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Abstract

Factor-based investment approaches have gained popularity in the world of equity-
portfolio management in recent years. These portfolio strategies overweight stocks with
high exposure and underweight stocks with low exposure to selected firm characteristics.
A common problem in factor investing is unintended exposure: Increasing the portfolio
exposure to a certain factor unintendedly changes the exposure to other factors. This
kind of cross-contamination of factor portfolios makes performance attribution and the
analysis of factor-return characteristics difficult or even impossible. In this thesis, I in-
vestigate a portfolio approach that implements an orthogonality feature with respect
to the factor exposure, i.e., factor-mimicking portfolios are orthogonalized, such that
they implement pure single-factor exposure, coming without any unintended exposure
to other factors. For comparative purposes, I examine a second portfolio approach that
uses a classic methodology to build factor portfolios. The analyses in this research work
are based on backtests over a 20-year time horizon. I put a main focus on the return
characteristics of orthogonalized factor-mimicking portfolios and find an unexpected in-
terdependence between factor exposure and returns. In fact, orthogonality in the space
of firm characteristics seems to translate into uncorrelated factor returns. On the con-
trary, I observe a high level of cross-contamination in the factor returns resulting from
the second approach without the exposure orthogonality feature. Also, it becomes ap-
parent that the orthogonal portfolio approach yields the highest information ratio which
classifies the approach as most attractive when investing benchmark-oriented. Further,
I study the effects of the three factors size, value and momentum on the portfolio per-
formance. I find that size is the only factor that realizes a positive premium with either
of the two approaches.
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Kurzfassung

Faktorbasierte Investmentansätze konnten in den letzten Jahren im Bereich des Aktien-
Portfoliomanagements an Popularität gewinnen. Diese Portfoliostrategien übergewichten
Aktien mit hohem Exposure und untergewichten Aktien mit niedrigem Exposure gegen-
über ausgewählten Unternehmensmerkmalen. Ein häufiges Problem bei Factor Inves-
ting ist unbeabsichtigtes Exposure: Das Erhöhen des Portfolio-Exposure gegenüber eines
bestimmten Faktors verändert unbeabsichtigt das Exposure gegenüber anderen Fakto-
ren. Diese Art der Kreuzkontamination von Faktorportfolios erschwert die Performance-
Interpretation sowie die Analyse von Faktorrendite-Eigenschaften oder macht diese sogar
unmöglich. In dieser Forschungsarbeit untersuche ich einen Portfolioansatz, der eine Or-
thogonalitätseigenschaft hinsichtlich dem Faktorexposure realisiert. Das wird erreicht, in-
dem Faktorportfolios orthogonalisiert werden, sodass diese reines Single-Faktorexposure,
ohne einhergehendes unbeabsichtigtes Exposure gegenüber anderen Faktoren, umsetzen.
Zum Vergleich analysiere ich einen zweiten Portfolioansatz, der eine klassische Methodik
zur Bildung von Faktorportfolios verwendet. Die Analysen in dieser Forschungsarbeit ba-
sieren auf Backtests über einen Zeitraum von 20 Jahren. Mein Hauptfokus liegt auf den
Rendite-Eigenschaften von Faktorportfolios mit orthogonalem Exposure. Dabei entdecke
ich eine unerwartete Wechselbeziehung zwischen Faktorexposure und Renditen. Tatsäch-
lich scheint die Orthogonalität innerhalb der Unternehmensmerkmale zu unkorrelierten
Faktorrenditen zu führen. Hingegen weisen die Faktorrenditen, die aus dem zweiten An-
satz ohne Orthogonalitätseigenschaft resultieren, ein hohes Maß an Kreuzkontamination
auf. Außerdem zeigt sich, dass der orthogonale Portfolioansatz die höchste Information-
Ratio liefert, was ihn zum attraktivsten Ansatz macht, wenn benchmarkorientiert in-
vestiert wird. Darüber hinaus untersuche ich die Auswirkungen der drei Faktoren Size,
Value und Momentum auf die Portfolio-Performance. Es stellt sich heraus, dass lediglich
der Size-Faktor mit beiden Ansätzen eine positive Prämie erzielt.
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Nomenclature

Symbols

x A scalar
x A vector
x′ The transpose of vector x
X A matrix
X−1 The inverse of matrix X
E(x) The expected value of x

Acronyms

APT Arbitrage pricing theory

BTP Book-to-price ratio

CAPM Capital asset pricing model

(LO)CFA (Long-only) correlated factor approach

D/E Debt-to-equity ratio

ETF Exchange-traded fund

HML High minus low

IR Information ratio

ISIN International securities identification number

LOMTR Long-only minimum tracking-error approach

MCAP Market capitalization

MOM Momentum

MPT Modern portfolio theory

OFA Orthogonal factor approach

P/E Price-to-earnings ratio

SMB Small minus big

SMM Shrinkage towards a single-factor market model estimator

TE Tracking-error

WML Winners minus losers
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Chapter 1

Introduction

1.1 Overview

The explanation of portfolio returns and corresponding risk has been topic of famous pa-
pers in financial research. Many of those publications build on the principles of modern
portfolio theory (MPT) initiated by Markowitz (1952). MPT highlights the importance
of diversification and suggests investors should use mean-variance analysis for construct-
ing portfolios, with the mean and the variance of the portfolio’s returns serving as mea-
sures of return and risk. On that basis, a portfolio is considered efficient when it provides
the highest expected return for a given risk level or the lowest risk for a given expected
return. With the capital asset pricing model (CAPM), one of the most popular models
in that field was introduced by Treynor (1961), Sharpe (1964) and Lintner (1965). The
CAPM is based on the assumption that the overall market portfolio is efficient and puts
returns and the systematic risk1 into relation. In fact, it states that a stock’s expected
return is determined by the stock’s behavior in relation to the market (measured by the
stock’s market beta). Following, extended versions of the CAPM had been emerging.
For example, Black (1972) published a modified version with more restrictive assump-
tions. The main idea of the CAPM, that beta drives the expected return as only factor,
persisted. Previous empirical tests of the CAPM, such as Jensen et al. (1972) and Fama
and MacBeth (1973), pointed out certain discrepancies but agreed on the simple posi-
tive relation between beta and average stock returns. Accordingly, the CAPM played an
important role in the way of thinking about risk and return for a long time. However,
as time went on, various studies revealed empirical problems of the CAPM and the ex-
planatory power got more and more called into question. The identification of additional
firm characteristics that seemed to affect expected returns invalidated the market beta
as sole predictor for stock returns.

Basu (1977) found that price-to-earnings (P/E) ratios2 could help to explain returns
as low P/E stocks had higher returns than high P/E stocks on average. Also, low P/E
portfolios showed higher returns than justified according to their risk. Banz (1981) first

1The systematic risk (also called market risk) represents the non-diversifiable risk.
2The price-to-earnings ratio puts a firm’s stock price and its annual earnings per share into relation.
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Chapter 1. Introduction

reported the so-called size effect.3 He discovered that smaller firms did earn superior
risk-adjusted returns than larger firms after controlling for market beta. Indeed, the
returns of small stocks were higher than their market betas would have predicted while
the opposite was the case with the returns of large stocks. Further, Rosenberg et al.
(1985) documented a positive relation between a firm’s average stock returns and its
book-to-price ratio4. Similarly, Bhandari (1988) observed a positive relation between a
stock’s debt-to-equity (D/E) ratio and its expected returns.

A popular work on the cross-section of returns was published by Fama and French
(1992). They concluded that the two attributes size and book-to-market5 are strongly
related to average stock returns. Following, Fama and French (1993) used the time-series
regression approach of Jensen et al. (1972) to test a three-factor asset-pricing model.
They regressed stock returns on the returns to a market portfolio and to mimicking
long-short portfolios for size and value. The long-short portfolios are supposed to mimic
the underlying risk factors in stock returns. They are formed based on sorts of stocks on
size and book-to-market. In such regressions, the slopes indicate if the utilized factors are
able to capture variation in stock returns while the resulting intercepts show how well the
model explains the cross-section of average returns. A proper model leads to intercepts
that are close to 0 which is the case with the three-factor regressions. Therefore, Fama
and French (1993) found in their study that a market factor plus a factor for each size
and value are suitable to explain the cross-section of average stock returns. The authors’
three-factor model (see Section 2.2) has gained great popularity in research and laid the
foundation for further studies in that field.

The momentum factor was initially documented by Jegadeesh and Titman (1993) who
observed investment strategies that buy past winners and sell past losers.6 The authors
recognized that these strategies result in excess returns which are not attributable to
their systematic risk.

The discovery of these relations between certain firm characteristics (labeled as fac-
tors) and returns provided the basis for new explanations regarding the cross-section
of expected stock returns. Accordingly, the theory of different factors as return drivers
shaped the way not only for further empirical studies but also for a new investment
approach, known as factor investing (see Ang, 2014).

The fact that specific firm attributes appeared to contribute to the understanding
of the cross-section of expected stock returns has obviously inspired many researchers.
That became apparent in a review by Harvey et al. (2016). The authors tested more
than 300 proposed factors with the result that the majority of them may be attributable
to data mining and inappropriate statistical significance levels. However, a few factors
have been validated by different scientific works. For example, Dimson et al. (2017)
stated that the five factors size, value, momentum, income and volatility should be

3The size is measured by the firm’s market capitalization.
4The book-to-price ratio puts a firm’s book value and its stock price into relation.
5The book-to-market ratio puts a firm’s book value and its market value into relation.
6Stocks with high returns in the past are considered as past winners while stocks with poor returns

in the past are considered as past losers.
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1.2. Research topic and approach

monitored by investors. They seem to carry a premium which is not due to systematic
risk and hence contradicts the principles of market efficiency7. Therefore, researchers
have been interested in explaining the factor premiums and how these phenomena come
into existence. Indeed, opinions differ on that topic. Ang (2014) broadly discusses factor
theories and provides a fundamental overview on factor investing. He represents the camp
which considers the observed factor premiums as risk premiums. Investors with factor
exposure would be compensated with high returns over longer terms if they accepted
the corresponding factor risk. On the other hand, there is a camp which regards the
observed phenomena rather as mispricings, e.g. Daniel and Titman (2006). They relate
a stock’s expected return to the intangible return which embodies the element of the
past return that cannot be explained by any fundamental reason.

These findings have been particularly interesting for investment professionals. Port-
folio managers use the exposure to factors to influence risk and return expectations of
their portfolios. Various popular investment strategies, such as value investing, momen-
tum investing or low-volatility investing, are based on the theory of factors (see Ang,
2014). Dimson et al. (2017) mention that exchange-traded funds (ETFs) have had a
crucial role in making factor investing (also called smart-beta investing) available to a
broad range of investors. According to a report by ETFGI8, assets of $1.13 trillion were
invested in equity-based smart-beta ETFs at the end of June 2022. This volume was
distributed over about 1250 ETFs from about 200 providers.

1.2 Research topic and approach

This thesis deals with factor-based investment approaches in the field of equity-portfolio
management. These portfolio strategies overweight stocks with high exposure and un-
derweight stocks with low exposure to selected firm characteristics. A common prob-
lem in factor investing is unintended exposure: Increasing the portfolio exposure to a
certain factor unintendedly changes the exposure to other factors. This kind of cross-
contamination of factor portfolios makes performance attribution and the analysis of
factor-return characteristics difficult or even impossible.

In this thesis, I study a factor-based portfolio approach with a special feature regard-
ing the factor exposure. The aim of the approach is to utilize factor-mimicking portfolios
that implement pure single-factor exposure and hence come without any unintended ex-
posure to other factors. This is achieved by imposing orthogonality on the exposure
of the factor-mimicking portfolios. Moreover, I examine another factor-based approach
that follows a more classic way to create factor portfolios without making use of any
special characteristics. Throughout the analyses, I consider the three factors size, value
and momentum. In the course of this thesis, I want to address the following research

7A market is considered as efficient when stock prices fully reflect all available information. For that
reason, firms are always fairly valued and investors cannot beat the market on a risk-adjusted basis.
Fama (1970) provides an early review of the theory. Ang (2014) concludes that markets are not perfectly
efficient. Accordingly, he refers to studies that consider markets as near-efficient.

8https://etfgi.com/news/press-releases/2022/07/etfgi-reports-smart-beta-etfs-listed-
globally-gathered-net-inflows-788, last accessed 03-10-2022
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Chapter 1. Introduction

questions:

• What are the return characteristics of factor portfolios that implement orthogonal
exposure to selected firm characteristics? Does orthogonality in the space of firm
characteristics translate into uncorrelated factor returns?

• What are the effects of the three considered factors size, value and momentum on
the portfolio performance?

For that purpose, I set up an analysis model with the programming language Python.
This model allows me to apply the aforementioned construction approaches and build
factor-based stock portfolios. Here, the exposure to the three considered factors can be
adjusted to desired levels. Further, the model lets me calculate retrospective portfolio
returns and performance. Eventually, I use these functions to perform backtests over a
multi-year time horizon. In this way, I can then analyze and compare both construction
approaches on different aspects to find anwers to the stated research questions.

The analyses in this research work are based on a comprehensive dataset from the
data provider MSCI which contains all relevant stock information.9 In fact, the dataset
provides firm and index data related to the stock market index MSCI USA10 in form of
weekly observations. Besides stock and index returns, several firm characteristics of index
constituents are available. In the backtests, required data is retrieved from the dataset
which is then further processed for the retrospective implementation of the considered
investment strategies. The strategy implementation is basically done by determining
portfolio weights on a weekly basis according to the latest information at the respective
point in time. This leads two weekly portfolio returns and to a certain performance
over a selected time period. The factor portfolios are constructed in a two-step process.
In the first place, the market-weighted index portfolio is created. Then, a factor-based
long-short portfolio is added to the market portfolio. In this way, the original weights
of the market portfolio are adjusted and the factor exposure is modified. Therefore, the
determination of the factor-based long-short portfolios represents the key step in the
construction procedure.

As already mentioned above, I examine two different portfolio construction ap-
proaches in this thesis. The two approaches build on the same general concept where
rank scores are used as given firm characteristics that represent the exposure to a factor
(see Dangl, 2022). The rank scores are assigned to the firms based on a factor-related
firm characteristic. However, the two approaches differ significantly in the way the
factor-based long-short portfolios are determined. The first approach makes use of an
optimization method presented by Dangl (2022). The aim is to receive a long-short port-
folio with orthogonal exposure to the considered factors. Additionally, this long-short
portfolio should lead to an overall factor portfolio with minimum tracking-error relative
to the index portfolio as reference. The second approach simply assigns equal positive

9The dataset was provided by the IQAM Research Center in the course of an analysis performed for
IQAM Research. I want to acknowledge the support of IQAM Research Center in my research.

10https://www.msci.com/our-solutions/indexes/developed-markets, last accessed 31-10-2022
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1.2. Research topic and approach

weights to the high-scoring firms representing the long side of the long-short portfolio.
Likewise, it assigns equal negative weights to the low-scoring firms representing the short
side of the long-short portfolio. In this case, no further special condition is sought.

The thesis is outlined as follows. In this first chapter, I give a brief overview of the
emergence of factors in the world of portfolio management over time. I introduce some
popular scientific publications on the role of factors in explaining average stock returns.
Further, I mention how these findings have been used by investment professionals to
make factor investing available to the public. In Chapter 2, I deal with theories behind
the occurrence of factors and I present a few famous models that combine certain factors
to explain stock returns. Moreover, I specifically cover observations and theories related
to the three mainly considered factors throughout this thesis, namely size, value and
momentum. In Chapter 3, I describe the two portfolio construction approaches that
are examined in the course of this research work. At that stage, the focus lies on the
mathematical backgrounds of both approaches. In Chapter 4, I then explain how the
analysis model written in Python is actually set up. I address the dataset used for
the backtests as well as the key steps required for constructing the factor portfolios
and calculating performance. In Chapter 5, I discuss the backtest results realized by
selected factor-based investment strategies over a 20-year time period. I analyze certain
characteristics related to the two construction approaches and I compare the approaches
to each other on different aspects. Also, I look at the effects of short-sale constraints on
the considered strategies. Eventually, Chapter 6 concludes the main findings.

5



Chapter 2

Factor theories

In this chapter, I introduce theories behind factor premiums that try to explain why
these phenomena occur in the market. Also, I present a few factor models that attracted
attention in research due to their ability to explain average stock returns. Further, I
cover the mainly considered factors throughout this thesis in more detail by bringing up
important observations on each of them.

2.1 Factor premiums

As already mentioned in Section 1.1, the identification of different factors has played
an important role in explaining the cross-section of expected stock returns. The fact
that other factors than the systematic risk (market beta) seem to carry a premium
and influence average returns led to various questions. Particularly, researchers were
interested in how the factor premiums come about. In this regard, I briefly mentioned
two camps in Section 1.1 representing factor risk theories on the one hand and mispricing
theories on the other hand. Ang (2014) provides a thorough argumentation of this
question by relating the premiums to factor risk. Accordingly, I will put the focus on
risk theories and I will summarize essential aspects of them below.

Ang (2014) states that factor risks are the underlying drivers of the risk premiums of
assets. If the risk premium of a factor is positive, then a higher factor exposure results
in a higher expected return of the asset. An important term that the author often uses
in his explanations is ‘bad times’. According to him, each factor represents a different
set of bad times and investors, who are able to bear the losses in bad times, will be
compensated with factor risk premiums. In order to illustrate that with an example,
the author uses the CAPM initially formulated by Treynor (1961), Sharpe (1964) and
Lintner (1965). The CAPM, which can be seen as the most basic theory of factor risk
premiums, is written as

E(ri)− rf = βi,m ∗ [E(rm)− rf ], (1)

with ri, rf and rm as the returns of the considered stock i, the risk free asset and the
market. The market beta, which is calculated by βi,m = cov(ri, rm)/var(rm), represents

6



2.2. Multifactor models

the factor exposure of stock i. It measures the co-movement of stock i with the market
portfolio. Thus, the CAPM declares that there is a single factor driving the stock returns.
The factor is the market portfolio and the exposure to the factor is given by the market
beta. In this case, Ang (2014) interprets the factor risk as follows. Times of low or
negative market returns correspond, so to speak, to the bad times defined by the CAPM.
Stocks have different exposure to the market factor and accordingly, the model states
that the factor risk premium increases with a higher market exposure. In other words,
this means that stocks, which plunge when the market declines, are considered risky
and hence investors are compensated with risk premiums. Assuming that the average
investor is risk averse, stocks with high market betas need to have high expected returns
in order to be held. If a stock pays off in bad times on the other hand, its risk premium
is low as it is beneficial to hold.

