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Abstract

The ubiquitous presence of noise in modern societies causes a significant amount of psychological strain

and stress in individuals, and since this is especially true for transportation vehicles, engineers in the au-

tomotive industry are strongly interested in identifying the sources of noise and the critical transmission

mechanisms. The issue is further exacerbated by the continuous exploitation of lightweight construction

potentials. Since body modifications in the late development phase are associated with high effort and

costs, early optimisation on the grounds of virtual models is crucial. Due to the transition to e-mobility,

the engine is no longer a source of noise and wind noise excitation can now become crucial even at low

driving speeds. The thesis at hand aims to delevop a foundation for the early assessment of wind-induced

noise in vehicles by identifying and quantifying the essential physical mechanisms of the complex aero-

vibro-acoustic problem. A detailed theoretical introduction explains the basic principles and methods

for dealing with the various physical mechanisms by collecting relevant research and literature from a

wide range of disciplines. Then a hybrid method is developed, with which experimental or computational

acoustic or mechanical modes on arbitrary grids can be used as a basis for further calculations. A generic

test body with clearly defined transmission paths is constructed to validate the developed method. The

fluctuating surface pressure distribution on the structure is calculated by numerical simulation and the re-

sults are compared with wind tunnel measurements. Then, based on the hybrid method, a computational

algorithm is developed that allows to calculate flow-induced interior noise on behalf of computational or

experimental mechanical and acoustical modes and a transient simulation of the vehicle flow, and the

method is extensively validated using wind tunnel measurements.

Kurzfassung

Die ständige Präsenz von Lärm in modernen Gesellschaften führt zu einem signifikanten Ausmaß von in-

dividueller psychischer Belastung und Stress und da dies in besonderem Maße für Fahrzeuge gilt, haben

Ingenieure in der Automobilindustrie großes Interesse an der Identifikation der Lärmquellen und der kri-

tischen Übertragungsmechanismen. Die Problematik wird zusätzlich durch die stetige Ausnutzung von

Leichtbaupotentialen verschärft und da in der späten Entwicklungsphase Karosserieänderungen mit ho-

hem Aufwand und Kosten verbunden sind, ist eine frühzeitige Optimierung auf Basis mathematischer

Modelle erforderlich. Durch den Wandel zur E-Mobilität entfällt der Motor als Geräuschquelle und die

Anregung durch Windgeräusche kann nun auch bei niedrigeren Geschwindigkeiten kritisch sein. Das

Ziel der vorliegenden Arbeit ist es, die wesentlichen physikalischen Mechanismen der komplexen aero-

vibro-akustischen Problemstellung zu identifizieren, zu quantifizieren und somit eine Grundlage für die

frühzeitige Bewertung von windangeregtem Lärm in Fahrzeugen zu generieren. Hierzu werden in einer

ausführlichen theoretischen Einleitung die Grundlagen und Methoden für die Behandlung der unter-

schiedlichen physikalischen Mechanismen erläutert und ein Bezug zu bestehender Forschung und Literatur

aus den unterschiedlichsten Fachgebieten hergestellt. Danach wird eine hybride Methode für die Behand-

lung des vibro-akustischen Systems entwickelt, mit der experimentell oder computergestützt ermittelte

akustische bzw. mechanische Moden auf beliebigen Gittern als Basis für die weitere Berechnung verwen-

det werden können. Anschließend wird ein generischer Testkörper entwickelt, der es erlaubt anhand klar

definierter Übertragungspfade die Gültigkeit der entwickelten Methode zu überprüfen. Zur Berechnung

der instationären Oberflächendrücke an der Struktur wird eine numerische Berechnung durchgeführt und

die Ergebnisse dieser Berechnung werden mit Windkanalmessungen verglichen. Dann wird auf Basis der

hybriden Methode ein, durch Windkanalmessungen validiertes, Simulationsprogramm entwickelt, das es

erlaubt, den wind-induzierten Lärm innerhalb des Fahrzeug sowohl auf Basis computergestützter Modelle

als auch auch experimenteller Messungen zu ermitteln.
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Abbreviations

FE Finite element
TPS Thin-plate-spline
WPF Wall pressure fluctuations
EMA Experimental modal analysis
LB Lattice boltzmann
TPA Transfer path analysis
MA Modal analysis
CMS Component mode synthesis
NVH Noise Vibration Harshness
BE Boundary element
BC Boundary condition
LV Laser vibrometry
OMA Operational Modal Analysis
PDE Partial differential equation
DOF Degree-of-Freedom
SEA Statistical energy analysis
PTF Patch transfer function
CFD Computational fluid dynamics
SPL Sound pressure level
FRF Frequency response function
DL Displacement level
APSD Auto-power spectral density
avAPSD Arithmetically averaged auto-power spectral density
CPSD Cross-power spectral density
lonCPSD Longitudinal cross-power spectral density
latCPSD Lateral cross-power spectral density

MSC Magnitude-squared coherence
lonMSC Longitudinal magnitude-squared coherence
latMSC Lateral magnitude-squared coherence
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General notation

Symbol Description

b Scalar
b Vector
B Matrix
b(x) Scalar valued Function
b(x) Vector valued function
bT Hermitian transpose (complex transpose)
bk Entry of vector b at index k
ba|k Entry of vector ba at index k
bij Entry of matrix B at index ij
b(i) Realization of bÓ

b(i)

Ô
Ensemble average over b(i)

b̂(Ê) Temporal Fourier transformation of b(t)

b̆(k, Ê) Spatial Fourier transformation of b̂(x, Ê)

b̃n(Ê) Eigenvalue transformation of b̂(x, Ê)

Ŝb(Ê) Power spectrum of b(t)

Ŝb(x, Ê) Auto power spectrum of b(x, t)

Ŝb(x, Ê) Auto power spectrum of arithmetic average of b(x, t)

Ŝb(x, y, Ê) Cross power spectrum of b(x, t)

Φ̆b(k1, k2, Ê) Wavenumber-frequency spectrum of b(x, t)
“̂b(x, y, Ê) Magnitude-squared coherence of b(x, t)

General variables

Symbol Description
t, ”t Time, Time shift
Ê, f Angular frequency, Frequency
x, y, z,x = [x, y, z],x1,x2,y Space Coordinates
’, ÷, ⇣ = [’, ÷] Relative coordinates
kx, ky, kz,k = [kx, ky, kz],k1,k2 Angular wavenumber coordinates
Ÿ Trace wavenumber
Γ Surface
V, Ω Volume
Ψ, Â Mode shape matrix, mode shape
cph In-plane phase velocity cph = Ê/Ÿ
i Imaginary unit
s Pole
⁄, Ê, ’ Eigenvalue, eigenfrequency, modal damping
N(x),N = diag([N(x), N(x), N(x)]) Ansatz function, Ansatz matrix
· Assembly operator
P Point cloud
D Delaunay triangulation
ˆb/ˆx Partial derivative of b
Ò Gradient
Ò◊ Curl
¢ Dyadic product
bic Incompressible quantity
bÕ Quantity with zero temporal mean
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Transformations

Symbol Formula Description

F
)

b(x, t)
*

b̂(x, Ê) =
s
R

b(x, t)e≠ωtdt Temporal Fourier transformation

F i
Ó

b̂(x, Ê)
Ô

b(x, t) =
s
C

b̂(x, Ê)eωtdÊ Inverse temporal Fourier transformation

Fx

Ó
b̂(x, Ê)

Ô
b̆(k, Ê) =

s
Rn b̂(x, Ê)e≠ik·xdx Spatial Fourier transformation (wavenumber transformation)

F i
x

Ó
b̆(k, Ê)

Ô
b̂(x, Ê) =

s
Cn b̆(k, Ê)eik·xdx Inverse spatial Fourier transformation

Ea

Ó
b̂(x, Ê)

Ô
b̃n(Ê) =

s
Rn b̂(x, Ê)Âú

a|n(x)dx Acoustical Eigenvalue transformation

(same for Mechanical (Em,Âm|n) and Coupled (Ec,Âc|n))

E i
a

Ó
b̃n(Ê)

Ô
b̂(x, Ê) =

qN
n=0 b̃n(Ê)Âa(x) Acoustical Eigenvalue transformation

(same for Mechanical (Em,Âm|n) and Coupled (Ec,Âc|n)

Acoustical field

Symbol Description
pa Pressure
va Particle velocity
qa Volume velocity
qb Boundary volume velocity
c0 Speed of sound
fl0 Density
ya Acoustic admittance (va/pa)
za Acoustic dynamic stiffness(pa/va)
zΓa Acoustic dynamic boundary stiffness(pa/va)
sa Acoustic transmissibility (pa/pf)
ma, ca, ka Mass/damping/stiffness

(Open cavity formulation)
ma, ca, ka Mass/Damping/Stiffness

(Closed cavity formulation)

G Green’s free space function G(r, Ê) = eiωr/c0/(4fir)

Mechanical field

Symbol Description
us Displacement
vs Velocity
fs Mechanical force
fb Boundary force
‡s Mechanical stress
zs Mechanical dynamic Stiffness (fs/us)
ys Mechanical admittance (us/fs)
ms, cs, ks Mass/damping/stiffness
kb Bending wavenumber
Ds Flexural rigidity
fls Density
‹ Poisson ratio
hs Plate thickness

Coupled vibro-acoustic field

Symbol Description
dc Generalized displacement
fc Generalized force
yc Coupled admittance (ds/fc)
zc Coupled impedance (fc/ds)
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Flow field

Symbol Description

fl0 Ambient density
fl Density
pÕ

f Pressure fluctuation (aerodynamic only, subsonic phase velocity)
pa Pressure fluctuation (acoustic)
p0 Temporal mean pressure
p Pressure (temporal mean + aerodynamic + acoustic)
vf , Velocity
Êf Vorticity
vconv Mean shear Velocity
vŒ Free stream velocity
Mc Convective wavenumber Mc = Vc/c0

MŒ Free stream wavenumber MŒ = VŒ/c0

‹ Kinematic viscosity
µ Dynamic viscosity µ = fl0‹
Re Free stream Reynolds Number Re = VŒlchar/‹
St Strouhal Number St = fstD/vŒ

“ζ , “η Longitudinal and lateral Corcos parameters
·ij Wall shear stress
” Boundary layer thickness
L Lighthill stress tensor
fi Momentum flux tensor
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1 Introduction

1.1 Motivation

Since the early days of automotive history, the objective of reducing noise in the interior of vehicles

through design measures has always been an integral part of the development process. The complexity,

multifaceted and sometimes contradictory demands placed on modern vehicles, such as reducing noise

transmission while simultaneously reducing vehicle mass, requires a great amount of in-depth knowledge

on the physical mechanisms involved. Over the past years, achieving exceptional acoustic comfort has

become a high priority goal among the many requirements imposed. Depending on vehicle speed, engine

load, and road conditions, three distinct primary noise sources can be distinguished: engine noise, road-

induced noise and wind noise. The relative weighting of these noise sources is strongly related to engine

load, vehicle speed and road conditions. In electric vehicles, the combustion noise of the engine is no

longer a contributing factor and thus, only the latter two sources must be considered. At low speeds,

structural vibrations induced by road surface irregularities excite the vehicle body, resulting in audible

noise in the driver’s compartment. Aeroacoustic noise related to turbulent structures in the exterior flow

becomes more prominent at higher speeds. These turbulent structures induce structural vibrations that

in turn induce noise inside the vehicle. At very low frequencies, the interior cavity may also be excited

directly via holes and openings. Understanding wind-induced noise in vehicles at low frequencies is the

overall goal of this dissertation. Owing to the high perceptibility of mid-to high-frequency noise, topics

such as side mirror noise or noise generated by small cavity gaps have received significant attention [1].

Nevertheless, although less perceptible and annoying, low frequency noise can seriously affect driving

comfort. Studies on the effect of low frequency noise on people generally reveal an annoying feeling of ear

pressure accompanied by headache, fatigue and performance losses [2]. In recent years, research on the

low frequency region has principally been conducted to address structure-borne noise from road roughness

and engine vibration [3–5]. Although its significance has been emphasized by research like Lemaitre’s [6]

inquiry into the psychoacoustical perception of wind buffeting noise, the physical mechanisms of flow-

induced low-frequency noise in the vehicle cabin remain poorly understood. The distinction between

low and high frequency mechanisms is of fundamental importance for the mechanical and acoustical

wave propagation patterns in the vehicle structure and the interior cavity. Standing waves, also known

as modes, predominate at low frequencies, while high frequency wave patterns are a superposition of

a wide variety of waves with different wavelengths, therefore requiring a statistical description. It is

therefore evident that the terms low- or high-frequency can be defined either by a frequency threshold

determined by human perception or by distinguishing between deterministic or modal low-frequency

and rather statistical high-frequency patterns in the medium. The former allows an absolute definition

of the frequency threshold while the latter interpretation is particularly important with regard to the

application of mathematical and computer-aided methods. Due to the later use of a geometrically scaled

testbody, it is not meaningful to precisely set frequency limits for low and high-frequency range; however,

in a broad sense, the thesis will mainly concern a frequency range between 0 and 300 Hz. Somewhat

counterintuitively, it is precisely because of the statistical descriptiveness that the high frequency range

is comparatively easy to treat, while the low frequency region requires very accurate and sophisticated

1



models and techniques that may even go so far as to include the effect of structural uncertainties associated

with the manufacturing process [4, 7, 8]. Experimental techniques are equally more challenging at low

frequencies, as even small deviations in the measurement position can lead to significant deviations in the

measured acoustic pressure or, analogously, the measured mechanical displacement. For the treatment of

noise induced by the flow around the vehicle, a numerical description of the unsteady flow is required and,

similar to acoustic and mechanic fields, it is especially at low frequencies where large-scale topological

features, such as vortex shedding in the recirculation region behind the vehicle can be critical. As we will

see in greater depth throughout the course of this work, the calculation of flow-induced noise in vehicles is a

challenge that necessitates a synthesis of the most diverse fields, including most naturally fluid mechanics,

acoustics and structural dynamics, but also sophisticated experimental, numerical and statistical methods.

Regarding low-frequency vibroacoustics, a great deal of research has been conducted in recent years. For

example, the topic of structural uncertainties [4, 9, 10] and the influence of openings in the package tray

on the acoustic properties of the cavity have been addressed [11], but also vibro-acoustic substructuring

methods such as normal mode coupling [4, 7, 12] and, in more recent contributions, the patch transfer

method (PTF) [13,14]. There is also considerable effort devoted to experimental modal analysis (EMA)

[?,15], vibro-acoustic modal analysis [16] and operational modal analysis (OMA) [17,18]. Hybrid methods

based on a mixture of experimental and numerical techniques are frequently employed as a result of the

high effort required to produce a reliable numerical model for the vehicle structure [3, 13, 19]. Vibro-

acoustic coupling effects are also regularly investigated, frequently on behalf of simple vibro-acoustic boxes

[20] or academic structures [21] but also on real vehicles [3]. At this point, it is important to mention that

the acoustic properties of the interior cavity can be significantly altered by the presence of flexible body

components, especially at low frequencies [3]. Recent years have also seen a consistent progress regarding

the prediction of wind-induced interior noise. In order to generate reliable and reproduceable knowlege, it

is benefical to employ specifically designed academic structures and among the many structures employed

in aerodynamic research only the SAE body employed in [1, 22–24] and the more recently developed

Drivaer model [25–28] also allow to investigate aero-vibro-acoustic mechanisms. Based on a simplified

vehicle geometry, the SAE body has e.g. been used to investigate the interior noise associated with the

side window [22] and the underbody [29]. On the contrary, the Drivaer model is actually a real vehicle

with specific insulation treatments that up to date has only been employed to investigate the transmission

of noise via the side window [26, 28]. Apart from these test specimens, investigations were carried out

either on real vehicles [30–34] or on less well-known generic models [35, 36], for which experimental

validation is often not available. While a large part of the investigations deals with the transmission of

flow-induced noise via the side window [22, 25–28, 31, 37], there are also investigations concerning wind-

induced noise via the windshield [30], the underbody [32–34,38] and the side door [39]. Due to the distinct

transmission properties associated with different wavelengths, the aerodynamic and acoustic components

of wall pressure fluctuations are frequently studied [22, 24–27, 36, 37]. It can be assumed, however, that

the acoustic component only contributes significantly at high frequencies [22, 26, 40, 41] and can thus

be neglected at low frequencies. Only a small fraction of the literature concerning flow-induced noise

in vehicles also addresses the low-frequency range. Due to the additional acoustic boundary flexibility

associated with the mechanical structure at low frequencies [42], unwanted transmission paths must be

blocked for an investigation. This is challenging at low frequencies, which is the reason for the frequent

100 Hz lower limit of investigations on the SAE body (explicitly noted by Hartmann [23]) and the DrivAer

body (not explicitly noted). Although this allows for the investigation of the respective transmission

mechanisms via various components, and the low-frequency excitation via the side window [37], the

underbody [32, 33, 38], the side door [39], or the windshield [30] has been adressed, the reduction to a

single transmission path precludes the evaluation of real vehicles. One of the few papers that consider
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the entire vehicle body is that of Wang [35], but no experimental validation is available here. The role of

different excitation regions (such as the windshield, underbody, or recirculation region behind the vehicle)

and the interaction of vibrating mechanical structures via the interior cavity has not been studied yet,

but is considered to be critical to achieve a proper understanding of low-frequency flow-induced noise in

vehicles.

1.2 Aim of this thesis

Based on the previous explanations, it can be concluded that, despite the great amount of research cur-

rently conducted regarding noise inside vehicles, a great number of topics remain unexplored or have only

received limited attention, particularly regarding low-frequency wind-induced noise. Since the validity

of many simplifications applicable in the high-frequency domain and discussed in detail throughout this

work appear at least questionable for the special case of low-frequency noise in real vehicles, it is crucial

to establish a context between low- and higher-frequency mechanisms thoroughly treated in terms of

e.g. wavenumber-frequency spectra in literature [43]. In particular, validating numerically obtained low-

frequency wall pressure fluctuations (WPF) with wind tunnel measurements requires taking into account

the effects of spatial coherence. To the best of the author’s knowledge, no study has been conducted that

thoroughly investigates and compares aerodynamic and aeroacoustic excitation in various areas of the

vehicle, such as the underbody or the recirculation area behind the vehicle. Furthermore, with the excep-

tion of a few studies without experimental validation, the aero-vibro-acoustic investigations carried out

so far are limited to a specific transmission path while other transmission paths are intentionally blocked.

However, real vehicles contain a wide range of flexible components that may transmit noise inside the

cabin and the associated vibro-acoustic coupling mechanisms are of great interest for aero-vibro-acoustic

optimisation procedures. In summary, the aim of this work is, on the one hand, to combine existing

knowledge from a wide range of disciplines for developing a theoretical framework for the treatment of

low-frequency wind-induced noise, and, on the other hand, to develop a reliable method for assessing rel-

evant problems. Particular emphasis is placed on the experimental validation of the different acoustical,

mechanical and aerodynamical phenomena with appropriate measurement methods.
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1.3 Content

Chapter 2: Vibro-acoustic mechanisms and techniques

This chapter sets a theoretical framework for the investigation of vibro-acoustic mechanisms in vehicles.

Beginning with the transmission of waves through an infinite plate, the complexity is successively extended

to a finite vibro-acoustic box with natural and inhomogeneous boundary conditions, then to general,

strongly coupled vibro-acoustic systems, and finally to actual vehicles. The chapter also provides an

extensive summary of available numerical, experimental and hybrid techniques for assessing the issue.

Chapter 3: Aero-vibro-acoustic mechanisms in vehicles

This chapter begins with the physical principles of aerodynamics and aeroacoustics and then discusses

statistical methods for the description of wall pressure fluctuations and the transmission into a vibro-

acoustic box. Then, a literature review of aerodynamic, aeroacoustic, and aero-vibro-acoustic publications

pertinent to the topic is presented by isolating four distinct excitation mechanisms: convectively excited

surfaces, the recirculation area, the underbody, and direct excitation via openings.

Chapter 4: Hybrid strategy for coupling experimental and numerical normal modes

This chapter presents a method for assesing vibro-acoustic problems based on arbitrary experimental or

numerical modes. The method is based on a modal formulation extended with non-conforming grids that

allows to coupled arbitrary mechanical or acoustical modes defined on point clouds. Extensive numerical

validation using a coupled vibro-acoustic system shows, that the computational error can be greatly

reduced if the discretization of the structural modes is refined via thin-plate-spline (TPS) interpolation.

Chapter 5: A generic Testbody for assesing flow-induced noise in vehicles

In this chapter, a generic test specimen designed and fabricated specifically for this thesis is presented

and the mechanical structural modes required for the subsequent treatment are extracted via EMA.

Furthermore, the acoustic modes of the cavity are calculated via the finite element (FE) method and

validated by acoustical Frequency Response Functions (FRF’s).

Chapter 6: Flow topology and wall pressure fluctuations

In this chapter, the numerical calculation of the transient WPF is presented and analysed. After identify-

ing the relevant statistical quantities, a detailed validation with wind tunnel measurements is performed.

It turns out that the excitation ranking of the different surfaces cannot be correctly reproduced due to an

incorrectly predicted flow separation at the roof. Consequently, the excitation via the roof predominates

in the numerical calculation, whereas in the experimental case, the strongest aerodynamic excitation

appears at the windshield.

Chapter 7: Flow-induced noise inside the generic structure

This chapter represents the unification of all the previous investigations to finally address the transfer

of flow-induced noise inside the testbody. The displacement and pressure spectra of the wind-excited

structure are calculated using an especially designed custom program for investigating aero-vibro-acoustic

issues. The direct excitation of the acoustic cavity via an idealized rear vent is also considered. The results

are analyzed and compared with extensive wind tunnel measurements.
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1.4 My main contributions

The primary novel contributions of this dissertation work are essentially contained in Chapters 4-7.

Chapter 4 presents a hybrid method that allows the solution of coupled vibro-acoustic problems based

on uncoupled mechanical and acoustical modes. These modes can be calculated using either experimen-

tal methods (such as EMA) or numerical methods (such as FE), which can then be combined using a

modal formulation to describe the dynamics of the coupled vibro-acoustic system. The main innovation

compared with the original method proposed by Kim [44] is that arbitrary grids can be handled using

the technique of non-conforming grids which greatly expands the method’s range of applications.

Chapter 5 presents a novel test body specifically designed for the investigation of low-frequency aero-

vibro-acoustic mechanisms. Common test bodies, such as the SAE test body [1, 22, 23] or the Drivaer

model [25, 27, 45–47] are specifically designed to study noise transmission through the side window. The

innovative test body, on the other hand, allows the investigation of vibro-acoustic coupling mechanisms

between a variety of flexible panels, and particularly the investigation of the underbody and the trunk

partition, which are of great interest in the low-frequency range.

In Chapter 6, a comprehensive evaluation of the WPF on the test body is performed. For this pur-

pose, the results of a numerical simulation based on the lattice Boltzmann (LB) method are compared

with wind tunnel measurements. Previous investigations have e.g. investigated the auto-power spectral

density (APSD) over the hull of the vehicle [32] or the cross-power spectral density (CPSD) on certain

surfaces [1, 22] but in order to understand and validate the low-frequency excitation of the vehicle both

CPSD and APSD have to be investigated and compared on all surfaces which is a difficult task due to

the high dimensionality of the statistical data sets. To the best of the author’s knowledge, no such in-

vestigation has yet been conducted. The analysis reveals that there are typical characteristics for regions

excited by convected turbulence, leeward components, and regions on the underbody. More specifically,

the acoustic cavity modes at the underbody could be identified experimentally and numerically using the

CPSD, which is a novel finding. The most representative statistical quantities are identified and finally

allow for a tabular comparison of excitation via the various surfaces.

In Chapter 7, the full aero-vibro-acoustic workflow is carried out based on experimentally determined

structural modes, computational acoustic modes and wall pressure excitation from a transient LB simu-

lation. The results are then validated using extensive wind tunnel measurements. This approach differs

from earlier contributions discussed in Chapter 3 in that it considers a wide variety of flexible surfaces,

focuses on the low frequency range, accounts for the Helmholtz excitation via openings, and is thoroughly

validated with wind tunnel measurements.
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2 Vibro-acoustic mechanisms and techniques

2.1 State of art

Since the earliest days of industry, vibro-acoustic topics have been of great importance for developing

mechanical devices and transportation vehicles such as aircraft, trains, and automobiles. Lord Rayleigh

provided the first theoretical treatment on the propagation of acoustic waves in his 1877 book The Theory

of Sound [49]. With the advent of modern computers in the 1970s and the resulting new possibilities

related with advanced experimental and numerical methods, the importance of vibroacoustics in the

modern industries soared and it is now a paramount concern of automotive manufacturers to prevent

noise and vibration in an early phase of the development process. Nefske provided an early and influential

overview of the state of research on vibro-acoustic effects in automobile cabins in 1980 [3]. Several

techniques and methods, such as the finite element (FE) method, transfer path analysis (TPA), modal

analysis (MA), and component mode synthesis (CMS), have been professionalized and are now an integral

part of the development process. After many years of intensive research, assessing vibro-acoustic issues

remains a challenging subject necessitating considerable understanding in a variety of cross-sectional fields

encompassing mechanical engineering, electrical engineering, and computer science disciplines. Since a

complete discussion of relevant mechanisms and techniques is much beyond the scope of this thesis, the

interested reader is recommended to contemporary and exhaustive literature on the topic. The acronym

NVH (Noise Vibration Harshness) is often used to identify related work. Anders Brandt’s 2011 book,

Noise and Vibration Analysis [50], provides an in-depth investigation of vibro-acoustic methods with a

special emphasis on signal processing. Regarding the Fourier transform, the outstanding lecture notes

by Brad Osgood are recommended [51]. Regarding the numerous strategies for simulative treatment of

automotive issues, the 2016 book by Stephen A. Hambric [8] is also proposed. In addition, Jian Pang’s

2019 book [52] offers a comprehensive and well-written discussion of vibro-acoustic and aero-vibro-acoustic

topics. Other excellent resources for vibroacoustic topics are the classical books of Cremer [53] and

Fahy [54]. The reader is directed to the book by Kaltenbacher [55] for a comprehensive introduction of

the FE method. The terminology employed throughout this thesis is given in Tab. 2.1 as a precursor for

later discussions. The specific mention of the domain (space-frequency, wavenumber-frequency, modal)

is generally omitted for the sake of brevity. The context will tell whether an e.g. mechanical admittance

is a spatially resolved admittance defined in the frequency domain ŷs, a wave admittance y̆s defined in

the wavenumber frequency domain or a modal admittance ỹs.

2.2 Transmission of waves through a flexible plate into an acoustic

cavity

To aid comprehension, the reader is cordially invited to begin with the derivations in Appendix A and the

simple 1D vibro-acoustic system consisting of a piston and a cavity in Appendix B before coming back

to this, more challenging, example. In order to establish a foundation for the mathematical concepts, the

physical mechanisms and the terminology used throughout the thesis at hand, we begin by investigating

the transmission of plane acoustic (or aerodynamic) waves via a mechanical plate into an acoustical
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Domain Term Space-Frequency Wavenumber-Frequency Modal

mechanical admittance ûs/f̂s = ŷs ŭs/p̆s = y̆s ũs/f̃s = ỹs

dynamic stiffness f̂s/ûs = ẑs p̆s/ŭs = z̆s f̃s/ũs = z̃s

acoustic admittance iÊq̂a/p̂a = ŷa iÊv̆a/p̆a = y̆a iÊq̃a/p̃a = ỹa

dynamic stiffness p̂a/iÊq̂a = ẑa p̆a/iÊv̆a = z̆a p̆a/iÊq̃a = z̆a

coupled admittance d̂c/f̂c = ŷc d̆c/f̆c = y̆c d̃c/f̃c = ỹc

dynamic stiffness f̂c/d̂c = ẑc f̆c/d̆c = z̆c f̃c/d̃c = z̃c

Table 2.1: Terminology for direct and inverse formulations. The coupled variables are related to the
uncoupled variables as d̂c = [ûs, p̂a] and f̂c = [f̂s, iÊq̂a]. Note that compared to other literature,
such as [15], the ambient density is already included in the acoustic FRF’s. This creates closer
resemblance to the wavenumber-frequency formulation. The negative sign in q̂a is omitted for
simplicity, thus inducing an additional phase change of fi.

Figure 2.1: Transmission of waves through (a) infinite plate into semi-infinite cavity (b) finite plate defined
on area Γs with boundary conditions along line Σs into finite cavity defined in domain Ωa

with cavity walls Γa.

cavity. Particular emphasis is placed on presenting the modal treatment of the mechanical, acoustic, or

vibroacoustic issue as a generalization of the Fourier transform, thereby facilitating comprehension of the

theoretical ideas perceived. Starting with the relatively simple vibro-acoustic setup in Fig. 2.1, we study

the transmission of waves through an infinite Timoshenko-Mindlin plate with [xs, y,s] œ R
2 into a semi-

infinite space xa œ R
3, we gradually raise the complexity of the issue by first setting finite dimensions

for plate [xs, ys] œ Γs and cavity xa œ Ωa, by allowing for general boundary conditions at the plate edges

[xs, y,s] œ Σs and cavity walls xa œ Γa (thus introducing the normal mode coupling procedure) and by

finally addressing the modal decomposition of the strongly coupled vibro-acoustic system.

2.2.1 A semi-infinite cavity excited by boundary motion

The following derivation is based on the 2D example given in [54]. The propagation of acoustic waves

in a (possibly infinite) cavity with mean speed of sound c0 and mean density fl0 can be described by the

wave equation for the acoustic pressure p̂a(x, Ê) in frequency domain as

(≠Ê2

c2
0

≠ Δ)p̂a(x, Ê) = 0 . (2.1)

Details on the derivation may be found in Sec. 3.1. The plate vibrations in terms of normal velocity

iÊûs(x, y, Ê) induced by the aerodynamic pressure distribution p̂f(x, Ê) represent a boundary source for

the acoustical cavity. By satisfying the continuity of normal velocity at the boundary, the balance of
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momentum allows to recast the boundary condition for the acoustic cavity according to

n · Òp̂a(x, Ê) = Ê2fl0ûs(x, y, Ê) for x œ R
2 . (2.2)

Assuming plane bending waves and plane acoustical waves, the velocity and pressure fields can be rep-

resented in terms of their inverse spatial Fourier transforms [56] and the angular wavenumber vector

k = [kx, ky, kz] as

v̂s(x, y, Ê) = F i
x

)
v̆s(k, Ê)

*
=

1

(
Ô

2fi)2

⁄
R2

v̆s(k, Ê)eik·xdk and (2.3)

p̂a(x, Ê) = F i
x

)
p̆a(k, Ê)

*
=

1

(
Ô

2fi)3

⁄
R3

p̆a(k, Ê)eik·xdk . (2.4)

By applying the spatial Fourier transformation over R
3 on Eq. (2.1) as

Fx

I
(≠Ê2

c2
0

≠ Δ)p̂a(x, Ê)

J
=

1

(
Ô

2fi)3

⁄
R3

(≠Ê2

c2
0

≠ Δ)p̂a(x, Ê)e≠ik·xdx = 0 , (2.5)

we obtain the wave equation in k ≠ Ê domain as

(≠Ê2

c2
0

+ |k|2)p̆a(k, Ê) = 0 . (2.6)

A physical solution is therefore only possible if Ê2/c2
0 = |k0|2 is satisfied, which is the well known

dispersion relation. The boundary condition given in Eq. (2.2) can be incorporated by obtaining the

spatial derivative normal to the wall as

Fx

)
(ˆp̂a(x, Ê)/ˆz)z=0

*
=

)≠ikz p̆a(k, Ê)
*

z=0
= Ê2fl0ŭs(kx, ky, Ê) . (2.7)

Evaluation at z = 0 can be performed by applying inverse Fourier transformation. Doing so yields

1

(
Ô

2fi)3

⁄
R3

Ó
≠ikz p̆a(k, Ê)e≠i(kxx+kyy+kzz)

Ô
dk =

1

(
Ô

2fi)3

⁄
R3

Ó
Ê2fl0ŭs(kx, ky, Ê)e≠i(kxx+kyy)

Ô
dk ,

(2.8)

and therefore, z = 0 gives

p̆a(k, Ê) =
iÊ2fl0ŭs(kx, ky, Ê)

kz
. (2.9)

The 3-dimensional field can thus be synthesized according to

p̂a(x, Ê) = F i
x

)
p̆a(k, Ê)

*
=

1

(
Ô

2fi)3

⁄
R3

iÊ2fl0ŭs(kx, ky, Ê)

kz
eik·xdk . (2.10)

By employing the dispersion relation it is clear that the normal wavenumber kz is related to frequency

and trace wavenumber Ÿ =
Ò

k2
x + k2

y as

kz(kx, ky, Ê) =
Ò

(Ê2/c2
0) ≠ k2

x ≠ k2
y =

�
|k0|2 ≠ Ÿ2. (2.11)

The triple integral in Eq. (2.10) can therefore be transformed into a double integral

p̂a(x, Ê) =
1

(
Ô

2fi)2

⁄
R2

iÊ2fl0ŭs(kx, ky, Ê)

kz
eiz

Ô
|k0|2≠κ2

eikxx+ikyydkxdky . (2.12)
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It follows that the 3D acoustic pressure field in the cavity can be directly inferred from the boundary

vibrations. Note that the trace wavenumber at the boundary can be related to the phase speed as

cph = Ê/Ÿ. It follows immediately from Eq. (2.9) that the acoustic dynamic boundary stiffness z̆aΓ(k, Ê)

can be expressed according to

z̆aΓ(k, Ê) =
p̆a(k, Ê)

≠Ê2ŭs(kx, ky, Ê)
=

≠ifl0�
|k0|2 ≠ Ÿ2

=
fl0c0

iÊ
�

1 ≠ (Ÿ/|k0|)2
=

fl0c0

iÊ
�

1 ≠ (c0/cph)2
. (2.13)

A more intrinsic formulation can be obtained by introducing a cut-on angular frequency Êc = Ÿc0 rep-

resenting a lower frequency limit for acoustically propagating waves at a given trace wavenumber. It

follows that

z̆aΓ(k, Ê) =
fl0c0

iÊ

1�
1 ≠ (Êc/Ê)2

. (2.14)

If the boundary (or trace) wavenumber Ÿ is less than the acoustic wavenumber (Ÿ2 < |k0|2, cph > c0,

Ê > Êc), then the z-component of the wavenumber is real (Eq. (2.11)) and the dynamic boundary

stiffness given by z̆aΓ(k, Ê) ¥ fl0c0/iÊ is imaginary, and inversely proportional to frequency (resistive).

In contrast, if (Ÿ2 > |k0|2, cph < c0, Ê < Êc) then the z-component of the wavenumber is imaginary

and z̆aΓ(k, Ê) ¥ ≠fl0c0/Êc is real and independent of frequency, which indicates a mass response of

the fluid. In this case, exponentially decaying waves are observed at positive imaginary wavenumbers.

