes were manipulated by the substrate feed rate to 
trigger switches between different metabolic pathways. The paper highlights the consequences 
when not explicitly accounting for discontinuities during model implementation and its 
numerical solution. If discontinuities are not properly handled during model implementation, 
the solution will be influenced by noise which affects the accuracy of parameters estimation 
and increases the model prediction uncertainty. 



2 METHODS 
2.1 Experimental setup, growth model and simulation environment 
The model of Sonnleitner and Käppeli [10] in which the authors describe how Saccharomyces 
cerevisiae grows using different metabolic pathways is used. Three reactions (metabolic 
pathways) can be distinguished: A- Glucose and ethanol oxidation (where sum of fluxes is 
below maximum oxidative capacity), B- Glucose and ethanol oxidation (where sum of fluxes 
is higher than maximum oxidative capacity), C- Crabtree effect (the glucose flux exceeds the 
maximum oxidative capacity). MATLAB “ODE suite” is used to solve the ODEs. Three 
Saccharomyces cerevisiae (wildtype, CBS8340) experiments were conducted in 3 L aerated 
and stirred glass-reactors. For online analytics, CO2 and O2 content in the off-gas was measured 
by a gas analyzer. For offline analytics, glucose, ethanol and biomass concentration were 
measured. Samples were taken both manually and by an autosampler at irregular basis and the 
sample volume (ranging from ~4-20 mL) was logged. More details on experimental setup, 
model structure, parameters and units can be found in [11]. 

2.2 Model parameters and predictions uncertainties quantification 
The model is fitted to the experimental data considering the normalized residual sum of 
squares (NRSS) of the measured and predicted liquid and gas concentrations. For 𝑁𝐿 liquid 
concentrations which were measured in 𝑀𝐿, and for 𝑁𝐺  gas concentrations which were 
continuously monitored and evaluated at 𝑀𝐺  time points, and with 𝜃 as unknown parameter 
vector, the minimization problem reads:  min𝜃   𝜙𝑁𝑅𝑆𝑆(𝜃)      with 

𝜙𝑁𝑅𝑆𝑆(𝜃) =  1𝑀𝐿 ∑ ∑(𝑌𝑖,𝑗(𝜃) − 𝑌𝑖,𝑗𝑚)2𝑀𝐿
𝑗=1

𝑁𝐿
𝑖=1 + 1𝑀𝐺 ∑ ∑(𝑌𝑘,𝑙(𝜃) − 𝑌𝑘,𝑙𝑚)2𝑀𝐺

𝑙=1
𝑁𝐺

𝑘=1
Out of whole model parameters, five parameters were selected as identifiable:  𝑞𝑠𝑚𝑎𝑥,𝑞𝑂2𝑚𝑎𝑥,𝑌𝑥/𝑠(𝑟𝑒𝑑), 𝑌𝑥/𝑠(𝑜𝑥) and 𝑌𝑥/𝑒(𝑜𝑥) based on the identifiability analysis described in [12]. 
The uncertainty of the parameters and model predictions was analyzed using bootstrapping 
[13], which involves resampling of the experimental data and re-estimation of the parameters. 
For each experiment 500 Monte Carlo (MC) datasets were generated based on the 
measurement’s uncertainty, and perturbations at 10%, 30% and 50% of initial guesses of the 
selected parameters. 

2.3 Growth model implementations 
For the implementation of the growth model of S. cerevisiae, the following methods are used: 

• time stepping method (TSM):  uses the routines of the MATLAB ODESUITE package
without event detection option.

• event driven method (EDM): uses the routines of the MATLAB ODESUITE package
with an event detection option. During the solution, the conditions are monitored, and
corresponding events are detected using MATLAB’s ODE event location algorithm. If



an event is detected, the integration is terminated, and the model is switched. The 
integration is then restarted with the new submodel and/or adapted initial conditions. 

The following discontinuities are hereby handled in the EDM implementation: 
A- Metabolic discontinuities: Switches that happen between the metabolic pathways A, B and
C (see 2.1). These are actively located by monitoring the metabolic conditions (i.e., by solving
the corresponding algebraic condition equations outside the ODE system).
B- Process-related discontinuities: In our experimental setup, the measured in/out-flow rates
usually show comparatively smooth curves, except for sampling, where samples are taken by
syringes in a very short time. Therefore, the volume changes due to sampling are modelled
with events, where the reactor volume is updated (outside the ODE system) directly after each
sample, see [14] for more details.
C- Discontinuities caused by highly nonlinear kinetic terms (Non-physical solutions):
Nonlinear kinetic models such as Monod-type growth models can exhibit stiff behaviors,
especially when the affinity of the organism to the used substrates of glucose and ethanol is
high [4], indicated by a small affinity constant (𝐾 roughly < 0.2). For that, corresponding
zero crossing conditions were considered.

Figure 1 shows in detail the computational schemes of both methods. 

Figure 1: Computational schemes of the standard time stepping method (TSM) and the proposed event driven method 
(EDM). The EDM scheme accounts explicitly for any discontinuities in the model by monitoring conditions and switching 
to the corresponding submodels or updating state values, The figure is adapted from [11].  



3 RESULTS 
Using TSM, the events are not accurately located, therefore, the solution of the model is 
affected by calculation inaccuracies, leading to noisy outputs. This is a problem for the 
computation of sensitivities and gradient information during optimization iterations, because 
in many optimization methods, gradients are computed by evaluating the objective function 
in several points in the neighborhood of the current guess, using finite step sizes. Stochastic 
errors (noise) in the objective function values leads to errors in the computed gradients.  

A consequence of the calculation inaccuracies during parameter identification (See 2.2) is 
illustrated in Figure 2. It shows the normalized residual sum of squares (NRSS) for models 
implemented by TSM and EDM and obtained from 500 data sets fittings at different 
perturbation levels of the initial parameters (10%, 30% and 50%). Overall EDM leads to 
lower NRSS values throughout all perturbation levels indicating a better convergence to the 
optimal parameters, while the NRSS obtained by TSM is higher, with a broader distribution 
and a visible dependence on the initial parameter perturbation levels. 

Figure 2: NRSS box plots obtained from fitting 500 simulated data sets (generated by resampling the data from all 
experiments) and starting with initial parameter values at different perturbation levels (10%,30% and 50%). 

Table 1 shows the relative errors of the estimated parameter which were selected by the 
parameter identifiability analysis. The first column shows results for the reference solution. 
All columns show results obtained by 500 data sets fittings with different perturbation levels 
of the initial parameters. It can be noted that the results for the EDM are not significantly 
affected by the perturbation in the initial parameter guess. The reported parameter errors are 
similar to the errors obtained for the best reference solution. In contrast, for TSM, with higher 
perturbation levels, the errors in the parameter estimates increase significantly. 

Figure 3 shows how EDM produces a continuous and differentiable optimization surface, 
whereas TSM surface is noisy, discontinuous and non-differentiable (top figures). Model 
simulations for some neighbored values of a selected parameter reveals how a gradual change 
of a parameter value can cause unsystematic deviations in TSM model predictions, while this 
is not observed for EDM (bottom figures). The unsystematic results of TSM are a consequence 
of the inaccurate events location. 





Figure 3: Top) NRSS optimization surfaces of a reduced two-dimensional parameter estimation problem for the model 
implementation following TSM and EDM for one cultivation. The surfaces are constructed by evaluations (repeated 
simulations) for a grid of parameters. The optimal solution is around  𝑞𝑠(𝑜𝑥)𝑚𝑎𝑥 = 1.7 𝑔 · ℎ−1 · 𝑔−1   and 𝑞𝑂2𝑚𝑎𝑥 = 8.7  𝑔 · ℎ−1 ·𝑔−1. The TSM produces stochastic errors which produce a noisy surface that impedes the optimization algorithm to converge 
to the minimum. Note that for TSM, the large peaks result mostly from “non-physical solutions”.  Bottom) Simulation results 
at selected values of 𝑞𝑂2𝑚𝑎𝑥:maximum oxygen uptake rate (A- 𝑞𝑂2𝑚𝑎𝑥 = 7.1, B- 𝑞𝑂2𝑚𝑎𝑥 = 7.3,C- 𝑞𝑂2𝑚𝑎𝑥 = 7.5, D- 𝑞𝑂2𝑚𝑎𝑥=7.6), rest 
of the parameters are set to constants. Dashed lines refer to TSM results, and solid ones refer to EDM.  

Table 1: Relative error (%𝜎) of the estimated parameters at different perturbation levels of the initial parameter guess. Low 
errors indicate a good parameter identification, whereas high errors indicate a poor identification. 

Perturbation of the initial parameter guess 
0% 10 % 30 % 50 % 

Reference 
%𝛔 

TSM 
%𝛔 

EDM 
%𝛔 

TSM 
%𝛔 

EDM 
%𝛔 

TSM 
%𝛔 

EDM 
%𝛔 𝑞𝑠𝑚𝑎𝑥 3.52 8.5 6.72 20.84 3.7 30.22 6.36 𝑞𝑂2𝑚𝑎𝑥 2.94 7.26 4.16 15.41 5.71 22.04 4.16 𝑌𝑥/𝑠(𝑟𝑒𝑑) 25.74 16.10 26.43 30.68 18.56 41.33 26.71 𝑌𝑥/𝑠(𝑜𝑥) 5.94 12.53 8.55 28.54 12.27 38.99 8.5 𝑌𝑥/𝑒(𝑜𝑥) 3.62 6.14 5.14 12.04 5.94 17.34 5.14 

4 CONCLUSIONS 

The comparative analysis of the proposed EDM method versus the commonly used TSM method for 
model implementation, underlines that (discontinues) mechanistic ODE models implemented with 
EDM deliver more accurate location of metabolic switches, lower prediction error and lower parameter 
uncertainty. 
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Abstract: Intermittent bolus feeding strategies for E. coli cultivations in minibioreactor systems 13
(MBRs) are known to have a profound effect on cell metabolism. Pulsed feeding results in temporal 14
substrate surplus and transient oxygen limitation which leads to the production of inhibitory by- 15
products. For each substrate pulse, the dissolved oxygen tension (DOT) signal exhibits a negative 16
pulse that consists of two segments: a consistent decline and then an increase to the saturation value. 17
A unique response behavior in some DOT pulses in E. coli cultivations in automated milliliter bio- 18
reactor systems equipped with intermittent bolus feeding is observed in this contribution.  These 19
pulses don’t only show the previously mentioned two segments, rather they show four segments: 20
first a partial decline followed by a small increase or a flattened curve and then another decline with 21
a different slope, and after that, a return to the saturation value. This response seemed to appear at 22
a dilution ratio higher than a certain threshold, and to become more pronounced with higher dilu- 23
tion ratio. This contribution attempts to provide a systematic analysis of the observed phenomenon. 24
Our hypothesis is that the pattern of responses in particular DOT segments is linked to specific 25
metabolic states. The analysis highlights a plausible relationship between a metabolic adaptation 26
behavior and newly observed, and not reported before in literature, DOT signal segment.  The 27
quantitative analysis, and mechanistic model simulations support this hypothesis and show the 28
possibility to obtain key growth parameters from the DOT signal. For our analysis, the estimation 29
of model parameters involved in the overflow switching condition was possible using only DOT 30
signal and biomass samples. 31
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1. Introduction 36

The development cycle of biopharmaceutical processes goes through three stages: in 37
the first stage, the screening and characterization of the organisms take place. Second, the 38
reaction conditions (e.g., medium and process variables) are optimized. In the last stage, 39
the scale up to pilot and production scale takes place [1]. During these phases, a vast num- 40
ber of development cultivations is usually required [2] . 41

High throughput technology (HTP) is widely used today to accelerate process devel- 42
opment [3], [4]. HTP relies on real time monitoring and control, full automation of the 43
systems and reduction of culture volume to achieve that [3].  44