Ang (2014) further argues that the general consideration of the CAPM, that assets’
risk premiums due to underlying factors are the rewards for the losses during bad times, is
still valid. However, many studies have found that the CAPM as single-factor explanation
for the cross-section of expected stock returns is not valid. Stocks are exposed to different
factor risks which can be described with the aid of multifactor models. These models
consider various definitions of bad times across many factors and can be written in the
form (see Ang, 2014)

E(ri)− rf = βi,1E(f1) + βi,2E(f2) + . . .+ βi,kE(fk), (2)

with βi,k as the exposure of stock i regarding factor k. E(fk) represents the expected
risk premium of factor k. For example, f1 could be again the risk premium of the
market factor. In addition, f2 could be the risk premium of a long-short investment
strategy that buys value stocks and sells growth stocks. Studies have shown that value
stocks outperform growth stocks in the long term (see Section 2.3.2). In this case, the
factors would then define bad times as times with low market returns and (or) times
where value stocks underperform growth stocks. Accordingly, in a multifactor model the
stock’s risk premium is determined by capturing multiple sources of factor risk instead of
only the market risk in the CAPM. For enduring the various risk sources, investors need
to be compensated (see Ang, 2014). I present a few multifactor models which attracted
attention in research in Section 2.2. Furthermore, Ang (2014) provides a breakdown of a
few key lessons regarding both the CAPM and the multifactor world which are illustrated
in Table 1 below.

2.2 Multifactor models

The arbitrage pricing theory (APT), introduced by Ross (1976) as alternative to the
CAPM, is known as the first multifactor model. APT describes that expected stock re-
turns follow a linear factor structure where each factor is weighted with a beta coefficient
if arbitrage opportunities have been exhausted. Since then, researchers have developed
multifactor models that consider specific attributes.
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Table 1: Key lessons of CAPM vs. multifactor models (taken from Ang (2014)).

CAPM Multifactor Models

Lesson 1 Diversification works. The market
diversifies away idiosyncratic risk.

Diversification works. The trade-
able version of a factor diversifies
away idiosyncratic risk.

Lesson 2 Each investor has his/her own op-
timal exposure of the market port-
folio.

Each investor has his/her own op-
timal exposure of each factor risk.

Lesson 3 The average investor holds the
market.

The average investor holds the
market.

Lesson 4 The market factor is priced in equi-
librium under the CAPM assump-
tions.

Risk premiums exist for each fac-
tor assuming no arbitrage or equi-
librium.

Lesson 5 Risk of an asset is measured by the
CAPM beta.

Risk of an asset is measured in
terms of the factor exposures (fac-
tor betas) of that asset.

Lesson 6 Assets paying off in bad times when
the market return is low are attrac-
tive, and these assets have low risk
premiums.

Assets paying off in bad times are
attractive, and these assets have
low risk premiums.

A popular model is the three-factor model formulated by Fama and French (1993).
Essentially, they modified the CAPM with two additional factors resulting in

E(ri)− rf = βi,m[E(rm)− rf ] + βi,SMBE(SMB) + βi,HMLE(HML), (3)

with SMB and HML as factors that include both the size and the value effect. SMB
stands for small minus big and represents a long-short portfolio based on the market
capitalization of the stocks. The portfolio is meant to be constructed through buying
small firms and selling large firms. Therefore, it captures the outperformance of small
firms relative to large firms over the long term. HML stands for high minus low and
likewise represents a long-short portfolio. In this case, the portfolio is formed on the
book-to-market ratio1 of the stocks. By buying stocks with a high book-to-market ratio
and selling stocks with a low book-to-market-ratio, the outperformance of value stocks
relative to growth stocks is captured. Thus, both SMB and HML are so-called factor-
mimicking portfolios that carry a positive risk premium. Eventually, Fama and French
(1993) found that the factor combination applied in their three-factor model serves as a
proper indicator for average stock returns.

Carhart (1997) studied another multifactor model. He extended the above three-

1The book-to-market ratio is the book value of a stock divided by its market capitalization.
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factor model by a momentum factor which yields a four-factor model written as

E(ri)− rf = βi,m[E(rm)− rf ] + βi,SMBE(SMB)+

+ βi,HMLE(HML) + βi,WMLE(WML),
(4)

with WML now representing the momentum factor and standing for winners minus
losers. Analogous to the other two added factors, it is constructed as a factor-mimicking
portfolio. To capture the momentum effect, it goes long past winners and short past
losers based on a one-year return momentum.2 The author recognized that the four-
factor model further improves on the explanatory power of factors compared to the
three-factor model.

2.3 Factors

As already addressed previously, factors carry risk premiums and can hence be seen as
return drivers in the long term. For that reason, various factors have gained popularity
in both the financial research and in the investment industry. In some literature, factors
are generally categorized into different groups (see e.g. Ang, 2014). In this thesis, the
focus is put on the so-called investment-style factors as they can be utilized to implement
factor-based strategies in the stock market. According to e.g. Dimson et al. (2017), the
five factors size, value, momentum, income and volatility can be seen as reputable and
should be monitored by investors. Within the group of investment-style factors, Ang
(2014) further differentiates between static and dynamic factors. The market is a static
factor as investors only need to go long to earn a risk premium. On the other hand,
the premiums of dynamic factors, like the five aforementioned, can only be collected by
trading stocks on a regular basis. To give an example, the size effect is captured by
implementing the SMB strategy over a longer term. In the analysis part of this thesis,
I only consider the three factors size, value and momentum. Therefore, I want to solely
cover these factors in more detail below.

2.3.1 Size

The size factor was first recognized by Banz (1981) as well as Reinganum (1981) and
later employed by researchers, e.g. Fama and French (1993), to explain the cross-section
of average stock returns. The related size effect refers to the observations that small
firms performed better than large firms over long terms, adjusted for their market risk.

Figure 1 shows the market-adjusted performance of the corresponding SMB strategy
from 1965 until 2011. The SMB strategy is represented by the solid line and plots the
value of $1 invested over the course of the period. Apparently, SMB reached a maximum
short after Banz (1981) published his study. Then, from around 1985 until the end of
the displayed period, the risk-adjusted size effect is not visible. Hence, small stocks did
not carry a premium in that particular time period. Similarly, Fama and French (2012)

2More precisely, the author used eleven-month returns lagged one month. Hence, the most recent
month was not considered for calculating the return momentum.
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Figure 1: Performance of the market-adjusted SMB and HML strategies from 1965 until
2011 (taken from Ang (2014)).

examined international stock returns from 1990 until 2011 and they did not find a size
premium in any region.3 In their study, average risk-adjusted returns resulting from
the SMB strategy are all close to zero. Accordingly, Ang (2014) concludes that there
are two potential explanations for the size effect dropping out. First, the size effect
was originally found due to data mining and hence the existence might have never been
valid (see also Harvey et al., 2016). Second, the effect was present indeed, but was then
removed by rational investors who wanted to benefit from the findings and forced up the
prices of firms with rather small market capitalization. Schwert (2003) discusses that
case and mentions that investment vehicles, set up by practitioners at about the time
of the initial discoveries, implemented corresponding strategies. Anyway, important to
add here is that the above approached pure size effect is based on market risk-adjusted
returns. In general, small firms actually have higher returns than large firms on average
(see Ang, 2014).

2.3.2 Value

Research on the value factor goes back to Basu (1977) who found that low P/E portfolios
had higher returns than their market exposure would have suggested. Rosenberg et al.
(1985) discovered that an HML strategy based on the book-to-price ratio leads to an

3The examined regions are North America, Europe, Japan, Asia Pacific.
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abnormal performance. Similarly to the size factor, the value factor was then used by
researchers, e.g. Fama and French (1993), as indicator for average stock returns. Further,
Zhang (2005) provided a study in which he argues the value premium. He highlights
that, especially in bad times, having assets in place is much riskier than cutting back
on growth options. Accordingly, value firms have to deal with unproductive assets and
have more difficulties to reduce capital stocks than growth firms do.

Besides the SMB strategy, Figure 1 also shows the market-adjusted performance of
the HML strategy. The HML strategy is represented by the dashed line and likewise plots
the value of $1 invested from 1965 until 2011. Compared to size, the value premium per-
sisted throughout the displayed period. Also, the chart illustrates certain periods where
the HML strategy had significant losses. Two such periods are particularly noticeable.
First, value performed poorly during the late 1990s in the internet bull market. Second,
a similar picture becomes apparent during the financial crisis in 2007 and 2008. However,
the HML strategy recovered quite quickly from those big losses and value stocks clearly
outperformed growth stocks over the displayed period.

According to Ang (2014), a vast number of explanations that emerged for the value
effect can be categorized into two groups: rational theories that support the idea of a
risk premium and behavioral theories that assume mispricings as the cause. Rational
theories describe that value stocks, adjusted for market exposure, tend to perform well
or poorly together with other value stocks. Further, it is declared that a portion of value
risk can be diversified away. The remaining risk amount cannot be diversified away
and must therefore be priced which results in a value premium. On the other hand,
behavioral theories often argue the value premium as a consequence of overreaction to
recent news (see Daniel and Titman, 2006). The rationale is that value stocks are cheap
as their growth prospects are underestimated by investors. At the same time, investors
overestimate the prospects of growth stocks and hence they are expensive.

2.3.3 Momentum

The momentum factor was introduced by Jegadeesh and Titman (1993). They recognized
that WML strategies lead to significant high returns which are not explained by their
systematic risk. The WML strategy refers to an investment approach that buys past
winners and sells past losers. A few years later, Carhart (1997) added the momentum
factor to the three-factor model by Fama and French (1993) and tested the resulting four-
factor model. In fact, the extension had a positive impact on the model’s explanatory
power. The momentum effect follows the assumption that stocks with high returns in
the past months will continue to rise. Likewise, stocks with low or negative returns in
the past months will continue to perform poorly. For that reason, momentum strategies
are associated with terms like trend investing or the trend is your friend (see Ang, 2014).

Figure 2 shows the performance of the WML strategy in addition to the SMB and
HML strategies over the period from 1965 to 2011. Here, the dashed line plots $1 invested
with the momentum strategy. Apparently, momentum outperformed size and value over
the displayed period significantly. At the same time, the figure indicates that momentum

11



Chapter 2. Factor theories

Figure 2: Performance of the market-adjusted SMB, HML and WML strategies from
1965 until 2011 (taken from Ang (2014)).

underlay bigger crashes at certain stages. This was the case, for example, in some periods
between 2000 and 2010. From around 2003 until the end of the displayed time window
in the figure, momentum realized a negative performance.

Daniel et al. (2012) documented that these sharp losses are due to leverage dynam-
ics in the long-short momentum portfolio. Eventually, high leverage of the portfolio’s
short side (past losers) drives the tail-risk of the WML strategy. Consistent with that,
also Daniel and Moskowitz (2016) investigated the so-called momentum crashes. They
conclude that the momentum premium is robust in normal environments. In insecure
states, however, past losers carry a high premium. The authors mention periods fol-
lowing multi-year market declines or periods of high market volatility as such insecure
environments. When the conditions become better and the market recovers, past losers
often earn high returns. Since momentum strategies short past losers, a momentum
crash is the consequence. Thus, the momentum effect happens in reversed form in these
times. During good times, this effect does not apply equally to past winners. Therefore,
the authors ascertain an asymmetry regarding the relation of winner and loser exposure
and returns in extreme times. As explanations for their findings, Daniel and Moskowitz
(2016) studied options such as compensations for crash or volatility risk, with none of
these fully accountable. Ang (2014) describes the phenomenon by comparing momentum
and value strategies on a specific aspect. Value investors buy stocks that have fallen far
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enough to an attractive level where they have high expected returns. Hence, value in-
vesting generally has a stabilizing effect. On the contrary, momentum investors consider
stocks with high past returns as attractive. They buy these stocks which then continue
to move up. Eventually, momentum investing is destabilizing which goes along with
periodic crashes. Ang (2014) concludes that most of the theories are behavioral based
on investors’ overreaction or underreaction on stock news.
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Chapter 3

Portfolio construction

In this chapter, I describe the two different portfolio construction approaches which are
investigated by the backtests in the analysis part of the thesis. In the first instance, I
introduce the general idea behind both approaches as well as the used notation.

3.1 Idea and notation

The factor-based portfolios in this thesis are constructed by following the idea of the
target scores method (see Dangl, 2022). In this method, rank scores with respect to
a certain factor are used as given firm characteristics. The weighted portfolio score
is defined as the exposure to that factor. Eventually, the objective of the target scores
method is to enable the construction of factor portfolios featuring desired exposure levels.
This is achieved by combining a market-weighted index portfolio and a factor-based long-
short portfolio. The market-weighted index portfolio represents the core component of
the resulting factor portfolio while the long-short portfolio is added to adjust the factor
exposure according to the target. Therefore, the factor-based long-short portfolios play
a key role in both considered construction approaches. Throughout this chapter, I use
the following notation (see Dangl, 2022):

n number of assets

m number of different factors (firm characteristics)

S matrix (n×m) of factor scores, with full column rank

Σ covariance matrix (n× n) of assets returns, positive definite

w column vector (n× 1) of asset weights

b column vector (m× 1) of target scores

The rank scores are assigned to the firms based on a factor-related firm metric. Thus, the
ranking according to the corresponding firm characteristic is done for each considered
factor. Obviously, the respective score follows from the rank. Since the number of
relevant firms generally varies, the scores are normalized on a range from 0 to 100.
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Eventually, matrix S contains these scores for each factor in its columns. The respective
factor exposure is then represented by the weighted portfolio scores given by S′w = b.

Both construction approaches build on this general concept just explained. They
differ in the methodology to determine the particular factor-based long-short portfolios.
The first approach is based on a tracking-error minimization method and utilizes a factor-
mimicking long-short portfolio with orthogonal exposure to selected firm characteristics.
In the second approach, the factor-based long-short portfolio weights are simply assigned
according to the firm scores. This can be seen as a classic way which does not come with
any special properties in terms of return volatility or factor exposure.

3.2 Orthogonal Factor Approach (OFA)

In this approach, a portfolio is being searched that meets the target exposure b to a
selected set of factors and has minimum tracking-error to a certain reference portfolio
w0. In this case, the reference portfolio is a market-weighted index portfolio with weights
summing to 1. I describe the construction of w0 in more detail in Section 4.2.4. Moreover,
the long-short portfolios in this approach come with a special feature. In fact, they
implement orthogonal exposure to selected factors. The effects of this characteristic
represent a main focus point in this thesis.

In the following, I summarize the essential aspects of this construction approach
which is presented by Dangl (2022). As already mentioned, the minimum tracking-
error weights w, which lead to the target scores b for a set of factors, should be found.
Therefore, the optimization problem can be written as

min
w

�
1

2
(w − w0)

′Σ(w − w0)

�
,

such that S′w = b.
(5)

The constraint is used to set a target for the weighted portfolio scores which represent the
exposure to the respective factors. Generally, this condition would be satisfied by many
portfolios. However, there is only one portfolio with minimum tracking-error weights
meeting the target scores. Using the Lagrangian of the above problem

L(λ,w) =
1

2
(w − w0)

′Σ(w − w0) + λ′(b − S′w), (6)

with λ as column vector (m × 1) of Lagrangian multipliers, leads to the first order
optimality criteria

∂L

∂w
= Σ(w − w0)− Sλ = 0, (7)

∂L

∂λ
= b − S′w = 0. (8)

Rearranging (7) leads to
w∗ = w0 +Σ−1Sλ, (9)
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and substituting this optimal w∗ into (8) results in

S′(w0 +Σ−1Sλ) = b

S′Σ−1Sλ = −S′w0 + b

λ∗ = −(S′Σ−1S)−1S′w0 + (S′Σ−1S)−1b.

(10)

As the score matrix S has full rank and it is assumed that the inverse covariance matrix
Σ−1 exists, also (S′Σ−1S)−1 exists. Substituting the resulting λ∗ back into (9) gives the
optimal weight vector

w∗ = w0 −Σ−1S(S′Σ−1S)−1S′w0 +Σ−1S(S′Σ−1S)−1b

= w0 − BS′w0 + Bb

= w0 + B(b − b0)

= w0 + B∆b,

(11)

using the weighted portfolio score of w0, defined by S′w0 = b0, and the target score
difference ∆b = b − b0. Further, the matrix B is introduced which is defined by

B = Σ−1S(S′Σ−1S)−1, (n×m). (12)

Equation (11) represents the result of this optimization method and yields the minimum
tracking-error portfolio w∗. It consists of the market-weighted index portfolio w0 and
a factor-based long-short portfolio determined by B∆b. Hence, w∗ is a linear function
in the deviation of the desired target scores b from the scores b0 attributable to the
reference portfolio.