Since negative imaginary wavenumbers would indicate exponentially growing waves, they are physically

impossible (Sommerfeld radiation condition [54]). The acoustic dynamic boundary stiffness is useful for

e.g. investigating the dynamics of a one-way coupled vibro-acoustic box. Such a one-way coupling can be

computed by first obtaining the boundary displacement from the uncoupled mechanical structure’s partial

differential equation (PDE) and then calculating the pressure inside the cavity using the acoustic dynamic

boundary stiffness. Employing z̆aΓ(k, Ê) takes into account that the mechanical structure represents a

flexible boundary for the acoustical system (one-way coupling). Although one-way coupling is frequently

presumed, it may be necessary to account for two-way coupling by including feedback from the acoustical

system to the mechanical structure (more on that in Sec. 2.4). A possibility to account for two-way

coupling is to describe both systems with Neumann boundary conditions (i.e. sound hard in acoustics

and zero-force in mechanics) and account for the coupling conditions by adding them as an additional

forcing on the right-hand side of both mechanic and acoustic system. The modal coupling technique

that will be a major topic in this thesis relies on this principle to couple acoustical systems with sound

hard walls and mechanical systems with free boundaries. To later be able to relate this technique to

the theoretical foundations in this chapter we shall now derive the acoustic impedance of a semi-infinite

cavity forced by an impressed volume acceleration related to the displacements of the adjacent mechanical

structure. The reader is reminded that the difference to employing the dynamic boundary stiffness is that

the wall, previously assumed to represent a flexible boundary to the acoustic cavity, is now sound hard

but subject to impressed forcing. For this purpose we follow the derivation given in [55] but consider

only a momentum source qmo(x, Ê) on the right-hand side. By introducing the acoustic particle velocity

va(x, Ê) the conservation of mass and momentum are given by

1

fl0c2
0

ˆpa

ˆt
+ Ò · va = 0 (2.15)

and
ˆva

ˆt
+

1

fl0
Òpa =

1

fl0
qmo . (2.16)

Performing ˆ/ˆt on Eq. 2.15 and Ò· on Eq. 2.16, subtracting the results, assuming constant speed of

sound c0, dividing by c2
0 and applying temporal Fourier transformation allows to formulate the inhomoge-
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nous wave equation with momentum source qmo(x, Ê) as

(≠Ê2

c2
0

≠ Δ)p̂a(x, Ê) = ≠Ò · qmo(x, Ê) . (2.17)

By considering Eq. (2.16) it becomes clear that the momentum source due to an impressed veloc-

ity perturbation v̂s(x, Ê) is given by q̂mo(x, Ê) = iÊfl0v̂s(x, Ê) or (as a function of displacement) as

q̂mo = ≠Ê2fl0ûs(x, Ê). Performing the spatial Fourier transformation and recalling that the excitation is

considered to be normal to z-plane as ûs(x, Ê) = [0, 0, ûs(x, Ê)] yieldsA
≠Ê2

c2
0

+ |k|2

B
p̆a(k, Ê) = ikzÊ2ŭs , (2.18)

which in turn allows to define the acoustic impedance to a momentum source according to

z̆a(k, Ê) =
p̆a(k, Ê)

≠Ê2ŭs

!
kx, ky, Ê

" =
≠ikz

≠ ω2

c2
0

+ |k|2
. (2.19)

It is now possible to reformulate Eq. (2.19) as

p̆a(k, Ê) ≠ Ê2z̆a(k, Ê)ŭs(k, Ê) = 0 (2.20)

or, by incorporating the acoustic wave mobility y̆a = 1/z̆a, as

y̆a(k, Ê)p̆a(k, Ê) ≠ Ê2ŭs(k, Ê) = 0 . (2.21)

Note once again that the momentum source impedance z̆a allows to describe the pressure in an infinitely

large cavity with sound hard walls excited by a momentum source. Provided the excitation occurs near

the boundary, the boundary is still considered to be sound hard, which is the main difference from a

formulation based on the boundary impedance z̆a, where the boundary is flexible.

2.2.2 The Timoshenko-Mindlin plate

The propagation of mechanical bending waves in an infinite rectangular plate with constant flexural rigid-

ity Ds subject to a distributed surface pressure excitation p̂f(x, y, Ê), owing to the presence of unsteady

WPF as well as an induced pressure field p̂a(x, y, Ê) from the acoustical cavity, can be described using

the Timoshenko-Mindlin plate differential equation

(≠Ê2 +
Ds

flshs
Ò4)ûs(x, y, Ê) = p̂f(x, y, Ê) ≠ p̂a(x, y, Ê) , (2.22)

with Ds =
Esh3

s

12(1≠ν2) , the biharmonic operator Ò4 = ∂4

∂y4
1

+ 2 ∂4

∂y2
1∂y2

3
+ ∂4

∂y4
3
, theYoung’s modulus Es, the

Poisson ratio ‹, thickness hs and density fls [8, 53, 56]. By applying the 2-D Fourier-transformation

over R
2 and by introducing the bending wavenumber k4

b = Ê2
!
flshs/Ds

"
it follows that

≠ Ê2flsh

Q
cca1 ≠

1
k2

x + k2
y

22

k4
b

R
ddb ŭs = p̆f ≠ p̆a , (2.23)
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which, in the case of vanishing acoustic feedback, allows to define the mechanical dynamic stiffness

z̆s

!
kx, ky, Ê

"
as

z̆s (kx, kz, Ê) =
p̆f

ŭs
= ≠Ê2flsh

Q
cca1 ≠

1
k2

x + k2
y

22

k4
b

R
ddb . (2.24)

This in turn allows to recast Eq. (2.23) as

z̆sŭs = p̆f ≠ p̆a . (2.25)

2.2.3 Transmission of waves through an infinite plate

After having completed the individual descriptions, the coupled vibro-acoustic issue can be formulated

by simultaneously resolving Eq. (2.21) and Eq. (2.25) according to

z̆sŭs + p̆a = p̆f (2.26)

y̆ap̆a ≠ Ê2ŭs = 0 . (2.27)

The interaction between the two systems is described by the additional pressure loading p̆a from the

acoustical system to the mechanical system and in turn, the mechanical normal acceleration Ê2ŭs that

drives the pressure fluctuations in the acoustical cavity. The system of equations can now be assembled,

by either employing Eqs. (2.26) and (2.27) (furthermore called direct formulation) or on behalf of the

respective reciprocal system variables y̆s = 1/z̆s (mechanical wave admittance) and z̆a = 1/y̆a (acoustical

dynamic stiffness) in an inverse formulation. Assembling the corresponding equations results inC
z̆s 1

≠Ê2 y̆a

D C
ŭs

p̆a

D
=

C
p̆f

0

D
and

C
1 y̆s

≠Ê2z̆a 1

D C
ŭs

p̆a

D
=

C
y̆sp̆f

0

D
. (2.28)

These formulations are intended as a precursor for Chap. 2.5, where it will be shown that the direct

formulation results from a numerical discretization of the Helmholtz equation, whereas a conceptually

similar inverse formulation is employed in experimental procedures based on vibro-acoustic TPA. The

equations demonstrate that a direct connection between the aerodynamic excitation of the structure

(p̆f) and the acoustic pressure in the cavity (p̆a) can be obtained from Eqs. (2.26) and (2.27). The

resulting vibro-acoustic joint wavenumber admittance y̆c = p̆a/p̆f (that is actually a transmissibility but

will still be referred to as admittance to keep the notation straight) becomes y̆c = Ê2/(Ê2 + y̆az̆s) or

y̆c = Ê2z̆a/(Ê2z̆a + z̆s). If the feedback from the acoustic cavity to the mechanical structure is ignored,

the vibro-acoustic joint wavenumber admittance can be formulated using the boundary admittance and

becomes simply y̆c = Ê2z̆aΓy̆s.

2.2.4 Finite domains

We will now demonstrate that these formulations equally apply to finite mechanical and acoustical do-

mains. For this purpose, we assume that natural boundary conditions are satisfied for the mechanical

structure, which means that the first three spatial derivatives of the displacements (resp. the velocities)

must be zero and accordingly both inclination angle, shear force and bending moment at Γs identically

vanish. The walls of the cavity are assumed sound hard, which corresponds to the natural boundary

conditions of the wave equation in pressure formulation. By doubling the geometric dimensions Lx and

Ly (and thus the wavelengths) of the plate, the natural plate boundary conditions can be transformed

into the boundary conditions of the simply supported plate. Since the normal velocity of the plate enters
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the acoustic field as a boundary condition, it is clear that only acoustic waves with matching wavelengths

can propagate in the acoustic field. Due to the geometrical dimensions and boundary conditions, it is

evident that only a finite number of acoustic and mechanical waves can exist. This can be described

mathematically by transitioning from the Fourier transform to the Fourier series. Thus, we assume that

the finite spatial pressure field p̂aΩ(x, Ê) can be represented by a number of basis functions according to

p̂aΩ(x, Ê) =
1�

NxNyNz

Nx,Ny,Nzÿ
m,n,l=0

p̆a|mnl(Ê)ei(Δkxm+Δkyn+Δkzl) (2.29)

with [Nx, Ny, Nz] œ N
3 and in-plane wavenumber spacing Δkx = fi/Lx and Δky = fi/Ly to satisfy the

plate (and cavity) boundary conditions and out-of-plane wavenumber spacing Δkz = 2fi/Lz to ensure zero

particle velocity at the opposing cavity wall. Then, by evaluating Eq. (2.6) for a discrete wavenumber

vector k = [km, kn, kl] with components km = mΔkx, kn = nΔky, kl = lΔkz and by zeroing the expression

in brackets, the angular eigenfrequencies of the cavity become

Êa|mnl = c0

Ò
k2

m + k2
n + k2

l = 2fic0

Ò!
m/2Lx

"2
+

!
n/2Ly

"2
+

!
l/Lz

"2
. (2.30)

The three indices used here can be combined into a new index which then gives a one-dimensional set

of angular frequencies combined with a three-dimensional set of basis functions. These then correspond

to the usual formulation of one-dimensional angular frequencies combined with their multidimensional

eigenmodes. For the following, however, the three-index notation is advantageous. Similar to Eq. (2.30),

the displacement field satisfying the natural mechanical boundary conditions can be represented by

ûsΩ(x, Ê) =
1�

NxNy

Nx,Nyÿ
m,n

ŭs|mn(Ê)ei(Δkxm+Δkyn) , (2.31)

and hence, by discretizing and zeroing the dynamic stiffness of the Kirchhoff plate in Eq. (2.24) it turns

out that only a limited set of bending wavenumbers kb|mn satisfies the geometric boundary conditions.

These bending wavenumbers can be evaluated according to k2
b|mn = k2

m + k2
n with kn and km defined

with the same wavenumber spacing as for the acoustic cavity and the corresponding natural frequencies

become

Ês|mn =

Û
Ds

flsh
k2

b|mn = 4fi2

Û
Ds

flsh

Q
a3

m

2Lx

42

+

A
n

2Ly

B2
R
b , (2.32)

with discrete bending wave numbers

kb|mn = 2fi

Ò!
m/2Lx

"2
+

!
n/2Ly

"2
. (2.33)

By evaluating Eq. (2.24) and Eq. (2.19) for a finite set of trace or bending wavenumbers Ÿmnl and

kb|mn and by substituting the discrete sets of wavenumbers with the corresponding set of discrete natural

frequencies Êa|mnl and Ês|mn it is possible to obtain a set of frequency-dependent relations for acoustical

and mechanical dynamic stiffness. By introducing the acoustical and mechanical eigenvalues according

to ⁄ = Ê2 these relations become

y̆s|mn(Ê) =
1

flsh

Ê2
!
flshs/Ds

"
Ê2

!
flshs/Ds

" ≠ (k2
m + k2

n)
2 =

1

flsh

Ê2

Ê2 ≠ Ê2
s|mn

=
1

flsh

Ê2

Ê2 ≠ ⁄s|mn
, (2.34)

and, by recalling that the wavenumbers in z-direction have corresponding eigenfrequencies Ê00l and

eigenvalues ⁄a|00l for which the relation kz|lc0 = Ê00l = i
�

⁄a|00l holds, the acoustical dynamic stiffness
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becomes

z̆a|mnl(Ê) =
ikz

k2
m + k2

n + k2
l ≠ ω2

c2
0

= ≠ c2
0ikz

Ê2 ≠ ⁄a|mnl
=

c0

�
⁄a|00l

Ê2 ≠ ⁄a|mnl
. (2.35)

The acoustic dynamic boundary stiffness can also be obtained by replacing the continuous set of wavenum-

bers in Eq. (2.14) with a finite set of wavenumbers. It follows that

z̆aΓ|mnl(Ê) =
fl0c0�

1 ≠ (k2
m + k2

n) c2
0/Ê2

=
fl0c0Ò

1 ≠ Ê2
a|mn0/Ê2

=
fl0c0�

1 ≠ ⁄a|mn0/Ê2
. (2.36)

Therefore, the considerations discussed in Sec. 2.2.3 equally apply to finite vibro-acoustic systems.

Note that in case that the excitation cannot be expressed in terms of the harmonic functions in Eq.

(2.29), spectral leakage occurs. The harmonic basis functions of the discrete Fourier transform match

the eigenfunctions of the investigated vibro-acoustic system, and thus the discrete Fourier transform is

equivalent to an eigenvalue decomposition of the vibro-acoustic system. This leads to the important

conclusion that the description of the vibro-acoustic system based on wave numbers, which is common

in the literature and also used here, can be directly extended to finite-vibro-acoustic systems.

2.2.5 From Fourier transformation towards Eigenvalue transformation

The assumptions made in the previous chapter regarding the propagation of plane waves are only valid for

a limited set of geometries and boundary conditions. Owing to the limited phase shift induced by bound-

ary conditions (±fi), the influence of the boundary conditions is particularly strong at low frequencies.

The ratio between induced phase jump and overall phase change in a full cycle decreases with increasing

frequency, and so does the influence of the boundary conditions [54]. In the general case, one can proceed

similarly to Eq. (2.4), but instead of employing an (in)-finite set of plane waves it is presumed that

the spatial fields can be represented as a superposition of a suitably chosen set of functions (namely the

acoustic and mechanical modes Âa|n(x) and Âs|m(x, y) with frequency dependent weighting p̃a|n(Ê) and

ṽs|m(Ê) (the modal participation factors). Compared to the spatial Fourier transformation, the difference

is that instead of choosing a multi-dimensional set of one-dimensional orthonormal trigonometric basis

functions weighted with a multi-dimensional set of coefficients, we choose a set of multi-dimensional or-

thonormal basis functions weighted with one-dimensional coefficients. An orthonormal multi-dimensional

basis for a given pressure or displacement field is then given by the corresponding set of eigenfunctions.

Consequently, similar to Eq. (2.4) or Eq. (2.29) (which is a discrete inverse Fourier transform), it is

assumed that the acoustic and mechanical fields can be derived from the modal variables by employing

inverse Eigenvalue transformations E i
a and E i

s as

p̂a(x, Ê) =

Nÿ
n=0

p̃a|n(Ê)Âa|n(x) = E i
a

Ó
p̃a|n

Ô
(2.37)

and

ûs(x, y, Ê) =

Mÿ
m=0

ũs|m(Ê)Âa|m(x, y) = E i
s

Ó
ṽs|m

Ô
. (2.38)

We presume that the mode shapes are normalised to unity modal mass and satisfy the orthogonality

relationship
s

Ω
Âa|n(x)Âa|nÕ(x)dx = ”nnÕ . These modes can be obtained by solving the related Eigenvalue

problems that, in the given case can be formulated by incorporating e.g. additional acoustical Diriclet
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(pressure release) boundary conditions at ΓD œ Ωa as

Wave equation

Y_]
_[

(≠ ω2
a|n

c2
0

≠ Δ)Âa|n(x) = 0 . in Ω

Âa|n(x) = 0 on ΓD œ Ωa

(2.39)

with the corresponding Eigenvalues ⁄a|n = Ê2
a|n and similarly, by incorporating e.g. additional mechanical

Diriclet (zero displacement) boundary conditions at ΣD œ Γs as

Timoshenko-Mindlin plate

Y]
[(≠Ê2

s|m + D
ρshs

Ò4)Âa|m(x, y) = 0 in Γs

Âa|m(x, y) = 0 on ΣD œ Γs

(2.40)

with the corresponding Eigenvalues ⁄s|m = Ê2
s|m. Similar to the Fourier transform, Eigenvalue transfor-

mations can be defined for the structural and acoustical field, that allow to obtain the modal variables

(i.e. the participation factors) from an existing or presumed field by projecting the field on each individual

eigenfunction by means of a scalar product as

Ea

)
p̂a(x, Ê)

*
=

⁄
Ωa

p̂a(x, Ê)Âa|n(x)dx = p̃a|n(Ê) (2.41)

and

Es

)
ûs(x, y, Ê)

*
=

⁄
Γs

ûs(x, y, Ê)Âs|m(x, y)dx = ũs|m(Ê) (2.42)

The modal aerodynamic forcing on the mechanical plate can be obtained according to

p̃f|n(Ê) = Es

)
p̂f(x, y, Ê)

*
. (2.43)

The ratio between modal mechanic displacement and modal aerodynamic forcing is the modal structural

dynamic stiffness z̃s|nm(Ê) = p̃f|n/ũs|m. Hence, each modal pair of displacement and aerodynamic forcing

represents an individual spring-mass-damper system and the spatial variables are just a superposition

of all these individual systems weighted with their individual eigenfunctions. The eigenvalues are the

roots of the characteristic equation and contain all necessary informations to describe a 1-DOF structure

with unity mass (see e.g. [57]), which is fulfilled here due to mass normalization. It follows that the

modal structural dynamic stiffness to distributed pressure loading as z̃s|m(Ê) and the modal structural

admittance ỹs|m(Ê) can be reproduced from the eigenvalues as

z̃s|m(Ê) = Ê2 ≠ ⁄s|m and ỹs|m(Ê) =
1

Ê2 ≠ ⁄s|m
. (2.44)

The same holds for the acoustical system and thus the modal acoustic dynamic stiffness z̃a|m(Ê) and the

modal acoustic admittance ỹa|m(Ê) become

z̃a|n(Ê) =
1

Ê2 ≠ ⁄a|n
and ỹa|n(Ê) = Ê2 ≠ ⁄a|n . (2.45)

The reciprocal excitations can be incorporated on behalf of uncoupled structural and acoustic modes by

additionally considering modal coupling matrices H̃sa and H̃as that contain the projection of the vibro-

acoustic coupling loads (represented by the original modal formulation of pressure and displacement) on
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the loaded systems given by

H̃sa = Es

;
E i

a

Ó
p̃a|n

Ô<
and H̃as = Ea

;
E i

s

Ó
ũa|n

Ô<
. (2.46)

This definition is more commonly expressed in a discrete formulation and may e.g. be found in [58]. In

the end, we can proceed similar to Sec. 2.2.3 to obtain the modal equations for normal mode coupling in

direct

Y]
[

S
U Z̃s H̃sa

≠Ê2H̃as Ỹa

T
V

S
Uũs

p̃a

T
V =

S
Up̃f

0

T
V and inverse

Y]
[

S
U I ỸsH̃sa

≠Ê2H̃asZ̃a I

T
V

S
Uũs

p̃a

T
V =

S
UỸsp̃f

0

T
V
(2.47)

formulation for each frequency. In case of a unique set of spatial harmonics that describe acoustical

and mechanical systems the modal coupling matrices become unity and we arrive at Eq. (2.28). This

representation can now be employed to highlight a critical aspect of modal coupling. On the basis of

Eq. (2.47) it is clear that the pressure distribution induced by a single mode is confined to a specific

mechanical mode only if acoustic and mechanic mode shapes coincide. If the orthogonality condition

is not satisfied, leakage occurs resulting in the distribution of excitation among all mechanical modes.

The most critical case occurs if mechanical and acoustical modes are shifted by 180¶ indicating a vibro-

acoustic shortcut. As long as the coupling is weak, which means that the feedback mechanism from the

acoustic field does not significantly alter the structural modes of the plate this effect can be neglected.

However, in the case of strong coupling, the acoustic pressure loading on the structure causes leakage in

the modal displacements, followed by leakage induced from the boundary sources on the acoustic system.

This process causes numerical artifacts and as a result, the application of modal coupling techniques is

restricted to vibro-acoustic systems with sufficiently weak coupling effects (more on that in Chap. 4). For

a detailed investigation of cross coupling effects see the recent publication by Sum (2021) [59]. However,

if applicable, modal coupling is a powerful technique because it allows to describe coupled systems via

individual uncoupled mode shapes. The first actual application of normal mode coupling by solving the

uncoupled systems using the FE method dates back to Craggs (1973) [60].

2.2.6 Diagonalization via coupled vibro-acoustic modes

Analogous to the uncoupled acoustical and mechanical Eigenvalue transformations, such a transformation

can also be defined for the coupled vibro-acoustic system. For this purpose, it is required to define

the generalized displacement d̂c(x, Ê) incorporating both velocity and pressure and correspondingly the

modal generalized displacement d̃c(x, Ê) with generalized left and right eigenvectors ÂcL|r(x) and Âc|r(x)

to express the spatial field in terms of an inverse Eigenvalue transformation E i
c as

d̂c(x, Ê) = E i
c

Ó
d̃c|r

Ô
=

Nÿ
n=0

d̃c|r(Ê)ÂcL|r(x) with d̂c(x, Ê) = ûs(x, Ê) for x œ Γs (2.48)

and d̂c(x, Ê) = p̂a(x, Ê) for x œ Ωa (2.49)

as well as a generalized forcing function f̂c(x, Ê) incorporating both mechanical and acoustical excitation

as

f̂c(x, Ê) = E i
c

Ó
f̃c|r

Ô
=

Nÿ
n=0

f̃c|r(Ê)ÂcL|r(x) with f̂c(x, Ê) = p̂f(x, Ê) for x œ Γs (2.50)

and f̂c(x, Ê) = iÊq̂a(x, Ê) for x œ Ωa . (2.51)
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Here it must be noted that the generalized functions at the interface are defined twice, once in the

acoustic domain as an acoustic variable and once in the mechanical domain as a mechanical variable. In

a discrete assembly, this corresponds to a dual substructuring method (more on that in Sec. 2.5). We

furthermore employ xa and xs, ys to identify the respective acoustical and mechanical variables. It is

then possible to substitute the individual fields by their generalized counterparts and then to discretize

and simultaneously solve the set of equations that describe the

coupled eigenvalue problem

Y__________]
__________[

Ds

1
Ò4 ≠ Ê2

c|rms/Dsb

2
Âc|r(xs, ys) + Âc|r(xa, ya) = 0 in Γ

Âc|r(xs, ys) = 0 on Σf

(≠ ω2
c|r

c2
0

≠ Δ)Âc|r(xa) = 0 . in Ω

Âc|r(xa) = 0 on Γo

ÒÂc|r(xa, ya) · n + iÊfl0Âc|r(xs, ys) = 0 on Γ .

(2.52)

Here, the first line represents the mechanical structure defined in Eq. 2.2 with the additional acoustic

forcing Âc|r(xa, ya) from the cavity, the second line enforces the mechanical zero displacement boundary

conditions, the third line represents the propagation of waves in the cavity (Eq. 2.1), the fourth line

represents possible pressure release boundary conditions in the acoustic cavity and the fifth line enforces

the continuity of normal velocity across the boundary (Eq. (2.2)). The result is naturally a set of coupled

eigenvectors with associated eigenvalues ⁄c|r = Ê2
c|r. Due to the asymmetric nature of the problem the

left and right eigenvectors do not coincide (unlike the uncoupled mechanical and acoustic formulations).

To determine the left eigenvectors ÂcL|n required for E i
c, the adjoint problem must be solved, which is

not done here explicitly (more on that in Sec. 4.2.1). The coupled Eigenvalue transformation can then

be defined to obtain the generalized modal displacements from the generalized displacements as

Ec

Ó
d̂c(x, Ê)

Ô
=

⁄
Ωa

d̂c(x, Ê)ÂcL|n(x)dx = d̃c|n(Ê) . (2.53)

As was done in Eqs. (2.44) and (2.45), we can define a coupled modal dynamic stiffness z̃c|r(Ê) and a

coupled modal admittance ỹc|r(Ê)

z̃c|r(Ê) = Ê2 ≠ ⁄c|r and ỹc|r(Ê) =
1

Ê2 ≠ ⁄c|r
(2.54)

relating generalised modal displacement and excitation as d̃c|n(Ê) = ỹc|r(Ê)f̃c|r(Ê).

2.3 General plate-cavity systems

Following this brief introduction to the theoretical foundations of coupled plate-cavity systems, a brief

overview of the historical and current developments in this area of research is provided. In 1963, Lyon [61]

was one of the first to investigate the propagation of sound waves via a flexible panel into a closed

rectangular box. In the same year, Dowell [62] published an influential contribution in which he expressed

the mechanical displacements of a clamped panel in terms of its uncoupled mechanical and acoustic

modes quite similar to what was presented previously but with a wave equation for particle velocity

instead of acoustic pressure. A short time later, Pretlove [63] provided an exact solution to the coupled

vibro-acoustic issue with a single simply supported plate. The article by Dowell (1977) [64] provides an

excellent overview of the early work regarding vibro-acoustic boxes. In his publication [65], Pan described

the more recent studies that had been done up until 1989. For an up-to-date survey, see Shahraeeni et al.
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(2015) [66]. Analytical or semi-analytical models that explicitly contain a reduced set of parameters have

been established in recent years (Chen (2014) [67] or Du (2012) [68]). Regarding the physical effects, it is

worth mentioning in particular that with stronger coupling, the coupled eigenfrequencies are shifted with

respect to the uncoupled ones, as such that the frequency difference between the neighboring uncoupled

modes increases (e.g. if fs < fa then fc|s < fs and fc|a > fa [3]). Regarding the effect of various

parameters of vibro-acoustic systems, such as thickness, cavity length, influence of boundary conditions,

and aspect ratio of the panel, as well as the influence of boundary conditions on the vibro-acoustic

coupling effects, the interested reader is directed to Xue’s 2018 paper [20]. Few contributions have been

found regarding the vibro-acoustic implications of multiple flexible panels. For instance, Wang’s (2017)

research on the optimization of a vibro-acoustic system with flexible plates is worth mentioning [69].

Cavities with openings have also been studied by e.g. Kim (2002) [70] and Pàmies (2011) [71].

2.4 Automotive vibroacoustics

The transition from simple plate-cavity systems to complex vehicle bodies is comparatively simple re-

garding the physical phenomena, but obtaining a reliable structural model for the vehicle body, as well

as deducing a meaningful interpretation is incomparably more challenging. The strength of the vibro-

acoustic coupling effects is of utmost importance for the mathematical-experimental treatment, especially

regarding the applicability of normal mode coupling but also for deducing a reliable interpretation of mea-

surement or simulation data. In this context, the review of Nefske (1982) [3] has to be mentioned, who

investigated the influence of a flexible tailgate on the coupled modes using the FE method and normal

mode coupling. Significant coupling effects were found, the resulting frequency shifts in the mechanical

and acoustic modes being in the range of a few Hz. To investigate the effects of the flexible boundary

on the acoustic cavity modes, the vibrating surfaces of the vehicle must be blocked, which is practically

impossible; hence, only generic test bodies, such as the one developed by Wyckaert (1996) [21], have

been used for such studies. Here, it is shown experimentally that for structural excitation, the effects

of coupling on the interior sound pressure are less pronounced than for interior acoustic excitation. A

detailed investigation can be found in the review by Marburg (2002) [42], where it is concluded that the

feedback effect of the mechanical system on the acoustic system can be neglected in case of structural

excitation. Naturally, the validity of such a simplification depends on the specific structure employed

and is difficult to estimate a priori. However, considering the many publications based on normal-mode

coupling [3, 7, 12, 72], it seems safe to assume that the relaxation of boundary conditions is generally

admissible. It will be investigated in this thesis that small openings, especially the rear vent opening can

be a significant contributor to very low-frequency noise. This was also confirmed by Pan (1998) [73], who

investigated the effect of openings on the sound pressure inside a helicopter. Although the influence of

openings is of great importance, no investigation into direct aerodynamic excitation at low frequencies

is known to the author. Clearly, the interior cavity shapes the dynamics of the acoustic system. More

precisely, the trunk cavity acts as an acoustical mass that drives a Helmholtz resonance as investigated by

Octav (2017) [74]. Due to the inherent uncertainties related with the manufacturing process, the opinion

that these uncertainties must also be taken into account for adequate modeling has increasingly gained

ground in recent years. The contribution by Durand (2008) [72], in which the influence of uncertainties

in vehicle production was addressed on the basis of experimental measurements on a selection of 20

vehicles, was particularly interesting. Here, significant scatter of engine-related booming noise could be

shown. Durand also notes that the influence of acoustic uncertainties is small compared to mechanical

uncertainties.
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2.5 Engineering techniques in automotive vibroacoustics

Since a great number of techniques for assessing interior noise in vehicles has been established in recent

years, but no scholarly publication has been identified that places these methods within a common

framework and elaborates on their applicability, advantages and disadvantages, an attempt will be made

to fill that void in the next chapter. Owing to the specific physical effects in the low-frequency region,

we will confine ourselves to suitable strategies (topics like e.g. statistical energy analysis (SEA) will

therefore not be discussed). Before delving into the specifics of the various vibro-acoustic strategies,

we will examine some fundamental ideas regarding direct and inverse formulations. Similar to the

wavenumber-frequency and the modal formulations in Eqs. (2.28) and (2.47), a spatial discretization

of the respective acoustic (wave equation in pressure formulation) and mechanic equations (Navier’s

equation in displacement formulation) and the boundary conditions allows to assemble a discrete system

relating mechanical dynamic stiffness Ẑs, acoustic admittance Ŷa or coupled dynamic stiffness Ẑc with

unknown solution vectors for displacement ûs, pressure p̂a and generalized displacement d̂c subject to

external excitation via force f̂s, volume flux q̂a and generalized force f̂c asY___]
___[
Ẑsûs = f̂s

Ŷap̂a = iÊq̂a

Ẑcd̂c = f̂c

and the corre-

sponding inverse

formulations

Y___]
___[
ûs = Ŷsf̂s

p̂a = ẐaiÊq̂a

d̂c = Ŷcf̂c

. (2.55)

The inverse or FRF-matrices can directly be obtained from measurements, i.e. the displacements due

to impressed force ŷs|ij = ûs|i/f̂s|j, the pressure due to an impressed volume source ẑa|ij = p̂a|i/iÊq̂a|j,

and the generalized displacements due to an impressed generalized force ŷc|ij = d̂c|i/f̂c|j. The reason

for the opposite designations of the acoustic system matrices (dynamic stiffness - mobility) compared to

the mechanical formulation follows from the historical definition of dynamic stiffness for the treatment

of networks with sound soft boundaries (e.g. pipes, channels with open ending). For these networks,

employing the volume velocity as a primal variable is more efficient. The discrete equations can directly

be employed for the investigation of vibro-acoustic systems, either within the framework of the FE method

or by investigating the critical paths via TPA [75]). However, in this work we are specifically interested in

how the directly or inversely described acoustic or mechanical subsystems can be employed to investigate

the behaviour of the coupled vibro-acoustic system. The fundamental concepts of assembling dynamic

systems from subsystems are rooted in the concept of dynamic substructuring; consequently, we will

outline the related theory briefly.

2.5.1 Overview of vibro-acoustic substructuring techniques

An introduction to dynamic substructuring may be found in the comprehensive book by Allen [76] or in

the thesis of Davidsson [58]. To assemble a coupled system from decoupled subsystems, two conditions

must generally be satisfied at the interface: compatibility of the primal or system variables (displacement,

pressure) and equilibrium of the flow or dual variables (force, volume flux). Mathematically equivalent

but practically distinct substructuring procedures can be derived by combining the subsystem matrices

with the (discrete) coupling conditions. The main difference is if the boundary conditions arising from the

coupling procedure are directly incorporated (primal coupling) or if they are enforced by adding additional

interface forces (in general: Lagrange multiplier) to fullfill the coupling conditions. Consequently, modal

reduction may be applied in either formulation to assemble the substructures from modal properties via

CMS. The CMS techniques correspond to primal or dual coupling assemblies depending on if the modes

are derived from the subsystems with Diriclet (primal, blocked-interface CMS) or Neumann (dual, free-
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interface CMS) boundary conditions [76]. If the coupling conditions are incorporated by adding additional

static component-modes derived by adding the static response of the substructure by progressively setting

the displacement of every interface Degree-of-Freedom (DOF) to unity while zeroing all other DOFs to the

fixed-displacement modes one speaks of the Hurty/Craig-Bampton Method [58,76]. Correspondingly, the

free-displacement modes can be enriched by additional static modes obtained by evaluating the response

of the subsystems due to unit force at the boundary nodes while keeping the other interface DOF’s

free [58]. It follows straight from Eq. (2.55) that these techniques may equally be applied to assemble

acoustical systems from individual subsystems. Note however, that in the pressure-based formulation

the Dirichlet and Neumann boundary conditions correspond to sound soft and sound hard walls alike.

Thus, the behavior of a cavity can either be described by coupling two half-sized open (primal) or closed

(dual) cavities (in inverse formulation: [77]). It is equally possible to assemble the inverse formulations to

explore the behavior of a coupled system via admittance matrices measured on the uncoupled systems.

