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A B S T R A C T

The nonlinear Finite Element Method (FEM) is the current gold standard for the thermo-mechanical analysis
of reinforced concrete structures. As an alternative, this paper is devoted to a model reduction strategy which
reduces the CPU time by a factor of 500. This strategy combines Fourier series-based solutions for the thermal
conduction problem, and thermo-elastic Timoshenko beam theory. Temperature histories known to be relevant
for fire accidents enter series solutions quantifying the conduction of heat into a closed cell frame consisting
of slabs, walls, and columns. Corresponding temperature profiles are translated into thermal eigenstrains.
The latter are represented as the sum of three portions: (i) their cross-sectional averages (called thermal
eigenstretches); (ii) their cross-sectional moments (called thermal eigencurvatures); and (iii) the remaining
eigenstrain distributions (called eigenwarping). The latter portion is hindered at the cross-sectional scale, giving
rise to non-linearly distributed self-equilibrated thermal stresses. The eigenstretches and eigencurvatures, in
turn, are constrained at the scale of the frame structure. Together with external mechanical loads, they enter
the exact solutions of thermo-elastic Timoshenko beam theory with equivalent cross-sections accounting for the
different material properties of concrete and steel. Axial normal stresses, quantified from beam-theory-related
normal forces and bending moments, are superimposed with the hindered-warping-induced stresses. These
stresses agree well with corresponding results obtained by the nonlinear FEM. As regards the load carrying
behavior of the columns, excessive thermal tensile strains at the periphery of the columns trigger, in the core
of the columns, large tensile stresses which even exceed the strength of concrete. Respective cracking events
are considered through reduced effective columnar cross-sections. Right after initiation of cracking, around
12 min after the start of the heating process, the cracks propagate for some 30 sec quite rapidly, and very
much slower thereafter. If the initial cross-sections of the columns are increased, more pronounced hindered
thermal warping, together with less quickly evolving compressive forces, results in earlier cracking. Overall,
it is concluded that tensile cracking is the key material non-linearity, at least during the first 30 min of the
fire test, with maximum temperatures up to 300 ◦C.
1. Introduction

Exposure to fire may significantly challenge the structural integrity
and stability of reinforced concrete structures. The corresponding chal-
lenges concerning design and maintenance are often tackled by means
of devoted experimental campaigns, which may be accompanied or
followed by corresponding simulation activities. Typically, measured
and/or computed deflections and displacements of concrete members,
such as beams, columns, or frames, are reported over some fire ex-
posure time, typically ranging from 60 to 300 min (Terro, 1998; Zha,
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2003; Kodur et al., 2003, 2004; Bratina et al., 2005; Xu and Wu, 2009;
Han et al., 2009; Choi and Shin, 2011; Gao et al., 2013; Kodur et al.,
2013; Ring et al., 2014a,b; Ožbolt et al., 2014; Albrifkani and Wang,
2016; Kodur et al., 2017). Comparatively, stress and strain distribu-
tions, typically computed by means of the Finite Element Method, are
discussed much less, and are normally reported for time instants after a
relatively long exposure duration, with the latter spanning from some
60 to 180 min (Han et al., 2009; Bratina et al., 2005; Gao et al.,
2013; Ring et al., 2014b; Albrifkani and Wang, 2016). As a notable
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complement to these contributions, Díaz et al. (2018) focused on
tension-induced damage, which occurs already during the first 15 min
of fire exposure; and they did so in the framework of non-linear 3D
Finite Element analyses of reinforced concrete (RC) members used in
tunnel engineering (Lu et al., 2019). While giving valuable insights
into thermo-mechanical couplings in fire-exposed concrete structures,
such FEM approaches remain rather CPU-intensive, in particular so if a
reliable approximation of spatial stress and strain distributions is aimed
at.

The present contribution presents a corresponding remedy, in form
of a smart model reduction of the problem investigated by Díaz et al.
(2018): A Fourier series-based solution of the thermal conduction prob-
lem is combined with elasto-brittle Timoshenko beam theory with
damage-dependent cross-sectional properties. In this way, a drastic
reduction of CPU time comes together with a trustworthy represen-
tation of thermal and mechanical strain and stress patterns emerging
throughout the investigated slabs, walls, and columns.

