
SHACL validation of evolving RDF
graphs

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Dominic Jäger, BSc
Matrikelnummer 01634025

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Prof. Magdalena Ortiz
Mitwirkung: Dr.in techn. Shqiponja Ahmetaj

Wien, 27. April 2023
Dominic Jäger Magdalena Ortiz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

SHACL validation of evolving RDF
graphs

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Dominic Jäger, BSc
Registration Number 01634025

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Magdalena Ortiz
Assistance: Dr.in techn. Shqiponja Ahmetaj

Vienna, 27th April, 2023
Dominic Jäger Magdalena Ortiz

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dominic Jäger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 27. April 2023
Dominic Jäger

v

Danksagung

Ich bedanke mich bei meinen Betreuerinnen Prof. Magdalena Ortiz und Dr.in Shqiponja
Ahmetaj für die Unterstützung beim Erstellen der Arbeit, die vielen interessanten
Diskussionen und die zahlreichen hilfreichen Rückmeldungen. Durch diesen Prozess
konnte ich sehr viel lernen.

Ich danke meiner Familie dafür, während der gesamten Studienzeit auf ihre Unterstützung
gezählt haben zu können.

Daten für Experimente durch Projekt Yago und U.S. National Library of Medicine.

vii

Acknowledgements

I would like to thank my advisors Prof. Magdalena Ortiz and Dr.in Shqiponja Ahmetaj
for supporting me while writing the thesis, the numerous interesting discussions and the
helpful feedback. I could learn very much thanks to this.

I would like to thank my family for supporting me during the whole time of my studies.

Experiment data courtesy of Yago project and the U.S. National Library of Medicine.

ix

Kurzfassung

Es gibt die Vision eines Internets, in dem enorme Mengen von Daten verknüpft sind und
verwendet und ausgetauscht werden können. Um diese Vision wahr werden zu lassen,
veröffentlichte das World Wide Web Consortium (W3C) den RDF-Standard zum Be-
schreiben von Informationen im Internet. Aufgrund vieler vorteilhafter Eigenschaften hat
RDF weltweite Bekanntheit erlangt und sich zu einer Kerntechnologie des semantischen
Internets entwickelt.

Das Prüfen der Korrektheit und Vollständigkeit von Daten ist dabei zu einer wesentlichen
Herausforderung geworden. Beispiele dafür liegen in der Sicherheit für Industrieanwen-
dungen oder beim Datenaustausch für Geschäftsanwendungen. Um diese Herausforderung
zu meistern, hat das W3C den SHACL-Standard vorgestellt. Da aber SHACL eine relativ
junge Sprache ist, sind viele andere Anwendungsfälle sind noch nicht betrachtet worden.

Darunter ist die Auswirkung von Änderungen auf den Datengraph für die Validierung
in Betracht zu ziehen. Insbesondere betrachten wir die Situation, dass ein validierter
Datengraph gegeben ist und wir wissen wollen, ob er valide bleibt, wenn wir Änderungen
am Graph vornehmen. Das Problem dabei ist, dass Änderungen auf – potenziell sehr
großen – Teilen des Graphen und eine Re-Validierung eine große Menge von Ressourcen
benötigen kann. Außerdem ist es nützlich zu wissen, ob eine Reihe von Änderungen zu
einem gültigen Graph führt, falls die Rückkehr zum ursprünglichen Graph schwierig
ist, oder falls wir im System nicht die Berechtigung haben, Änderungen durchzuführen.
Deshalb wollen wir einen Weg finden zu prüfen, ob eine Reihe von Änderungen einen
gültigen Graphen liefert, bei dem das tatsächliche Durchführen der Änderungen nicht
notwendig ist. Wir nennen dies statische Validierung unter Änderungen.

Um diese Herausforderung zu bewältigen, entwickeln wir zuerst eine formale Sprache zum
Beschreiben von Änderungen an Datengraphen. Der Hauptbeitrag ist eine Reduktion des
statischen Validierungsproblems zu SHACL-Validierung. Diese Reduktion nimmt eine
Folge von Änderungen und eine Menge von SHACL-Bedingungen und transformiert sie in
eine neue Menge von Bedingungen. Wir zeigen, dass diese neue Menge von Bedingungen
den originalen Datengraphen genau dann und nur dann validiert, wenn der veränderte
Datengraph die originalen Bedingungen validiert. Um diese Reduktion zu ermöglichen,
werden wir außerdem existierende SHACL-Formalisierungen aus der Literatur erweitern.
Abschließend zeigen wir eine prototypische Implementierung der Technik, die uns hilft,
ihr Potenzial zu verstehen.

xi

Abstract

Imagine a web of data and services in which huge amounts of data are linked and can
be used and exchanged. To fulfill this vision, the World Wide Web Consortium (W3C)
presented the RDF standard to describe information in the Web. Due to multiple
favorable properties, RDF gained a world-wide audience and developed into a core
technology for the Semantic Web.

As RDF is a very flexible language, checking the correctness and completeness of data
graphs is a key challenge. Examples for this are safety for industry applications or
integration between various enterprise applications. To solve this challenge, the W3C
proposed the SHACL standard. As SHACL is a relatively young language, several
use-cases have not yet been addressed.

Among them is to take the effect of updates on the graph into account for validation.
Specifically, we look at the situation where we have a validated graph and want to know
if it remains valid when performing updates on the graph data. The problem is that
performing updates on – potentially large – parts of the graph and then re-validating
it can require vast resources. Furthermore, it is beneficial to know if a set of updates
leads to a valid graph in case that returning to the initial state is difficult, or that we do
not have sufficient permissions in a system to perform the updates. Therefore, we want
to find a way to verify that a set of updates yields a valid graph that avoids actually
performing the updates on the graph. We call this static validation under updates.

To tackle this challenge, we develop a suitable formal update language for describing
updates on data graphs. The main contribution is a reduction of the static validation
problem to SHACL validation. This reduction takes a sequence of actions and a set
of SHACL constraints and transforms them into a new set of constraints. We prove
that this new set of constraints validates the original graph if and only if the updated
data graph validates the original constraints. This technique requires extending SHACL
formalizations that have already been considered in the literature. Finally, we provide
a proof-of-concept implementation of the technique that enables us to understand its
feasibility and potential.

xiii

Contents

1 Introduction 1

2 Preliminaries 7
2.1 RDF and SPARQL . 7
2.2 Shapes Constraint Language . 9

3 Extended SHACL formalization 15
3.1 Syntax . 15
3.2 Semantics . 17
3.3 Examples . 18
3.4 Complexity . 22

4 Update Language and Static Validation 23
4.1 Update Language . 23
4.2 Static validation . 24
4.3 Examples . 27

5 Correctness 31

6 Implementation and Experiments 41
6.1 Implementation considerations . 41
6.2 Experiments . 45
6.3 Discussion . 47

7 Summary 57

Bibliography 61

xv

CHAPTER 1
Introduction

In this chapter we give some motivation for the thesis and state the main problem that
we want to solve. Then we explain what our contributions to this research area are and
what related work has already been done.

Motivation
Imagine a web of data and services in which huge amounts of data are linked and can be
used and exchanged. This is the vision of the World Wide Web Consortium (W3C) [36],
an organization that works on standards for the web [1].

One tool to achieve this is the Resource Description Framework (RDF). It is a W3C
recommendation to describe information on the web, and a core technology for the
Semantic Web [7]. RDF has become attractive to researchers as well as practitioners,
and gained a world-wide audience. [7].

In this framework, data is represented using subject-predicate-object triples, such as
loves(jacob, charlie) [17]. In other words, we say that things have properties with
particular values and it turns out that this is a way to describe data that is suitable for
most machine-processed data [9]. RDF triples form directed graphs, which we call data
graphs. Figure 1.1 shows an example for a data graph. The definition with triples gives
RDF multiple favorable properties. Among them is that it is easy to compose multiple

jacob rhyscharlieloves

hates
loves

Figure 1.1: An example RDF graph

1

1. Introduction

RDF graphs into a larger one. It is easy to integrate various sources of data, and existing
data models may evolve to meet new requirements. Specifically, this allows to add more
triples to the graph with ease [27].

One natural problem is to query RDF data [7]. We can do so using the SPARQL query
language. SPARQL supports queries with features such as aggregation, negation and
subqueries [22]. One way to use this language is via online services that provide answers
by processing a given SPARQL query.

While RDF is a very flexible language [27], checking the correctness and completeness of
data graphs is a key challenge [15]. Safety and performance are requirements of particular
importance for industry and enterprise applications [27]. One specific situation where
this is important is application integration, where different software components produce
and consume data and must smoothly work together. A standard for this may reduce
both complexity and cost [35]. Today, huge amounts of data get – partly automatically –
generated and exposed on the Web [27]. As a consequence, RDF databases may be of
considerable size, that is, in the order of millions or billions of triples. It is still desirable
to check various properties, and to do this in regular intervals. Thus, it must be possible
to perform the validation in a reasonable amount of time [35].

To solve this, the W3C published the Shapes Constraint Language (SHACL) recom-
mendation in 2017 [26]. SHACL allows describing the form that a data graph must
adhere to using shapes and constraints. Shapes are parts of constraints, and they can
be represented as graphs as well. As an example, we have the shape ∃loves.⊤ as part of
the constraint isDevoted ↔ ∃loves.⊤. This constraint says that isDevoted holds for an
individual if and only if there is at least one other individual that it loves. In Figure 1.1,
the constraint holds for jacob and charlie, but not for rhys.

Problem Statement and Research Question

SHACL is a relatively young language. Thus, validators for it are currently in development
and many challenges and use-cases have not yet been addressed.

Among them is to take the effect of updates on the graph into account for validation. One
relevant situation is that we have a validated graph and want to know if it remains valid
when performing updates on the graph data. The problem is that performing updates
on – potentially large – parts of the graph and then re-validating it can require vast
resources. Furthermore, it is beneficial to know if a set of updates leads to a valid graph
in case that returning to the initial state is difficult, or that we do not have sufficient
permissions in a system to perform the updates.

Therefore, we want to find a way to verify that a set of updates yields a valid graph that
avoids actually performing the updates on the graph. We call this static validation under
updates.

2

The main goal of this thesis is to study the validation of SHACL
constraints over RDF graphs that are subjects of updates.

The research questions are stated and explained in the following.

RQ1: How can we suitably describe updates on RDF graphs? Can we build
an adequate update language, building on proposals from the literature?

We need syntax and semantics for an update language, that can express modifications on
RDF data graphs. We want a language that supports addition and removal of classes, as
well as properties. In other words, it should be able to add unary and binary atoms to
the data graph. We want to concatenate multiple actions and to use variables.

RQ2: Is it possible to reduce validation under updates to validation over a
static graph without performing the updates? Moreover, can such a validation
be realized using existing validators?

We want a technique that can solve the static validation problem. In other words, we
want to find a way to check if a set of updates of graph data results in a valid set of
constraints that avoids modifying the data graph. This technique should capture the
effects of the updates that we define in the first research question.

We want to have proof of the correctness of the reduction. This means that we need to
be sure that the original graph validates the transformed set of constraints if and only if
the updated data graph validates the original constraints. We want to have examples for
this static validation technique.

Several validator implementations for different fragments of W3C SHACL Core already
exist. We want to reuse one of these existing validators, and know if they are a sufficient
tool for the reduced problem.

RQ3: Which features of SHACL can be supported in this setting that are
not covered by existing formalizations, but that can increase the applicability
of the approach?

The SHACL W3C recommendation contains multiple features that are not addressed in
existing formalizations [26] [3] [15]. However, it is desirable to have a formalization that
can express further important situations. In particular, this could include comparing
things and being able to reason about numbers, dates, and strings. We want to have
examples that demonstrate such situations and underline the usefulness of possible
extensions of existing formalizations.

RQ4: Can we gain experimental data that indicates the effectiveness of the
static validation technique? Which additional artifacts do we need to get this
data?

To be able to apply the static validation technique from Research Question 2 in practice, we
want to have a prototype implementation of the transformation technique. Furthermore,

3

1. Introduction

we want to be able to get experimental data that shows whether the static validation
technique is useful in practice or not. We want to have proof-of-concept implementations
of other relevant artifacts, that we need to get the experimental data as well. The
prototype implementation should reuse existing SHACL validators as far as possible.

Contributions
Solving the stated problem and answering the research question requires addressing
multiple problems, and we do so by contributing various new ideas.

Inspired by an action language for description logics [2], we create an update language
to formalize changes in data graphs. Our update language, however, uses SHACL
syntax and semantics. It allows adding and removing classes as well as properties, and
we reason about sequences of actions.

As the main contribution, we define a transformation that allows to reduce static
validation to SHACL validation after an idea used in the context of description logics
[2]. This transformation takes a set of SHACL constraints and transforms them into a
different set of constraints that take the actions into account. Again, our transformation
definition uses SHACL instead of description logics. We prove its correctness, which
means that we show that the original graph validates the transformed set of constraints
if and only if the updated data graph validates the original constraints. In addition, we
demonstrate the static validation technique in various examples.

One specific part of the transformation definition requires us to extend the syntax
and semantics of existing SHACL formalizations. We do this by making path
expressions more powerful. In addition, we add predicates and literals that bring our
formalization closer to the W3C SHACL recommendation. We show in multiple examples
what this extended formalization can express.

Furthermore, we provide a prototype implementation of the transformation based on the
Apache Jena project, and a program that can parse actions from our update language
and apply them to a graph. Finally, we experiment with different existing RDF data sets
of various sizes to show the effectiveness of our approach.

Related work
The W3C has recommendations for syntax [17] and semantics [23] for RDF. The SHACL
standard for graph validation has been published by the W3C in 2017 [26]. As an
introduction to SHACL, there is also a book available [27]. Suggestions for improvements
of SHACL are currently in discussion [24].

Some parts of the SHACL standard are not yet properly defined. For example, the
standard leaves the problem of recursive constraints open [26]. To find a remedy for this,
different logic-based approaches to formalize the SHACL standard have been presented.

4

Formal semantics for a restricted set of SHACL that handle arbitrary recursion and
include abstract syntax for SHACL was suggested in 2018 [15]. These semantics are
called supported-model semantics [4]. An approach that uses ideas from Answer Set
Programming has been introduced a few years later and is called stable model semantics
[4]. These approaches allow devising better algorithms and to compare the expressiveness
of SHACL to other languages.

Another topic that is left open in the SHACL standard is the explanation of violated
constraints [26]. There has been work based on logic-based abduction and database
repairs to improve this. The main idea is to use a collection of additions and deletions
that can repair the graph [3]. Further research has been done concerning RDF graphs that
are only exposed via a SPARQL endpoint. Specifically, algorithms have been proposed
that allow performing SHACL validation by using SPARQL queries [16].

One important language that SHACL is compared against is Shape Expressions (ShEx).
Both languages have their roots in the same W3C working group and share the goal
of describing RDF data for validation. However, they considerably differ in the way to
achieve this vision. SHACL describes rules that must be fulfilled and reports violations,
while ShEx describes the RDF graph more directly & compactly and reports the validated
nodes. SHACL therefore is similar to validation of XML using Schematron. Finally,
ShEx is a community group effort and not officially a W3C recommendation, whereas
SHACL Core is an official recommendation [27].

The idea of describing constraints on data graphs in the presence of updates on the
graph has already been studied before SHACL became an official recommendation in
2017. The question is if a set of constraints expressed using description logics is still
fulfilled after varying updates have been performed on the graph data. To answer such
questions, a technique that modifies description logic constraints to simulate updates on
graph-structured data has been proposed [12]. It has been shown that such problems can
be reduced to satisfiability of knowledge bases, and that satisfiability of knowledge bases
for an important description logic is NExpTime-complete [2]. This simulation technique
is significant for the thesis and a cornerstone for the update language and the technique
to capture the action effects that we plan to implement ourselves. It is pivotal to note
that validation of SHACL constraints under updates has not been studied yet.

The computational complexity of various problems around SHACL has been studied as
well. SHACL satisfiability is the problem „Is there a graph that validates the constraints?“
The satisfiability problem is undecidable for full SHACL. The problem if validation of
one set of constraints implies validation of another set of constraints is called SHACL
containment and, for full SHACL, undecidable as well [31] [30]. While validation of
some fragments of SHACL is tractable, validation of a fixed graph using full SHACL
is NP-complete, too [15]. [28] translate the W3C SHACL specification into description
logics and show soundness and completeness for restricted parts of it.

Several SHACL validator implementations are available. However, their capabilities are
significantly different. One implementation originates from a paper that uses SPARQL

5

1. Introduction

to validate SHACL constraints [16]. It supports only a limited subset of the SHACL
W3C recommendation. Among the missing features are at the time of writing classes,
which we need to use heavily [13]. The Python implementation [34] of Trav-SHACL [20]
does not support sh:or, which we need. A different implementation implements the W3C
recommendation using pure JavaScript [33]. The implementation that we will use is the
validator of the Apache Jena project. This validator supports all SHACL core constraint
and also SPARQL-based constraint components [6] [5].

Thesis structure

Chapter 2 In this chapter, we outline important notions of the RDF, SPARQL and
SHACL W3C recommendations.

Chapter 3 As existing SHACL formalizations are not expressible enough to perform the
static validation under updates, we use this chapter to present syntax & semantics
for an extended SHACL formalization.