Many HTP platforms with miniaturized bioreactors have been commercialized in the 45
recent decade, [3] provided a nice review on that. The miniaturized bioreactors can be 46
categorized into [5]: I) sub milliliter category: usually called microbioreactors [5], [6], and 47
II) 1–10 milliliter category: usually called minibioreactors [5], [7]. Bioreactors with a vol- 48
ume of more than 10 ml; usually in the range of 10-100 ml are called small-scale bioreactors 49
[5]. 50

Miniaturized stirred bioreactor systems (MSBRs), sometimes simply called (MBRs) 51
[8]–[10], are closely designed after the conventional stirred lab-scale bioreactor systems, 52
and have been developed as an alternative to shake flasks, and microtiter plates 53
(MTPs)[2], [11]. 54

Bioprocesses development for MBR cultivations have been introduced for different 55
organisms such E. coli, S. cerevisiae and Bacillus subtilis [1], [5], [8], [11] 56

E. coli bacterial cell is a suitable candidate for miniaturized systems due to its low 57
susceptibility to shear damage. This allows for higher agitation rates [2]. 58

E. coli cultivations in MBRs usually rely on intermittent bolus feeding strategies with 59 
relatively high frequencies and make use of the automatic pipetting robotic systems to 60
deliver feeding pulses and to obtain at-line and off-line samples.  61

Manual off-line samples are usually very limited or not possible [2] as this might 62
endanger the stability of the cultivation. The reactors have stirring and gassing elements. 63
Stirring is achievable with different techniques such as a mechanical impeller [12] or an 64
inductive system [8]. The temperature is usually regulated by a thermostat and a water- 65
cooling system. Dissolved oxygen and pH are monitored almost in real-time using fluo- 66
rometric optical sensors. 67

Feeding strategy is known to have a strong effect on protein expression in E. coli [1], 68
[13]. A completely continuous feeding strategy in MBRs is hard to realize [1]. 69

On the other hand, intermittent feeding results in drastic changes in the substrate 70
concentration in the medium before, during, and after each feeding pulse. [14] proposed 71
a concept of “hunger” and “starvation” states, and [15] recently proposed a “feast-famine” 72
concept, both depending on substrate availability. Both contributions reported on the 73
changes in the physiological and metabolic responses. [15] showed that the changes hap- 74
pen at the short and long-time scale.   75

Generally, If the substrate pulse injection time is very short, the cell consumes glucose 76
oxidatively at the maximum oxidative capacity, and the excess sugar is metabolized into 77
acetate in the overflow regime [15], [16]. The accumulated acetate can be later consumed 78
oxidatively by the cell. 79

Hence, the intermittent feeding leads to frequent changes in the metabolic states [1], 80
and to transnational oxygen limitation. This can have negative effects on cell physiology 81
and growth [1], [14].  82

The most important process condition for aerobic cultivations in MBRs is the oxygen 83
supply [17]. The insufficient oxygen transfer to the liquid phase to satisfy cell oxygen 84
needs is a known issue for MBRs [5], [18]–[20]. The availability of oxygen in the medium 85
greatly affects the performance of the cells, leading to drastic changes in the cultivation 86
kinetics [21]. For intermittent feeding strategies, each feeding pulse triggers a temporary 87
disturbance in the dissolved oxygen in the medium. This can be a challenging task for the 88
reactor oxygen controlling system.  89
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Further, the low number of possible samples in MBRs limits the chances of effective 90
monitoring and control. 91

E. coli MBRs cultivation dynamics happen on different timescales [15]. Dynamics 92
such as the metabolic changes after a substrate pulse occur in a short timescale range, 93
possibly seconds timescale, while dynamics such as cell growth happens on a longer time- 94
scale, usually hours timescale. Modelling and analysis methods should cover both scales 95
to avoid overlooking possibly important dynamics.   96

Dissolved oxygen tension (DOT) is a commonly obtained online signal in E. coli cul- 97
tivations. It contains important information on cell metabolism. For example, [22], [23] 98
showed the possibility to control the inhibitory by-products production in E. coli by avoid- 99
ing the anaerobic metabolism using information derived from DOT sensors. 100

However, the encoded metabolic activities in the DOT signal are ambiguous, and the 101
signal has high and low frequency details, hence, the separation of the useful characteris- 102
tics from the background noise can be difficult. Also, a combination of sensor time delay 103
and high substrate affinity of E. coli shifts the metabolic activities nonlinearly along the 104
DOT signal [10].  105

DOT signal is influenced by two opposing components [13]: cell oxygen demand de- 106
fined by oxygen uptake rate (OUR) and the oxygen delivery to the medium by reactor 107
aeration and stirring systems defined by the oxygen transfer rate (OTR). If the stirring and 108
aeration parameters are set constant and no control over the dissolved oxygen level in the 109
medium is applied, the OTR component will have a constant trend, and the metabolic 110
activities described by OUR are clearly revealed.  111

Many contributions reported on the response behavior of the DOT signal, and the 112
possible relationship between metabolic activities of E. coli and certain segments of the 113
DOT signal [16], [24]–[28]. E. coli switches almost immediately to the overflow metabolism 114
after adding a substrate to the medium, this is usually associated with drastic decrease in 115
the DOT value. [16] reported on the difference in the slopes of the DOT signal with differ- 116
ent substrate types. Cells have different oxygen demand for glucose and acetate. [16] 117
showed no difference if the acetate is introduced from outside the reactor or if it is pro- 118
duced locally by the overflow metabolism. The return of the DOT signal to the saturation 119
value starts after the end of the metabolic activities. The increase of DOT values happens 120
under the influence of only the OTR component, since the OUR component is zero.  121

In this contribution, an additional DOT response behavior is observed. The response 122
is linked to a segment that appears after the end of the segment that exists after substrate 123
addition. The newly-observed segment remains for a short time. It is recognized by a sig- 124
nificant change in the DOT slope, and it is especially noticed when a large volume of sub- 125
strate is added. 126

Figure 1 shows two examples of DOT pulses in an actual E. coli cultivation in a min- 127
ibioreactor system, in which the following DOT segments can be distinguished: (I) A re- 128
sponse occurs after substrate addition and is associated with a direct decline. (II) A re- 129
sponse occurs after the end of the segment (I) and characterized by a small increase, a 130
flattened curve, or very slow decrease. (III) A response aligned with a decline but with a 131
different slope to the segment (I). (IV) A response aligned with a return to the saturation 132
value.  133
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134
Figure 1. Examples of two DOT pulses from real experimental data. The pulses show different 135

response behavior. Left) DOT pulse with two segments, Right) DOT pulse with 4 segments.  136
137

This contribution presents a systematic experimental study of the DOT signal re- 138
sponse to the intermittent bolus feeding in MBRs for E. coli cultivations. The feeding plans 139
are designed to have a systematic variation in the pulses’ frequency and amplitude. 140

The novelty of the paper lies in the detailed analysis of the DOT signal. The hypoth- 141
eses inferred from the analysis were checked through: I) a quantitative analysis of growth 142
model parameters and a comparison to literature values, and II) mechanistic model sim- 143
ulations. 144

Interestingly, that promotes a hypothesis on the relationship between a metabolic 145
adaptation behavior and the newly-observed DOT segment, not reported before in litera- 146
ture. 147

The proposed analysis and modelling approaches provide means to better under- 148
stand the intermittent bolus feeding effect on E. coli cultivations in MBRs and help to ad- 149
dress oxygen supply issues. 150

The paper is arranged as the following: section 2 demonstrates the experimental 151
setup.  152

Section 3 shows the experimental results and the DOT segmentation and analysis 153
results. The inferred hypotheses, quantitative analysis and mechanistic modelling results 154
are presented in section 4. Discussions on the analysis, hypotheses, modelling results, in- 155
dustrial relevance and future outlook are present in section 5. Finally, the conclusions are 156
summarized in section 6. 157

158

2. Materials and Methods 159

2.1. Minibioreactor system and media 160

A block of eight bioreactors (bioREACTOR8; 2mag AG) equipped with pH and dis- 161
solved oxygen (DO) sensors (Mini‐Bioreactors HTBD LG1‐PSt3‐Hg; PreSens GmbH, Re‐ 162
gensburg, Germany) and fluorescence readers (MCR‐LG1‐v2; PreSens GmbH) were used 163
for the E. coli cultivations. Temperature control and head‐space cooling of the bioreactor 164
blocks achieved by VersaCool™ Refrigerated Circulating Bath (Thermo Fisher Scientific 165
GmbH, Schwerte, Germany). Gassing and mixing of the culture vessels is provided by the 166
gas inducing, and inductive stirring elements. 167

For optical density measurements, an at-line microplate spectrophotometer (SPEC- 168
TRAmax PLUS384; Molecular Devices Corporation, San Jose, USA) was used. For the off‐ 169
line samples, a robotic arm (Robotic Manipulator Arm (RoMa), Tecan Trading AG) is used 170
to transfer the samples to a deep freezer storage unit used to store the samples before the 171
HPLC analysis. Glucose and ethanol concentrations of the filtered supernatant were 172
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analyzed by HPLC (Thermo Fischer, USA) with a Supelco gel C-610 H ion exchange column 173
(Sigma-Aldrich, USA) and a refractive index detector (Thermo Fischer, USA). The mobile 174
phase was 0.1 % H3PO4 with a constant flow rate of 0.5 ml/min at a temperature of 4 °C. 175
The average sample volume was 300 [𝜇𝐿]. The headspace of the bioreactors blocks was 176
cooled to 4 °C to reduce the evaporation. 177

Experimental runs were conducted with E. coli BL21 strain, a strain that can normally 178
oxidize glucose in the overflow metabolism.  179

180

2.2. Experimental design 181

To calibrate the lower limit of the DO sensors at 0 [%], all reactors were gassed with 182
250 [𝑚𝐿ℎ−1] nitrogen for 20 min and the stirring speed was set to 2800 [rpm]. To calibrate 183
the upper limit of the DO sensors at 100 [%], all reactors were gassed with 250 [𝑚𝐿ℎ−1] 184
air for 20 min. 185

After calibration, the stirring speed is set to 1900 [rpm], and the gassing was set to 186
62.5 [𝑚𝐿ℎ−1] air for the batch phase, and then the stirrer speed increased to 2800 [rpm] 187
when glucose pulses are added. The pH is controlled at 6.8. The dissolved oxygen was 188
intentionally uncontrolled. 189

Each experimental run initiated with 8 [ml] of medium and 5.7 [𝑚𝑔.𝑚𝐿−1] of dry 190
cell weight. The batch phase lasted for almost 13 hours. After that, the fed-batch started 191
with high frequent glucose pulses. The concentration of the fed glucose was 600 192[𝑚𝑔. 𝑚𝐿−1]. For two hours at the beginning of the fed-batch a ramp in the pH from 6.8 to 193
7.2 was considered to facilitate the induction of the culture. After these two hours the 194
culture is induced with IPTG (76 [𝜇𝐿]). This time window is neglected in the contribution 195
to avoid the dependency of cell metabolism on pH changes. The analysis time window of 196
interest starts after 15 hours and ends by the end of the cultivation during which all pro- 197
cess variables except feeding are kept constant.  198

The increasing feeding plan for all reactors is shown in Table 1. The feeding plan is 199
designed so that injected substrate volumes and frequency results in full consumption of 200
the substrate in between pulses, so no substrate accumulation in between pulses can be 201
assumed. The reference feeding plan [8] meant to deliver a 78 [𝜇𝐿. ℎ−1] of glucose on av- 202
erage to the medium. This is in principle supposed to be achieved by glucose pulses with 203
fixed amplitude and frequency. However, as the pulses are entirely controlled by the re- 204
actor system software, the amplitude and the interval of the pulses can deviate due to 205
conflicts with other internally scheduled tasks like sampling or pH titration. More on the 206
experimental setup and reference feeding plan can be found in [8]. A picture of the system 207
and setup is shown in Figure 2. 208

Table 1. Intermittent bolus feeding plan for each experimental run. The reference feeding plan 209
meant to deliver a 78 [𝜇𝐿. ℎ−1] of glucose on average to the medium. For all runs, the feeding con- 210
centration was 600 [𝑚𝑔.𝑚𝐿−1]. 211

Reactor 
Nr. 