In other words, the innovative aspect of the present investigation
concerns the use of theoretical and computational tools beyond non-
linear FE analyses reflecting cracking events inside the heated columns.
While FE results will serve as a means of validation, the key contri-
bution of the paper is a semi-analytical, beam-theory-based approach.
The latter employs mechanically or thermally induced deformation pat-
terns, such as stretching, bending, or warping, which are superimposed
in a modular fashion. In addition to its high computational efficiency,
this modular approach, contrary to the ‘‘all-in-one’’ FE approach, al-
lows for identification of the key drivers of damage arising from fire
exposure, and hence appears as a valuable complement to ‘‘all-in-one’’
approaches, such as FEM.

Accordingly, the remainder of the paper is structured as follows:
After introduction of the investigated tunnel segment structure in Sec-
tion 2, Fourier series-based solution of the transient heat conduction
problem is covered in Section 3. Section 4 employs standard relations
of beam theory, for relating axial normal stresses to normal forces
and bending moments, as well as to thermally induced axial strains,
stretches and curvatures. In Section 5, the beam model is comple-
mented by the differential equilibrium equations for normal forces,
shear forces, and bending moments, yielding thermo-elastic as well as
thermo-elasto-brittle stress fields throughout the investigated structure.
The latter are compared to FE results. Section 6 contains a structural
variation analysis regarding the initial cross-section of the columns.
Section 7 contains the discussion, before Section 8 closes the paper with
conclusions drawn from the present study.

2. Statement of the thermo-mechanical structural problem

2.1. Monitored fire test on a tunnel segment structure made of reinforced
concrete (Lu et al., 2019)

The fire-tested tunnel segment structure reported by Lu et al. (2019)
exhibited a width of 5261mm, a height of 1880mm, and a depth of
1200mm, see Fig. 1. In its core, it hosted two columns with rectan-
gular cross-sections, 160mm wide and 240mm long. The structure was
made of normal concrete ‘‘C40’’, with a mass density amounting to
2373 kg∕m3. The thickness of the concrete cover amounted to 30mm.
As for the reinforcement drawing see Fig. 3.

The reinforced concrete structure was placed sidelong on top of a
furnace and closed with a fire-resistant cover, see Fig. 4. A steel frame
was placed around the structure. It supported the tested structure, and
it was equipped with hydraulic presses simulating ground pressure, see
Fig. 1 for the geometric boundary conditions and for the locations of
the external loads 𝑃1, 𝑃2, and 𝑃3. Their intensities are listed in Table 1.
Two heat sources produced the thermal loading. They were controlled
such that the air temperature inside the furnace increased according to
a pre-defined evolution. The one used by Lu et al. (2019) was the result
of a statistical analysis of documented fire accidents, together with a
2

Fig. 1. Support conditions and mechanical loading of the structure tested by Lu et al.
(2019); the dashed lines define the local coordinate systems as illustrated in Fig. 2.

Fig. 2. Local coordinate systems describing positions inside and at the boundary of
the structural elements: 𝑥 denotes the local axial coordinate; 𝑦 and 𝑧 resolve the
cross-sections.

Fig. 3. Reinforcement drawing, after Lu et al. (2019).

Table 1
Intensities of the point loads imposed on the structure in order to simulate ground
pressure (Lu et al., 2019).

𝑃1 𝑃2 𝑃3

Force [kN] 192.0 151.2 120.0

simulation performed by a fire dynamics simulation software, which
accounted for automatic sprinkler devices, a ventilation system, and an
energy release rate of the heat source of 5MW. In the first 30min of the
fire test, the air temperature increased to approximately 540 ◦C, which
is about 300 ◦C lower than the temperature of the standard ISO 834 fire
curve (International Organization for Standardization (ISO), 1999), see
Fig. 5.

2.2. FE analyses of the monitored fire test (Díaz et al., 2018)

Díaz et al. (2018) simulated the fire test by means of three-
dimensional, transient FE simulations (Dassault Systemes Simulia Corp,
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Fig. 4. Setup of the fire test, after (Lu et al., 2019).

Fig. 5. Fire curves: the solid line refers to the one prescribed in the test by Lu et al.
(2019), the dashed line to the ISO 834 standard fire (International Organization for
Standardization (ISO), 1999).

Fig. 6. Three-dimensional FE mesh, after (Díaz et al., 2018).