Chapter 4 Here, we first present syntax & semantics for an update language that
formalizes updates on data graphs. This language is based on SHACL. Thereafter,
we propose a transformation of constraints to capture the effects of those actions.
In addition, we give examples about what this formalization can express.

Chapter 5 In this chapter, we prove that the transformation of constraints is correct,
and we provide examples for the technique.

Chapter 6 This chapter contains details about the implementation of the transformation
and experimental results based on two different data sets.

Chapter 7 The final chapter contains a summary about the results and ideas for future
work.

6

CHAPTER 2
Preliminaries

This chapter contains an explanation of the basic notions that are relevant for the
subsequent chapters. Specifically, this includes details about the Resource Description
Framework (RDF), SPARQL Protocol and RDF Query Language (SPARQL) and the
Shapes Constraint Language (SHACL). Furthermore, it explains some more advanced
ideas from the W3C recommendations that are relevant for or rather act as motivation
for later parts of this thesis.

2.1 RDF and SPARQL
The Resource Description Framework (RDF) has been designed to represent information
on the internet [17]. The first drafts turned into an actual recommendation by W3C in
1999. [27] An RDF graph is a set of triples like loves (jacob, charlie). Each triple has
a subject, a predicate, and an object and can be visualized as in Figure 2.1 [17]. All
three parts of the triple are Universal Resource identifiers (URIs), which usually look
like links on a web page [9]. An example for a URI is http://www.w3.org/1999/
02/22-rdf-syntax-ns#type. Within the thesis, we often abstract away from this.
Figure 1.1 from the previous chapter shows an example for a graph that can be formed
with the abstraction. The W3C recommendation uses the Turtle syntax to present RDF
graphs [26]. An example for a data graph in Turtle syntax can be seen in Listing 2.1.

Subject ObjectPredicate

Figure 2.1: Visualization of an RDF triple

7

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2. Preliminaries

Listing 2.1: A data graph in Turtle syntax [8]
1 <#green−gobl in >
2 r e l : enemyOf <#spiderman> ;
3 a f o a f : Person ; # in the context o f the Marvel un ive r s e
4 f o a f : name " Green Goblin " .

Data types are used for RDF literals and are represented by IRIs. While various data
type definitions are allowed, there is a list of recommended data types in the W3C
recommendation. This list includes common types like string, boolean, integer, float and
dateTime [17].

The SPARQL Protocol and RDF Query Language (SPARQL) is a query language for
RDF data [19]. Example 1 demonstrates what a SPARQL query and its result look like.

Example 1 ([22]). Suppose we have the data from Listing 2.2 and the query from Listing
2.3.

Listing 2.2: A data graph about a book
1 <http :// ex . com/book1> <http :// ex . com/ t i t l e > "SPARQL Tutor i a l " .

Listing 2.3: SPARQL query to find book titles
1 SELECT ? t i t l e
2 WHERE
3 {
4 <http :// ex . com/book1> <http :// ex . com/ t i t l e > ? t i t l e .
5 }

Then the result is the following table:

title
„SPARQL tutorial“

SPARQL queries can be performed at SPARQL endpoints. One such endpoint is
https://query.wikidata.org/. A slightly more complex example for a SPARQL
query that can be performed at that endpoint can be seen in Listing 2.4. It selects
instances (wdt:P31) or subclasses (wdt:P279) and coordinates (wdt:P625) of hospitals
(wd:Q16917) in Germany (wd:Q183). Syntactic details like the property path syntax
that is used in line 2 of Listing 2.4 are defined and more thoroughly explained in the
W3C SPARQL recommendation [22].

8

https://query.wikidata.org/

2.2. Shapes Constraint Language

Listing 2.4: A SPARQL query about hospitals in Germany.
1 SELECT DISTINCT ∗ WHERE {
2 ? item wdt : P31/wdt : P279∗ wd : Q16917 ;
3 wdt : P17 wd : Q183 ;
4 wdt : P625 ? geo .
5 }

Listings 2.5 and 2.6 show a feature that will act as motivation for a new idea in chapter
3. The query in Listing 2.5 selects hospitals, but filters out those that are in Germany.
Note that the same ?item appears in lines 2 and 4.

Listing 2.5: SPARQL query for hospitals that are not in Germany using filter
1 SELECT DISTINCT ∗ WHERE {
2 ? item wdt : P31/wdt : P279∗ wd : Q16917 ;
3 wdt : P625 ? geo .
4 FILTER NOT EXISTS { ? item wdt : P17 wd : Q183 }
5 }

The query in Listing 2.6 gives the same result as the query in Listing 2.5 using the minus
operator.

Listing 2.6: SPARQL query for hospitals that are not in Germany using minus
1 SELECT DISTINCT ∗ WHERE {
2 ? item wdt : P31/wdt : P279∗ wd : Q16917 ;
3 wdt : P625 ? geo .
4 MINUS {
5 ? item wdt : P31/wdt : P279∗ wd : Q16917 ;
6 wdt : P17 wd : Q183 ;
7 wdt : P625 ? geo .
8 }
9 }

2.2 Shapes Constraint Language

Various definitions from this thesis and specifically from Chapter 3 are inspired by ideas
from different documents related to the W3C. This section explains parts of the W3C
Shapes Constraint Language (SHACL) recommendation [17] that are of specific relevance
for us.

Listing 2.7 shows two syntactic details from the SHACL recommendation that are of
special importance for us.

9

2. Preliminaries

Listing 2.7: An example shape graph [26]
1 ex : PersonShape
2 a sh : NodeShape ;
3 sh : t a r g e t C l a s s ex : Person ;
4 sh : property [
5 sh : path ex : ssn ;
6 sh : maxCount 1 ;
7 sh : datatype xsd : s t r i n g ;
8] ;
9 sh : property [

10 sh : path ex : worksFor ;
11 sh : c l a s s ex : Company ;
12 sh : nodeKind sh : IRI ;
13] ;

First, using the token „a“ as a predicate is a shorthand for rdf :type in the Turtle syntax
[8]. Declaring rdf :type means that something is an instance of a class [10]. We will
introduce classes in Chapter 3

Second, it is interesting to compare the definition of targets between the W3C SHACL
recommendation and the formalization from Chapter 3. In Listing 2.7, the target nodes
are defined in line 3 using sh:targetClass. This means that the definition of targets happens
in the shapes graph. In Chapter 3, the constraints will be one set and the targets will be
another set.

2.2.1 Core Constraint Components
SHACL has different Core constraint components. Their goal is to capture the most
important use cases and requirements, while keeping the size of the language reasonable.
They include i.a. constraint components about the types of value nodes, cardinality or
logical constraint components. [26]

From the core constraint components, we first show some shape-based constraint compo-
nents. The keyword sh:path in shapes graphs is of particular importance.

A node shape is a shape in the shapes graph that is not the subject of a
triple with sh:path as its predicate. It is recommended, but not required, for
a node shape to be declared as a SHACL instance of sh:NodeShape [26].

Allowing to omit the declaration will turn out to be useful for the implementation. A
node shape declaration can be seen in line 3 of Listing 2.7.

A property shape is a shape in the shapes graph that is the subject of
a triple that has sh:path as its predicate. A shape has at most one value
for sh:path. Each value of sh:path in a shape must be a well-formed SHACL

10

2.2. Shapes Constraint Language

property path. It is recommended, but not required, for a property shape to
be declared as a SHACL instance of sh:PropertyShape. SHACL instances of
sh:PropertyShape have one value for the property sh:path [26].

We can see two occurrences of sh:path in Listing 2.7, and thus two property shapes, even
though the explicit declaration as sh:PropertyShape is missing.

Most constraint components use value nodes. Their definition has two cases [26]:

Node Shapes For each node shape, the value node is a set with the focus node as the
single member.

Property Shape The value nodes are the set of nodes in the data graph that can be
reached from the focus node with the value of the sh:path.

sh:property asserts that each value node has a given property shape [26] and it specifically
does so in Listing 2.7. Note that the brackets in Listing 2.7 denote blank nodes, or to be
precise a blankNodePropertyList [8].

The second important types of constraints, that are part of the W3C SHACL recom-
mendation core constraints, are value type constraint components. These constraint
components restrict the types of value nodes. There are three different types of them
[26]:

1. sh: class : Each value node is a SHACL instance of a given type. The values are IRIs.
These can be compared to the classes of the SHACL formalization of Chapter 3.

2. sh:datatype: Each value node is of a given datatype.

3. sh:nodeKind: Node kinds are IRI, blank node and literal. This component declares
that each value node is of a given node kind.

2.2.2 Node Expressions
Some features of node expression serve as motivation for the formalization of SHACL
in Chapter 3 and updates in Section 4.1. Node expressions are a feature that has been
proposed in the W3C working group note „SHACL Advanced Features“ from 2017. They
are not part of the SHACL W3C recommendation from 2017 [26]. Working group notes
are draft documents and must be considered work in progress [24]. There is a more
recent revision of this document called „SHACL Advanced Features 1.1“. It is a draft
community group report from 2021 [25].

Node expressions are declared as RDF nodes in a shapes graph. The idea of these
expressions is to start at the focus node and then obtain a set of nodes from it. Node
expressions can be combined. Therefore, we could, for example, first get all values of

11

2. Preliminaries

Expressions Syntax Semantics
Focus Node sh:this The list consisting of the current focus node.
Path Blank node with sh:path The values of a given property path.
Minus Blank node with

sh:minus and sh:nodes
The input nodes except those that are in
another "minus" list

Intersection Blank node with
sh:intersection

The intersection of two or more input node
lists.

Filter Blank node with
sh: filterShape

The sub-list of the input nodes that conform
to a given shape.

Table 2.1: Syntax and semantics for selected node expressions [25]

N
od

e
Ex

pr
es

sio
ns

Fo
cu

s
N

od
e

C
on

st
an

t
Te

rm
Ex

ist
s

If Fi
lte

r
Fu

nc
tio

n
Pa

th
In

te
rs

ec
tio

n
U

ni
on

M
in

us
D

ist
in

ct
M

in
M

ax
Su

m
G

ro
up

C
on

ca
t

O
rd

er
By

Li
m

it
O

ffs
et

SP
A

RQ
L

A
SK

SP
A

RQ
L

SE
LE

C
T

AF ✓ ✓ ✓ ✓ ✓ ✓ ✓
AF 1.1 ✓

Table 2.2: Comparison of available node expressions in SHACL Advanced Features
Working Group Note [26] and Draft Community Group Report [25]

a property of a focus node and then restrict the result set according to a second node
expressions. Later, the result sets can be used for expression constraints and SHACL rules,
which are both features that are – just like node expressions – in the „SHACL Advanced
Features“ working group note [24] but not in the SHACL recommendation [26]. Table 2.1
contains syntax and semantics for some node expressions that most closely resemble ideas
that the formalization from Chapter 3 adds on top of existing formalizations. Table 2.2
contains an exhaustive comparison of the available node expressions in the two versions
of the proposal.

Listing 2.8 contains a shapes graph example for a minus expression. By definition
„sh:minus returns all values of the property sh: children except those that are also values of
ex:sons.“ [25]. The value of a property refers to the object of the triple [26]. Consequently,
it’s the objects of the triples that are produced in Listing 2.8. This fits together with the
motivation that we stated for node expressions. Generally, dollar signs $ and question
marks ? in SPARQL code denote query variables, and it is possible to select a subset
of these query variables as output [22]. Additionally, in the proposal the $ denotes
the current focus which produces a list of RDF nodes [25]. We can compare this with

12

2.2. Shapes Constraint Language

the definition of focus nodes in table 2.1. Therefore, Listing 2.9 contains a SPARQL
expression of which the result is comparable to the node expression of Listing 2.8.

Listing 2.8: Shapes graph for a minus node expression [25]
1 [
2 sh : nodes [sh : path ex : c h i l d r e n] ;
3 sh : minus [sh : path ex : sons] ;
4] .

Listing 2.9: Comparable SPARQL expression for Listing 2.8 [25]
1 {
2 $ t h i s ex : c h i l d r e n ? r e s u l t .
3 MINUS {
4 $ t h i s ex : sons ? r e s u l t .
5 }
6 }

From the definitions we see that sh:and is as a core constraint component concerned
with the validation of shapes [26, sh:and] while sh: intersection is as a node expressions
concerned with selecting a set of nodes. In other words, minus expressions, intersection
expressions and generally node expressions exist to derive a set of nodes from a given
focus node, whereas sh:and exists for the core validation task.

It is possible to create even more advanced node expressions. For example, Listing 2.10
contains a node expression that creates a conditional.

Listing 2.10: Example for an if node expressions [25]
1 [
2 sh : i f [sh : e x i s t s [sh : path ex : spouse]] ;
3 sh : then " married " ;
4 sh : e l s e " not married " ;
5] .

Finally, node expressions are used in SHACL rules, which allow update on graphs. One
example is to infer for instances of ex:Rectangle for which ex:width equals ex:height that
they are also instances of ex:Square [24]. These features are an additional motivation for
our formalization of updates.

13

CHAPTER 3
Extended SHACL formalization

In this chapter, we introduce syntax and semantics for our SHACL formalization. We
take the formalization from [3] and extend the possibilities to express properties and
predicates. At the end of the chapter, we demonstrate in a few examples how these new
constructs can be used and what the formalization is able to express.

3.1 Syntax
Let I be the set of individuals. It is inspired by the Internationalized Resource Identifiers
(IRIs) in RDF [26]. In figures of graphs, such as for example Figure 3.1, we will denote
individuals with circles. Let L the set of literals. Literals denote i.a. numbers, dates, and
strings. Thus, literals possess a natural data type. Section 3.3.2 contains two examples
for this. In figures, for example Figure 6.4, we will denote literals with rectangles. Let C
be the set of classes. Individuals can belong to classes. In figures, we denote classes with
rectangles on top of individuals. This is denoted by unary atoms of the form B (c) where
B ∈ C and c ∈ I. Let O be the set of object property names. Object properties connect
individuals to other individuals. This is denoted by binary atoms of the form p (c, d)
where p ∈ O and c, d ∈ I. Let D be the set of data property names. Data properties
connect individuals to literals. This is denoted by binary atoms of the form d (c, l) where
d ∈ D, c ∈ I and l ∈ L. A data graph G is a finite set of unary and binary atoms. [3]

Example 2. This is a valid data graph:

G = {Human (joanne) , worksFor (joanne, acme) , age (joanne, 52)}

with joanne, acme ∈ I, 52 ∈ L, Human ∈ C, worksFor ∈ O, and age ∈ D.

Let S be the set of shape names and V be the set of variables. The sets I, L, C, O,
D, S and V are countably infinite and mutually disjoint. It is especially important to

15

3. Extended SHACL formalization

distinguish between shape names and classes. A shape atom is an expression of the form
s(a) with s ∈ S and a ∈ I. Then atoms B (c) differ from shape atoms s(a) because S is
disjoint from C.

We define (basic) object properties r and object path expressions E according to the
following syntax:

r, r′ ::= p | (c, d) | r− | r ∪ r′ | r ∩ r′ | r \ r′

E, E′ ::= r | E ∪ E′ | E · E′ | E∗

where p ∈ O, and c, d ∈ I. We call p− the inverse object property name of p and r− the
inverse basic object property of r. We define the structural complexity of a path expression
as the number of operators ∗, ·, ∪ that construct it. This does not count the potentially
existing operators ∪, ∩ and \ within each basic object property r.

We define shape expressions (or simply shapes) according to the following syntax [3,
p. 13]:

ϕ, ϕ′ ::= ⊤ | B | t | ϕ ∧ ϕ′ | ¬ϕ |≥n E.ϕ | EQ E, E′ | ⊛ (d, ψ) | s

where B ∈ C, t ∈ I∪V, d ∈ D, ψ ∈ D∪L, s ∈ S, n is a positive integer, E and E′ are path
expressions, and ⊛ is a binary predicate . Section 3.3 explains the motivation behind the
new expression ⊛ (d, ψ). Following description logics, we call a shape expression concept
expression or simply concept if it does not contain any shape names s ∈ S. We call a
shape (or concept) ground if t ∈ I. We may use infix notation for predicates like < and
≥.

Example 3. These are two valid shape expressions:

x ∧ Human∧ ≥2 ((attends ∪ listensTo) · teachedAt) . (University ∨ College)
≥3 (dislikes \ hates) . (Adult ∧ Serious) ∧ EQ (admires ∪ loves, likes) ∧ (age > 17)

Allowing set intersection & difference in object properties is a new contribution that is
required for the transformation from Section 4.2. Like [3, p. 13], we will write ϕ ∨ ϕ′

instead of ¬(¬ϕ ∧ ¬ϕ′), ϕ → ϕ′ instead of ¬ϕ ∨ ϕ′ or rather ¬(ϕ ∧ ¬ϕ′), ∃E.ϕ instead of
≥1 E.ϕ, ∀E.ϕ instead of ¬ ≥1 E.¬ϕ .