The matrix B plays an important role in this construction approach. It contains a set
of minimum-variance basis weight vectors with certain factor-mimicking score features
in its columns. The minimum-variance property of the columns of B follows from (11)
in the initial form with the reference portfolio w0 = 0. This results in

w∗ = Bb (13)

and represents a solution to the original minimization problem. Also, the factor-mimicking
property can be illustrated briefly by considering the first factor of a set of factors. The
related basis weight vector is found in the first column of B. So, the vector wB1 = B.,1

is defined and the corresponding factor exposure is then given by

w′
B1

S =
�
1 0 . . . 0



. (14)

This shows the orthogonality characteristic with respect to the factor exposure of the
long-short portfolios in this approach. In this case, wB1 leads to an exposure of 1 to
the first factor and to an exposure of 0 to all other factors. Essentially, this applies
to each basis weight vector B.,j related to factor j and its resulting factor exposure.
This allows to modify the exposure to a certain factor in a controlled way without
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influencing the exposure to other factors. Moreover, performance implications caused by
exposure adjustments regarding a selected factor can be attributed to only that factor.
Consequently, this enables an appropriate interpretation of the performance of factor
portfolios constructed by using this approach.

In the following, I address another important aspect relevant for the OFA (see Dangl,
2022). Ultimately, the construction procedure must result in a proper overall portfolio
w∗ with weights summing to 1. The market-weighted index portfolio w0 already has that
property. This means that the long-short portfolio weights, which are added to w0, must
sum to 0 in order that the overall weight condition is met. However, so far the weights in
the factor-mimicking basis vectors of B do not sum to 0 since no weight constraint has
been considered yet. To actually receive this property, the portfolio constraint can be
used as a special characteristic which is implemented by putting an additional column
of 1s to the first position of S, such that

S =


s11 s12 . . . s1m

s21 s22 . . . s2m
...

...
. . .

...

sn1 sn2 . . . snm

 →


1 s11 s12 . . . s1m

1 s21 s22 . . . s2m
...

...
...

. . .
...

1 sn1 sn2 . . . snm

 . (15)

This changes the shape of both S and B to (n × (m + 1)). The first column of B now
contains a portfolio with weights summing to 1 that leads to zero exposure regarding
all other considered characteristics. Furthermore, the factor-mimicking weight vectors in
the subsequent columns of B now result in long-short portfolios with weights summing to
0. This is important since then w∗ eventually represents a proper portfolio with weights
summing to 1. The weight vector in the first column of B does not have further impact
on the final portfolio.

In terms of the applicability of this portfolio construction approach, a further essential
issue has to be clarified. Throughout the explanation of the OFA so far, it was assumed
that the inverse of the covariance matrix Σ−1 exists. However, this may not be the case
in practice. The properties of the sample covariance matrix, based on a history of past
stock returns, cause problems which have been documented by, e.g., Jobson and Korkie
(1980).

Dangl and Kashofer (2013) explain that issue as follows.1 A sample covariance
matrix Σ̂SMP is based on a matrix (T × n) of stock returns over the horizon from
t− (T − 1)∆t to t. The number of considered historical periods T depends on the in-
cremental ∆t over which returns are calculated (weekly, monthly, etc.) and the overall
time window.2 The number of observed stocks is represented by n. When dealing with
portfolios that contain many different stocks and hence T < n, the sample covariance
matrix Σ̂SMP is exposed to large estimation errors and it is singular. The authors state
that the rank of Σ̂SMP is bounded from above by min{n, T − 1} and they provide the

1The notation has been adapted to be consistent with other parts of the thesis.
2According to Dangl and Kashofer (2013), it is common to determine the covariance matrix based

on two years of weekly returns.
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following example. The weekly returns over two years of the 500 stocks in the S&P 500
are considered for estimating the sample covariance matrix. This gives n = 500 and
T = 104 (observations per stock) which means that Σ̂SMP has at most rank 103. In
such a case, the sample covariance matrix does not have full rank and is therefore not
invertible. Consequently, an alternative way is required to get a covariance matrix which
can be applied for this portfolio construction approach.

For that purpose, a so-called shrinkage method can be used. Shrinkage is a statistical
technique that goes back to Stein (1956). Efron and Morris (1977) present a general
introduction about shrinkage by addressing real-life examples. Eventually, Jorion (1986)
highlights the relevance of shrinkage for portfolio selection problems. With the aid of
shrinkage, the sample covariance matrix Σ̂SMP is combined with the covariance matrix
from a structural estimation Σ̂A (see Dangl and Kashofer, 2013). As such estimations are
based on rigid assumptions, shrinking goes along with ignoring information, comprised
in the sample covariance matrix, about individual stocks. The balance between losing
information contained in Σ̂SMP and increasing estimation error robustness through the
target Σ̂A can therefore be controlled by the shrinking intensity. The general approach
can be written as (see Ledoit and Wolf, 2004; Dangl and Kashofer, 2013)

Σ̂ = δΣ̂A + (1− δ)Σ̂SMP, (16)

with the weight δ ∈ (0, 1] representing the shrinkage intensity. The sample covariance
matrix Σ̂SMP is, so to speak, shrinked towards the shrinkage target Σ̂A.

There are different ways to determine the target (or estimated) covariance matrix
Σ̂A. Dangl and Kashofer (2013) present some of these methods. In the OFA, the
method called shrinkage towards a single-factor market model estimator (SMM) is used.
Therefore, this procedure is introduced in the following. The method builds on the idea
of a single-factor market model which is advocated by the CAPM (see Section 2.1). In
this case, the covariance matrix receives a structure which assumes that pairwise stock
covariances are induced by a single market factor. Thus, the target covariance matrix is
determined by (see Dangl and Kashofer, 2013)

Σ̂MM = β̂β̂
′
σ̂2

M + Σ̂I,M

=


β̂2
1 β̂1β̂2 . . . β̂1β̂n

β̂2β̂1 β̂2
2 . . . β̂2β̂n

...
...

. . .
...

β̂nβ̂1 β̂nβ̂2 . . . β̂2
n

 σ̂2
M +


σ̂2

I,1 0 . . . 0

0 σ̂2
I,2 . . . 0

...
...

. . .
...

0 0 . . . σ̂2
I,n

 ,

(17)

with β̂ as the column vector (n × 1) containing each stock i’s estimated market beta
β̂i (i = 1, . . . , n). σ̂2

M is the sample estimate of the market index variance while σ̂2
I,i

represents the sample estimate of the idiosyncratic variance of each stock’s returns.
These estimates vary over time as they depend on a historic window of returns up to a
certain point in time t. At that time t, the values β̂i and σ̂2

I,i are estimated by using a
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linear regression of each stock i’s most recent T returns ri,s on the corresponding market
index returns rM,s in the form

ri,s = αi + βirM,s + ϵi,s, s = t, . . . , t− T + 1. (18)

The number of observations per stock T depends on the data frequency and the size of
the rolling return window. The idiosyncratic variance3 is determined by σ̂2

I,i =
1

T−2

�
ϵ̂2i .

This regression is performed for all considered stocks (1 ≤ i ≤ n).

The estimated target covariance matrix Σ̂MM and the sample covariance matrix Σ̂SMP

can then be applied according to the above mentioned shrinkage form (16) to get the
final estimated covariance matrix (see Dangl and Kashofer, 2013)

Σ̂SMM = δSMMΣ̂MM + (1− δSMM)Σ̂SMP, (19)

with δSMM being the shrinkage intensity in this method. As already mentioned previ-
ously, selecting the shrinkage weight means a tradeoff between increasing the imposed
structure of the target matrix and losing information included in the sample matrix.
Consequently, researchers have dealt with the right choice of the weight and investigated
procedures to optimize the shrinkage intensity (see Ledoit and Wolf, 2003, 2004). In this
thesis, however, the fixed value δSMM = 0.5 is used for the shrinkage intensity instead of
an optimized value.

To sum up, the OFA is based on two essential parts. First, the tracking-error mini-
mization method represents the overall approach to determine the weights of the factor
portfolio. Second, the shrinkage method is required to get a covariance matrix which is
invertible and can therefore be applied in the overall calculation.

3.3 Correlated Factor Approach (CFA)

This approach follows a simpler procedure and can be seen as a classic way to construct
factor portfolios. As mentioned in Section 3.1, the difference between the two approaches
lies in the construction of the factor-based long-short portfolios. Ultimately, the long-
short portfolios in this approach consist of equal positive and equal negative firm weights.
For every factor, these weights are assigned only according to the related normalized rank
scores contained in the matrix S. In contrast to the OFA, the portfolios resulting from
this approach do not feature any special characteristics in terms of return volatility or
factor exposure.

In the following, I show how this construction procedure is actually set up. Let sj

3Greene (2003) discusses properties of a linear regression model and explains how to choose an
unbiased estimator of the variance term.
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be a column vector containing the rank scores of n firms regarding factor j in the form

sj = S.,j =


s1j

s2j
...

snj

 , (20)

with sij (i = 1, . . . , n) as the score of firm i on a normalized range from 0 to 100.
Based on the scores, a long-short portfolio is created. Firms with scores ≥ 50 receive
equal positive weights while firms with scores < 50 receive equal negative weights. For
illustration purposes, the long-short portfolio wj,c can be separated in a long component

wj,lo =


w1j,lo

w2j,lo

...

wnj,lo

 , (n× 1), wij,lo =

1/nlo sij ≥ 50

0 sij < 50
(21)

with nlo equal to the number of firms with a score ≥ 50, and a short component

wj,sh =


w1j,sh

w2j,sh

...

wnj,sh

 , (n× 1), wij,sh =

0 sij ≥ 50

− 1/nsh sij < 50
(22)

with nsh equal to the number of firms with a score < 50. The numbers nlo and nsh

are not necessarily the same. However, the weights in wj,lo always sum to +1 while
the weights in wj,sh always sum to −1. These two portfolio components added together
represent the overall long-short portfolio

wj,c = wj,lo+wj,sh =


w1j,lo + w1j,sh

w2j,lo + w2j,sh

...

wnj,lo + wnj,sh

 =


w1j,c

w2j,c

...

wnj,c

 , wij,c =

1/nlo sij ≥ 50

− 1/nsh sij < 50
(23)

with a resulting sum of weights equal to 0. Eventually, the final weights in the CFA are
determined similarly to the weights in the OFA (see resulting formula in (11)), such that

w = w0 + C∆b, (24)

with w0 as the index portfolio and ∆b representing the desired differential score. Here,
the basis weight vectors of the factor-based long-short portfolios are contained in the
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3.3. Correlated Factor Approach (CFA)

matrix C which is defined by

C =


1
s̄1
w11,c

1
s̄2
w12,c . . . 1

s̄m
w1m,c

1
s̄1
w21,c

1
s̄2
w22,c . . . 1

s̄m
w2m,c

...
...

. . .
...

1
s̄1
wn1,c

1
s̄2
wn2,c . . . 1

s̄m
wnm,c

 , (n×m). (25)

These basis weight vectors build on the aforementioned construction of the factor-based
long-short portfolios wj,c. However, there is still another criterion that has to be consid-
ered. In order to use (24) in an appropriate way, the basis weights in C with respect to
factor j have to lead to an exposure of 1 to that respective factor (compare with (14)).
This is not yet the case with the illustrated long-short portfolio wj,c since the exposure
w′

j,csj generally results in an average portfolio score s̄j ̸= 1. Therefore, the weights in
wj,c have to be normalized with that average score such that C.,j = 1

s̄j
wj,c eventually

suits as basis weight vector regarding factor j. In this way, the corresponding factor
exposure is equal to the portfolio score C′

.,jsj = 1 which is a prerequisite for the basis
weights in C.

Thus, the exposure to a selected factor can be controlled properly using a desired
differential score as it has been the case in the previous approach. Nevertheless, there is
an essential difference between the OFA and the CFA in terms of factor exposure. Due
to its orthogonality characteristic, the basis weights in B yield an exposure of 0 to all
factors other than the considered factor j (see (14)). This does not apply to the basis
weights in C which may also have a certain exposure to every other factor. This implies
for the application of (24) that the differential score ∆bj allows to control the exposure
to factor j but that will go along with uncontrolled influence on the exposure to the
other factors.
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Chapter 4

Analysis model

In this chapter, I describe how the analysis model, which is programmed in Python, is
set up. The model is based on various functions that enable backtesting through retro-
spective portfolio construction and return calculation. In the programmed functions, I
make use of a few quite helpful Python packages. The pandas1 library provides powerful
data analysis tools while the numpy2 package is used for matrix calculations. In terms
of visualizations, the libraries matplotlib3 and seaborn4 are applied. Throughout the
explanations in the following sections, I want to demonstrate the main functionalities of
the analysis model by providing concrete application examples. First of all, I introduce
some aspects regarding the used data.

4.1 Data and notation

The analyses in the backtest part of the thesis are done for US equities. The used dataset
is received from the data provider MSCI and contains various historic information on
the stock market index MSCI USA and its constituents on a weekly basis. According to
MSCI, the index is supposed to cover the large and mid cap segments of the US equity
market.5 The dataset provides data from January 1995 to June 2022.6

Generally, each row of the MSCI dataset represents the observation of a specific
firm at a certain point in time and contains various qualitative and quantitative stock
characteristics. In addition, a data row includes the weekly index return and the return
of the risk-free asset for that respective point in time. The following columns of the
dataset are used in the analysis model. The column ‘isin’ contains the international
securities identification number (ISIN) of a stock which also serves as identifier in the
model. The observation date is found in the column ‘date’. Since plenty of firms are
covered, there are usually many rows referring to the same observation date. The column

1https://pandas.pydata.org/docs/, last accessed 03-11-2022
2https://numpy.org, last accessed 03-11-2022
3https://matplotlib.org, last accessed 03-11-2022
4https://seaborn.pydata.org, last accessed 03-11-2022
5https://www.msci.com/our-solutions/indexes/developed-markets, last accessed 17-10-2022
6The dataset was provided by the IQAM Research Center in the course of an analysis performed for

IQAM Research.
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4.1. Data and notation

‘IsinIX ’ indicates if a stock was constituent of the index at that point in time. Here, the
value is either 1 for constituents or 0 for firms which were not part of the index. Further,
three return columns are essential for the analyses. The column ‘R’ contains the weekly
simple total stock return (full reinvestment of dividends is assumed) while the column
‘MSCI_US ’ contains the simple total index return and the column ‘Rf ’ contains the
return of the risk-free asset. These values are required to determine the excess stock and
index returns which are used for the calculations. In terms of factors, I already mentioned
that three different firm characteristics are considered. The underlying attribute of the
size factor is the market capitalization which is represented by the column ‘MCAP ’ in
the dataset. For the value factor, the book-to-price ratio in the column ‘BTP ’ is used
and the momentum factor is quantified by the 11-month momentum value7 contained in
the column ‘Mom11m’. In the upcoming sections, I may use the notations MCAP, BTP
and MOM to refer to the three factor-related firm characteristics.

So, the dataset points out whether a firm was an index constituent at an observed
point in time or not. Based on this information, the index portfolio can be constructed.
Figure 3 shows the number of index constituents over time according to the given data.

Figure 3: Number of constituents of the stock market index MSCI USA according to the
given dataset from August 2000 to June 2022.

Although the overall data history in the set goes back to 1995, the figure demonstrates
that analyses, which require information on index constituents, cannot be done in the
first several years of the time horizon. Only from around the middle of 2002, a stable
and suitable number of constituents is given. This means that proper backtests can be
implemented over the period limited from June 2002 to June 2022. Therefore, a 20-year
data history is available for analysis.

In the analysis model, covariance matrices are estimated on the basis of simple total

7The 11-month momentum is equal to the simple total return over 11 months in the period from
t− 12 to t− 2 since the return of the previous month is not considered by this value.
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Chapter 4. Analysis model

returns. In terms of return history and data frequency, 2-year rolling time windows with
weekly observations are utilized. For calculations that require stock or index returns,
the respective excess returns are generally applied. The excess return is determined by
subtracting the return of the risk-free asset from the simple total return of a stock or the
index. The rolling windows of excess returns play an essential part in the OFA as they
are eventually used for estimating the covariance matrices. Therefore, the structure of
these windows is presented in the following, exemplary for a set of n stocks. At time t,
the return window

R =


rt−T+1,1 rt−T+1,2 . . . rt−T+1,n

rt−T+2,1 rt−T+2,2 . . . rt−T+2,n

...
...

. . .
...

rt,1 rt,2 . . . rt,n

 , with rt,n = rtotalt,n − rrisk-free
t,n (26)

is retrieved from the dataset. As already mentioned before, the rolling window always
contains weekly returns over two years which results in 104 weekly return observations for
each stock (T = 104). The number of stocks nt depends first on the index constitution
at time t. Second, constituents with missing values (returns, firm characteristics), which
are relevant for any calculation in the model, are removed from the considered set of
stocks. The exact way how relevant stocks are selected is described in Section 4.2.1.
In the case of the index returns, the rolling window is generally built in the same way.
Obviously, it has only one instead of nt columns. Throughout this chapter, I use the
following notation:

n number of stocks

m number of different factors (firm characteristics)

T number of observations (weekly)

R matrix (T × n) of excess stock returns

Rm column vector (T × 1) of excess index returns

S matrix (n×m) of factor scores (rank scores)

Σ covariance matrix (n× n) of stock returns

w column vector (n× 1) of stock weights

b column vector (m× 1) of target scores

All the variables listed above generally change with time and should thus carry a sub-
script t. For brevity reasons, however, I omit the subscript at some points in the sections
below.

4.2 Portfolio construction

In this section, I describe how the portfolio construction is set up in the analysis model.
I divide the procedure in its key parts by making use of a few subsections. If necessary,
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4.2. Portfolio construction

I certainly distinguish between the two construction approaches presented in Chapter 3.

4.2.1 Stock selection

The selection of all relevant stocks at a considered point in time t mainly follows a two-
step process. First, stocks that were part of the index at time t, which is indicated by
the mentioned data field, are pre-selected. In a second step, it is examined for each
pre-selected stock whether all required data is available in the dataset. The following
conditions have to be met by a stock i:

(i) Every value in the rolling window of stock returns R.,i has to be contained for the
observed stock (see (26)). Additionally, the stock return at the time t+1 has to be
available as this value is required for the performance calculation (see Section 4.3).8

(ii) All three characteristic values MCAP, BTP and MOM have to be available at the
time t. Further, the two values MCAP and BTP must be greater than 0. These
values are required for assigning the firms with rank scores (see Section 4.2.2).