2019). The mesh consisted of 139,040 linear hexahedral brick finite
elements ‘‘DC3D8’’, with characteristic sizes from 20 to 30mm, eight
nodes, and one temperature degree of freedom per node, see Fig. 6. The
reinforcement bars were modeled as one-dimensional truss elements
overlain to the concrete.

Prescribing, as boundary conditions, known surface temperature
histories of the slabs, walls, and columns (Fig. 7) allowed for a sat-
isfactory reproduction of temperature evolutions measured inside the
structural elements (Díaz et al., 2018). Hence, the present study could
do easily without computational fluid dynamics simulations of the heat
transfer from the air to the surfaces of the structural elements. Since the
columns were positioned in the vicinity of the two heat sources, they
were heated faster than the other structural elements, see Fig. 7.

Two types of FE simulations were performed: (i) a linear elastic
analysis accounting for thermo-mechanical properties of concrete and
steel at room temperature, see Table 2, and (ii) an elasto-plastic analysis
3

Fig. 7. Thermal boundary conditions: evolution of temperatures at the outer surfaces
of the walls and slabs (𝑜𝑢𝑡), their inner surfaces (𝑖𝑛𝑤 and 𝑖𝑛𝑠, respectively), and at the
lateral surfaces of the columns (𝑙𝑎𝑡); after (Díaz et al., 2018).

Fig. 8. Temperature-dependent stress–strain relations for concrete recommended by Eu-
rocode 2 (black lines) and temperature-independent elasto-brittle stress–strain relation
(red line), used in the FE simulation of Díaz et al. (2018) and the beam-theory-based
approach of the present paper, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Thermo-mechanical properties of concrete and steel at room temperature; for their
temperature-dependent evolutions see Fig. 8, and Figs. 16-18 in (Díaz et al., 2018).

Property Concrete Steel

Modulus of elasticity 𝐸𝑐 = 33.4GPa 𝐸𝑠 = 195GPa
Shear modulus 𝐺𝑐 = 13.9GPa 𝐺𝑠 = 75GPa
Poisson’s ratio 𝜈𝑐 = 0.2 𝜈𝑠 = 0.3
Thermal expansion coefficient 𝛼𝑐 = 9.03 × 10−6 1∕◦C 𝛼𝑠 = 12.2 × 10−6 1∕◦C
Thermal diffusivity 𝑎𝑐 = 0.749mm2∕s 𝑎𝑠 = 16.38mm2∕s
Tensile strength / Yield stress 𝑓𝑡 = 3.5MPa 𝑓𝑦 = 530MPa

accounting for temperature-dependent and non-linear material behav-
ior, see Fig. 8. These FE analyses provide twofold motivation for the
present contribution:

1. Díaz et al. (2018) focused on cracks at the surfaces of the
structural elements. In the present contribution, the main focus
lies on the stress states inside the compressed columns.

2. The non-linear FE simulation was re-performed with a
‘‘ThinkPadT14s Gen1’’ (processor: Intel Core i7-10610U CPU@
1.80GHz×8) and required a CPU time of 10.3 h. In order to
achieve model reduction, a modular beam-theory-based ap-
proach is developed in the present contribution.

3. Solutions of transient heat conduction problems

Transient heat conduction is a boundary value problem. The field
equation is the heat equation. Restricting the analysis to thermally
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Fig. 9. Thermal boundary conditions at the surfaces of the structural elements:
step-wise representation of the temperature histories of Fig. 7.

isotropic media and a Cartesian 𝑥, 𝑦, 𝑧-coordinate system, the heat
equation reads as (Özısık, 1993)

𝜕𝑇
𝜕𝑡

= 𝑎
(

𝜕2𝑇
𝜕𝑥2

+ 𝜕2𝑇
𝜕𝑦2

+ 𝜕2𝑇
𝜕𝑧2

)

, (1)

here 𝑇 denotes the temperature, 𝑎 the thermal diffusivity, and 𝑡 the
ime variable. The initial condition is isothermal at reference tempera-
ure

𝑟𝑒𝑓 = 20 ◦C . (2)

s boundary conditions, the temperature histories of Fig. 7 are pre-
cribed. They are represented in a step-wise fashion, see Fig. 9. The
emperature steps at time 𝑡𝑘 are quantified as

𝑇 𝑝𝑜𝑠
𝑘 = 𝑇 𝑝𝑜𝑠(𝑡𝑘) − 𝑇 𝑝𝑜𝑠(𝑡𝑘−1) , ∀𝑘 = 1, 2,… , 30 . (3)

here the time difference 𝑡𝑘 − 𝑡𝑘−1 amounts to 1min, and where the
osition indicator 𝑝𝑜𝑠 is equal to 𝑖𝑛𝑤 when analyzing the walls, 𝑖𝑛𝑠
hen analyzing the slabs, and to 𝑙𝑎𝑡 when analyzing the columns.

