
The bigER Modeling Tool

Philipp-Lorenz Glaser1, Georg Hammerschmied1, Vladyslav Hnatiuk1 and
Dominik Bork1,*

1TU Wien, Business Informatics Group, Favoritenstrasse 9-11, 1040 Vienna, Austria

Abstract

This paper introduces the first major release of the bigER modeling tool. bigER offers various features for
flexibly specifying and visualizing Entity Relationship (ER) data models. Within the Visual Studio (VS)
Code IDE, the tool enables hybrid modeling through a textual editor and a graphical editor to display
and modify the textual and graphical ER model, respectively. Both editors are realized with a custom
language to specify ER elements and allow multi-notation support (currently Bachman, Chen, Crow’s
Foot, Min-Max, and UML). The bigER modeling tool incorporates the Language Server Protocol and
is based on web technologies, which makes the tool platform-independent and easily extensible. We
present the newest extensions of bigER , i.e., multi-notation support and improved edge routing.

Keywords

Entity Relationship, Modeling, Tool, Language Server Protocol, Sprotty, Code generation

1. The bigER Modeling Tool – A VS Code Extension

ER modeling [1] is a common practice to conceptualize relational data, generally accomplished
through the use of modeling tools. However, many of today’s modeling tools do not properly
capture the underlying semantics of ER models, resulting in erroneous modeling, due to lack of
validation. Furthermore, there are various limitations in current modeling tools, such as, e.g.,
support only for graphical modeling, leading to decreased efficiency when creating ER models.

In this work, we present the bigER modeling tool, deployed as a free extension to the Visual
Studio (VS) Code IDE – at the time of writing with more than 800 downloads/users. bigER allows
hybrid ER modeling with a textual and graphical editor. This combined approach enables to take
advantage of both, stability and efficiency when using the textual representations, and improved
comprehensibility and cross-stakeholder communication when creating models graphically [2].
Furthermore, the tool allows generating SQL table schemas from the created models. First
conceptual ideas and prototypical developments regarding bigER have been reported in [3]. In
the work at hand, we report on our ongoing efforts in extending the functionality provided by
bigER and increasing its usability. Concretely, we report on the following core extensions: i)
Multi-Notation Support for creating models in a variety of the most prevalent ER notations, and
ii) a new Edge Router for an improved graphical representation.

ER’2022 Forum and PhD Symposium, October 17-20, 2022, Online
*Corresponding author.
$ philipp-lorenz.glaser@tuwien.ac.at (P. Glaser); georg.hammerschmied@hotmail.de (G. Hammerschmied);
e01613669@student.tuwien.ac.at (V. Hnatiuk); dominik.bork@tuwien.ac.at (D. Bork)
� 0000-0002-0710-8052 (P. Glaser); 0000-0001-8259-2297 (D. Bork)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:philipp-lorenz.glaser@tuwien.ac.at
mailto:georg.hammerschmied@hotmail.de
mailto:e01613669@student.tuwien.ac.at
mailto:dominik.bork@tuwien.ac.at
https://orcid.org/0000-0002-0710-8052
https://orcid.org/0000-0001-8259-2297
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

In the following, we first describe the architecture of the tool and provide a demonstration of
its main features. We then elaborate the above-mentioned extensions in more detail before we
conclude this paper.

Tool Architecture bigER is based on the Language Server Protocol (LSP) and the diagram-
ming framework Sprotty1 with a client and a server component. The server is implemented as
a language server with Xtext2 that communicates through the LSP to the extension (client) to
enable rich-text editing support. The server is further enhanced with Sprotty to support graphi-
cal language features, e.g., with a diagram generator for the graphical model. The client-side
contains a language client that communicates with the server and integrates Sprotty with VS
Code to render the diagram in a web view. A web view manager is responsible for managing
the web view where Sprotty-specific components are located, such as, e.g., SVG views or CSS
styling. Fig. 1 shows a high-level view of the bigER architecture – for a detailed view, see [4].

Sprotty
Actions

Extension

Language ClientWebview
Manager

Extension
Manifest

Syntax Highlight
(TextMate)

Language
Configuration

Webview

Sprotty Diagram

CSS Styles

Actions /
Commands

Toolbar

Model

SVG Views

Language Server

Diagram Module
(Sprotty)

Diagram
Generator

Layout Engine
(ELK)

Language IDE
Module
(Xtext)

Language
Runtime Module

(Xtext)

LSP /
Sprotty LSP

Figure 1: Architecture of the bigER modeling tool

Tool Demonstration ER models are created in text files ending with .erd which, when
opened in VS Code, automatically activate the extension. The tool mainly consists of three
components for modeling: 𝑖) the textual editor (Fig. 2 left) to specify the ER models through a
textual Domain-specific Language including rich-text editing support (e.g., syntax highlighting,
code completion, validation), 𝑖𝑖) the diagram view (Fig. 2 center) that renders an ER diagram
corresponding to the specification in the textual file that is also synchronized on text changes and
can be partly used as a graphical editor, and 𝑖𝑖𝑖) the code generator (Fig. 2 right) for transforming
the conceptual ER models into a logical schema for a relation database by generating SQL tables.
The ER model in the figure features a basic example of a university database, where students
take exams of courses that include multiple lectures and are graded by instructors. As can be
seen in the textual editor, various keywords are used to classify model elements, a complete
specification of the language can be seen in the language guide on GitHub3.