Total feeding volume com-
pared to the reference plan 

[%] 

Individual Feed-
ing pulse volume [𝝁𝑳] Feeding pulses 

time interval [𝒎𝒊𝒏] Average dilution ra-
tio per feeding pulse [𝝁𝑳/𝒎𝑳] 

A 25% 5 30 0.625 
B 50% 5.5 20 0.688 
C 75% 6.5 12 0.813 
D 100% 6.5 9 0.813 
E 100% 6.5 9 0.813 
F 125% 8.5 9 1.063 
G 150% 6 4 0.750 
H 175% 7.5 4 0.938 

212
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 213 

 214 
Figure 2. The used minibioreactor system (bioREACTOR8; 2mag AG), and the experimental setup (Boehringer Ingelheim RCV 215 
GmbH & Co KG). 216 

2.3. Computing platform  217 
The analysis computations were carried out in MATLAB R2022a. “ODE suite”, mainly 218 

ODE15s solver, is used to solve the mechanistic model. 219 
 220 
 221 

3. Experimental results and signal analysis  222 

3.1. Experimental runs results  223 
Figure 3 shows the DOT signal and feeding pulses for the eight experimental runs. 224 

The DOT pulses seem consistent for all runs. For each feeding pulse a DOT pulse is pro- 225 
duced. Despite some deviations, in general the glucose feeding pulses seem to be equidis- 226 
tant with similar amplitudes for each individual run.  227 

The visual inspection reveals that DOT pulses frequency increases with the increas- 228 
ing feeding pulses frequency. The amplitude of the DOT signal also seems to be correlated 229 
with the amount of the glucose added at each pulse. For runs (D, E,..H), the upper and 230 
lower boundaries of the DOT signal drift downward towards the end of the runs. This 231 
trend became more pronounced in the experimental runs with the largest feeding vol- 232 
umes, mostly runs G and H.  233 

A closer look on the individual DOT pulses reveals that some pulses have a different 234 
profile to the others. These pulses don’t only show two segments: a straight decline and 235 
then an increase to the saturation value (as commonly described in literature), rather they 236 
show four segments: first a partial decline followed by a small increase, flattened curve or 237 
very slow decrease and then another decline, after that, a return to the saturation value 238 
follows. Both types of pulses are observed in all runs. 239 
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240

241
Figure 3. DOT signals and intermittent feeding pulses of all experimental runs. 242

The biomass, glucose and acetate samples values are shown in appendix B - Figure 243
12. The volume changes are shown in appendix B - Figure 13. Biomass samples indicate 244
an increasing biomass growth with more feeding. On the other side, the measured acetate 245
and glucose concentrations are very low and barely measurable. Generally, the acetate 246
and glucose concentrations are always less than 1 [mg/ml] for the whole time of the culti- 247
vations. The limited reactors working volumes prevented acquiring more samples. 248

249
250

3.2. DOT signal analysis 251
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Each DOT pulse is assumed to have possibly but not necessarily four segments, each 252 
segment represents a unique response behavior similar to the responses shown in Figure 253 
1. This assumption is made based on the literature observations (see the introduction sec- 254 
tion) and an additional response observed by the authors. For the sake of the analysis, a 255 
segmentation algorithm (described in detail in appendix 7.1) is built to detect the seg- 256 
ments. 257 

Segment metrics (descriptive features) are extracted for each segment. The possible 258 
relationships between the metrics on one hand and process analytics of: feeding volume, 259 
reactor volume, dilution ratio, glucose concentration, acetate concentration and biomass 260 
concentration on the other hand are inspected visually and analyzed by regression analy- 261 
sis to detect any interesting patterns. Only data with a clear and a meaningful pattern are 262 
shown and discussed in the results and discussions sections Figure 4 shows an illustration 263 
of the possible segments of a DOT pulse and the related metrics.  264 

 265 

 266 
Figure 4. DOT signal segments and relevant extractable metrics. Each DOT pulse is assumed to 267 

have possibly but not necessarily four segments.  268 

The following metrics are defined for each segment 𝑖: 269 
 270 

A. Segment time length: is defined as  271 Δ𝑇𝑖 = 𝑡𝑖𝑒𝑛𝑑 − 𝑡𝑖𝑠𝑡𝑎𝑟𝑡  (1) 

 272 
B. Segment slope: is defined as  273 Δ𝐷𝑂𝑇𝑖Δ𝑇𝑖 = 𝐷𝑂𝑇𝑖𝑒𝑛𝑑 −  𝐷𝑂𝑇𝑖𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑒𝑛𝑑 − 𝑡𝑖𝑠𝑡𝑎𝑟𝑡  

 
(2) 

C. Segment area: the area of DOT curve  274 

∫ 𝐷𝑂𝑇𝑖 . 𝑑𝑡𝑡𝑒𝑛𝑑
𝑡𝑠𝑡𝑎𝑟𝑡

 (3) 

 275 
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Similarly, the area of the OTR is calculated, once the 𝐾𝐿𝑎  value is known, as 276∫ 𝑂𝑇𝑅𝑖 . 𝑑𝑡𝑡𝑒𝑛𝑑𝑡𝑠𝑡𝑎𝑟𝑡 .  277

278
Table 2 shows the metrics of the segments. (X) refers to the presented results. Rest of 279

the metrics did not result in meaningful patterns for the current data.  280
281
282

Table 2. Signal analysis metrics of each DOT pulse, (X) refers to the presented combinations. 283

Segments 
# Metric / Segment 1st segment 2nd segment 3rd segment 4th segment All segments 
A Time length x x 
B Slope x x x x 
C Area x 

284
285

Segmentation results 286
The segmentation results are shown exemplarily for one experimental run (reactor 287

E) in Figure 5. The top subfigure shows the DOT raw (interpolated) signal. The subplots 288
below show the segmentation results for each individual pulse. It can be noticed that 289
pulses with 4 segments are generally aligned with feeding pulses with high amplitude. 290

291
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 292 

 293 
Figure 5. Top) measured DOT signal for reactor E. Bottom) the results of the segmentation algorithm. X axis represents the 294 

pulse time in seconds [s]. 295 
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Metric A: segment’s time length  296 
Figure 6 shows the time length of the 2nd segment for all experimental runs along the 297 

time course of the cultivations. The time length seems to be high, for all runs, at the begin- 298 
ning, and lower towards the end of the cultivation. The 2nd segment doesn’t appear for all 299 
glucose pulses. The mean of the reported values is 31 seconds, with a range of 6.5-55.5 300 
seconds for ±2 standard deviations. 301 

 302 

 303 

Figure 6. 2nd segment time length for all experimental runs along the cultivations time course.  304 

Figure 7 shows the 3rd segment time length against the dilution ratio, biomass con- 305 
centration and dilution per biomass unit. The points in the middle and right subplots are 306 
calculated in the neighborhood of biomass samples where the biomass concentration 307 
change can be neglectable. 308 

The figure shows almost no correlation between 3rd segment time length and dilution 309 
ratio, and a weak relationship with biomass. This is because the effect of biomass and 310 
dilution ratio are alternately overlooked from many points in both figures. For example, 311 
a high dilution ratio with a large biomass concentration results in the same time length of 312 
a low dilution ratio with a low biomass concentration. However, there seems to be a cor- 313 
relation with the dilution ratio per biomass unit. 314 

 315 

Figure 7. Time length of the 3rd segment against dilution ratio, biomass concentration and dilution ratio per biomass concentration. 316 

Metrics B: slope of the segments 317 
The analysis of the slopes of the detected segments is shown in Figure 8. All seg- 318 

ments’ slopes appear to have a relatively similar and constant trend in all runs. The slopes 319 
of the 1st and 3rd segments show negative values with a visible difference between them. 320 
The slope of the 4th segment is always positive. For the 2nd segment, positive values are 321 
detected at the beginning of the runs, then the values become lower, closer to zero or 322 
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slightly negative. Again, the 2nd and 3rd segments don’t appear for all glucose pulses. The 323
slopes of 1st, 3rd and 4th segments drift slightly towards the end of the cultivations. 324

325

326

Figure 8. Slope analysis of the 1st, 2nd, 3rd, and 4th segments of all experimental runs. The slopes of the segments tend to be 327

relatively constant along the time course of each cultivation. The 2nd and 3rd segments don’t appear for each DOT pulse. 328

329
Metric C: The area of the pulse 330

Figure 9 shows the results of the analysis of the DOT individual pulses area plotted 331
against the biomass concentration and the dilution ratio. Both figures suggest a possible 332
correlation between the area of the DOT pulse with both the dilution ratio and the biomass 333
concentration. The results on the right figure are plotted only in the neighborhood of bio- 334
mass samples, where the biomass concentration change can be negotiable. 335

336
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 337 
Figure 9.  The analysis of the individual DOT pulses areas plotted against the dilution ratio (left) and biomass concentration 338 

(right). 339 

 340 

4. Mechanistic modelling and model-based analysis  341 

4.1. Model-based analysis of the segments  342 
4.1.1. Model hypothesis  343 

From the visual inspection of the figures in section 3.2 ,the following hypotheses on 344 
the segments are made: 345 

1. 1st segment: starts after the addition of the glucose to the medium with a short 346 
delay of roughly 2-4 [s]. The slope of this segment is always negative and smaller 347 
than the 3rd segment slope. Cells in this segment oxidize glucose (for the whole or 348 
most of the time window) in the overflow regime. Expectedly, the amount of ac- 349 
cumulated acetate in the medium depends on the volume of the glucose added.   350 

2. 2nd segment: the length and the slope of this segment differs between the experi- 351 
ments and along each experiment. This segment can be noticed as: an increase to 352 
higher DOT value, a flat, or a very slow decrease of the DOT signal, which indi- 353 
cates a transition phase from the 1st segment to the 3rd segment. The 2nd segment 354 
appears at dilution ratio higher than a certain threshold. 355 

3. 3rd segment: starts after the end of the 2nd segment. The slope is always negative 356 
but less steep than the 1st segment slope. Cells are assumed to oxidize the accumu- 357 
lated acetate from the 1st segment.  358 

4. 4th segment: starts when the DOT pulse reaches the minimal value, and ends when 359 
DOT reaches its starting point. This segment features a return to higher DOT val- 360 
ues, mostly but not necessarily to the saturation value. The metabolism in the 361 
whole 4th segment is assumed to be inactive. 362 

 363 
4.1.2. Quantitative Analysis  364 

Figure 10 shows a proposed workflow to extract model parameters using metrics and 365 
segments information defined in section 3.2 and the model hypothesis in section 4.1.1. 366 

 367 
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 368 
Figure 10.  Parameter estimation workflow using DOT signal segmentation. The workflow can estimate the overflow condition 369 
parameters in E. coli using biomass samples, given the feeding and reactor working volumes are known. 370 

 371 
To account for sensor delay in the signal, the actual dissolved oxygen signal 𝐷𝑂𝑇 can be 372 
obtained from the measured dissolved oxygen signal 𝐷𝑂𝑇𝑚, following:   373 

 𝐷𝑂𝑇 =  𝜏 ∙ 𝑑𝐷𝑂𝑇𝑚𝑑𝑡  +  𝐷𝑂𝑇𝑚 
(4) 

𝐾𝐿𝑎value is calculated by the help of the segments time length using equation (5):  374 

 

𝐾𝐿𝑎 = − log (𝐷𝑂𝑇∗ − 𝐷𝑂𝑇𝑒𝑛𝑑𝐷𝑂𝑇∗ − 𝐷𝑂𝑇𝑚𝑖𝑛)Δ𝑇4    
 

(5) 