A constraint is an expression s ↔ ϕ where s ∈ S and ϕ is a shape expression. When a
shape atom s(a) is designated as target then the shape s must be validated at individual
a. A shape document is a pair (C, T) where C is a set of constraints and T is a set of
targets. Each shape name appearing in C appears exactly once on the left-hand side of a
constraint in C [3, p. 13]. The following is an example for a constraint

AdultShape ↔ Person ∧ (age > 18)

16

3.2. Semantics

⊤ I = V (I) ¬ϕ I = V (I) \ ϕ I

a I = {a} ϕ1 ∧ ϕ2
I = ϕ1

I ∩ ϕ2
I

B I = {a | B (a) ∈ I} ϕ1 ∨ ϕ2
I = ϕ1

I ∪ ϕ2
I

s I = {a | s(a) ∈ I}
≥n E.ϕ I = a | (a, b) ∈ E I and b ∈ ϕ I ≥ n

EQ E, E′ I = a | ∀b : (a, b) ∈ E I iff (a, b) ∈ E′ I

⊛ (d, ψ) I =

 a | ∀l ∈ L

(a, l) ∈ d I =⇒ ⊛ (l, ψ)

if ψ ∈ L

a | ∀l, l′ ∈ L

(a, l) ∈ d I ∧ (a, l′) ∈ ψ I =⇒ ⊛ (l, l′)

if ψ ∈ D

Table 3.1: Unary part of definition of the evaluation function · I [3, p. 14] [4, p. 1572]
with I an assignment, a, b ∈ I, l ∈ L, B ∈ C, l ∈ L, d ∈ D, s ∈ S, ϕ, ϕ1, ϕ2 shapes, E, E′

object path expressions, ⊛ a predicate, ψ ∈ D ∪ L

3.2 Semantics
Like [3], we follow the semantic from [15] which is known as supported-model semantic
[4]. Evaluation is done with a function · I that maps shape expressions ϕ to a set of
individuals, and it maps basic object properties r and path expressions E to a set of
pairs of individuals or literals. The definition of · I can be seen in Tables 3.1 and 3.2.
By this definition, the first shape expression in Example 3 describes some human that
listens to or attends something (like a lecture) that is taught at a university or college.
Section 4 contains more examples that illustrate the function · I . For instance, Example
21 demonstrates how shapes of the form EQ(E, E′) are evaluated under actions. We
denote with V (I) a finite subset of I that contains the individuals of G. This means that
even if G = ∅, then some individuals may still be present in V (I). We will motivate and
refine this definition in Section 4.3, as further information about updates on graphs are
required for it.

Let L be a set of shape atoms such that a occurs in V (I) for each s(a) ∈ L. Then an
assignment for a data graph G is defined as set I = G ∪ L. An assignment I for G is a
model of a constraint s ↔ ϕ if ϕ I = sI , for which we write I |= s ↔ ϕ. Furthermore, I
is a model of C if it is a model for all constraints in C, for which we write I |= C. The
graph G validates (C, T) if and only if there exists an assignment I = G ∪ L for G such
that (i) I is a model of C, and (ii) T ⊆ L [3, p. 13]. Examples 6 and 9 demonstrate
validation of a shape document.

Considering the convention in Section 3.1, we can furthermore evaluate ∀E.ϕ I = {a |
∀b : (a, b) ∈ E I implies b ∈ ϕ I} [4]. The ◦ denotes the usual composition of relations.
This composition of relations is – as part of the evaluation of selected path expressions –
demonstrated in Example 4.

17

3. Extended SHACL formalization

(a, b) I = {(a, b)} E ∪ E′ I = E I ∪ E′ I

p I = {(a, b) | p (a, b) ∈ I} E ∩ E′ I = E I ∩ E′ I

p− I = {(a, b) | p (b, a) ∈ I} E \ E′ I = E I \ E′ I

d I = {(a, l) | d (a, l) ∈ I} E · E′ I = E I ◦ E′ I

E∗ I = {(a, a) | a ∈ V (I)} ∪ E I ∪ E · E I ∪ . . .

Table 3.2: Binary part of definition of the evaluation function · I [3, p. 14] [4, p. 1572]
with I an assignment, a, b ∈ I, l ∈ L, p ∈ O, d ∈ D, s ∈ S, E, E′ object path expressions.

Example 4. Let G = {likes (a, b) , likes (b, c) , loves (a, c)}. Then by definition

likes ∪ loves− G = {(a, b), (b, c)} ∪ {(c, a)}
likes · loves G = {(a, b), (b, c)} ◦ {(a, c)} = {}
likes · likes G = {(a, b), (b, c)} ◦ {(a, b), (b, c)} = {(a, c)}

likes · likes G · likes G = {(a, c)} ◦ {(a, b), (b, c)} = {}
likes∗ G = {(a, a), (b, b), (c, c)} ∪ {(a, b), (b, c)} ∪

{(a, c)} ∪ {} ∪ . . .

We continue with an observation that will be useful later on. Let a ∈ G be an individual,
s a shape name and I = G ∪ L an assignment. It holds a ∈ s I if and only if s(a) ∈ L
for any s. This is because G does not contain any shape names s or shape atoms s(a)
by definition, whereas L contains only shape atoms s(a). Consider Example 5 for an
illustration.

Example 5. At some points, we can replace I = G ∪ L with just L or G. Let
AdultShape ↔ ReasonableShape ∧ Adult. Then AdultShape I = {a | AdultShape(a) ∈
I} = {a | AdultShape(a) ∈ L}. Furthermore,

ReasonableShape ∧ Adult I = ReasonableShape I ∩ Adult I

= {a | ReasonableShape(a) ∈ I} ∩ {a | Adult (a) ∈ I}
= {a | ReasonableShape(a) ∈ L} ∩ {a | Adult (a) ∈ G}.

3.3 Examples
3.3.1 Properties
It is possible to do various property related operations using existing SHACL formaliza-
tions. Consider the data graph

fliesIn (bird, sky) , swimsIn (fish, sea) , climbsIn (ape, tree)
movesIn (bird, sky) , movesIn (fish, sea) , movesIn (ape, tree)

18

3.3. Examples

bird fish ape

sky sea tree

fliesIn movesIn
swimsIn movesIn

climbsIn movesIn

Figure 3.1: Moving animals demonstrating property evaluation

which is also displayed in Figure 3.1. The shapes in Equations 3.1 up to 3.6 are evaluated
using this data graph. Two examples that have already been possible to express and
evaluate are Equations 3.1 and 3.2.

∃movesIn.⊤ ∧ ¬∃fliesIn.⊤ G = {fish, ape} (3.1)
∃movesIn−.⊤ ∧ ¬∃fliesIn−.⊤ G = {sea, tree} (3.2)

As introduction, we evaluate a part of them with the semantics from existing literature [3]:
¬∃fliesIn−.⊤ is evaluated as fliesIn G = {(bird, sky)} then fliesIn− G = {(sky, bird)}
then ∃fliesIn−.⊤ G = {sky} and finally ¬∃fliesIn−.⊤ G = {sea, tree, bird, fish, ape}.

∃ (movesIn ∩ fliesIn) .⊤ G = {bird} (3.3)
∃ (movesIn ∩ fliesIn)− .⊤ G = {sky} (3.4)

∃ (movesIn \ fliesIn) .⊤ G = {fish, ape} (3.5)
∃ (movesIn \ fliesIn)− .⊤ G = {sea, tree} (3.6)

Then for the shape in Equation 3.3 we get movesIn G = {(bird, sky) , (fish, sea) , (ape, tree)}
and movesIn ∩ fliesIn G = {(bird, sky)} and finally ∃ (movesIn ∩ fliesIn) .⊤ G = {bird}.
For the shape in Equation 3.5 we get ∃ (movesIn \ fliesIn) .⊤ G = {fish, ape}. Then
using the inversion operator gives situations like in Equations 3.4 and 3.6. Evaluating
shapes of the form E \ E′ and E ∩ E′ like in Equations 3.3 to 3.6 is a new contribution.

3.3.2 Literals and predicates
Consider the data graph in Listing 3.1 and the shapes graph in Listing 3.2. In this example,
we see that numbers are used and that comparisons with the property maxInclusive happen.
Motivated by the fact that the SHACL w3C recommendation allows literals and data
types [26], we also want to treat numbers as a more concrete thing than an IRI.

19

3. Extended SHACL formalization

Listing 3.1: Data graph with literals
1 <https : // example . com/ emily> a <http :// schema . org /Person> ;
2 <http :// schema . org / sa la ry > "3000"^^ xsd : i n t e g e r ;
3 <http :// schema . org / sa la ry > "4000"^^ xsd : i n t e g e r ;
4 <http :// schema . org /age> "55"^^ xsd : i n t e g e r ;
5 <http :// schema . org /name> " Emily "^^ xsd : s t r i n g .

Listing 3.2: Shapes graph about salary and age
1 @pref ix sh : <http ://www. w3 . org /ns/ shac l#> .
2 @pref ix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#> .
3 @pref ix schema : <http :// schema . org/> .
4
5 schema : Person
6 a r d f s : Class , sh : NodeShape ;
7 sh : property
8 [
9 sh : path schema : s a l a r y ;

10 sh : minCount 2 ;
11 sh : maxInc lus ive 3500 ;
12] ,
13 [
14 sh : path schema : age ;
15 sh : minCount 1 ;
16] ;
17 .

We propose a few data types that are natural in this context:

Integers With this data type, it is possible to express equality and inequality between
numbers. Therefore, we need the predicates < and =.

Strings The second data type is about strings and inspired by the String-based con-
straint components in the SHACL recommendation [26]. With the „maxlength“
(minlength) predicate of this data type, it is possible to express if some integer is
an upper (lower) limit for the string length. The „pattern“ predicate shows if a
literal matches a regular expression.

The evaluation ⊛(d, ψ) I is done in two parts. The first case is with ψ ∈ L a literal.
The intention of this is to enable comparison of data with a literal value that is chosen in
the shape. The evaluation in this case is {a | ∀l ∈ L((a, l) ∈ d I =⇒ ⊛ (l, ψ))}. Such
evaluations are demonstrated in Examples 6, 7, 8, 9, and 10.

Example 6. With the new syntax, we can find all persons with age higher than 18. Let
G = {Person (robert) , age (robert, 19) , Person (mia) , age (connor, 17) , age (connor, 20)}.

20

3.3. Examples

We have (age > 18) I = c | ∀l ∈ L

(c, l) ∈ age I =⇒ (l > 18)

= {robert, mia}

where mia ∈ (age > 18) I because of vacuous truth.

We demonstrate how this can be used within a complete evaluation process. Let
(C, T) be a shape document with C = {AdultShape ↔ Person ∧ (age > 18)} and T =
{AdultShape(robert)}. Let I = G∪L where L = {AdultShape(robert), AdultShape(mia)}
be an assignment. Then AdultShape I = {robert, mia} and Person ∧ (age > 18) I =
Person I ∩ age > 18 I = {robert, mia} ∩ {robert, mia}. It follows that G validates

(C, T) because I is an assignment for G such that I is a model of C and T ⊆ L.

Example 7. Let G = {ssn (lily, 123) , salary (lily, 5000) , ssn (james, 456)} be a data
graph. Then the set salary I = {(lily, 5000)} has a single pair as element. The statement
(lily, 5000) ∈ salary I ∧ (5000 > 3500) is true. For all other l′ ∈ L holds (lily, l′) /∈
salary I . Thus lily ∈ (salary > 3500) I . For all other individuals a ∈ V (G) \ {lily}

and literals l ∈ L holds that (a, l) /∈ salary I . Thus, a ∈ (salary > 3500) I for all those,
too. Consequently, (salary > 3500) I = V (G).

Example 8. We want to express that each individual salary of a person is at most 4500.
Let

G2 =
salary (lauren, 3000) , salary (lauren, 4000) ,

salary (ethan, 2000) , salary (ethan, 5000) , salary (lily, 3500)

We evaluate salary ≤ 4500 I = {lauren, lily}. Note that we cannot express something
like „there are at least two salaries“ with this property.

We can also consider some SHACL string-based constraint components. Example 9 is
inspired by the sh:minLength property from the W3C recommendation [26].

Example 9. We want to express that a password has length at least 12 [26]. Let

G = {password (user1, length7) , password (user2, length13abcde)}.

Then, by definition minlength (password, 12) I = {c | ∀l ∈ L((c, l) ∈ password I =⇒
minlength (l, 12))} = {user2}.

Let (C, T) be a shape document with C = {StrongShape ↔ minlength(password, 12)}
and T = {StrongShape(user2)}. Let I = G ∪ L where L = {StrongShape(user2)} is an
assignment. Then StrongShape I = {user2} and minlength(password, 12) I = {user2}.
It follows that G validates (C, T) because I is an assignment for G such that I is a model
of C and T ⊆ L.

We can consider an idea that is similar to SHACL property pair constraint components.
Example 10 is inspired by sh:equals property from the W3C recommendation [26].

Example 10. We want to express that first name and given name are the same [27]. Let

G =
firstName (person1, alice) , givenName (person1, alice) ,

firstName (person2, bob) , givenName (person2, robert)

21

3. Extended SHACL formalization

and let „eq“ be a binary predicate. Then eq (firstname, givenname) I = {c | ∀l, l′ ∈
L((c, l) ∈ firstName I ∧ (c, l ′) ∈ givenName I =⇒ eq (l, l ′))} = {person1} as it does
not hold that eq (bob, robert)

The second case is with ψ ∈ D a data property. The purpose of this is to enable comparison
of one value with a value that is given in a different part of the data (and not the shapes).
The evaluation for this case is a | ∀l, l′ ∈ L

(a, l) ∈ d I ∧ (a, l′) ∈ ψ I =⇒ ⊛ (l, l′)

.

Such a case is demonstrated in Example 11.

Example 11. We can make use of a second data property instead of a literal. We want
to express that the salary is smaller than some maximum salary. Let

G =
salary (lauren, 3000) , salary (lauren, 4000) ,

maxSalary (lauren, 5000) , maxSalary (lauren, 6000) ,

then (salary ≤ maxSalary) I = {lauren} because we can use the semantics like this

∀l, l′ ∈ L

(lauren, l) ∈ salary I ∧ lauren, l ′ ∈ maxSalary I =⇒ l ≤ l′

3.4 Complexity
The combination of conjunction, negation and existential quantification makes regular
SHACL validation NP-complete in the size of the graph and constraints. Forbidding
negation would be sufficient to regain tractability [15].

[15] allows full SPARQL property paths as defined in the SPARQL recommendation [22].
SPARQL property paths contain negation as well as concatenation, and the Kleene star
[22]. This makes no difference for the complexity results, as lower bound proofs can be
done without using property paths [14].

From this, we see that our extension does not change the definitions that determine the
complexity in [15]. Thus, SHACL validation is NP-complete for our formalization as well.

What if we stepped away from a fixed graph? This corresponds to the SHACL satisfiability
problem from [30], which is also called static verification problem [12]. Concatenation and
Kleene star are not allowed in actions of the forms α = p ⊕ r and α = p ⊖ r. Therefore,
when only these actions are used, satisfiability remains decidable, but not tractable
[12]. However, we also have actions of the forms A ⊕ ϕc and A ⊖ ϕc with ϕc concepts.
Both ≥n E.ϕ and EQ (E, E′) with E path expressions are allowed in concepts. As path
expressions have concatenation and Kleene star, it follows that SHACL satisfiability is
undecidable for such actions [12].

22

CHAPTER 4
Update Language and Static

Validation

4.1 Update Language
The following update language expresses changes in data graphs. We may call these
updates actions, to distinguish them from other updates or rather modifications that we
will introduce in Section 4.2. The syntax idea is after [2] and [11].

Definition 1 ([2]). Basic actions β and (complex) actions α are defined by the following
grammar:

β ::= (A ⊕ ϕc) | (A ⊖ ϕc) | (p ⊕ r) | (p ⊖ r)
α ::= ϵ | (β · α)

where A ∈ C, p ∈ O, ϕc are non-ground concepts, r are non-ground basic object properties,
and ϵ denotes the empty action. ϕc and r may take individuals only from V (I). Function
composition denotes successive action execution.

Example 12. Basic actions allow expressing updates like, for example, α1 = Human ⊕
Student, α2 = Adult ⊖ (age < 18), α3 = studiesFor ⊕ takesExam, α4 = poor ⊕ (salary <
minimumSalary), α5 = enrolledIn ⊕ (x , y), α6 = Student ⊕ x . The following action is a
complex action: α7 = enrolledIn ⊕ (x, y) · enrolledIn ⊖ (x, 1375).

The semantics idea is similar to [2] and [11]. The first step to capture the effects of
actions is grounding the actions.

Definition 2. A substitution σ is a function from V to I. For an action α we denote
with σ(α) the result of replacing every occurrence of variable x by the individual σ(x).
An action is ground if it has no variables.

23

4. Update Language and Static Validation

We can see an example for a substitution in Example 19. Suppose in the following that a
substitution σ is given for all t, t1, t2 ∈ V. Then concepts ϕc and basic object properties
r are evaluated using Table 3.1 and 3.2.

Definition 3. Let G be a data graph, α be a ground (complex) action and Sα a mapping
from graphs to graphs. The result of applying α or rather the mapping Sα to G is the
data graph Gα such that

Gϵ = Sϵ(G) = G

G(A⊕ϕc)·α = S(A⊕ϕc)·α(G) = Sα

G ∪ A (v) | v ∈ ϕc

G

G(A⊖ϕc)·α = S(A⊖ϕc)·α(G) = Sα

G \ A (v) | v ∈ ϕc

G

G(p⊕r)·α = S(p⊕r)·α(G) = Sα

G ∪ p (a, b) | (a, b) ∈ r G

G(p⊖r)·α = S(p⊖r)·α(G) = Sα

G \ p (a, b) | (a, b) ∈ r G

We may write I for the assignment I = G ∪ L where G is the original data graph.
Furthermore, we may write Iα for the assignment Iα = Gα ∪ L where Gα is the result of
applying the mapping Sα to G for action α. It is important to observe that L is equal in
I and Iα.