These techniques are then referred to as FRF-based substructuring [78], component-based TPA [79,80] or

admittance modeling [78] (for mechanical systems). If one examines transfer paths within an assembled

system, one speaks of classical TPA [79]. Methods that can be used to infer the individual subsystems

from an assembled system are called inverse methods [78,81]. For the coupling of vibro-acoustic systems

in pressure-displacement formulation only the dual coupling by means of Lagrange multipliers can be

considered due to the incompatibility of the primal variables in the formulation employed. Here, the

coupled dynamic stiffness matrix Ẑc of a coupled vibro-acoustic system can be calculated on the basis

of the uncoupled mechanical (Ẑs) or acoustic subsystems (Ŷa) discretized under Neumann boundary

conditions by additionally incorporating the coupling conditions. A detailed derivation of the coupled

vibro-acoustic system matrix from the uncoupled FE systems will later be shown in Chap. 4. Suffice to

say at this point that the resulting matrix incorporates the boundary conditions via coupling matrices

Ĥsa and Ĥas and that the final matrix of the coupled system becomesC
Ẑs Ĥsa

≠Ê2Ĥas Ŷa

D C
ûs

p̂a

D
=

C
f̂s

iÊq̂a

D
or Ẑcd̂c = f̂c . (2.56)

This formulation was originally presented by Cragg [82] and is used frequently in the literature al-

though mostly by employing explicit mass, damping and stiffness matrices instead of structural dynamic

impedance and acoustic admittance (e.g. [21,42,58,83]). The interested reader is encouraged to compare

Eq. (2.56) to the wavenumber-frequency formulation in Eq. (2.28). Since the coupling matrices are

nonzero only between interface nodes, the system of equations can be reassambled using the variables

ûΓ and p̂Γ at the interface, the dense coupling matrices Ĥsa|Γ and ĤT
sa|Γ and the submatrices Ẑs|11

(ẑs11|ij = f̂Ω|i/ûΩ|j), Ẑs|12 (ẑs12|ij = f̂Ω|i/ûΓ|j, Ẑs|21 (ẑs21|ij = f̂Γ|i/ûΩ|j and Ẑs|22 (ẑs22|ij = f̂Γ|i/ûΓ|j). By

similarly splitting the acoustical matrix Ẑs into its submatrices, the system in Eq. (2.56) can be rewritten

as S
WWWWU
Ẑs|11 Ẑs|12 0 0

Ẑs|21 Ẑs|22 0 Ĥsa|Γ

0 0 Ŷs|11 Ŷs|12

0 ≠Ê2Ĥas|Γ Ŷs|21 Ŷs|22

T
XXXXV

S
WWWWU
ûΩ

ûΓ

p̂Ω

p̂Γ

T
XXXXV =

S
WWWWU

f̂Ω

0

iÊq̂Ω

0

T
XXXXV . (2.57)

Recent years have shown increasing interest in the PTF technique in order to directly assemble vibro-

acoustic systems from decoupled inverse FRF-matrices Ŷs and Ẑa (e.g. [77]). To provide a common

framework of vibro-acoustic substructuring techniques, an alternative to the original derivation provided

by Rejlek in [13] is given below. For this purpose, an inverse formulation is obtained by multiplying the

subsystems with the uncoupled inverse matrices. Because ẐsŶs = I (and similarly ŶaẐa = I) , it is

more easily to incorporate the matrices Ẑs and Ŷa instead of the corresponding upper and lower block
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matrices in Eq. (2.57). Premultiplying with the horizontally concatenated inverse matrices can therefore

be performed according toS
WWWWWU

Ẑs
0 0

0 Ĥsa|Γ

0 0

0 ≠Ê2Ĥas|Γ

Ŷa

T
XXXXXV

S
WWWWU
ûΩ

ûΓ

p̂Ω

p̂Γ

T
XXXXV =

S
WWWWU

f̂Ω

0

iÊq̂Ω

0

T
XXXXV

Ë
Ŷs Ẑa

È
· (2.58)

By splitting the identity matrices into submatrices and performing the remaining matrix multiplications

it follows that S
WWWWWU

IΩs 0

0 IΓs

0 Ŷs|12Ĥsa|Γ

0 Ŷs|22Ĥsa|Γ

0 ≠Ê2Ẑa|12Ĥas|Γ

0 ≠Ê2Ẑs|22Ĥas|Γ

IΩa 0

0 IΓa

T
XXXXXV

S
WWWWU
ûΩ

ûΓ

p̂Ω

p̂Γ

T
XXXXV =

S
WWWWU

Ŷs|11f̂Ω

Ŷs|12f̂Ω

Ẑs|11iÊq̂Ω

Ẑs|12iÊq̂Ω

T
XXXXV . (2.59)

Contrary to the direct formulation in Eq. (2.56), this system can be solved in a two-step procedure by

first determining the interface displacement and pressure fromC
IΓs

Ŷs|12Ĥsa|Γ

≠Ê2Ẑa|12 ≠Ê2Ẑs|22Ĥas|Γ

D C
ûΓ

p̂Γ

D
=

C
Ŷs|12f̂Ω

Ẑs|12iÊq̂Ω

D
. (2.60)

and then determine the displacement and pressure in the respective fields according to

S
U IΩs 0 0 Ŷs|12Ĥsa|Γ

0 ≠Ê2Ẑa|12Ĥas|Γ IΩa 0

T
V

S
WWWWU
ûΩ

ûΓ

p̂Ω

p̂Γ

T
XXXXV =

C
Ŷs|11f̂Ω

Ẑs|11iÊq̂Ω

D
. (2.61)

Considering that the displacements of the uncoupled mechanical system due to the external loads f̂Ω can

be calculated according to ûsuc|Ω = Ŷs|11f̂Ω (and analogously for the acoustic system p̂auc|Ω = Ẑs|11q̂Ω),

then it is possible to additionally define the relative displacement δ̂u and pressure δ̂p at the interface

induced solely by the respective coupling forces or the volume flux as

δ̂u = Ŷs|12Hsa|Γp̂Γ and δ̂p = ≠Ê2Ẑa|12Has|Γûs|Γ . (2.62)

Equivalently to solving Eq. (2.61), it is therefore also possible to obtain the total displacement and

pressure at the nodes in the whole domain by recognizing that the total displacement or pressure fields

ûΩ and p̂Ω are a superposition of the uncoupled primal variables ûsuc|Ω and p̂auc|Ω and the relative

displacement and pressure induced by the coupling procedure as

ûΩ = ûsuc|Ω ≠ δ̂u and p̂Ω = p̂auc|Ω ≠ δ̂p . (2.63)

This form of coupling is very similar to the patch transfer method (PTF) originally presented by Rejlek

[13]. The differences are solely limited to the definition of the mechanical (there: velocity/pressure,

here: displacement/force) and acoustical (there: pressure/velocity, here: pressure/volume acceleration)

system matrices. Accordingly, arithmetic averaging is performed instead of integration. Theoretically,

this variant can also be employed to estimate uncoupled systems from a coupled system, although the

ill-posedness of the inversion problem is a major complication [14]. Similar to the methods employed in

CMS, it is also possible to describe the respective subsystems via modes obtained by applying homogenous
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Neumann boundary conditions (free-displacement, sound hard cavity). Under the assumption of weak

coupling, the additional static interface modes can be neglected to arrive at the modal coupling technique

given in Eq. (2.28). As with the free-displacement CMS mentioned earlier, pseudostatic corrections

can also be employed, especially if strong coupling occurs [83]. Finally three main possibilities are

available for coupling vibro-acoustic systems, being either direct via Ẑs…Ŷa as in Eq. (2.55) or inverse

via Ŷs…Ẑa as in Eq. (2.60) or, if the vibro-acoustic coupling mechanisms are sufficiently weak by

coupling solely the normal modes of the uncoupled system via Ψs…Ψa as in Eq. (2.47). In addition, the

various system descriptions can be converted into one another through the use of appropriate procedures.

However, the determination of a direct description from an inverse description (by measurements) is only

feasible in a least-squares sense due to the ill-posedness of the identification problem. The potential

relations between direct and inverse descriptions, as well as the corresponding substructuring techniques

are depicted in Fig. 2.2. System matrices Ẑs and Ŷa obtained by discretizing the respective differential

equations via, for example, the FE method can be coupled via the direct formulation given in Eq.

(2.56) (Ẑs…Ŷa). The inverse matrices Ŷs and Ẑa obtained from measurements can be coupled via

the inverse method given in Eq. (2.60) (or the very similar PTF method). The coupled system can

also be discretized directly (Ẑc) or analyzed via measured vibro-acoustic admittances Ŷc to obtain the

generalized displacements d̂c due to impressed forces [80]. If only a limited frequency range is of interest

and, in particular, only weak coupling is expected, coupling via normal modes is advantageous. The

required mechanical and acoustic modes Ψs and Ψa can be obtained either by solving an eigenvalue

problem using the discrete mass, damping and stiffness matrices in Ẑs and Ŷa or by applying EMA to

the measured matrices of the form Ŷs and Ẑa [78]. In the same way, coupled vibro-acoustic modes Ψc

can be obtained from the matrices of the discretized coupled system Ẑc by solving the non-symmetric

eigenvalue problem or by experimental vibro-acoustic modal analysis using the vibro-acoustic transfer

functions Ŷc. Alternatively, by (partial) inversion according to Ŷs = Ẑ≠1
s , Ẑa = Ŷ ≠1

a or Ŷc = Ẑ≠1
c the

inverse matrices are obtained from the discretized system (eg. to use the PTF or the TPA based on

simulation data). Techniques for obtaining the system matrices from the inverse matrices according to

Ẑc ¥ Ŷ ≠1
c , Ẑs ¥ Ŷ ≠1

s or Ŷa ¥ Ẑ≠1
a are always ill-conditioned and subject to measurement errors. Such

methods (and EMA techniques) belong to the realm of system identification methods. Both the direct

and inverse matrices can be synthesized from experimentally or numerically deduced modes. Another

possibility is to apply model-updating techniques, by obtaining objective functions Ŷc = Ẑ≠1
c from the

simulation and subsequently minimizing the error between objective and measurements by updating

the system matrix [84]. In principle, hybrid formulations are also conceivable, in which measured FRF

matrices are coupled with numerical systems. It follows that three groups of approaches are possible for

the description of vibro-acoustic mechanisms. To tackle complex problems, computational approaches

such as the FE or BE method are most frequently employed. However, creating a realistic computational

model is a tedious and time-consuming task which is why experimental techniques are also frequently

used to asses already existing structures. Experimental approaches either make use of experimentally

determined transfer functions or deduce the system description from the measured data by solving an

ill-conditioned inverse problem. The last category are hybrid approaches consisting of a combination of

numerical, experimental and even analytical techniques.
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Figure 2.2: Possibilities for vibro-acoustic substructuring.

2.5.2 Numerical methods

We begin with techniques that can be applied to asses vibro-acoustic issues by discretizing the respective

mechanical or acoustical differential equations. The name of each technique, at least a single associated

paper and the employed incorporation of the coupling effects are listed in Table 2.2. For the simplified

treatment of vibro-acoustic systems, lumped parameter modeling can be used [85]. The most commonly

used methods in the industrial context are, however, based on direct discretization of the mechanical

system using the FE method and of the acoustic system using the FE or BE method (Ẑs…Ŷa ). The

strongly coupled FE- method presented in Eq. (2.56) (Ẑs…Ŷa) has been used, for example, by Wang [38]

to calculate the sound pressure induced by underbody vibrations of a real vehicle, or by Cameron [86] to

evaluate the vibro-acoustic properties associated with the roof-cavity system. Ying-jie [87] also employed

this method to calculate aero-vibro-acoustic noise in vehicles. The Boundary Element Method (BEM) can

also be employed to describe the interior cavity as perceived by Wang [35] or Citarella [88]. Note that the

vibro-acoustic formulation in Eq. (2.56) is not symmetric causing significant drawbacks in computational

efficiency (Choi [89]) although a symmetric formulation can be derived by employing the velocity potential

instead of the pressure (e.g. Olson [90]). Computational efficiency and numerical methods are not a focus

of this thesis, the interest reader will find relevant information in the extensive review by Marburg [42].

A logical choice to speed up the solution of the strongly coupled procedure would be to use coupled

modes to solve the coupled problem at the modal level (Ẑc∆Ψ̂c), but no application to automotive

problems could be found. First work on modal analysis of vibro-acoustic systems goes back to Bokil et

al. (1992) [91]. The reader is reminded that for the case of numerically discretized system matrices, the

mechanical, acoustic and vibro-acoustic structural modes are obtained by solving the corresponding

Eigenvalue Problems

Y___]
___[
Ẑs|nΨs|n = 0

Ŷa|mΨa|m = 0

Ẑc|rΨc|r = 0 .

(2.64)

Regarding the practical calculation of vibro-acoustic modes, the interested reader is referred to Arjmandi

[92]. Coupled modes also allow to directly obtain coupled vibro-acoustic sensitivities (Ma [93]). If the

feedback effect of the acoustic fluid on the mechanical structure is entirely neglected as proposed by

Marburg [94], the mechanical displacement can be set as a boundary condition for the acoustic system
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(i.e. by setting the upper right coupling matrix to zero in the direct formulation given in Eq. (2.47)).

Under the presumption of weak coupling, coupling via normal modes (Ψs…Ψa) can be employed. The

use of normal-mode coupling has the additional advantage that both structural and acoustic damping

can be considered at the modal level. This strategy was perceived by e.g. Nefske [3], Xu [95] but also

in [96] or [58]. It must be noted in general that the correct consideration of damping mechanisms in

numerical descriptions is extremely challenging. In the general case, complex damping modes will occur

but frequently, modal damping may already yield reasonable results [50]. The existence of normal modes

in damped systems has been investigated by Phani (2002) [97]. While complex modes are in principle not

a problem regarding numerical treatment, the method of Fullekrug [98], by which complex modes can be

reduced to real modes appears interesting. An interesting review has also been given by Srikantha [99].

The treatment of uncertainties is beyond the scope of this paper. Note however that the stochastic models

used for the treatment either resort to normal mode substructuring of the vibro-acoustic system [7, 72],

or solve the full, non-symmetric FE model [9].

Description Papers BC treatment

Lumped parameter modelling p̂a-ûs [85] Coupling Conditions

Strong FE coupling p̂a-ûs [38, 86, 87] Strong constraints

Strong FE-BE coupling p̂a-ûs [35, 88] Strong constraints

Structural BC from FE (uncoupled) on FE acoustic (uncoupled) [94] Fluid loading from cavity neglected for mechanical structure

Structural modes (FE, uncoupled) and acoustic modes (FE, uncoupled) [3, 58, 95, 96] Relaxed Interface constraints

Table 2.2: Computational Approaches in Vehicle NVH

2.5.3 Experimental methods

Since the creation of an acceptable simulation model of a complex real structure frequently requires

tremendous effort as well as intensive knowledge of the mechanisms at play, it is often more appropriate

to investigate the dynamics of an existing model on behalf of measured FRF’s. The corresponding FRF

data (ŷs|ij = ûs|i/f̂s|j, ẑa|ij = p̂a|i/q̂a|j, ŷc|ij = p̂c|i/f̂c|j) based on mechanical-, acoustical- or vibro-acoustical

measurements are recorded by applying suitable excitation and can then be assembled into a discrete

matrix for each frequency. For details regarding the required signal processing procedures, the reader is

referred to [50] and for practical considerations to the book of Avitabile [100]. Due to the fact that only

a limited number of FRF’s can be determined, great care must be taken when selecting (one or more)

excitation points; otherwise, mechanisms essential to the specific problem may be hidden in the FRF data

set. Note that, following the ubiquitous presence of noise in measurements, the FRF’s are obtained by

ensemble averaging of the normalized CPSD. Using the example of mechanical admittance, the averaging

process can be formulated according to

Ŷs|ij(Ê) =

Y]
[ ûs(i)

f̂s(i)

Ẑ
\ =

Y]
[ ûs(i)

f̂ú
s(i)

f̂s(i)
f̂ú

s(i)

Ẑ
\ . (2.65)

Thus, the admittances converge to the ensemble averaged admittance when an increasing number of

measurements are made. Here, it is referred to the already mentioned review by Sejs [101] for details

on TPA. Applications of vibro-acoustic TPA on vehicles can be found in Lee [102], Plunt [75] but also

in [80,103–105]. In the case of spatially distributed excitation (such as wind loads), the vibro-acoustic

FRF must be determined for a vast number of excitation points, which is why the application of reciprocal

techniques is beneficial. Via vibro-acoustic reciprocity, coupled FRF’s can be obtained by exciting the
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interior cavity with a single (or few) volume sources and measuring the induced acoustical pressure in the

cavity and the mechanical displacements (Wyckaert [21]). The approach employed by Glandier [32] to

calculate the internal sound pressure using observed surface pressures and reciprocally computed FRF’s is

an example of an intriguing contribution to this field. Owing to the otherwise large number of excitation

points required to obtain coupled FRF’s, this seems to be the most interesting procedure to investigate

wind-induced interior noise based on coupled FRF’s. The extraction of experimental mode shapes and

eigenfrequencies from experimental FRF’s is a sophisticated, but well established method to investigate

the dynamics of mechanical and acoustic systems for which appropriate FE models do not exist. A

detailed description of the technique may be found in [100]. In EMA, it is presumed that the FRF’s

in the inverse formulations in Eq. (2.55) can be expressed as a superposition of Nm partial fractions

composed of residue vectors âr related to the mass-normalized mode shapes ψr according to âr = ψrψ
T
r ,

upper and lower residuals (âu, âl) and poles ss|r related to undamped eigenfrequency Ês|r and modal

damping ’s|r as

ss|r = ≠’s|rÊs|r ± jÊs|r

Ò
1 ≠ ’2

s|r . (2.66)

and that a single column of these FRF’s obtained by measurements and stored in vectors ŷs or ẑa allows

to obtain the modal description by iteratively solving (e.g. mechanical system)

ŷs(Ê) =

Nmÿ
r=1

âs|r

iÊ ≠ ss|r
+

âú
s|r

iÊ ≠ sú
s|r

+
âu

Ê2
+ âl . (2.67)

For more details, the reader is referred to the book of Avitabile [100]. For the experimental determination

of coupled vibro-acoustic modes, it must (as mentioned in Sec. 2.2.6) be taken into account that left and

right eigenvectors have to be determined (for details, see Wyckaert [21]). While mechanical modal analysis

is frequently employed, experimental acoustic modal analysis is a time-consuming and challenging task

due to the large number of microphones required in 3D. Several articles on the use of acoustic modal

analysis to automotive issues have been published in recent years. Accardo et al. [15, 15], recovered the

acoustic modes of a vehicle using an acoustic shaker (LMS QSource) and the Polymax method [100].

Owing to the flexibility of the mechanic structure (see Sec. 2.4), the experimentally obtained natural

frequencies cannot be directly compared to acoustic FE models with sound hard boundaries. Tsuji also

wrote a relevant article in 2013 [106]. Vibro-acoustic modal analysis has been employed by Hermann [16]

to investigate booming noise in a vehicle and by Wyckaert [21] in her remarkable investigation on low-

frequency vibroacoustics on a simplied vehicle. Techniques for OMA have also received increasing interest

[12,18,107]. Xu [107] employed acoustic excitation and laser vibrometry (LV) measurements to establish

the operating modes of a rectangular plate. Vibro-acoustic OMA was also successfully implemented to

investigate an acoustically excited wind turbine [17]. Pierro [18] employed both OMA and EMA in his

study on the vibro-acoustic behavior of a helicopter. Note that, regarding the transmission of wind noise

through automotive structures, performing OMA directly in a wind tunnel and scaling the results with

a reduced set of FRF’s (similar to Brandt [108]) appears a promising idea. The findings are summarized

in Tab. 2.3.

Description Papers
Vibro-acoustic TPA [32,75,80, 102–105]
Acoustic modal analysis [15, 15, 106]
Coupled modes from in situ Meas, volume source excitation [16,21]
Coupled modes from OMA [12,18,107,108]

Table 2.3: Experimental approaches in automotive NVH
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2.5.4 Hybrid methods

Description Papers BC treatment

Vibro-acoustic PTF with structural FRF from mea-
surement and acoustic FRF from simulation

[13] Interface constraints enforced patch-wise, fluid exci-
tation overestimated

Structural BC from Measurement (coupled) on FE
acoustic (uncoupled)

[12] Interface constraints enforced

Volume acceleration from Measurement (coupled) on
FE acoustic (uncoupled)

[19] Structural flexibility neglected for acoustic fluid

Structural modes (in situe Meas, coupled) and acous-
tic modes (FE,uncoupled)

[3] Modal relaxed Interface constraints

Semi-Analytical Method of Herpe [41] Modal relaxed Interface constraints

Structural modal updating [110] Acoustic excitation neglected for mechanical struc-
ture

Vibro-acoustic modal updating [84] Interface constraints enforced

Table 2.4: Hybrid approaches in automotive NVH

Due to the comparatively reliable simulative description of the acoustic cavity (see the comparison

between experimental and numerical modes in Accardo [15]) combined with the tremendous effort to

generate a valid structural model (see Sec. 2.4), hybrid methods in which a combination of experimental

and simulative data is used to assemble and investigate the dynamics of the coupled model are of special

interest. Essentially, the complete set of methods depicted in Fig. 2.2 is now available, whereas in the

important case of a simulatively (i.e. via Ŷa) described acoustic cavity combined with an experimentally

(i.e. via Ŷs) described structure one of the two systems has to be inverted (partly or in a least-squares

sense). Thus, for the direct coupling (Ŷa…ẐS) according to Eq. (2.56) the dynamic stiffness matrix

must be obtained from Ŷs via a system identification algorithm while, if the inverse (or similar, the PTF)

method is employed according to Eq. (2.60), the (partial) inversion of the acoustic system matrix Ŷa is

required. Given that weak coupling is usually valid for automotive problems, the coupling of mechanical

modes determined via EMA from experimental data and acoustic modes via a numerical eigenvalue

decomposition appears especially promising (Ψs…Ψa). This was first recognized by Kim in his seminal

work on a generic testbody [44]. Here, the nodes of an acoustic FE model were localized directly at

the measurement nodes of the experimental structure. The feedback effect of the acoustic cavity on the

structural model was neglected during experimental acquisition. Herpe [41] proposed a similar idea, in

which the acoustic fluid is simplified as a rectangular box and the coupling properties are then considered

at a modal level (also in [26]). This method is rather not suitable for the low-frequency range due to

the strong spatial variability of the acoustic field. Furthermore, the influence of seats or the influence

of the package tray, which is important for the low-frequency range, cannot be considered [74]. Another

possibility is to directly apply measured displacement spectra as a boundary condition for an acoustic

simulation (Lee [12]). Brandstätter [19] used a method in which the acoustic model was idealized as
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sound-hard and the mechanical displacement field (and accordingly, the associated volume acceleration)

was used as an acoustic source . Strong deviations from the experimental measurements were found,

further supporting the conclusion that the acoustic boundary flexibility associated with the mechanical

structure must be taken into account during the coupling process. Furthermore, Rejlek [13] used the

PTF method in an academic example to couple experimental mechanical with computational acoustical

FRF’s. Here, all boundary conditions are strongly satisfied in a patch-wise manner, overestimating the

acoustic feedback due to the in-situ measurements of the mechanical FRF’s. Finally, modal-updating

methods should be mentioned, in which the properties of a numerical model are modified using measured

data. Here, assuming negligible acoustic feedback, the mechanical model can be updated by in-situ

measurements to be then coupled with a numerical model for the cavity (Meggit [111]), or the coupled

FE model can be modified by measurements on a coupled cavity as (Nehete [84]). Publications on the

subject can also be found from Xu [95] or Plunt [80, 112].
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3 Aero-vibro-acoustic mechanisms in vehicles

In addition to a physical description of the vibro-acoustic behavior of the vehicle, a description of the

acting external loads is required to predict the flow-induced interior noise in a vehicle. These loads are

composed of the WPF acting on on the body (referred to as indirect excitation) or via air leakages

and openings between the acoustic cavity and the flow around it (referred to as direct excitation), The

fundamental theoretical concepts that govern aerodynamic (and aeroacoustic) WPF are introduced at the

beginning of this chapter. After describing the statistical methods necessary for characterizing the WPF,

the previous example of a vibro-acoustic box subject to wind-induced excitation is expanded to include

a model for the convective component of the wall pressure CPSD. The transmission into the cavity is

then analyzed, along with the more general case of an arbitrary vibro-acoustic system described by its

eigenmodes. The topological characteristics of flow around vehicles and the associated noise-generating

mechanisms are described, and relevant literature is collected. The noise-generating mechanisms are then

classified into four groups and discussed along with recent research: excitation by convected turbulence,

excitation from leeward components, excitation from the underbody and direct acoustic excitation via

openings.

3.1 Aerodynamics and the generation of sound by flow

The considerations presented in the following are a short summary of the relevant topics treated in the

book of Kaltenbacher [55] or the two comprehensive textbooks by Blake [43,56]. Note that, if not stated

otherwise, all variables in this section are in the space-time domain. The additional label úf to distinguish

flow variables from structural or acoustical variables is omitted in the following. In an Eulerian approach

(i.e. in a space-fixed coordinate system), the continuum equation of a fluid element with location- and

time-dependent density fl and velocity v can be written with or without consideration of compressibility

according to

ˆfl

ˆt
+ Ò · (flv) = 0 (compressible fluid) or Ò · v = Ò · vic = 0 (incompressible fluid) . (3.1)

Furthermore, using the static pressure p, the viscous stress tensor ⌧ and the identity tensor I and

neglecting any additional external forces, the momentum equation is given by

ˆflv

ˆt
+ Ò · (flv ¢ v) = ≠Òp + Ò · ⌧ , (3.2)

or
ˆflv

ˆt
+ Ò · (flv ¢ v + pI ≠ ⌧ ) = 0 (3.3)

or, using index notation, by
ˆflvi

ˆt
+

ˆ

ˆxj

!
flvjvi + p”ij ≠ ·ij

"
= 0 . (3.4)

The momentum flux contributions can be collected in a momentum flux tensor ⇡ as

fiij = flvivj + p”ij ≠ ·ij, (3.5)
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which simplifies the momentum equation to

ˆflv

ˆt
+ Ò · ⇡ = 0 . (3.6)

By employing a suitable model for the viscous stresses, such as a linear relationship via the dynamic

viscosity µ and the distortion rate tensor according to ·ij = µˆvi/ˆxj, the coupled compressible system

of equations in Eq. (3.1) and (3.3) can in principle be solved subject to suitable boundary and initial

conditions within the framework of a compressible direct numerical simulation (DNS) to obtain the

fluctuating wind loads on the vehicle [113]. At low Mach numbers MŒ = vŒ/c0 π 1 the fluid can

be assumed incompressible (fl = fl0). The pressure p(t) determined on a virtual microphone on a non-

slip wall in an incompressible turbulent simulation then corresponds to a superposition of a location-

dependent static pressure p and flow-induced (but nevertheless static, not to be confused with dynamic

pressure) pressure fluctuation pf according to p = p0(x) + pÕ(x, t), with the induced pressure fluctuations

being a result of the turbulent structures in the flow. Since a real medium is always compressible,

real flows will always contain density fluctuations fla(x, t) with associated acoustic pressure fluctuations

pa(x, t) = fla(x, t)c2
0 which propagate as acoustic waves in the medium. Thus, the pressure (at a no-slip

wall) in a real fluid is actually a superposition of a location-dependent static pressure p0, aerodynamic

pressure fluctuations pÕ
f propagating with subsonic phase speed vconv owing to the convective nature of

the flow and acoustic pressure fluctuations pa propagating with the speed of sound c0 as

p(x, t) = p0(x) + pÕ
f(x, t) + pa(x, t)¸ ˚˙ ˝

pÕ(x,t)

. (3.7)

Only acoustic waves propagate in the far-field while aerodynamic waves with subsonic phase speed decay

rapidly with increasing distance from the source. It is within the scope of the discipline of aeroacoustics

to investigate the propagation of acoustic (sound) and aerodynamic (pseudo-sound) waves in flows. The

foundations of aeroacoustics were laid by Lighthill in 1951 when, by a clever manipulation, he represented

the compressible flow equations as a conventional wave equation in an ambient fluid with additional

external source terms [114]. For the derivation, we follow the discussion given in [55]. Start by noting

that the momentum flux tensor fi0
ij in an ideal, linear acoustic medium without flow becomes

fiij æ fi0
ij = (p ≠ p0)¸ ˚˙ ˝

pÕ(x,t)

”ij = c2
0 (fl ≠ fl0)¸ ˚˙ ˝

ρÕ(x,t)

”ij , (3.8)

where the ambient pressure p0 was subtracted (this is possible because of the divergence operator in

Eq. (3.6)) to be able to exploit the isentropic equation of state given by pÕ = c2
0flÕ. Lighthill’s idea was

esentially, that adding Ò · ⇡0 to (3.6), rewriting the result and introducing the tensor L yields

ˆflv

ˆt
+ Ò · ⇡0 = ≠(Ò · ⇡ ≠ Ò · ⇡0) = ≠Ò · L . (3.9)

The left-hand side of Eq. (3.9) now corresponds to the momentum equation in a medium at rest while

the right-hand side contains a modified forcing tensor L. It is now possible to derive an inhomogenous

wave equation of a medium at rest that nevertheless reflects the pressure or density perturbations within

the flow. For this purpose, the ambient density is first subtracted from the temporal derivative of the

conservation of mass given in Eq. (3.1) to arrive at

ˆ

ˆt
(fl ≠ fl0)¸ ˚˙ ˝

ρÕ

+
ˆflvi

ˆxi
= 0 . (3.10)
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Substituting ⇡0 in Eq. (3.9) yields

ˆflvi

ˆt
+

ˆ

ˆxi
(c2

0 (fl ≠ fl0)¸ ˚˙ ˝
ρÕ

) = ≠ˆLij

ˆxi
. (3.11)

The wave equation can now derived by performing a temporal derivative on Eq. (3.10), a spatial derivative

on Eq. (3.11) and then eliminating the momentum density flvi. The resulting wave equation becomesA
1

c2
0

ˆ2

ˆt2
≠ Ò · Ò

B 1
c2

0flÕ
2

=
ˆ2Lij

ˆxiˆxj
, (3.12)

and is nowadays referred to as Lighthill’s equation. It can thus be concluded that the waves propagating

in the flow correspond to those caused in an undisturbed fluid when excited by a stress distribution equal

to the difference between the true momentum flux tensor and the momentum flux tensor in an ambient

medium. This stress distribution is the famous Lighthill stress tensor, which, as can be seen from the

previous analysis, is given by

Lij = fiij ≠ fi0
ij = flvivj +

1
(p ≠ p0)¸ ˚˙ ˝

pÕ

f

≠c2
0 (fl ≠ fl0)¸ ˚˙ ˝

ρÕ

2
”ij ≠ ·ij . (3.13)

Here, it should be noted that the density perturbation flÕ no longer corresponds to a physical density but

to a virtual density related to the flow-induced pressure fluctuations in the flow according to pf = c2
0flÕ.

The first term in Lighthill’s stress tensor describes the well-known Reynolds stress tensor flvivj, the second

term represents the excess terms and the third term represents the viscous stress tensor. The unique

feature of Lighthill’s equation is that the nonlinear compressible flow equations can be represented as

an inhomogeneous wave equation. This equation is the foundation of the heavily studied field of aero-

acoustic analogies, in which wave propagation in compressible flows can be described by combining

a linear acoustic wave equation with sources from an (often incompressible) aerodynamic simulation.

The reason why wave propagation phenomena can be described on the basis of an incompressible flow

simulation is that L can be described to first order on the basis of the incompressible velocity fluctuations

Lij = flvic|ivic|j [55]. Since it was not possible to discretize Lighthill’s equation at that time, and the

solution to the above differential equation by using Green’s free space function is only valid for open

regions free of diffraction and refraction, a further refinement was presented by Curle which takes into

account the effects induced by an additional (virtual or rigid) surface Γs [115]. The integral representation

proposed by Curle employs Green’s free space function and thus only accounts for waves propagating

at the speed of sound. This however excludes aerodynamic waves, such as those encountered in wall

pressure measurements underneath a TBL. The investigations presented below are therefore (for now)

concerned only with acoustic radiation from a compact turbulent source region without additional motion

between the source and the observer, as it occurs in the convection of turbulent patterns in the context

of turbulent WPF theory. As will be discussed in more detail in Sec. 3.5 the effects occurring in

vehicles can be grouped into four different categories, namely, excitation via a TBL, excitation via direct

openings to the surroundings, and excitation via the turbulent recirculation region and the underbody.

For convectively excited surfaces, the aerodynamic pressure fluctuations represent the critical quantity

that can directly be taken from an incompressible flow simulation. However, acoustic excitation may

well dominate at other surfaces, especially at the underbody [29]. For this reason, and as a theoretical

foundation for the interpretation of turbulent WPF as imprints of a variety of turbulent vortex structures

in the flow, we will briefly review the integral representations of Lighthill’s equation. Note however, that

the far-field assumption frequently employed in aeroacoustics appears unjustified for low frequencies.
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For the description via Green’s free space functions in the time domain, the time shift ”t = |x ≠ y|/c0

required to overcome the distance between source at position y and receiver at position x must be taken

into account by evaluating the Lighthill tensor at a retarded time · = t ≠ ”t. We will furthermore denote

quantities evaluated at a retarted time with square brackets (i.e. L(·,y) = [L(t,y)]). For solid surfaces

without slip, assuming incompressible flow simulation and using the components ej of the normal vector,

a simplified form of Curle’s equation given in [56] is obtained as a superposition of a volume contribution

of quadrupole sources and a surface contribution of dipole sources to

4fic2
0

!
fl(x, t) ≠ fl0

"
=

ˆ2

ˆxiˆxj

⁄
V

#
Lij

$
r

dV (y) +
ˆ

ˆxi

⁄q ej

r

#
flvivj ≠ ·ij + p”ij

$
dΓs(y) . (3.14)

Later it was shown by Powell that the additional dipole sources in Curle’s equation are simply a result

of the reflection of quadrupole sources in the flow. It is expedient to cite this famous reflection theorem

at this point:

”The pressure dipole distribution on a plane, infinite and rigid surface accounts for the reflection in

that surface of the volume distribution of acoustic quadrupole generators of a contiguous inviscid fluid

flow, and for nothing more, when these distributions are determined in accordance with Lighthill’s concept

of aerodynamic noise generation and its natural extension.” [116] .

Although the formulation of the Lighthill source term based on the velocity fluctuations is useful for com-

putations and for experimentally determining the WPF based on measured velocity fluctuations (as orig-

inally intended by Lighthill [56]), it provides little insight into the actual mechanisms leading to the

generation of pressure fluctuations in the fluid. The decisive contribution regarding the sound generating

mechanisms was later made by Powell in his Theory of Vortex Sound [117]. His major contribution was

to show that Lighthill’s (or Curle’s) equation can also be represented in an alternative form given in [56],

stating that (with additional considerations of no-slip boundaries at a stationary wall and free-field radi-

ation, no source convection, and neglect of viscous stresses) the acoustic pressure in the free field can be

obtained by employing the vorticity !(y, t) according to

4fipa(x, t) =
ˆ

ˆxi

⁄⁄⁄
V

#
fl(! ◊ v)

$
r

dV (y) +
ˆ

ˆxn

⁄
Σ

[p]

r
dS(y) . (3.15)

The acoustic field can thus be described as a superposition of a volume distribution of dipoles propor-

tional to (! ◊ v) and a surface distribution of dipoles proportional to the pressure at the solid surface.

The Reynolds stresses are therefore strongly related to vorticity fluctuations. As previously mentioned,

convection effects cannot be considered in the given integral formulations, they are however of great

importance, particularly for the study of TBL. In this case, the sources can (in a simplified approach) be

considered in terms of a frozen boundary layer that is convected over the vehicle (Taylor’s frozen eddy

hypothesis [118]). Considering only a main flow direction parallel to the surface results in a dominant

contribution of hydrodynamic (or evanescent) waves propagating with a dominant subsonic phase veloc-

ity (vconv < c0). A detailed treatment of the general subject of moving turbulent sources in the flow

was presented by Ffowcs Williams and Hawkings [119]. By reversing Ffowcs Williams analogy, it is also

possible to infer the source terms in the flow from the surface pressures on the wall provided that the

velocity field is known (Gloerfelt [120]). The subject is extensive and will not be elaborated in detail

here, but it should be noted that the physical effects are closely related to the well-known Doppler effect.

Convected sources imply a set of mechanisms referred to as convected propagation (owing to the flow

velocity relative to the observer), Doppler shift (owing to the source motion relative to the observer)

30



and convective amplification (owing to the source motion relative to the flow) [121]. With respect to

the computational treatment of aero-acoustic problems, a variety of options are available. As mentioned

earlier, the strongest, and most expensive, approach is the direct numerical solution of the compress-

ible flow equations (Liang [113]). However, since the resolution of all turbulent scales of the compressible

equations requires enormous computation time, in general only a part of the scales is resolved and smaller

turbulent structures (so-called subgrid scales) are described via a turbulence model gauged with empir-

ical parameters. Based on the Lighthill equation, the incompressible flow equations can also be solved

in combination with an aeroacoustic analogy. Besides the flow equations, another fundamentally differ-

ent method for computing e.g. the turbulent flow around the vehicle is available. This method is the

lattice Boltzmann (LB) method, in which physical processes in fluids can be described on the basis of a

microscale discretization of the Boltzmann equation. An introduction to the LB method can be found

in the dissertation by Viggen (2014) [122]. While the LB method is easy to implement and, above all,

highly parallelizable, for a long time especially the consideration of complex geometries as well as the

implementation of a turbulence model to resolve the dissipative subgrid scales has caused great difficul-

ties [123]. In recent years, however, the method has been professionalized and is now increasingly used

to simulate complex multiphysics processes [124] and, in particular, to simulate complex flow around real

vehicles (e.g. [125–127]).

3.2 Stochastic nature of turbulence and convected turbulence

The theory presented previously provides deep and important insights into the noise generating processes.