The segments slopes can give information on the actual specific glucose uptake rate 375 𝑞𝑠 (𝑜𝑥). 376 
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In the first segment, the cell is assumed to consume glucose in the overflow regime, there- 377 
fore  𝑞𝑠 (𝑜𝑥) = q𝑠(𝑜𝑥)𝑚𝑎𝑥 = 𝑞𝑂2𝑌𝑂2/𝑠. 378

In the third segment, the cell is assumed to oxidate only acetate where  𝑞𝐴 (𝑜𝑥) = q𝐴(𝑜𝑥)𝑚𝑎𝑥 = 379𝑞𝑂2𝑌𝑂2/𝐴. 380

In the 1st segment, the specific oxygen uptake rate 𝑞𝑂2 for a DOT pulse in the neighbor- 381

hood of a biomass sample with a concentration 𝐶𝑥 is calculated following the equation 382 
(6): 383 

𝑞𝑂2 = 𝑑𝐷𝑂𝑇𝑑𝑡 |[∆𝑇1] + (𝐷𝑂𝑇∗ − 𝐷𝑂𝑇1𝑒𝑛𝑑) ⋅ 𝐾𝐿𝑎𝐻 ⋅ 𝐶𝑥 (6) 

Where 𝐻 is Henry derived constant. 𝑞𝑂2 can be similarly calculated from the 3rd 384

segment. 385
Model parameter 𝑞𝑂2𝑚𝑎𝑥 can be calculated, under the assumption that the instantaneous 386
glucose addition causes a maximum oxygen uptake rate, at least at the beginning, simply 387
as  𝑞𝑂2𝑚𝑎𝑥 =  𝑀𝐴𝑋(𝑞𝑂2). 388

The previous assumption holds true for the 3rd segment, only if the accumulated acetate 389
concentration is high enough to cause maximal uptake in the cell. Therefore, it is better to 390
calculate 𝑞𝑂2𝑚𝑎𝑥 using the 1st segment. 391

392
The amount of oxygen needed to oxidize a certain amount of glucose, is determined by 393
the stoichiometric yield coefficient 𝑌𝑂2/S . This value can be either calculated from the 394
stoichiometric matrix or estimated empirically as a model parameter. However, in a DOT 395
pulse with only 1st and 4th segments and an equal start and end values, the amount of 396
oxygen delivered to the cell is known 𝑂2  𝑚𝑎𝑠𝑠  [𝑚𝑔(𝑂2)] =  𝑉 ⋅ ∫ 𝑂𝑈𝑅 . 𝑑𝑡 =  𝑉 ⋅ 397∫ 𝑂𝑇𝑅 . 𝑑𝑡  =  𝑉 ⋅  ∫(𝐷𝑂𝑇∗ − 𝐷𝑂𝑇) ⋅ 𝐾𝐿𝑎 ⋅ 𝑑𝑡. The amount of glucose delivered to the cell 398
during this time window is known, therefore the yield can be calculated by the help of the 399
segments area, as the equation (7) reads: 400

𝑌𝑂2/S = 𝑉 ⋅  ∫ (𝐷𝑂𝑇∗ − 𝐷𝑂𝑇) ⋅ 𝐾𝐿𝑎 ⋅ 𝑑𝑡𝑡𝑒𝑛𝑑𝑡𝑠𝑡𝑎𝑟𝑡 𝐹𝑠  ⋅  𝐶𝑠,𝑖𝑛  (7) 

Where 𝑉 is reactor working volume, 𝐾𝐿𝑎is the estimated value from eq. (5). 401
Similarly, the amount of oxygen needed to oxidize a certain amount of acetate, is deter- 402
mined usually by the stoichiometric yield coefficient 𝑌𝑂2/A. The amount of accumulated 403
acetate can be determined by knowing the glucose flux that exceeds the maximum oxida- 404
tive capacity. This can be written as: 𝐴𝑐𝑒𝑡𝑎𝑡𝑒 𝑚𝑎𝑠𝑠  [𝑚𝑔(𝐴)] =  (𝐹𝑠  ⋅  𝐶𝑠,𝑖𝑛 − ∫𝑞𝑠 (𝑜𝑥)𝑚𝑎𝑥 ⋅ 𝑑𝑡  ⋅ 405𝐶𝑥) ⋅  𝑌𝐴/𝑆.  406

The amount of oxygen that goes to oxidize acetate can be extracted by integrating the 407
oxygen uptake rate along the 3rd segment and substituting for the DOT difference between 408𝑡3𝑠𝑡𝑎𝑟𝑡  and 𝑡3𝑒𝑛𝑑 . This can be easily calculated by extrapolating DOT from 𝑡3𝑒𝑛𝑑  to 𝑡3𝑒𝑛𝑑̀ 409
where the DOT value equals DOT value at 𝑡3𝑠𝑡𝑎𝑟𝑡 .  The yield can be therefore written, by 410
the help of the 1st and 3rd segments areas, as: 411

𝑌𝑂2/A  =  𝑉 ⋅  (∫ (𝐷𝑂𝑇∗ − 𝐷𝑂𝑇)) ⋅ 𝐾𝐿𝑎𝑡3𝑒𝑛𝑑̀𝑡3𝑠𝑡𝑎𝑟𝑡 ⋅ 𝑑𝑡(𝐹𝑠  ⋅  𝐶𝑠,𝑖𝑛 − ∫ 𝑞𝑠 (𝑜𝑥)𝑚𝑎𝑥𝑡1𝑒𝑛𝑑𝑡1𝑠𝑡𝑎𝑟𝑡 ⋅ 𝑑𝑡  ⋅ 𝐶𝑥) ⋅  𝑌𝐴/𝑆 (8)
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The results of the parameters estimation workflow and relevant values are listed in 412 
Table 3. 413

414

Table 3. Estimated parameters and relevant values. 415

Estimated parameters Estimated relevant values 

Reactor 
Nr. 

𝑲𝑳𝒂 𝒒𝑶𝟐𝒎𝒂𝒙 𝒀𝑶𝟐/𝐒 𝒀𝑶𝟐/𝐀 𝑶𝑼𝑹 𝒒𝒐 [%] [𝒈.𝒈−𝟏 . 𝒉−𝟏] [𝒈.𝒈−𝟏] [𝒈. 𝒈−𝟏] [𝒈. 𝑳−𝟏. 𝒉−𝟏] [𝒈.𝒈−𝟏. 𝒉−𝟏] −𝝈 +𝝈 −𝝈 +𝝈 −𝝈 +𝝈 −𝝈 +𝝈 −𝝈 +𝝈 −𝝈 +𝝈
A 180 250 0.09 0.10 0.05 0.08 0.07 0.15 0.5 0.6 0.05 0.12 

B 200 250 0.10 0.15 0.05 0.07 0.07 0.15 0.6 0.8 0.07 0.15 

C 220 320 0.10 0.20 0.06 0.09 0.11 0.25 1.0 2.0 0.10 0.20 

D 200 300 0.10 0.20 0.05 0.1 0.10 0.21 1.0 2.0 0.07 0.20 

E 200 330 0.09 0.23 0.05 0.1 0.09 0.20 1.0 2.0 0.07 0.20 

F 190 220 0.08 0.15 0.05 0.1 0.10 0.20 1.0 1.7 0.05 0.15 

G 180 250 0.08 0.15 0.06 0.11 0.10 0.20 1.0 3.0 0.05 0.15 

H 160 185 0.06 0.14 0.05 0.08 0.08 0.19 1.0 2.0 0.04 0.12 
416
417

4.2. Combined modelling of DOT response behavior 418

The discrete growth model of [29] is considered. The metabolic switches between the 419
metabolic states are implemented using the Event Driven Method (EDM) similar to [30]. 420
This approach seeks an accurate location of the metabolic events, distinctly different from 421
other approaches focusing on formulating a continuous metabolic transition, e.g., [31]. A 422
discontinuous (piecewise) modeling approach to incorporate metabolic switches and 423
states can help to acquire accurate results [30], especially when the changes happen in a 424
short timescale.  425

The actual dissolved oxygen signal (𝐷𝑂𝑇) is measured with a first order delay 𝜏 = 42636[𝑠] caused by the response time of the sensor, therefore an additional equation for the 427
measured dissolved oxygen signal (𝐷𝑂𝑇𝑚) is also considered, the actual dissolved oxygen 428
equation reads:  429

430

𝑑𝐷𝑂𝑇𝑑𝑡 = 𝑂𝑈𝑅 − 𝑂𝑇𝑅 = (𝐷𝑂𝑇∗ − 𝐷𝑂𝑇).𝐾𝐿𝑎 − (𝑌𝑂2/S. 𝑞𝑠 (𝑜𝑥) + 𝑌𝑂2/A. 𝑞𝐴 (𝑜𝑥)).𝐻. 𝐶𝑥 (9) 

431
After considering the probe response time, the measured dissolved oxygen reads: 432𝑑𝐷𝑂𝑇𝑚𝑑𝑡 = 𝜏 . (𝐷𝑂𝑇 − 𝐷𝑂𝑇𝑚) (10) 

433
More on the model and the nomenclature is found appendix 0. 434

Following the hypotheses made in section 4.1.1. The following submodels are con- 435
sidered: 436

I. Submodel I: Overflow metabolism: the cells consume glucose at the maximum 437 
oxidative uptake rate. The excess glucose goes to form acetate. This state is 438
active during the 1st segment. 439
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II. Submodel II: Adaptation state: in which the metabolism is paused or attenu- 440 
ated. This state is active always after the end of the overflow metabolism 441 
(submodel I) when the acetate accumulation exceeds a certain threshold (as- 442 
sumed to be 0.1 [mg/ml], similar to the literature values [16], [32]). The length 443 
of this state is linked to the concentration of the accumulated acetate. This 444 
state is only active for the time window of the 2nd segment. 445 

III. Submodel III: Acetate oxidation: the acetate is exclusively oxidized. This state 446 
is active during the 3rd segment. 447 

IV. Submodel IV: Static state: no active metabolic activities. This state is active the 448 
whole time except when there is a glucose pulse. It is also active during the 449 
4th segment. 450 

 451 
Adaptation state as a model extension 452 

 453 
The time length ∆𝑡 of the adaptation state is influenced by the concentration of ace- 454 

tate, therefore it is proposed to be defined as ∆𝑡 = 𝑡𝑎𝑑𝑎𝑝𝑚𝑎𝑥 ( − 𝐶𝐴𝑚𝑎𝑥− 𝐶𝐴𝐶𝐴𝑚𝑎𝑥  ). 𝐶𝐴𝑚𝑎𝑥 is the max- 455 

imum acetate concentration observed in the medium, 𝑡𝑎𝑑𝑎𝑝𝑚𝑎𝑥 is the maximum adaptation 456 
time observed in the analysis. These values can be empirically identified.  In the adapta- 457 
tion state, all model rates 𝑞  including 𝑞𝐴 (𝑜𝑥) and 𝑞𝑠 (𝑜𝑥)  are set to reduced values 458 𝑞𝑎𝑑𝑎𝑝 by a reduction factor 𝑅(𝑡). A reduction factor of 𝑅(𝑡) =  00% means the cell stops 459 
fully to uptake the substrates. For this contribution a complete reduction of metabolic ac- 460 
tivities is assumed. Model rates then can be written as: 461 𝑞𝑎𝑑𝑎𝑝 = 𝑞 ∙ 𝑅(𝑡) 

 (11) 

The biomass change during this short time window can be negligible. The relevant 462 
model parameters are taken from the analysis results made earlier in Table 3 (for reactor 463 
E), rest of the model parameters are listed in appendix 0.  464 

The simulation results in Figure 11 are shown for three increasing glucose pulse vol- 465 
umes (4, 6 and 8 [𝜇𝐿]). The simulation results show that when the adaptation state (eq. 466 
(11)) is considered in the model, DOT pulses exhibit a response behavior similar to the 467 
pulses reported in Figure 5. These DOT pulses show four segments: a decline, a small 468 
increase, then another decline with a different slope, and finally a return to the saturation 469 
value. The simulated 2nd and 3rd segments emerge when the glucose pulse volume exceeds 470 
the defined threshold. The length and depth of the 2nd segment is related to the added 471 
glucose volume. A glucose pulse under the defined threshold results in a DOT pulse with 472 
two segments: a straight decline followed by return to the saturation value.  473 