Example 13. With G = {ssn2 (a, 2341) , ssn3 (a, 2341)} and α = ssn1 ⊕ ssn2 ∩ ssn3 we
get that Gα = G ∪ {ssn1 (a, 2341)} because ssn2 ∩ ssn3 I = {(a, 2341)} ∩ {(a, 2341)}

4.2 Static validation
The update language from Section 4.1 with actions α formalizes changes on data graphs.
In contrast, the following definitions capture the effects of those updates by modifying the
constraints. The distinction of updates on the data graphs and updates on the constraints
will be of particular importance for the transformation implementation in Chapter 6.

We need a transformation TR↔
α that takes a set of constraints C and actions α and

rewrites them into a new set of constraints Cα, which we denote as TR↔
α (C) = Cα. For

this transformation, it must hold that

Gα validates (C, T) ⇐⇒ G is valid on (Cα, T)

Definition 4 ([2]). Given a constraint s ↔ ϕ we write s ↔ ϕϕ1←ϕ2 to denote the
constraint where each occurrence of ϕ1 is replaced by ϕ2. Let α be a ground (complex)
action. Suppose that α and ϕ take individuals only from V (I). We define a mapping
TR↔

α from constraints to constraints

TR↔
α (s ↔ ϕ) = s ↔ TRα(ϕ)

24

4.2. Static validation

and the main mapping TRα from shape expressions to shape expressions

TRϵ(ϕ) = ϕ

TR(A⊕ϕc)·α(ϕ) = (TRα (ϕ))A←A∨ϕc

TR(A⊖ϕc)·α(ϕ) = (TRα (ϕ))A←A∧¬ϕc

TR(p⊕r)·α(ϕ) = (TRα (ϕ))p←p∪r

TR(p⊖r)·α(ϕ) = (TRα (ϕ))p←p\r

where a is a constant, and we use A ∨ ϕc for ¬ (¬A ∧ ¬ϕc).

Given a set C of constraints, we write TR↔
α (C) to denote the set of constraints where

TR↔
α is applied to each constraint s ↔ ϕ ∈ C. Similarly, we write Cϕ1←ϕ2 to denote

the set of constraints where each occurrence of ϕ1 is replaced by ϕ2 in each constraint.
Furthermore, we write ϕα to denote TRα(ϕ). As shorthand, we will write Eα to denote
the same for path expressions with TRα(E) defined analogously to TRα(ϕ).

Example 14 is a basic demonstration of capturing the effects of actions.

Example 14. Suppose we have

G = {Student (ann)} T = {Person(ann)}
α = Human ⊕ Student C = {Person ↔ Human}

Then

Gα = G ∪ Human (v) | v ∈ Student G = {Student (ann) , Human (ann)}
Cα = {Person ↔ Human ∨ Student}

It holds that G validates (Cα, T) if and only if Gα validates (C, T) .

In Example 15, we can quickly see that the role of the left and right part of actions
significantly differs.

Example 15. Suppose we have

G = {Professor (Olivia) , Postdoc (Liam) , Employee (Olivia) , Employee (Liam)}

Then

GPostdoc⊖Employee = G \ Postdoc (v) | v ∈ Employee G

= {Professor (Olivia) , Employee (Olivia) , Employee (Liam)}
GEmployee⊖Postdoc = G \ Employee (v) | v ∈ Postdoc G

= {Professor (Olivia) , Employee (Olivia) , Postdoc (Liam)}

25

4. Update Language and Static Validation

After having seen the relevance of the two parts of actions in Example 15, we consider
the impact of the order within a sequence of actions in Example 16. This new example is
an extension of Example 14. It is crucial to notice that the transformation or rather the
substitutions are in reversed order with respect to the actions.

Example 16. Suppose that we have

G = {Student (charlie) , Human (george)} T = {s(charlie), s(george)}
α = Human ⊕ Student · Mammal ⊕ Human C = {s ↔ Human ∧ Mammal}

We abbreviate Human. . . H, Mammal. . . M, Student. . . S, charlie. . . c, george. . . g. Then

Gα = S(H⊕S)·M⊕H = SM⊕H(G ∪ {H(v) | v ∈ S G) = {S (c) , H (c) , M (c) , H (g) , M (g)}
Cα = {TR(H⊕S)·M⊕H(H ∧ M)} = {(TRM⊕H(H ∧ M))H←H∨S}

= {((H ∧ M)M←M∨H)H←H∨S} = {H ∨ S}

Then G validates (Cα, T) and also Gα validates (C, T) .

In contrast, if we had defined that the substitution were in the same order as the actions
we would get ((H ∧ M)H←H∨S)M←M∨H = H ∨ (M ∧ S) and then G would not validate
(Cα, T) while Gα would still validate (C, T) .

Example 17. This example demonstrates that the transformation requires the inverse
to be defined not only on object property names, but also on basic object properties. Let
G = {q1 (a, b) , q2 (b, a)}. Then the action α = p ⊕ (q−

1 ∩ q2) gives Gα = G ∪ {p (b, a)} as
q−

1 ∩ q2 G = {(b, a)} ∩ {(b, a)}. Let ϕ = ∃p−.⊤ be a shape expression. Directly applying
the transformation gives TRα(ϕ) = ∃(p ∪ (q−

1 ∩ q2))−.⊤.

Example 18 shows how properties in an action work. It is an extension of Figure 1.1.

Example 18. Let

G = {q (a, b) , p (b, a) , q (b, c)} T = {s(a), s(b), s(c)}
α = p ⊕ q C = {s ↔≥1 q.⊤}

Gα = G ∪ {p (a, b) , p (b, c)}

G is displayed in Figure 4.1 and Gα in Figure 4.2. To find Cα we transform

Cα = {TR↔
α (s ↔≥1 q.⊤)} = {s ↔ TRα (≥1 q.⊤)} = {s ↔≥1 (q ∪ p) .⊤}

Then it holds that G does not validate (Cα, T) because of c, but also Gα does not validate
(C, T) because of c.

26

4.3. Examples

a cbq

p
q

Figure 4.1: Original graph G for Example 18

a cbq,p

p
q,p

Figure 4.2: Updated graph Gα for Example 18

x = a x

A B

(a) Original graph G

a b

A, B B

(b) Updated graph Gα

Figure 4.3: Graphs for Example 19

4.3 Examples
In this section, we demonstrate the static validation technique with several examples.

Example 19 shows how a variable can be used.

Example 19. The unary atom B (b) is already in G and choosing σ(x) = b would
attempt to add it another time. Thus, choose σ(x) = a.

G = {A (a) , B (b)} T = {s(a)}
α = B ⊕ x C = {s ↔ A ∧ B}

Gα = G ∪ {B (a)}
G is displayed in Figure 4.3a and Gα in Figure 4.3b. Then

Cα = TR↔
B⊕a (s ↔ A ∧ B) = {s ↔ TRB⊕a (A ∧ B)} = {s ↔ A ∧ (B ∨ a)}

We show that G validates (Cα, T). Consider the assignment I = G∪L with L = T . Then
T ⊆ L and s I = {a}. Furthermore, A ∧ (B ∨ a) I = {a} ∩ ({b} ∪ {a}) = {a}. Then
I |= Cα because s I = A ∧ (B ∨ a) I . We show that Gα validates (C, T). Consider the
assignment Iα = Gα ∪ Lα with Lα = T . Then T ⊆ Lα and s Iα = {a}. Furthermore,
A ∧ B Iα = {a} ∩ {a, b} = {a}. Then Iα |= C because s I = A ∧ B I .

Example 20 demonstrates adding a property name to a pair of individuals.

27

4. Update Language and Static Validation

a b c d
p p

Figure 4.4: Original graph G for Example 20.

a b c d
p p p

Figure 4.5: Updated graph Gα for Example 20.

Example 20. Let

G = {p (a, b) , p (c, d)} T = {s(a), s(b), s(c)}
α = p ⊕ (b, c) C = {s ↔≥1 p.⊤}

Gα = G ∪ {p (b, c)}

G is displayed in Figure 4.4 and Gα in Figure 4.5. To find Cα we transform

Cα = {TR↔
α (s ↔≥1 p.⊤)} = {s ↔ TRα (≥1 p.⊤)} = {s ↔≥1 (p ∪ (b, c)) .⊤}

G validates (Cα, T) because there is the assignment I = G ∪ L with L = T such that
I |= Cα because s(b) holds as Cα has p ∪ (b, c) as property. In addition, Gα validates
(C, T) because there is the assignment I = G ∪ L with L = T such that I |= C.

Example 21 demonstrates how shapes of the form EQ(E, E′) are evaluated under actions
on constants.

Example 21. Let α = loves ⊕ ((c, d) ∪ (e, f)), L arbitrary and Iα = Gα ∪ L.

G = {loves (a, b) , likes (a, b) , likes (c, d) , likes (e, f)}
Gα = G ∪ {loves (c, d) , loves (e, f)}

ϕ = EQ (loves, likes)
ϕp←p∪r = EQ (loves ∪ (c, d) ∪ (e, f) , likes)

In Example 21, p is loves and (c, d) ∪ (e, f) is r. Evaluating on the original assignment I
with the original shape gives just ϕ I = {a}. However, evaluating the original shape
on the updated assignment Iα gives ϕ Iα = {a, c, e}. Then, evaluating the transformed
shape on the original assignment also gives ϕp←p∪r I = {a, c, e}.

We now consider the motivation for the definition of V (I). One common definition for
V (I) or rather V (G) is to denote the set of individuals appearing in G [3]. Thus, our

28

4.3. Examples

definition of V (I) should at least include all those individuals. However, actions can
add new individuals to the set of individuals occurring in G, and they can also remove
individuals from it. This can be seen in Example 22. Constraints may contain individuals
that are not present in the original data graph G in addition.

Example 22. Let G = {A (a)}, α1 = A ⊖ a, and α2 = A ⊕ b. Then Gα1 = {} and
Gα2 = {A (a) , A (b)}. After each action, the set of individuals of the new graph differs
from the set of individuals of the original graph.

We want to be able to express constraints that take the updates into account as well. In
other words, we do not restrict that every individual that occurs in C or T must also
occur in G. [28] notices that the W3C SHACL recommendation [26] does not define if
explicitly enumerated target nodes that are missing in the data graph should result in an
error. Example 23 demonstrates what we can express without the restriction and the
motivation for the definition of V (I).

Example 23. Let G = {A (a)}, α = A ⊕ b, C = {s ↔ ⊤}, and T = {s(b)}. By
the definition of the transformation holds Cα = C. By action definition holds Gα =
{A (a) , B (b)}.

What if we had defined V (I) to be just the individuals in G? Certainly, s(b) ∈ L is
required for G to validate (Cα, T) because T ⊆ L must hold. However, b cannot be an
element of ⊤α

I = V (I) = {a} with this definition.

In contrast, if we allow the nodes of the actions and constraints to silently be present
in V (I) the validation works as intended. First, G validates (Cα, T) because there is
assignment I = G ∪ {s(a), s(b)} such that ⊤α

I = V (I) = s I = {a, b}. Second, Gα

validates (C, T) because there is assignment J = Gα ∪ {s(a), s(b)} such that ⊤ J =
V (J) = s J = {a, b}. Thus, with the new definition of V (I), our goal that Gα validates
(C, T) if and only if G validates (Cα, T) is fulfilled in this example.

29

CHAPTER 5
Correctness

Our goal is to prove that Gα validates (C, T) if and only if G validates (Cα, T). To
achieve this, we will first show some basic properties that will facilitate the later proofs.
Then, Lemma 2 will be an essential result about arbitrary shape expressions under a
single update. In Theorem 1 we will step from basic actions β that perform only one
update to complex actions α that allow a sequence of updates. Finally, Theorem 2 will
be the final result.

We start with an observation about basic object properties that we will use as base case
for Lemma 1. Roughly put, the observation is that our goal that Gα validates (C, T) if
and only if G validates (Cα, T) holds for basic object properties under one specific action
on properties. Recall that we said that we may write Iα for the assignment Iα = Gα ∪ L
where Gα is the result of applying the mapping Sα to G for action α in Section 4.1.

Claim 1. Let r′ be a basic object property, β = p ⊕ r a basic action, I an assignment.
Then r′ Iβ = r′

p←p∪r
I .

Proof. Proof by induction over the structure of r′.

Base case For the base case we consider r′ to be an object property name symbol, the
inverse of an object property name symbol, or a pair of individuals.

• Suppose that r′ is an object property name symbol. Then either r′ = p or r′ ̸= p.
Suppose r′ = p. Then r′ Iβ = p Iβ . The evaluation function · Iβ maps basic
object properties like r′ to pairs of individuals. Then by assumption of Iβ we
can separate p Iβ = {(a, b) | p (a, b) ∈ Iβ} into the union of two sets of pairs
of individuals, namely {(a, b) | p (a, b) ∈ Iβ} = {(a, b) | p (a, b) ∈ G} ∪ {(a, b) |
(a, b) ∈ r I}. By definition {(a, b) | p (a, b) ∈ G} = p G = p I and {(a, b) |

31

5. Correctness

(a, b) ∈ r I} = r I . By the semantics in Table 3.2 holds p I ∪ r I = p ∪ r I .
As p ∪ r = pp←p∪r = (r′)p←p∪r we get p ∪ r I = (r′)p←p∪r I and thus in total
r′ Iβ = (r′)p←p∪r I as desired.

If r′ ̸= p then r′ is still some basic object property, say r′ = q, because we
are in the base case. Then qp←p∪r = q. Then by the semantics in Table 3.2
qp←p∪r I = q I . Thus, it remains to show that q Iβ = q I . By semantics

of actions holds Gβ = G ∪ {p (a, b) | (a, b) ∈ r G}. This means that the action
only adds binary atoms that have p as predicate. Thus {(a, b) | q (a, b) ∈ G} =
{(a, b) | q (a, b) ∈ Gβ} and consequently by definition of · I and assignments holds
q I = q Iβ . Then by replacing our shorthand q by r′ and our previous result we

have again r′ Iβ = (r′)p←p∪r I as desired.

• Suppose that r′ is the inverse of an object property name symbol. Then there is
some object property name q ∈ O such that r′ = q−. Then either q = p or q ̸= p.

Suppose q = p. Then r′ Iβ = q− Iβ = p− Iβ = {(a, b) | q (b, a) ∈ Iβ}. The
evaluation function · Iβ maps basic object properties like r′ to pairs of individuals.
Then by assumption of Iβ we can separate the last set into the union of two sets of
pairs of individuals, namely {(a, b) | q (b, a) ∈ Iβ} = {(a, b) | q (b, a) ∈ G} ∪ {(a, b) |
(b, a) ∈ r I}. By definition of · I holds {(a, b) | q (b, a) ∈ G} = p− G = p− I .
As basic object properties are trivial cases of object path expressions, it follows
that we can evaluate a basic object property r− like an inverted object property
name p− in Table 3.2. Then {(a, b) | (b, a) ∈ r I} = r− I . Then in addition,
p− I ∪ r− I = p− ∪ r− I . By assumption holds that r′ = p− and consequently
(r′)p←p∪r I = (p−)p←p∪r I . From the definition of ← follows (p−)p←p∪r =

(pp←p∪r)− = (p ∪ r)− and then (p ∪ r)− = p− ∪ r−. From this follows, that
(r′)p←p∪r I = p− ∪ r− I and then by taking the previous result r′ Iβ = p− ∪ r− I

into account, we get r′ Iβ = r′
p←p∪r

I as desired.

Now suppose q ̸= p. Then qp←p∪r = q by definition of ← and then from the
semantics in Table 3.2 follows (q−)p←p∪r I = q− I . From this and the assumption
that r′ = q− follows (r′)p←p∪r I = q− I . Thus, it remains to show that q− Iβ =
q− I . By semantics of actions holds Gβ = Sp⊕r(G) = G ∪ {p (a, b) | (a, b) ∈ r G}.

This means that the action only adds binary atoms that have p as predicate. Thus
{(a, b) | q (a, b) ∈ G} = {(a, b) | q (a, b) ∈ Gβ} and consequently by definition of
· I and assignments holds q− I = q− Iβ . Then, by assumption that r′ = q− and

our previous result, we have again r′ Iβ = r′
p←p∪r

I as desired.

• Suppose that r′ is a pair of individuals. In other words, there is c0, d0 ∈ I such that
r′ = (c0, d0). As p ∈ O is an object property name and (c0, d0) a pair of nodes, it
follows that r′ ̸= p. Then (c0, d0)p←p∪r = (c0, d0). Then from the semantics of · I

in Table 3.2 follows r′
p←p∪r

I = (c0, d0) I = {(c0, d0)}. Thus, it remains to show
that r′

p←p∪r
I = (c0, d0) I = (c0, d0) Iβ . The evaluation of pairs of individuals

32

in Table 3.2 is the same for any assignment. Thus, (c0, d0) Iβ = (c0, d0) I holds
by definition.