However, the randomness inherently associated with the stochastic nature of turbulent flows only allows an

averaged or statistical description to be reproducible. Any realization of a physical quantity in turbulent

flows, whether by measurement or simulation, is subject to noise and is therefore different from any

other measurement p̂f(i)
(x, Ê) ”= p̂fi+1

(x, Ê), a turbulent flow is therefore never strictly stationary. Weak

stationarity can however be assumed, implying that the statistical properties of the flow remain the

same during each realisation. Therefore, statistical methods must be employed to describe the turbulent

processes in the flow (for details see [50]). This can be done, for example, by computing the temporal

autocorrelation or, more interesting for our application, the Fourier transform of the autocorrelation,

which is the CPSD already employed to estimate consistent and reproducible FRF’s in impulse hammer

measurements in Eq. (2.65). To obtain a formulation independent of the measurement duration, the

resulting spectrum is divided by the measurement time T , such that for an infinite measurement duration

the definition of the auto power spectral density (APSD) from a set of surface pressure measurements

p̂f(i)
(x, Ê) becomes

Ŝpf(x, Ê) = lim
T æŒ

1

T
{p̂f(i)

(x, Ê)p̂ú
f(i)

(x, Ê)} . (3.16)

A suitable window must additionally be chosen to avoid leakage. This signal processing method is also

known as Welch periodogram [128]. However, the APSD only provides information about the power of

the spatial surface pressure distribution and not about the inherent phase relationship between different

positions. This spatial phase relationship, however, is essential, especially at low frequencies. For illustra-

tion, the reader may imagine a plate excited by WPF with given APSD but various phase relationships.

If the phase is the same everywhere, the plate will oscillate, while a surface pressure distribution with

random phase will (in the limit of zero spatial correlation) not cause any vibration. Therefore, for a

physically meaningful description of the WPF, the spatio-temporal statistics must also be considered.

This requires an analysis of the CPSD between the individual signals at positions x1 and x2. The CPSD
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of pressure Ŝpf(x1,x2, Ê) accordingly becomes

Ŝpf(x1,x2, Ê) = lim
T æŒ

1

T
{p̂f(i)

(x1, Ê)p̂ú
f(i)

(x2, Ê)}. (3.17)

We furthermore employ Ŝpf(x1,x2, Ê) to label the CPSD and Ŝpf(x, Ê) to label the APSD. The WFSDl

density (WFSD) Φ̆pf(k1,k2, Ê) is yet another method that can be used to describe the statistical proper-

ties of turbulent flows. The WFSD Φ̆pf(k1,k2, Ê) relates to its CPSD Ŝpf(x1,x2, Ê) in space via spatial

Fourier transform, just as the CPSD relates to the cross-correlation in time via temporal Fourier trans-

form. Accordingly, this spectrum can be obtained by spatial Fourier transform and normalisation with

Length L and width B (to be independent of geometry) according to

Φ̆pf(k1,k2, Ê) =
1

LB
Fx1

;
Fx2

Ó
Ŝpf(x1,x2, Ê)

Ô<
. (3.18)

Note that a double Fourier transform is employed to transform the CPSD into the k1-k2-Ê space. If the

assumption of stationarity would not hold, a double transformation into the Ê-ÊÕ space would similarly be

required to obtain the APSD of the correlation between arbitrary signals measured at t and tÕ. However,

owing to stationarity the autocorrelation can be represented purely by the time shift · = tÕ ≠ t, which

in turn allows to perform the usual reduction to a single time (or frequency) variable. The idea of

stationarity can now be forwarded from temporal to spatial domain by assuming homogeneity. For

the statistical description of homogeneous turbulence without pressure gradients, two simplifications are

typically applied. First, it is assumed that the CPSD is spatially constant (Ŝpf(x, Ê) = Ŝpf(Ê)), and in

further tightening that the CPSD is displacement invariant, i.e. that Ŝpf(x1,x2, Ê) = Ŝpf(x1,x1 +⇣, Ê) =

Ŝpf(⇣, Ê) and thus both aerodynamic (evanescent) and acoustic (propagating) waves are represented

solely by means of plane waves. The field is thus spatially homogeneous [56], allowing for a reduction

in dimensionality. The corresponding shift-invariant spectrum is then obtained according to Φ̆f(k, Ê) =

Fζ{Ŝpf(⇣, Ê)}. At this point, let us examine the effect of convection of turbulent sources in a shear

layer with convection velocity vconv parallel to the wall on the CPSD or WFSD measured at the wall.

A significant simplification can be made by assuming the turbulent sources to be stationary and by

additionally considering the convection of a turbulent pattern with constant velocity vconv according

to the already mentioned Taylor hypothesis of frozen convection [118]. The shift-invariant velocity

spectrum Φ̆vf(k, Ê) can then be represented as a superposition of a frozen turbulence pattern described

in wavenumber domain as Φ̆vf0(k) and a convection effect S̆vfc (Ê) as

Φ̆vf(k, Ê) = Φ̆vf0(k)S̆vfc (Ê) . (3.19)

To illustrate the convection effect, imagine a thin layer of alternatively rotating vortices with a character-

istic distance lchar between two equally rotating vortices, moving along a plane with shear velocity vconv.

If one then measures the velocity deviations v(t) at any point within the plane, the velocity fluctuations

vÕ(t) will appear in terms of a harmonic oscillation with convection-dependent angular frequency Êc and

can therefore be expressed as vÕ(t) = Re{eiωct}. This angular frequency can then be determined from

aerodynamic wavelength (⁄char = lchar) or convective wavenumber (kconv = 2fi/⁄char) and the convection

velocity vconv according to Êc = kconvvconv. Due to the displacement invariance, we proceed similar to Eq.

(3.16) and by remembering the assumption of homogenous turbulence and constant convection velocity,

the power spectral density becomes Ŝvfc (Ê) = Ŝvfc0 (Ê) ”(Ê ≠ Êc) = Ŝvfc0 (Ê) ”(Ê ≠ kconvvconv). Based

on the contributions of Pope [129] and Taylor [118, 130] and in a form similar to that given in [56] the
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WFSD of convected turbulence finally becomes

Φ̆vf(k, Ê) = Φ̆vf0(k)Ŝvfc0 (Ê) ”(Ê ≠ kconvvconv) . (3.20)

Now, by considering the velocity field v(k, Ê) (or the corresponding WFSD by multiplying with the com-

plex conjugate) as a boundary condition for an acoustic cavity with infinitely far sound hard boundaries

(i.e. a semi-free field) as in the example given in Sec. 2.2.1, much can be deduced about the nature

of the induced WFSD of pressure Φ̆pf(k, Ê) at the wall. The velocity field actually represents a wavy

wall and therefore, the considerations below Eq. (2.13) regarding the nature of the acoustic dynamic

boundary stiffness equally apply to the propagation of waves induced by convected turbulent patterns.

Subsonic convection produces aerodynamic waves with subsonic phase velocities, and unsteady turbu-

lent sources in the flow produce acoustic waves. As the wave dynamic stiffness of acoustic waves (with

acoustic wavenumber) approaches infinity, this part is transmitted very effectively, manifesting itself in a

clear maximum in the WFSD of the pressure at the wall (being however typically hidden under the high

amplitude contribution of the convective part with dominant wavenumber kconv, more in Sec. 3.5.1). The

physics equally apply to finite domains by recurring to the ideas presented in Sec. 2.2.4.

3.3 Transmission of wall pressure fluctuations into a cavity

Now that we have investigated the statistical methods for describing convective turbulent WPF, we

can rely on the foundations laid from Sec. 2.2 to Sec. 2.2.4 to examine the examples of the infinite

and, respectively, finite vibro-acoustic box Sec. 2.2 forced by turbulent WPF. For this purpuse, the

vibro-acoustic joint wavenumber admittance y̆c defined in Sec. 2.2.3 is employed to express the acoustic

pressure p̆a in the cavity as the product of aerodynamic forcing p̆f and admittance y̆c as p̆a = y̆cp̆f . As

already explained in Sec. 2.2.3, there are two different possibilities to obtain an analytic expression for

y̆c. The first possibility is to consider the full, two-way coupling by employing y̆c = Ê2z̆a/
!
Ê2z̆a + z̆s

"
.

A power-based description is required to be independent of background noise. For an infinitely long

measurement duration no ensemble averaging is required and thus a power-based formulation can be

obtained by multiplying with the complex conjugate as

p̆a = y̆cp̆f ∆ p̆ap̆ú
a = y̆cy̆ú

c p̆f p̆
ú
f . (3.21)

The complex conjugate products can then be combined to the respective WFSD Φ̆pa, Φ̆yc and Φ̆pf to

arrive at

Φ̆pa(k, Ê) = Φ̆yc(k, Ê)Φ̆pf(k, Ê) . (3.22)

The WFSD of the two-way coupling vibro-acoustic joint admittance becomes

Φ̆yc =
Ê2z̆a

z̆s + Ê2z̆a

A
Ê2z̆a

z̆s + Ê2z̆a

Bú

=
Ê4z̆az̆ú

a

Ê4z̆az̆ú
a + 2Ê2z̆az̆ú

s + z̆sz̆ú
s

=
Ê4Φ̆za

Φ̆zs + 2Ê2Φ̆sa + Ê4Φ̆za

. (3.23)

which can then be combined with the WFSD of convected turbulence given in Eq. (3.20) to obtain the

desired relation between the WFSD of pressure in the cavity and the TBL excitation to

Φ̆pa(k, Ê) = Φ̆yc(k, Ê)Φ̆pf(k, Ê) =
Φ̆za

Φ̆zs + 2Φ̆sa + Φ̆za

Φ̆pf0(k)Φ̆pfc0(Ê)”(Ê ≠ kconvvconv) . (3.24)

The interested reader may note that the similar derivation for assessing sound transmission via partitions

given in [54] is actually the Fourier-based substructuring method in Eq. (2.28). It has been discussed
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in Sec. 2.4 that the feedback effect from the acoustic system to the mechanic structure can, in a first

approximation, be neglected in case of vehicles. However, this approximation depends strongly on the

particular design of the mechanical structure and the size of the acoustic cavity, and at least for the

generic structure studied in this work, two-way coupling does occur. However, the case of one-way

coupling is interesting from a didactic point of view and will therefore be investigated as well. Deriving

a power-based formulation of y̆c = Ê2z̆aΓy̆s and substituting the WPF model similar to Eqs. (3.21) and

(3.22) yields

Φ̆pa(k, Ê) = Ê4Φ̆zaΓ(k, Ê)Φ̆ys(k, Ê)Φ̆pf0(k)Φ̆pfc0(Ê)”(Ê ≠ kconvvconv) . (3.25)

The case of a finite plate and a finite cavity is more interesting and, as explained in section 2.2.4, the

expressions for the infinite case can straightforwardly be applied to the finite case by evaluating the

continuous expressions only for a reduced set of wavenumbers (or eigenvalues) as it was done in Eq.

(2.34) and (2.36). The power-based formulation of the WFSD of the one-way coupled finite system can

then be obtained according to

p̆a|mnl = y̆c|mnlp̆f|mnl ∆ p̆a|mnlp̆
ú
a|mnl = y̆c|mnly̆

ú
c p̆f|mnlp̆

ú
f|mnl , (3.26)

and

Φ̆pa|mnl(Ê) = Φ̆yc|mnl(Ê)Φ̆pf|mnl(Ê) . (3.27)

Substituting the expressions in Eqs. (2.36) and (2.34) yields

Φ̆yc|mnl (Ê) =
Ê4

fl2
s h2

fl2
0c2

0�
1 ≠ ⁄a|mn0/Ê2

1�
1 ≠ ⁄a|mn0/Ê2

2ú

1

(Ê2 ≠ ⁄s|mn)2
. (3.28)

The excitation of the finite system can be obtained by applying an inverse Fourier transform on Eq. 3.20

according to

Ŝpf(⇣, Ê) = F i
ζ

Ó
Φ̆pf(k, Ê)

Ô
= F i

ζ

Ó
Φ̆pf0(k)”(Ê ≠ kconvvconv)

Ô
= Ŝpf0(⇣, Ê)e≠ikconvζ , (3.29)

from which the discrete loading on a finite number of modes may then be obtained by projecting on a

finite set of harmonic functions (see Sec. 2.2.4) as

Φ̆pf|mnl(Ê) =

⁄
R2

Ŝpf0(⇣, Ê)e≠ikconvζe≠i(ζkx|m+ηky|n)d’d÷ (3.30)

and the final equation describing the response of a finite rectangular cavity with sound hard walls cou-

pled with a Kirchhoff plate with simply supported edges and subject to convected excitation of frozen

turbulence becomes

Φ̆pa|mn(Ê) = Φ̆yc|mnl (Ê) Φ̆pf|mnl(Ê) , (3.31)

from which the spatial field can simply be assembled by weighting with the respective harmonic functions

and summation. The result of this analysis is that the interior SPL increases (quadratically) proportional

to acoustic density fl0 and speed of sound c0 and decreases inversely proportionally to mechanical density

fls and plate thickness h. In the absence of structural and acoustical damping, the SPL becomes infinite

near the mechanical natural frequencies Ês|mn and the acoustical in-plane natural frequencies Êa|mn0

but not on those natural frequencies associated with out-of-plane modes l. This becomes clear when

considering the low-frequency limit case, in which the 1-DOF acoustic system is excited by a normal

boundary motion and thus the pressure in the cavity is proportional to the product of the density and

the time derivative of the particle velocity at the boundary. The most critical case occurs if there exists a
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frequency Ê being both a mechanical and acoustical eigenfrequency Ê = Êa|mn and Ê = Ês|mn for which the

related convective wavenumber kconv, the mechanical trace wavenumber Ÿs|mn =
Ò

k2
s|m + k2

s|n and the

acoustic trace wavenumber Ÿa|mn =
Ò

k2
a|m + k2

a|n coincide (aero-vibro-acoustic coincidence). However,

this is only possible if both the convection and bending wave velocities are equal to the speed of sound,

which will not be the case in the typical speed range of motor vehicles. However, the case of aerodynamic

coincidence, in which mechanical and convective wavenumber match (Ÿa|mn = kconv) can occur during

high-speed motion in vehicles as investigated by Businger [131]. Regardless of excitation, strong damping-

controlled amplitudes occur at the coupled natural frequencies of the system (those at which the entire

denominator of Φ̆yc(k, Ê) vanishes). If the convective wavenumber kconv does not coincide with a resonant

wavenumber Ÿa|mn, spectral leakage occurs and the energy is redistributed among all other harmonics

due to to the violation of the orthogonality condition. Generalizing to the case of an arbitrarily supported

coupled plate-cavity system affords to transition from the discrete Fourier decomposition to a coupled

eigenvalue decomposition. Clearly, the corresponding considerations apply equally to the discrete systems

presented in Sec. 2.4, but for the sake of simplicity we will leave it at a functional description. If the

spatially continuous but temporally bounded i-th realisation of the pressure distribution p̂f(i)
(x, Ê) is

established, for example, by means of a numerical simulation, the question emerges how an ensemble

averaging can be realised to avoid incorporating the ubiquituous background noise. The most obvious

approach would be to compute N -solutions by first imposing the i-th pressure distribution p̂f(i)
(x, Ê) to

obtain the i-th generalized displacements according to

ẑc(x, Ê)d̂c(i)
(x, Ê) = p̂f(i)

(x, Ê) , (3.32)

and to subsequently perform ensemble averaging of the generalised displacements according to

Ŝdc(x, Ê) = lim
T æŒ

1

T

Ó
d̂c(i)

(x, Ê)d̂ú
c(i)

(x, Ê)
Ô

. (3.33)

However, this approach has the major disadvantage that, especially in the case of real automotive prob-

lems, an enormous amount of computation time may be required. A significant improvement can be

realised by solving the coupled eigenvalue problem and subsequently averaging on a modal basis. Thus,

if one solves the problem given in Eq. (2.52) to determine the eigenvalues and eigenmodes required and

then applies the corresponding vibro-acoustic eigentransformation according to

f̃c(i)
(Ê) = Ec

Ó
p̂f(i)

(x, Ê)
Ô

, (3.34)

then, one can obtain a modal formulation according to

d̃c(i)
(Ê) =

1

Ê2 ≠ ⁄c|n
f̃c(i)

(Ê) (3.35)

and from that, by inverse eigentransformation according to d̂c(i)
(x, Ê) = Ec

i
Ó

d̃c(i)
(Ê)

Ô
, one can synthesise

the spatial displacements and pressures. Note that the resulting equation only needs to be evaluated for

each mode and therefore requires only decent computation time. Thus, an ensemble-averaged APS

for broadband excitation can be determined simple and rapidly on the basis of the modal formulation

by projecting the excitation into the modal space and averaging only on the basis of the synthesised

displacements (see also Glandier [32]. This procedure can however cause high effort if the spectral

averaging has to be carried out over a large number of positions. We will therefore examine a second

variant for calculating the power spectra. Considering that the modal formulation is exactly deterministic

when determined from experimental data via EMA, a power formulation can be derived by multiplying the
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individual relations between the coupled modal impedance of the n-th mode z̃c|n(Ê) and the generalized

displacement d̃c(i)|m related to the i-th forcing f̃c(i)|m(Ê) in the ensemble average as

z̃c|n(Ê)d̃c(i)|m(Ê) = f̃c(i)|m(Ê) . (3.36)

Multiplying with the conjugate functions and performing ensemble averaging as

z̃c|nz̃ú
c|m{d̃c(i)|nd̃ú

c(i)|m} = {f̃c(i)|n
f̃ú

c(i)|m} , (3.37)

yields

Φ̃zc|mn(Ê)Φ̃dc|mn(Ê) = Φ̃fc|mn(Ê) . (3.38)

This formulation is particularly interesting because it allows to employ a statistical WFSD model to

represent the aerodynamical excitation. For us it is of more interest that the APSD of the generalised

displacements can, instead of averaging over the spatial field, be performed on a modal basis as

Ŝdc(x, Ê) = {d̂c(i)|n(Ê)d̂ú
c(i)|m(Ê)} =

Nÿ
n=0

Mÿ
m=0

Âc|n(x)Âc|m(x)Φ̃dc|mn(Ê) . (3.39)

The advantage of such a procedure is that the averaging is no longer conducted for all nodes, but only

for all modes. Compared to the original formulation, the synthesis of the generalised APS only contains

an additional summation over the modes. An application of modal averaging can be found in [132].

Of course, it is also possible to sum over the multi-dimensional CPSD [133] or to use a wavenumber

formulation as in [134].

3.4 Automotive aerodynamics

Since the early days of the automobile industry, the flow around the vehicle has been an important concern

due to its substantial effect on induced drag. The interested reader is directed to the works by Hucho [135]

and Katz [136] as well as Ekmann’s dissertation [137] or the recent article by Aleyasin (2021) [138]. His-

torically, research has strongly been driven by attempts to quantify and understand the effect of the

large recirculation region behind the vehicle on the induced drag. For this reason, aerodynamic studies

often deal with spatially averaged or spatiotemporally averaged quantities (e.g. lift coefficient). Recent

years have seen an increasing focus on the temporal characteristics of automobile flow (e.g. [138–140]).

Researchers commonly employ generic test bodies of various complexity to examine the flow topology.

Over the years, a large number of test bodies have been developed in order to generate comparable and

consistent simulation and measurement findings for scientific research. The Ahmed test body presented

in [141] and employed in e.g. [125,138,139] is particularly noteworthy. However, owing to its blunt front

face, the Ahmed test body is of limited use for investigating more realistic situations; for this purpose,

the SAE [1, 22–24], the Windsor [127], Asmo [142], and more recently the Drivaer [25–28] model were

later developed with increasing complexity. The SAE body and the Drivaer model were additionally

developed for aeroacoustic applications, i.e. extensive acoustic treatment of the passenger compartment

allows to investigate the transmission of pressure fluctuations at the side window to the driver’s ear. For

investigations in the wind tunnel a variety of experimental techniques are available, such as traditional

oil film visualization [143], hot wire measurements [138] but also modern state-of-the art techniques like

in particular Particle-Image-Velocimetry [138]. Alternatively, surface pressure microphones can be em-

ployed to measure WPF [139]. These experimental methods have played an increasing role in validating

numerical methods based on the Navier-Stokes or Lattice-Boltzmann equations [124]. Although increas-
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Figure 3.1: Topological features of flow around vehicles. (a) real vehicle [146] (b) Ahmed body [140].

ingly stable and powerful algorithms to numerically solve the governing differential equations have been

brought into use recently, intensive physical knowledge is required to deduce the relevant information

from the wealth of data produced. It is advantageous to describe the irrotational and incompressible

potential flow that governs the overall behavior of the flow using potential theory, in terms of saddle

points, bifurcation lines, and stable and unstable nodes. For this purpose, the excellent paper by Kra-

jnovic on the flow around the Ahmed body is recommended [144]. To investigate the dynamic behavior

of the potential flow, Proper Orthogonal Decomposion (POD) or Dynamic Mode Decomposition (DMD)

may be applied [145]. For the spatial visualization of coherent regions, the Q-criterion (2nd invariant

of velocity gradient tensor) may also be employed. In particular, the Q-criterion allows to discriminate

vortical regions (with high Reynolds stresses) and viscous regions [127]. At sufficiently high frequencies,

directly analyzing the spectral coherence of velocity [140] or pressure [139] is simple and allows to infer

the essential statistical quantites from on a very reduced set of measurements. Zhang’s extensive visual-

ization of vehicle flow patterns shown in Fig. 3.1b will serve as a starting point for our investigation in

vehicle aerodynamics [140]. The flow topology is complex, three-dimensional, and depends on geometry

and Reynolds numbers, but key topographic features can be identified at common Reynolds numbers

and velocities. The extended recirculation region behind the vehicle dominated by large-scale vortices

is the most important area regarding the development of drag. The well-known C-pillar vortex forms

symmetrically along the side edge of the roof (upper bubble), detaches at the rear and forms a symmetric

roller vortex (for more details see [142]). Parallel to the ground, a symmetrical, steady recirculation

region emerges [138]. The structure of the upper and lower recirculation bubbles strongly depends on

the slant angle (the angle between the roof and the hatchback). The detailed study of Tunayetal [147]

mentions that two major flow topologies can be distinguished based on a critical slant angle of 30°. At a

slant angle of more than 30° the pressure gradients along the slant angle enforce an early flow separation

at the upper edge of the roof implying a substantial increase in mean drag coefficient [125]. In contrast,

with a smaller slope angle, the flow remains attached significantly longer and the lower recirculation

bubble is concentrated close to the ground (as in Fig. 3.1b). Flow separation frequently occurs at the

roof [148] (even with a slanted forebody [142]) or at the side [140]. At the nose of the vehicle (Fig. 3.1a),

the incoming air is split at a stagnation point, with part of the air being directed under the vehicle (see

also Wang [38]). The lifting portion of the air is distributed in various directions and frequently remains

attached until the leading edge of the roof [137, 142]. A detachment bubble can also form between hood

and windshield on non-streamlined bodies (especially in trucks [137]). The A-pillar vortex on the side

window is frequently acoustically critical due to its proximity to the driver’s ear [23,149]. Vortex streets

may form at the wheels (in this case: round supports, more in [38]). For further information concerning
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the influence of geometric properties on the overall flow structure, the reader is referred to [138] and [140].

3.5 Automotive aeroacoustics

Owing to the high influence of vehicle noise to passenger comfort, recent years have shown a substantial

amount of research in the field. Special attention has been paid to the higher frequency range (f >

500 Hz) and, consequently, to the identification of the critical contributors in the compressible (acoustic)

part of the wall pressure spectrum (e.g. [39, 43]). Mechanisms in the low and mid frequency range

(f ¥ 100 ≠ 500 Hz) have also been intensively studied; recent dissertations on the subject include those

by Aucejo [150], Businger [39], Nusser [151] and Vadavalli [152]. Only very few papers also deal with the

very low frequency range (f < 100 Hz), an overview of the relevant contributions will be provided in the

course of this chapter. It will be exemplified later in Chapter 6 that an important contributor to interior

noise are convectively transported turbulent sources. For this, as already explained in Sec. 3.2 and Sec.

3.3, the mean flow properties discussed in the previous section are of outstanding importance. The surface

pressure spectra may be directly investigated experimentally in regions with relevant excitation [139],

but as they are the imprint of a number of turbulent sources in the flow, they do not directly permit

identification of the critical sources in the flow. WPF underneath a TBL have, however, been the subject

of extensive research due to its exceptional importance for airplane cabin noise [43] and owing to the

wealth of theoretical knowledge in the field, far-reaching conclusions can be drawn from a statistical

description of the WPF at the wall. [153]. The indoor sound pressure fluctuations induced at very low

frequencies f < 100 Hz are often also referred to as booming [154–156] or buffeting noise [6, 31, 157]. A

particular case is the well-known phenomenon of sunroof buffeting generated by an open sunroof or side

window [158, 159]. This phenomenon is characterized by a strong aeroacoustic feedback mechanism and

will not be discussed in this thesis. Preventing the transmission of noise in the very low frequency region

is particularly challenging because it is strongly influenced by air-tightness and large scale low order

structural modes. Therefore, the corresponding studies are frequently performed with a lower cut-off

frequency of 100 Hz [22,28]. Recent studies highlight the contribution of low-frequency noise transmitted

through the underbody [29, 32, 32, 33]. The testbodies suitable for aero-vibro-acoustic investigations,

namely the SAE body [1,22,23] and the drivaer model [25,27,45–47] have both been specifically designed

to limit the possible aero-vibro-acoustic transmission paths to the side window.

It is now deemed beneficial to briefly and chronologically recall the most recent investigations (since

2010): Moron (2011) [33] investigated the influence of the underbody in a purely numerical approach.

Hartmann (2012) [23] investigated aero-vibro-acoustic excitation via the side window on the SAE body

and also compared a large number of commercial CFD solvers. His results also include the low frequency

region contribution but he was more interested in the compressible part of the wall pressure spectrum.

Glandier (2015) [32] published an interesting paper using a coupled vibro-acoustic FE model combined

with a computational fluid dynamics (CFD) simulation to calculate low-frequency noise. In particular, he

obtained interior SPL’s via vibro-acoustic transfer functions combined with WPF measurements. Herpe

(2018) [30] investigated aero-vibro-acoustic excitation across the windshield and the side window. He

(2018) [28] investigated the transmission of WPF via the side window of the Drivaer model on behalf

of a modal substructuring approach with experimentally fitted boundary conditions. In particular, he

employed a Corcos model to describe the stochastic loading (more on that in Sec. 3.5.1). Yuan (2020) [37]

investigated the statistical properties of the WPF at the side window by inverse determination from mea-

sured vibrations. He also investigated the coherence between the side window and the pressure inside

and concluded that the low frequency component cannot be directly related to the side window and that

the entire vibro-acoustic system must be investigated. Wang (2020) [38] investigated the influence of
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the underbody using a generic vehicle and a real vehicle as examples and discovered that the thickness

of the underbody has a significant impact on the SPL. Nusser (2021) [22] investigated the transmis-

sion of WPF through the side window into the interior of the vehicle using the SAE test body as an

example. She used an incompressible large-eddy simulation (LES) to calculate the flow and a coupled

structural-acoustic model to describe the vibro-acoustic setup. Boundary conditions and material pa-

rameters were determined based on experimental measurements. Schwertfirm (2022) [29] investigated

the underbody excitation and concluded that the two-side coupling between vibration and flow can be

neglected. Thus, while there are a number of studies on aero-vibro-acoustic mechanisms, there is no study

that addresses the relative weighting of the various contributors, as WPF can theoretically be transmitted

inward through any flexible vehicle component. Therefore, we will take a step back and investigate the

overall physical mechanisms contributing to low-frequency interior noise. To do so, we identify four rele-

vant excitation and transmission paths. First and foremost, there are regions where turbulent structures

are convected at high velocity along the vehicle structure; these regions can be described on behalf of

extensive knowledge concerning WPF under a TBL. If aerodynamic and structural wavelengths coincide,

aerodynamic coincidence can produce exceptional noise levels in the cabin. Secondly, large-scale coherent

vortex structures in the recirculation region behind the vehicle can either directly excite the trunk region

via aerodynamic pressure fluctuations or produce acoustic waves that excite the entire vehicle structure,

however this effect has not been addressed to date. The third mechanism is transmission of noise via

the underbody. Due to the limited number of waves that can propagate in the underbody cavity, the

associated modal acoustic field can generate considerable interior noise. These three processes can be

categorized as indirect transmission processes—that is, noise is transmitted via structural vibrations. The

fourth mechanism is the direct transmission of noise from the outside environment through openings and

leakages. In the following paragraphs, these mechanisms will be examined in greater depth. Finally, it

should be noted at this point that especially in the low frequency range, the psycho-acoustic evaluation

of noise is challenging and much research work still needs to be done here. In the course of this work, we

will only focus on the physical mechanisms and therefore examine the unweighted SPL. As an interesting

starting point for low frequency psycho-acoustics the article written by Lemaitre [6] may be proposed.

3.5.1 Excitation by convected turbulence

WPF under a TBL have probably been one of the most thoroughly explored issues in aeroacoustics in

recent decades, and as a result, a substantial degree of complexity and a profound understanding have

been achieved. In addition to the book by Blake [43], which has been recommended several times and

offers an excellent introduction to the field as well as several further reading suggestions, there is an

older review by Bull [153], that may be proposed. This topic is a very vibrant area of research, an

overview of current developments may be found in the thesis of Alaloui (2015) [160]. It is common

practice to describe spatiotemporal statistics in the frequency domain by means of CPSD or in the

wavenumber domain by means of the previously discussed WFSD (Sec. 3.2). Recalling to Eq. (3.20)

and Eq. (3.29), it is clear that the CPSD for convected turbulence will be a product of a contribution

Ŝpf0(⇣, Ê) accounting for the spatial structure of the turbulence and a convective contribution that can

be described via plane aerodynamic (evanescent) waves according to e≠ikconvζ . Regarding the spatial

structure of the turbulence, it makes sense to assume that the coherence (the normalized CPSD) between

a reference position and another position separated by in-flow distance ’ and cross-flow distance ÷ may

be represented by exponential decay with a decay rate that grows with frequency (smaller vortices) and

gets smaller with mean shear velocity (faster decorrelation) and is thus proportional to the convective

wavenumber kconv = Ê/vconv. The decay rate can therefore be expressed by employing longitudinal and

lateral wavenumbers kγζ and kγη that are proportional to kconv with additional parameters “ζ and “η as
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Figure 3.2: Chase wavenumber spectrum of homogenous turbulence (Illustration from [43]).

kγζ = “ζkconv and kγη = “ηkconv. A model for the statistical pattern may thus read

Ŝpf0(⇣, Ê) = e≠|kγζζ|e≠|kγηη| = e≠γζ|ωζ/vconv|e≠γη|ωη/vconv| , (3.40)

which in combination with an aerodynamic component in Eq. (3.29) allows to describe the whole spectrum

according to

Ŝpf(⇣, Ê) = Φ̆pfc0(Ê)Ŝpf0(⇣, Ê)e≠ikconvζ = Ŝpfc0(Ê)e≠γζ|ωζ/vconv|e≠γη|ωη/vconv|eikconv = Ŝpfc0(Ê)“̂pf(’, ÷, Ê) .

(3.41)

This is the well-known and frequently employed Corcos model for turbulent WPF initially presented in

1967 [161]. By using spatial Fourier transform, a WFSD may be readily produced [162]. This model

is appropriate for describing fully developed equilibrium boundary layers on smooth and rough surfaces

with no pressure gradient and assuming isotropic homogenous turbulence and negligible compressible

spectrum components. Due of its simplicity, it is commonly used to simulate stochastic excitation [28,37,

132,163–165]. Businger showed the usefulness of this type of model for describing turbulent excitation on

a car door [39]. On behalf of a more physical reasoning, assuming homogenous turbulence (and therefore

only plane hydrodynamic and acoustic waves) allows to integrate Lighthill’s equation and by additionally

neglecting shear stresses and normal pressure gradients directly at the wall, it becomes evident, that

the surface pressure spectrum is essentially composed of a nonlinear turbulence-turbulence component

and a mean-shear-turbulence component [43]. The mean-shear-turbulence component represents the

convection of a frozen pattern of turbulence indicated in Eq. (3.20) while the nonlinear turbulence-

turbulence component accounts for the nonlinear processes related with eddy growth, mixing and decay.

Apparently these nonlinear processes are the reason for the lateral and longitudinal decay of coherence

employed in Eq. (3.42). Apart from the Corcos model, various semi-empirical models have been proposed

to characterize the statistical features, most notably the extensive model of Chase [166] illustrated in Fig.

3.2. This model allows to deduce the WFSD Φ̆vf(k, Ê) on behalf of the wall shear stress ·w, the boundary

layer thickness ”, the convection velocity vconv as well as kinematic viscosity ‹ and speed of sound c0. The

dominant part of the spectrum is the convective peak (or ridge) at kζ = kconv. However, Taylor hypothesis

is not strictly fulfilled (the turbulent pattern is not frozen) and therefore the WFSD is broadband and
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Figure 3.3: Principal contributors to wall pressure APSD (Illustration from [43]).

composed of a wide range of contributions originating throughout the boundary layer. These contributions

can be identified on behalf of their trace wavenumber kζ and the associated phase speed vζ = Ê/kζ . At

low wavenumbers kζ” < c0, an acoustic contribution with sonic or supersonic trace wavenumbers can be

identified. As already indicated, this contribution may cause substantial excitation due to high coherence

and is therefore intensively investigated. At low frequencies, however, this component is presumably

negligible because the wavelengths of the structure are usually closer to the aerodynamic wavelength and

although the acoustic component can efficiently excite lower order modes its level is far below that of

the aerodynamic contribution. An estimate of the critical frequency above which compressible effects are

important for a given wavenumber kζ is given in [43] and reads according to

3
Êcomp”

vconv
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≥ (k”)2M≠2
c . (3.42)

For a bending mode at the side door with a wavelength of l ¥ 1 m (kx = 2fi/l), an incident flow

velocity vconv ¥ 40 m/s, a boundary layer thickness of ” ¥ 0.02 m [167] follows fcomp ¥ 343 Hz, which

is significantly higher than usual natural frequencies for side doors [39]. The reader’s attention is drawn

to the fact that the abscissa in Fig. 3.2 may actually be read as a weighted (with 2fi) Strouhal number

St = flchar/vŒ associated with the characteristic length scale of the turbulent vortices lchar. Due to the

relation between wavenumber and characteristic vortex size, the different areas can be assigned to different

regions in the TBL. A recommended paper on the subject is that by Farabee et al. [168]. Recalling the

single-point APSD in [43] (shown in Fig. 3.3), we note that large-scale eddies cause the low-frequency

part of the APS up to log(Êlow”/vŒ) ¥ ≠0.5, while a dominant contribution in the mid frequency range

up to log(Êlog”/vŒ) ¥ 0.5 can be related to sources in the logarithmic region of the boundary layer.

Sources in the transition layer are dominant at higher frequencies and above the high frequency cut-off at

log(Êinner”/vŒ) ¥ 2.5 the sources are located within the inner layer. For the given example, the cut-off

frequencies are flow ¥ 100 Hz, flog ¥ 3000 Hz and finner ¥ 100 kHz. It follows that for the low- and mid

frequency ranges of interest within this thesis, the sources are mostly located in the outer region and in

the logarithmic region. Wood and Westphal [169] investigated the low-frequency components and found

that this component arises from three mechanisms, namely unsteadiness in the free streem, free-stream

turbulence and irrotational motion induced by the boundary layer. The low-frequency region is often

difficult to measure because background acoustic noise often exists in this frequency range [168]. The
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effect of pressure gradients on the WFSD has been investigated in [160] and it has been found that the

convective ridge is either stretched or compressed depending on the sign of the pressure gradient. It is still

unclear whether and which WFSD model can be used to describe low-frequency excitation of vehicles,

particularly in the presence of strong pressure gradients and flow separation, and it is an important part

of this work to investigate the statistical description of a complex vehicle flow on a simplified test body

in order to further decide on the applicability of a simplified description. In particular, the assumption

of homogeneous turbulence should be mentioned here, which is obviously violated in the case of flow

separation or large-scale vortex shedding regions. Regarding the transmission of TBL induced noise in

vehicles, the contribution via the side window was frequently investigated [28,30,31,37,170], but also via

the windscreen [30] (here dominant under 100 Hz) and the side door [163].