If any of the conditions is not met by stock i, it is removed from the stock set. Stocks
that fulfill all conditions are considered as relevant and are part of the remaining set of
stocks. Consequently, all further steps in the portfolio construction procedure are based
on this set of stocks. Ultimately, these firms will be found in the resulting portfolio for
the regarded point in time t. In order to simplify matters, this set of relevant firms is
labeled as Ft.

In the model, lists and sets are applied to carry out the mentioned operations and
to store the items. Below, a few short application examples of the model are provided.
Table 2 contains the number of firms in certain stages of the stock selection procedure for
three different observation dates. The numbers show that there is usually a significant

Table 2: Application example: Number of firms pre-selected, excluded and finally re-
maining during the stock selection procedure. Three different dates distributed over the
available data history are observed.

2002-06-07 2012-06-01 2022-06-03

Pre-selection 408 602 626

Violation of (i) or (ii) 38 42 58

Remaining 370 560 568

amount of firms where relevant values are missing. In these three cases, the exclusion
rate related to the pre-selected amount of stocks ranges from about 7% to about 10%.

8Actually, a more detailed analysis would be necessary to determine the respective reason for the
missing return at t+ 1 (delisting, default, etc.).

25



Chapter 4. Analysis model

4.2.2 Scoring

As explained in Section 3.1, rank scores serve as foundation for implementing factor-
based investment strategies in this thesis. The score of a firm regarding a certain factor j
quantifies the exposure of the firm to that factor. Essentially, the scoring itself is done
quite intuitively. At time t, the characteristic values with respect to factor j of all nt

firms in Ft are retrieved from the dataset (e.g. MCAP figures for the size factor). Then,
the firms are ranked based on their value on a range from 0 to nt − 1. Eventually,
the ranks of the firms represent their initial scores. This is done for each factor in the
following fashion:

• MCAP figures for size are ranked in descending order. Thus, the firm with the
smallest market capitalization in Ft receives the highest score. This may not be
intuitive at first glance. In fact, it was set due to the empirical findings regarding
the size factor. Since in this case firms with small values carry a premium, they
get the higher scores.

• BTP figures for value are ranked in ascending order. Thus, the firm with the
highest book-to-price ratio in Ft receives the highest score.

• MOM figures for momentum are ranked in ascending order. Thus, the firm with
the highest 11-month return in Ft receives the highest score.

In the model, the scoring is implemented with the rank() function which is integrated
in the pandas library. For the ranking, the average method is used which becomes
relevant when dealing with ties. If ties occur, the respective firms receive a score which
is equal to the average rank of those values. For example, there are two firms with equal
values for the subsequent ranks 250 and 251. Both firms then receive the average rank
(250 + 251)/2 = 250.5. More than two equal values are handled analogously.

Due to the fact that the number of firms nt in Ft generally varies over time (see
Table 2), the initial scoring range from 0 to nt − 1 would constantly change either.
Therefore, the scoring range is normalized to a scale from 0 to 100. This means that
each score s is normalized by s/(nt − 1) ∗ 100. Finally, the normalized scores for each
factor can be found in the columns of matrix St.

In the following, the scoring applied in the model is illustrated by providing two
different tables. Table 3 shows the scoring of a small set of firms regarding the size factor
for a specific date. The firms are sorted by their scores which are already contained in
normalized form. Hence, the three firms on the top are assigned with the three lowest
scores while the three firms at the bottom are assigned with the three highest scores in Ft.
Furthermore, the descending ranking order regarding the size factor becomes obvious in
this instance. Table 4 presents the normalized scores of another small set of firms within
Ft for all three factor-related characteristics. In this case, the firms are sorted by their
ISIN in alphabetical order which leads to the structure that is applied in the scoring
matrix St. In fact, the three columns of Table 4 containing the scores exactly represent
the matrix columns, such that
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4.2. Portfolio construction

St =


20.105820 44.797178 94.003527

66.490300 89.594356 79.188713
...

...
...

39.329806 36.507937 1.410935

 , (568× 3).

Until this point, there was no differentiation between the OFA and the CFA necessary.
The stock selection and the scoring procedure are implemented in the same way for both
portfolio construction approaches. However, the OFA requires an additional character-
istic as portfolio constraint (see Section 3.2) which adjusts the matrix to

St =


1 20.105820 44.797178 94.003527

1 66.490300 89.594356 79.188713
...

...
...

...

1 39.329806 36.507937 1.410935

 , (568× 4).

4.2.3 Shrinkage

As presented in Section 3.2, shrinkage enables to estimate a covariance matrix which
is invertible and can therefore be used for the tracking-error minimization. Since the
method is only applied in the OFA, this subsection is relevant for this particular approach
but not for the CFA. According to Section 3.2, shrinkage mainly follows a two-step
procedure.

First, the target covariance matrix Σ̂MM has to be determined by using (17) for the
observed point in time t. In order to do this, a linear regression (see (18)) is performed
for all stocks in Ft to estimate each stock i’s sample estimates for the market beta β̂i and
for the idiosyncratic variance σ̂2

I,i. The regression is based on stock i’s most recent return
window R.,i (see (26)) as well as the return window of the index Rm. Additionally, the
sample estimate of the market index variance σ̂2

M is needed. β̂i and σ̂2
M are calculated

by applying the integrated pandas functions cov() and var(), such that

β̂i =
cov(R.,i,Rm)

var(Rm)

leads to the sample estimate of stock i’s market beta and

σ̂2
M = var(Rm)

results in the sample estimate of the market index variance. In order to determine σ̂2
I,i,

a few intermediate steps are necessary. Referring to (18), the sample estimate α̂i is
calculated by

α̂i = r̄i − β̂ir̄m,

with r̄i and r̄m being the means of the returns of stock i and the market index. In a next
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Table 3: Application example: An extract of firms including their market capitalizations
and their corresponding scores. The MCAP values are given in million $.

t = 2022-06-03

ISIN Name MCAP Score

US0378331005 Apple Inc. 2,281,430 0.000000

US5949181045 Microsoft Corporation 1,914,359 0.176367

US02079K1079 Alphabet Inc. 1,444,781 0.440917

· · · · · · · · · · · ·
US22266L1061 Coupa Software Incorporated 5,275 99.647266

US70614W1009 Peloton Interactive, Inc. 4,142 99.823633

US1468691027 Carvana Co. 2,965 100.000000

Table 4: Application example: An extract of firms including their assigned scores re-
garding all three considered factors.

t = 2022-06-03

ISIN MCAP-Score BTP-Score MOM-Score

AN8068571086 20.105820 44.797178 94.003527

BMG0450A1053 66.490300 89.594356 79.188713

BMG169621056 68.253968 78.483245 91.710758

· · · · · · · · · · · ·
US98980F1049 69.488536 21.340388 71.428571

US98980G1022 54.497354 3.527337 60.317460

US98980L1017 39.329806 36.507937 1.410935

step, the difference between stock i’s real return and the return modeled by the linear
regression is required for each date considered in the return window. This differential
return is represented by the residual value ϵ̂i,s which is determined by rearranging (18)
into

ϵ̂i,s = ri,s − α̂i − β̂irm,s, s = t, . . . , t− T + 1,

with T being the number of observations for each stock. Eventually, stock i’s sample
estimate for the idiosyncratic variance can be calculated by9

σ̂2
I,i =

1

T − 2

�
ϵ̂2i .

As already mentioned above, this procedure is performed for each stock in Ft which then
allows to use (17) and receive the target covariance matrix Σ̂MM.

In the second main step of the shrinkage process, the estimated covariance matrix
9Greene (2003) discusses properties of a linear regression model and explains how to choose an

unbiased estimator of the variance term.
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Table 5: Application example: Rolling window of weekly excess stock returns over two
years for an extract of firms.

t = 2022-06-03

AN8068571086 BMG0450A1053 · · · US98980L1017

2020-06-12 -0.136000 -0.124957 · · · 0.057389

2020-06-19 0.037338 -0.041847 · · · 0.109117

2020-06-26 -0.115199 -0.055603 · · · 0.054678

· · · · · · · · · · · · · · ·
2022-05-20 0.009131 -0.013234 · · · -0.053971

2022-05-27 0.172226 0.044718 · · · 0.230247

2022-06-03 -0.011968 -0.015798 · · · -0.009262

Σ̂SMM is determined by using (19). Thus, the sample covariance matrix Σ̂SMP and the
shrinkage intensity δSMM are required in addition to Σ̂MM. The sample covariance matrix
is given by Σ̂SMP = cov(R) where the integrated pandas function cov() is applied again.
For the shrinkage intensity, the fixed value δSMM = 0.5 is used throughout the analysis
part.

In the following, a few illustrations from applying the model are provided. Table 5
represents a small extract of the 2-year return window for a given date. It shows the
weekly returns of three different stocks at the three first dates and the three last dates
in the window. The date at the bottom of the table is the considered date t for the
estimation of the covariance matrix. The table contains 104 dates because of the rolling
window parameters and a set of 568 relevant firms (compare with Table 2) sorted in
alphabetical order. These returns in matrix form represent R (104×568) at time t. Pro-
ceeding from this return window, the sample covariance matrix Σ̂SMP can be calculated
by

Σ̂SMP = cov(R) =


0.004762 0.001296 . . . −0.000682

0.001296 0.001211 . . . −0.000417
...

...
. . .

...

−0.000682 −0.000417 . . . 0.006130

 , (568× 568).

As mentioned in Section 3.2, the sample covariance matrix is singular and subject to
large estimation errors. For that reason, the rank of the matrix can be checked which
results in rank(Σ̂SMP) = 103. In fact, Σ̂SMP does not have full rank and is therefore not
invertible. This example shows that the sample covariance matrix cannot be used for
the minimization method and shrinkage has to be performed.

Accordingly, the sample covariance matrix Σ̂SMP is shrinked towards the target Σ̂MM
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by applying (17), (19) and the shrinkage intensity δSMM = 0.5. This leads to

Σ̂SMM = δSMMΣ̂MM + (1− δSMM)Σ̂SMP

=


0.004783 0.000870 . . . −0.000045

0.000870 0.001215 . . . 0.000063
...

...
. . .

...

−0.000045 0.000063 . . . 0.006157

 , (568× 568).

Comparing the values in Σ̂SMP and Σ̂SMM demonstrates that shrinkage goes along with
losing information contained in the sample covariance matrix. However, the rank of the
estimated covariance matrix now results in rank(Σ̂SMM) = 568. This is the full rank
which means that Σ̂SMM is invertible. It can thus serve as appropriate covariance matrix
for the tracking-error minimization method in the OFA.

4.2.4 Weight allocation

The last essential step of the portfolio construction procedure in the model is the al-
location of the portfolio weights. As explained in Chapter 3, in general a factor-based
long-short portfolio is added to the market-weighted index portfolio at time t in order
to adjust the factor exposure. Here, the two approaches differ in how the long-short
portfolio is determined. The approaches have already been thoroughly explained in Sec-
tion 3.2 and Section 3.3. Eventually, this subsection presents the main steps including
illustrations for each of the approaches.

Both approaches build on the calculation of the market-weighted index portfolio w0

consisting of all nt firms in Ft (see Section 4.2.1). At time t, the index portfolio is
received by

w0 =
1

V


MCAP1

MCAP2

...

MCAPn

 , V =
n�

i=1

MCAPi,

with MCAPi representing the market capitalization of stock i. The weights in w0 sum
to 1. Applied in the model, Table 6 shows an extract of the weights in w0 for a selected
date in tabular form. The subset is sorted by the weight in order to illustrate the weight
range within w0. For the portfolio, the average factor scores b0 can be calculated by

b0 = w′
0S =

�
1 17.187506 38.884204 58.315269



.

In this calculation, the scoring matrix St, which has been modified to meet the OFA
requirements at the end of Section 4.2.2, is applied. Thus, the first column contains the
value-weighted average of w0 which equals 1. Apart from the first column in b0, the
result states that w0 has significant exposure to large firms (note scoring order of size)
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Table 6: Application example: An extract of firms including their weights in the market-
weighted index portfolio w0, sorted by the weight.

t = 2022-06-03

ISIN Weight

US0378331005 0.063039

US5949181045 0.052896

US02079K3059 0.039921

· · · · · ·
US22266L1061 0.000146

US70614W1009 0.000114

US1468691027 0.000082

and perceptible exposures to rather highly-valued firms10 as well as firms with rather
high momentum. Applying the OFA or the CFA now allows to adjust these exposures
to a desired direction given by the differential scores ∆b.

In the OFA, the scoring matrix S and the inverse of the estimated covariance matrix
Σ−1 = Σ̂

−1

SMM are required to determine the factor-mimicking basis weights B for the
long-short portfolios with (12). Then, (11) in the form

wOFA,j = w0 + B.,j∆bj (27)

can be used with a selected differential score ∆bj to calculate the final portfolio wOFA,j

for factor j. Applying the model at time t, the basis weights

B = Σ−1S(S′Σ−1S)−1

=


−0.001424 −0.000003 −0.000020 0.000044

−0.020185 0.000113 0.000103 0.000059
...

...
...

...

0.001033 0.000031 0.000027 0.000056

 , (568× 4).

are received. The first column of B contains the portfolio, resulting from the portfo-
lio constraint as special characteristic, which will not be analyzed any further. Each
other column represents a factor-mimicking long-short portfolio with respect to a certain
factor. These portfolios consist of weights that lead to one additional score of factor
exposure towards the related factor and to zero exposure towards the other factors (see
Section 3.2). Last but not least, the final portfolio wOFA for each factor is determined

10An average value score of below 50 indicates a higher exposure to firms with low BTP ratios. Such
firms have rather high prices relative to their book values which makes them highly-valued. At the same
time, they are considered as low-value firms since they provide less value for their price compared to
firms with high BTP ratios.
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using the differential score ∆bj = 20. Table 7 shows all three resulting portfolios.

Table 7: Application example: An extract of firms including their final weights in every
considered OFA portfolio (∆b = 20).

t = 2022-06-03 ∆b = 20 ∆b = 20 ∆b = 20

ISIN Size Value Mom

AN8068571086 0.001634 0.001293 0.002560

BMG0450A1053 0.002709 0.002515 0.001636

BMG169621056 0.001701 0.002139 0.003943

· · · · · · · · · · · ·
US98980F1049 0.000692 -0.000322 0.000646

US98980G1022 0.000437 0.001259 0.001449

US98980L1017 0.001475 0.001396 0.001992

In the CFA, only the scores in S are needed to determine the basis weights C for the
long-short portfolios (see Section 3.3). Then, similarly to above, (24) in the form

wCFA,j = w0 + C.,j∆bj (28)

can be used in this case to calculate the final portfolio wCFA,j for factor j. Applying the
model at time t again, the basis weights C result in

C =


−0.00007 −0.00007 0.00007

0.00007 0.00007 0.00007
...

...
...

−0.00007 −0.00007 −0.00007

 , (568× 3).

Each column in C represents a long-short portfolio with respect to a certain factor.
According to the purpose, the creation of C has been defined in a way that the weights
in the portfolios always sum to 0. Same as in the OFA, the portfolio weights lead to
one additional score of factor exposure towards the related factor. Unlike in the OFA,
the portfolios are not only exposed to the related factor but also to the other factors
(see Section 3.3). The next step is again to determine the final portfolio wCFA for each
factor. The resulting portfolios, based on the differential score ∆bj = 20 for every factor,
are illustrated in Table 8.

Important to mention is that so far no short-sale constraints have been implemented
in the portfolio construction procedures. Therefore, negative weights can be found in
both Table 7 and Table 8.

In the following, the difference between the basis weights B and C in terms of their
implications on factor exposure is addressed. As already mentioned, the basis weight
vector in B with respect to factor j leads to the exposure of 1 towards factor j and to
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4.2. Portfolio construction

Table 8: Application example: An extract of firms including their final weights in every
considered CFA portfolio (∆b = 20).

t = 2022-06-03 ∆b = 20 ∆b = 20 ∆b = 20

ISIN Size Value Mom

AN8068571086 0.000280 0.000280 0.003092

BMG0450A1053 0.001863 0.001863 0.001863

BMG169621056 0.001856 0.001856 0.001856

· · · · · · · · · · · ·
US98980F1049 0.001848 -0.000964 0.001848

US98980G1022 0.001990 -0.000821 0.001990

US98980L1017 -0.000543 -0.000543 -0.000543

the exposure of 0 towards other factors. The basis weight vector in C with respect to
factor j results in the exposure of 1 towards factor j too. Nevertheless, it is also exposed
to the other factors. Accordingly, the effects on the final exposure caused by the two
approaches will differ. In order to illustrate the differences, the average factor scores
given by the index portfolio w0 (see Table 6), which have been calculated above,

b0 =
�
1 17.187506 38.884204 58.315269



,

can be observed in the first instance. Eventually, Table 9 shows the final factor exposure
of the portfolios resulting from both approaches. The first three rows of the table show
the special feature of the OFA. Each of the three OFA factor portfolios are related to one
certain factor j. More precisely, the factor-mimicking long-short portfolio with respect
to factor j has been used to modify the index portfolio w0. According to the table,
the final exposure to factor j is different to the corresponding average factor score of w0

which is contained in b0. In fact, the exposure is exactly increased by ∆b = 20. The final

Table 9: Application example: Factor exposure of the final OFA and CFA portfolios
(∆b = 20).

t = 2022-06-03

Portfolio Size Value Mom

wOFAsize 37.187506 38.884204 58.315269

wOFAvalue 17.187506 58.884204 58.315269

wOFAmom 17.187506 38.884204 78.315269

wCFAsize 37.187506 41.974365 53.494797

wCFAvalue 20.612422 58.884204 58.413960

wCFAmom 11.433936 37.679086 78.315269
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Chapter 4. Analysis model

exposure to the other factors apart from j is equal to the corresponding average factor
scores in b0. Apparently, the implemented weight adjustments did not influence the ex-
posure to the other factors at all. This is achieved by the orthogonality characteristic of
the OFA factor-mimicking basis weight vectors represented by the matrix B. While the
basis weights with respect to factor j have an exposure of 1 to the factor j, they have an
exposure of 0 to the other factors. In this way, the factor exposure of the final portfolios
can be fully controlled which is demonstrated by Table 9. Also, this characteristic
makes it possible to analyze the performance of considered factor portfolios
properly. Since implemented differential scores do not lead to unintended
exposure changes, performance differences can be clearly assigned to an ob-
served factor. This feature does not apply for the CFA which can be seen in the bottom
three rows of the table. Here, the final factor portfolios also show an exposure to factor j
which is increased exactly by ∆b = 20. However, the final exposure to the other factors
apart from j are not equal to the corresponding average factor scores in b0. In contrast
to before, they have obviously been influenced by the implemented weight adjustments.
This occurs due to the missing orthogonality feature of the basis weight vectors in the
matrix C. Similar to the OFA, the CFA basis weight vectors with respect to factor j

have an exposure of 1 to the factor j. The essential difference is that they do not have
an exposure of 0 to the other factors. That is why the final factor exposure cannot be
totally controlled by the CFA like it is the case with the OFA. Moreover, this causes
troubles in the performance interpretation of CFA factor portfolios. As implemented
differential scores generally come along with unintended exposure changes, performance
differences cannot be clearly assigned to an observed factor.