The rebars have an insignificant influence on the heat conduction
roblem (Lie and Erwin, 1993). Therefore, the simulation of transient
eat conduction through the structural elements is based on the val-
es of the thermal diffusivity of concrete, rather than accounting for
oncrete and steel separately. The temperature of the rebars can be
etermined after the solution of the heat conduction problem. It is
qual to the temperature of concrete in the immediate vicinity of the
ebars.

.1. One-dimensional heat conduction along wall and slab thicknesses

In the walls and slabs, heat is primarily conducted in the thickness
irection, along which the local 𝑧-coordinates are measured. Thus, the
eat equation (1) degenerates to

𝜕𝑇
𝜕𝑡

= 𝑎 𝜕2𝑇
𝜕𝑧2

. (4)

he solution reads as (Wang et al., 2019)

(𝑧, 𝑡) = 𝑇𝑟𝑒𝑓 +
30
∑

𝑘=1
𝛥𝑇 𝑝𝑜𝑠

𝑘

(

1
2
+ 𝑧

ℎ

)

+
∞
∑

𝑛=1
exp

(

−
(2𝑛−1)2𝜋2𝑎⟨𝑡−𝑡𝑘⟩

ℎ2

)[ 2𝛥𝑇 𝑖𝑛
𝑘 (−1)𝑛

(2𝑛 − 1)𝜋
cos

(

(2𝑛−1)𝜋 𝑧
ℎ

)]

+
∞
∑

𝑛=1
exp

(

−
(2𝑛𝜋)2𝑎⟨𝑡 − 𝑡𝑘⟩

ℎ2

)[𝛥𝑇 𝑖𝑛
𝑘 (−1)𝑛

𝑛𝜋
sin

(

2𝑛𝜋 𝑧
ℎ

)]

, (5)

where 𝛥𝑇 𝑝𝑜𝑠
𝑘 denotes the temperature steps at the inner surfaces of the

alls (𝑝𝑜𝑠 = 𝑖𝑛𝑤) and slabs (𝑝𝑜𝑠 = 𝑖𝑛𝑠). They are computed according
o Eq. (3), based on the temperature histories of Fig. 7. The angled
rackets in (5) denote the Macaulay operator:

𝑡 − 𝑡 ⟩ ∶= 1 (

𝑡 − 𝑡 + |𝑡 − 𝑡 |

)

. (6)
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𝑘 2 𝑘 | 𝑘|
Fig. 10. Temperature profiles 30 min after the start of the fire of (a) the left wall,
and (b) the bottom slab, obtained with the Fourier series approach, see the solid line,
and with the regular FE model consisting of square-shaped elements with 20mm side
ength, see the dash-dotted line.

he temperature profiles of the bottom slab and the walls obtained
0 min after the start of the fire agree well with corresponding results
rom the FE simulation, see Fig. 10. For the temperature profile of the
op slab see (Sorgner et al., 2022).

.2. Two-dimensional heat conduction across column cross-sections

In the columns, heat is primarily conducted within the cross-
ections, in which the local 𝑦- and 𝑧-coordinates are measured. Thus,

the heat equation (1) degenerates to

𝜕𝑇
𝜕𝑡

= 𝑎
(

𝜕2𝑇
𝜕𝑦2

+ 𝜕2𝑇
𝜕𝑧2

)

. (7)

The solution reads as

𝑇 (𝑦, 𝑧, 𝑡) = 𝑇 𝑙𝑎𝑡(𝑡) −
30
∑

𝑘=1

∞
∑

𝑚=0

∞
∑

𝑛=0

16𝛥𝑇 𝑙𝑎𝑡
𝑘 (−1)𝑚+𝑛

(2𝑚 + 1)(2𝑛 + 1)𝜋2

cos
(

(2𝑚 + 1)𝜋
ℎ

𝑧
)

cos
(

(2𝑛 + 1)𝜋
𝑏

𝑦
)