Induction hypothesis Let r′
a and r′

b be basic object properties. We assume that
r′
a

Iβ = (r′
a)p←p∪r I and r′

b
Iβ = (r′

b)p←p∪r I .

Induction step We need to show that r′ Iβ = r′
p←p∪r

I . By definition, basic object
properties are built using the operators ∪, ∩ and \. Thus, we need three cases. We,
however, show only one of them, as all three cases work exactly the same.

Suppose r′ = r′
a ∪ r′

b. Then, by assumption r′ Iβ = r′
a ∪ r′

b
Iβ . Then from seman-

tics of · Iβ follows r′
a ∪ r′

b
Iβ = r′

a
Iβ ∪ r′

b
Iβ . Then by the induction hypotheses

r′
a

Iβ ∪ r′
b

Iβ = (r′
a)p←p∪r I ∪ (r′

b)p←p∪r I . Then from semantics of · I follows
(r′

a)p←p∪r I ∪ (r′
b)p←p∪r I = (r′

a)p←p∪r ∪ (r′
b)p←p∪r I . Then from the definition of

← follows (r′
a)p←p∪r ∪ (r′

b)p←p∪r I = (r′
a ∪ r′

b)p←p∪r I . Then from the initial assump-
tion r′ = r′

a ∪ r′
b follows that (r′

a ∪ r′
b)p←p∪r I = r′

p←p∪r
I . Thus, in summary, we get

r′ Iβ = r′
p←p∪r

I .

The argument for Claim 1 works the same for actions of the form β = p ⊖ r.

The following Lemma 1 is like Claim 1, but with a whole path expression instead of
just a basic object property. Recall that in Section 4.2 we said that we may write Eα to
denote TRα(E) with TRα(E) defined analogously to TRα(ϕ) with ϕ a shape expression.

Lemma 1. Let E be a path expression, β = p ⊕ r a basic action, and I an assignment.
Then E Iβ = Eβ

I .

Proof. We prove by strong induction on the structural complexity of E.

Base Case In the base case, E is a basic object property. Then we can apply Claim 1
as β is of the form p ⊕ r.

Induction hypothesis Suppose that Ei
Iβ = Eiβ

I with i ∈ 0, 1, 2, . . . n where each
Ei is of structural complexity i.

Induction step We show that for E with structural complexity n + 1 built from Ei,
Ej with structural complexity at most n using the operators ∗, ·, ∪ holds E Iβ = Eβ

I .

Suppose that E = Ei · Ej . Then E Iβ = Ei · Ej
Iβ = Ei

Iβ ◦ Ej
Iβ by definition

of · Iβ . By assumption, the complexities of Ei
Iβ and Ej

Iβ are each at most n and
thus by the induction hypothesis Ei

Iβ ◦ Ej
Iβ = Eiβ

I ◦ Ejβ
I . Then follows from

the definition of · Iβ that Eiβ
I ◦ Ejβ

I = Eiβ
· Ejβ

I . By the definition of ← holds

33

5. Correctness

Eiβ
· Ejβ

I = (Ei · Ej)β
I . Finally, from the assumption that E = Ei · Ej follows

(Ei · Ej)β
I = (E)β

I = E Iβ as desired. The argument for E = Ei ∪ Ej is the same.

Suppose that E = (Ei)∗. Then follows from the definition of · Iβ that E Iβ =
(Ei)∗ Iβ = {(a, a) | a ∈ V (Iβ)} ∪ Ei

Iβ ∪ Ei · Ei
Iβ ∪ We look at this expression in

two parts {(a, a) | a ∈ V (Iβ)} and Ei
Iβ ∪ Ei · Ei

Iβ ∪ In the first part, by action
semantics {(a, a) | a ∈ V (Iβ)} = {(a, a) | a ∈ V (I)}. In the second part, from semantics
of · Iβ follows that Ei

Iβ ∪ Ei ·Ei
Iβ ∪· · · = Ei

Iβ ∪ Ei
Iβ ◦ Ei

Iβ ∪. . .. By assumption
the structural complexity of Ei

Iβ is at most n and thus by the induction hypothesis
Ei

Iβ ∪ Ei
Iβ ◦ Ei

Iβ ∪· · · = Eiβ
I ∪ Eiβ

I ◦ Eiβ
I ∪. . .. From semantics of · Iβ follows

again that Eiβ
I ∪ Eiβ

I ◦ Eiβ
I ∪· · · = Eiβ

I ∪ Eiβ
·Eiβ

I ∪ We put the two parts
together again and by definition of · I get {(a, a) | a ∈ V (I)}∪ Eiβ

I ∪ Eiβ
·Eiβ

I ∪· · · =
(Eiβ

)∗ I . From definition of ← follows that (Eiβ
)∗ I = ((Ei)∗)β

I . Finally, by our
assumption that E = (Ei)∗ we get that ((Ei)∗)β

I = Eβ
I and thus, in summary, that

E Iβ = Eβ
I as required.

The following Claim 2 essentially is our goal property that Gα validates (C, T) if and
only if G validates (Cα, T) for one specific shape expression and a single basic action. In
this way, it acts as one induction base case for Lemma 2. Example 21 is an illustration
for it. Recall that we said we may write ϕα to denote TRα(ϕ) in Section 4.2.

Claim 2. Let EQ(Em, En) be a shape, p a property name, r a basic object property,
β = p ⊕ r a basic action, and I an assignment. Then it holds that EQ(Em, En) Iβ =
EQ(Em, En)β

I .

Proof. Let i ∈ {m, n} and P (m, n) be the property EQ(Em, En) Iβ = EQ(Em, En)β
I

where Em is of structural complexity m and En of structural complexity n. We perform a
double induction on the structural complexity of Ei. This means, we use P (0, 0) as base
case and then show that both P (m, n) =⇒ P (m + 1, n) and P (m, n) =⇒ P (m, n + 1).
This will prove that P (m, n) holds for all m and n. The implication P (m, n) =⇒
P (m + 1, n + 1) alone does not prove P for all m and n, only for the cases where m = n
[21].

Base Case In the base case, we have structural complexity 0 for Em and En. Then
both Em and En are basic object properties, say Em = r1 and En = r2. As the structural
complexity of path expressions only counts the operators that construct it and not the
operators within basic object properties, it is still possible that, for example, Em = p1 \p2
with p1, p2 ∈ O. We need to show that EQ(r1, r2) Iβ = EQ(r1, r2)β

I . From semantics
of · Iβ follows EQ(r1, r2) Iβ = {a | ∀b : (a, b) ∈ r1 Iβ iff (a, b) ∈ r2 Iβ }. From
Lemma 1 follows that this equals {a | ∀b : (a, b) ∈ r1β

I iff (a, b) ∈ r2β
I} as basic

object properties are base cases of path expressions. By semantics of · I this equals
EQ(r1β

, r2β
) I . And by the definition of ← this is the same as EQ(r1, r2)β

I . This
completes the base case.

34

Induction hypothesis Suppose that P (m, n) holds. This means EQ(Em, En) Iβ =
EQ(Em, En)β

I for any Em with structural complexity m and any En with structural
complexity n.

Induction step Without loss of generality, we will show only the step P (m, n) =⇒
P (m + 1, n). The argument for the implication P (m, n) =⇒ P (m, n + 1) is exactly the
same. We prove for Em+1 of the forms Em ∪ E′

m, Em · E′
m, and (Em)∗. Thus, there are

three subcases.

In the first subcase, we assume that Em+1 = Em ∪ E′
m. Then EQ(Em+1, En) Iβ =

EQ(Em ∪E′
m, En) Iβ . By semantics of · Iβ , this equals {a | ∀b : (a, b) ∈ Em ∪E′

m
Iβ iff

(a, b) ∈ En
Iβ } and then {a | ∀b : (a, b) ∈ Em

Iβ ∪ E′
m

Iβ iff (a, b) ∈ En
Iβ }. By

set properties, this equals {a | ∀b : (a, b) ∈ Em
Iβ iff (a, b) ∈ En

Iβ } ∪ {a | ∀b :
(a, b) ∈ E′

m
Iβ iff (a, b) ∈ En

Iβ }. By semantics of · Iβ , this equals EQ(Em, En) Iβ ∪
EQ(E′

m, En) Iβ . As Em and E′
m are path expressions of length m and En of length

n, we can apply the induction hypothesis and get EQ(Em, En)β
I ∪ EQ(E′

m, En)β
I .

Then, by the definition of ←, this equals EQ(Emβ
, Enβ

) I ∪ EQ(E′
mβ

, Enβ
) I . By

semantics of · I , we return to the set form {a | ∀b : (a, b) ∈ Emβ
I iff (a, b) ∈ Enβ

I} ∪
{a | ∀b : (a, b) ∈ E′

mβ

I iff (a, b) ∈ Enβ
I}. By set properties, this equals {a |

∀b : (a, b) ∈ Emβ
I ∪ E′

mβ

I iff (a, b) ∈ Enβ
I}. By semantics of · I , this equals

{a | ∀b : (a, b) ∈ Emβ
∪ E′

mβ

I iff (a, b) ∈ Enβ
I}. By definition of ←, this equals

{a | ∀b : (a, b) ∈ (Em ∪ E′
m)β

I iff (a, b) ∈ Enβ
I}. By definition of ←, this equals {a |

∀b : (a, b) ∈ (Em ∪E′
m)β

I iff (a, b) ∈ Enβ
I}. From the initial assumption that Em+1 =

Em ∪ E′
m follows the equality with {a | ∀b : (a, b) ∈ Em+1β

I iff (a, b) ∈ Enβ
I}. By

semantics of · I is equal to EQ(Em+1β
, Enβ

) I}. Finally, by definition of ←, this equals
EQ(Em+1, En)β

I}. Thus, we have shown that EQ(Em+1, En) Iβ = EQ(Em+1, En)β
I

for the first subcase with Em+1 = Em ∪ E′
m.

We proceed with the second subcase and assume that Em+1 = Em · E′
m. Then, by

assumption EQ(Em+1, En) Iβ = EQ(Em · E′
m, En) Iβ . By semantics of · Iβ holds

EQ(Em · E′
m, En) Iβ = {a | ∀b : (a, b) ∈ Em · E′

m
Iβ iff (a, b) ∈ En

Iβ } = {a | ∀b :
(a, b) ∈ Em

Iβ ◦ E′
m

Iβ iff (a, b) ∈ En
Iβ }. From Lemma 1 follows that {a | ∀b :

(a, b) ∈ Em
Iβ ◦ E′

m
Iβ iff (a, b) ∈ En

Iβ } = {a | ∀b : (a, b) ∈ Emβ
I ◦ E′

mβ

I iff
(a, b) ∈ Enβ

I}. By semantics of · I holds {a | ∀b : (a, b) ∈ Emβ
I ◦ E′

mβ

I iff (a, b) ∈
Enβ

I} = {a | ∀b : (a, b) ∈ Emβ
· E′

mβ

I iff (a, b) ∈ Enβ
I}. From the definition

of ← follows that {a | ∀b : (a, b) ∈ Emβ
· E′

mβ

I iff (a, b) ∈ Enβ
I} = {a | ∀b :

(a, b) ∈ (Em · E′
m)β

I iff (a, b) ∈ Enβ
I}. Then from the definition of · I and the

assumption Em+1 = Em · E′
m follows that {a | ∀b : (a, b) ∈ I iff (a, b) ∈ Enβ

I} =
EQ((Em · E′

m)β , Enβ
) Iβ = EQ((Em+1)β , Enβ

) Iβ and thus for this subcase holds in
summary that EQ(E′

m, En) Iβ = EQ(E′
m, En)β

I as required.

We proceed with the third subcase and assume that Em+1 = (Em)∗. We need to show

35

5. Correctness

that EQ((Em)∗, En) Iβ = EQ((Em)∗, En)β
I . By assumption EQ(Em+1, En) Iβ =

EQ((Em)∗, En) Iβ . From the semantics of · Iβ follows that EQ((Em)∗, En) Iβ = {a |
∀b : (a, b) ∈ (Em)∗ Iβ iff (a, b) ∈ En

Iβ }. From Lemma 1 follows that {a | ∀b : (a, b) ∈
(Em)∗ Iβ iff (a, b) ∈ En

Iβ } = {a | ∀b : (a, b) ∈ ((Em)∗)β
I iff (a, b) ∈ Enβ

I}. From
the semantics of · I follows that {a | ∀b : (a, b) ∈ ((Em)∗)β

I iff (a, b) ∈ Enβ
I} =

EQ(Em+1β
, Enβ

) I . Thus, for this subcase holds in summary that EQ((Em)∗, En) Iβ =
EQ((Em)∗, En)β

I and EQ(E′
m, En) Iβ = EQ(E′

m, En)β
I as required.

The following Lemma 2 shows the final Theorem 2 restricted to arbitrary single shape
expressions under a single update and with a single assignment.

Lemma 2. Let ϕ be a shape expression, β a basic action, and I an assignment. Then
ϕ Iβ = ϕβ

I .

Proof. Proof by induction on the structure of ϕ.

Base cases For the base cases, we consider ϕ of the form ⊤, individual t, shape name
s, class name A, ⊛ (d, ψ), and EQ(E, E′).

We start with three very similar base cases. Suppose that ϕ = ⊤. Then ϕα = ϕ. Thus,
it remains to show that ϕ Iβ = ϕ I . By semantics ϕ I′ = V (I ′) for any assignment
I ′. Thus, ϕ Iβ = ϕ I as required. Suppose that ϕ = t. By semantics ϕ I′ = t for any
assignment I ′. Then the argument is as for ϕ = ⊤. Suppose that ϕ = s. L is the same in
I and Iβ. Then by semantics ϕ I = ϕ Iβ = ϕ L. The remaining argument is as for
ϕ = ⊤.

Suppose that ϕ = B with B ∈ C. If β is of the form p ⊕ r or p ⊖ r, then ϕα = ϕ directly.
Furthermore, such β cannot add unary atoms B (b) to G for any individual b. Thus,
ϕ Iβ = ϕα

I for such β. Otherwise, β is of the form A ⊕ ϕc or A ⊖ ϕc. Assume without
loss of generality that β = A ⊕ ϕc. Then, there are two subcases:

First, suppose that B ̸= A. Then ϕα = ϕA←A∨ϕc = ϕ. Thus, it remains to show that
ϕ Iβ = ϕ I . β does not add the class B to any individual in G because G(A⊕ϕc) =

G ∪ A (v) | v ∈ ϕc
I . Thus, ϕ Iβ = ϕ I as required for the first subcase.

Second, suppose that B = A. Then, by assumption ϕ Iβ = A Iβ . From the definition
of · Iβ follows that A Iβ = {a | A (a) ∈ Iβ}. By definition of Iβ and · Iβ holds
that {a | A (a) ∈ Iβ} = {a | A (a) ∈ Gβ}. As by assumption that β = A ⊕ ϕc

and semantics of actions holds that Gβ = G ∪ {A (b) | b ∈ ϕc
G} and thus, we can

split the set {a | A (a) ∈ Gβ} up into {a | A (a) ∈ G} ∪ ϕc
G. From the definition

of I and as concepts like ϕc do not have shape names by definition, it follows that
{a | A (a) ∈ G} ∪ ϕc

G = {a | A (a) ∈ I} ∪ ϕc
I . From the definition of · I follows that

{a | A (a) ∈ I} ∪ ϕc
I = A I ∪ ϕc

I = A ∨ ϕc
I . From the definition of ← follows

that A ∨ ϕc
I = AA←A∨ϕc

I and by assumption AA←A∨ϕc
I = ϕA←A∨ϕc

I and thus,

36

in summary, ϕ Iβ = ϕβ
I as required for the second subcase. This concludes the base

case ϕ = B.

Suppose that ϕ = ⊛ (d, ψ) with ψ ∈ D∪L. β can be of four different forms A⊕ϕc, A⊖ϕc,
p ⊕ r, and p ⊖ r. By definition d ∈ D, p ∈ O, A ∈ C and D, O and C are disjoint. Then
ϕα = ϕ for all four cases because there is neither a class name A nor an object property
name p in ϕ. Thus, it remains to show that ϕ Iβ = ϕ I . ϕ is evaluated using binary
atoms d (a, b) with d ∈ D both if ψ ∈ L and if ψ ∈ D. In none of its four possible forms
does β add such atoms. From the disjointedness of D, C, and O follows ϕ Iβ = ϕ I .

Suppose that ϕ = EQ(E, E′). If β is of the form A ⊕ ϕc or A ⊖ ϕc then the argument is
like for ϕ = ⊛ (d, ψ). If β is of the form p ⊕ r then we can directly use Claim 2. Finally,
if β is of the form p ⊖ r then we can still use Claim 2 as its proofs works analogously for
such β.

Induction hypotheses ϕ1 Iβ = ϕ1β
I and ϕ2 Iβ = ϕ2β

I .

Induction step We consider ϕ of the forms ϕ = ϕ1 ∧ ϕ2, ϕ = ¬ϕ1, and ϕ =≥n E.ϕ1.