4.3 Performance calculation

Performance backtests regarding the discussed investment approaches play a key part in
this thesis. The implementation of the factor strategies in the model are set up in a way
that a constructed factor portfolio generates a return over one week before a new portfolio
is constructed and invested again. This procedure is performed on a weekly basis and
results in weekly portfolio returns. The portfolio construction has been described in
Section 4.2. The return and performance calculation are presented in the following by
observing a general factor portfolio w over K periods. Basically, this factor portfolio w,
which could represent any other of the discussed portfolio strategies, is constructed and
invested first at t0. From then on, the strategy is executed until tK where the investment
period of the last portfolio ends.

At each time t = t0, . . . , tK−1, the portfolio wt is constructed from scratch according
to the methodology explained in Section 4.2. In doing so, the construction is based on
the latest data at the respective point in time. In general, this leads to a varied set of
stocks Ft and modified portfolio weights every week. Then, the constructed portfolio wt

is invested and generates the return

rp,t+1 = wt ∗ rt+1,

34



4.3. Performance calculation

over the course of one week until t+ 1. rt+1 contains the weekly returns from t to t+ 1

for all portfolio constituents. The weekly portfolio return rp,t+1 can also be written as

rp,t+1 = rm,t+1 + rls,t+1 = w0,t ∗ rt+1 + wls,t ∗ rt+1,

where it is separated between the return generated by the index portfolio w0,t and the
return generated by the long-short factor portfolio wls,t. wls,t is equal to Bt∆b using
the OFA and Ct∆b using the CFA. This return is determined weekly at each time
t = t1, . . . , tK which leads to K portfolio returns over the observed period, illustrated by

rp =


rp,t1

rp,t2
...

rp,tK

 , (K × 1)

These returns can then be used to calculate the performance of the strategy by

pt+1 = pt ∗ (1 + rp,t+1), p0 = 100,

with p0 serving as starting value for the performance backtest. Applying this equation
successively gives the weekly performance values

p =



p0 = 100

p1 = p0 ∗ rp,t1
p2 = p1 ∗ rp,t2

...

pK = pK−1 ∗ rp,tK


, ((K + 1)× 1),

resulting in the value pK . Eventually, pK represents the performance which would have
been achieved retrospectively by implementing the strategy over the selected time hori-
zon. The model allows to carry out performance backtests for all discussed factor strate-
gies wOFAsize, wOFAvalue, wOFAmom, wCFAsize, wCFAvalue, wCFAmom as well as for the
simple index strategy w0.

In the following, again some examples are provided to illustrate outcomes from ap-
plying the model. In doing so, the implementation of the index strategy and the factor
strategies are examined over four periods. Table 10 shows the generated returns for all
considered strategies related to the OFA. As the strategies are started with the initial
portfolio construction and investment on 2022-05-06, there are no returns available for
this date. Table 11 shows the achieved performance of these strategies throughout the
observed time horizon. The strategies related to the CFA are implemented in the same
way. Thus, only the performance values of those strategies are provided in Table 12 for
comparative purposes.

In this case, the performance of all the strategies does not differ that much because of
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Chapter 4. Analysis model

the short horizon. The tables should rather serve as quick outcome examples in order to
demonstrate the aforementioned procedure. In the actual analysis part of the thesis, the
backtests are certainly performed over multi-year time horizons to examine the strategies
in more detail.

Table 10: Application example: Portfolio returns of the index strategy and the OFA
strategies (∆b = 20) over four periods from 2022-05-06 to 2022-06-03.

∆b = 20

Date w0 wOFAsize wOFAvalue wOFAmom

2022-05-06 - - - -

2022-05-13 -0.022981 -0.020960 -0.022143 -0.026571

2022-05-20 -0.032368 -0.031759 -0.026236 -0.038967

2022-05-27 0.063737 0.061836 0.060469 0.062181

2022-06-03 -0.010569 -0.011320 -0.011594 -0.012046

Table 11: Application example: Portfolio performance of the index strategy and the
OFA strategies (∆b = 20) over four periods from 2022-05-06 to 2022-06-03.

∆b = 20

Date w0 wOFAsize wOFAvalue wOFAmom

2022-05-06 100.000000 100.000000 100.000000 100.000000

2022-05-13 97.701948 97.903973 97.785745 97.342915

2022-05-20 94.539501 94.794629 95.220199 93.549751

2022-05-27 100.565200 100.656349 100.978068 99.366786

2022-06-03 99.502341 99.516954 99.807357 98.169777

Table 12: Application example: Portfolio performance of the index strategy and the
CFA strategies (∆b = 20) over four periods from 2022-05-06 to 2022-06-03.

∆b = 20

Date w0 wCFAsize wCFAvalue wCFAmom

2022-05-06 100.000000 100.000000 100.000000 100.000000

2022-05-13 97.701948 97.774365 97.544734 97.709500

2022-05-20 94.539501 94.801499 95.104281 94.198838

2022-05-27 100.565200 100.606865 101.111078 100.328961

2022-06-03 99.502341 99.331945 99.804140 99.349463
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Backtests

In this chapter, I document the outcomes generated by implementing various backtests.
The analyses are based on the model which I explain in Chapter 4. Particularly, the
focus of the backtests lies on the return characteristics of the addressed factor-based
investment strategies. I also investigate the impact of modified factor exposure through
the OFA and the CFA on the portfolio performance. Moreover, I observe the performance
as well as the average portfolio scores of the market-weighted index portfolio. Further, I
am interested in the consequences of short-sale constraints on the portfolio approaches.
For the backtests, I use the 20-year time period from the beginning of June 2002 until the
beginning of June 2022. The following investment strategies (portfolios) are analyzed in
the sections below:

w0 Market-weighted index portfolio

wOFAsize Factor portfolio with adjusted size exposure built by the OFA

wOFAvalue Factor portfolio with adjusted value exposure built by the OFA

wOFAmom Factor portfolio with adjusted momentum exposure built by the OFA

wCFAsize Factor portfolio with adjusted size exposure built by the CFA

wCFAvalue Factor portfolio with adjusted value exposure built by the CFA

wCFAmom Factor portfolio with adjusted momentum exposure built by the CFA

In these cases, the increased size exposure means the overweighting of small firms while
the increased value and momentum exposure indicate the overweighting of low-valued
firms and firms with high momentum. Below, I also observe the long-short parts of the
portfolios only that are responsible for adjusting the factor exposure. There, I use the
suffix ‘LS’ for the portfolio notations above (e.g. wOFAsizeLS).

5.1 Market-weighted index portfolio

The market-weighted index portfolio w0 represents the foundation of each of the men-
tioned strategies when it comes to the weight allocation in the final portfolios at a certain
point in time t. As mentioned previously, w0 is constructed based on the underlying in-
dex data of the MSCI USA. However, w0 has not exactly the same constellation as the

37



Chapter 5. Backtests

original index. This is due to the stock selection procedure where all firms with missing
data are excluded from the relevant set of stocks Ft (see Section 4.2.1). Eventually, this
leads to less portfolio constituents and in further consequence to a little performance
deviation compared to the original index. This consequence is illustrated by Figure 4.
In this case, the adjustments in the index portfolio result in a slight overperformance of

Figure 4: Performance deviation between the market-weighted index portfolio w0 applied
in the analysis model and the original index MSCI USA over the time period from 2002-
06-07 to 2022-06-10.

w0. That matter will not be analyzed any further. However, since w0 serves as reference
portfolio in the analysis model, I wanted to provide this information at that point.

In the following, I look at another interesting aspect of the index portfolio w0. In
Section 4.2.4, the average factor scores of w0 are calculated exemplary for a certain point
in time. As explained previously, those average scores b0 represent the exposure of the
index portfolio to the considered factors. Figure 5 shows the factor exposure of w0 over
the available 20-year time period.

The blue line shows the exposure to the size factor which is constantly on a rather low
level close to 20 throughout the entire period. As already mentioned in Section 4.2.4, the
low exposure is caused by the scoring order of the size factor. While small firms receive
high scores, large firms get low scores in the analysis model. Since w0 is a market-
weighted portfolio, the firm weights are allocated in reversed order to the scores, with
large firms receiving high weights. Therefore, w0 is exposed to large firms leading to
low average size scores. Compared to the others, the blue line runs quite stable. This is
mainly because of the direct relation between the portfolio weights and the size scores.

The value exposure is represented by the green line which starts at an average score
of about 36 and ends at a score of about 39. So, the value exposure at the beginning
of the period is similar to the exposure at the end of the window. However, in this case
obvious fluctuations can be observed in between. Mostly throughout the time period, the
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Figure 5: Average factor scores (exposure) of the market-weighted index portfolio w0

over the time period from 2002-06-07 to 2022-06-03.

line moves between an exposure of about 35 and 50. Thus, the constituents of w0 have
rather been highly-valued. Temporarily, the exposure was close to 50 which indicates a
balanced value exposure of the portfolio.

Last but not least, the red line shows the momentum exposure of w0. In the 20-
year period, the exposure increased from an average score of about 48 to about 58 amid
significant fluctuations. At some points the exposure was at the lower levels of a bit
under 45. On the other hand, the exposure nearly reached a value of 70 mid-April 2020.
Most of the time the factor score is above 50 which points out that w0 is exposed to
firms with rather high momentum.

5.2 Factor-based long-short portfolios

In this section, I put the focus only on the factor-mimicking long-short component of the
portfolios. Since the respective weights in the long-short parts always sum to 0, they do
not represent proper portfolios. Nevertheless, the long-short components play a key part
in the portfolio construction as they enable to adjust the factor exposure in a desired
direction. Therefore, I examine the returns and the performance attributable to them
independent from the portfolio core component w0. Furthermore, it is interesting to
observe differences between the basis weights determined by the OFA and the CFA.

Accordingly, Table 13 shows the correlation coefficients between the returns gener-
ated by the basis weight vectors of both the OFA and the CFA. Returns within the
available 20-year period have been used for the calculation. The table points out a
few considerable relations. First of all, it can be seen that there is hardly any correla-
tion between the returns of the OFA basis long-short portfolios. This is actually quite
interesting since the OFA construction framework is supposed to impose orthogonality
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Table 13: Correlation coefficients between the returns generated by the OFA and CFA
basis weight vectors (∆b = 1) over the time period from 2002-06-07 to 2022-06-10.

LS OFAsize OFAvalue OFAmom CFAsize CFAvalue CFAmom

OFAsize 1.000000 -0.024242 0.040262 0.442367 0.098093 -0.070243

OFAvalue -0.024242 1.000000 -0.086432 0.167255 0.459340 -0.211546

OFAmom 0.040262 -0.086432 1.000000 -0.472630 -0.558175 0.769475

CFAsize 0.442367 0.167255 -0.472630 1.000000 0.732061 -0.719029

CFAvalue 0.098093 0.459340 -0.558175 0.732061 1.000000 -0.748767

CFAmom -0.070243 -0.211546 0.769475 -0.719029 -0.748767 1.000000

on the factor exposure. Apparently, this leads to barely correlated returns which further
indicate a considerable degree of return orthogonality. With respect to the OFA, the
data therefore suggest an unexpected interdependence between the factor exposure and
the returns. On the other hand, the CFA factor returns show a different picture. In fact,
they seem to be highly cross-contaminated given the corresponding correlation coeffi-
cients. In contrast to the OFA, the CFA does not implement the orthogonality feature
regarding the factor exposure in the portfolio construction. The data points out a signif-
icant positive correlation between the CFAsizeLS and the CFAvalueLS returns. Further,
there are significant negative correlations between the CFAmomLS and both other CFA
returns. In terms of performance interpretation, these relations cause troubles which will
be addressed on the basis of Table 14 below.

Across the two construction approaches there is a low correlation between the OFA-
sizeLS and the CFAsizeLS returns according to Table 13. Similar to that, also the
OFAvalueLS and the CFAvalueLS returns are weakly correlated. At the same time,
the OFAmomLS and the CFAmomLS returns show a significant correlation between
each other. Additionally, there is a low to moderate negative correlation between the
OFAmomLS returns and both the CFAsizeLS and CFAvalueLS returns.

Next, I also want to address the retrospective performance realized by the long-
short factor portfolios throughout the 20-year time period. For that purpose, Table 14
summarizes the backtest results at the end of the period for varied differential scores.
Obviously, the size of the differential score only has an amplifying effect on the realized
performance. Whether a long-short portfolio influences the performance in a positive or
negative way is already determined by the corresponding basis weight vectors. Anyway,
the table shows some interesting backtest outcomes for the observed period. For example,
an increased exposure to the size factor comes with a premium with both construction
approaches. On the other hand, the momentum factor has negative performance impli-
cations in both approaches. Considering the value factor, the impact depends on the
particular approach. While the factor causes an underperformance with the OFA, the
factor generates a premium with the CFA. With the CFAsizeLS and the CFAvalueLS
portfolio not only the two best-performing long-short portfolios are based on the CFA.
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Table 14: Performance of the factor-based long-short portfolios with varying ∆b over
the time period from 2002-06-07 to 2022-06-10 (p0 = 100).

LS OFAsize OFAvalue OFAmom CFAsize CFAvalue CFAmom

∆b = 1 100.3948 99.6002 99.5094 100.8836 100.7722 99.3436

∆b = 5 101.9815 98.0078 97.5380 104.4498 103.8385 96.6451

∆b = 10 103.9819 96.0332 95.0565 108.9751 107.6110 93.1230

∆b = 15 106.0008 94.0770 92.5601 113.5693 111.3005 89.4590

∆b = 20 108.0378 92.1395 90.0530 118.2251 114.8905 85.6790

Likewise, the worst-performing long-short strategy, represented by the CFAmomLS port-
folio, originates from the CFA.

When interpreting the performance displayed by Table 14, the correlation data con-
tained in Table 13 has to be taken into account. Especially with respect to the CFA,
the high cross-contamination in the factor returns causes troubles in the performance
assessment. More precisely, the relations make it difficult to attribute performance to
a certain factor. For example, the CFAvalueLS returns have a correlation of about
73% to the CFAsizeLS returns. Therefore, it is difficult to assess whether the relatively
good performance of the CFAvalueLS portfolio comes from the value factor itself or
rather from the fact that the portfolio levers on the size factor which in turn enables
a good performance. Similarly, this interpretation issue follows from the correlation of
about -72% between the CFAmomLS and the CFAsizeLS returns. Again, it cannot be
clearly evaluated whether the underperformance of the CFAmomLS portfolio is caused
by negative performance implications of the momentum factor or by the situation that
the CFAmomLS portfolio takes disadvantage from the size effect in reversed form. In
contrast to that, the overperformance of the OFAsizeLS portfolio as well as the un-
derperformance of the OFAvalueLS and the OFAmomLS portfolio can be attributed to
the particular factors. This is possible due to the orthogonality feature in the factor
exposure.

Another point becomes apparent looking at Table 14. In fact, the extent of the
performance implications seems to be generally greater in the CFA than in the OFA.
This makes sense since the OFA portfolios are constructed to be minimum tracking-error
portfolios. In turn, this means that the corresponding factor-based long-short portfolios
are the minimum-variance portfolios meeting the desired score characteristics. The CFA
portfolios are constructed without taking the return volatility into account. Thus, they
show a behavior with greater effects on performance both in a positive and a negative
sense.

In addition to Table 14, the aforementioned findings can be observed in Figure 6.
Moreover, the line charts show the performance over time. For the purpose of illustration,
I used the differential score ∆b = 20 in the figure. In this way, the differences in the
behavior of the long-short strategies are presented more clearly than it would be the case
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Figure 6: Performance of the factor-based long-short portfolios (∆b = 20) over the time
period from 2002-06-07 to 2022-06-10 (p0 = 100).

with lower differential scores. Indeed, the figure shows some interesting phenomena. In
general, both sides of the figure make obvious that the time around the financial crisis
marks a key period in terms of consequences for the total performance. In fact, different
trend-setting developments with respect to the long-short portfolios took place in the
years from about 2007 until 2010 according to the backtests.