3.5.2 Excitation from leeward components

It is possible to assign distinct vortex shedding frequencies to each of the different characteristic vortex

structures shown in Fig. 3.1. The Strouhal number defined as St = fstD
vŒ

can be employed to estimate the

shedding frequency fst of vortices and values of St ¥ 0.2 ≠ 0.3 are commonly found for large-scale vortex

shedding, using the undisturbed velocity vŒ and a characteristic length D =
Ô

Af based on the square root

of the blocking area Af [140]. Zhang determined the Strouhal numbers for the different vortex structures of

the Ahmed body (Fig. 3.1). To estimate the influence of the vortex regions on the acoustic spectrum, we

can use the lower cut-off frequency of the hearing threshold at flow ¥ 16 Hz, a blocking area of Af ¥ 2 m2,

and a mean velocity of vŒ ¥ 40 m/s, to determine a lower limit of Stlow ¥ 0.55 for the Strouhal number

of acoustically relevant vortices on real vehicles. Thus, some of the vortex regions in Fig. 3.1 may well

be acoustically relevant, especially the vortex street emerging from the wheels that seems particularly

suitable to induce underbody noise. Note that the critical Strouhal number representing the hearing

threshold will be reduced with increasing speed and decreasing vehicle cross section and thus, small

vehicles at high speeds appear more likely to suffer from wake-induced low-frequency noise. Physically,

it is clear that the WPF induced by large scale vortices will contain both an aerodynamic contribution

due to the low-speed convection of turbulent structures and an acoustic contribution decaying with 1/r

with increasing distance from the vortex core (see Eq. (3.14)). It is unclear, however, which of the two

contributions is typically dominant, and no specific study on the acoustic pressure induced by WPF in

the recirculation region of a closed cavity with flexible walls could be found by the author. Typically, the

objective of investigations into the transient properties of the vehicle flow is to understand their impact

on the overall vehicle forces. Several investigations can be found, most notably the previously mentioned

examination by Zhang [140] and the investigation of Fares [125] on the Ahmed body but also the study

of Islam [127] on the Windsor Body at a supercritical slant angle of – ¥ 40 ¶. Note, that a supercritical

slant angle (– > 30 ¶) has been found to generate considerably stronger low frequency WPF [125]. It is

of special interest, that in [127] two dominant modes were found at St ¥ 0.46 and St ¥ 0.79, where the

first mode was assigned to the shear layer at the bottom and the second can be calculated as the ratio

vŒ/H. Further investigations can be found in [125,142,171,172].

3.5.3 Excitation from the underbody

The aero-vibro-acoustic excitation via the underbody region is a topic that has only received limited but

growing interest in recent years. Here the works of Moron [33], Crouse [34] and the recent contributions by

Wang [38] and Schwertfirm [29] may be mentioned. The underbody represents a cavity with sound-hard

upper and lower surfaces with ground clearance g and sound-soft side surfaces separated by length L and

width B respectively. Analogously to the treatment of the finite closed rectangular cavity in Sec. 2.2.4,
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Lighthill’s equation given in Eq. (3.12) can be adapted to a finite cavity by employing a suitable set of

orthogonal harmonic functions with wavenumber spacing Δkx = fi/L, Δky = fi/B and Δkz = 2fi/g, that

fulfill the boundary conditions (as a precursor, check Fig. 6.12). The corresponding eigenfrequencies can

then simply be obtained according to Eq. (2.30). Therefore, the excitation induced by the Lighthill tensor

is distributed across a limited number of harmonic functions, and correspondingly high levels can be found

in close proximity to natural frequencies. The source distribution can typically not be represented by this

particular set of basis functions and therefore leakage occurs. The WPF at the underbody surfaces are

therefore once again a superposition of aerodynamic waves due to the convection of turbulent structures

and acoustic waves with significantly larger amplitudes than in the free-field due to the finite dimensions

of the cavity. This has been investigated by Wang in [38] and he concludes that for his specific case,

the aerodynamic component is dominant. Schwertfirm [29] has investigated the underbody of the SAE

testbody and especially the effect of vibro-acoustic coupling between the underbody cavity and the flexible

structure. In this study, coupling induces a slight shift of structural eigenmodes due to the additional

acoustic mass of the cavity and a decrease in SPL within the cavity. It is important to note, that an

experimental identification of the acoustic contribution of the WPF by assessing the CPSD between two

microphones has not yet been performed. This however allows to separate acoustical and hydrodynamic

component based on their respective wavelengths as will be shown in Sec. 6.

3.5.4 Direct acoustic excitation

The stochastic pressure fluctuations in the flow can directly excite the acoustic cavity if the fluid is in

direct contact with the surrounding flow via openings. A classification of cavity types depending on

opening length, cavity depth and opening width can be found in [52]. The two mechanisms relevant for

low frequency vehicle noise is the case of a wide opening with a shallow depth cavity, which can occur

if a window or sunroof is opened while driving, and the Helmholtz-resonator case in which openings

act as acoustic masses of a low frequency Helmholtz-resonator. The former can create excessive noise

levels [158, 173, 173] but shall not be treated in this thesis. The latter represents a direct and efficient

transmission path for aerodynamic or aeroacoustic pressure fluctuations in the flow that contributes

to the interior noise at very low frequencies. The topic has been mentioned by Brandstätter [19] and

Nusser [?,151] but it has not been thoroughly explored. The elements of the Helmholtz resonator depicted

in Fig 3.4a are the acoustic mass of the fluid in the neck ma = fl0L/A (with acoustic dynamic stiffness

ẑa|12 = ≠Ê2ma) depending on the effective length L (including a length correction [54]) and cross section

A of the opening and the acoustic stiffness of the fluid ka = fl0A2c2
0/V0 (with acoustic admittance

ẑa|20 = ka) depending additionally on the volume of the interior cavity V0. The resonance of the simple

oscillator follows most naturally to fH =
�

ka/ma/(2fi). To calculate the interior pressure p̂20 due to

pressure excitation p̂10 from the exterior flow it makes sense to draw the corresponding circuit as shown in

Fig. 3.4b The continuity of mass (and respectively: volume acceleration) in the system directly allows to

calculate the acoustic transmissibility ŝa|12 = p̂20/p̂10 according to ŝa|12 = ẑa|20/(ẑa|20 + ẑa|12). Another

Helmholtz-resonator mechanism can be attributed to the excitation of the passenger cabin through holes

in the package tray as intensively investigated by Lee [11, 175, 176]. The contribution of Pan on the

Helmholtz resonance effect in a helicopter cockpit is also worth mentioning [73].
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Figure 3.4: Helmholtz resonator in a vehicle. (a) Simplified system composed of rear vent with acoustical
mass ma and acoustical stiffness ka (b) Equivalent circuit.
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4 Hybrid strategy for coupling experimental

and numerical normal modes

In this chapter, the most promising option for the investigation of aero-vibro-acoustic mechanisms in

vehicles, particularly with regard to the low and medium frequency components, will be selected and

improved. Please note that parts of this chapter have already been published in [48]. It is worth pointing

out that the test body that was developed for this work and that will be discussed in detail in the

following chapter was initially supposed to be dealt with strictly on the grounds of a numerical model

presented in [177]. Due to the high computational effort as well as the expected practical effort for the

generation of a reliable structural model, an alternative way to asses the issue has been sought (see also

the experimental validation in [178]). Considering the explanations given in Sec. 2.4 and Sec. 2.5.3,

and thus in accordance with the investigations in [178] or in Chap. 5, it is clearly apparent that the

acoustic model can be represented fairly well by applying a FE model. Since experimental investigation

of the acoustic cavity appears disadvantageous due to the high effort required to gain a sufficient number

of acoustic FRF’s, a hybrid variant consisting of a numerical model of the cavity and a mechanical

model derived from measurement data appears optimal. In order to solve the aero-vibro-acoustic issue, it

makes sense to investigate the hybrid methods described in Sec. 2.5.4 and Tab. 2.4 with regard to their

individual advantages and disadvantages. The vibro-acoustic PTF method, which has been intensively

explored in recent years, is in principle applicable for a hybrid formulation. However, it has a significant

backdraw owing to the high computational effort and storage required to determine an acoustic dynamic

stiffness matrix Ẑa from the admittance matrix Ŷa. More specifically, the interior pressure at every node

in the fluid must be determined for volume excitation at every coupling node (i.e. at every node at

the interface between structure and fluid). Furthermore, the mechanical transfer functions determined

according to Eq. (2.65) are only deterministic with a sufficiently large number of averages or a sufficiently

long averaging time, and noise amplification can occur in the system due to the random character of the

flow (Sec. 3.3). Thus, to avoid noise amplification, a power-based formulation relying on a 5D CPSD

similar to Eq. (??) would be required, but this would involve enormous effort. It is also possible to use

mechanical displacements as boundary conditions in the acoustic system, such as employed by Lee used

in [12]. The method presented by Brandstätter in [19] considers the volume acceleration induced by the

mechanical field as an acoustical volume source for the uncoupled acoustic system and thus neglects the

considerable influence of mechanical flexibility on the acoustic cavity (compare with Sec. 2.5.3). Herpe’s

method [41] is not appropriate for the very low frequency range because of the geometric simplification of

the interior cavity as a rectangular box. In addition, no geometric changes could be made to the acoustic

field, and the significant influence of the rear bench [177] could not be taken into account. Modal-updating

methods can be employed to improve an existing numerical mechanical or vibro-acoustic model, but this

requires a great deal of effort and can only be used if a numerical model is already available [84, 110].

Finally, the method of modal coupling via numerically determined acoustic modes and experimentally

determined mechanical modes presented by Kim [44] is available. This method combines the numerical

advantages of the modal description (memory-saving and efficient due to diagonalised formulation) with

the practical advantages of a hybrid formulation. Furthermore, the structural modes in the formulation
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can be employed either by means of an experimental or numerical modal analysis. The applicability of

modal substructuring for vehicle vibroacoustics is supported by numerous examples in the literature and

therefore appears possible (see Sec. 2.4). A disadvantage of the method used by Kim is that here the

nodes of the acoustic grid at the interface must correspond to the measuring points of the EMA. However,

if one combines the method of normal-mode coupling with the method of non-conforming grids presented

by Flemisch [179], the applicability of the method can be significantly extended. It hereby becomes

possible to compute coupled modes from experimental or numerical uncoupled modes on arbitrary grids.

These coupled modes provide a valuable diagonalization of the underlying system and can be employed

to describe the vibro-acoustic response to internal (volume acceleration) or external (force, pressure)

excitation.

4.1 Governing equations and finite element formulation

4.1.1 Mechanical system

The dynamical behavior of a mechanical system can be described using the temporally fourier transformed

version of Navier’s equations

≠ flsÊ
2ûs(x, Ê) ≠ r̃

T [c]r̃ûs(x, Ê) = f̂s(x, Ê), (4.1)

where we have assumed a linear elastic material and small displacements. In Eq. (4.1), ûs(x, Ê) denotes

mechanical displacement, fls material density, [c] the stiffness tensor, Ê angular frequency and f̂s(x, Ê) the

external volume force density. Strain tensor [✏̂s] and displacement vector ûs are related via [✏̂s] = r̃ûs =

((rûs) + (rûs)
T )/2. We will start with an undamped mechanical system and incorporate damping on

a modal basis later in the analysis. The weak formulation in Eq. (4.2) can be obtained by projecting on

suitable test function ws(x). Note, that the weak formulation introduces the boundary traction σ̂n(x, Ê)

acting on the bounding surface Γs. The final weak form then reads

≠
⁄

Ωs

flsÊ
2wÕ(x)ûs(x, Ê)dΩ +

⁄
Ωs

!
r̃wÕ(x)

"T
[c]r̃ûs(x, Ê)dΩ =⁄

Ωs

wÕ(x)f̂s(x, Ê)dΩ +

⁄
Γs

wÕ(x)σ̂n(x, Ê)dΓ . (4.2)

We define a matrix of N compactly supported (i.e. only on each element) node-centered ansatz functions

Ns|j(x) centered at each node at position xj as

Ns|j(x) =

S
WWU

Ns|j(x) 0 0

0 Ns|j(x) 0

0 0 Ns|j(x)

T
XXV (4.3)
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and by supposing that all variables can be expressed as a superposition of these node-centered ansatz

functions with weighting vectors ûs|j, f̂s|j and σ̂s|j, it follows that

ûs(x, Ê) =

Nÿ
j=1

Ns|j(x)ûs|j , (4.4)

f̂s(x, Ê) =

Nÿ
j=1

Ns|j(x)f̂s|j (4.5)

and

σ̂n(x, Ê) =

Nÿ
j=1

Ns|j(x)σ̂s|j . (4.6)

As typical for FE-formulations, the test function are equally assumed to be composed of ansatz functions

alike with weights ws|k as

ws(x) =
Nÿ

k=1

Ns|k(x)ws|k . (4.7)

Substituting Eqs. (4.5) – (4.7) in Eq. (4.2) yields

Nÿ
k=1

ws|k

A
Nÿ

j=1

⁄
Ωs

≠flsÊ
2NT

s|k(x)Ns|j(x)ûs|jdΩ +

⁄
Ωs

!
r̃Ns|k(x)

"T
[c]r̃Ns|j(x)ûs|jdΩ≠ (4.8)

⁄
Ωs

NT
s|k(x)f̂s(x, Ê)dΩ ≠

⁄
Γs

Nÿ
j=1

NT
s|k(x)Ns|j(x)σ̂n|jdΓ

B
= 0 . (4.9)

Thanks to the compactly supported ansatz functions, the integrations can be performed over each element

to arrive at element-wise mass and stiffness matrices ms|e and ks|e and element-wise forcing vectors f̂s|e

and f̂b|e that can than be assembled in global mass and stiffness matrices Ms and Ks and global forcing

vectors f̂s and f̂b as

Ms = ·ne
e=1ms|e ms|ejk = fls

⁄
Ωs|e

NT
s|k(x)Ns|j(x)dΩ , (4.10)

Ks = ·ne
e=1ks|e ks|ejk =

⁄
Ωs|e

!
r̃Ns|k(x)

"T
[c]r̃Ns|j(x)dΩ , (4.11)

f̂s = ·ne
e=1f̂s|e f̂s|ek =

⁄
Ωs|e

NT
s|k(x)f̂s(x, Ê)dΩ (4.12)

and

f̂b = ·ne
e=1f̂b|e f̂b|ek =

⁄
Γs

Nÿ
j=1

NT
s|k(x)Ns|j(x)σ̂n|jdΓ . (4.13)

The discretized mechanical system finally becomes

(≠MsÊ
2 + Ks)ûs = f̂s + f̂b . (4.14)

A thorough investigation into the mechanical problem can be found in the book of Kaltenbacher [55] or

the thesis of Davidsson [58].
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4.1.2 Acoustical system

The distribution of acoustic pressure p̂a(x, Ê) in a cavity of speed of sound c0 and mean density fl0 subject

to external volume velocity sources q̂a(x, Ê) can be described through the Helmholtz-equation

(≠Ê2

c2
0

≠ Δ)p̂a(x, Ê) = iÊfl0q̂a(x, Ê) . (4.15)

Similarly to the mechanical system, we obtain the weak formulation by projecting on a continuous test

function wa(x)

≠
⁄

Ωa

Ê2

c2
0

wa(x)p̂a(x, Ê)dΩ +

⁄
Ωa

Òwa(x)Òp̂a(x, Ê)dΩ =⁄
Ωa

wa(x)iÊfl0q̂a(x, Ê)dΩ +

⁄
Γa

wa(x)Òp̂a(x, Ê) · ndΓ . (4.16)

Just as the boundary tractions in the mechanical formulation, an additional source term on the boundary

surface Γa is introduced. The linearised conservation for momentum can be used to reformulate the

boundary contribution in terms of the particle velocity v̂a(x, Ê) as

n · Òp̂a(x, Ê) = ≠fl0iÊv̂a(x, Ê) · n (4.17)

and therefore⁄
Γa

wa(x)Òp̂a(x, Ê)ndΓ = ≠
⁄

Γa

wa(x)fl0iÊv̂a(x, Ê) · ndΓ = ≠
⁄

Γa

wa(x)fl0iÊv̂an(x, Ê)dΓ . (4.18)

By supposing that acoustic pressure, volume velocity, normal velocity and test function can be expressed

as a superposition of node-centered ansatz functions Na|j with weights p̂a|j, v̂an|j, q̂a|j and wa|k as

p̂a(x, Ê) =

Nÿ
j=1

Na|j(x)p̂a|j , (4.19)

q̂a(x, Ê) =

Nÿ
j=1

Na|j(x)q̂a|j , (4.20)

v̂an(x, Ê) =

Nÿ
j=1

Na|j(x)v̂an|j , (4.21)

and

wa(x) =

Nÿ
k=1

Na|k(x)wa|k , (4.22)

then Eq. (4.16) can be rewritten according to

Nÿ
k=1

wa|k

A
Nÿ

j=1

1 ⁄
Ωa

≠Ê2

c2
0

Na|k(x)Na|j(x)p̂a|jdΩ +

⁄
Ωa

ÒNa|k(x)ÒNa|j(x)p̂a|jdΩ
2

≠ (4.23)

⁄
Ωa

Na|k(x)iÊfl0q̂a(x, Ê)dΩ +

⁄
Γa

Nÿ
j=1

Na|k(x)Na|j(x)fl0iÊv̂an|jndΓ = 0

B
. (4.24)
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By element-wise integration and a FE assembling procedure the discrete matrices can be obtained ac-

cording to

Ma = ·ne
e=1ma|e ma|ejk =

1

fl0

⁄
Ωa|e

1

c2
0

Na|k(x)Na|j(x)dΩ (4.25)

Ka = ·ne
e=1ka|e ka|ejk =

1

fl0

⁄
Ωa|e

ÒNa|k(x)ÒNa|j(x)dΩ (4.26)

q̂a = ·ne
e=1q̂a|e q̂a|ek =

⁄
Ωa|e

Na|k(x)q̂a(x, Ê)dΩ (4.27)

q̂b = ·ne
e=1q̂b|e q̂b|ek =

⁄
Γa|e

Nÿ
j=1

Na|k(x)Na|j(x)v̂andΓ , (4.28)

to finally obtain the discretized acoustic system to

(≠MaÊ2 + Ka)p̂a = iÊq̂a ≠ iÊq̂b . (4.29)

Note that the acoustic mass and stiffness matrices Ma and Ka have been divided by ambient density

fl0 to express the acoustic pressure p̂a subject to the volume velocity source q̂a and the boundary source

q̂b (compare with Tab. 2.1). The system matrices are displayed in underlined fashion because they do

not represent mass and stiffness coefficients in terms of acoustic dynamic stiffness (Ẑa = ≠Ê2
Ma + Ka)

but rather in terms of acoustic admittance (Ŷa = ≠Ê2Ma + Ka) (see [15] or App. A). This is the

acoustic equivalent of mechanical systems, in which experimental data is obtained in terms of mechanical

admittance Ŷs while the FE system is described in terms of mechanical dynamic stiffness Ẑs.

4.1.3 Coupled vibro-acoustic system

A vibro-acoustic system contains a mechanical structure coupled to an acoustic domain through an inter-

face Γc. Interface conditions are naturally enforced to satisfy continuity of momentum and displacement.

These interface conditions can be described through mechanical normal stresses and pressure on the one

hand, and mechanical velocity and acoustic particle velocity on the other hand

σ̂n(x, Ê) = ≠n(x)p̂a(x, Ê) and (4.30)

v̂a(x, Ê) = v̂s(x, Ê) = iÊûs(x, Ê) for x œ Γc . (4.31)

By replacing the boundary traction vector σ̂n(x, Ê) in Eq. (4.17) and the boundary velocities v̂a(x, Ê)

in Eq. (4.16) via p̂a(x, Ê) and ûs in Eq. (4.31), one may derive the weak formulation of the strongly

coupled vibro-acoustic problem. Instead, we directly formulate the mechanical boundary source term

f̂c induced through counteracting acoustic pressure, as well as the acoustic boundary source term q̂c

induced by enforced mechanical displacement. To obtain the algebraic acoustic volume source vector

q̂c, a few steps are required. To begin with, the continuous mechanical displacement vector ûs(x, Ê) is

expressed as a superposition of a matrix of node-centered mechanical test function Ns|j(x) weighted with

discrete nodal displacement vectors ûs|j. The source contribution on node k of element e can then be

obtained by projecting the normal component of displacement on an acoustic test function Na|k(x) over

the element area Γc|e. The algebraic acoustic volume source vector q̂c can then be obtained by assembling

the element-wise components of q̂c|e

q̂c = ·ne
e=1q̂c|e q̂c|ek =

⁄
Γc|e

Nÿ
j=1

Na|k(x)Ns|j(x)iÊûs|j · n(x)dΓ. (4.32)
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The algebraic boundary force vector f̂c can be obtained in a similar fashion

f̂c = ·ne
e=1f̂c|e f̂c|ek = ≠

⁄
Γc

Nÿ
j=1

NT
s|k(x)Na|j(x)n(x)p̂a|jdΓ. (4.33)

In practice, the terms in Eq. (4.32) and Eq. (4.33) are unknown at this stage. It makes therefore sense

to explicitly assemble the coupling matrix Has

Has = ·ne
e=1has|e has|ejk =

⁄
Γc

Na|k(x)Ns|j(x)n(x)dΓ = (4.34)

⁄
Γc

S
WWU

Na|k(x)Ns|j(x)nx(x)

Na|k(x)Ns|j(x)ny(x)

Na|k(x)Ns|j(x)nz(x)

T
XXV dΓ (4.35)

to arrive at discrete relations between unknown variable q̂c and boundary source ûs

q̂c = HasiÊûs. (4.36)

Proceeding analogously for Eq. (4.33) yields Hsa. The mechanical force vector f̂c due to acoustic pressure

p̂a may be expressed by

f̂c = Hsap̂a. (4.37)

By comparing Eq. (4.32) and Eq. (4.33) it can be shown that the coupling matrices are related according

to

Has = HT
sa = H. (4.38)

We employ H to express the strongly coupled structural-acoustic equations

(≠MsÊ
2 + Ks)ûs = f̂s + Hp̂a (4.39)

(≠MaÊ2 + Ka)p̂a = iÊq̂a + Ê2HT ûs (4.40)

and rearrange the equations to arrive at a matrix formulationC
≠Ê2Ms + Ks ≠H

≠Ê2HT ≠Ê2Ma + Ka

D C
ûs

p̂a

D
=

C
f̂s

iÊq̂a

D
. (4.41)

The equation provided here is commonly used to handle strongly coupled vibro-acoustic problems nu-

merically. However, as stated in the introduction, this study demonstrates a novel way for combining

experimental and numerical modes using non-conforming grids. For the sake of completeness we briefly

include the essential theory about modal decomposition.

4.1.4 Eigenvalue decomposition

The theory of eigenvalue decomposition is well established and may in detail be found in e.g [8]. For a

given stiffness K and mass matrix M one can obtain the corresponding eigenvalues ⁄r and eigenvectors

ψr by solving the eigenvalue problem

(K ≠ ⁄rM)ψr = 0. (4.42)

It is now possible to express the spatial unknown x̂ as a linear combination of modes weighted by

corresponding participation factors. Collecting all modes column-wise in a mode matrix Ψ and the
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participation factors in a participation vector x̃ yields

x̂ = Ψx̃ . (4.43)

The discrete equation system containing mass and stiffness matrices as well as a forcing vector f̂ can be

diagonalized by substituting x̂ and projecting on the set of modes through

Ψ
T (≠MÊ2 + K)Ψx̃ = Ψ

T f̂ . (4.44)

We employ mass normalised eigenvectors to arrive at the normalized modal problem

(≠IÊ2 + Λ)x̃ = f̃ , (4.45)

where Λ is a diagonal matrix containing the corresponding eigenvalues. For each decoupled equation,

modal damping ’i may be taken into account by adding a damping term according to

m̃i(≠Ê2 + 2iÊ’iÊi + Ê2
i )x̃i = f̃i. (4.46)

The procedure described above can be used to express the uncoupled mechanical problem in Eq. (4.14)

(without boundary forces) in terms of modal displacements ũs, modal forcing f̃s, mechanical eigenvalues

Λs and structural modal damping ⇣s by

(≠IÊ2 + 2⇣s

�
ΛsiÊ + Λs)ũs = f̃s. (4.47)

Similarly, the uncoupled acoustic problem in Eq. (4.29) can be written in terms of modal pressure p̃a,

modal volume sources q̃a, acoustic eigenvalues Λa and acoustic modal damping ⇣a by

(≠IÊ2 + 2⇣a

�
ΛaiÊ + Λa)p̃a = q̃a. (4.48)

The coupled modes can be determined similarly to the approach outlined above for uncoupled mechanical

or acoustic systems. For this purpose, the vibro-acoustic system shown in Eq. (4.41) can be formulated

in terms of generalized displacements d̂ and generalized forces f̂ by concatenating the individual vectors

to

d̂ =

C
ûs

p̂a

D
and f̂ =

C
f̂s

q̂a

D
. (4.49)

By additionally combining the submatrices in Eq. (4.41) to a generalized system matrix T̂ , the coupled

system reads

T̂ d̂ = f̂ . (4.50)

The usual eigenvalue decomposition in Eqs. (4.42)-(4.44) applies only in case of hermitian-symmetric

matrices, which is not the case in Eq. (4.41). An eigenvalue decomposition of non-symmetric problems

affords the solution of two related eigenvalue problems to obtain left and right eigenvectors ψL|k and ψk.

Regarding the structural-acoustic problem, it can be shown (e.g. [92]) that the left eigenvectors can be

obtained from the corresponding right eigenvectors by scaling the acoustic components with the coupled

eigenvalues ⁄k as

ψcL|k =

C
ψcLs|k

ψcLa|k

D
=

C
1 0

0 1/⁄k

D C
ψcs|k

ψca|k

D
. (4.51)
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These left and right eigenvectors can now be assembled in mode shape matrices ΨcL and Ψc to diagonalize

the original problem

Ψ
T
cLT̂Ψcd̂ = Ψ

T
cLf̂ . (4.52)

The diagonal set of equations can now be written in terms of a generalized modal system matrix T̃

relating generalized modal displacements d̃ and forces f̃ as

T̃ d̃ = f̃ . (4.53)

In a subsequent step, mass-normalized mode shapes ψs|i can be obtained and aligned column-wise in a

mode shape matrix Ψs. We have now obtained a modal description of the mechanical system that can

be processed analogously to modes obtained in a FE-framework. In case of acoustic modal extraction,

the FRF vector contains measured dynamic stiffness spectra ẑi(Ê) relating measured pressure p̂i(Ê) and

volume acceleration iÊq̂f(Ê) (for more details, see [15]).

4.2 Normal mode coupling via non-conforming grids

The strong influence of boundary conditions complicates the treatment of vibro-acoustic problems at low

frequencies. An appropriate representation of the boundary situation requires extensive modelling effort

or the use of experimental measurement data to tune the simulation model towards desired physical

behavior. The use of a modal method makes perfect sense given the numerous advantages of the modal

system description in the low frequency range. In a low density medium, such as air, the coupled problem

can usually be diagonalized using the uncoupled mechanical and acoustic modes. The concept of coupling

experimentally measured mechanical modes with simulated acoustic modes presented here is based on

an original work of Kim [44]. In this work, experimental structural modes were coupled with simulated

acoustic modes by positioning the measurement points at the nodes of the acoustic grid. Generalizing

this work to be able to deal with arbitrary measurement grids requires a reliable treatment of coarsely

sampled non-conforming grids. After a brief review of modal substructuring theory, we demonstrate how

radial basis functions can be used in combination with non-conforming grids to adress weakly coupled

vibro-acoustic systems based on experimental or numerical modes discretized on point clouds.

4.2.1 Normal mode substructuring

Alternatively to the direct approach based on the coupled FE description shown in Eq. (4.41), vibro-

acoustic modes can also be obtained by employing their respective uncoupled modes. This is only possible

if the boundary constraints can be relaxed, i.e. if the coupled mechanical displacements and pressures

can be adequately represented as a superposition of weighted uncoupled modes, which is often appro-

priate if air is the acoustic medium. Following this assumption each coupled mode can be expressed as

a superposition of uncoupled structural and acoustic mode shape matrices scaled with coefficients of a

modal eigenvector ✓i. For that purpose we introduce the matrix of uncoupled modes Ψsa by horizon-

tally concatenating the uncoupled modes according to Ψsa = [Ψs,Ψa]. Note that acoustical degrees of

freedom are zero for mechanical modes and vice versa. The aforementioned assumption indicates that

each coupled mode shape ψc|i can be expressed by weighting the uncoupled mode matrix with a modal

eigenvector according to

ψc|i = Ψsa✓i (4.54)
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By introducing right and left modal shape matrices Θ and ΘL it follows that the vibro-acoustic modes

can be expressed as

Ψc = ΨsaΘ and ΨcL = ΨsaΘL . (4.55)

Substituting Eq. (4.55) in Eq. (4.52) yields

Θ
T
LΨ

T
saT̂ΨsaΘd̃ = Θ

T
LΨ

T f̂ . (4.56)

Now, we can introduce the modal coupling matrix H̃ as

H̃ = Ψ
T
s HΨa (4.57)

and the modal parameter matrix T̃ as

T̃ = Ψ
T
saT̂Ψsa =

C
≠Ê2 + 2⇣s

Ô
Λss + Λs ≠H̃

≠H̃T Ê2 ≠Ê2 + 2⇣a

Ô
Λas + Λa

D
. (4.58)

The mechanical and acoustic submatrices of T̃ can either be obtained by solving the corresponding

decoupled mechanical and acoustical eigenvalue problems computationally or via experimental modal

analysis. The modal coupling matrix H̃ can be acquired by computing the coupling matrices between

adjacent surfaces and subsequent projection. Under the assumption of sufficiently small modal damping

the postulated left and right modal shape matrices Θ and ΘL can indeed be evaluated by employing the

modal mass and stiffness matrices

M̃ =

C
Is 0

H̃T Ia

D
and K̃ =

C
Λs ≠H̃

0 Λa

D
(4.59)

to solve the right and left eigenvalue problems

(≠⁄iM̃ + K̃)✓ = 0 and (≠⁄iM̃
T + K̃T )✓L = 0 . (4.60)

and concatenating the resulting modes column-wise. The coupled right and left structural-acoustic modes

Ψc and ΨcL can then be assembled according to Eq. (4.55). For a harmonic problem, it is convenient to

solve

T̃ d̃ = f̃ with f̃ = [f̃s;0] (4.61)

for every frequency and to reconstruct the displacement and pressure vector in d̂ according to

d̂ = Ψcd̃ . (4.62)

If the generalized modal displacements d̃ are of interest, one can evaluate the undamped mode shape

matrix Ψ and the generalized displacement vector d̂ first and obtain d̃ through

Ψcd̃ = d̂ . (4.63)

The coupled modal damping factors can then be extracted from d̃. The limitations of this approach lie in

the assumption that the coupled modes need to be expressible as a superposition of undistorted mechanical

and acoustic mode shapes. It has been shown by Davidsson [58], that the structural displacement error

induced by normal mode coupling is most pronounced near acoustically dominated modes. This appears

natural considering that the pressure distribution within the cavity is controlled by the shape of the
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Figure 4.1: Calculation of coupling matrices on non-conforming interface via intersection grid.

acoustic mode and that the resultant mechanical stresses are only partially reproduced by the supplied

mechanical modes. Due to the incomplete continuity of acoustic particle velocity across the interface, the

acoustic pressure field near structurally dominated modes exhibits the opposite effect. However, when

it comes to low-frequency noise in air-filled cavities, the many advantages of normal-mode coupling may

frequently exceed the associated inaccuracies, particularly when it comes to numerical models of complex

vibro-acoustic structures.

4.2.2 Determination of coupling matrices for non-conforming grids

Regarding a general setup with arbitrary measurement positions we investigate in the calculation of modal

coupling matrices for acoustic and structural modes defined on a set of surface nodes xa œ Pa µ Γa and

xs œ Ps µ Γs with corresponding (not necessarily predefined) grids. In order to obtain the coupling

matrix Hi between adjacent node sets Pa|i and Ps|i a continuous description in terms of suitable test

functions Na|k(x) and Ns|j(x) on the respective grids is required. In case a suitable grid is not yet

available (e.g. measurement positions), it can be obtained by employing a Delaunay-triangulation D

on the corresponding node set. Algorithms to obtain a 2D-Delaunay triangulation are available and

sufficiently robust to obtain the connectivity matrix for a set of triangles covering the parent surface

Γ [180]. In case the employed grids are non-conforming, the coupling matrix can be assembled by

integrating on a so called intersection grid (see Fig. 4.1). In this approach, the union of the two point

clouds Ps and Pa is formed. The resulting point cloud is then triangulated and the coupling integrals on

the resulting conforming subgrid are evaluated according to Eq. (4.35). The non-conforming coupling

matrix Has can then be obtained on each element by summing the contributions of the corresponding

sub-elements. More details on the construction of intersection grids can be found in the publication by

Flemisch et al. [179]. Note that the problem of solving the coupled vibro-acoustic equation in Eq. (4.41)

via an intersection grid corresponds to a so-called mortar method [55]. The modal coupling matrices of

the various modal pairings may now be computed according to Eq. (4.57). The procedure is illustrated

in Fig. 4.2 on behalf of an exemplary mechanical and acoustical mode shape defined on the respective

point clouds Ps and Pa. Note, that the calculation of vibro-acoustic coupling forces is equivalent to

the computation of nodal forces arising from aerodynamic excitation. It follows naturally that in the

case of distributed aerodynamic pressure excitation p̂f , the mechanical force vector f̂s can be obtained

by employing an aerodynamic-structural coupling matrix Hsf according to

f̂s = Hsf p̂f . (4.64)
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Figure 4.2: Calculation of modal coupling matrix on non-conforming grids (h̃ij = ψT
s|iHψa|j).

a ) b )

Figure 4.3: Acoustic box with flexible walls. (a) Geometry and positions (b) non-conforming interface
with acoustic (left) and mechanic (right) grid.

4.3 Validation

The proposed method is validated on behalf of a reverberant acoustic box enclosed by flexible plates (Fig.

4.3a) with plate thickness d = 0.005 m and clamped boundaries. The acoustic grid is discretized with

quadratic tetrahedral elements whereas the mechanical domain is discretized using quadratic hexahedral

elements. Fig. 4.3b illustrates the coupling surfaces involved in the numerical example. The mechanical

structure is modelled as a homogeneous linear elastic structure with the mechanical properties of alu-

minium. The acoustic medium is air at 25¶ C. The plate designated Front is stimulated at the position

illustrated in Fig. 4.3a (≠1.005, ≠0.22, ≠0.24) with a unit force in the frequency range 0 to 260 Hz.