Suppose that ϕ = ϕ1 ∧ ϕ2. Then, by assumption ϕ Iβ = ϕ1 ∧ ϕ2 Iβ . From the
definition of · Iβ follows that ϕ1 ∧ ϕ2 Iβ = ϕ1 Iβ ∩ ϕ2 Iβ . By induction hypotheses
ϕ1 Iβ ∩ ϕ2 Iβ = ϕ1β

I ∩ ϕ2β
I . From the definition of · I follows that ϕ1β

I ∩ ϕ2β
I =

ϕ1β
∧ϕ2β

I . From the definition of ← follows that ϕ1β
∧ϕ2β

I = (ϕ1 ∧ϕ2)β
I . From the

initial assumption ϕ = ϕ1 ∧ ϕ2 follows that (ϕ1 ∧ ϕ2)β
I = ϕβ

I and thus, in summary,
ϕ Iβ = ϕβ

I as required.

Suppose that ϕ = ¬ϕ1. Then, by assumption ϕ Iβ = ¬ϕ1 Iβ . From the definition
of · Iβ follows that ¬ϕ1 Iβ = V (Iβ) \ ϕ1 Iβ . From the definition of · Iβ follows
that V (Iβ) = V (I) and thus V (Iβ) \ ϕ1 Iβ = V (I) \ ϕ1 Iβ . By induction hypothesis
V (I) \ ϕ1 Iβ = V (I) \ ϕ1β

I . From the definition of · I follows that V (I) \ ϕ1β
I =

¬(ϕ1β
) I . From the definition of ← follows that ¬(ϕ1β

) I = (¬ϕ1)β
I . From the

initial assumption ϕ Iβ = ¬ϕ1 Iβ follows that (¬ϕ1)β
I = ϕβ

I and thus, in summary,
ϕ Iβ = ϕβ

I as required.

Suppose that ϕ =≥n E.ϕ1. Then by semantics ϕ Iβ = {a | |{(a, b) ∈ E Iβ and b ∈
ϕ1 Iβ }| ≥ n}. We apply the induction hypothesis to get ϕ Iβ = {a | |{(a, b) ∈
E Iβ and b ∈ ϕ1β

I}| ≥ n}. We need to look at two cases.

In the first case, β is of the form A ⊕ ϕc or A ⊖ ϕc. Then it does not add any binary
atoms p (a, b) to G by definition. However, E is evaluated using such atoms. Therefore,
in this case E Iβ = E I . Furthermore, in this case E = Eβ because A cannot be in E

by definition. Therefore, E Iβ = Eβ
Iβ . In the second case, β is of the form p ⊕ r or

p ⊖ r. Then we can without loss of generality apply Lemma 1 to get E Iβ = Eβ
Iβ .

37

5. Correctness

We got the same intermediate result for both cases, and from them follows that ϕ Iβ =
{a | |{(a, b) ∈ Eβ

I and b ∈ ϕ1β
I}| ≥ n}. Then by definition of ← holds for both

of them ϕ Iβ = ({a | |{(a, b) ∈ E I and b ∈ ϕ1 I}| ≥ n})β. Then by semantics
ϕ Iβ = (≥n E.ϕ1)β and then we get the final result ϕ Iβ = ϕβ

I . This completes the
induction step.

In Theorem 1, we extend Lemma 2 and take the step from simple to complex actions,
and from shape expressions to constraints.

Theorem 1 ([2]). Let α be a ground complex action, I an assignment, s ↔ ϕ a constraint.
Then, Iα |= s ↔ ϕ if and only if I |= TR↔

α (s ↔ ϕ).

Proof. Proof by induction on ℓ (α) defined as ℓ (ϵ) = 0 and ℓ (β · α) = 1 + ℓ (α).

Base Case The base case has α = ϵ and ℓ (α) = 0. Then Sα (G) = G and TR↔
α (s ↔

ϕ) = s ↔ ϕ by definition, and thus, the claim holds.

Induction step First, we show that Iβ |= s′ ↔ ϕ′ iff I |= s′ ↔ ϕ′
β for any constraint

s′ ↔ ϕ′ and basic action β. To see this, suppose that Iβ |= s′ ↔ ϕ′. Then s′ L = ϕ′ Iβ

by definition of models. But then also s′ L = ϕ′
β

I by Lemma 2. Thus, I |= s′ ↔ ϕ′
β by

definition of models. The converse direction works equally and the equivalence holds.

We will show just for β = (A ⊕ ϕc) ·α′, as for the cases α = (A ⊖ ϕc) ·α′, α = p ⊕ r+ ·α′

and α = p ⊖ r+ · α′ the argument is analogous. Let Iα
1 = SA⊕ϕc(G) ∪ L be the result of

applying just A ⊕ ϕc to I.

By the preliminary result of this induction step holds in particular Iα
1 |= TR↔

α′ (s ↔ ϕ)
iff I |= (TR↔

α′ (s ↔ ϕ))A←A∨ϕc
. Since (TR↔

α′ (s ↔ ϕ))A←A∨ϕc
= TR↔

α (s ↔ ϕ) we get
Iα

1 |= TR↔
α′ (s ↔ ϕ) iff I |= TR↔

α (s ↔ ϕ). By the induction hypothesis holds Iα
1 |=

TR↔
α′ (s ↔ ϕ) iff Sα′(Iα

1) ∪ L |= s ↔ ϕ. Thus, I |= TR↔
α (s ↔ ϕ) iff Sα′ (Iα

1) ∪ L |= s ↔ ϕ.
By definition Sα′ (Iα

1) = Sα′(S(A⊕ϕc) (I)) = Sα (I). Thus, as desired I |= TR↔
α (s ↔ ϕ) iff

Iα |= s ↔ ϕ.

Finally, Theorem 2 is our main result. It extends 1 by taking sets of constraints and
targets into account.

Theorem 2. Let α be a ground complex action, G a data graph and (C, T) a shape
document. Then Gα validates (C, T) if and only if G validates (Cα, T).

Proof. ⇒ Suppose that Gα validates (C, T). Then by definition of assignments there is a
set of shape atoms L such that Gα ∪ L |= C and T ⊆ L. Then ∀(s ↔ ϕ) ∈ C : Gα ∪ L |=
s ↔ ϕ by definition. Then ∀(s ↔ ϕ) ∈ C : G ∪ L |= TR↔

α (s ↔ ϕ) follows from Theorem
1 because Gα = Sα(G). By definition {TR↔

α (s ↔ ϕ) | s ↔ ϕ ∈ C} = TR↔
α (C) = Cα.

38

Thus G ∪ L |= Cα. It is crucial to observe that T and L remain unchanged. Because of
this, the second condition T ⊆ L still holds and G validates (Cα, T) as required.

⇐ Suppose that G validates (Cα, T). Then by definition of assignments there is a set of
shape atoms L such that G∪L |= Cα and T ⊆ L. Then ∀(s′ ↔ ϕ′) ∈ Cα : G∪L |= s′ ↔ ϕ′

by definition. In addition, Cα = TR↔
α (C) = {TR↔

α (s ↔ ϕ) | s ↔ ϕ ∈ C} by definition.
Consequently, ∀(s′ ↔ ϕ′) ∈ {TR↔

α (s ↔ ϕ) | s ↔ ϕ ∈ C} : G ∪ L |= s′ ↔ ϕ′. Then
∀(s ↔ ϕ) ∈ C : Gα ∪ L |= s ↔ ϕ follows from Theorem 1 because Gα = Sα(G). As T
and L remain unchanged, the second condition T ⊆ L still holds and Gα validates C, T
as required.

This completes the proof of correctness of the new static validation technique.

39

CHAPTER 6
Implementation and Experiments

In this chapter, we initially outline some details about the prototype implementation.
We then proceed with an explanation of the experiments and their results. Our imple-
mentation of the transformation and action algorithm is available at

https://github.com/dominicjaeger/validate-transforming-rdf.

6.1 Implementation considerations
In this section, we first provide some details about the scope of our prototype. Then
we compare various validators to our chosen validator. Lastly, we explain the update
language implementation and how the transformation algorithm works on the shapes
graph.

6.1.1 Prototype
We explain the possibilities and limitations of our prototype implementation. As starting
point for our prototype, we chose the validator of the Apache Jena Project [6]. We use it
to load graphs from files and remote locations, and for some operations on graphs.

The prototype consists of two main parts. The first part is the update language imple-
mentation. The implementation is able to parse a sequence of updates or rather actions
that is written in a text file. Then inserting and removing nodes from the data graph
according to the action semantics is done with the help of the Apache Jena methods.

The second part is the transformation implementation. In practice, the shape documents
from the formalization correspond to shape graphs that are written down in text files.
Therefore, our implementation adds nodes to and removes nodes from those shapes
graphs, and it does so using Apache Jena again.

41

https://github.com/dominicjaeger/validate-transforming-rdf

6. Implementation and Experiments

At this point, it is important to see the difference between two different types of graph
updates. First, we have updates on data graphs, which we call actions. Second, we have
updates on the shapes graph, which correspond to the transformation of constraints.

We can see in the SHACL part of the documentation of the Jena project that it implements
SHACL Core and SHACL SPARQL constraints [6]. The components from SHACL Core
include SHACL property paths for sequence, alternative, inverse, zero-or-more, one-or-
more, and zero-or-one, but nothing like the difference or intersection that we introduced
in Chapter 3 . Furthermore, it does not yet implement node expressions, expression
constraints, and SHACL rules [26]. We have already shown some details about node
expressions in Section 2.2.2. We can additionally verify these statements and track the
development in the public GitHub repository of the Apache Jena project [5].

Our proof-of-concept implementation does not extend the Apache Jena validator itself.
Therefore, validation is restricted to the fragment of our SHACL definition that is
supported by it, which means SHACL Core and SHACL SPARQL constraints [6]. In
particular, literals and predicates are part of SHACL Core in the form of value range
constraint components [26].

There is one limitation in the transformation part of our prototype implementation. As
SHACL core does not contain negation in property paths, it is not possible to create
a proper shapes graph for the substitution p ← p \ r that we use for actions p ⊖ r.
Unfortunately, we are not aware of any validator that supports this. Presently, our
prototype contains a workaround using the SHACL Core property sh:closed. Using this
property forbids properties that are not explicitly enumerated via property shapes or
belong to the property sh:ignoredProperties [26]. With this workaround, we can capture a
few cases for the action p ⊖ r.

A second limitation is about the action part of our prototype implementation. In our
understanding, the W3C SHACL recommendation [26] and the Apache Jena validator
[6] do not allow interpreting a shape or a basic object property as we need it for the
actions. In other words, getting the sets of individuals ϕc

I and r I is not possible
directly. We can work around this for the actions A ⊕ ϕc and A ⊖ ϕc with repeated
validation and ephemeral target node declarations. However, doing the same for the
actions p ⊕ r and p ⊖ r is not possible as in our understanding, properties cannot be
targets. Even if they could be, the restrictions for SHACL property paths would still
apply, and direct translations for basic object properties like r \ r′ would not be possible.
As a result, our update language implementation supports only object property names
p ∈ O. Table 6.1 contains a summary of the supported actions for our prototype. The
first line Transformation considers the transformation part of our implementation, the
second line Action Application considers the part of our implementation that parses
actions and updates the data graph.

We continue with a limitation about the shape EQ(E, E′). The W3C SHACL recom-
mendation defines that the „values of sh:equals in a shape are IRIs“ [26]. By definition,
the only SHACL property paths that are IRIs are predicate paths. The other SHACL

42

6.1. Implementation considerations

Table 6.1: Supported actions in the implementation

Support \ Action A ⊕ ϕc A ⊖ ϕc p ⊕ r p ⊖ r
Transformation Full Full Full Partial
Action Application Full Full Partial Partial

property paths are blank nodes [26]. Thus, the other property paths cannot be values of
sh:equals and therefore, expressing EQ(E, E′) is not possible directly. This issue is the
topic of discussion of the editors of the recommendation [26] on the W3C GitHub Forum
[29].

6.1.2 Alternative approaches
We now compare the capabilities and limitations of alternative SHACL validators and
other possible approaches for the problem.

One alternative SHACL engine is the Python implementation [34] of Trav-SHACL [20].
This engine does not support sh:or, which we need for the substitution A ← A ∨ ϕs of
the action A ⊕ ϕc.

The rdf-validate-shacl project implements the SHACL W3C recommendation using
pure JavaScript [33]. The implementation of the paths corresponds precisely to the
recommendation, and thus, this program brings us no further than the Apache Jena
validator.

As SPARQL property paths have negation, the most promising alternative originates
from a paper that uses SPARQL to validate SHACL constraints [16]. This project is
called SHACL2SPARQL. However, it supports only a limited subset of the SHACL W3C
recommendation, too. We can see in the code that among the unsupported features are
classes which we need for the actions A ⊕ ϕc and A ⊖ ϕc. Furthermore, the grammar
for shapes in the paper [16] specifically talks about SHACL paths and not SPARQL
paths and in addition, the parser of the implementation contains cases only for predicate,
inverse, zeroOrMore, sequence and alternative paths, but no negation [13].

While the SHACL Advanced Features document contains sh: filter and sh: intersection ,
it does not extend the syntax of SHACL paths [24]. In other words, even if a validator
implements the advanced features, it is not possible to perform the transformation
directly.

Something similar holds for the SPARQL-based constraints that are part of the SHACL
recommendation [26]. SPARQL 1.1 supports negation in property paths and also MINUS
and FILTER NOT EXISTS in queries [22]. However, it is not possible to directly use these
queries for our transformation. Two aspects are crucial for this: First, the syntax for
SHACL property paths essentially allows only IRIs and blank nodes. Second, the values
of the components sh: select and sh:ask are defined to be literals of datatype xsd: string

43

6. Implementation and Experiments

[26]. We can see an example for this in Listing 6.11. Figure 6.1 illustrates the shapes
graph corresponding to Listing 6.11. Therefore, it is not possible to edit the shapes graph
in the same way we do it for the other actions.

6.1.3 Update language and transformation implementation
We will now explain how actions can be written and used in the implementation. Fur-
thermore, we explain what transformations happen according to specific actions and
demonstrate how we implement the transformation with the shapes graphs in the Apache
Jena framework.

Listing 6.1 shows how the action A⊕ϕc can be written for our implementation. Presently,
our parser does not support prefixes, and the IRIs need to be fully written down.

Listing 6.1: An example for an action
1 http :// example . com/ns#A + http :// example . com/ns#ConceptShape

In Listing 6.1, the URI http://example.com/ns#A is for the class A, and for the concept
ϕc we have the URI http://example.com/ns#ConceptShape. It is required that the shape
which is denoted by the latter URI is given in the shapes graph. In contrast to Turtle
syntax [8], IRIs are not enclosed in < and > here.

Alternatively, and with the same meaning, it is also possible to write the + or - in the
front. An example for this is displayed in Listing 6.2.

Listing 6.2: Action with minus in the beginning
1 − http :// example . com/ns#A http :// example . com/ns#ConceptShape

We will demonstrate some possible actions and transformations. Suppose we want to
transform the shapes graph from Listing 6.3 instead of applying the action of Listing 6.1.
To do so, we need to use the sh:or constraint and essentially get as our Cα the shapes
graph from Listing 6.4.

The graph denoted in Listing 6.4 corresponds to the one in Figure 6.2. The formalization
from Chapter 3 does not have blank nodes. In the implementation, however, it is crucial
to take the blank nodes into account for the construction of the required SHACL list of
the transformed shape. In the figures, blank nodes are denoted by circles without a label
within them.

Listing 6.5 and Figure 6.4 show the result of the transformation

(≥1 (ex : loves).(ex : Person))ex:loves←ex:loves∪ex:likes

using sh:alternativePath. To perform this transformation, we replace sh:path ex:loves in
the original graph by sh:path [sh:alternativePath (ex: loves ex: likes)].

Listing 6.6 demonstrates a negation constraint component in Turtle syntax. Figure 6.3
shows it as a graph. We use negation in the transformation A ← A ∧ ¬ϕc for actions

44

6.2. Experiments

A ⊖ ϕc. We use the fact that some SHACL constraint components declare only a single
parameter. In such a situation, the parameters may be used multiple times within the
same shape and the interpretation of them is in conjunction. We are not required to use
sh:and here.

6.2 Experiments
We experimented with two data sets, the Medical Subject Headings (MeSH) and Yago
dataset. The actions and shapes for the experiments are available in our code repository.

6.2.1 MeSH Experiment
The MeSH data set is a terminology about biomedical information published by the
U.S. National Library of Medicine [18]. One advantage of it is that all data is contained
within one single text file that can be downloaded from https://www.nlm.nih.
gov/databases/download/mesh.html. This way, it allows rapid evaluation of the
implementation. Alternatively, it can also be queried using SPARQL. Furthermore, this
data file is 1.8 GB large and contains approximately 15 million lines, permitting insights
about performance as well.