Considering the left-hand side with the OFA charts first, it becomes apparent that
the OFAvalueLS portfolio was the best-performing long-short strategy in the first few
years followed by the OFAmomLS portfolio. Both of them had a positive performance
in the beginning in contrast to the OFAsizeLS portfolio which slightly moved downward
until 2008. However, from then on a trend reversal is recognizable. The OFAsizeLS
portfolio started into a multi-year upward period before moving rather sidewards in the
more recent years to end up as the best-performing OFA long-short strategy. At the same
time, the OFAvalueLS portfolio passed through an overall downward trend following the
positive performance from the first few years. Furthermore, the OFAmomLS portfolio
was subject to a significant performance drop around 2009. After that, there has not
been any serious recovery and it more or less moved sidewards until the end of the
observation period.

On the right-hand side of Figure 6, the development of the CFA long-short portfo-
lios is displayed. Likewise, the value factor had the most positive performance impact
over the first few years until about 2007. The size factor also had positive influence
while the momentum factor was the one with negative performance impact over that
particular period. The time following is characterized by significant movements. In
fact, the CFAsizeLS and the CFAvalueLS portfolio had a short but steep performance
decrease before they entered a positive trend from around 2009 again. On the other
hand, the CFAmomLS portfolio had a clear performance increase before passing through
a sharp performance drop in 2009. Eventually, the CFAsizeLS portfolio outperformed
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the CFAvalueLS portfolio from then on. However, neither of them showed a real pos-
itive performance from about 2010 until the end of the considered period. Especially,
the CFAvalueLS portfolio started into a significant downward trend in 2017 that lasted
until about 2021. This trend is followed by a sharp recovery. The CFAmomLS portfolio
essentially moved sidewards from 2010 going through certain up and down trends until
the end of the window.

Actually, some of the relations discussed based on the correlation coefficients in Ta-
ble 13 can be found again in Figure 6. For example, the line charts on the left behave
quite independent from each other throughout the observation period. In contrast to
that, a pattern is recognizable in the right-hand charts. While the CFAsizeLS and the
CFAvalueLS portfolio move similar to each other, the path of the CFAmomLS portfolio
seems to be opposed to the others in many cases. These occurrences correspond to the
correlation data in Table 13. Comparing the two size portfolios OFAsizeLS and CFA-
sizeLS, similar trends can be found at least at some stages over the observation period.
This is also valid for the two value portfolios across both approaches featuring similar-
looking behavior at times. Accordingly, moderate correlation coefficients are stated in
the table. Table 13 highlights a significant correlation between the two momentum port-
folios. This is also underlined by the respective line charts in red which behave quite
similarly in many stages.

With respect to the momentum factor, Figure 6 shows another phenomenon which
has already been mentioned in Section 2.3.3. There, I referred to the sharp losses of the
momentum long-short portfolio that have occurred from time to time (see Daniel et al.,
2012; Daniel and Moskowitz, 2016). As explained above, these momentum crashes usu-
ally happen during periods of general market recoveries after bigger declines. Consistent
with that, such crashes can be detected in the momentum line charts in Figure 6. The
first one is visible around 2003 where the market started to recover from the downturn
in the early 2000s. The second and most significant one occurred around 2009. Here,
the market found itself in a rebound following the financial crisis 2007-2008. Therefore,
the figure makes obvious that these momentum crashes represent serious setbacks for
the performance of the long-short momentum strategies.

5.3 Overall factor-based portfolios

Eventually, I analyze the performance of the overall factor-based portfolios which consist
of the index portfolio w0 combined with the long-short factor portfolios. As already
mentioned previously, w0 represents the core of the overall portfolios while the additional
long-short components adjust the factor exposure. In contrast to Section 5.2 before, this
section deals with proper portfolios featuring weights summing to 1.

First of all, I am interested in the total performance of the overall factor portfolios.
For that purpose, Table 15 summarizes the retrospective performance of the index as
well as all considered OFA and CFA strategies over the 20-year time period. Same as
in Table 14, the backtests have been done for varied differential scores in order to get an
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Table 15: Performance of the overall factor-based portfolios with varying ∆b over the
time period from 2002-06-07 to 2022-06-10 (p0 = 100).

w0 OFAsize OFAvalue OFAmom CFAsize CFAvalue CFAmom

∆b = 1 476.9233 478.7938 474.9184 474.9566 479.9917 479.3688 475.0733
∆b = 5 476.9233 486.3110 466.9387 467.0162 492.2487 488.8948 467.1996
∆b = 10 476.9233 495.7854 457.0555 456.9367 507.5122 500.1901 456.3383
∆b = 15 476.9233 505.3445 447.2759 446.7043 522.6793 510.7513 444.4236
∆b = 20 476.9233 514.9862 437.6025 436.3386 537.7151 520.5234 431.5469

idea of the impact of the exposure level. According to the expectations, all three strate-
gies where the long-short components generated a positive performance, were able to
outperform the index portfolio w0. This applies to the OFAsize, CFAsize and CFAvalue
portfolio. Analogously, the other three strategies performed worse than w0. Further,
the performance ranking in Table 15 is consistent with the one in Table 14. As al-
ready figured out in Section 5.2, the CFAsize strategy turns out to be best-performing
retrospectively over the observed 20-year period. It outperforms w0 by about 61 per-
centage points overall. In contrast, the CFAmom strategy underperforms w0 by about
45 percentage points.

At that point, I want to follow up on an observation made in Section 5.2. I men-
tioned the smaller performance implications of the OFA compared to the CFA which
I attributed to the minimum-variance characteristics of the OFA long-short portfolios.
In order to also examine this based on the backtest data, I determined the annualized
tracking-error of the overall factor portfolios towards w0 over the considered time period.1

Table 16 contains the values which were again calculated for varied differential scores.
Indeed, the table shows that the values of the OFA portfolios, which are supposed to be

Table 16: Annualized tracking-error of the overall factor-based portfolios with varying
∆b towards w0 over the time period from 2002-06-07 to 2022-06-10.

TE OFAsize OFAvalue OFAmom CFAsize CFAvalue CFAmom

∆b = 1 0.000624 0.000675 0.001294 0.001499 0.001992 0.002439

∆b = 5 0.003121 0.003374 0.006469 0.007494 0.009959 0.012197

∆b = 10 0.006242 0.006747 0.012938 0.014989 0.019918 0.024394

∆b = 15 0.009364 0.010121 0.019406 0.022483 0.029876 0.036592

∆b = 20 0.012485 0.013494 0.025875 0.029977 0.039835 0.048789

minimum tracking-error portfolios, are smaller than those of the CFA portfolios for all
factors. Therefore, the determined tracking-errors underline the expectations. Also, the
table illustrates that the values increase the higher the applied differential score which is

1I used the formula TE =
�

(w − w0)′Σ(w − w0) ∗ 52 for the annualized tracking-error. The used
weekly return history comprises the entire 20-year time period.
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obvious. Based on the performance and the tracking-error, the information ratio (IR) of
each factor strategy can be calculated.2 In order to do that, I annualized the performance
figures from Table 15. The annualized values are presented by Table 17.3 The difference
in annualized performance between each factor portfolio and w0 divided by the related
tracking-error in Table 16 results in each portfolio’s information ratio. Eventually, all
information ratios are displayed by Table 18. The values allow to compare the perfor-

Table 17: Annualized return of the overall factor-based portfolios with varying ∆b over
the time period from 2002-06-07 to 2022-06-10.

w0 OFAsize OFAvalue OFAmom CFAsize CFAvalue CFAmom

∆b = 1 0.081241 0.081452 0.081013 0.081017 0.081588 0.081517 0.081031
∆b = 5 0.081241 0.082295 0.080098 0.080107 0.082952 0.082582 0.080128
∆b = 10 0.081241 0.083340 0.078943 0.078929 0.084607 0.083819 0.078858
∆b = 15 0.081241 0.084375 0.077777 0.077708 0.086205 0.084952 0.077432
∆b = 20 0.081241 0.085400 0.076599 0.076443 0.087746 0.085980 0.075849

Table 18: Information ratio of the overall factor-based portfolios with varying ∆b based
on annualized returns and with w0 as benchmark.

IR OFAsize OFAvalue OFAmom CFAsize CFAvalue CFAmom

∆b = 1 0.339032 -0.337513 -0.172655 0.231351 0.138843 -0.086123

∆b = 5 0.337794 -0.338879 -0.175343 0.228340 0.134667 -0.091255

∆b = 10 0.336243 -0.340584 -0.178701 0.224571 0.129442 -0.097672

∆b = 15 0.334690 -0.342285 -0.182056 0.220796 0.124214 -0.104090

∆b = 20 0.333133 -0.343983 -0.185407 0.217015 0.118981 -0.110509

mance of the factor portfolios by also taking their risk, measured by the tracking-error,
into account. The effects can be seen quite well by considering the three factor portfolios
that outperform the benchmark w0. Table 17 shows again that the CFAsize portfolio had
the best overall performance ahead of the CFAvalue and the OFAsize portfolio. Adding
risk as additional evaluation criterion, the situation changes however. In fact, on a risk-
adjusted basis, the OFAsize portfolio can be seen as the most attractive factor strategy
ahead of the CFAsize and the CFAvalue portfolio (see Table 18). This fact highlights
the idea behind the OFA properties.

Additionally, Figure 7 shows the performance behavior of the overall portfolios over
time in comparison to the index portfolio. The top part of the figure contains the
performance charts of the OFA strategies while the performance charts of the CFA
strategies are displayed in the bottom part. Again, I used the differential score ∆b = 20

for illustration purposes. Basically, the line charts now combine the behavior of both
2The information ratio puts the performance difference between a portfolio and a benchmark in

relation to the corresponding tracking-error.
3Since the performance figures are based on a 20-year time period, I calculated the annualized per-

formance for each portfolio by using the formula py = ( pK
p0

)1/20 − 1.
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Chapter 5. Backtests

Figure 7: Performance (log scale) of the overall factor-based portfolios (∆b = 20) over
the time period from 2002-06-07 to 2022-06-10 (p0 = 100).

the market component and the long-short components. All OFA and CFA line charts
show a significant similarity to the performance chart of w0. This is due to the fact
that the index portfolio represents the core of each of the factor-based portfolios. The
deviations of the factor strategies from w0 are caused by overlaying the related long-short
portfolios. In the displayed cases, the deviations from w0 correspond to the long-short
behavior discussed in Section 5.2 and illustrated in Figure 6. Like already ascertained
before, the performance charts in Figure 7 exhibit that the size portfolio generated the
highest performance with both approaches over the 20-year period. At the same time,
the momentum portfolios had the worst performance.

In the following, I want to address the resulting factor premiums with respect to both
the OFA and the CFA. Thus, Table 19 comprises the premium generated by each factor-
based portfolio over the considered 20-year time period. Important to mention here is
that the values are obtained from dividing the absolute performance differences between
the factor portfolios and the index portfolio by the applied differential score. Accordingly,
all factor strategies that perform better than w0 lead to positive premiums. In turn, the
factor premiums of the portfolios, which underperform w0, are negative. Further, the
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Table 19: Premium generated by the overall factor-based portfolios with varying ∆b
over the time period from 2002-06-07 to 2022-06-10. The values are given in percent per
additional factor score.

OFAsize OFAvalue OFAmom CFAsize CFAvalue CFAmom

∆b = 1 1.870494 -2.004908 -1.966691 3.068394 2.445533 -1.849967

∆b = 5 1.877533 -1.996920 -1.981419 3.065072 2.394303 -1.944746

∆b = 10 1.886210 -1.986786 -1.998659 3.058885 2.326681 -2.058502

∆b = 15 1.894748 -1.976492 -2.014599 3.050402 2.255198 -2.166646

∆b = 20 1.903142 -1.966043 -2.029238 3.039587 2.180003 -2.268820

table shows that the exact magnitude of the premiums depends on the differential score.
The highest factor premium overall is achieved by the CFAsize portfolio and results in
around 3%. The best-performing OFA strategy, which is represented by the respective
size portfolio, yields a factor premium of around 1.9%. The three underperforming factor
strategies lead to negative premiums in the region of -2%.

5.4 Balanced OFA portfolio

In this section, I put the focus on a specific factor portfolio that is based on the OFA.
Essentially, this exemplary strategy should demonstrate an interesting application op-
portunity of the OFA. As already mentioned at some prior stages of the thesis, the OFA
is special in terms of its implications on the factor exposures. In fact, through the or-
thogonality characteristic, the exposure to a certain factor can be influenced without
any consequences on the exposure to the other factors. Thus, the factor exposure can be
fully controlled which is not possible with the CFA (see Chapter 3 and Section 4.2.4).

In the following, I address a factor portfolio where the constellation is enabled through
the OFA. I examine the performance of that strategy, denoted as OFAbal50, which
features balanced exposure to all three considered factors. In that case, this means that
the average portfolio score at each point within the observation period results in 50 for
every factor. In order to reach the target scores, the required differential scores depend on
the average factor scores of the index portfolio w0 which vary over time (see Figure 5).
Accordingly, the differential score regarding each factor j has to be determined each
point in time t, such that ∆j

b,t = b − bj
0,t (b = 50). This distinguishes this strategy

from the strategies discussed above where the differential scores were fixed. Moreover,
in the OFAbal50 strategy all three factor exposures are modified simultaneously in one
portfolio. This is also different to the factor strategies above where only the exposure to
one factor has been adjusted.

Eventually, Figure 8 shows that OFAbal50 outperformed w0 clearly in retrospect.
Moreover, it seems that there are hardly any periods where the strategy lost significantly
against the index portfolio. The strategies behaved quite similarly until the end of the
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Figure 8: Performance (log scale) of a factor-based portfolio with balanced exposure
(b = 50) over the time period from 2002-06-07 to 2022-06-10 (p0 = 100).

financial crisis around the beginning of 2009. From then on, the OFAbal50 started
to perform better than w0. In interim stages, the line charts moved a little closer
again. However, in many periods the factor strategy managed to outperform the index.
Ultimately, the performance difference at the end of the entire observation period results
in 107 percentage points in favor of the OFAbal50 portfolio.

5.5 Short-sale constraints

In the above sections, the factor strategies have been examined simply by definition.
Whether the resulting portfolio weight of a company is positive or negative has not
played a role so far. Depending on the applied differential score, overlaying the index
portfolio w0 with a long-short portfolio can obviously lead to negative weights in the
overall portfolio. In this section, I want to take that aspect into account and test the
limitations of the original factor strategies by considering short-sale constraints.

First of all, I am interested in the particular differential score levels that can be
implemented without having any company with negative weights in the portfolios. Briefly
speaking, the maximum exposure change has to be figured out where the overall factor
portfolio would lose its long-only attribute. This has to be examined for both positive
and negative ∆b values since negative weights can be caused by either increasing or
decreasing factor exposure. Furthermore, the calculations have to be done at each point
in time separately as the portfolio constellations vary over time. The respective backtest
results for all OFA and CFA factor portfolios are displayed in Figure 9 and Figure 10.

In general, the figures show that already the application of small differential scores
yield negative weights in the overall factor portfolios. The maximum score decreases,
which are represented by the line charts in the bottom parts of the figures, result in
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Figure 9: Maximum applicable differential score ∆b before the first occurrence of a
negative weight in the OFA space over the time period from 2002-06-07 to 2022-06-03.

Figure 10: Maximum applicable differential score ∆b before the first occurrence of a
negative weight in the CFA space over the time period from 2002-06-07 to 2022-06-03.
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relatively low absolute values in basically all cases. The negative differential scores of
the OFA portfolios mainly move within a range of 0 and -2. Analogously, the differential
score range for the CFA portfolios lies between 0 and -4. The top parts of the figures
contain the maximum score increases. Here, the picture is a little different. In fact, the
maximum differential scores for the value and momentum portfolios also remain on low
levels within ranges between 0 and 2 as well as 0 and 4 respectively. At the same time, the
maximum differential scores for the size portfolios step out of line and reach higher levels.
While the OFAsize line chart moves in a quite volatile manner within a range between 2
and 9, the CFAsize line chart moves much more steadily in a range between 9 and 12. The
higher absolute values in these two cases are due to the relation of w0 and the size factor.
On one side, large firms receive high weights in w0 as the portfolio is market-weighted.
On the other side, large firms tend to have negative basis weights in the corresponding
long-short portfolio in consequence of the scoring order related to the size factor. Hence,
the constellations of w0 and the basis weights more likely allow higher differential scores
in these cases. The difference of the OFAsize and the CFAsize line charts in terms
of fluctuations comes from the particular calculation method of the basis weights (see
Chapter 3). In the CFA, the basis weights are determined only according to the factor
scores. Therefore, the negative weights in the long-short portfolio are always calculated
against the portfolio weights in w0 which are related to the larger companies. Since the
long-short portfolio contains equal negative weights, always the smallest company that
only just receives negative basis weights is decisive for the maximum positive differential
score for CFAsize. Typically, that differential score should not be subject to unsteady
short-term movements. In contrast, the basis weights in the OFA are determined by
the optimization method described in Section 3.2. Here, the allocation procedure is not
that straightforward and hence the decisive company cannot be anticipated in such an
obvious manner. Thus, the blue line charts in the top parts of Figure 9 and Figure 10
correspond to expectations.

As already mentioned above, the differential score ranges where the overall factor
portfolios consist of long-only weights are exhausted quickly. Typically, already little
modifications in the factor exposure yield negative weights in the final portfolio. A
differential score of e.g. 4 in positive or negative direction leads to the loss of the long-only
attribute in most of the cases. Only the size portfolios usually allow somewhat greater
margins in positive direction. Here, the maximum score increases reach levels of about 9
and 12 respectively according to the provided figures. Essentially, this means that long-
only factor strategies can only be implemented with the model in a very limited form.
In order to enable backtests of long-only strategies in a more flexible way, I integrated
the portfolio construction under short-sale constraints in the analysis model.

With respect to the OFA, the long-only portfolio construction is again based on the
above-introduced minimization problem which is given by (5) in Section 3.2. The first
difference compared to above is that this problem is here extended with two weight
conditions. They should enable the construction of proper long-only portfolios w where
each weight wi is greater or equal to 0. Moreover, all weights in w have to sum to 1.
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Thus, the adapted minimization problem can be written as

min
w

�
1

2
(w − w0)

′Σ(w − w0)

�
,

such that S′w = b,
n�

i=1

wi = 1 and wi ≥ 0.