 474 
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475

Figure 11.  Mechanistic model simulations of a DOT pulse after adding one glucose feeding pulse per time. The relevant pa- 476

rameters of the simulation are calculated from DOT signal analysis in section 4.1.2 and shown in Table 3 (experimental run E). 477

Second row shows the active submodel: I) overflow metabolism, II) adaptation state: metabolism is paused, III) acetate oxida- 478

tion, and IV) static: no active substrate metabolism.  The three columns show different feeding pulses. Middle and right col- 479

umns show how feeding pulses exceeding a certain threshold triggers an adaptation state in the cell. The adaptation state can 480

be observed by the existence of the 2nd segment in the DOT signal. 481

5. Discussion 482

5.1. Hypothesis verification & quantitative analysis 483

The analysis hypothesis on the relationships between the metabolic activities and 484
DOT signal segments is supported by the results of the quantitative analysis and the 485
mechanistic model simulations. Additionally, the following observations can be noticed:  486

I. 1st segment: the observed delay time (2-4 [s]), after which the cell starts to 487 
actively metabolize glucose seems within the range of 𝜏4 reported by [24]. 488
The authors referred to this delay as “Light-off phenomenon”. The assump- 489
tion about cell metabolizing the glucose in the overflow metabolism is 490
aligned with literature findings [15], [16]. Since the pulse injection time is 491
very short (around 1 [s]), a sudden increase in glucose concentration in the 492
medium is expected. This triggers the overflow metabolism. The relatively 493
low 𝑞𝑂2𝑚𝑎𝑥 in Table 3 supports this assumption. 494

II. 2nd segment: the change of the slope of this segment seems to be correlated 495 
with the amount of accumulated acetate. This segment appears only after a 496
certain dilution ratio threshold as exemplarily shown in Figure 5. 497
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III. 3rd segment: this segment appears only after the 2nd segment. Figure 7 shows 498 
a likely positive correlation between the segment length and the dilution ra- 499
tio per biomass unit. A plausible explanation is that with a high enough di- 500
lution ratio per biomass concentration, the acetate production under the 501
overflow metabolism in the 1st segment is triggered. In the 3rd segment, the 502
cells consume the accumulated acetate. The time needed for that is correlated 503
with the amount of acetate produced, and by that, the time length is corre- 504
lated with dilution ratio per biomass unit. 505
Figure 12 shows no acetate accumulations in the neighborhood of the DOT 506
pulses. This further supports the notion of transient production of acetate in 507
the 1st segment, and the transient and full consumption of acetate in the 3rd 508
segment. Additionally, for this segment, it is assumed to be negligible to no 509
glucose concentration in the medium for this time window. Figure 12 shows 510
no considerable glucose concentration at all for all runs. However, due to the 511
sparsity and lack of enough glucose and acetate samples, this can’t be thor‐ 512
oughly verified. 513

IV. 4th segment: the assumption on inactive metabolism in this segment matches 514
literature findings. 515

516

The pulse area analysis in Figure 9 shows relatively linear trends, suggesting a pos- 517
sible relationship with two factors: the amount of glucose added to the medium and the 518
biomass concentration. The exact relationship between the areas and these factors is hard 519
to be estimated due to the low number of biomass samples. The area of the pulses is di- 520
rectly linked to the amount of oxygen deposited in the medium along the time span of the 521
DOT pulse. Equation (7) shows one possible mathematical description of this observation. 522
The absolute amount of glucose added is known, and the absolute amount of oxygen con- 523
sumed per unit of biomass concentration can be calculated by integrating the oxygen up- 524
take rate (OUR) over the time window of the pulse, hence, the cell oxygen to glucose yield 525𝑌𝑂2/S can be calculated. Once 𝑌𝑂2/S is calculated, oxygen to acetate yield 𝑌𝑂2/A can be also 526
calculated by the help of glucose to acetate yield 𝑌𝐴/𝑆 as described in the equation (8). 527

528
The results in section 4.1.2 shows systematic steps to quantitatively assess model pa- 529

rameters and relevant terms. Table 3 shows the extracted values, and Table 4 shows the 530
corresponding literature values. 531

532

533

Table 4. Literature values of the volumetric mass transfer coefficient 𝐾𝐿𝑎, oxygen uptake rate 𝑂𝑈𝑅, oxygen specific uptake rate 534𝑞𝑜 , and the working volume 𝑉 for E. coli cultivations for MBRs systems. 535

# 𝑲𝑳𝒂 𝑶𝑼𝑹 𝒒𝒐 𝑽 Notes Literature [𝒉−𝟏] [𝒈. 𝑳−𝟏. 𝒉−𝟏] [𝒈.𝒈−𝟏. 𝒉−𝟏] [𝒎𝑳] 
1 20-75 - - 0.15 Impeller speed up to 200-800 [𝑟𝑝𝑚], OD 

(600 nm) up to 6  [−] [33], [34] 

2 58-90 ~0.5 - 1 Dry cell weight up to 0.33 [𝑔. 𝐿−1] [18] 

3 90-400 - - 6 Impeller speed 1300-1850 [𝑟𝑝𝑚], dry 
cell weight up to 1.8 [𝑔. 𝐿−1] [35] 

4 400-1440 - - 10 Impeller speed up to 2800 or 4000 [𝑟𝑝𝑚], dry cell weight up to 16.5 [𝑔. 𝐿−1] [7] 

5 180-720 1-3.6 0.3-0.5 8-12 Impeller speed 1080-2400 [𝑟𝑝𝑚], dry 
cell weight up to 20.5 [𝑔. 𝐿−1] [17]
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6 Up to 
1440 - - 8-14 Impeller speed 3000 [𝑟𝑝𝑚], dry cell 

weight up to 13 [𝑔. 𝐿−1] [19] 

7 216-396 - - 10-
100 

Impeller speed up to 100-7000 [𝑟𝑝𝑚],dry cell weight up to 10 [𝑔. 𝐿−1] [36], [37] 

536
The value of 𝑂𝑈𝑅, and 𝐾𝐿𝑎 seem comparable to literature values of experiments with 537

similar volume and biomass concentration. 𝑞𝑜  the oxygen specific uptake rate value 538
seems slightly lower than the value reported by [17].  539

The yields 𝑌𝑂2/S and 𝑌𝑂2/A values seem to be lower than the values reported in lit- 540
erature. [16] reported values of almost 1 [𝑔. 𝑔−1] for both yields. [31] reported yields of 541
1.56 and 0.54 [𝑔. 𝑔−1] and later they reported yields of 1.08 and 1.2 [𝑔. 𝑔−1] for 𝑌𝑂2/S and 542𝑌𝑂2/A consecutively [38]. The first two contributions show modelling results for a lab scale 543
reactor and the last one show reported results for minibioreactor scale. However, these 544
contributions did not report on the corresponding 𝐾𝐿𝑎 value.  545

A common challenge when estimating model parameters is to find 𝐾𝐿𝑎 value that 546
helps to set the delicate balance between the two components of DOT signal: the oxygen 547
uptake rate and oxygen transfer rate. These components are mainly influenced by the val- 548
ues of the parameters 𝐾𝐿𝑎 on one side and 𝑌𝑂2/S and 𝑌𝑂2/A on the other side (given 𝑞𝑂2𝑚𝑎𝑥 549
is estimated and has a fixed value). The positive correlation between the parameters 550
means that high yields coefficients values imply high 𝐾𝐿𝑎 value and vice versa.  There- 551
fore, high 𝐾𝐿𝑎 is expected for the previous contributions.  552

The proposed DOT analysis can be of great importance to achieve simultaneous es- 553
timation of the 𝑌𝑂2/S, 𝑌𝑂2/A and 𝐾𝐿𝑎. According to the author’s knowledge, this is not pre‐ 554
sented before in literature for minibioreactor systems.  555

By estimating the parameters  𝑞𝑂2𝑚𝑎𝑥 and 𝑌𝑂2/S , the overflow switching condition 556q𝑠(𝑜𝑥) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  = 𝑞𝑂2𝑌𝑂2/𝑠 is identified. The oxygen affinity constant 𝐾𝑂 appears to be an insensi- 557

tive parameter in our analysis. 558
The slope of the 4th segment is directly linked to the volumetric mass transfer coeffi- 559

cient 𝐾𝐿𝑎. Almost constant values of the 4th slope can be seen for all runs in Figure 8, indi- 560
cating a an almost constant 𝐾𝐿𝑎 value along the time course of each run. However, a com- 561
parison of the slope of the 4th segment between the runs, shows a positive drift with more 562
feeding. The relevant process variables, like stirring speed and aeration rate are kept con- 563
stants for all experimental runs in the analyzed time window. Therefore, the drift perhaps 564
is only linked to the changes in the characteristics of the medium. With more feeding, 565
viscosity of the medium changes mainly because of higher biomass concentration.  566

The hypothesis on the relationship between the 4th segment slope and 𝐾𝐿𝑎 is sup- 567
ported by the quantitative analysis results in Table 3 which show relatively comparable 568𝐾𝐿𝑎 values that match literature findings in Table 4.  569

Further, the mechanistic model simulation results of DOT in section 4.2 which uses 570𝐾𝐿𝑎 values reported in Table 3 supports the hypothesis. 571
It is interesting to witness that highest estimated 𝐾𝐿𝑎 values in Table 3 are reported 572

for runs D and E. These runs are duplicates of the standard feeding plan reported in [8]. 573
Higher feeding plans (i.e., runs F, G and H) seems to result in higher viscosity, resulting 574
in lower delivery of oxygen from the gas to the liquid. Lower feeding plans (i.e., runs A, 575
B and C) seems to result in lower working volume, which might affect the oxygen transfer 576
rate delivery negatively.  577

The slopes of the 1st and 3rd segments in Figure 8 also have consistent values within 578
each run, but slightly drifted values in between the runs. This can be explained by the 579
changes in the uptake rates in the new cell generations caused by the intermittent feeding 580
[15]. The slopes of these segments can be linked directly to the oxygen uptake rate 𝑞𝑂2. 581

However, given an almost instantaneous addition of the substrate, a maximum and con- 582
stant value of the oxygen uptake rate is expected for most of the time windows of the 1st 583
segment. For the 3rd segment, a similarly constant value of 𝑞𝑂2 is probable if enough 584
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acetate accumulates. If that’s the case, then the difference in the slopes of the 1st and 3rd 585
segments can be explained by the difference in the oxygen to glucose yield 𝑌𝑂2/S and ox- 586
ygen to acetate yield 𝑌𝑂2/A. However, the lack of enough acetate samples hinders checking 587
this hypothesis, but the quantitative analysis provided in section 4.1.2, does suggest a dif- 588
ference in the values of the 𝑌𝑂2/S and 𝑌𝑂2/A. 589

The 2nd segment slope, in all experimental runs, starts with positive values for the 590
first few hours, then becomes close to zero, and in some instances slightly negative. This 591
indicates an increasing, almost flat, and slowly decreasing changes in the DOT signal con- 592
secutively. The range of slope changes in which the 2nd segment is captured is defined by 593
the segmentation algorithm, in which tuning parameters are dynamically estimated when 594
the algorithm is trained, see appendix 7.1 for details. Biomass concentration (not visible 595
in Figure 12) and the working volume of all reactors have similar values at the beginning 596
of the analyzed time window, therefore the high slope values in the first couple of hours 597
can be explained exclusively by the large feeding pulses. A visual inspection Figure 5 re- 598
veals that the 2nd segment existence is usually linked to feeding pulses with high ampli- 599
tudes.  600

601

5.1.1. Newly observed DOT response behavior 602

Figure 6 shows the detected time length of the 2nd segment. The figure depicts values 603
in the range of 8 to 68 seconds with a mean value of around 31 seconds. 604