The main part of the MeSH experiment is to add two additional property names
and replace one class name with a shorter one. To do so, we use the actions from
Listing 6.7. In the following, we show the abstract syntax for the actions from List-
ing 6.7. Similar to prefixes, we abbreviate http://example.com/ns# with ex: and
http://id.nlm.nih.gov/mesh/vocab# with nlm:.

ex:id ⊕ nlm:identifier
ex:see ⊕ nlm:seeAlso

ex:GeoDescriptor ⊕ nlm:GeographicalDescriptor
nlm:GeographicalDescriptor ⊖ ex:GeoDescriptor

Validation in the MeSH experiment is done with a set of shapes that we defined ourselves
and that are displayed in Listing 6.8. In the following, we give the formal representations
of those shapes. In addition, they are available in the code repository. The shape
hasIdC000724057 additionally checks the data type for the value node, which is not
directly expressible in the formalization, but which we have indicated in Section 3.3.2.
We use the same abbreviations as before.

hasDateCreated ↔ ∃nlm:dateCreated.⊤
hasSomeNewId ↔ ∃ex:id.⊤

hasIdC000724057 ↔ ∃nlm:identifier.⊤

45

https://www.nlm.nih.gov/databases/download/mesh.html
https://www.nlm.nih.gov/databases/download/mesh.html

6. Implementation and Experiments

Updating the 15 163 366 original statements of the MeSH data led to a total of 16 823 671
statements and took 7 minutes and 59 seconds. The number of statements increased by
11%. The time to transform the shapes graph is 0.019 seconds, and the time to validate
the original data with the updated shapes graph is 0.024 seconds.

6.2.2 Yago Experiment
The Yago project [32] can be accessed at https://yago-knowledge.org. It contains
entities of the real world, such as movies, cities and people, and it also contains relations
between them. It covers beyond 50 million entities and 2 billion facts.

SHACL constraints have been used to generate the latest version of the knowledge base,
called YAGO 4 [32]. We use these constraints for our experiments. This means that,
unlike in the MeSH experiment, we have not created the shapes and constraints ourselves.
The SHACL constraints of YAGO 4 define the disjointness of specific classes, and in
addition, they define domains, ranges, and cardinalities of relations [32]. The shapes file
that we downloaded contains 1322 statements in triple form and is available in our code
repository.

Due to the size of the data set, we use SPARQL queries to access parts of it. Specifically,
we query data about http://schema.org/Place. We perform two experiments for this data
set, with a small change in the SPARQL queries: One with LIMIT 10 000 leading to
10 000 statements and one with LIMIT 100 000 leading to 99 995 statements. Both queries
can be seen in Listing 6.9. We update the Yago data using the action from Listing 6.10,
that corresponds to the formal action

http://example.com/ns#EntityWithPhysicalExtension ⊕ http://schema.org/Place.

The shape http://schema.org/Place is defined in the Yago shapes file in triple form.

Updating the 10 000 statements for the first Yago experiment led to a total of 13 971
statements and took 53 seconds. This means that the number of statements increased
by 40%. Similar to the MeSH example, the time to transform the shapes graph is 0.01
seconds and the time to validate the original data with the updated shapes graph is 0.02
seconds.

In the second Yago experiment, updating the 99 995 original statements led to a total of
154 549 statements and took 1 hour and 37 minutes. Here, the number of statements
increased by 55%. Like in the MeSH and first Yago experiment, the time to transform
the shapes graph is roughly 0.01 seconds and the time to validate the original data with
the updated shapes graph is 0.01 seconds.

6.2.3 Experiment Summary
Table 6.2 contains a summary of all experimental results. The columns denote the three
experiments, where Yago 1 and 2 stand for the two different limits in the SPARQL query.
The Size of the data graph is the number of triples in the data graph. Time to update

46

https://yago-knowledge.org

6.3. Discussion

Table 6.2: Summary of experimental results

MeSH Yago 1 Yago 2
Size of the data graph 15 163 366 10 000 99 995
Time to update the data graph 7’ 59s 53s 1h 37’
Time to transform shapes 0.019s 0.01s 0.01s
Time to validate 0.024s 0.02s 0.01s

the data graph is the time that is required to evaluate ϕc for actions of the form A ⊕ ϕc

and A ⊖ ϕc respectively r for actions of the form p ⊕ r and p ⊖ r and to insert & remove
the corresponding nodes from the graph. It does not consider loading and parsing the
data graph or the actions. Time to transform shapes is the time that is required to
insert and remove triples in the shapes graph in the way that corresponds to the formal
transformation definition. Finally, Time to validate is the time for the Apache Jena
validator to validate the updated shapes graph with the original data graph.

6.3 Discussion
We continue with the interpretation of these experimental results. The action is the same
for both Yago experiments. By comparing their time to update the data graph, we see
that the number of nodes in the graph plays an important role for the updates.

Independently of the different times to update the data graph between the experiments,
the combined time to transform & validate the shapes graph is significantly smaller than
updating the data graph within each experiment. This makes sense, as the size of the
shapes graph is considerably smaller than the size of the data graphs in our experiments.

It follows that updating just the shapes graph or rather transforming the shapes and
then performing the validation can massively reduce the total required time. Our goal
was to avoid updating and re-validating the data graph. This shows that our approach is
useful in those situations.

47

6. Implementation and Experiments

Listing 6.3: Two shapes with one class each
1 ex : TestShape
2 a sh : NodeShape ;
3 sh : c l a s s ex :A .
4
5 ex : ConceptShape
6 a sh : NodeShape ;
7 sh : c l a s s ex :B .

Listing 6.4: Transformed version of Listing 6.2
1 ex : TestShape
2 a sh : NodeShape ;
3 sh : or
4 (
5 [
6 sh : c l a s s ex :A ;
7]
8 [
9 sh : c l a s s ex :B ;

10]
11) .
12
13 ex : ConceptShape
14 a sh : NodeShape ;
15 sh : c l a s s ex :B .

Listing 6.5: Shapes graph for ≥1 E.ϕc

1 ex : S
2 a sh : NodeShape ;
3 sh : property
4 [
5 sh : path [sh : a l t e rna t i v ePath (ex : l o v e s ex : l i k e s)] ;
6 sh : qua l i f i edVa lueShape [sh : c l a s s ex : Person] ;
7 sh : qual i f i edMinCount 1 ;
8] .

Listing 6.6: Negation as constraint component
1 ex : S
2 a sh : NodeShape ;
3 sh : c l a s s ex :A ;
4 sh : not
5 [
6 sh : c l a s s ex :B ;
7] .

48

6.3. Discussion
Li

st
in

g
6.

7:
A

ct
io

n
fo

r
M

eS
H

da
ta

1
+

ht
tp

:/
/e

xa
m

pl
e.

co
m

/n
s#

id
ht

tp
:/

/e
xa

m
pl

e.
co

m
/n

s#
Id

en
ti

fi
er

Sh
ap

e
2

+
ht

tp
:/

/e
xa

m
pl

e.
co

m
/n

s#
se

e
ht

tp
:/

/e
xa

m
pl

e.
co

m
/n

s#
Se

eA
ls

oS
ha

pe
3

+
ht

tp
:/

/e
xa

m
pl

e.
co

m
/n

s#
G

eo
D

es
cr

ip
to

r
ht

tp
:/

/e
xa

m
pl

e.
co

m
/n

s#
G

eo
gr

ap
hi

ca
lD

es
cr

ip
to

rS
ha

pe
4

−
ht

tp
:/

/
id

.n
lm

.n
ih

.g
ov

/m
es

h/
vo

ca
b#

G
eo

gr
ap

hi
ca

lD
es

cr
ip

to
r

ht
tp

:/
/e

xa
m

pl
e.

co
m

/n
s#

G
eo

D
es

cr
ip

to
rS

ha
pe

Li
st

in
g

6.
8:

Sh
ap

es
fo

r
M

eS
H

da
ta

1
ex

:h
as

So
m

eN
ew

Id
sh

:t
ar

ge
tN

od
e

<
ht

tp
:/

/
id

.n
lm

.n
ih

.g
ov

/m
es

h/
20

22
/C

00
07

24
14

8>
.

2
ex

:h
as

So
m

eN
ew

Id
sh

:t
ar

ge
tN

od
e

<
ht

tp
:/

/
id

.n
lm

.n
ih

.g
ov

/m
es

h/
20

22
/C

00
07

24
05

7>
.

3
ex

:h
as

Id
C

00
07

24
05

7
sh

:t
ar

ge
tN

od
e

<
ht

tp
:/

/
id

.n
lm

.n
ih

.g
ov

/m
es

h/
20

22
/C

00
07

24
05

7>
.

4 5 6
ex

:h
as

D
at

eC
re

at
ed

7
a

sh
:N

od
eS

ha
pe

;
8

sh
:p

ro
pe

rt
y

9
[

10
sh

:p
at

h
<

ht
tp

:/
/

id
.n

lm
.n

ih
.g

ov
/m

es
h/

vo
ca

b#
da

te
C

re
at

ed
>

;
11

sh
:q

ua
li

fi
ed

V
al

ue
Sh

ap
e

[
a

sh
:N

od
eS

ha
pe

]
;

12
sh

:q
ua

li
fi

ed
M

in
C

ou
nt

1
;

13
]

;
14

.
15 16

ex
:h

as
So

m
eN

ew
Id

17
a

sh
:N

od
eS

ha
pe

;
18

sh
:p

ro
pe

rt
y

19
[

20
sh

:p
at

h
ex

:i
d

;
21

sh
:q

ua
li

fi
ed

V
al

ue
Sh

ap
e

[
a

sh
:N

od
eS

ha
pe

]
;

22
sh

:q
ua

li
fi

ed
M

in
C

ou
nt

1
;

23
]

;
24

.
25 26

ex
:h

as
Id

C
00

07
24

05
7

27
a

sh
:N

od
eS

ha
pe

;

49

6. Implementation and Experiments

28
sh

:p
ro

pe
rt

y
29

[
30

sh
:p

at
h

<
ht

tp
:/

/
id

.n
lm

.n
ih

.g
ov

/m
es

h/
vo

ca
b#

id
en

ti
fi

er
>

;
31

sh
:q

ua
li

fi
ed

V
al

ue
Sh

ap
e

32
[

33
a

sh
:N

od
eS

ha
pe

;
34

sh
:d

at
at

yp
e

xs
d

:s
tr

in
g

;
35

]
;

36
sh

:q
ua

li
fi

ed
M

in
C

ou
nt

1
;

37
]

;
38

.
39 40 41 42 43

ex
:I

de
nt

if
ie

rS
ha

pe
44

a
sh

:P
ro

pe
rt

yS
ha

pe
;

45
sh

:p
at

h
<

ht
tp

:/
/

id
.n

lm
.n

ih
.g

ov
/m

es
h/

vo
ca

b#
id

en
ti

fi
er

>
;

46
.

47 48
ex

:S
ee

A
ls

oS
ha

pe
49

a
sh

:P
ro

pe
rt

yS
ha

pe
;

50
sh

:p
at

h
<

ht
tp

:/
/

id
.n

lm
.n

ih
.g

ov
/m

es
h/

vo
ca

b#
se

eA
ls

o>
;

51
.

52 53
ex

:G
eo

gr
ap

hi
ca

lD
es

cr
ip

to
rS

ha
pe

54
a

sh
:N

od
eS

ha
pe

;
55

sh
:c

la
ss

<
ht

tp
:/

/
id

.n
lm

.n
ih

.g
ov

/m
es

h/
vo

ca
b#

G
eo

gr
ap

hi
ca

lD
es

cr
ip

to
r>

;
56

.
57 58

ex
:G

eo
D

es
cr

ip
to

rS
ha

pe
59

a
sh

:N
od

eS
ha

pe
;

60
sh

:c
la

ss
<

ht
tp

:/
/e

xa
m

pl
e.

co
m

/n
s#

G
eo

D
es

cr
ip

to
r>

;
61

.

50

6.3. Discussion
Li

st
in

g
6.

9:
SP

A
RQ

L
qu

er
ie

s
fo

r
Ya

go
da

ta
1

D
ES

CR
IB

E
?s

W
HE

RE
{

2
?s

<
ht

tp
:/

/w
ww

.w
3.

or
g/

19
99

/0
2/

22
−

rd
f−

sy
nt

ax
−

ns
#

ty
pe

>
<

ht
tp

:/
/s

ch
em

a
.o

rg
/P

la
ce

>
3

}
LI

M
IT

10
00

0
4 5

D
ES

CR
IB

E
?s

W
HE

RE
{

6
?s

<
ht

tp
:/

/w
ww

.w
3.

or
g/

19
99

/0
2/

22
−

rd
f−

sy
nt

ax
−

ns
#

ty
pe

>
<

ht
tp

:/
/s

ch
em

a
.o

rg
/P

la
ce

>
7

}
LI

M
IT

10
00

00

Li
st

in
g

6.
10

:
A

ct
io

n
fo

r
Ya

go
da

ta
1

ht
tp

:/
/e

xa
m

pl
e.

co
m

/n
s#

E
nt

it
yW

it
hP

hy
si

ca
lE

xt
en

si
on

+
ht

tp
:/

/s
ch

em
a

.o
rg

/P
la

ce

Li
st

in
g

6.
11

:
A

SP
A

RQ
L-

ba
se

d
co

ns
tr

ai
nt

co
m

po
ne

nt
1

ex
:L

an
gu

ag
eE

xa
m

pl
eS

ha
pe

2
a

sh
:N

od
eS

ha
pe

;
3

sh
:t

ar
ge

tC
la

ss
ex

:C
ou

nt
ry

;
4

sh
:s

pa
rq

l
5

[
6

a
sh

:S
P

A
R

Q
LC

on
st

ra
in

t
;

#
T

hi
s

tr
ip

le
is

op
ti

on
al

7
sh

:m
es

sa
ge

"V
al

ue
s

ar
e

li
te

ra
ls

w
it

h
G

er
m

an
la

ng
ua

ge
ta

g
."

;
8

sh
:s

el
ec

t
""

"
9

SE
LE

CT
$t

hi
s

(<
ht

tp
:/

/e
xa

m
pl

e.
co

m
/n

s#
ge

rm
an

La
be

l>
A

S
?p

at
h

)
?v

al
ue

10
W

HE
RE

{
11

$t
hi

s
<

ht
tp

:/
/e

xa
m

pl
e.

co
m

/n
s#

ge
rm

an
La

be
l>

?v
al

ue
.

12
FI

LT
ER

(!
is

L
it

er
al

(?
va

lu
e)

||
!l

an
gM

at
ch

es
(l

an
g

(?
va

lu
e)

,
"d

e"
))

13
}

14
""

"
;

15
]

16
.

51

6. Implementation and Experiments

ex:LanguageExampleShape sh:NodeShape

sh:SPARQLConstraint

Values are literals with . . .

SELECT $this (<http://example.com/ns#germanLabel> AS ?path) ?value . . .

ex:Country

sh:select

rdf:type

rdf:type

sh:message

sh:sparql
sh:targetClass

Figure 6.1: Shapes graph for a SPARQL-based constraint component

52

6.3. Discussion

ex:TestShape

ex:ConceptShape

sh:NodeShape

rdf:nil

ex:A ex:B

rdf:type

sh:or sh:rest

sh:first

sh:class

sh:first

sh:class

sh:rest

rdf:type

sh:class

Figure 6.2: Shapes graph for sh:or

53

6. Implementation and Experiments

ex:s sh:NodeShape

ex:B

ex:A rdf:type

sh:not

sh:class

sh:class

Figure 6.3: Shapes graph for sh:not

54

6.3. Discussion

ex:S

ex:Person

rdf:nil

ex:loves ex:likes

1

sh:NodeShape

sh:property sh:qualifiedValueShape sh:class

sh:path

sh:alternativePath

sh:rest sh:rest

sh:first sh:first

sh:qualifiedMinCount

rdf:type

Figure 6.4: Shapes graph for sh:alternativePath and sh:qualifiedValueShape

55

CHAPTER 7
Summary

In this chapter, we summarize the results of the thesis and outline some possible avenues
for future work.

Results
As SHACL is a relatively young language, many challenges and use-cases have not yet
been addressed. In this thesis, we considered the effect of updates for SHACL validation
of RDF graphs. In particular, we considered the situation that we have a validated graph
and want to know if it remains valid when performing updates on the graph data. Having
had performance and other considerations in mind, we wanted to find a way to verify
that a set of updates yields a valid graph that avoids actually performing the updates on
the graph. We called this static validation under updates.

The main goal of this thesis was to study the validation of SHACL
constraints over RDF graphs that are subjects of updates.

In summary, the answers to the research questions are:

RQ1: How can we suitably describe updates on RDF graphs? Can we
build a suitably expressive update language, building on proposals from the
literature?

Inspired by an update language for description logics, we have defined syntax and
semantics for an update language that can express modifications on RDF data graphs.
This update language supports addition and removal of classes, as well as properties. In
other words, it is able to add unary and binary atoms to the data graph. It is possible to
concatenate multiple actions and to use variables.

57

7. Summary

RQ2: Is it possible to reduce validation under updates to validation over a
static graph without performing the updates? Moreover, can such a validation
be realized using existing validators?

The answer to this question depends on the allowed actions. Core SHACL as shown
in the W3C recommendation and related papers is sufficient to capture most, but not
all, actions from the update language. Therefore, it is not possible to reduce validation
for all actions that we have defined to standard SHACL. This means in addition that
existing validators that support SHACL Core can not cover all required cases for the
static validation technique.

However, we have provided syntax and semantics for an extended SHACL formalization.
In particular, this extension makes path expressions more expressible. Influenced by a
transformation technique for description logics, we have shown a reduction that takes
a set of constraints formulated in the extended SHACL formalization and transforms
them into a different set of constraints. Using the extension, we can capture all defined
actions. We have proved the correctness of the reduction in detail, which means that
we showed that the original graph validates the transformed set of constraints if and
only if the updated data graph validates the original constraints. In addition, we have
demonstrated the transformation in multiple examples.