Multi-Notation Support The first major extension to the tool is multi-notation support to
enable modeling in different ER variations. The notation can be changed textually or graphically
and if not specified, a default notation is used (see Figure 2). Besides the default notation, bigER
supports many popular ER notations including Bachman, Chen, Crow’s Foot, Min-Max, and
UML. To only allow the characteristics of one notation at a time, the language server validates
the textual model and informs the user whether the model contains an error or the specified
cardinality does not match the notation. If the model is valid, a new diagram representation that
1Sprotty: https://github.com/eclipse/sprotty
2Xtext: https://www.eclipse.org/Xtext/
3bigER language guide: https://github.com/borkdominik/bigER/wiki/Language

https://github.com/eclipse/sprotty
https://www.eclipse.org/Xtext/
https://github.com/borkdominik/bigER/wiki/Language

Figure 2: bigER tool in VS Code with the main views open

entails notation-specific data is generated and sent to the client for rendering. In the web view
on the client, the data is extracted, the cardinalities interpreted, and additional SVG elements
are rendered on the edge if required by the specified notation and cardinality. An overview of
the different notations and how they are rendered in bigER can be seen in Table 1 including the
textual syntax that is used to specify the cardinalities of relationships.

Notation Textual Syntax Diagram Representation

Bachman A[0], A[0+], A[1], A[1+]

Chen A[1], A[N], A[M]

Crow’s Foot A[0+], A[1], A[1+], A[?]

Min-Max A[min, max] or A[min, *]

UML A[num], A[min..max] or A[min..*]

Table 1

Overview of the multiple notations currently supported by bigER

Improved Edge Router An additional extension to the tool is the improved routing of edges
in the diagram. Previously, the default router provided by Sprotty was used, which worked
well in most cases, but had the disadvantage of routing each edge independent of other model
elements, resulting in intersections between nodes and other edges (see University entity in
Fig. 3 left). This problem was solved by replacing the router with a Libavoid router from the

Figure 3: Old (left) versus improved (right) layout of the diagram model in bigER

sprotty-libavoid-routing package4. The libavoid library is a well-known open-source solution
for diagram routing including a feature for avoiding obstacles (i.e., other model elements). With
the new router, manual changes of edges are not needed anymore and the routing of edges is
completely automated. Two further benefits of the replacement include the use of orthogonal
edges as opposed to more inconsistent polyline edges, and an overall improved behavior when
nodes are being manually moved in the diagram (see Fig. 3 right).

2. Conclusion

We have presented the centerpieces of the bigER modeling tool, proceeding our work in [3].
bigER is the first ER modeling tool that is freely available as an extension to the widely used VS
Code IDE, supporting hybrid ER modeling using a textual and a graphical editor that are always
synchronized. The tool moreover supports five widely used ER notations and a code generator
that transforms the ER models into SQL code. More details on the process of developing Sprotty-
based modeling tools in general and the bigER tool in particular are provided in [4]. We believe
bigER can be very valuable for the ER community and educators in database design courses.
bigER can be downloaded via the VS Code Marketplace5, the source code is available here6.

References

[1] P. P.-S. Chen, The entity-relationship model—toward a unified view of data, ACM Trans.
Database Syst. 1 (1976) 9–36.

[2] J. Cooper, D. Kolovos, Engineering hybrid graphical-textual languages with sirius and
xtext: Requirements and challenges, in: 22nd International Conference on Model Driven
Engineering Languages and Systems Companion, 2019, pp. 322–325.

[3] P.-L. Glaser, D. Bork, The bigER Tool - Hybrid Textual and Graphical Modeling of Entity
Relationships in VS Code, in: 25th International Enterprise Distributed Object Computing
Workshop, EDOC Workshop 2021, IEEE, 2021, pp. 337–340.

[4] P.-L. Glaser, Developing sprotty-based modeling tools for vs code, 2022. URL: https://
model-engineering.info/publications/theses/thesis-glaser.pdf, bachelor thesis at TU Wien.

4sprotty-libavoid-routing on GitHub: https://github.com/Aksem/sprotty-routing-libavoid
5https://marketplace.visualstudio.com/items?itemName=BIGModelingTools.erdiagram
6https://github.com/borkdominik/bigER

https://model-engineering.info/publications/theses/thesis-glaser.pdf
https://model-engineering.info/publications/theses/thesis-glaser.pdf
https://github.com/Aksem/sprotty-routing-libavoid

	1 The bigER Modeling Tool – A VS Code Extension
	2 Conclusion