The mechanical normal displacements are obtained and compared at (≠1.005, 0.22, ≠0.08) (Front) and

(1.005, 0.22, ≠0.08) (Rear) while the acoustic pressure spectrum is synthesized at (≠0.7, 0.2, 0.2). The

term coupled eigenmodes will further on be used to refer to the right eigenvectors of the vibro-acoustic sys-

tem. We furthermore compute the sound pressure level (SPL) and the displacement level (DL) according

to

SPL = 20 log10(|p̂a|/20 · 10≠6) and DL = 20 log10(|ûs|/10≠12) . (4.65)

4.3.1 Coupled vibro-acoustic modes

To validate the proposed approach, we compare the results obtained by modal substructuring with those

resulting from a fully coupled FE simulation. We employ modes up to twice the frequency of interest

(i.e. 500 Hz) resulting in 21 mechanical modes per plate and 41 acoustic modes. The same grids are

incorporated in both approaches and no additional interpolation step is employed. Our first step in
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addressing the issue is to study the vibro-acoustic modes obtained by solving the undamped modal

eigenvalue problem Eq. (4.60). According to Eq. (4.55), the system’s coupled eigenvectors ψc|i can be

synthesized from the modal eigenvectors ✓c|i as well as the uncoupled mechanical and acoustical modes

ψs|i and ψa|i. The transpose of the modal shape matrix Θ is illustrated in Fig. 4.4. In this representation,

Figure 4.4: Entries of the modal shape matrix Θ with the corresponding structural and acoustic modes
in Ψsa and the associated coupled modes ψc|i according to Eq. (4.54). Numerical artefacts
at 114 Hz (green ring) are caused by nearest neighbor mapping.

each row of the matrix contains the scaling of the relevant uncoupled mechanical and acoustic modes

for each coupled mode. Therefore, the uncoupled mechanical and acoustic modes are displayed below

the columns while the corresponding coupled modes are shown to the right of the respective mode. The

mechanical modes show the normal displacement outwards of the acoustic domain (brown: positive, blue

negative). The acoustic modes are displayed in the vertical and horizontal plane with positive acoustic

pressure colored in red and negative acoustic pressure colored in black. As expected, the lowest coupled

mode at 0 Hz is the pressure equalization mode, which implies that pushing the first plate in causes the

rear plate to move in the opposite direction as a result of a spatially homogeneous increase in acoustic

pressure. Modes dominated by the first acoustic mode, on the other hand, have a nodal line in the center

and are thus in phase with outwards oriented structural modes. For the sake of brevity, we will not

cover the remaining modes in detail. Regarding the eigenfrequencies of the coupled arrangement, it is

well established that vibro-acoustic modes may be significantly shifted in frequency relative to uncoupled

modes. In this case, the frequency shift of ±1 Hz with respect to the initial uncoupled mechanical modes

corresponds roughly to the coupling degree of common automotive problems (see also [3]). Finally, we

note that the numerical variations at 114 Hz (green box) are caused by the nearest neighbor mapping of

the tetrahedral grid nodes onto the horizontal plane.

4.3.2 Validation

Next, we compare the displacement and pressure at the selected positions obtained in the modal coupling

procedure to those obtained by directly solving the strongly coupled vibro-acoustic problem Eq. (4.41).

To account for the influence of modal damping on the coupled system, we set the acoustic damping to

5% and the mechanical damping to 2%. In order to compare the modal workflow to a direct, strongly

coupled FE calculation, the discrete damping matrices must be assembled. This can be accomplished

for the specified system by utilizing the relation C = Ψ2⇣
Ô
ΛΨ

T. Regarding the modal workflow,

modal displacement and pressure spectra can be obtained by solving the damped modal formulation Eq.
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Figure 4.5: Synthesized pressure and displacement fields at 50 Hz.

a ) b )

Figure 4.6: Comparison of results obtained by modal substructuring (solid line) with direct FE calculation
(circles) (a) displacement level (b) pressure level.

(4.58). After solving the modal-harmonic problem for each frequency and scaling the components of each

eigenvector at the desired point by its modal displacement, the spatial field variables can be retrieved at

the relevant nodes. In addition to point-wise synthesis, it is feasible to synthesize three-dimensional fields,

as exemplified in Fig. 4.5. The corresponding results can then be compared to those obtained using the

strongly coupled FE solution. The mechanical displacement and acoustic pressure spectra shown in Fig.

4.5 are found to be very consistent with strongly coupled FE results. The tiny inaccuracy at the rear

plate close to the 114 Hz mode stem from a violation of the weak coupling assumption stated above (see

section 4.2). However, the corresponding error is more than 60 dB smaller than the displacements of the

exciting plate and hence does not affect the internal pressure level.

4.3.3 Vibro-acoustic mode superposition

The following section will highlight how the dynamics of the system can beneficially be interpreted in

terms of vibro-acoustic mode shapes. For this purpose, the generalized modal displacements of the coupled

problem must be determined in order to be able to identify the dominant mechanisms of the system at

hand. For this purpose, the modal generalized displacements must first be calculated according to Eq.

(4.63) using the undamped coupled eigenvectors and the generalized displacements from Eq. (4.61). The
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Figure 4.7: Cumulative sum of synthesized pressure spectra due to different coupled modes vs. reference
solution (circles).

sound pressure spectrum originating from the j-th vibro-acoustic mode can then be determined according

to

p̂j = ψ̂c|jpj . (4.66)

The resulting spectra can be ordered by scaling the mode-wise synthesized pressure spectra based on

their contribution to the overall acoustic spectrum. For that purpose we calculate the complex coherence

“k|j (i.e. the normalized complex scalar product) between the individual spectrum of mode j at position

k (p̂k|j) and the total pressure spectrum p̂k as

“k|j =
p̂T

k|jp̂k

p̂T
k p̂k

. (4.67)

Note that
qNc

j=1 “k|j = 1 and that T herein denotes the hermitian (complex) transpose. We can then rank

the different modes according to the norm of the complex coherence (Fig. 4.7). The modes depicted here

constitute 50% of the total energy of the spectrum at location k. The total acoustic pressure spectrum as

well as the cumulative sum of the respective modes is displayed in the graph. For example, the 1st line

shows the acoustic pressure due to the most important mode at 246 Hz, whereas the 4th line represents

the cumulative sum of modes 1 to 4. It is worth pointing out that conversely to most open domain

problems, the symmetrical acoustic and mechanical modes account for the majority of acoustic sound

pressure at the chosen position.

4.4 Discretization error regarding EMA

The approach proposed herein is novel in that it allows to directly incorporate experimental modes

obtained from EMA and defined on arbitrary interface grids to address weakly coupled vibro-acoustic

problems. Given the usually coarse spatial resolution of experimentally measured modes, the discretiza-

tion error is a critical issue. The previously investigated non-conforming approach can be beneficially

combined with a suitable interpolation procedure to overcome the associated limitations. After briefly

discussing the theoretical ideas of RBF interpolation, we address the sensitivity of intersection based

non-conforming coupling to discretization issues and how RBF interpolation may be employed to permit

the application of modal substructuring on coarse, irregularly sampled, measurement grids.

4.4.1 Interpolation with radial basis functions
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Name Basis function „(x)

thin-plate spline (TPS) |x|2 log(|x| + 1)

multiquadric
�

1 + |x|2/”2

Wendland (1 ≠ (|x|/”))4(4|x|/” + 1)

Table 4.1: RBF interpolation kernels.

The interpolation of mechanical displacements is a prominent issue in aeroelasticity whenever an aero-

dynamic pressure distribution has to be interpolated onto a mechanical grid. Beckert, for example, has

addressed the subject [181]. Different radial basis functions (RBF) are explored, and the compactly sup-

ported RBF (on behalf of the wendland kernel introduced in [182] and the euclid hat function) are deemed

advantageous. A subsequent review by Boer [183] compares several methods for computing the coupling

matrices including nearest neighbour interpolation, RBF interpolation on behalf of Wendland, multi-

quadric and thin-plate splines (TPS) and the weighted residual method employed herein (see Tab. 4.1).

Cinquegrana [184] has also recently interpolated aerodynamic excitation onto a structural grid by em-

ploying compactly supported TPS. Compactly supported basis functions are non-zero only on a subset

of nodes (e.g. Finite Elements) while global interpolation incorporates basis functions being non-zero

throughout the domain. In case of TPS interpolation, the basis function „(r) approaches zero as r æ Œ,

hence global and compact interpolation differ only in the choice of a finite radius ” above which „(r) is

set to zero. Other basis functions, such as the multiquadric and Wendland kernels, afford the choice of a

suitable parameter ”. In the interpolation procedure, we presume that the given normal displacements

Âs|i(x) of each mode can be interpolated with a set of basis functions G(x) evaluated at x ≠ xi and

weighted with wi as

Âs|i(x) =

Nÿ
i=1

wi„(x ≠ xi) . (4.68)

The interpolation step solves the discrete set of equations and determines the appropriate weights to ap-

proximate the original data points in a continuous manner. This continouus description in terms of radial

basis functions can then be numerically integrated by employing adequately discretized linear triangular

elements in conjunction with the non-conforming grid technique to obtain the modal coupling coefficients

between mechanical and acoustic modes. Based on the conclusions drawn in these articles, we compare

several RBF methods to investigate their applicability for modal substructuring. The incorporated basis

functions are shown in Table 4.1.

4.4.2 Discretization error of non-conforming method

To begin with, we explore the effect of grid spacing on the accuracy of the modal coupling procedure pre-

sented previously. Since triangulated grids are commonly employed in the automatic generation of meshes

for experimental modes, we compare different variants of triangular grids to the original rectangular grid

(Fig. 4.8). To investigate the applicability of the coupling procedure on experimentally extracted modes,

we produce pseudo-experimental modes by extracting subsets of the original structural modes. The re-

sulting modes could equally be obtained by applying an EMA procedure to a set of appropriate FRFs.

After applying the modal coupling procedure and synthesizing the acoustic spectrum large variations

from the reference solution for all triangulated grids are observed (Fig. 4.9). To identify the reasons for

the considerable differences between the synthesized pressure spectra on coarse and fine grids, it is crucial

to study the corresponding modal coupling coefficients h̃ij between a set of structural modes ψs|i and

acoustic modes ψa|j for the different variants (Fig. 4.10). The absolute discretization error in the energy

norm of the modal coupling coefficients ‘γ|ij = ||h̃ij|| ≠ ||h̃ref
ij || (with h̃ref

ij representing the coefficients on
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Figure 4.8: Different mechanical grids at the interface, left to right: structured grid (fine), structured grid
(medium), structured grid (coarse), unstructured grid.
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Figure 4.9: Effect of discretization on non-conforming coupling procedure.

the fine grid) turns out to be approximately linearly related to the characteristic discretization length “.

This is consistent with Wolmuth’s work concerning error norms of mortar finite element techniques [185].

Concerning practical applications in terms of EMA, it is evident that the necessary grid resolution for a

sufficiently accurate calculation of the modal coupling coefficients clearly limits the applicability of the

methodology shown here. This issue can however be overcome by employing a suitable interpolation

method to resample the coarsely discretized measurement grid onto a reasonably fine grid.
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Figure 4.10: Comparison of modal coupling coefficients for first (top) and 6th (bottom) acoustical mode,
black bar indicates reference on fine grid.
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4.4.3 Discretization Error using Interpolation

To demonstrate the applicability of the presented strategy to deal with a wide range of experimental

grids, the mode shapes on the coarse, unstructured grid are interpolated onto the fine grid using the

RBF interpolation techniques summarized in Table 4.1. The finite radius ” is set to 0.1. Diagonal

coefficients in the resulting matrix are set to zero. For completeness, element-wise linear interpolation

has also been considered [186]. Several discretized or interpolated variations of the primary structural

mode are shown in Fig. 4.11. In addition, the reference structural mode on the fine grid is shaded

in grey. The structural modes determined via linear interpolation in Fig. 4.11b agree with the initial

a ) b ) c )

Figure 4.11: Displacement warp of principal structural mode at fine grid (grey) vs. different configurations
(orange). (a) original at coarse grid (b) linear interpolation (c) TPS interpolation.

deformations at the coarse grid in Fig. 4.11a. In terms of the corresponding modal coupling coefficients

in Fig. 4.10, it is however clearly evident that the linear interpolation already constitutes a substantial

improvement when compared to the non-conforming approach using a coarse grid. This is because the

reduced discretization length reduces the discretization error in calculating the coupling matrices. The

RBF interpolation instead provides smooth approximations of the original structural mode, as can be

seen in Fig. 4.11c on behalf of the Wendland interpolation. Given that the various interpolation variants

are now discretized on the same grid, a detailed comparison of the error norm ✏ψ with ‘ψ|i = ||ψs|i ≠ψref
s|i ||

between interpolated ψs|i and original structural modes ψref
s|i lends itself to investigation (Fig. 4.12). It
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Figure 4.12: Absolute error norm during mode shape interpolation.

is apparent that the TPS interpolation provides the best approximation for the original deflections in

the investigated setup. This is because the TPS basis functions employed here are solutions of the

biharmonic equation Ò4„(r) = ”(r), which is also utilized in Kirchhoff-Love plate theory to calculate the

displacement of isotropic, homogeneous plane plates [187]. While linear interpolation and interpolation

based on the wendland kernel produce comparable results, interpolation based on the multiquadric kernel

produces significant deviations from the reference solution for the given parameterization. This applies

equally if the corresponding synthesized SPL displayed in Fig. 4.13 are investigated. By comparing
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Fig. 4.13 with the original results obtained without interpolation (Fig. 4.9), it becomes evident that

an additional interpolation procedure significantly reduces the error induced in the coupling procedure.

The conclusion can be made here that, with the exception of multiquadric interpolation, satisfactory

results can be obtained for all interpolation methods. While this statement cannot be generalized, it

seems reasonable to suggest the TPS interpolation for dealing with vibroacoustically relevant structures

which may frequently be idealized as vibrating plates. Regarding implementation, globally supported

radial basis functions may be implemented with great ease for plane surfaces due to the absence of grids.

It may also be beneficial to employ RBF interpolation to resample both acoustic and structural modes

on an equidistant grid on which integration can easily be performed. Due to the practical constraints

regarding EMA data collection, the computational effort associated with the interpolation procedure is

of minor importance.
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Figure 4.13: Synthesized pressure spectrum after interpolation.

4.4.4 Extraction of mechanical modes from a coupled arrangement

In terms of practical application, it should be noted that the experimental eigenmodes that may be

employed in the course of this procedure can typically only be identified in a coupled setup (i.e. filled

with air). For this purpose, the FRFs between an accelerometer and an exciting source (e.g. impulse

hammer) are determined for all measuring positions. The mechanical modes may then be extracted via

EMA. To examine the effect of extracting the mechanical modes in a coupled arrangement and thus the

methodology’s applicability to most practical problems, we compare the eigenvalues of the mechanical

system recovered from the purely mechanical system to those obtained by measuring the FRFs within

the coupled arrangement. The unity force displacement spectrum of Front is shown in Fig. 4.14. We

recognize, that the acoustic feedback effect in this scenario is largely restricted to the first mechanical

mode. The acoustic feedback causes an underestimation of mechanical displacement. Using a 2 Hz

frequency resolution, this results in an overestimation of modal damping in the EMA (’sc|1 = 2.8 % vs.

’s|1 = 2 %). Refining the frequency resolution to 0.2 Hz clearly reveals the coupled eigenmodes at 47 Hz

and 49 Hz (small box in Fig. 4.14) and therefore, the apparent damping stems from the resonance shifts

induced by the coupling (small box in Fig. 4.14). Without drawing a broad generalization, we conclude

that extracting mechanical modes from a coupled system results in an underestimate of the interior

acoustic pressure levels. Compared to the overall uncertainty in mechanical mode extraction, this impact

is probably insignificant (also stated by Marburg in [42]).
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Figure 4.14: In-situ modal extraction (coupled setup) vs. in-vacuo modal extraction (purely mechanical
setup). The fine frequency resolution reveals that the apparent damping stems from the
resonance shifts induced by the coupling (small box).
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5 A generic structure for assessing flow-induced

noise in vehicles

5.1 Requirements

To investigate the physical mechanisms governing flow-induced noise in vehicles, it is preferable to employ

a generic testbody that allows to control the number of potential transmission paths and is flexible enough

to permit the subsequent investigation of optimization strategies. The most frequently employed aero-

vibro-acoustic testbodies (i.e. the SAE [1, 22–24] or Drivaer [25–28] models) were especially designed

such as to limit the possible transmission paths to the side window. This is especially difficult in the

low-frequency range, which is why simulation or measurement results are frequently provided with a

lower cut-off frequency of 100 Hz [22, 28]. In this particular investigation, however, we are especially

interested in low-frequency mechanisms and as a result, it is not appropriate to employ a testbody with

close similarities to the SAE or Drivaer models. For this purpose a new test body is sought that can be

used to study the aero-vibro-acoustic behavior of a car-like structure with multiple flexible components.

In light of this, the following design objectives have been established for the test body:

(a) The geometry must be chosen as such as to reproduce the global aerodynamic characteristics of a

real vehicle (Fig. 3.1).

(b) The acoustic qualities of the interior cavity should be comparable to those of a passenger cabin. In

this context, particular attention should be devoted to the effect of the rear bench on lower order

acoustic mode shapes (see [11, 177]).

(c) The investigation of direct acoustic excitation via apertures and leakages should be possible (Sec.

3.5.4).

(d) It is essential that each of the vibro-acoustic relevant mechanical plates can be installed in a rigid

or likewise flexible manner to be able to separately investigate the different contributions.

(e) The testbody should be designed as modular as possible to allow for a straightforward verification

of optimization prodecures.

(f) It should be possible to investigate various ground clearings given that the underbody excitation is

thought to produce significant interior noise in the low-frequency region (Sec. 3.5.3).

5.2 Realization

For the design of the new test body presented in [177] (2020) and shown in Fig. 5.1a, all of these

considerations were taken into account. Its aluminium body is mainly composed of ITEM profiles (Fig.

5.2.b) with attached fasteners that allow to mount the various flexible plates. The geometrical dimensions

are L = 1.88 m, H = 0.6 m and B = 0.7 m. A supercritical slant angle (– > 30 ¶) generates considerably
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Figure 5.1: Newly developed test body with geometric dimensions and plate designations. The blue dots
indicate accelerometer measurement positions. The dotted white lines with length of 8 cm
indicate the exact positions.

stronger low frequency pressure fluctuations due to the large scale turbulent structures in the recirculation

region, as was already mentioned in Sec. 3.5.2 and in [125]. A rather high slant angle of – = 60 ¶ was

chosen. The plates come in a variety of thicknesses (3 mm, 1 mm, 0.7 mm) to facilitate the investigation

of a wide variety of vibro-acoustic systems, as well as to investigate or isolate individual regions. The

designations of the different plates can be found in Fig. 5.1 (plates without designation are 3 mm thick

and assumed rigid). The plates are attached to the rigid frame via fasteners, see Fig. 5.5a. An additional

(slideable) rear bench was included and positioned as such, that the ensuing modes are comparable to

those of a real vehicle [177]. As a side note, the plate separating the trunk from the main cavity was

originally designed as a single 3 mm panel. However, the single plate turned out to be an efficient vibro-

acoustic absorber that significantly reduced the interior SPL while at the same time inducing severe

(tangible) vibration at the plate. The effect was suppressed by adding an additional 3 mm panel but

may be of use for practical applications. The underbody mechanisms can be addressed by choosing one

of three sets of struts (Fig. 5.2a.) for ground clearances g = 4, 9 or 12 cm. One of the two apertures

is in practice used to feed in the required cable for the measurement system. Additionally, a ventilation

aperture adjustable in length with the dimensions lvent = 32, 52 or 136 mm was incorporated. Steel rails

beveled in the flow direction can be used to install the test body in the wind tunnel at BMW AG in

Munich.

5.3 Validation

A FE model was developed to assess both the structural (Fig. 5.3a) and the acoustic field (Fig. 5.3b.).

The effect of the rear bench was considered by introducing a sound-hard boundary in the acoustic FE

model. The interested reader can find a detailed description of the FE model in [177]. To incorporate

the effect of leakages and openings a sound soft boundary was defined at the corresponding aperture

(this solely affects the Helmholtz-resonance frequency of the acoustic system, see Sec. 3.5.4). For the

verification of the full aero-vibro-acoustic problem of flow-induced cabin noise, a thorough validation of

the different physical domains (acoustics, mechanics, fluid dynamics) is required. The decoupled acoustic

and structural systems should be compared to experimental data for this purpose. Thanks to the modular

design of the testbody, analyzing the decoupled systems is possible. We will begin by investigating the
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a ) b )

Figure 5.2: Test body during (a) wind tunnel measurements (b) EMA of the rigid frame (results not
discussed in this thesis).

b )a )

Figure 5.3: FE model (a) Middle cut through the structural FE model (b) acoustic FE model with
soundhard boundary at the position of the simplified rear bench.

properties of the sound-hard acoustic cavity be applying additional masses on the 3 mm plates of the

testbody such as to prevent any flux of acoustic energy through the mechanical structure.

5.3.1 Acoustical system

The acoustic modes are obtained by solving the eigenvalue problem of the acoustic FE system (taking

into account the sound soft boundary condition at the rear vent) within the framework of the open source

FEM code openCFS [188]. The lowest four modes are shown in Fig. 5.4 and compare well to those of

a real vehicle [177]. To validate the acoustic FE model, acoustic FRF measurements were performed

using an LMS Qsource source (Fig. 5.5a., see [15] for more information on the source) and a limited

number of microphones at the microphone locations depicted in Fig. 5.5b. For the determination of

the acoustic FRF functions, white noise volume acceleration was impressed at the source (position xj)

and the microphone pressures were measured at positions xi. The dynamic stiffness FRF’s were then

a ) b ) c ) d )

Figure 5.4: Acoustic cavity modes at (a) 10 Hz, (b) 128 Hz, (c) 222 Hz, (d) 231 Hz
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Figure 5.5: a) LMS QSource volume acceleration source at Position 1. (b) Measurement positions for
acoustic validation.

obtained according to

Ẑa|ij(Ê) =

I
p̂a(i)

(xi, Ê)

iÊq̂a(i)
(xj, Ê)

J
=

I
p̂a(i)

(xi, Ê)iÊq̂ú
a(i)

(xj, Ê)

(iÊq̂a(i)
(xj, Ê))(iÊq̂ú

a(i)
(xj, Ê))

J
(5.1)

by ensemble averaging over a measurement period of 60 s with an additional Hamming window with

T = 1 s and hence a frequency resolution of Δf = 1 Hz. On the other hand, the computational FRF’s

could be obtained by idealising the volume source as a point source and applying modal synthesis on the

uncoupled modes according to

Ẑa|ij(Ê) =
p̂a(xi, Ê)

iÊq̂a(xj, Ê)
=

Nÿ
n=0

Âa|n(xi)Âa|n(xj)

Ê2 ≠ ⁄a|n
. (5.2)

The computational and numerical FRF’s are displayed in Fig. 5.6 and naturally show maxima at the

experimental and numerical natural frequencies of the cavity ⁄a|n = Ê2
a|n. The minima occur at frequencies

at which the superposition of individual modal contributions vanishes due to opposing phases in the

corresponding mode shapes (a comprehensive introduction may be found in [100]). The low-frequency

drop in measured FRF’s is associated with the cut-off frequency of the acoustic source. The low-frequency

maximum in the computational FRF’s (level out of range) is associated with the Helmholtz resonance

of the system at fn|0 = 8 Hz. There is a difference of approximately ¥ 10, Hz between the experimental

and simulated acoustic natural frequencies that is attributable to the not entirely rigid nature of the

mechanical structure. Due to the mechanical natural frequencies being higher than the two acoustic

natural frequencies shown here, the effect of the flexible mechanical boundary is similar to an additional

acoustic mass, and therefore the coupled (actual) natural frequencies are shifted to lower values compared

to the uncoupled ones. We will later on notice the opposite effect (upwards frequency shift) in case of a

very flexible system with thin plates and structural eigenfrequencies below the lower natural frequencies of

the cavity (Sec. 7.2). In order to achieve a better visualization, the numerical acoustic natural frequencies

employed in Eq. (5.2) were modified to match the experimental natural frequencies. Apart from the slight

frequency shift, the computational and experimental FRF’s are essentially in good agreement.

5.3.2 Mechanical system

Initially, it was intended to conduct a validation of the mechanical FE model shown in Fig. 5.3a. However,

the numerical model of the relatively simple 3 mm system has already shown unsatisfactory in the context

of a previous inquiry [178]. Fitting the boundary condition using a simple model-updating method was

tested but discarded. Due to the anticipated high modeling effort required to generate a reliable model and
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Figure 5.6: Simulated vs. measured acoustic transfer function between Position 1 and Position 4. The
original numerical natural frequencies at 128 Hz and 220 Hz were modified to match the ex-
perimental natural frequencies at 116 Hz and 207 Hz in Eq. (5.2) for better visualization.

the straightforward handling of the aero-vibro-acoustic issue on behalf of experimental modes described

in the previous chapter, the construction of a suitable model was not performed. The non-conforming

approach was tested with a 3 mm structure in [178] and yielded good results. The effect of plate thickness

on vibro-acoustic coupling effects is nontrivial even for simple structures (Xue [20]), but it is evident

from Eq. (4.39) that high sound pressure levels cause stronger feedback to the mechanical structure. The

one-way coupled admittance in Eq. (3.28) therefore suggests that the relative mechanical displacement

induced solely by the acoustical feedback will increase with decreasing plate thickness. An arrangement

with thinner plates was therefore chosen for further investigation. Since the turbulent structures on the

windshield were the major source of excitation, a more complicated arrangement was chosen to pronounce

excitation via other transmission paths. All plates designated in Fig. 5.1 were installed with a thickness

of 1 mm except for Floor Front and Windshield (3 mm). Subsequently, the mechanical admittance

FRF’s were determined by impulse hammer measurements with spatial resolution of 4 cm and a fixed

accelerometer at the positions indicated in Fig. 5.1 by averaging over three subsequently determined

datasets according to

Ŷs|ij(Ê) =

Y]
[ v̂s(i)

(xi, Ê)

f̂s(i)
(xj, Ê)

Ẑ
\ =

Y]
[ v̂s(i)

(xi, Ê)f̂ú
s(i)

(xj, Ê)

f̂s(i)
(xj, Ê)f̂ú

s(i)
(xj, Ê)

Ẑ
\ . (5.3)

It is assumed that the feedback effect of the acoustic cavity on the mechanical plate is negligible. This

assumption will later be verified by comparing the uncoupled and coupled mechanical eigenfrequencies

(more information on this in Sec. 7.3). The mechanical modes are determined using the Polymax

algorithm (details in [100]) and the mechanical admittances were in turn synthesized according to

Ŷs|ij(Ê) =
v̂s(xi, Ê)

f̂s(xj, Ê)
=

Nÿ
n=0

Âs|n(xi)Âs|n(xj)

Ê2 ≠ ⁄s|n
. (5.4)

For a selection of flexible plates, the four lowest mechanical modes extracted on each plate are dis-

played in Fig. 5.7. Compared to the 3 mm plates, the flexible 1 mm plates are much more difficult to

characterize and, in some cases, nonlinear effects occur (recognizable by a dip in the coherence but not

shown here). It is clear that a mechanical shaker measurement would yield much better results, but

this is not done due to the time and effort required, and it will be demonstrated later that the modes

determined here can be used for the characterisation of the aero-vibro-acoustic mechanisms. We compare

the FRF’s synthesised via modal synthesis (Eq. (5.4)) with the original measurements. The energetic
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Figure 5.7: Set of four modes each for a set of flexible regions in ascending mode order from top to bottom.
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Figure 5.8: Energetically averaged displacement level (DL) to unity forcing (corresponding to the admit-

tance |Ŷs|(Ê)) from a set of FRF’s between all positions at each surface (see [178]) and the
reference position in Fig. 5.1 (solid- experimental, dashed- synthesized, color- deviation).
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average |Ŷs|(Ê) = 1/N
ÒqN

i=1 |Ŷs|i(Ê)|2 due to excitation at the accelerometer positions in Fig. 5.1 is

obtained and shown in Fig. 5.8 (black lines, difference shaded). The majority of modes has been accu-

rately detected. Significant deviations arise at Floor Rear ; these faults are attributable to the fact that

determining the right FRF functions at the very flexible 1 mm plate with impulse hammer excitation

from below was practically challenging. It is also apparent that the second mode at Rooftop Front is

severely underestimated. At higher frequencies, significant deviations occur at Side Window Left and

Floor Front. In general, the errors are in the range of ¥ 5 dB, thus we consider the extracted modes to

be sufficiently accurate.
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6 Flow topology and wall pressure fluctuations

The vibro-acoustic system is excited by both aerodynamic waves as a result of the convection of turbulent

source terms and acoustic waves (particularly at the underbody, see Sec. 3). The exciting regions can

be assigned to physically distinct regions (Chap. 3) and, at least for convection-dominated regions

extensive models are available. Here, we are particularly interested in how far the simplifications of

homogeneous turbulence discussed in Section 3.2, i.e. displacement invariance, constant pressure level

over the respective excitation surface and the assumption of constant shear velocity vconv, are fulfilled

to determine the applicability of one of the available models for turbulent WPF’s. A flow simulation is

used to estimate the unsteady WPF and the relevant spectra are compared to wind tunnel measurements

based on WPF measurements. The validation of the fluid dynamical simulation with regards to the

vibro-acoustic excitation is a difficult task, since not only amplitudes but also the statistical properties

of the field in the space-frequency domain have to be investigated and compared (see 3.2). The purpose

of this chapter is therefore, to assess the validity of the flow simulation by comparing it with extensive

wind tunnel measurement data on behalf of the most meaningful measures regarding aero-vibro-acoustic

excitation. Furthermore, methods for identifying the critical excitation surfaces are identified, tested and

compared.

6.1 Simulation setup

Figure 6.1: Distribution of voxels for the numerical simulation.

Various numerical methods are available for the transient calculation of the flow (see Sec. 3.1) and

it is the widely used, LB-based environment PowerFlow (version 6-2019-R2), that is employed herein

(details on the formulation in [124, 171], relevant papers in [124, 125, 127]). The formulation employed is

also known as the VLES (Very Large Eddy Simulation) formulation because the dissipative and inertial

subgrid scales are modeled using a two-equation model [171]. The discretization is done in PowerFlow
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using a hex-based grid, that is incrementally increased with a refinement factor of 2 (Fig. 6.1). The

grid includes 12 scales with grid lengths ranging from 3 mm to 6.144 m. In order to prevent reflections,

the coarse grid is extended over a vast distance (¥ 600 m). A constant velocity boundary condition of

vŒ = 120 km/h ¥ 33 m/s is set at the inlet and constant ambient pressure at the outlet. All walls are

idealized as smooth, no symmetry is exploited, and the true Mach number (M = 0.097) was used for the

calculation. The simulation is performed with time step Δt = 6.7 · 10≠6 s over a period of T = 9 s as

part of an industrial workflow at BMW (special thanks go to Christoph Gabriel). The last 5 s are stored

using an additional low pass filter with fg = 500 Hz.

6.2 Measurement setup

The measurements were carried out in the wind tunnel of the BMW Group in Munich. Details of the

wind tunnel can be found in [189]. The length of the test area is 10 m, so with a cross-sectional area

of the nozzle of 10 m2 and a cross-sectional area of the test body of 0.47 m2, the surface blocking ratio

is approximately 1/20. To measure the WPF, GRAS 40AF 1/2” polarized free-field microphones were

used. These surface microphones have lower and upper cutoff frequencies of fu = 3 Hz and fo = 20 kHz,

respectively. Using 14 of these microphones, a two-row array (spacing 8 cm) was constructed for time-

synchronous measurement of the WPF and, using this array, sequential measurement runs were performed

at the locations indicated in Fig. 6.2a with a measurement duration of 60 s and a sampling rate of 96 kHz.

Fig. 6.2b shows the test body in the wind tunnel with mounted surface pressure microphone array.

Figure 6.2: Experimental setup (a) Measurement positions of surface pressure array, axes origin in yellow
(b) Installed test body.

6.3 Mean flow

The physical examination of the results of the flow simulation is a difficult task, since, regarding the

excitation of the adjacent mechanical structure not only the spatial APSD (i.e. a 3D representation per

frequency step) but also the CPSD that reflects information about the spatial coherence between each

measurement point and all other measurement points have to be investigated. The result should then

still be validated with the wind tunnel measurements. Because of this, it is of the utmost importance to

select suitable criteria in order to reduce the dimensionality of the problem. The time-averaged properties

of the flow are of great importance for assessing indirect excitation of the structure since the WPF at

the wall can be considered, to a first approximation, to be an imprint of a frozen turbulent pattern

convected at a mean flow velocity with horizontal and lateral correlation lengths (remember the Corcos

model given in Eq. (3.41)). Due to the no-slip condition, the streamlines at the wall merge into the

wall shear stress lines [190]. These wall shear stress lines provide important information about the flow

72



conditions near the wall. Note that it has been pointed out in Sec. 3.5.1 that the dominant sources for

low-frequency excitation are expected to be located between the logarithmic layer of the TBL and the

outer flow. As a result, we begin by analyzing the topology of the mean flow and by comparing the results

with elaborations on other test bodies discussed in the literature (and in Sec. 3.4). For this purpose,

suitably chosen streamlines are shown in Fig. 6.3 and Fig. 6.5 and the wall shear stress lines are shown

in Fig. 6.4 and Fig. 6.6. A number in a circle is given to each respective region to allow to relate each

pattern to the explanations in the paragraphs that follow. The reader is invited to compare the patterns

mentioned here with those in Fig. 3.1.

Figure 6.3: Visualization of mean flow streamlines (top view).

a ) b )

Figure 6.4: Visualization of wall shear lines (a) top left view (b) top right view.

1 Initial Stagnation Point

At the leading edge of the vehicle, a stagnation point is formed that separates the incoming flow into

overflow, underflow, and byflow. The location of the stagnation point indicates that a substantial

portion of the flow is deflected beneath the underbody.

2 Hood Vortex

A first detachment bubble forms due to the abrupt transition at the vehicle’s leading edge. The

wall shear stress lines in Fig. 6.4b indicate that the flow reattaches in the middle of the hood.

3 Windscreen

Along the windshield, the fluid is accelerated and part of the flow is deflected sideways, colliding

there with the upward flow from the side of the body, producing the A-Pillar vortex 9 shown in

Fig. 6.5.
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4 Rooftop

A second time, the flow separates at the roof and another, smaller recirculation bubble is formed

(Fig. 6.3) with a stagnation line that is slightly tilted against the main flow direction (Fig. 6.4a).

5 Horizontal Wake Vortex

In the horizontal plane, the symmetrical recirculation region that is typical for the flow around

blunt bodies is formed (Fig. 6.3). The incomplete symmetry indicates that the calculation has not

yet fully converged.

6 Vertical Recirculation Bubble

The recirculation region is divided into two pairs of large counter-rotating vortices (Fig. 6.3).

Whereas in the case of a subcritical slant angle (Fig. 3.1b), both vortices form below the rear

partition and the flow remains attached until the trailing edge of the hatchback, the supercritical

angle enforces early flow separation at the rear edge of the roof and the recirculation region extends

much farther upwards.

7 Vertical Lower Recirculation Bubble

Another stagnation point appears on the underside of the tail due to the collision of the underbody

flow with the lower recirculation bubble (Fig. 6.6b).

8 Underbody

The underbody flow is symmetric with streamlines increasingly heading outwards due to the pressure

differences between the underbody and the surroundings (Fig. 6.6a).

9 A-Pillar Vortex

The A-pillar vortex in Fig. 6.5 emerges as a result of the upward flow at the side of the vehicle

and the upward flow at the windshield (Fig. 6.4a). This contribution typically accounts for a large

proportion of noise induced into the cabin, especially in the higher frequency range, (partly due to

its close proximity to the driver’s ear [149]).

10 (10) Lower Vortex

The flow emerging from the underbody generates a vortex at the side edge (Fig. 6.5). This vortex

grows along the underbody and combines with the opposing vertex to form a large counter-rotating

vortex pair as illustrated in [142].

Figure 6.5: Visualization of mean flow streamlines in the plane normal to the mean flow (side view).
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a ) b )

Figure 6.6: Visualization of wall shear lines (a) underbody view (b) rear view.

6.4 Instantaneous flow

Obviously, an evaluation of the unsteady processes associated with the turbulence is required to assess the

induced excitation. The turbulence is filtered out by definition during averaging. In principle, unsteady

processes can be analyzed in both the time and frequency domains; however, due to the large number

of images required for frequency domain evaluation, we present only a randomly selected time step for

illustration and perform the spectral evaluation based on the microphone positions in the next step.