RQ3: Which features of SHACL can be supported in this setting that are
not covered by existing formalizations, but that can increase the applicability
of the approach?

We have extended shape expressions with predicates. As a useful feature for predicates,
we have introduced literals which denote things like numbers, dates, or strings. We
have provided multiple examples that demonstrate that this definition allows expressing
interesting ideas.

RQ4: Can we gain experimental data that indicates the effectiveness of the
static validation technique? Which additional artifacts do we need to get this
data?

We have provided a proof-of-concept implementation based on the Apache Jena project.
First, we implemented the transformation itself. Second, we also have an implementation
that parses and applies the update language for data graphs. We can compare the
transformation against this update implementation. In total, we have performed three
experiments. Within each of these experiments, transforming the shapes and validating
them on the original graph took much less time than updating the data graph. This
shows, that the static validation technique can be very effective.

Future Work
The thesis shows up various questions that could be the topic of further research. In the
following, we describe those that we suppose to be the most interesting.

58

The proposed extension of shape expressions with predicates is able to express various
useful ideas. More research could be done into further refining this, especially considering
the vacuous truth in Example 6.

We more thoroughly sketch an idea about using forms and one about conditional actions.
Presently, it is possible to use SHACL and especially its non-validating properties to
display forms [26]. We could also use forms to enable updates using SHACL. For example,
we could use the form

Name of person: John
Current supervisor: William
New supervisor: Olivia

for the action α = supervises ⊕ (Olivia, John) · supervises ⊖ (William, John).

A different possible research direction is about more complex actions. It is desirable to
extend the actions from Definition 1 with conditional actions. In this case, we would
define complex actions as follows:

α ::= ϵ | (β · α) | (x ∧ ϕc ? α α) · α

where β is a basic action, and ϵ denotes the empty action and the action precondition is
a conjunction of a variable x and ϕc a non-ground concept.

This allows to perform updates such as the following two:

x ∧ Human ∧ (age > 18) ? Adult ⊕ x Minor ⊕ x

x ∧ Human ∧ ∃enrolledIn. (y ∧ University) ? Student ⊕ x Student ⊖ x

Defining the semantics for this, however, is a non-trivial task. In comparison to updates
in a description logic context [2], we need to take locality into account because of the
definition of validation with targets and shapes. We expect to need ideas from hybrid
logic for this. One potential approach is as follows:

TR(a∧ϕc ? α1 α2)·α(ϕ) = (@a¬ϕc ∨ TRα1·α(ϕ)) ∧ (@aϕc ∨ TRα2·α(ϕ))

An extension of this idea is to allow whole constraints, including targets, as preconditions
of actions.

59

Bibliography

[1] About W3C. W3C. 2021. url: https://www.w3.org/Consortium/ (visited
on 08/04/2022).

[2] Shqiponja Ahmetaj et al. „Managing Change in Graph-Structured Data Using
Description Logics“. In: ACM Transactions on Computational Logic 18.4 (Oct. 31,
2017), pp. 1–35. issn: 1529-3785, 1557-945X. doi: 10.1145/3143803. url:
https://dl.acm.org/doi/10.1145/3143803 (visited on 06/28/2022).

[3] Shqiponja Ahmetaj et al. „Reasoning about Explanations for Non-validation in
SHACL“. In: Proceedings of the Eighteenth International Conference on Princi-
ples of Knowledge Representation and Reasoning. 18th International Conference
on Principles of Knowledge Representation and Reasoning {KR-2021}. Hanoii,
Vietnam: International Joint Conferences on Artificial Intelligence Organization,
Sept. 2021, pp. 12–21. isbn: 978-1-956792-99-7. doi: 10.24963/kr.2021/2. url:
https://proceedings.kr.org/2021/2 (visited on 06/28/2022).

[4] Medina Andresel et al. „Stable Model Semantics for Recursive SHACL“. In: Pro-
ceedings of The Web Conference 2020. WWW ’20: The Web Conference 2020.
Taipei Taiwan: ACM, Apr. 20, 2020, pp. 1570–1580. isbn: 978-1-4503-7023-3. doi:
10.1145/3366423.3380229. url: https://dl.acm.org/doi/10.1145/
3366423.3380229 (visited on 06/28/2022).

[5] Apache Jena Repository. GitHub. Apr. 17, 2023. url: https://github.com/
apache/jena (visited on 04/18/2023).

[6] Apache Jena SHACL. Apache Jena. Aug. 25, 2022. url: https://jena.apache.
org/documentation/shacl/ (visited on 03/26/2023).

[7] Marcelo Arenas, Claudio Gutierrez, and Jorge Pérez. „Foundations of RDF Databases“.
In: Reasoning Web. Semantic Technologies for Information Systems: 5th Interna-
tional Summer School 2009, Brixen-Bressanone, Italy, August 30 - September 4,
2009, Tutorial Lectures. Ed. by Sergio Tessaris et al. Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer, 2009, pp. 158–204. isbn: 978-3-642-03754-2. doi:
10.1007/978-3-642-03754-2_4. url: https://doi.org/10.1007/978-
3-642-03754-2_4 (visited on 04/21/2023).

61

https://www.w3.org/Consortium/
https://doi.org/10.1145/3143803
https://dl.acm.org/doi/10.1145/3143803
https://doi.org/10.24963/kr.2021/2
https://proceedings.kr.org/2021/2
https://doi.org/10.1145/3366423.3380229
https://dl.acm.org/doi/10.1145/3366423.3380229
https://dl.acm.org/doi/10.1145/3366423.3380229
https://github.com/apache/jena
https://github.com/apache/jena
https://jena.apache.org/documentation/shacl/
https://jena.apache.org/documentation/shacl/
https://doi.org/10.1007/978-3-642-03754-2_4
https://doi.org/10.1007/978-3-642-03754-2_4
https://doi.org/10.1007/978-3-642-03754-2_4

[8] David Beckett et al. RDF 1.1 Turtle. W3C Recommendation. W3C, Feb. 25, 2014.
url: https://www.w3.org/TR/2014/REC-turtle-20140225/ (visited on
08/04/2022).

[9] Tim Berners-Lee, James Hendler, and Ora Lassila. „The Semantic Web“. In:
Scientific American 284.5 (May 2001), pp. 34–43. url: http://www.sciam.com/
article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21.

[10] Dan Brickley and R.V. Guha. RDF Schema 1.1. W3C Recommendation. W3C,
Feb. 25, 2014. url: https://www.w3.org/TR/2014/REC-rdf-schema-
20140225/ (visited on 08/09/2022).

[11] Diego Calvanese, Magadalena Ortiz, and Mantas Simkus. „Evolving Graph Databases
under Description Logic Constraints“. In: vol. 1014. CEUR Workshop Proceedings.
Aachen: RWTH, 2013, pp. 120–131.

[12] Diego Calvanese, Magdalena Ortiz, and Mantas Šimkus. „Verification of Evolving
Graph-Structured Data under Expressive Path Constraints“. In: 19th International
Conference on Database Theory (ICDT 2016). Ed. by Wim Martens and Thomas
Zeume. Vol. 48. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 15:1–15:19.
isbn: 978-3-95977-002-6. doi: 10.4230/LIPIcs.ICDT.2016.15. url: http:
//drops.dagstuhl.de/opus/volltexte/2016/5784.

[13] Julien Corman. SHACL2SPARQL Code Repository. June 21, 2021. url: https:
//github.com/rdfshapes/shacl-sparql (visited on 04/15/2023).

[14] Julien Corman, Juan L. Reutter, and Ognjen Savkovic. Semantics and Validation
of Recursive SHACL (Extended Version). Bolzano: KRDB Research Centre, 2018.

[15] Julien Corman, Juan L. Reutter, and Ognjen Savković. „Semantics and Validation of
Recursive SHACL“. In: The Semantic Web – ISWC 2018. Ed. by Denny Vrandečić
et al. Vol. 11136. Cham: Springer International Publishing, 2018, pp. 318–336. doi:
10.1007/978-3-030-00671-6_19. url: http://link.springer.com/
10.1007/978-3-030-00671-6_19 (visited on 06/28/2022).

[16] Julien Corman et al. „Validating Shacl Constraints over a Sparql Endpoint“. In: The
Semantic Web – ISWC 2019. Ed. by Chiara Ghidini et al. Vol. 11778. Cham: Springer
International Publishing, 2019, pp. 145–163. doi: 10.1007/978-3-030-30793-
6_9. url: https://jreutter.sitios.ing.uc.cl/SHACL_19.pdf (visited
on 07/07/2022).

[17] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 Concepts and
Abstract Syntax. W3C Recommendation. W3C, Feb. 25, 2014. url: https://
www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ (visited on
07/01/2022).

[18] Download Medical Subject Headings Data. National Library of Medicine. Feb. 17,
2023. url: https://www.nlm.nih.gov/databases/download/mesh.
html (visited on 03/31/2023).

62

https://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://doi.org/10.4230/LIPIcs.ICDT.2016.15
http://drops.dagstuhl.de/opus/volltexte/2016/5784
http://drops.dagstuhl.de/opus/volltexte/2016/5784
https://github.com/rdfshapes/shacl-sparql
https://github.com/rdfshapes/shacl-sparql
https://doi.org/10.1007/978-3-030-00671-6_19
http://link.springer.com/10.1007/978-3-030-00671-6_19
http://link.springer.com/10.1007/978-3-030-00671-6_19
https://doi.org/10.1007/978-3-030-30793-6_9
https://doi.org/10.1007/978-3-030-30793-6_9
https://jreutter.sitios.ing.uc.cl/SHACL_19.pdf
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.nlm.nih.gov/databases/download/mesh.html
https://www.nlm.nih.gov/databases/download/mesh.html

[19] Lee Feigenbaum et al. SPARQL 1.1 Protocol. W3C. Mar. 21, 2013. url: https:
//www.w3.org/TR/2013/REC-sparql11-protocol-20130321/ (visited
on 04/16/2023).

[20] Mónica Figuera, Philipp D. Rohde, and Maria-Esther Vidal. „Trav-SHACL: Effi-
ciently Validating Networks of SHACL Constraints“. In: Proceedings of the Web
Conference 2021. WWW ’21: The Web Conference 2021. Ljubljana Slovenia: ACM,
Apr. 19, 2021, pp. 3337–3348. isbn: 978-1-4503-8312-7. doi: 10.1145/3442381.
3449877. url: https://dl.acm.org/doi/10.1145/3442381.3449877
(visited on 04/16/2023).

[21] David S. Gunderson. „Variants of Finite Mathematical Induction“. In: Handbook
of Mathematical Induction: Theory and Applications. CRC Press, 2010. isbn: 978-
1-4200-9365-0. url: https://www.routledgehandbooks.com/doi/10.
1201/9781420093650-5.

[22] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language. W3C Recom-
mendation. W3C, Mar. 21, 2013. url: https://www.w3.org/TR/2013/REC-
sparql11-query-20130321/ (visited on 07/31/2022).

[23] Patrick J. Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics. W3C Recom-
mendation. W3C, Feb. 25, 2014. url: http://www.w3.org/TR/2014/REC-
rdf11-mt-20140225/ (visited on 07/01/2022).

[24] Holger Knublauch, Dean Allemang, and Simon Steyskal. SHACL Advanced Features.
W3C Working Group. W3C, June 8, 2017. url: https://www.w3.org/TR/
2017/NOTE-shacl-af-20170608/ (visited on 07/01/2022).

[25] Holger Knublauch, Dean Allemang, and Simon Steyskal. SHACL Advanced Fea-
tures 1.1. W3C Community Group Draft Report. SHACL Community Group,
Feb. 12, 2021. url: https://w3c.github.io/shacl/shacl-af/ (visited on
07/12/2022).

[26] Holger Knublauch and Dimitris Kontokostas. Shapes Constraint Language (SHACL).
W3C Recommendation. W3C, July 20, 2017. url: https://www.w3.org/TR/
2017/REC-shacl-20170720/ (visited on 07/01/2022).

[27] Jose Emilio Labra Gayo et al. Validating RDF Data. Vol. 7. Synthesis Lec-
tures on the Semantic Web: Theory and Technology 1. Morgan & Claypool
Publishers LLC, Sept. 2017. 328 pp. isbn: 978-1-68173-164-3. doi: 10.2200/
s00786ed1v01y201707wbe016. url: https : / / book . validatingrdf .
com/ (visited on 07/01/2022).

[28] Martin Leinberger et al. „Deciding SHACL Shape Containment Through Description
Logics Reasoning“. In: The Semantic Web – ISWC 2020. Ed. by Jeff Z. Pan et
al. Vol. 12506. Cham: Springer International Publishing, 2020, pp. 366–383. doi:
10.1007/978-3-030-62419-4_21. url: https://link.springer.com/
10.1007/978-3-030-62419-4_21 (visited on 04/12/2023).

63

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://doi.org/10.1145/3442381.3449877
https://doi.org/10.1145/3442381.3449877
https://dl.acm.org/doi/10.1145/3442381.3449877
https://www.routledgehandbooks.com/doi/10.1201/9781420093650-5
https://www.routledgehandbooks.com/doi/10.1201/9781420093650-5
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2017/NOTE-shacl-af-20170608/
https://www.w3.org/TR/2017/NOTE-shacl-af-20170608/
https://w3c.github.io/shacl/shacl-af/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://doi.org/10.2200/s00786ed1v01y201707wbe016
https://doi.org/10.2200/s00786ed1v01y201707wbe016
https://book.validatingrdf.com/
https://book.validatingrdf.com/
https://doi.org/10.1007/978-3-030-62419-4_21
https://link.springer.com/10.1007/978-3-030-62419-4_21
https://link.springer.com/10.1007/978-3-030-62419-4_21

[29] Mathieu Lirzin and Holger Knublauch. Expressing Equality between Multiple Paths
#119. GitHub. Oct. 7, 2019. url: https://github.com/w3c/data-shapes/
issues/119 (visited on 03/29/2023).

[30] Paolo Pareti, George Konstantinidis, and Fabio Mogavero. „Satisfiability and Con-
tainment of Recursive SHACL“. In: Journal of Web Semantics 74 (Oct. 2022),
p. 100721. issn: 15708268. doi: 10.1016/j.websem.2022.100721. url:
https://linkinghub.elsevier.com/retrieve/pii/S1570826822000130
(visited on 04/15/2023).

[31] Paolo Pareti et al. „SHACL Satisfiability and Containment“. In: The Semantic Web
– ISWC 2020. Ed. by Jeff Z. Pan et al. Vol. 12506. Cham: Springer International
Publishing, 2020, pp. 474–493. doi: 10.1007/978-3-030-62419-4_27.
url: https://link.springer.com/10.1007/978-3-030-62419-4_27
(visited on 04/03/2023).

[32] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. „YAGO 4: A
Reason-able Knowledge Base“. In: The Semantic Web. Ed. by Andreas Harth
et al. Vol. 12123. Cham: Springer International Publishing, 2020, pp. 583–596. doi:
10.1007/978-3-030-49461-2_34. url: http://link.springer.com/
10.1007/978-3-030-49461-2_34 (visited on 03/31/2023).

[33] Rdf-Validate-Shacl Code Repository. GitHub. Apr. 4, 2023. url: https://github.
com/zazuko/rdf-validate-shacl (visited on 04/15/2023).

[34] Philipp D. Rohde and Figuera Mónica. Trav-SHACL. Scientific Data Management
Group, Feb. 17, 2023. url: https://github.com/SDM-TIB/Trav-SHACL
(visited on 04/16/2023).

[35] Simon Steyskal and Karen Coyle. SHACL Use Cases and Requirements. W3C
Working Group Note. W3C, July 20, 2017. url: https://www.w3.org/TR/
2017/NOTE-shacl-ucr-20170720/ (visited on 07/12/2022).

[36] W3C Mission. W3C. 2021. url: https : / / www . w3 . org / Consortium /
mission#principles (visited on 08/04/2022).

64

https://github.com/w3c/data-shapes/issues/119
https://github.com/w3c/data-shapes/issues/119
https://doi.org/10.1016/j.websem.2022.100721
https://linkinghub.elsevier.com/retrieve/pii/S1570826822000130
https://doi.org/10.1007/978-3-030-62419-4_27
https://link.springer.com/10.1007/978-3-030-62419-4_27
https://doi.org/10.1007/978-3-030-49461-2_34
http://link.springer.com/10.1007/978-3-030-49461-2_34
http://link.springer.com/10.1007/978-3-030-49461-2_34
https://github.com/zazuko/rdf-validate-shacl
https://github.com/zazuko/rdf-validate-shacl
https://github.com/SDM-TIB/Trav-SHACL
https://www.w3.org/TR/2017/NOTE-shacl-ucr-20170720/
https://www.w3.org/TR/2017/NOTE-shacl-ucr-20170720/
https://www.w3.org/Consortium/mission#principles
https://www.w3.org/Consortium/mission#principles

	Introduction
	Preliminaries
	RDF and SPARQL
	Shapes Constraint Language

	Extended SHACL formalization
	Syntax
	Semantics
	Examples
	Complexity

	Update Language and Static Validation
	Update Language
	Static validation
	Examples

	Correctness
	Implementation and Experiments
	Implementation considerations
	Experiments
	Discussion

	Summary
	Bibliography