The second difference from above lies in the problem solving. While above the problem
is solved analytically, the Python solver package cvxpy4 is used at this point to determine
the long-only minimum tracking-error (LOMTR) weights. Important to mention is that
the orthogonality feature of the factor portfolios is gradually lost here.5 Accordingly, I
will denote the corresponding factor strategies with the term LOMTR.

With respect to the CFA, short-sale constraints have been integrated directly in the
construction framework described in Section 3.3. In terms of the general weight calcula-
tions, nothing has been changed to the basic framework from above. The main difference
is that the construction framework is applied within a loop to eliminate negative weights.
Initially, the CFA factor portfolio w is determined as ever by using (28) on the basis
of the relevant set of stocks Ft. Then, the loop comes into play which is configured as
follows:

(i) All negative weights in w are set to 0 and concerned firms are excluded from further
calculations.

(ii) Remaining firms with non-negative weights in w are subjected to the construction
procedure again. This means that both the market weights w0 and the basis weights
contained in C are determined from scratch based on the remaining set of firms (see
Section 3.3 and Section 4.2.4). Then, (28) is applied again to receive the portfolio
w with modified weights.

(iii) Above steps (i) and (ii) are repeated until w only consists of weights greater or
equal to 0. Thus, w represents the long-only CFA (LOCFA) portfolio. All firms
from the initial set of stocks Ft are now contained in w with weights that are either
positive or equal to zero.

In the following, I analyze the performance implications of the construction frameworks
just introduced which take short-sale constraints into account. Similar to the original
factor strategies discussed in the sections above, I implemented backtests for the LOMTR
and the LOCFA portfolios. In particular, I am interested in the effects of the short-sale
constraints on the total performance and in the performance differences from the original
factor strategies. Therefore, Table 20 summarizes the total performance over the 20-
year time period of the index as well as all mentioned long-only factor strategies. As
before, the backtests have been done for varied differential scores.

4https://www.cvxpy.org, last accessed 08-03-2023
5Whenever a further short-sale constraint becomes binding, the direction of the portfolio adaptation

changes. This change in direction keeps the marginal adaptation orthogonal regarding only those stocks
that have still positive weights. However, the overall adaptation loses orthogonality with ∆b.
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Table 20: Performance of the overall factor-based long-only portfolios with varying ∆b
over the time period from 2002-06-07 to 2022-06-10 (p0 = 100).

LO w0 MTRsize MTRvalue MTRmom CFAsize CFAvalue CFAmom

∆b = 1 476.9233 478.3981 471.9322 469.0348 479.9917 479.3978 475.2205
∆b = 5 476.9233 488.7889 463.6364 462.9831 492.2487 488.8543 470.5781
∆b = 10 476.9233 496.3305 448.3306 458.7680 508.5100 499.2958 450.7730
∆b = 15 476.9233 502.7171 435.6431 440.1097 557.6296 538.3368 426.9710
∆b = 20 476.9233 508.8964 421.6237 436.5819 661.4936 627.7021 453.5997

The table shows that the performance differences between the LOMTR portfolios
and the original OFA portfolios (see Table 15) are basically not higher than a couple
of percentage points. The performance of the long-only portfolios is typically a bit
worse than the OFA performance without considered short-sale constraints. In a few
cases, especially at lower differential scores, the LOMTR performance actually turns
out slightly better or almost the same as the OFA performance. At ∆b = 20, the
LOMTRsize portfolio lies about 6 percentage points behind the OFAsize portfolio over
the entire period. Overall, the LOMTRvalue portfolio performs about 16 percentage
points worse than the OFAvalue portfolio which represents the biggest occuring difference
between the LOMTR and the OFA portfolios. The LOMTRmom performance is nearly
equal to the OFAmom performance. It seems that, also at higher differential scores, the
minimum tracking-error attribute ensures that the impact of the short-sale constraints
are kept within reasonable limits. Nevertheless, in the case of the LOMTR portfolios,
the short-sale constraints appear to reduce performance, at least from certain ∆b levels.

Considering the LOCFA portfolios, Table 20 makes obvious that the level of ∆b influ-
ences the relative performance to the CFA portfolios (see Table 15) significantly. While
the performance differences are rather limited at lower differential scores, the deviations
become quite large at ∆b = 15 and ∆b = 20 especially. At ∆b = 20, the LOCFAsize
portfolio outperforms the CFAsize portfolio by about 124 percentage points over the
full horizon. The LOCFAvalue performance lies about 107 percentage points above the
CFAvalue performance. Also, the LOCFAmom performance is better than the CFAmom
performance by about 22 percentage points overall. The implementation of short-sale
constraints in the CFA leads to substantial portfolio modifications at higher differential
score levels. Since increasing ∆b results in a greater number of negative portfolio weights
that are set to 0, fewer and fewer firms remain that are actually considered in the final
stages of the portfolio construction loop. Apparently, this has quite positive performance
implications in particular with respect to the LOCFAsize and the LOCFAvalue strategy.

Last but not least, I want to put the focus briefly on the LOCFAsize strategy which
shows the best retrospective performance over the considered 20-year time period. Ac-
tually, it outperformed w0 by about 185 percentage points. Since that is quite a con-
siderable number, I am also interested in the performance behavior of that particular
long-only factor strategy over time. For that purpose, Figure 11 provides the corre-
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Figure 11: Performance (log scale) of the LOCFAsize portfolio (∆b = 20) over the time
period from 2002-06-07 to 2022-06-10 (p0 = 100).

sponding illustration. It shows the performance of the LOCFAsize portfolio applied with
∆b = 20 over the 20-year time period in comparison to the w0 performance. Observing
both line charts, three stages stand out in terms of relative performance. In fact, the
blue line (LOCFAsize performance) features steeper increases than the black dotted line
(w0 performance) in the stages following the market downturns of 2002, 2008 and 2020.
Apparently, the strategy enables to generate superior returns in the periods of major
market recoveries. The outperformance in those stages seems to be the main driver of
the strong overall LOCFAsize performance.
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Chapter 6

Conclusions

In this thesis, I investigate two factor-based portfolio construction approaches. The
approaches build on the idea that factor exposure is quantified by weighted portfolio
scores. For that purpose, rank scores with respect to factor-related firm characteristics
are assigned to portfolio constituents in the first place. Both approaches combine a
market-weighted index portfolio as reference component and a factor-mimicking long-
short portfolio as adjusting component. In fact, the long-short portfolio is utilized with
desired differential scores to modify the exposure to the considered factors. The two
approaches differ in the methodology applied to construct the long-short portfolios. The
orthogonal factor approach (OFA) is based on a tracking-error minimization method
and further utilizes factor-mimicking portfolios with orthogonal exposure to selected
firm characteristics. Therefore, the factor-mimicking portfolios in the OFA implement
pure single-factor exposure and come without any unintended exposure to other factors.
The correlated factor approach (CFA) represents a classic methodology to build factor
portfolios without coming with any special property regarding return volatility or factor
exposure. Thus, the CFA comes along with unintended factor exposure which causes
troubles in the performance interpretation of corresponding factor portfolios.

The aim of this research work is to learn more about the return characteristics of
orthogonalized factor-mimicking portfolios. Moreover, the thesis should provide infor-
mation about the performance implications of the three factors size, value and momen-
tum. In order to address these research topics, I create an analysis model with the
programming language Python that comprises functions for both portfolio construction
approaches. The MSCI USA index serves as reference portfolio. The model is set up
to retrieve required stock and index information from a comprehensive dataset and to
determine portfolio returns on a weekly basis. With the aid of this model, I perform
backtests for factor portfolios based on both the OFA and the CFA over a 20-year time
period from June 2002 to June 2022. Eventually, I use the backtest results to analyze
and compare the observed factor portfolios with respect to return and risk aspects.

Research question 1: According to the first research question, ‘What are the re-
turn characteristics of factor portfolios that implement orthogonal exposure to selected
firm characteristics? Does orthogonality in the space of firm characteristics translate
into uncorrelated factor returns? ’, I study the return characteristics of factor portfolios
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that implement orthogonal exposure to selected firm characteristics. Actually, I find a
considerable degree of orthogonality in the returns generated by the factor-mimicking
long-short portfolios originated from the OFA. This is illustrated by the respective cor-
relation coefficients. It is particularly interesting since the actual purpose of the OFA
is to orthogonalize the factor exposure. The fact that the orthogonality property in the
space of firm characteristics leads to uncorrelated factor returns represents a key finding
of this thesis. The corresponding research subquestion of whether exposure orthogonal-
ity translates into uncorrelated factor returns can therefore be answered with yes. In
contrast, the correlation coefficients between the CFA factor returns point out a high
cross-contamination. In terms of return volatility, I observe that the OFA portfolios
show significantly lower tracking-errors relative to the reference portfolio compared to
the CFA portfolios. This is according to expectations as the OFA construction frame-
work makes use of a tracking-error minimization which is not the case with the CFA.
The effects of the OFA characteristics become apparent from taking the information
ratios related to the different factor strategies into account. In the space of the OFA
portfolios, only the size factor realizes a positive information ratio. The value and the
momentum factor lead to negative ratios. Furthermore, the OFAsize portfolio yields the
highest information ratio of any considered factor portfolio. This is the case despite the
fact that both the CFAsize and the CFAvalue portfolio generate a higher overall per-
formance. However, this outperformance comes along with a higher risk measured by
the tracking-error. Therefore, the OFA turns out as the most attractive approach when
investing benchmark-oriented.

Research question 2: According to the second research question, ‘What are the
effects of the three considered factors size, value and momentum on the portfolio perfor-
mance? ’, I observe the impact of the three factors size, value and momentum on the
portfolio performance. I find that size is the only factor that realizes a positive premium
with either of the two approaches. In contrast, the momentum factor leads to a negative
premium in both cases. The value factor yields a negative premium in the OFAvalue
portfolio and a positive premium in the CFAvalue portfolio. The positive premium of
the CFAvalue portfolio has to be treated with caution however. Due to the high cross-
contamination in the CFA factor returns, it is difficult to assess whether the CFAvalue
premium comes from the value factor itself or rather from the fact that the portfolio
levers on the size factor.
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Appendix A

Python implementation

Below, I provide the key functions of the analysis model written in Python.

A.1 Packages and basic input parameters

import pandas as pd
import numpy as np
import matp lo t l i b . pyplot as p l t
import matp lo t l i b . dates as mdates
import matp lo t l i b . t i c k e r as t i c k e r
import seaborn as sns
import cvxpy as cp

window_yrs = 2
weight_smm = 0.5

A.2 Stock selection

# Retr i eve s t o c k re tu rns
def get_returns_stocks ( df_firmchar , ref_date , window_yrs ) :

f i rms_in ix = df_firmchar [ ( df_firmchar [ ’ date ’ ] == ref_date )\
& ( df_firmchar [ ’ I s in IX ’ ] == 1 ) ] [ ’ i s i n ’ ] . t o l i s t ( )

f i rms_in ix . s o r t ( )
df_returns_temp = df_firmchar . p ivot_table ( va lue s=’R ’ ,

index=’ date ’ , columns=’ i s i n ’ , dropna=False )
df_returns = df_returns_temp [ f i rms_in ix ] / 100
df_returns . index . name = None
df_returns . columns . name = None
end = df_returns . index . get_loc ( re f_date ) + 1
s t a r t = end − (window_yrs ∗52)
return df_returns . i l o c [ s t a r t : end +1 , : ]
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A.2. Stock selection

# Li s t f i rms t ha t do not meet s e l e c t i o n c r i t e r i a
def l i s t_ret_nan ( df_firmchar , ref_date , window_yrs ) :

df_returns = get_returns_stocks ( df_firmchar , ref_date , \
window_yrs )

ser_returns_count = df_returns . count ( )
l s t = ser_returns_count [ ser_returns_count < \

len ( df_returns ) ] . index . t o l i s t ( )
return l s t

def list_mcap_nan ( df_firmchar , re f_date ) :
df_nan = df_firmchar [ ( df_firmchar [ ’ date ’ ] == ref_date ) & \

( df_firmchar [ ’ I s in IX ’ ] == 1) & \
( ( df_firmchar [ ’MCAP’ ] > 0) == False ) ]

l s t = df_nan [ ’ i s i n ’ ] . t o l i s t ( )
return l s t

def l ist_btp_nan ( df_firmchar , re f_date ) :
df_nan = df_firmchar [ ( df_firmchar [ ’ date ’ ] == ref_date ) & \

( df_firmchar [ ’ I s in IX ’ ] == 1) & \
( ( df_firmchar [ ’BTP’ ] > 0) == False ) ]

l s t = df_nan [ ’ i s i n ’ ] . t o l i s t ( )
return l s t

def list_mom_nan ( df_firmchar , re f_date ) :
df_nan = df_firmchar [ ( df_firmchar [ ’ date ’ ] == ref_date ) & \

( df_firmchar [ ’ I s in IX ’ ] == 1) & \
( ( df_firmchar [ ’Mom11m ’ ] . i sna ( ) ) == True ) ]

l s t = df_nan [ ’ i s i n ’ ] . t o l i s t ( )
return l s t

# Create o v e r a l l f i rm ex c l u s i on l i s t
def get_firms_excl ( df_firmchar , ref_date , window_yrs ) :

s e t 1 = set ( l i s t_ret_nan ( df_firmchar , ref_date , window_yrs ) )
s e t2 = set ( list_mcap_nan ( df_firmchar , re f_date ) )
s e t3 = set ( l ist_btp_nan ( df_firmchar , re f_date ) )
s e t4 = set ( list_mom_nan ( df_firmchar , re f_date ) )
l s t = l i s t ( s e t1 | s e t 2 | s e t3 | s e t 4 )
return l s t

# Create l i s t wi th r e l e v an t f i rms
def get_f i rms_re l ( df_firmchar , ref_date , window_yrs ) :

63



Appendix A. Python implementation

s e t_or ig = set ( df_firmchar [ ( df_firmchar [ ’ date ’ ] == \
ref_date ) & df_firmchar [ ’ I s in IX ’ ] == 1 ] [ ’ i s i n ’ ] )

s e t_exc l = set ( get_firms_excl ( df_firmchar , ref_date , \
window_yrs ) )

l s t = l i s t ( s e t_or ig − set_exc l )
l s t . s o r t ( )
return l s t

A.3 Scoring

# Assign normal ized s core s based on f irm c h a r a c t e r i s t i c s
def get_mcap_scores ( df_firmchar , ref_date , l i s t_ f i rm s ) :

n = len ( l i s t_ f i rm s ) − 1
df_mcap = df_firmchar [ df_firmchar [ ’ date ’ ] == \

ref_date ] [ [ ’ i s i n ’ , ’MCAP’ ] ] . set_index ( ’ i s i n ’ )
d f_scores = df_mcap . l o c [ l i s t_ f i rm s ] . rank ( ascending= \

Fal se ) − 1
df_scores . index . name = None
df_scores . rename ( columns={ ’MCAP’ : ’ s_mcap ’ } , i np l a c e=True )
df_scores = ( df_scores /n) ∗ 100
return df_scores

def get_btp_scores ( df_firmchar , ref_date , l i s t_ f i rm s ) :
n = len ( l i s t_ f i rm s ) − 1
df_btp = df_firmchar [ df_firmchar [ ’ date ’ ] == \

ref_date ] [ [ ’ i s i n ’ , ’BTP’ ] ] . set_index ( ’ i s i n ’ )
d f_scores = df_btp . l o c [ l i s t_ f i rm s ] . rank ( ) − 1
df_scores . index . name = None
df_scores . rename ( columns={ ’BTP’ : ’ s_btp ’ } , i np l a c e=True )
df_scores = ( df_scores /n) ∗ 100
return df_scores

def get_mom_scores ( df_firmchar , ref_date , l i s t_ f i rm s ) :
n = len ( l i s t_ f i rm s ) − 1
df_mom = df_firmchar [ df_firmchar [ ’ date ’ ] == \

ref_date ] [ [ ’ i s i n ’ , ’Mom11m ’ ] ] . set_index ( ’ i s i n ’ )
d f_scores = df_mom. l o c [ l i s t_ f i rm s ] . rank ( ) − 1
df_scores . index . name = None
df_scores . rename ( columns={ ’Mom11m ’ : ’s_mom ’ } , i np l a c e=True )
df_scores = ( df_scores /n) ∗ 100
return df_scores
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# Create pandas dataframe wi th f irm score s
def get_scores_df ( df_firmchar , ref_date , l i s t_ f i rm s ) :

s_mcap = get_mcap_scores ( df_firmchar , ref_date , \
l i s t_ f i rm s ) [ ’ s_mcap ’ ]

s_btp = get_btp_scores ( df_firmchar , ref_date , \
l i s t_ f i rm s ) [ ’ s_btp ’ ]

s_mom = get_mom_scores ( df_firmchar , ref_date , \
l i s t_ f i rm s ) [ ’s_mom ’ ]

l i s t_one s = [1 for i in range ( len ( l i s t_ f i rm s ) ) ]
d_scores = { ’ ones ’ : l i s t_ones , ’ s_mcap ’ : s_mcap , \

’ s_btp ’ : s_btp , ’s_mom ’ : s_mom}
df_scores = pd . DataFrame ( data=d_scores )
return df_scores