Naturally, it is possible to think of the instantaneous snapshot as a superposition of a large number of

different periodic processes. The Q-criterion proposed by Hunt in [191] corresponds to the 2nd invariant

a )
b )

Figure 6.7: Q-Criterion with (a) QIso = 6000 (b) QIso = 1000

of the velocity gradient tensor. It can be rewritten in terms of norm of vorticity !f and shear strain rate

S as Q = 1/2
!Î!fÎ2 ≠ ÎSÎ2

"
and therefore allows to visualize regions of high turbulent kinetic energy

(positive Q) or regions with high visous stresses (negative Q, see [127]). Due to the relevance of vorticity

as a source of noise, we are interested in the former. The corresponding isosurfaces for two chosen values

are shown in Fig. 6.7. Different turbulent structures can be identified around the test body. On the

one hand, these include longitudinal vortical structures that, when emitted, are aligned with the mean

flow and hence become stretched during convection, but also u-shaped vortices that are initially oriented

transverse to the mean flow and distorted during convection; these are well-known in fluid mechanics and

referred to as horseshoe vortices [192]. The horseshoe vortex system is essentially a miniature version

of the airfoil vortex created, for instance, during airplane takeoff, with the original lift-generating vortex

parallel to the flow and vortex cores oriented in opposite directions along the flow. During convection, the

vortices are stretched and, due to the lift generated at the leading part of the vortex system, it eventually

lifts off the plane. If the legs are particularly long compared to the transverse vortex, the vortices are

called hairpin vortices (more on this in [193]). A large part of these structures is already generated during
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the initial separation at the front of the test body. The favorable velocity gradients at the windshield

inhibit the production of turbulent structures and already existing vortex structures are deflected above

the vehicle. At the roof, new vortices form, are transported to the rear, grow, and recombine with the

initial vortices created during the initial flow separation. These turbulent vortices eventually lift off at

the trailing edge and then contribute to the large-scale vortex structures behind the vehicle. In addition,

large-scale vortices associated with the lower vortex in Fig. 6.5 10 are clearly visible. Additionally, in

Fig. 6.8, the physical quantities velocity norm vf = |vf |, vorticity norm !f = |Êf |, and static pressure

pf are shown for the same time step in different planes in Fig. 6.8. Here we again see the lower vortex,

vf !f pf

a ) b ) c )

d ) e ) f )

g ) h ) i )

j ) k ) l )

Figure 6.8: Instantaneous snapshots of velocity vf (left column 0 ≠ 40 m/s), vorticity Êf (middle column
0 ≠ 1000 1/s) and static pressure pf (right column) 100633 ≠ 101455 Pa

the high vorticity norms in the detachment bubble at the roof as well as the high pressure fluctuations

induced by it (Fig. 6.8a-c), the large-scale vortices behind the vehicle (Fig. 6.8d-f), the flow separations

at the hood and the roof Fig. 6.8g-i as well as a Karmann vortex street originating at the supports and

propagating to the rear of the vehicle (Fig. 6.8j-l).

6.5 Validation of wall pressure spectra

It is clear, based on the theory provided in Chap. 3, that in order to describe the effective excitation at

the plates and, as a result, in order to compare the simulation results with wind channel measurements,

the 5-dimensional cross-power density spectrum Ŝpf (x, y, ’, ÷, Ê) at the wall should be examined. Dimen-

sionality reduction based on the assumptions of homogenous turbulence and thus shift-invariance seems

infeasible. At the same time, it is not possible to directly evaluate or interpret Ŝpf (x, y, ’, ÷, Ê) and as

a result, the crucial information must somehow be condensed to a limited number of plots. As a goal

for the graphical evaluability and interpretability, it has been concluded that a single diagram should be

sufficient to display the relevant information for each plate and case (measurement or simulation). As a

result, we base our work on the metrics that can be applied to the scenario of homogeneous turbulence
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and investigate the degree to which the essential assumptions do not apply. Taking into account the

previously mentioned and frequently employed Corcos model, we can see that only surface pressure spec-

tra at three positions—a reference position and a position that has been shifted in the longitudinal and

lateral axes respectively—is required to obtain the model parameters. Thus, we investigate the CPSD

Ŝpf (x, x, ’, ÷, Ê) between each reference point xref|i and the nearest longitudinal and lateral microphones

at (xref|i + lmic, yref|i) and (xref|i, yref|i + lmic). As can be deduced from Fig. 6.2a, the in-flow pairings are

AAÕ, BBÕ and so on for all surfaces except Side, where the in-flow pairings are AÕBÕ, BÕCÕ,CÕDÕ... and

reciprocally in case of lateral pairings. As a required but not sufficient criterium for shift invariance, the

APSD Ŝpfc0(Ê) must agree over the surface as Ŝpf

1
xref|i, Ê

2
= Ŝpf (Ê), so it is useful to examine the

APSD and compare the individual APSD with an energetic average. Quantities without additional index

furthermore denote arithmetic averages over the quantity itself (e.g. Ŝpf = 1/N
qN

n=1 Ŝpf|i). In case of

the APSD, arithmetically averaging over APSD corresponds to energetically averaging the underlying

(complex) pressure spectra and hence Ŝpf is referred to as energetic average. Regarding Eq. (3.41) it

is clear, that the link between APSD (Ŝpf|i) and CPSD (Ŝpf|ij) in the Corcos model is the coherence

“̂pf(’, ÷, Ê). The phase of the coherence is of special interest because it allows to deduce the convection

velocity Vc of turbulent sources. As a result, the real part of the magnitude-squared complex coherence

(MSC) “̂pf|ij (Ê) defined as

“̂pf|ij (Ê) =
Ŝpf|ij (Ê)Ò

Ŝpf|i (Ê) Ŝpf|j (Ê)
. (6.1)

is of special interest. We further denote the longitudinal magnitude-squared coherence (lonMSC) between

a microphone at xref|i and the neighboring longitudinally shifted microphone to “̂pfζ|i (Ê) and a laterally

shifted microphone to “̂pfη|i (Ê). Finally, we are specifically interested in the low-frequency excitation,

and therefore we additionally investigate the APSD of the arithmetically averaged pressure (avAPSD)

given by

Ŝpf(Ê) =

----Óp̂f|i(Ê)
Ô----2

(6.2)

on each surface. Note, that in contrast to the energetic mean the arithmetic mean takes phase cancella-

tions into account. Hence a spatially uncorrelated excitation (with zero correlation length) and non-zero

APSD will have zero avAPSD but non-zero energetic average. Furthermore, it must be noted that the

GRAS 40AF 1/2” surface pressure microphone has a diameter of d = 6.35mm, whereas a rectangular

grid with edge length l = 10mm was used for the export of simulated pressure fluctuations. A difference

in the area of the surface microphones however causes differences in the obtained APSD. This has been

investigated by Corcos [161] and, based on his research, corrections can be applied. If his analytical

formulas are used to examine the error due to finite microphone area, then for Uc = 33m/s the relative

error e in dB as e(dB) = Ŝpf(Ê)(dB) ≠ Spf|Real(Ê)(dB) amounts to rl≠500 = 1.64 dB at f = 500 Hz for

the rectangular surface and to rr≠500 = 0.9 dB for the circular microphone employed. Alltough rather

small, the CPSD and APSD were corrected by employing the tabulated values in [161]. In conclusion,

this provides us with a compact and meaningful representation of the critical and vibro-acoustically rel-

evant statistical quantities. Although a log-log scale is useful for comparing power laws, it significantly

distorts the spectrum, which is why a linear frequency axis is employed. In the detailed Figures in Fig.

6.9, 6.10, and 6.13, the APSD Ŝpf|i(Ê) at each of the 14 measurement positions (red), the energetically

averaged APSD Ŝpf(Ê) (red with asterisks), the avAPSD Ŝpf (red with black dots), the CPSD Ŝpfζ|i and

Ŝpfη|i between 7 longitudinal (green) and 6 lateral (magenta) microphone pairings, and the corresponding

averaged CPSD Ŝpfζ and Ŝpfη (bold) are shown. In addition, the real part of the longitudinal (green)

and lateral (magenta) coherence “̂pfζ|i and “̂pfη|i as well as the respective arithmetic means “̂pfζ and

“̂pfη (bold) is shown in the upper right corner of each plot. Plots obtained from experimental data are
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Frequency Wavelength ⁄c (vŒ = 34 m/s)

10 0.53
25 0.21
50 0.11

100 0.05
250 0.02
500 0.01

Table 6.1: Convective wavelenght according to ⁄c = vŒ/(2fif)

displayed in the left column while plots from numerical data are displayed to the right. As shorthands,

bracketed indices like (a) will be be used to refer to the subfigures in the corresponding section and e.g.

(a&b) to denote features appearing in both (a) and (b) while (a f b) indicates differences between (a)

and (b). Additionally, lonMSC and latMSC and respectively lonCPSD and latCPSD denote longitudinal

and lateral MSC and CPSD.

6.5.1 Excitation by convected Turbulence

As already explained in Sec. 3.5.1 convection-dominated excitation can, in a simplified approach, be

characterized by the presence of damped spatial harmonics with convection wavelength ⁄c and phase

velocity vconv related by the dispersion relation as ⁄c = Uc/Ê. For a preliminary estimate, Tab. 6.1

provides a set of wavelengths at free-field velocity vŒ for different frequencies. By roughly comparing

these bending wavelengths with those of the mode shapes in Fig. 5.7 it can already been deduced that

aerodynamic coincidence does not occur. This is more likely to occur at high velocities and larger panel

areas such as the side door [39]. Supposing the applicability of the Corcos model (Sec. 3.5.1), then the

real part of the lonMSC between a reference position xi and its closest in-stream neighbour (such as AÕBÕ

at the side in Fig. 6.2) follows from Eq. (3.41) to

Re
Ó

“̂pfζ|i (Ê)
Ô

= Re
Ó

e≠γζ|i|ωη/Vc|eikconv

Ô
= e≠γζ|i|ωlmic/Vc| cos

!
Êlmic/Vc

"
(6.3)

and the latMSC between e.g. (AB in Fig. 6.2) solely reflects exponential decay as

Re
Ó

“pfη|i(Ê)
Ô

= e≠γη|i|ωlmic/Vc| . (6.4)

A first glance on the individual plots of Re
Ó

“̂pfζ|i (Ê)
Ô

and Re
Ó

“pfη|i(Ê)
Ô

in the individual upper right

boxes of each realisation in Figs. 6.9, 6.10 and 6.13 shows that only the measurements at the windscreen,

the roof and the side of the test body are of convective nature, i.e. show a lonMSC similar to Eq. (6.3).

We note that the experimentally determined spectra are noticeably smoother than the numerical ones

because of the longer time averaging of the measured data. Although the low-frequency properties of the

complex vehicle flow do not satisfy the requirements given in Sec. 3.5.1 regarding the applicability of the

Corcos model (no pressure gradient, homogeneous turbulence, constant APSD, etc.), the theoretical idea

of reducing the WPF to the APSD plus a model consisting of only three parameters (convection velocity

and lateral and longitudinal exponential decay) is however useful to investigate the overall characteristics

of the excitation field. Starting with the APSD, we find that both experimental and numerical spectra

fundamentally follow the overall trends shown in Fig. 3.3. Since the spectral maximum in the APSD

scales with the thickness of the boundary layer ”, i.e. the correlation length of the largest vortices present,

a shift to lower frequencies can be observed in the case of flow separation (and thus vortices scaling with

the size of the recirculation region lchar). Correspondingly, the high vorticity and long correlation length
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Figure 6.9: Statistical properties of WPF in convection dominated regions, left column: experimental,
right column: numerical, positions according to Fig. 6.5a in regions: Windshield Low (a&b),
Windshield High (c&d), Rooftop Front (e&f), Rooftop Rear (g&h), Side (i&j)

of turbulent structures cause an increase in APSD. For an exact localisation of the source terms, an

experimental investigation by means of PIV (cf. [138]) is required which could not be carried out within

the framework of this work. Nevertheless, based on the considerations provided in Sec. 3.5.1 and on the

APSD, it can be assumed that the majority of the critical source terms are located in the logarithmic

region of the turbulent boundary layer. Before delving to more detail into the various spectra, it is noted

that from the different lonMSC and latMSC, the parameters of the Corcos model in Eq. (6.3) can be

obtained by solving a minimisation problem that takes into account an additional scaling with “̂pf|i (0),

due to the condition for unity coherence at very low frequencies, which cannot be fulfilled in practice.

This allows to reduce the experimental and numerical MSC to a more manageable set of parameters,

specifically the phase velocity vconv and the correlation parameters “η and “ζ . Hence, the lonMSC and

latMSC are normalized according to Re(“̂pf|i (Ê) /Re(“̂pf|i (0) and compared with the MSC of the Corcos

model by defining an error function ‘i(Ê) as

‘i(Ê) = e≠γζ|i|ωlmic/Vc| cos
!
Êlmic/Vc

" ≠ Re(“̂p|ij (Ê))/Re(“̂p|ij (0)) (6.5)

and to subsequently solve the nonlinear minimization problem

min
γζ|i,VcœR

Î‘i(Ê)Î2 (6.6)
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Windshield Low Windshield High Rooftop Front Rooftop Rear Side

vconv exp. 32|26|27|26|22|20|25 29|30|30|29|28|28|28 29|36|34|31|30|30 31|32|34|34|30|30|31 24|30|29|30|29|28

vconv sim. 24|22|20|24|22|26 30|29|27|29|29|28 20|20|20|18|18 30|26|26|23|26|27|28 30|33|28|36|34|33
“ζ exp. 0|2|3|2|2|2 3|4|4|7|3|4|3 3|3|3|4|6|3|4 7|4|4|2|5|4|5 3|3|0|0|5|4
“ζ sim. 4|5|5|4|5|3 6|9|6|8|6|5|5 4|5|5|4|3|4|4 8|5|5|4|4|4|5 2|3|3|0|3|4

Table 6.2: Corcos coefficients for the six different longitudinal microphone pairings in the upper row of
Side (Fig. 6.2a AÕBÕ, BÕCÕ, CÕDÕ, DÕEÕ, EÕFÕ, FÕGÕ ) and the seven longitudinal pairings at all
other surfaces (Fig. 6.2a AAÕ, BBÕ, CCÕ, DDÕ, EEÕ, FFÕ, GGÕ).

using the Levenberg-Marquardt algorithm [194]. The Corcos model appears suitable to reproduce the

longitudinal coherence, but significant deviation from the expected exponential decay occurs in the lateral

direction, particularly in the low-frequency range and consequently only longitudinal parameters are

utilized in the following. The parameters obtained in the curve-fitting process are shown in Tab. 6.2.

Since the decay constant “ζ essentially describes the spatial structure of the convected turbulence, low

values of “ζ can be interpreted as an indication of large-scale structures, and conversely, high decay

indicates small-scale structures. Compared to the undisturbed incident flow velocity vŒ = 33 m/s, the

convection velocities at the upper windshield, the roof, and the side are within a realistic range of

Uc/vŒ ¥ 0.5 ≠ 1.1. The convection velocities predicted by numerical simulation are underestimated,

particularly at Windshield Low and Rooftop Front, indicating that the flow separation clearly apparent

in Fig. 6.8 does not occur in practice. At these two surfaces, the decay constants are also significantly

overestimated in the simulation, which can be explained by the fact that strong non-linear processes, i.e.

decay, mixing and especially the formation of new turbulent structures, occur in the detached recirculation

areas (cf. Fig. 6.7). The main differences and similarities between the simulated and measured data

sets can now be compared using the condensed representation of the plots in Fig. 6.9. Considering that

the APSD (red with stars) must be location-independent to allow for a shift-invariant description, it

is apparent that this condition is only satisfied within a tolerance of ¥ 5 dB (shaded red area, a&b).

However, the experimental APSD are significantly larger than numerical APSD, in a coarse estimate

by ¥ 10 dB (a f b). The disparity between the frequency maximum of the APSD at Windshield Low

and Windshield High in numerical (50 Hz) and experimental (25 Hz) spectra indicates that the boundary

layer thickness that is proportional to the characteristic size of turbulent structures is underestimated

by a factor of two, indicating that the initial separation at the leading edge of the hood (Fig. 6.7)

might also be overestimated (a f b). Conversely, the APSD of Rooftop Front and Rooftop Rear are

greatly overestimated by the numerical simulation by ¥ 20 dB (e f f) and ¥ 10 dB (g f h), furthermore

supporting the conclusion that flow separation does not occur in reality. At higher frequencies all APSD

in Fig. 6.9 reproduce the experimental data. Expectedly, the lonCPSD are much closer to the APSD than

the latCPSD due to the convection of turbulent sources (i.e. the correlation length is much larger if the

source is convected). It is apparent, that the experimental lonCPSD deviate much farther from the APSD

than the numerical lonCPSD. The level difference between lonCPSD and APSD increases with frequency

because of the stronger decorrelation with increasing number of phase sweeps. A major difference is

visible when comparing the latCPSD. The numerical latCPSD are very close to the lonCPSD and the

APSD, and interestingly the experimental latCPSD are actually a decent estimate of the arithmetically

averaged spectrum avAPSD (Ŝpf(Ê),red with black circles). The reason for this cannot be clarified without

detailed experimental investigation, but it seems that the lateral extent of the structures is significantly

overestimated in the numerical simulation. At Side, the avAPSD differs significantly from the latCPSD

and the APSD owing to the streamwise orientation of the array (Fig. 6.2). On the other hand, the

experimental spectra can be reproduced fairly well on the side of the vehicle, both in terms of the CPSD,
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the APSD and MSC Fig. 6.9i&j and the phase velocities in Tab. 6.2.

6.5.2 Excitation from leeward components

Figure 6.10: Statistical properties of WPF in wake dominated regions, left column: experimental, right
column: numerical, positions according to Fig. 6.5a in regions: Trunk High (a&b), Trunk
Low (c&d)

The excitation of plates facing the recirculation region behind the vehicle, i.e. Trunk High and Trunk

Low, are now investigated. The abbreviations thus refer to the subplots in Fig. 6.10. In contrast to the

convective spectra, neither lonMSC nor latMSC show a phase relation and therefore do not indicate a

dominant convection velocity vconv (a-d). Unlike the convective spectra in Fig. 6.9, that, in accordance

with the theory of turbulent WFP show distinct power laws in different frequency regions, all of the

statistical curves depicted here (i.e. CPSD, APSD and the avAPSD) follow the same power law (a-d).

However, the logarithmic slope of (a&b&d) decreases with ¥ 10 dB/octave for frequencies f > 100 Hz

while in (c) the slope is only ¥ 5 dB/octave (cfd). The cause of this difference in power law scaling has not

yet been identified. Although the APSD in (c) are greatly exaggerated, the vanishing MSC has minimal

influence on the important avAPSD, particularly at higher frequencies. Although the experimental APSD

in (c) are much higher than the numerical APSD in (d) the avAPSD are somewhat similar. This is in

line with the low MSC in (c), hence there seem to be small-scale eddies in the mixing zone between the

underbody and the recirculation region that are not present in the simulation results but are presumably

negligible at low frequencies due to small coherence. Examining the characteristic size of the large-scale

vortices in Fig. 3.1 and considering that typical Strouhal numbers for flow separation are in the range

of St ¥ 0.3 ≠ 0.5 and that St = flchar/vŒ allows to locate the corresponding frequency maximat at

f ¥ 2 ≠ 4 Hz and thus, at least for the chosen velocity and the geometric scales of the test body, well

below the hearing threshold. Regarding the weakly pronounced peak at f ¥ 40 Hz in (a) that has not been

reproduced in the simulation (af b), a Strouhal number of St ¥ 5 can be calculated (as in 3.4), which is

far above the usual vortex shedding frequencies . Note also that neither Zhang’s [140] nor Thacker’s [139]

investigations display a similar peak. Nonetheless, when examining the analysis of Islam [127] for the

rectangular and the sloped (– = 40¶) Ahmed body, the results reveal a comparable spectral peak at

f = vŒ/H, which would also suit well with the spectral peak reported here (f = vŒ/H = 41 Hz).

The corresponding physical justification has not yet been found. A second spectral maximum discovered

in [127] was attributed to the shear layer on the ground and is likely not discernible here owing to the

low ground clearance employed. The maxima identified by Zhang [140] (Fig. 3.1) at the underbody
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a ) b )

Figure 6.11: APSD at (a) 50Hz, (b) 200Hz, limits for both figures: (70 dB (blue) -110 dB (red)))

a ) b )

c ) d )

Figure 6.12: APSD at (a) 214Hz, (b) 266Hz, (b) 324Hz, (b) 404Hz, limits for both figures: (65 dB (blue)
-100 dB (red))

and associated with the struts also have comparable Strouhal numbers, but convection of the underbody

vortices up to the upper part of the tail seems rather implausible. The low-frequency (f < 50 Hz)

excitation at Trunk High is clearly overestimated by ¥ 10 dB (a f b). It is further interesting to note,

that the numerical MSC converge to unity at high frequencies, indicating purely acoustic excitation, while

this is not the case regarding experimental MSC (a f b),(d f d). To conclude, it can be stated that the

excitation from structures facing the recirculation region is limited to low frequencies.

6.5.3 Excitation from the underbody

It has been explained in detail in Sec. 3.5.3 and will now be demonstrated that acoustic modes play a

dominant role in the excitation of the two underbody panels Floor Front and Floor Rear. The modal

character of the acoustic underbody cavity is readily apparent in the simulated APSD in Fig. 6.13

(b&d). The corresponding spatial APSD at the resonant peaks in (b&d) are shown in Fig. 6.12. Based

on the dispersion relation and the acoustic wavelengths of ⁄x ¥ [2L, 2L/2, 2L/3, 2L/4] and ⁄y = 2B, the

acoustic natural frequencies can be estimated to be (261, 305, 367, 439) Hz, which agrees reasonably well

with the spectral peaks in (b&d). The dispersion relation can therefore easily be employed to obtain

an initial estimate of critical acoustic resonance frequencies in aero-vibro-acoustic investigations. Two
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major aerodynamic sources can be identified, being the Karmann vortex street on the vehicle’s side

and the high excitation at the front of the test body. Regarding the set of curves in Fig. 6.14, it is

evident that all curves obtained from simulation data coincide on a uniform set of curves, while the

APSD in the measured spectra is approximately 10 dB larger than the corresponding lonCPSD, latCPSD

and the avAPSD. Upon further examination of the MSC, it becomes evident that the simulation results

indicate a purely acoustic excitation of the underbody, whereas the experimental measurements indicate

a substantial aerodynamic contribution. In spite of this, the measured data does not show a convective

phase shift in the lonMSC. Thus, once again, there seem to be small-scale eddies with high decorrelation

rate in the underbody that have not been resolved in the simulation. However, this excitation appears

negligible at least at low frequencies because it does not contribute substantially to the CPSD and

the avAPSD. The investigation of the CPSD or the avAPSD clearly highlights the dominant coherent

excitation via acoustic modes at (268, 370, 452) Hz which in turn demonstrates that for a physically

meaningful analysis of WPF on the underbody, it is not the APSD (as investigated in [29, 33, 34, 38])

but the CPSD that must be investigated between two microphones with a reasonable distance regarding

the wavelengths of the anticipated structural modes. The clearly visible narrow-band peak in (a) can be

attributed to the primary mode of Floor Rear at 77 Hz (Fig. 5.7, see also Fig. 5.8c) and thus indicates

that vibro-acoustic coupling can occur in the underbody that is not yet accounted for in the workflow

pursued.

Figure 6.13: Statistical properties of WPF in underbody regions, left column: experimental, right column:
numerical, positions according to Fig. 6.5a in regions: Floor Front (a&b) and Floor Rear
(c&d)

6.6 Ranking of different excitations

The work carried out so far had the overall objective of reducing the complex statistical description of

the WPF to a few, interpretable and comparable graphs to be able to carry out a comparison between

simulated and experimental WPF regarding vibro-acoustic excitation. From the previous investigations,

it is concluded that the (energy-averaged) lonCPSD Ŝpf|ζ and the avAPSD Ŝpf are highly representa-

tive. The Corcos parameter should additionally be considered in convection-dominated regions. Thus,

a condensed plot can be produced to directly compare experimental and numerical spectra for both the

lonCPSD and the avAPSD. These graphs are shown in Fig. 6.14 and Fig. 6.15 with the areas between

the two curves shaded in color. On the roof, sides, and trunk, the avAPSD matches better than the lon-
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Figure 6.14: Comparison of experimental (dashed) and simulated (solid) arithmetically averaged pressure
spectrum Ŝpf , Errors shaded in color

Figure 6.15: Comparison of experimental (dashed) and simulated (solid) lonCPSD (Ŝpfζ), Errors shaded
in color

CPSD, while the opposite is true for the windshield. Due to the high coherence of acoustic waves in the

underbody, the corresponding avAPSD and lonCPSD are fairly comparable. Substantial discrepancies

can be distinguished, specifically the already mentioned underestimation of excitation at the windshield

(¥ 10 dB) and an overestimation of excitation at the leading roof plate Rooftop Front (¥ 20 dB). For

a better classification we group the spectra into four different frequency bins (10 ≠ 50 Hz, 50 ≠ 100 Hz,

100≠250 Hz, 250≠500 Hz), calculate the respective mean in the frequency bin and rank the results (Tab.

6.3). In addition to the lonCPSD and avAPSD, the commonly used APSD (e.g., [29, 34, 38]) has been

added to determine whether this most common interpretation is actually physically meaningful. It there-

fore makes sense to first examine only the rankings of the different experimental and numerical statistical

scores. We see that especially for convectively excited regions all three measures provide a comparable

ranking. At the underbody, however, the APSD is rather unsuitable for assessing experimental WPF, as

the relevant acoustic component is hidden beneath the noise floor (Fig. 6.13a&c). Due to the high coher-

ence, the lowest frequency bin displays the largest deviations, whereas at higher frequencies, all indicators

are comparable. Quantitatively comparing the obtained rankings between numerical and experimental

WFP reveals that the previously mentioned erroneous prediction of flow separation at the roof and the

underestimation of turbulent structures convected along the windshield (Sec. 6.5.1) affects the ranking
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Side Underbody Underbody Rear Rear Rooftop Rooftop Windshield Windshield
Rear Front Low High Rear Front High Low

10-50 Hz Ŝpf (APSD, exp.) 5 7 8 4 9 6 3 2 1

Ŝpfζ (lonCPSD, exp.) 7 4 8 6 9 5 3 2 1

Ŝpf (avAPSD, exp.) 4 5 9 6 8 7 3 2 1

Ŝpf (APSD, sim.) 7 9 8 5 6 3 1 4 2

Ŝpfζ (lonCPSD, sim.) 7 9 8 6 5 3 1 4 2

Ŝpf (avAPSD, sim.) 7 9 8 4 6 5 1 3 2

50-100 Hz Ŝpf (APSD, exp.) 4 8 7 6 9 5 3 2 1

Ŝpfζ (lonCPSD, exp.) 5 6 7 8 9 4 3 1 2

Ŝpf (avAPSD, exp.) 3 7 9 8 6 5 4 1 2

Ŝpf (APSD, sim.) 5 9 8 7 6 3 1 4 2

Ŝpfζ (lonCPSD, sim.) 5 9 7 8 6 4 1 3 2

Ŝpf (avAPSD, sim.) 5 9 8 7 6 3 1 4 2

100-250 Hz Ŝpf (APSD, exp.) 4 8 6 7 9 5 3 2 1

Ŝpfζ (lonCPSD, exp.) 4 8 6 7 9 5 3 2 1

Ŝpf (avAPSD, exp.) 4 8 6 7 9 5 3 2 1

Ŝpf (APSD, sim.) 4 8 6 9 7 2 1 5 3

Ŝpfζ (lonCPSD, sim.) 4 7 6 9 8 2 1 5 3

Ŝpf (avAPSD, sim.) 4 7 6 9 8 2 1 5 3

250-500 Hz Ŝpf (APSD, exp.) 4 7 6 8 9 5 1 3 2

Ŝpfζ (lonCPSD, exp.) 4 7 6 8 9 5 1 3 2

Ŝpf (avAPSD, exp.) 5 7 6 8 9 4 1 3 2

Ŝpf (APSD, sim.) 2 7 6 9 8 3 1 5 4

Ŝpfζ (lonCPSD, sim.) 2 7 6 9 8 3 1 5 4

Ŝpf (avAPSD, sim.) 2 7 6 9 8 3 1 5 4

Table 6.3: Sorted Contributions for different frequency bins and different statistic measures (1- highest,
9- lowest)

up to the point that the most dominant contributor in the experimental WPF is Windshield Low while

in the numerical WPF it is Rooftop Front. The smallest contribution on the other hand does not stem

from Underbody Rear, as supposed by numerical WPF but from Rear High. In line with the previous

explanations, the numerical and experimental rankings agree better at higher frequencies. In summary,

the extensive investigation of the measurement and simulation data revealed that the direct aerodynam-

ic/aeroacoustic excitation of the generic test body can be grouped into three distinct categories, each

with its own unique spectral properties.
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7 Flow-induced noise inside the generic

structure

Now, after the development of a non-conforming modal method for the hybrid treatment of aero-vibro-

acoustic systems (Chap. 4), the development and validation of a generic testbody (Chap. 5) and the

simulation and validation of the excitation characteristics (Chap. 6), we can turn to the final objective of

this thesis, which is the calculation of wind-induced noise inside the test body. Note, that the simulation

procedure has previously been performed for a simple version of the testbody with rather thick 3 mm

plates and that the results have been published in [178]. However, since the induced noise was mainly

transmitted through the windshield, a more challenging variant comprising a multitude of thin 1 mm

plates in addition to thick 3 mm plates at the most strongly excited panels Windshield and Floor Front

panels is employed for the final validation. Furthermore, it will be shown that the modal substructuring

technique can handle direct excitation via leaks and openings.

7.1 Methodology and custom workflow

Based on the non-conforming modal approach presented in Chap. 4, a custom tool was developed for the

efficient solution of aero-vibro-acoustic problems. The basic structure of the workflow is shown in Fig.

7.1. All computations are based on data stored in the primary data container Storage. This includes, on

the one hand, the mechanical and acoustic modal shape matrices Ψs and Ψa with column-wise stored

modes ψs|i and ψa|i with the corresponding grids and the respective eigenvalue vectors Λs, Λa as well as

the modal damping vectors ⇣s, ⇣a. These modes may be acquired by either FE simulation or EMA. In the

case of EMA, only point clouds are available and the required grid is obtained by Delaunay triangulation.

Grids are theoretically available for computational modes, but because FE models in complex simulations

may contain a large number of different finite elements, it is advantageous to extract the corresponding

point clouds of the inner and outer hull and reconstruct a triangular grid using Delaunay triangulation.

At this point, it should be emphasized that only nodes located at the structure-acoustics or structure-

flow coupling interfaces, as well as those nodes of interests for post-processing (e.g. a selection of nodes

inside the cavity) are necessary for performing the modal workflow. This means that, for instance,

the displacements in the engine compartment can be included in the initial FE model for deriving the

modes, but they do not need to be stored, thereby significantly reducing the computational effort. The

corresponding grids are then added to Storage. In addition, the external loads must also be stored in

the form of the FFT-transformed (complex) surface pressure distribution p̂s|i on the corresponding grid.

Naturally, the consideration of other types of Loadcases, such as mechanical f̂s|i or acoustic loads q̂a|i

is also possible. The solution of a particular aero-vibro-acoustic issue then requires the definition of the

acoustic and mechanical modes involved, the coupling areas between structure and cavity Γi|s ≠ Γi|a or

structure and flow Γi|s ≠ Γi|f and the choice of the correct loadcase (e.g. wind at 120 km/h). Then, using

the method described in Sec. 4.2, the non-conforming coupling matrices are created between the respective

coupling surfaces and the modal coupling terms are obtained by projecting each coupling matrix onto the

acoustic and mechanical modes according to Eq. (4.57). For the transformation of aerodynamic pressure
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Figure 7.1: Custom tool for assessing noise inside vehicles.

loading p̂s|i into consistent nodal loads f̂s|i, an additional (non-conforming) coupling matrix is required.

This coupling matrix can be obtained similar to the vibro-acoustic coupling matrices (see Eq. (4.64)) and

the modal loads can then be determined by projection onto the respective mechanical modes,. The modal

parameter matrix T̃ can then be assembled according to Eq. (4.58). The harmonic problem in Eq. (4.61)

can then be solved to finally synthesize the coupled modes Ψ̂, the displacements v̂s, and/or the acoustic

pressure field p̂a. The generalized modal displacements d̃ can also be obtained to assess the individual

contributions of different vibro-acoustic modes (Sec. 4.3.3). The averaging process described in Secs. 3.2

and 3.3 is implemented in two different ways. If, as is frequently the case, only the spectrum at a specific

point at xi (e.g. the driver’s ear) is of interest, than the APSD is obtained by averaging over a set of

ensemble members according to Eq .(3.33). If the full spatial APSD is of interest, averaging is performed

on a modal level, as described in Eq. (3.39). Due to the 4 s time frame of the simulation, the modal

harmonic equation in Eq. (4.62) is solved with an initial resolution of ”f = 0.25 Hz. The spectra are

then transformed back into time domain and averaged over 4 blocks with an additional Hamming window

to achieve a final APSD resolution of Δf = 1 Hz. In a FE formulation, the excitation of an acoustic

cavity via openings can be taken into account by setting the boundary condition at the nodes according

to p̂f|e = p̂a|e. However, having to extract the acoustical modes subject to an additional inhomogenous

boundary condition at the opening would have severe negative impacts on the modal workflow presented,

which is why an alternative solution is sought. The alternative solution begins by computing the acoustic

modes by imposing an additional homogeneous boundary condition at the rear vent (p̂a|e = 0). Examining

a ) b ) c ) d ) e )

Figure 7.2: Pressure distribution in Helmholtz cavity p̂a|i.

the pressure field in the rear vent for the acoustic modes in Fig. 7.2, one finds that the rear vent behaves

like a simple acoustic mass mh = fl0lh/Ah (see section 3.5.4) for all these low-order modes. We can
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Nc fc fuc ’uc orig. region orig. Nuc

1 5.73 5.77 1.00 Cavity 1
2 72.10 72.39 0.52 Roof Rear 1
3 74.56 75.00 1.31 Roof Front 1
4 76.25 76.58 2.04 Floor Rear 1
5 85.92 87.48 1.62 Floor Front 1
6 90.40 91.93 1.40 Windshield 1
7 90.88 94.00 0.47 Roof Front 2
8 96.90 97.64 0.53 Roof Rear 2
9 97.29 99.67 4.41 Rear Low 1
10 100.76 101.00 1.38 Floor Rear 2
11 110.15 110.16 0.09 Floor Rear 3
12 115.84 116.02 1.90 Floor Rear 4
13 118.16 119.27 0.65 Roof Rear 3
14 119.04 119.38 0.69 Roof Front 3
15 119.34 119.58 0.93 Rear High 1

Nc fc fuc ’uc orig. region orig. Nuc

16 127.59 127.80 0.65 Rear Low 2
17 130.86 128.98 1.00 Cavity 2
18 131.09 131.13 2.05 Side Window (right) 1
19 134.74 131.13 2.05 Side Window (left) 1
20 137.84 138.14 0.57 Floor Rear 5
21 138.13 138.21 0.89 Floor Front 2
22 139.68 139.42 1.37 Roof Rear 4
23 143.29 143.70 0.03 Side Window (right) 2
24 143.70 143.70 0.03 Side Window (left) 2
25 143.70 143.89 0.53 Windshield 2
26 145.81 145.90 0.28 Rear High 2
27 146.23 146.05 1.78 Roof Rear 5
28 150.97 152.44 1.60 Side Front Low (right) 1
29 152.10 152.44 1.60 Side Front Low (left) 1
30 158.43 158.57 0.23 Roof Front 4

Table 7.1: Coupled and uncoupled eigenfrequencies of the generic structure. Ranking by frequency, thus
coupled modes at coupled eigenfrequencies (fc) need not necessarily be dominated by uncou-
pled modes with eigenfrequencies (fuc) in the same row. Individual mode order denoted by
Nuc. Coupled modes highlighted in blue are acoustically dominated modes.

thus replace the inner quantity p̂f|e by an equivalent volume acceleration q̂a|i = p̂f|e/(≠Ê2mh). It follows

directly that increasing the acoustic mass of the rear vent mh by increasing the length lh or decreasing

the cross section Ah directly reduces the induced volume acceleration. The equivalent modal load of the

i-th acoustic mode can therefore be obtained by projecting the mean acoustic source term determined

from the mean pressure at the outer nodes xl of the rear vent onto the the acoustic modes evaluated at

the inner side of the rear vent at position xj according to q̃a|i = Ψ̂å|ji1/(≠Ê2mh)(
qN

l=1 p̂a|l/N). It is now

possible to assemble the generalized modal forces as f̃ =
Ë
f̃s; iÊq̃a

È
, to solve Eq. (4.61) and to proceed

farther as explained previously.