[24], [25] reported on monitoring E. coli metabolic response to glucose pulses by using 605
a strain with integrated bioluminescence protein that allows for an online monitoring of 606
the changing metabolism. Their observations showed that E. coli can switch from overflow 607
to acetate oxidation “rapidly” and this switch usually is aligned with an overshoot in the 608
bioluminescence with a peak lasting for almost a minute. 609

This metabolic change could happen because of cell stress, or when part of the cell 610
population switches while the rest do not, or as a mix of both factors. 611

[26], [27] applied nuclear magnetic resonance techniques to monitor the metabolic 612
switches in E. coli. Their observation showed a rapid induction of “acs”, the gene respon‐ 613
sible for acetate synthase after the metabolic switch (from overflow to acetate oxidation). 614
An overlapping time window between acetate consumption and acetate production might 615
have an effect on cell metabolism in the time window around the switch in which a co- 616
utilization of acetate and glucose happens. Also, the authors reported on a drop in the 617
growth rate directly after the switch. 618

[28] used Isotope Dilution Mass Spectrometry (IDMS) to analyze the metabolic 619
changes after a glucose pulse at seconds timescale. Interestingly: E. coli, at the scale of tens 620
of seconds after overflow, can store relevant amounts of carbon, to be used in short peri- 621
ods of glucose starvation. 622

[16] also showed a pulse-based method for the determination of the maximum up- 623
take capacities for glucose and oxygen in glucose limited cultivations. Their observations 624
showed that acetate is formed after a glucose pulse. However, the redirection of the ace- 625
tate flow from production to consumption takes some time. The authors did not report on 626
a specific time duration. In their contribution, the sampling time interval of the DOT signal 627
was 5 seconds, and a change in the DOT signal similar to the 2nd segment presented in this 628
contribution was shown for a couple of sampling points. However, this is neither high- 629
lighted nor discussed. The authors also report on the increase in 𝑞𝑜  rate after glucose 630
pulses. This is described by the uncoupling effect (inhibition effect) of acetate, although 631
the added acetate concentration was low. 632

The previous observations suggest a metabolic switching time similar to the time 633
range reported in Figure 6, and provide possible explanations of the metabolic changes in 634
this time window. Hence, incorporating an “adaptation state” in the model, which repre- 635
sents a reduction in the metabolic activities after switching from the overflow metabolism, 636
seems feasible. 637
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The results of Figure 11, shows that considering adaptation state (submodel II), in 638
which the metabolism is paused for a short time, results in DOT signal changes similar to 639
the 2nd segments seen in the raw data. The simulations also show that after a certain thresh- 640
old the 2nd segment emerges clearly and becomes more pronounced with larger feeding 641
volumes. larger feeding volume means cells need more time to fully consume the glucose 642
added to the medium. As the cell is already working at its maximum uptake rate, the 643
excess sugar is metabolized anaerobically, and acetate accumulates in the medium. The 644
2nd segment becomes more pronounced as a result of prolonged adaptation state caused 645
by higher acetate accumulation.  646

647

5.2. Industrial relevance 648

The minibioreactor systems are increasingly seen as useful tools in pharmaceutical 649
and bioprocessing industry for many purposes like strain screening and experimental de- 650
sign. They do not inherit some larger scale issues like inhomogeneity, mixing and aeration 651
difficulties and they offer an economically viable option to cut costs. However, scaling 652
experiments up/down from/to milliliter scale is still a challenging issue. [38] recently re- 653
ported on this, where they showed deviations in parameters values compared to their 654
reference cultivation and reported on an increased amount of some amino acids particu- 655
larly norvaline when bolus feeding is used. However, our observations further show that 656
the frequent metabolic switching could have a negative impact of that on key parameters 657
of the cell.  658

The hypothesized adaptation phenomenon that repeatedly happens in minibioreac- 659
tor systems with intermittent bolus feeding seems to cause frequent cell stress. The rela- 660
tively low values of the estimated parameters (e.g., 𝑞𝑂2𝑚𝑎𝑥,𝑌𝑂2/S and 𝑌𝑂2/A)  and the gen- 661
eral tendency towards lower values in Table 3, shows the negative impact of the frequent 662
switching on cell metabolism.   663

Additionally, in larger reactor scales, the inhomogeneities in the medium can trigger 664
a similar behavior of metabolic switching in some local regions in the reactor [15]. The 665
proposed analysis, by quantifying the metabolic adaptation time, can be used as a strain 666
selector to choose strains that can better endure these effects.  667

668

5.3. Future Outlook 669

Further in-vitro investigation on the physiology behind the adaptation state in mini- 670
bioreactor systems is needed to reveal more on this phenomenon on genetic, proteomic 671
and metabolic level. 672

Future experimental plans to overcome the practical limitation of the used minibio- 673
reactor systems can help to provide more detailed analysis and provide more information 674
on the cell status. For example, by sampling immediately before and after the glucose 675
pulse, additional information on the maximum cell substrates uptake rates can be ob- 676
tained. 677

Further model-based analysis to calculate the sensitivities of all model parameters to 678
the DOT signal, and the degree of metabolic reduction in the time window of the adapta- 679
tion state could help to assess how much information on model parameters could be en- 680
coded in the DOT signal. 681

However, with the current level of understanding it is possible to incorporate the 682
dynamics of the adaptation state in the models to better control cultures: to prevent oxy- 683
gen depletion, optimize glucose feeding, and understand the influence bolus feeding on 684
cell behavior. The authors plan to report on that in the future. 685

686

6. Conclusions 687

A segmentation and analysis method, and a mechanistic modelling approach to 688
model the dissolved oxygen tension signal in minibioreactor systems are proposed in this 689
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work. The segmentation and analysis method revealed the existence of four segments in 690
some DOT pulses and investigated possible relationships between descriptive metrics of 691
the segments and metabolic activities and process dynamics. The findings of the analysis 692
hypothesize a repeated metabolic switching behavior in E. coli after each substrate pulse, 693
where the metabolic states are linked to the identified segments of the DOT pulses. A 694
newly observed DOT segment, not reported in literature, is likely to be linked to a meta- 695
bolic adaptation behavior. In this segment, the cell is likely to pause or attenuate the me- 696
tabolism.  697

A quantitative analysis and mechanistic model simulations support this hypothesis. 698
The quantitative analysis shows model parameters values within acceptable literature 699
ranges. The mechanistic model simulations show a possibility to reproduce DOT seg- 700
ments found in the raw data by using the parameters estimated from the quantitative 701
analysis and extending the model of [29] by a metabolic adaptation submodel. The time 702
length of this submodel is a function of the inhibitory acetate concentration.  703

For our quantitative analysis, the estimation of model parameters of the overflow 704
switching condition was possible using only DOT signal and biomass samples, given the 705
feeding and reactor working volumes were known.  706

The analysis suggests a negative impact on some model parameters such as the max- 707
imum oxidative uptake rate and oxygen yields on glucose and acetate, which might be 708
caused by the frequent metabolic switching.  709

The proposed methods highlight the potential of considering the DOT signal to gain 710
additional (unexploited) information on E. coli metabolism and its modelling parameters, 711
especially when the number of samples is limited, and offer means to understand the in- 712
fluence of intermittent bolus feeding on cell behavior, and by that, help to address MBRs 713
issues of oxygen supply and feeding plans optimization.  714
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7. Appendices 728

7.1. Appendix A: Segmentation algorithm 729

730
Pulse detection algorithm 731

732
Segmentation algorithm has the following steps: 733

1) divide the whole signal into 𝑘 ≥ time windows. 734
2) for each time window calculate the mean of the signal. The result is a vector 735

containing all the means. 736
3) The intersection of this vector with DOT signal, gives the intersection points. 737
4) a loop checks if within two consecutive intersection points, the DOT signal 738

has two maximums and one minimum. If so, a pulse is identified, the time 739
points of the two maxima define the beginning and the end times 740tistart 𝑎𝑛𝑑 tiend.  The time point of the minimum is  timin. 741

742𝑘 represents a tuning parameter, usually set to large values with very changing DOT 743
signals. 744

745
The result is a vector of individual DOT pulses 𝑃 : 746

747

𝑃(𝑖) =  [ti𝑠𝑡𝑎𝑟𝑡  ;  ti𝑚𝑖𝑛   ;  ti𝑒𝑛𝑑]  ; 𝑃 =  ⋃𝑃(𝑖)𝑛
1  (12) 

Where: 748𝑖: the index number of the pulse of the glucose pulse (and the DOT signal). 749𝑛: the total number of glucose pulses (and the DOT signal). 750ti𝑠𝑡𝑎𝑟𝑡 : the start time of each DOT pulse. 751ti𝑚𝑖𝑛: the time corresponds to the minimum value of each DOT pulse. 752ti𝑒𝑛𝑑: the end time of each DOT pulse. 753
754

The appendix is an optional section that can contain details and data supplemental 755
to the main text—for example, explanations of experimental details that would disrupt 756
the flow of the main text but nonetheless remain crucial to understanding and reproduc- 757
ing the research shown; figures of replicates for experiments of which representative data 758
is shown in the main text can be added here if brief, or as Supplementary data. Mathemat- 759
ical proofs of results not central to the paper can be added as an appendix. 760

761
Segmentation algorithm 762

For an experimental run 𝑗, and a vector 𝑃(𝑖): 763
1) split the pulse 𝑃(𝑖) into two pieces by the ti𝑚𝑖𝑛. These results into:  the “up- 764

down” part (contains 1st, 2nd and 3rd segments) and “down-up” part (contains 765
only 4th segment) 766

2) for the “up-down” part, the algorithm advances along time steps and moni‐ 767
tors the change of the slope. 768

3) once a recognizable slope change 𝛼1𝑗 is observed, the algorithm considers an 769
end of a segment and a beginning of another segment. 770

4) repeat the previous step until the 3 segments are found, the corresponding 771 
slope (𝛼1𝑗 , 𝛼2𝑗) are defined. 772

5) if not all the 3 segments are definable, assume only the 1st for the “up-down” 773 
part. 774

775
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The algorithm is trained for each experimental run by the help of a visual inspection 776 
of an expert on a part of the DOT signal (training dataset). The training process estimates 777
the coefficients 𝛼1, 𝛼2. The rest of the signal is used as a testing dataset. 778

779
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7.2. Appendix B: Additional Figures 780

781

782

Figure 12. Biomass, glucose, and acetate concentrations of each run in the time window of the analysis. Due to working volume 783

limitation, only a limited number of off-line/at-line samples are possible. 784
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 786 
Figure 13. Reactor working volumes of all runs. 787 

 788 
  789 
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7.3. Appendix C: E. coli model and nomenclature 790 
 791 𝑞𝑠  =  𝑞𝑠 𝑚𝑎𝑥 𝐶𝑠𝐶𝑠  +  𝐾𝑠 792 

 793 𝑞𝐴  =  𝑞𝐴𝑚𝑎𝑥 𝐶𝐴𝐶𝐴  + 𝐾𝐴 794 

 795 𝑞𝑂2  =  𝑞𝑂2𝑚𝑎𝑥 𝐷𝑂𝑇𝐷𝑂𝑇 + 𝐾𝑂 796 q𝑠(𝑜𝑥) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  =    𝑞𝑂2𝑌𝑂2/𝑠 797 

 798 𝑞𝑠(𝑜𝑥) = { 𝑞𝑠 𝑖𝑓 𝑞𝑠 ≤ q𝑠(𝑜𝑥)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙q𝑠(𝑜𝑥) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑓 𝑞𝑠 > q𝑠(𝑜𝑥)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 799 

 800 q𝐴(𝑜𝑥) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  =   𝑞𝑂2 − 𝑌𝑂2/𝑠   ∙  𝑞𝑠 (𝑜𝑥)𝑌𝑂2/𝐴  801 

 802 𝑞𝐴(𝑜𝑥) = { 𝑞𝑠 𝑖𝑓 𝑞𝐴 ≤ q𝐴(𝑜𝑥)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙q𝐴(𝑜𝑥) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑖𝑓 𝑞𝐴 > q𝐴(𝑜𝑥)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙  803 