(8)

exp
(

−
(

( 2𝑚 + 1
ℎ

)2
+
( 2𝑛 + 1

𝑏

)2)

𝜋2𝑎⟨𝑡 − 𝑡𝑘⟩
)

,

where 𝛥𝑇 𝑙𝑎𝑡(𝑡) denotes the temperature at the lateral surface at time
𝑡 and 𝛥𝑇 𝑙𝑎𝑡

𝑘 denotes the temperature steps at the lateral surfaces of
the column. They are computed according to Eq. (3), based on the
temperature history of Fig. 7.

It is interesting to compare the Fourier series-based results accord-
ing to Eq. (8), with the FE simulation results from a regular mesh of
square-shaped constant strain elements with a side length of 20mm, as
reported in (Díaz et al., 2018). This is done for the temperature profiles
in the middle of the columns, along the local 𝑦- and 𝑧-axes, see Fig. 11.
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Fig. 11. Temperature profiles of the columns 30 min after the start of the fire along
the local (a) 𝑦-axis and (b) 𝑧-axis, obtained with the Fourier series approach, see the
solid lines, and with the FE models with regular meshes consisting of square-shaped
elements with side lengths of 20mm (Díaz et al., 2018), and of 2mm, respectively; see
the dash-dotted and dashed lines.

Near the lateral surfaces, the two differently computed temperature
profiles agree well. At the center of the cross-section, the series solution
according to Eq. (8) (solid line) suggests a temperature which is by
17.2 ◦C smaller than that obtained with the FE simulation (dash-dotted
line). However, when performing a 2D simulation of heat conduction
into the column, rather than performing a three-dimensional thermo-
elastic simulation of the entire structure, it is straightforward (from
the viewpoint of computational effort) to refine the FE mesh, e.g. from
20mm to 2mm element size. Corresponding FE results are much closer
to those obtained with the series solution: the largest difference is
smaller than 3.8 ◦C. Thus, the series solution agrees well with results
from fine FE discretization. The two-dimensional temperature field il-
lustrated in Fig. 12 serves as input for the following thermo-mechanical
analysis.

4. Thermo-elasto-mechanics of reinforced concrete beams

All reinforced concrete members (walls, slabs, columns) will be
mechanically represented as beams, with the local coordinate systems
given in Fig. 2. Thermal loading of all these members leads to thermo-
mechanical bending around their 𝑦-axes, see Fig. 2. All cross-sections
exhibit double symmetry. They are composed of two materials: con-
crete and steel. This results in heterogeneous fields of the modulus of
5

Fig. 12. Temperature distribution inside the cross-sections of the columns, 30 min after
the start of the fire, obtained with series solution (8).

elasticity 𝐸 = 𝐸(𝑦, 𝑧) and of the thermal expansion coefficient 𝛼 =
𝛼(𝑦, 𝑧), where 𝑦 and 𝑧 denote Cartesian coordinates with origin at the
axis of the beam, see Fig. 2. Double symmetric elastic distributions
𝐸(𝑦, 𝑧) = 𝐸(−𝑦, 𝑧) = 𝐸(𝑦,−𝑧) = 𝐸(−𝑦,−𝑧) yield

∫
𝐴

𝐸 𝑧 d𝐴 = ∫
𝐴

𝐸 𝑦 d𝐴 = 0 . (9)

In thermoelasticity, thermal stresses depend on the evolution of tem-
perature relative to a reference temperature. In the case of beams with
predominant heat flux in 𝑧-direction (walls and slabs) and in 𝑦- and
𝑧-directions (columns), this reads as

𝛥𝑇 (𝑦, 𝑧, 𝑡) = 𝑇 (𝑦, 𝑧, 𝑡) − 𝑇𝑟𝑒𝑓 . (10)

4.1. Thermal eigenstrains and axial normal stresses in heterogeneous beams

If a beam with heterogeneous cross-section is subjected to tran-
sient heat conduction, changes of temperature will be non-linearly dis-
tributed across the cross-section. Related eigenstrains are equal to the
product of the thermal expansion coefficient, 𝛼, and the temperature
change 𝛥𝑇 :