7.2 Coupled vibro-acoustic system

Now, the uncoupled computational acoustic modes in Fig. 5.4 with estimated acoustic modal damping

of ’a = 0.01 (see Fig. 5.6) can be coupled with the experimental mechanical modes in Fig. 5.7 and the

corresponding structural modal damping values ’uc in Tab. 7.1 to obtain a coupled vibro-acoustic model

of the plate-cavity system. In order to reduce the coupling error and obtain a more precise mapping of

the WPF, we refine the mechanical modes via the TPS interpolation presented in Sec. 4.4.1 onto an

equidistant rectangular grid with discretization length of 1 cm. Then, using the modal workflow, the

natural frequencies of the coupled system can be calculated and compared with the uncoupled natural

frequencies. The results can be investigated either in tabular form in Tab. 7.1 or in the diagram shown

in Fig. 7.3. The frequencies of the acoustically dominated coupled eigenmodes are shifted with respect

to the uncoupled eigenfrequencies of the uncoupled mechanical modes (coloured in blue). In contrast to

the investigations in Sec. 5.3.1, where a downward shift of the acoustic eigenfrequencies was observed,

the acoustically dominated coupled eigenfrequencies are now shifted to higher frequencies. This can be

explained by the fact that in the variant with 3 mm panels all modes are above the two lowest acoustic

eigenmodes and the mechanical modes then act as additional mass, while in the 1 mm case in particular

the vibro-acoustically important fundamental modes are below the two acoustic eigenfrequencies. These

mechanical modes thus act as an additional acoustic stiffness and shift the natural frequencies upwards

(fa|1 = 128 Hz ∆ fc|19 = 135 Hz). The associated shifts of mechanical eigenfrequencies are small,

supporting the assumption that mechanical modes can be extracted from the coupled system.
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Figure 7.3: Coupled and uncoupled eigenfrequencies of the vibro-acoustic system, red (coupled), black
(uncoupled).

7.3 Validation

To finally validate the hybrid aero-vibro-acoustic worflow, the WPF obtained via LB simulation and

disussed in Chap. 6 are used to excite the coupled vibro-acoustic system and the results are compared

to wind tunnel measurements. In a first step, the DL generated by the simulation worklow at the

points shown in Fig. 5.1 are compared with accelerometer measurements. Shorthand references are

furthermore associated with the subplots in Fig. 7.4. The vertical lines shown correspond to the lowest

four acoustically relevant modes (more on this later). The experimental validation of the WPF in Fig.

6.14 and Fig. 6.15 as well as the energetically averaged mechanical FRFs in Fig. 5.8 should be taken into

consideration when interpreting the results. For convectively excited surfaces, the acoustic feedback from

the interior cavity can be ignored, but we will see later that this is not adequate for surfaces with very

low excitation (here: Trunk High). However, it will subsequently be shown that these feedback effects are

only significant in narrowband frequency ranges close to acoustically dominated eigenfrequencies. The

respective acceleration spectra exhibit narrowband maxima at the mechanically dominated structural

modes. The physical mechanisms are well reproduced and considering the complexity of the overall

workflow, encouraging results can be achieved. The excitation at the side of the vehicle was clearly

overestimated (Fig. 6.15a), causing an associated overestimation of displacement levels in (a). The

displacements at the two panels in the underbody (Floor Front (b) and Floor Rear (c)) are overestimated,

with displacements near the first mechanical mode fc|4 being greatly underestimated. In line with the

underestimated excitation in Fig. 6.15b and Fig. 6.13c, the DL at the underbody are underestimated

as well, especially at Floor Rear (c). The displacements in the upper part of the trunk Trunk High (e)

are significantly underestimated, especially in the low frequency range, although the excitation would

suggest otherwise (Fig. 6.15e. and Fig. 6.14e). As a result of incorrectly predicted flow separation at

the roof, the DL of convectively dominated regions at the roof (g&f) are overestimated. Interestingly,

the symmetric second mode at Rooftop Front (g) is disproportionately excited. The reason for this could

not be clarified yet, but possibly there is a connection here with the overestimated lateral correlation

length in Fig. 6.9f&g. The displacement levels at the windshield (h) are equally underestimated which

is once again in line with underestimated excitation in Fig. 6.14h&i, especially in the low frequency

range. Hence, we can draw the essential conclusion that aerodynamic or aeroacoustic excitation might

frequently outweigh the feedback effect from the cavity, and thus, high displacement levels are primarily

the result of high excitation. In a next step, the sound pressure levels at the positions in Fig. 5.5

are compared with measured data (Fig. 7.5). A number of discrete, comparatively weakly attenuated

maxima can be identified, as well as two, rather broadband regions around f ¥ 135, 240, 270 Hz, which
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Figure 7.4: Comparison of simulated (solid) and measured (dashed) DL at the positions indicated in Fig.
2.2.

Figure 7.5: Comparison of simulated and experimental SPL at the positions indicated in Fig. 5.5 (a)
Pos.1 (b) Pos. 4

(as will be shown below) can be assigned to the acoustically dominated modes. Due to the modal acoustic

field, substantial deviations in the range of ΔdB ¥ 10 dB between the two positions occurs in certain

frequency ranges. Despite the errors in the prediction of the mechanical vibrations and especially the

broadband overestimated DL at Rooftop Front (g) good qualitative agreement with the measured data

can be achieved. Large deviations between measured and simulated results occur especially in the very

low frequency range f < 50 Hz dominated by direct acoustic excitation. Unfortunately, no measurement

data are available for the WPF directly at the rear vent opening, the cause for these deviations is assumed

to be either the underestimation of the excitation at the underbody (Fig. 6.13c f d) or the non-ideal

sealing of the test body (and thus additional excitation through other openings). For a more detailed

assessment of the mechanisms at stake, the contributions of individual coupled modes to the overall SPL

will be analyzed similar to what was done in Sec. 4.3.3 for the rectangular plate-cavity system. More

specifically, we are interested in the mechanisms related with the lowest four maxima indicated in Fig.

7.5 (f = 72, 91, 118, 134, Hz). In a first attempt, we identify the coupled modes that contribute most to

the mean SPL in the 0 ≠ 300 Hz bin by ranking according to the norm of the complex coherence (see Eq.

(4.67)). Clearly, this ranking pronounces broadband contributions and for a more meaningful ranking,

the psychoacoustic weighting that is especially relevant in the low frequency range has to be taken into

account, but this shall not be part of this thesis. The contribution of the resulting highest rank critical

eigenmodes compared to the whole spectrum are shown in Fig. 7.6. It is clearly apparent, that this
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Figure 7.6: Contribution of acoustically dominated modes to overall SPL.

method allows to identify the acoustically dominated eigenmodes. The individual eigenfrequencies of the

coherence-ranked modal contributions in Fig. 7.6 correspond to the Helmholtz mode at fc|1 = 5.73 Hz,

as well as the subsequent cavity modes at fc|19 = 135.74 Hz, fc|60 = 239.43 Hz, and fc|65 = 262.44 Hz.

Thus, modifications of the acoustic cavity (e.g. by adding holes in the package tray [11]) strongly affect

the interior SPL. Therefore, the highest mode of the original selection in Fig. 7.5 has been identified

as the first cavity mode (blue line). For further investigation, we choose the first three (narrowband)

mechanical modes (fc|2 = 72.10 Hz, fc|7 = 90.88 Hz, fc|13 = 118.16 Hz, black dashed lines) and the first

acoustic cavity mode fc|19 (blue dashed line). The coupled mode shapes of these four modes are shown

in Fig. 7.7. We see that at fc|2 (a) the first structural mode of Rooftop Rear couples efficiently with

the first cavity mode while at fc|7 (b) the second structural mode of Rooftop Front couples with both

the longitudinal and the lateral lowest cavity modes (this is not so well evident in the middle-plane

cut). At fc|13 (c), the third mode of Rooftop Rear couples with the first acoustic cavity mode as well

as the first mode of Trunk High. For the acoustically dominant mode fc|19 (d), the induced acoustic

pressures are so high that with the same acoustic and mechanical scaling chosen previously, only minimal

displacements are discernible across all modes. Therefore, the mechanical displacements in (d) were

additionally scaled by a factor k = 25 compared to (a-c). We see that a large number of modes are

involved in the acoustically dominated mode due to efficient coupling, especially the third modes of the

roof, the primary modes of Trunk high and Trunk low, and, to a lesser extent, the primary mode of

Windshield. It is of particular importance to note, that the dominant coupled vibro-acoustic modes

allow to understand the critical mechanisms that contribute to interior noise while analyzing solely the

displacement field can be misleading. This may be exemplified by comparing the spatial displacement

field in Fig. 7.8a, that proposes a dominant excitation by Rooftop Front with the coupled mode in Fig.

7.7a that rather suggests that the dominant contribution comes from Rooftop Rear. Clearly, the coupled

modes take into account the transmission efficiency of the respective mechanical plates such that regions

with high DL but, owing to e.g. low structural-acoustic coupling, low induced SPL will be ranked lower

than regions with low DL but high induced SPL. For the other three modes investigated in (b&c&d) the

correct mechanisms are also evident from the displacement fields. Finally, we investigate the difference

between direct excitation via the rear vent and indirect excitation via the various plates. If instead of

solving the modal-harmonic problem subject to f̃ =
Ë
f̃s; iÊq̃a

È
(Total forcing), the direct f̃ = [0; iÊq̃a]

(acoustic forcing) and indirect f̃ =
Ë
f̃s;0

È
(mechanical forcing) issues are solved subsequently, then their

individual contributions can be compared on behalf of the synthesised SPL at Pos. 1 (Fig. 7.9). It can be

shown that the acoustic Helmholtz resonance of the system dominates the SPL at very low frequencies,

whereas mechanical excitation dominates at higher frequencies. The workflow in Fig. 7.1 can then be

used to estimate the most promising panel for optimization measures. The excitation at the different

plates in Fig. 5.1 can either be successively set to zero or the surface can be completely omitted from
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Figure 7.7: Coupled mode-shapes at (a) fc|2 = 72 Hz (b) fc|7 = 91 Hz (c) fc|13 = 118 Hz (d) fc|19 = 134 Hz,
mechanical displacements in (c) scaled by a factor of 25.
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Figure 7.8: SPL and DL of synthesized fields at (a) 74 Hz, (b) 91 Hz, (c) 118 Hz, (d) 134 Hz (acou. 70
(blue)-100 dB (red), (mech. 100 (blue)-150 dB (red)
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Figure 7.9: SPL at Pos. 1 induced by mechanic and acoustic forcing (b) Load case at region neglected
(c) Plate assumed rigid.

the calculation process, which corresponds to an ideal rigid structure. The second variant differs from

the first in that it also eliminates the coupling effects between the plate and cavity. The three plates

with the largest broadband SPL reduction potential using each approach are shown in Fig. 7.9b&c

(legend order represents top-down ranking). Fig. 7.9b demonstrates that due to the flow separation at

the roof, modifications at Rooftop Rear have the highest potential for reducing the interior noise. This

is interesting because, according to the ranking in Tab. 6.3, the excitation at Rooftop Front is even

stronger, but Rooftop Rear has a greater influence on the measured SPL due to the stronger coupling of

the structural modes with the acoustic modes (especially at fa|2 = 128 Hz, Fig. 5.4). It is interesting to

note that the third strongest reduction achieved by removing the load of Trunk Low already shows nearly

indiscernible changes in the interior SPL. Thus, excitation via the roof predominates, and reductions of

excitation on other panels than the critical ones have only minimal effect on the interior SPL. If, rather

than ignoring the excitation, the respective panel is assumed to be rigid, the results are similar to the

ones in Fig. 7.9c. Here too, Rooftop Rear shows the greatest potential for a reduction of the SPL. It is

particularly interesting to observe that stiffening Trunk Low causes a significant increase in SPL in the

frequency range close to the first natural frequency (blue rectangle, Fig. 7.9bfc). However, the effect

appears to be significant only for components with strong coupling and small excitation. This is confirmed

by the fact that the roof plates exhibit very similar reductions when the excitation is removed versus

when they are assumed to be completely rigid. To conclude, interior modifications, such as openings in

the package tray, are likely to offer the greatest potential for improvement (see [11]). However, these

modifications change the acoustic eigenmodes of the cavity, and as a result, there may e.g. be a significant

improvement at the driver’s position but a reduction of acoustic comfort in the fond. Modifications to the

structure, on the other hand, don’t have this drawback and can lead to improvements, particularly in the

case of tonal noise. Note that increasing the dynamic stiffness of leeward components can actually cause

to an increase of SPL inside the vehicle. In the very low frequency range, direct acoustic excitation via

openings predominates while indirect excitation via structural transmission governs the higher frequency

range.
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8 Summary and Conclusion

8.1 Summary

To summarize, the fundamental objective of this thesis is to develop a theoretical framework and an

experimentally validated method for understanding low-frequency wind-induced noise in vehicles. Partic-

ular emphasis is placed on experimental, numerical and hybrid methods for vibro-acoustic substructuring.

After outlining relevant aerodynamic and aeroacoustic theory, it is proposed to categorize the excitation

into four distinct groups; excitation by convected turbulence, excitation from leewards facing components,

underbody excitation, and direct excitation via openings. A comparison of various currently available

techniques for calculating flow-induced interior noise reveals that the method of Kim [44], in which experi-

mental structural modes determined via experimental modal analysis (EMA) can be coupled with acoustic

modes, exhibits the greatest potential. For the calculation of vehicle noise, the associated reduction of

coupling conditions to the modal level appears possible [3, 12, 72]. The acoustic feedback effect that, in

the case of light coupling, causes additional structural damping can frequently be neglected during ex-

perimental acquisition [42]. Kim’s method is expanded to non-conforming grids such that vibro-acoustic

issues can be assessed on behalf of arbitrarily discretised, experimental and/or computational structural

and acoustic modes. The workflow is validated utilizing a simple vibro-acoustic box, and it is discovered

that an additional thin-plate-spline (TPS) interpolation even permits the consideration of very coarsely

discretized mechanical modes. Then, a novel generic testbody is developed for specifically investigating

the low-frequency flow-induced noise if multiple flow-excited flexible panels coupled via the interior cavity

are involved. This topic has not been previously discussed in literature. The mechanical modes of the

different plates are extracted with experimental modal analysis and the acoustic modes are obtained via

finite element simulation. Acoustic frequency response functions (FRF) are used to verify the accuracy

of the acoustic simulation and it can be concluded that finite element simulations of vehicle cabins will

in most cases reliably reproduce the real acoustic properties of the uncoupled acoustic system. However,

real vehicles always contain flexible components that affect the acoustic mode shapes of the cavity and

decoupling by blocking mechanical transmission paths is difficult to realize in practice [15]. The wall

pressure fluctuations (WPF) on the surfaces are obtained via lattice Boltzmann (LB) simulation and the

results are compared with experimental measurements obtained in the wind tunnel using an efficient rep-

resentation that condenses all relevant information into a single plot for each panel. For surfaces excited

by convected turbulence, the determination of the Corcos parameters by a least-squares fit seems particu-

larly suitable, since differences in the phase velocity easily allow to detect differences between simulation

and measurements but also to identify critical panels regarding aerodynamic coincidence [39]. At the rear

of the vehicle the excitation is limited to the low frequency range whereas at the upper part of the rear a

clear coherent part can be identified at f = vŒ/H, which agrees with the findings of Islam [127] but could

not be resolved in the flow simulation. The excitation associated with the leewards facing component

remains limited to low frequencies but it is conceived possible that the shedding frequency associated with

large-scale vortices in the recirculation region behind the vehicle can be shifted into the audible frequency

range in small vehicles travelling at high speed. By employing the cross-power spectral density (CPSD),

the important acoustic contribution at the underbody could be separated from a dominant aerodynamic
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contribution in WPF measurements and distinct acoustic peaks could be distinguished and related to

the underbody cavity modes postulated numerically in [29, 33, 34, 38]. Among the different statistical

criteria, the averaged auto-power spectral density (APSD), the averaged longitudinal CPSD between

two streamwise positions and the APSD based on the arithmetically averaged pressure over the surface

are deemed most meaningful and the contributions from the different panels are grouped in frequency

bins and compared. It is found that differences between the three criteria are mostly limited to the low

frequency region and that they deliver similar conclusions in the high frequency region, the APSD can

directly be investigated. The averaged longitudinal CPSD is deemed most suitable to estimate structural

excitation in the low-frequency region and experimental and numerical WPF coincide much better on this

criteria than if using the APSD. Ranking the various contributions from the different panels shows, that

excitation from the windshield is most prominent in wind-tunnel measurements while excitation from

the leading surface at the roof is dominant in simulation results owing to an incorrectly predicted flow

separation. Having validated the excitation and the individual mechanical and acoustical subsystems, the

wind-induced noise within the test body is calculated using a custom tool based on the non-conforming

modal workflow. The displacement level (DL) on certain positions on the structure but also the SPL

inside the vehicle are once again validated with measured data and, regarding the complexity of the

workflow, encouraging results can be achieved. Finally, the optimization potential of the various panels

is compared, and it is found that, due to the different coupling between mechanical and acoustic modes,

the panel that vibrates the most strongly does not correspond to the panel that transmits the most noise.

It is also noted that, contrary to reasoning that neglects vibro-acoustic coupling effects, the interior SPL

can actually be increased if some of the weakly excited plates in the trunk region are blocked. Hence, the

acoustic feedback effect, while negligible during EMA, must be considered if significant acoustic forcing

via other vibrating panels is present and it is correctly reproduced by the modal workflow developed as

part of this thesis.

8.2 Conclusion

It is clear that determining mechanical FRFs using impulse hammer measurements is a rather academic

procedure, and significantly better results can be expected if a professional industrial process using

mechanical shakers is employed. Advancements can also be anticipated with regard to the flow simulation;

here, particularly, further resolution refinements and a longer simulation time should be exploited. The

application of a model for the convective portion of the WPF seems possible, but a simulation will likely

anyway be required to estimate low-frequency underbody excitation. Due to the special design of the test

body, the mechanical coupling of flexible components via the geometry could be neglected, but in real

vehicles the low frequency range is dominated mainly by global modes and it is not yet clear how efficiently

these modes can be excited by the flow or how they contribute to the sound pressure in the cabin. The

numerous investigations that have been conducted regarding uncertainties related to the manufacturing

process indicate that this must most probably also be taken into consideration. However, this is possible

on a modal level and has already been carried out in a similar way by Durand [72]. The consideration

of pyschoacoustic parameters is critical for a final evaluation of passenger comfort and must therefore

be additionally included in the evaluation. Thanks to the short computation time, the custom tool also

allows to investigate interior SPL in the time-frequency domain via e.g. Wavelet analysis. A weighting of

the relevant position in the vehicle, i.e. the positions at the passenger ears, must also be developed so that

an acoustic improvement in the front does not result in a worsening of comfort in the rear. Extending

the developed procedure to real vehicles is theoretically possible, but requires further development of the

techniques for extracting and identifying the relevant mechanical modes. From the findings of this thesis,
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some enlightening insights regarding the prevention of low-frequency noise in vehicles can be derived.

Most importantly, flow separation should be avoided as far as possible which is however in line with

requirements posed by aerodynamic engineers. Structural panel modes will likely result in narrow-band

maxima and thus, measures to stiffen individual panels might also yield only narrow-band improvements

(provided there is also significant excitation from other panels). Modifying the overall vehicle structure

to modify global structural modes will likely yield broadband reductions due to the higher structural

damping but this cannot be presumed on existing knowledge. Acoustic measures, on the other hand, have

a rather broadband effect and therefore significant optimisation potential can be expected from measures

that affect the acoustical modes, such as additional openings in the package tray, appear particularly

suitable. The very low frequency contribution is dominated by the direct acoustic excitation and can

most easily be reduced by increasing the acoustic mass of openings. Acoustic resonators within the cabin

appear to be of little use because, in order to achieve a similar resonance frequency with a similar mass,

the cavity volume must also be comparable to the volume of the vehicle. Mechanical resonators that

reduce the interior SPL by coupling with the acoustic cavity however appear promising.
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A Appendix: Lumped acoustical elements

This section will explain two different ways to obtain low-frequency network descriptions of acoustic

systems. The difference between the two formulations originates from the differing natural boundary

conditions of the one-dimensional acoustic wave equation if formulated in terms of pressure or particle

velocity (and respectively volume velocity). This is of particular relevance because it is a major achieve-

ment of this thesis to describe arbitrary vibro-acoustic systems on behalf of acoustic and mechanical

modes, which is only possible if the natural boundary conditions of the underlying systems are sound

hard and zero stress respectively. While mechanical systems are usually described in a displacement

formulation and thus satisfy this requirement, acoustical systems are more frequently employed based

on mean volume acceleration because the corresponding natural boundary condition is zero pressure and

this allows to easily investigate open-ended pipe systems (e.g. silencers). An alternative formulation

with sound hard natural boundary conditions can be derived from continuity and mass equations by

presuming that instead of the mean velocity, the mean pressure is constant over each lumped element.

Explanations on the subject may also be found in [54]. Both formulations can be obtained by formulating

momentum and mass equations for a one-dimensional tube with cross section A, length l, acoustic density

fla(t, x), speed of sound c0, acoustic volume velocity qa(t, x) acoustic and pressure pa(t, x). Supposing

both impulsive excitation via an additional pressure source pae and mass-like excitation via an additional

volume source qae allows to formulate the continuity equation as

A
ˆfla

ˆt
= ≠fl0

ˆqa

ˆx
+ fl0

ˆqae

ˆx
or with ˆpa/ˆfla = c2

0 as (A.1)

A
ˆpa

ˆt
= ≠fl0c2

0

ˆqa

ˆx
+ fl0c2

0

ˆqae

ˆx
, (A.2)

and the momentum equation as

fl0
ˆqa

ˆt
= ≠A

ˆpa

ˆx
≠ A

ˆpae

ˆx
. (A.3)

A volume-velocity based formulation can be obtained by applying a temporal derivative on Eq. (A.3)

and a spatial derivative on Eq. (A.2) and by subtracting the former from the latter to arrive at

fl0
ˆ2qa

ˆt2
≠ fl0c2

0

ˆ2qa

ˆx2
= ≠A

ˆ2pae

ˆxˆt
≠ fl0c2

0

ˆ2qae

ˆx2
. (A.4)

Now, by applying Fourier transformation in time and integrating in space with the boundary conditions

of zero volume flux at x = 0 and zero pressure at x = l (equivalent to
!
ˆq̂a/ˆx

"
x=l

= 0) and by reducing

the space-dependent quantities by single point quantities located at x = l (e.g. q̂a(x, Ê) ∆ q̂a(Ê)), a

lumped element formulation can be obtained according toA
≠fl0w2l +

fl0c2
0

l

B
q̂a = ≠AiÊp̂ae ≠ fl0c2

0

l
q̂ae , (A.5)
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which can also be expressed in terms of acoustic impedance ẑav asA
iÊfl0l

A
+

fl0c2
0

iÊAl

B
q̂a =

3
iÊma +

1

iÊ
ka

4
q̂a = ẑavq̂a = ≠p̂ae ≠ fl0c2

0

liÊA
q̂ae . (A.6)

Thus acoustical mass and stiffness elements are defined as ma = fl0l/A and ka = fl0c2
0/(Al). Note once

again that this formulation describes a 1D pipe element with induced pressure excitation on the left side

and zero pressure (i.e. open ending) on the other side. The latter contributor on the right-hand side

simply allows to define the required pressure excitation based on the induced volume velocity in the pipe.

The pressure-based formulation can on the other hand be obtained by applying the time derivative to

Eq. (A.2) and subtracting the space derivative of Eq. (A.3) to arrive at

A

c2
0

ˆ2pa(t, x)

ˆt2
≠ A

ˆ2pa(t, x)

ˆx2
= A

ˆ2pae(t, x)

ˆx2
+ fl0

ˆ2qae

ˆxˆt
. (A.7)

Proceeding just as for the volume-velocity based formulation with temporal Fourier transformation, spa-

tial integration with the reciprocal boundary conditions of zero pressure at x = 0 and zero volume velocity

at x = l, the lumped element formulation becomesA
≠Ê2Al

fl0c2
0

+
A

lfl0

B
p̂a =

Ap̂ae

fl0l
+ iÊq̂ae , (A.8)

and finally the description in terms of acoustic admittance ŷav becomesA
iÊAl

fl0c2
0

+
A

iÊlfl0

B
p̂a =

3
iÊma +

1

iÊ
ka

4
p̂a = ŷavp̂a =

Ap̂ae

iÊlfl0
+ q̂ae . (A.9)

Contrary to Eq. (A.6), this formulation describes a 1D pipe element with induced volume velocity

excitation on the left and zero volume velocity at the right side (i.e. sound hard). Note especially that

ma = 1/ka and ka = 1/ma and thus the natural angular frequencies of both systems become simply

Êa =
�

ka/ma =
�

ka/ma = 2fic0/l. This reciprocal relationship however applies only on individual

elements but not on the entire system description itself (ŷav ”= 1/ẑav). It is rather evident that if

ẑav = A + B then ŷav = (1/A + 1/B)/(1/A · 1/B) = CD/(C + D) with C = 1/A and D = 1/B. Hence a

serial resonant circuit in volume-velocity based formulation corresponds to an equivalent parallel resonant

circuit with reciprocal elements in pressure based formulation. More on the subject may be found in [57].

In the literature the relation fl0c2
0 = ŸP0 is frequently exploited to obtain equivalent formulations in terms

of ambient pressure P0 and isentropic exponent Ÿ.
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B Appendix: Demonstration of modal coupling

via a simple piston-cavity system

The treatment provided in this section shall serve as an introduction to coupled vibro-acoustic systems

while also providing an initial treatment of eigenvalue decompositions. The reader is therefore especially

invited to compare the equations that follow with the more complex formulations based on wavenumber

or modal descriptions in Chap. 2. For this purpose, the most basic vibro-acoustic system reflecting

the interaction of cavity with a mechanical spring-mass system excited by an external force shall be

investigated. The piston shown in Fig. B.1 has mass ms and is attached to the rigid structure with a

mechanical spring with stiffness ks. The cavity with length l and volume V0 is filled with air at ambient

pressure P0 = 105 Pa. Using the circuit elements of the pa-based formulation derived in A, the acoustic

Figure B.1: A simple vibro-acoustic system composed of a piston and a cavity.

mass ma = Al/(ŸP0) and acoustic stiffness ka = A2/V fl0 can be obtained. The individual serial circuits

of the uncoupled mechanical (i.e. free-displacement) and acoustical (i.e. zero volume flux) systems can

thus be expressed according to

ẑsvv̂s = f̂s with ẑsv = iÊms +
1

iÊ
ks and (B.1)

ŷavp̂a = ≠q̂a with ŷav = iÊma +
1

iÊ
ka . (B.2)

The force associated with the pressure in the cavity as Ap̂a counteracts the piston movement and must

thus be negative. The volume velocity q̂a = Av̂s is however directed inwards and is therefore positive.

The coupled system can thus be formulated as

ẑsvv̂s = f̂s ≠ Ap̂a and (B.3)

ŷavp̂a = ≠Av̂s . (B.4)

As eigenvalue decompositions are a major topic of this thesis and these eigenvalues are related to the

angular frequencies as ⁄i = Ê2
i , it is beneficial to represent the mechanical impedance ẑsv in terms of

mechanical dynamic stiffness ẑs = iÊẑsv and the acoustic mobility ŷav in terms of admittance ŷa = iÊŷav.
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Replacing v̂s by iÊûs and substituting ẑs and ŷa yields

ẑsûs = f̂s ≠ Ap̂a and (B.5)

ŷap̂a = Ê2Aûs , (B.6)

which can be assembled in a matrix asC
≠Ê2ms + ks A

≠AÊ2 ≠Ê2ma + ka

D C
ûs

p̂a

D
=

C
f̂s

0

D
. (B.7)

By introducing the generalized system matrix T̂ , the generalized displacement d̂ = [ûs; p̂a] and the

generalized force f̂ = [f̂s; 0] the system can simply be written as

T̂ d̂ = f̂ . (B.8)

The eigenvalues ⁄k and the eigenvectors ψk shall now be obtained. For this purpose, the eigenvalue

problem (A ≠ ⁄kI)ψk = 0 must be solved. The eigenvalues can either be obtained by zeroing the

determinant of T̂ first to obtain the angular eigenfrequencies Êk and in turn the eigenvalues as ⁄k = Ê2
k

or, equivalently, by directly replacing Ê2
k by ⁄k to arrive at a generalized eigenvalue problem of the form

(K ≠ ⁄kM)ψk = 0 with

M =

C
ms 0

A ma

D
and K =

C
ks A

0 ka

D
. (B.9)

The matrix A required for the general formulation can simply be obtaining according to A = M≠1K.

The mechanical and acoustic stiffnesses can be transformed into a normalized representation using the

respective uncoupled natural frequencies as ks = msÊ
2
s and ka = maÊ2

a . The two eigenvalues of the

coupled problem become

det(T̂ ) = mams(Ê
2
s ≠ ⁄k)(Ê2

a ≠ ⁄k) ≠ A2⁄k = 0 , (B.10)

⁄2 ≠
3

A2

msma

+ Ê2
s + Ê2

a

4
⁄ + Ê2

s Ê2
a = 0 , (B.11)

and finally

⁄1,2 =

3
Ê2

s + Ê2
a

2
+

A2

2msma

4
±

Û3
Ê2

s + Ê2
a

2
+

A2

2msma

42

≠ Ê2
s Ê2

a . (B.12)

If the coupling surface is small (A π 0), then

⁄1,2 = (
Ê2

s + Ê2
a

2
) ±

Û3
Ê2

s + Ê2
a

2

42

≠ Ê2
s Ê2

a , (B.13)

and the coupled eigenvalues then match the uncoupled ones as

⁄1 = Ê2
s ⁄2 = Ê2

a . (B.14)

Note that owing to the asymmetry of the system matrix T̂ , there are two different sets of eigenvectors,

namely the right and left eigenvectors stored column-wise in matrices ψk and ψL|k. Both eigenvectors
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correspond to the same eigenvalues ⁄k and can be obtained by solving

(K ≠ ⁄kM)ψ = 0 and (B.15)

(KT ≠ ⁄kM
T )ψL|k = 0 . (B.16)

The right eigenvectors ψk are thus given byC
≠⁄kms + ks ≠A

≠A⁄k ≠⁄kma + ka

D C
Âk|1

Âk|2

D
= 0 . (B.17)

For the case of vanishing coupling area A, the first eigenvalue reduces to the eigenvalue of the uncoupled

mechanical system and the second eigenvalue reduces to the eigenvalue of the uncoupled acoustic system

(see Eq. (B.14)). Therefore, the first degree of freedom (the displacement) is set to unity at the first

eigenvalue and the second degree of freedom (the pressure) is set to unity at the second eigenvalue. The

resulting eigenvectors

ψ1 =

S
U 1

Aλ1

m
a(ω2

a≠λ1)

T
V and ψ2 =

S
U A

ms(ω2
s ≠λ2)

1

T
V (B.18)

can then be collected in a matrix of right eigenvectors ψ as ψ = [ψ1,ψ2]. Proceeding analogously for the

left eigenvalue problem yields

ψL|1 =

S
U 1

A
ma(ω2

a≠λ1)

T
V and ψL|2 =

S
U A

ms(ω2
s ≠λ2)

1/⁄2

T
V , (B.19)

which can then be collected as ψL = [ψL|1,ψL|2]. Note that the left and right eigenvectors are related as

ψL|k =

C
1 0

0 1/⁄k

D
ψk . (B.20)

This relation is generally valid for linear vibro-acoustic systems [92]. It is now possible to obtain an

analytic expression of the resulting displacement and pressure as a superposition of coupled vibro-acoustic

modes. For this purpose, the system of equations T̂ d̂ = f̂ must be diagonalized using the previous

obtained left and right eigenvectors. We shall thus presume that the generalized displacements d̂ can

be described as modal generalized displacements d̃ (also called participation factors) weighted with the

matrix of the right eigenvectors ψ as

d̂ = ψd̃ . (B.21)

Replacing d̂ in Eq. (B.8) and premultiplying with ψL gives

ψT
L T̂ψd̃ = ψT

L f̂ . (B.22)

By additionally defining a modal coupled impedance matrix T̃ = ψT
L T̂ψ and a modal force vector

f̃ = ψT
L f̂ , it is possible to obtain a modal (or decoupled) formulation as

T̃ d̃ = f̃ . (B.23)

105



In the given case, T̃ becomes

T̃ =

S
U 1 A

ma(ω2
a≠λ1)

Aλ2

ms(ω2
s ≠λ2) 1

T
V C

ms(s
2 + Ê2

s ) ≠A

As2 ma(s2 + Ê2
a)

D S
U 1 A

ms(ω2
s ≠λ2)

Aλ1

m
a(ω2

a≠λ1) 1

T
V , (B.24)

which, by defining the modal masses m̃1 = ms +
A2ω2

a

m
a
(ω2

a≠λ1)2 and m̃2 = ma +
A2ω2

s

ms(ω2
s ≠λ2)2 finally results in

T̃ =

C
m̃1(s2 + ⁄1) 0

0 m̃2(s2 + ⁄2)

D
. (B.25)

The modal force vector becomes

f̃ =

S
U 1 A

ma(ω2
a≠λ1)

Aλ2

ms(ω2
s ≠λ2) 1

T
V C

f̂s

0

D
=

S
U 1

Aλ2

ms(ω2
s ≠λ2)

T
V f̂s . (B.26)

and the generalized modal displacements result in

d̃1 =
f̂s

m̃1(⁄1 + s2)
(B.27)

and

d̃2 =

Aλ2

ms(ω2
s ≠λ2) f̂s

m̃2(⁄2 + s2)
. (B.28)

Acoustic pressure and mechanical displacement can then be calculated from the coupled modal displace-

ments by superposition. This procedure is also known as modal synthesis. The modal displacements have

maximum amplitude at the respective coupled natural frequency. The response to broadband excitation

can thus be described by employing only a reduced set of eigenmodes. Thus, in many cases, the size of

the system can be significantly reduced. In the given case, pressure p̂a and piston displacement ûs can

finally be obtained by superposition as

C
ûs

p̂a

D
=

C
ûs|1

p̂a|1

D
+

C
ûs|2

p̂a|2

D
=

S
U 1

Aλ1

m
a
(ω2

a≠λ1)

T
V f̂s

m̃1(⁄1 + s2)
+

S
U A

ms(ω2
s ≠λ2)

1

T
V Aλ2

ms(ω2
s ≠λ2)

m̃2(⁄2 + s2)
. (B.29)
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