 804 𝑞𝑠 (𝑟𝑒𝑑)  =  𝑞𝑠 − 𝑞𝑠 (𝑜𝑥)𝑚𝑎𝑥  805 
 806 𝜇𝑡𝑜𝑡𝑎𝑙  =  𝑌𝑥/𝑠(𝑜𝑥) . 𝑞𝑠 (𝑜𝑥)   +   𝑌𝑥/𝑠(𝑟𝑒𝑑) . 𝑞𝑠 (𝑟𝑒𝑑)  +   𝑌𝑥/𝐴(𝑜𝑥) . 𝑞𝐴 (𝑜𝑥) 807 

 808 
 809 

𝑑𝑑𝑡 [ 𝐶𝑥𝐶𝑠𝐶𝐴𝐷𝑂𝑇] = [   
 𝑌𝑥/𝑠(𝑜𝑥) 𝑌𝑥/𝑠(𝑜𝑥) 𝑌𝑥/𝑠(𝑟𝑒𝑑) 𝑌𝑥/𝐴(𝑜𝑥) 𝑌𝑥/𝐴(𝑜𝑥)− − − 0 00 0 𝑌𝑒/𝑠 − − −𝑌𝑂2𝑠 −𝑌𝑂2𝑠 0 −𝑌𝑂2𝐴 −𝑌𝑂2𝐴 ]   

 ⋅  𝒜 ⋅ [   
  𝑞𝑠𝑞𝑠(𝑜𝑥)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑞𝑠 (𝑟𝑒𝑑)𝑞𝐴 𝑞𝐴(𝑜𝑥)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙]   

  𝐶𝑥 − 𝐹𝑠 𝑉  [𝐶𝑥𝐶𝑠𝐶𝑒0 ] + 𝐾𝐿𝑎 [ 000𝐷𝑂𝑇∗] − 𝐾𝐿𝑎 [ 000𝐷𝑂𝑇]   810 

 811 
Table 5. Activation matrix values for metabolic states defined in section 4.2. 812 

Metabolic state / active submodel Activation matrix 𝓐 

I)   Overflow metabolism 𝓐 =  𝒅𝒊𝒂𝒈 [𝟎 𝟏 𝟏 𝟎 𝟎] 
II)   Adaptation state 𝓐 =  𝒅𝒊𝒂𝒈 [𝟎 𝟎 𝟎 𝟎 𝟎] 
III)   Acetate oxidation 𝓐 =  𝒅𝒊𝒂𝒈 [𝟎 𝟏 𝟎  𝟎 𝟏] 
IV)   Static state 𝓐 =  𝒅𝒊𝒂𝒈 [𝟎 𝟎 𝟎 𝟎 𝟎] 

 813 
 814 
Sampling and feeding volumes are considered as sets of algebraic equations solved 815 

outside the ODE system. The timepoints of these pulses are considered as explicit time 816 
events, more on that in [39], [40] The values of the 𝑞𝑚 the specific maintenance coefficient 817 
term is assumed to be zero for simplification. This value is not relevant for the scope of 818 
this contribution. 819 

 820 
 821 
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Table 6. Model terms description and parameter values. 822

PAR. UNIT 
SIMULATION 

VALUES 
DESCRIPTION 𝜇𝑚𝑎𝑥  ℎ−1 - Maximum growth rate 𝑞𝑆𝑚𝑎𝑥 𝑔(𝑠). 𝑔(𝑥)−1. ℎ−1 0.15 Maximum specific glucose uptake rate of the Monod function 𝑞𝑂2𝑚𝑎𝑥 𝑔(𝑂). 𝑔(𝑥)−1. ℎ−1 2.7 Maximum specific oxygen uptake rate of the Monod function 𝑞𝐴𝑚𝑎𝑥 𝑔(𝐴). 𝑔(𝑥)−1. ℎ−1 0.8 Maximum specific acetate uptake rate of the Monod function 𝑞𝑠(𝑜𝑥) 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑔(𝑂). 𝑔(𝑥)−1. ℎ−1 - Maximum specific glucose uptake rate defined by the maximum 

oxidative capacity 𝑞𝐴(𝑜𝑥)𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑔(𝐴). 𝑔(𝑥)−1. ℎ−1 - Maximum specific acetate uptake rate by the maximum oxidative 
capacity 𝑞𝑠(𝑜𝑥) 𝑔(𝑠). 𝑔(𝑥)−1. ℎ−1 - Actual specific glucose uptake rate 𝑞𝐴(𝑜𝑥) 𝑔(𝐴). 𝑔(𝑥)−1. ℎ−1 - Actual specific acetate uptake rate 𝑌𝑋/𝑆(𝑟𝑒𝑑) 𝑔(𝑥). 𝑔(𝑠)−1 0.4 Biomass yield for reductive growth on glucose 𝑌𝑋/𝑆(𝑜𝑥) 𝑔(𝑥). 𝑔(𝑠)−1 0.5 Biomass yield for oxidative growth on glucose 𝑌𝑋/𝐴(𝑜𝑥) 𝑔(𝑥). 𝑔(𝐴)−1 0.5 Biomass yield for oxidative growth on acetate 𝑌𝐴/𝑆  𝑔(𝐴). 𝑔(𝑠)−1 0.4 Ethanol yield from glucose fermentation 𝑌𝑂2/𝐴 𝑔(𝑂2). 𝑔(𝐴)−1 0.5 Oxygen (stoichiometric) yield on acetate 𝑌𝑂2/𝑆 𝑔(𝑂2). 𝑔(𝑠)−1 0.1 Oxygen (stoichiometric) yield on glucose 𝐾𝑙𝑎 ℎ−1 225 Oxygen mass transfer coefficient from the gas phase to the 

liquid phase 𝐾𝐴 𝑔(𝐴). 𝐿−1 0.001 Time affinity constant of the acetate 𝐾𝑆 𝑔(𝑆). 𝐿−1 0.001 Time affinity constant of the glucose 𝐾𝑂 𝑔(𝑂2). 𝐿−1 0.001 Time affinity constant of the oxygen 

H 
%𝑔(𝑂2). 𝐿−1 14000 Henry Law derived constant 𝐶𝑋 𝑔(𝑋). 𝐿−1 - Biomass concentration 𝐶𝑆 𝑔(𝑆). 𝐿−1 - Glucose concentration 𝐶𝐴 𝑔(𝐴). 𝐿−1 - Acetate concentration 𝐷𝑂𝑇 [%] - Dissolved oxygen tension 𝐷𝑂𝑇𝑚 [%] - Measured Dissolved oxygen tension 

DOT* [%] - Dissolved oxygen tension at saturation 𝜏 [ℎ] 0.01 Dissolved oxygen probe response time 

V [𝐿] - Working volume 

OUR 𝑔(𝑂 ). 𝐿−1. ℎ−1 - Oxygen uptake rate 
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OTR 𝑔(𝑂 ). 𝐿−1. ℎ−1 - Oxygen transfer rate 

823

824
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3 Conclusion, Impact, and
Outlook
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3.1 Conclusions, Impact and Outlook 
3.1.1 Conclusions 
To achieve the thesis aims of having adaptive and robust modelling approaches, comparative 
analyses are applied to different datasets using different methods. These comparisons alongside 
the proposed method helped to: reveal the obstacles and the possible remedies to achieve 
improved bioprocesses.   

Summarized achievements 

Part of the main achievements of this work are the comparative studies presented in sections 
2.2.4, 2.2.3, 2.2.2, and 2.2.1. The comparative study in section 2.2.1 highlights the 
importance of proper selection of the fitting criteria inside the objective function which 
is used to parameterize the model. The physical nature of the measurements must be taken 
into account to get representative unbiased parameters. The proposed method that 
combines DTW and LSQ criteria can obtain extra information that is usually smoothed 
when exclusively LSQ-based criteria are used.  

The comparative analysis in section 2.2.2 illustrates the danger of error propagation in 
mechanistic models even when a small deviation exists. This section shows the possible 
consequences of improper considering of explicit discontinues of volume changes because of 
sampling volumes in lab-scale reactors. The work also proposes a simple approach to get rid 
of these consequences. 

The work in sections 2.2.3 and 2.2.4 extends the previous work in section 2.2.2 and shows a 
comparative study that investigates all possible discontinuous behaviors in bioprocessing 
models (shown for the model of [82] for yeast cultivation). The work highlights the main sorts 
of discontinuities in a generic bioprocessing model. They are A) Metabolic discontinuities: 
switches that happen between the metabolic pathways.  B) Process-related discontinuities: 
switches or abrupt change in system states because of process-related change. C) 
Discontinuities caused by highly nonlinear kinetic terms (non-physical solutions): some kinetics 
exhibit a stiff behavior when they have parameter values in certain ranges. Bioprocesses usually 
operate in these ranges, which make this a common modelling problem. 

The work shows a workflow to properly consider these discontinuities, and an approach to 
convert mechanistic models into matrix-like models using decision tree and Boolean condition 
functions. The work also shows the improvements of the proposed method on model prediction 
accuracy, model output robustness against noise and initial parameters and concentrations 
perturbations.   

Section 2.2.5 presents a method to segment the dissolved oxygen signal for E. coli cultivations 
in minibioreactor systems. Having the segments allowed to extract discrete features for each 
segment. Data-driven analysis of the features revealed a pattern of responses in particular 
DOT segments linked to specific metabolic states. The analysis hypothesizes on the nature of 
the underlying metabolic activities and the DOT signal segments.  
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The quantitative analysis in this section, and the mechanistic model-based simulations support 
the hypothesis. The quantitative analysis provides a possibility to obtain key growth 
parameters of the overflow switching condition using only DOT signal and biomass samples.  

Novelty 

The novelty of this thesis can be summarized by the: 

a) detailed analysis of the discontinuities in bioprocessing, and the EDM based workflow to
properly handle bioprocessing models discontinuous behaviors in sections 2.2.2, 2.2.3 and 2.2.4.

b) new method that combines DTW and LSQ terms in the objective function to improve the
estimation of model parameters in yeast cultivation with off-gas measurements in section 2.2.1.

c) novel segmentation algorithm, data-driven and model-based analysis of the DOT signal for
E. coli cultivations in MBRs which suggest a pattern of responses in particular DOT segments
which are linked to specific metabolic states, and highlight a plausible relationship between
metabolic adaptation behavior and a newly observed DOT segment in section 2.2.5.

d) novel model-based workflow to extract model parameters from DOT signals in section 2.2.5.

Value 

The value of this thesis lies in the analyses and methods designed to overcome the challenges 
described in section 1.1.3 which prevent an effective deployment of mechanistic models.  

These methods help to improve the output of the models and give incentive for more work in 
the direction of developing mechanistic models in bioprocessing. Although, data-driven models 
and hybrid models are getting more interest, this thesis results suggest that more work to 
improve mechanistic models in bioprocessing is helpful to increase the information content and 
the applicability of these models. The impact of this thesis is described in more detail in section 
3.1.2. 

The following factors are proved to be key factors for the success of this thesis: - Interdisciplinarity- Collaboration with industry- Combining methods in generic workflows
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Success factors 

I) Interdisciplinarity

Modelling bioprocesses is absolutely an interdisciplinary task. For the success of this thesis, an 
understanding of the differential calculus principles was needed to analyze the roots of model 
discontinuities on a mathematical level. Some knowledge in biology and cell physiology is 
needed to understand the meaning of model discontinuities on a metabolic level. The knowledge 
of data-driven methods also plays an essential part. These methods are the basics of many 
steps during the modelling procedure, from analytics (pre-)processing, to investigating possible 
latent relationships that don’t have clear interpretations or mathematical representations.  

Further, some knowledge in the mathematical optimization field is an advantage. This is 
essential for the formulation of the objective functions and the analysis and interpretation of 
the optimization algorithms results.  