𝜀𝑒𝑥𝑥 = 𝜀𝑒𝑦𝑦 = 𝜀𝑒𝑧𝑧 = 𝛼 𝛥𝑇 . (11)

At the cross-sectional scale, the eigenstrains (11) are subdivided into
three portions: the eigenstretch and the eigencurvature of the axis of the
beam, and the eigenwarping of its cross-section (Wang et al., 2022). In
the following, it will be shown that rules for this decomposition follow
from the Euler–Bernoulli hypothesis, stating that reinforced concrete
cross-sections remain plane in the deformed configuration:

𝑢 = 𝑢0 −
d𝑤0
d𝑥

𝑧 , (12)

where 𝑢 stands for the axial displacement field of the cross-section, 𝑢0
denotes the axial displacement of the center of gravity of the cross-
section, and 𝑤0 stands for its deflection. The axial normal stress reads
as 𝜎𝑥𝑥 = 𝐸 (𝜀𝑥𝑥−𝜀𝑒𝑥𝑥), where 𝐸 stands for the modulus of elasticity, and
𝜀𝑥𝑥 denotes the axial normal strain. Expressing the latter as the partial
derivative of 𝑢 according to Eq. (12) with respect to 𝑥, yields

𝜎𝑥𝑥 = 𝐸 (𝜀0 + 𝜅0 𝑧 − 𝜀𝑒𝑥𝑥) , (13)

with 𝜀0 = d𝑢0∕d𝑥 and 𝜅0 = −d2𝑤0∕d𝑥2 denoting the stretch and
the curvature of the axis of the beam. Insertion of Eq. (13) into the
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expression for the normal force, 𝑁 = ∫𝐴 𝜎𝑥𝑥 d𝐴, yields the constitutive
law as

𝑁 = 𝐸𝐴
(

𝜀0 − 𝜀𝑒0
)

, (14)

the effective extensional stiffness as

𝐸𝐴 = ∫
𝐴

𝐸 d𝐴 , (15)

and the eigenstretch of the axis of the beam as

𝜀𝑒0 =
1
𝐸𝐴 ∫

𝐴

𝐸 𝛼𝛥𝑇 d𝐴 , (16)

with 𝐴 denoting the cross-sectional area. Similarly, insertion of Eq. (13)
into the expression for the bending moment, 𝑀 = ∫𝐴 𝜎𝑥𝑥 𝑧 d𝐴, yields the
constitutive law as

𝑀 = 𝐸𝐼
(

𝜅0 − 𝜅𝑒
0
)

, (17)

the effective bending stiffness as

𝐸𝐼 = ∫
𝐴

𝐸 𝑧2 d𝐴 , (18)

and the eigencurvature of the axis of the beam as

𝜅𝑒
0 = 1

𝐸𝐼 ∫
𝐴

𝐸 𝛼 𝛥𝑇 𝑧 d𝐴 . (19)

Solving Eq. (14) for 𝜀0 and Eq. (17) for 𝜅0 and inserting the resulting ex-
pressions into Eq. (13), yields the following expression for the stresses:

𝜎𝑥𝑥 = 𝑁 𝐸
𝐸𝐴

+ 𝑀 𝐸
𝐸𝐼

𝑧 + 𝜎𝑒𝑥𝑥 , (20)

with the hindered-warping-induced stresses

𝜎𝑒𝑥𝑥 = −𝐸
[

𝛼𝛥𝑇 − 𝜀𝑒0 − 𝜅𝑒
0 𝑧

]

. (21)

4.2. Application to reinforced concrete members

The cross-section of a reinforced concrete member consists of con-
crete (index 𝑐) and steel rebars (index 𝑠). Their moduli of elasticity are
denoted as 𝐸𝑐 and 𝐸𝑠, respectively, the actual cross-sectional areas of
concrete and steel as 𝐴𝑐 and 𝐴𝑠, respectively.