# Create numpy array wi th f irm score s
def get_scores_m ( df_firmchar , ref_date , l i s t_ f i rm s ) :

d f_scores = get_scores_df ( df_firmchar , ref_date , \
l i s t_ f i rm s )

m_scores = df_scores . to_numpy ( )
return m_scores

A.4 Shrinkage

# Perform l i n e a r r e g r e s s i on
def get_betas ( df_returns_stocks , df_returns_index ) :

df_returns = pd . concat ( [ df_returns_index , \
df_returns_stocks ] , ax i s =1)

df_cov = df_returns . cov ( ) . i l o c [ 1 : , 0 ]
var_index = df_returns_index [ ’MSCI_US ’ ] . var ( )
ser_betas = df_cov / var_index
df_betas = ser_betas . to_frame ( )
df_betas . rename ( columns={ ’MSCI_US ’ : ’ beta ’ } , i np l a c e=True )
return df_betas

def get_alphas ( df_returns_stocks , df_returns_index ) :
mean_r_stocks = df_returns_stocks . mean ( )
mean_r_index = df_returns_index [ ’MSCI_US ’ ] . mean ( )
df_calc = get_betas ( df_returns_stocks , df_returns_index )
df_calc [ ’mean_ri ’ ] = mean_r_stocks
df_calc [ ’mean_rm ’ ] = mean_r_index
df_calc [ ’ alpha ’ ] = df_calc [ ’mean_ri ’ ] − df_calc [ ’ beta ’ ] \

∗ df_calc [ ’mean_rm ’ ]
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df_alpha = df_calc [ ’ alpha ’ ] . to_frame ( )
return df_alpha

def ge t_eps i l ons ( df_returns_stocks , df_returns_index ) :
l i s t_ f i rm s = df_returns_stocks . columns . t o l i s t ( )
l i s t_da t e s = df_returns_stocks . index . va lue s . t o l i s t ( )
df_indexret = pd . concat ( [ df_returns_index ] ∗ \

len ( l i s t_ f i rm s ) , ax i s =1)
df_indexret . se t_ax i s ( l i s t_ f i rms , ax i s =1, i np l a c e=True )
df_alphas_temp = get_alphas ( df_returns_stocks , \

df_returns_index ) .T
df_alphas = pd . concat ( [ df_alphas_temp ]∗ len ( l i s t_da t e s ) , \

ax i s =0)
df_alphas . se t_ax i s ( l i s t_date s , ax i s =0, i np l a c e=True )
df_betas = get_betas ( df_returns_stocks , df_returns_index )
df_betaXindexret = df_indexret . copy ( )
for i in range ( len ( l i s t_ f i rm s ) ) :

df_betaXindexret . i l o c [ : , i ] = \
df_betaXindexret . i l o c [ : , i ] ∗ df_betas . i l o c [ i , 0 ]

d f_eps i l ons = df_returns_stocks − df_alphas − \
df_betaXindexret

return d f_eps i l ons

def ge t_id iovar s ( df_returns_stocks , df_returns_index ) :
d f_eps i l ons = get_eps i l ons ( df_returns_stocks , \

df_returns_index ) .T
n = len ( d f_eps i l ons . columns . t o l i s t ( ) )
df_calc = df_eps i l ons . copy ( )
df_calc [ ’ sum_squares ’ ] = ( d f_eps i l ons ∗∗2 ) .sum( ax i s =1)
df_calc [ ’ i d i o v a r ’ ] = df_calc [ ’ sum_squares ’ ] / (n−2)
df_id iovar = df_calc [ ’ i d i o v a r ’ ]
return df_id iovar

# Determine the t a r g e t covar iance matrix
def get_cov_mm( df_returns_stocks , df_returns_index ) :

var_index = df_returns_index [ ’MSCI_US ’ ] . var ( )
m_cov_sample = df_returns_stocks . cov ( ) . to_numpy ( )
v_betas = get_betas ( df_returns_stocks , \

df_returns_index ) . to_numpy ( )
m_idiovar = np . diag ( ge t_id iovar s ( df_returns_stocks , \

df_returns_index ) )
m_cov_mm = ( v_betas @ v_betas . t ranspose ( ) ) ∗ \
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var_index + m_idiovar
return m_cov_mm

# Shrink the sample covar iance matrix towards the t a r g e t
def get_cov_smm( df_returns_stocks , df_returns_index , \

weight_smm ) :
m_cov_sample = df_returns_stocks . cov ( ) . to_numpy ( )
m_cov_mm = get_cov_mm( df_returns_stocks , df_returns_index )
m_cov_smm = weight_smm ∗ m_cov_mm + (1 − weight_smm) ∗ \

m_cov_sample
return m_cov_smm

A.5 Weight allocation

# Determine market we i gh t s
def get_weights_market ( df_firmchar , window_yrs , start_date , \

end_date ) :
df_mcap_all = df_firmchar . p ivot_table ( va lue s=’MCAP’ , \

index=’ date ’ , columns=’ i s i n ’ , dropna=False )
df_mcap_all . index . name = None
df_mcap_all . columns . name = None
s t a r t = df_mcap_all . index . get_loc ( start_date )
end = df_mcap_all . index . get_loc ( end_date )
df_mcap = df_mcap_all . i l o c [ s t a r t : end +1 , : ] . copy ( )
f i rms = df_mcap . columns . va lue s . t o l i s t ( )
d_weights = {}
for i in range (1 , len (df_mcap)+1):

date = df_mcap . i l o c [ i −1: i ] . index . va lue s [ 0 ]
f i rms_re l = get_f i rms_re l ( df_firmchar , date , \

window_yrs )
for j in range ( len ( f i rms ) ) :

i f f i rms [ j ] not in f i rms_re l :
df_mcap . i l o c [ i −1, j ] = 0

else :
continue

sum_mcap = df_mcap . i l o c [ i −1: i ] . sum( ax i s =1) [0 ]
df_mcap . i l o c [ i −1: i ] = df_mcap . i l o c [ i −1: i ] / sum_mcap
df_weights = df_mcap . i l o c [ i −1: i ] . T
df_weights = df_weights [ df_weights . i l o c [ : , 0 ] > 0 ]
df_weights . rename ( columns={date : ’w_mkt ’ } , \

i np l a c e=True )
d_weights [ date ] = df_weights
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d f_ f i na l = pd . concat ( d_weights )
return d f_ f i na l

# Determine OFA ba s i s we i gh t s
def get_bweights_ofa ( df_firmchar , df_excreturns_st , \

df_excreturns_ix , df_mktweights , ref_date , \
window_yrs , weight_smm ) :
l i s t_ f i rm s = \

df_mktweights . l o c [ re f_date ] . index . va lue s . t o l i s t ( )
end_st = df_excreturns_st . index . get_loc ( re f_date ) + 1
s ta r t_st = end_st − (window_yrs ∗52)
end_ix = df_excreturns_ix . index . get_loc ( re f_date ) + 1
s ta r t_ix = end_ix − (window_yrs ∗52)
df_exc_st = \

df_excreturns_st [ l i s t_ f i rm s ] . i l o c [ s ta r t_st : end_st , : ]
df_exc_ix = df_excreturns_ix . i l o c [ s ta r t_ix : end_ix , : ]
m_cov_smm = get_cov_smm( df_exc_st , df_exc_ix , weight_smm)
m_scores = get_scores_m ( df_firmchar , ref_date , l i s t_ f i rm s )
m_bweights = np . l i n a l g . inv (m_cov_smm) @ m_scores @ \

np . l i n a l g . inv ( m_scores .T @ np . l i n a l g . inv (m_cov_smm) @ \
m_scores )

df_bweights = pd . DataFrame (m_bweights , \
columns=[ ’ w_special ’ , ’w_OFA_size ’ , ’w_OFA_value ’ , \
’w_OFA_mom’ ] , index=l i s t_ f i rm s )

return df_bweights

# Determine CFA ba s i s we i gh t s ( i n i t i a l )
def get_bwe ights_c fa_in i t ia l ( df_firmchar , df_mktweights , \

re f_date ) :
l i s t_ f i rm s = \

df_mktweights . l o c [ re f_date ] . index . va lue s . t o l i s t ( )
# Mcap
df_mcap = get_mcap_scores ( df_firmchar , ref_date , \

l i s t_ f i rm s )
df_mcap [ ’w_cat ’ ] = np . where (df_mcap [ ’ s_mcap ’ ] < 50 , −1, 1)
n_pos = df_mcap [ df_mcap [ ’w_cat ’ ] > 0 ] [ ’w_cat ’ ] . count ( )
n_neg = df_mcap [ df_mcap [ ’w_cat ’ ] < 0 ] [ ’w_cat ’ ] . count ( )
df_mcap [ ’w_mcap ’ ] = np . where (df_mcap [ ’w_cat ’ ] < 0 , \

df_mcap [ ’w_cat ’ ] / n_neg , df_mcap [ ’w_cat ’ ] / n_pos )
# Btp
df_btp = get_btp_scores ( df_firmchar , ref_date , l i s t_ f i rm s )
df_btp [ ’w_cat ’ ] = np . where ( df_btp [ ’ s_btp ’ ] < 50 , −1, 1)
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n_pos = df_btp [ df_btp [ ’w_cat ’ ] > 0 ] [ ’w_cat ’ ] . count ( )
n_neg = df_btp [ df_btp [ ’w_cat ’ ] < 0 ] [ ’w_cat ’ ] . count ( )
df_btp [ ’w_btp ’ ] = np . where ( df_btp [ ’w_cat ’ ] < 0 , \

df_btp [ ’w_cat ’ ] / n_neg , df_btp [ ’w_cat ’ ] / n_pos )
# Mom
df_mom = get_mom_scores ( df_firmchar , ref_date , l i s t_ f i rm s )
df_mom[ ’w_cat ’ ] = np . where (df_mom[ ’s_mom ’ ] < 50 , −1, 1)
n_pos = df_mom[df_mom[ ’w_cat ’ ] > 0 ] [ ’w_cat ’ ] . count ( )
n_neg = df_mom[df_mom[ ’w_cat ’ ] < 0 ] [ ’w_cat ’ ] . count ( )
df_mom[ ’w_mom’ ] = np . where (df_mom[ ’w_cat ’ ] < 0 , \

df_mom[ ’w_cat ’ ] / n_neg , df_mom[ ’w_cat ’ ] / n_pos )
# Combined
df_weights = pd . concat ( [ df_mcap [ ’w_mcap ’ ] , \

df_btp [ ’w_btp ’ ] , df_mom[ ’w_mom’ ] ] , a x i s =1)
return df_weights

# Determine CFA ba s i s we i gh t s ( normal ized )
def get_bweights_cfa ( df_firmchar , df_mktweights , re f_date ) :

df_weights = get_bwe ights_c fa_in i t ia l ( df_firmchar , \
df_mktweights , re f_date )

l i s t_ f i rm s = \
df_mktweights . l o c [ re f_date ] . index . va lue s . t o l i s t ( )

m_scores = get_scores_m ( df_firmchar , ref_date , \
l i s t_ f i rm s ) [ : , 1 : ]

m_s_avg = df_weights . to_numpy ( ) .T @ m_scores
df_weights [ ’w_CFA_size ’ ] = \

df_weights [ ’w_mcap ’ ] /m_s_avg [ 0 , 0 ]
df_weights [ ’w_CFA_value ’ ] = \

df_weights [ ’w_btp ’ ] /m_s_avg [ 1 , 1 ]
df_weights [ ’w_CFA_mom’ ] = df_weights [ ’w_mom’ ] /m_s_avg [ 2 , 2 ]
df_weights . drop ( columns=[ ’w_mcap ’ , ’w_btp ’ , ’w_mom’ ] , \

i np l a c e=True )
return df_weights

A.6 Return calculation

# Returns genera ted by market p o r t f o l i o
def calc_returns_mkt ( df_mktweights , df_excreturns_st , \

start_date , end_date ) :
df_mktweights_adj = \

df_mktweights . l o c [ s tart_date : end_date , : ]
df_excreturns_adj = \
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df_excreturns_st . l o c [ s tart_date : end_date , : ]
l i s t_da t e s = df_excreturns_adj . index . va lue s . t o l i s t ( )
l ist_mkt = [ np . nan ]
for i in range ( len ( l i s t_da t e s ) −1):

inv_date = l i s t_da t e s [ i ]
r_date = l i s t_da t e s [ i +1]
df_mkt = df_mktweights_adj . l o c [ inv_date ]
w_mkt = df_mkt . to_numpy ( )
l i s t_ f i rm s = df_mkt . index . va lue s . t o l i s t ( )
r_firms = df_excreturns_adj [ l i s t_ f i rm s ] . l o c [ r_date , \

: ] . to_frame ( ) . to_numpy ( )
r_mkt = (w_mkt .T @ r_firms ) [ 0 , 0 ]
l i st_mkt . append (r_mkt)

d_returns = { ’ r_mkt ’ : l i st_mkt }
df_returns = pd . DataFrame ( data=d_returns , index=l i s t_da t e s )
return df_returns

# Returns genera ted by OFA long−shor t p o r t f o l i o s
def calc_breturns_ofa ( df_firmchar , df_excreturns_st , \

df_ofabweights , df_mktweights , start_date , end_date , \
de l ta_s i ze , delta_value , delta_mom ) :
df_excreturns_adj = \

df_excreturns_st . l o c [ s tart_date : end_date , : ]
l i s t_da t e s = df_excreturns_adj . index . va lue s . t o l i s t ( )
l i s t _ s i z e = [ np . nan ]
l i s t_va lu e = [ np . nan ]
list_mom = [ np . nan ]
l ist_comb = [ np . nan ]
delta_b = np . array ( [ [ d e l t a_s i z e ] , [ de l ta_value ] , \

[ delta_mom ] ] )
for i in range ( len ( l i s t_da t e s ) −1):

inv_date = l i s t_da t e s [ i ]
r_date = l i s t_da t e s [ i +1]
l i s t_ f i rm s = \

df_mktweights . l o c [ inv_date ] . index . va lue s . t o l i s t ( )
r_firms = df_excreturns_adj [ l i s t_ f i rm s ] . l o c [ r_date , \

: ] . to_frame ( ) . to_numpy ( )
w = df_ofabweights . l o c [ inv_date ]
B = w. to_numpy ( )
w_size = (w [ [ ’w_OFA_size ’ ] ] ∗ de l t a_s i z e ) . to_numpy ( )
w_value = (w [ [ ’w_OFA_value ’ ] ] ∗ de lta_value ) . to_numpy ( )
w_mom = (w [ [ ’w_OFA_mom’ ] ] ∗ delta_mom ) . to_numpy ( )
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A.6. Return calculation

w_comb = B @ delta_b
r_s ize = ( w_size .T @ r_firms ) [ 0 , 0 ]
r_value = (w_value .T @ r_firms ) [ 0 , 0 ]
r_mom = (w_mom.T @ r_firms ) [ 0 , 0 ]
r_comb = (w_comb.T @ r_firms ) [ 0 , 0 ]
l i s t _ s i z e . append ( r_s ize )
l i s t_va lu e . append ( r_value )
list_mom . append (r_mom)
list_comb . append (r_comb)

d_returns = { ’br_OFA_size ’ : l i s t_ s i z e , \
’br_OFA_value ’ : l i s t_va lue , ’br_OFA_mom’ : list_mom , \
’br_OFA_comb ’ : l ist_comb}

df_returns = pd . DataFrame ( data=d_returns , index=l i s t_da t e s )
return df_returns

# Returns genera ted by CFA long−shor t p o r t f o l i o s
def ca lc_breturns_cfa ( df_firmchar , df_excreturns_st , \

df_cfabweights , df_mktweights , start_date , end_date , \
de l ta_s i ze , delta_value , delta_mom ) :
df_excreturns_adj = \

df_excreturns_st . l o c [ s tart_date : end_date , : ]
l i s t_da t e s = df_excreturns_adj . index . va lue s . t o l i s t ( )
l i s t _ s i z e = [ np . nan ]
l i s t_va lu e = [ np . nan ]
list_mom = [ np . nan ]
l ist_comb = [ np . nan ]
delta_b = np . array ( [ [ d e l t a_s i z e ] , [ de l ta_value ] , \

[ delta_mom ] ] )
for i in range ( len ( l i s t_da t e s ) −1):

inv_date = l i s t_da t e s [ i ]
r_date = l i s t_da t e s [ i +1]
l i s t_ f i rm s = \

df_mktweights . l o c [ inv_date ] . index . va lue s . t o l i s t ( )
r_firms = df_excreturns_adj [ l i s t_ f i rm s ] . l o c [ r_date , \

: ] . to_frame ( ) . to_numpy ( )
w = df_cfabweights . l o c [ inv_date ]
B = w. to_numpy ( )
w_size = (w [ [ ’w_CFA_size ’ ] ] ∗ de l t a_s i z e ) . to_numpy ( )
w_value = (w [ [ ’w_CFA_value ’ ] ] ∗ de lta_value ) . to_numpy ( )
w_mom = (w [ [ ’w_CFA_mom’ ] ] ∗ delta_mom ) . to_numpy ( )
w_comb = B @ delta_b
r_s ize = ( w_size .T @ r_firms ) [ 0 , 0 ]
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Appendix A. Python implementation

r_value = (w_value .T @ r_firms ) [ 0 , 0 ]
r_mom = (w_mom.T @ r_firms ) [ 0 , 0 ]
r_comb = (w_comb.T @ r_firms ) [ 0 , 0 ]
l i s t _ s i z e . append ( r_s ize )
l i s t_va lu e . append ( r_value )
list_mom . append (r_mom)
list_comb . append (r_comb)

d_returns = { ’br_CFA_size ’ : l i s t_ s i z e , \
’br_CFA_value ’ : l i s t_va lue , ’br_CFA_mom’ : list_mom , \
’br_CFA_comb ’ : l ist_comb}

df_returns = pd . DataFrame ( data=d_returns , index=l i s t_da t e s )
return df_returns

A.7 Performance calculation

# Ca l cu l a t e performance
def calc_performance ( df_returns ) :

df_perf = df_returns . copy ( )
df_perf . i l o c [ 0 , : ] = 100
for i in range (1 , len ( df_perf ) ) :

df_perf . i l o c [ i , : ] = df_perf . i l o c [ i −1 , : ] ∗ \
(1 + df_perf . i l o c [ i , : ] )

return df_perf
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