II) Collaboration with industry
 cademia can’t thrive without a successful industry, and this thesis is no exception.  
The quality and quantity of the data provided by the industrial partner are essential to achieve 
reliable and consistent research results. For the work of this thesis, the industrial partner 
provided large-volume data sets with enough variability to investigate the interesting 
phenomena. Historical industrial data, not shown in this thesis, is additionally provided by the 
industrial partner and helped to develop the methods.  
Also, the university-industry collaboration meant more practical and academic knowledge were 
transferred in both directions.  

III) Combining methods in workflows
The main focus of having effective and successful mechanistic models in bioprocessing doesn’t 
mean other methods are off the scene. On the contrary, this helped to understand what is 
missing for the mechanistic models, and by that helped to address the reasons behind that. 
This work has the implicit hypothesis that mechanistic models, although well established and 
used for decades now, still have room for improvement. Investigating and combining methods 
helped to have improved mechanistic modelling workflows.  
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3.1.2 Impact on Academic and Industrial Level 
In this work, new methods to generate models with accurate predictions, lower uncertainty, 
robust parameters and representative structure are provided. This would raise the interest to 
develop such models in industry and academia to achieve better processes, and justify the 
extra efforts needed. The thesis impact can be measured on two levels.  

On an academic level, this work highlights the importance of proper handling of 
discontinuities in bioprocesses. The comparative analyses shown in 2.2.4, 2.2.3 and 2.2.2 allows 
researchers to understand the influence of process-related and metabolic-related discontinuities 
on model parameters uncertainty and model predictions accuracy at a very detailed level. 
These comparisons allow to understand the two-sided relationship between the accuracy of 
locating metabolic switches and the accuracy and robustness of the model predictions. These 
analyses highlight an interdisciplinary understanding in cell physiology, numerical solutions, 
mathematical optimization, and data science to correctly cross-link resulting phenomena to 
their underlying reasons. 

This thesis proposes a method and a workflow to properly handle discontinuities in a generic 
bioprocessing model, the method and the workflow are shown in 2.2.3. 

This work also proposes a method to consider the off-gas singles for yeast cultivations in 
section 2.2.1, and a method to analyze the dissolved oxygen tension signal for E. coli 
cultivations in section 2.2.5. These two methods can help bioprocessing scientists to better 
understand the underlying metabolic activities in the cultivations. 

The method in section 2.2.5 to analyze the dissolved oxygen signal revealed a new signal 
segment (characteristic) not reported before and likely to be linked to metabolic adaptation 
behavior. 

On an industr ial level, the results shown in section 2.2.5 for the modelling of E. coli growth 
and the rapidly changing dissolved oxygen levels in milliliter scale are of a great importance 
to address minibioreactor scale issues of oxygen supply and optimizing intermittent feeding 
plans.  

The results shown in this section are for a state-of-the-art platform that is commercially 
established and recently deployed in industry.  

The results shown in sections 2.2.4, 2.2.2 and 2.2.1 are expected to improve the calibration of 
a model commonly used in industrial context for yeast cultivations, and by that reducing the 
number of required runs for calibration, leading to cut in the costs and time.  

Additionally, the thesis is expected to: - Increase the use of piecewise mechanistic models.- Help other researchers to transfer the two piecewise discontinuous models (Yeast and
E. coli) described in 2.2.5 and 2.2.3 to other strains and/or organisms.- Open potential door for direct metabolism-based-control strategies.- Increase the awareness of proper selection of objective function criteria in bioprocessing
models.
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- The adaptation time described in section 2.2.5 can be used as strain selector to choose
metabolic switching resilient strains to improve cultivation output and reduce
inhibitory by-products.
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3.1.3 Outlook 
The results of the proposed methods, models, and workflows encourage further investigations 
on different organisms and platforms to evaluate their generic applicability on a wider set of 
variable conditions. For that the following work can be considered: 

I. Further in-vitro investigation on the physiology behind the adaptation state in E.
coli in minibioreactor systems is needed to reveal more on this phenomenon on
genetic, proteomic and metabolic level. It is also interesting to investigate the
metabolic adaptation behavior of other organisms like yeast and mammalian cells.

II. Better experimental implementation that overcomes the current practical limitation:
for example, for minibioreactor cultivations, setting feeding plans in which either the
pulses amplitude or the frequency change, not both. Also, considering sampling
immediately after the substrate pulse. Such experimental implementation
improvements would make the analysis more consistent and straightforward.

III. Further model-based analysis to calculate the sensitivities, and to test different
modelling concepts for the metabolic activities indicated by process analytics. This
would help to investigate how much information on model parameters could the
analytics, especially the used online signals, have.
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4.1 Discontinuities and ODE solvers 
4.1.1 Details on the numerical solution 
Boolean trigger functions 

Events are triggered when the sign of the condition in (2.2), changes, i.e., a zero crossing is 
detected. The logical propositions may contain a number of relational expressions and sets of 
connectives (e.g., NOT, AND, OR). For 𝒞(𝑡), output values true are mapped to positive 
values and output values false are mapped to negative values such that the corresponding 
condition has a root at every change of the corresponding Boolean values: 

 𝒞(𝑡) ∶=  {1,0,  f 𝑐𝑜𝑛𝑑(𝑐(𝑡), 𝑢(𝑡), 𝜃, 𝑡) ≥ 0 f 𝑐𝑜𝑛𝑑(𝑐(𝑡), 𝑢(𝑡), 𝜃, 𝑡) < 0 (4.1) 

Moreover, in 2.2.4, a decision tree is formulated out of the values of the Boolean functions 
which links different conditions, see Figure 10. Once one or more events are detected, the 
new active submodel is selected based on the evaluation of the decision tree. 

Events location 

I) Discontinuity locking

In the event driven method, the system of equations for each subinterval is locked 
throughout the solution. This means that the system of equations cannot change even if one 
or more state conditions are satisfied [101]. The conditions are monitored continuously, and 
if any of them are satisfied, the exact time of occurrence is then located, equations are 
switched, new initial states might be calculated, and the integration is restarted [118].  

II) Chattering/Sticking control

In order to reduce chattering, in this contribution, a hysteresis band is defined for the 
threshold in each condition as follows:  𝑐𝑜𝑛𝑑(𝑐𝑜𝑛𝑑(𝑡), 𝑢(𝑡), 𝜃, 𝑡) = −𝜖  f 𝒞(𝑡) = 1𝑐𝑜𝑛𝑑(𝑐𝑜𝑛𝑑(𝑡), 𝑢(𝑡), 𝜃, 𝑡) = +𝜖  f 𝒞(𝑡) = 0 (4.2) 

where the magnitude of 𝜖 defines the magnitude of the hysteresis band. It can be seen that 
the sign of 𝜖 depends on the current state of the Boolean trigger function 𝒞(𝑡).  𝜖 is a tuning 
parameter, its value needs to be chosen individually for the specific problem, keeping in mind 
that using small values avoids any delay effects in the event detection. The concept for event 
detection with hysteresis is illustrated in Figure 10.  
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Figure 10: Event detection with hysteresis in order to avoid chattering/sticking behavior in the numerical solution of the 
ODE mechanistic models  
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4.1.2 State-of-the-art ODE solvers 

solver variable-
step 

order method stiffness 

Ode23 2,3 pair of Bogacki and Shampine moderate stiffness 
Ode45 4,5 Dormand-Prince pair non-stiff 

Ode113 yes 1- 12 Adams-Bashforth-Moulton moderate stiffness 
to non-stiff 

Ode15s yes 1- 5 NDFs-BDF/ Gear's method stiff 
Ode23s 2,3 modified Rosenbrock formula of order 2 stiff 
Ode23t 2,3 trapezoidal rule moderately stiff 

Ode23tb 2,3 implicit Runge-Kutta formula with a 
trapezoidal rule 

stiff 

Table 2 main solvers used in MATLAB [83], [119], [120] 

solver variable-
step 

order method stiffness 

RK45 4,5 Explicit Runge-Kutta method of order 5(4) non-stiff 
RK23 2,3 Explicit Runge-Kutta method of order 3(2) non-stiff 

DOP853 8 Explicit Runge-Kutta method of order 8 Non-stiff 
Radau 5 Radau IIA family of order 5 stiff 

BDF yes 1-5 Implicit BDF multi-step variable-order (1 to 
5) method

stiff 

LSODA varies Adams/BDF method with automatic
stiffness detection. Wrapper for ODEPACK
in Fortran

Table 3 main solvers used in Python [121]–[126] 

solver variable-
step 

order method stiffness 

CV_BDF yes 1-5 Implicit BDF linear multistep method stiff 
CV_ADAMS yes 1-12 Adams-Moulton linear multistep method non-stiff 

Table 4 main solvers used in Modellica [127] 



119 

4.1.3 M athematical discontinuities in yeast growth 
model 

4.1.3.1 Visual Representation 

Figure 11: Common types of discontinuities happen in yeast cultivation model of [82] 
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4.1.3.2 Numerical quantif ication 

Table 5: A batch is modelled with parameter set taken from section 0. The solver tolerances were systematically decreased 
starting from crude tolerances (default values with relative error tolerance RelTol = 10−3, absolute error tolerance AbsTol= 10−3) [75], up to values of RelTol = AbsTol = 10−10. Table 9 shows the influence of these values on the step size, the 
overstepping (measured as the smallest negative value) and on the computational cost (measured as the number of steps 
taken by the solver, i.e., all steps, failed and succeeded) 

4.1.4 Video explanation 
A simplified video example of an optimization problem for EDM and TSM modelling results 
using MATLAB lsqnonlin function with a parameter estimation problem (for two parameters 𝑞𝑠 & 𝑞𝑂2 ) can be found here:  

https://drive.google.com/drive/folders/1z_5TKBRF7BrmseI5tKAKTSxWZLCfSFYH 

M
ethod 

T
olerance 

Stiff solver Non-stiff solver 

Ode15s Ode23s Ode23t Ode23tb Ode45 Ode23 Ode113 
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negative 
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sm
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negative 
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sm
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sm
allest 

negative 
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negative 
value 
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e stepping 

Crude 
tolerance -16.223 180 -16.404 142 -16.2484 168 -16.228 129 

-
1.105x10−6 1728 

-1.695
x10−6 2411 

-8.862
x10−6 4202 

𝟏𝟎−𝟓 -16.1863 363 
-1.814
x10−9 79 

-1.171
x10−7 691 

-5.507 x 10−6 564 -1.07 x10−6 1759 
-1.34
x10−6 2519 

-6.002
x10−6 4256 

𝟏𝟎−𝟕 -1.126
x10−6 878 

-5.752
x10−9 1429 

-1.255
x10−6 1730 

-1.82
x10−6 1390 

-1.067
x10−6 1770 

-1.445
x10−6 2779 

-8.256
x10−6 4414 

𝟏𝟎−𝟏𝟎 -5.009
x10−7 902 -1.038

x10−9 1564 -5.394
x10−7 1908 -6.46

x10−8 1554 -1.060
x10−6 1782 -1.632

x10−6 2877 -6.0887
x10−6 4341 

https://drive.google.com/drive/folders/1z_5TKBRF7BrmseI5tKAKTSxWZLCfSFYH
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4.2 Video contributions 
A link to the video presentation of the contribution “Proper handling of metabolic and 
process-related discontinuities in the modelling of S. cerevisiae fed-batch cultures” in the 
VH Yeast Conference 2022 in Berlin, Germany 

https://www.vh-berlin.org/vhyc2022/videos/2.3.jouned_lsizocbh.mp4 

https://www.vh-berlin.org/vhyc2022/videos/2.3.jouned_lsizocbh.mp4
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4.3 Posters 

Figure 12: Poster contribution in the 30th European Symposium on Computer-Aided Process Engineering (ESCAPE-30) 2020 
in Milan, Italy 
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Figure 13: Poster contribution in the 31st European Symposium on Computer-Aided Process Engineering (ESCAPE-31) 2021 
in Istanbul, Turkey 
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