The effective extensional stiffness according to Eq. (15) can be
evaluated as

𝐸𝐴 = 𝐸𝑐

[

𝐴𝑐 + 𝑛𝐸 𝐴𝑠

]

= 𝐸𝑐𝐴𝑒𝑞 , (22)

where 𝑛𝐸 stands for the ratio 𝐸𝑠∕𝐸𝑐 , and 𝐴𝑒𝑞 for the area of the ‘‘equiv-
alent’’ uniform concrete cross-section. Denoting the thermal expansion
coefficients of concrete and steel as 𝛼𝑐 and 𝛼𝑠, respectively, the change
of temperature of the 𝑗th rebar as 𝛥𝑇𝑗 , and its cross-sectional area as
𝐴𝑗 , the eigenstretch (16) can be expressed as

𝜀𝑒0 =
1
𝐴𝑒𝑞

[

∫𝐴𝑐

𝛼𝑐 𝛥𝑇 d𝐴 + 𝑛𝐸
𝐿
∑

𝑗=1
𝛼𝑠 𝛥𝑇𝑗 𝐴𝑗

]

, (23)

where 𝐿 stands for the number of rebars.
The effective bending stiffness according to Eq. (18) can be evalu-

ated as

𝐸𝐼 = 𝐸𝑐
[

𝐼𝑐 + 𝑛𝐸 𝐼𝑠
]

= 𝐸𝑐𝐼𝑒𝑞 , (24)

where 𝐼𝑐 and 𝐼𝑠 denote the second moments of inertia of the cross-
sectional subareas occupied by concrete and steel, respectively. 𝐼𝑒𝑞
stands for the second moment of inertia of the ‘‘equivalent’’ uniform
concrete cross-section. The eigencurvature (19) can be expressed as

𝜅𝑒
0 = 1

𝐼

[

∫ 𝛼𝑐𝛥𝑇𝑧 d𝐴 + 𝑛𝐸
𝐿
∑

𝛼𝑠𝛥𝑇𝑗𝐴𝑗𝑧𝑗

]

, (25)
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𝑒𝑞 𝐴𝑐 𝑗=1
Fig. 13. Hindered-warping-induced stresses experienced by concrete of the left wall
and the bottom slab, according to the third term on the right-hand-side of Eq. (26),
30 min after the start of the fire.

where 𝑧𝑗 denotes the 𝑧-coordinate of the axis of the 𝑗th rebar.
The expression for the stresses according to Eqs. (20) and (21) takes

the form

𝜎𝑥𝑥,𝑐 =
𝑁
𝐴𝑒𝑞

+ 𝑀
𝐼𝑒𝑞

𝑧 − 𝐸𝑐

[

𝛼𝑐𝛥𝑇 − 𝜀𝑒0 − 𝜅𝑒
0 𝑧

]

, (26)

𝜎𝑥𝑥,𝑠 =
𝑁 𝑛𝐸
𝐴𝑒𝑞

+
𝑀 𝑛𝐸
𝐼𝑒𝑞

𝑧 − 𝐸𝑠

[

𝛼𝑠𝛥𝑇 − 𝜀𝑒0 − 𝜅𝑒
0 𝑧𝑗

]

. (27)

4.3. Eigenstretches, eigencurvatures, and hindered eigenwarping of the
walls and slabs

Insertion of the temperature solution according to Eq. (5) into
Eq. (10), and of the resulting expression into Eqs. (23) and (25) yields
the eigenstretch and the eigencurvature of the reinforced concrete
beams as

𝜀𝑒0 = 𝛼𝑐
𝐴𝑐
𝐴𝑒𝑞

30
∑

𝑘=1
𝛥𝑇 𝑖𝑛

𝑘

[

1
2
−

∞
∑

𝑛=1

4
(2𝑛 − 1)2𝜋2

(28)

exp
(

−
(2𝑛 − 1)2𝜋2𝑎⟨𝑡 − 𝑡𝑘⟩

ℎ2

) ]

+𝑛𝐸 𝛼𝑠
𝐿
∑

𝑗=1
𝛥𝑇𝑗

𝐴𝑗

𝐴𝑒𝑞
,

and

𝜅𝑒
0 = − 𝛼𝑐

𝐼𝑐
𝐼𝑒𝑞

30
∑

𝑘=1
𝛥𝑇 𝑖𝑛

𝑘

[

1
ℎ
−

∞
∑

𝑛=1

6
(𝑛𝜋)2

1
ℎ

(29)

exp
(

−
(2𝑛𝜋)2𝑎⟨𝑡 − 𝑡𝑘⟩

ℎ2

) ]

+𝑛𝐸 𝛼𝑠
𝐿
∑

𝑗=1
𝛥𝑇𝑗

𝐴𝑗

𝐼𝑒𝑞
𝑧𝑗 .

The eigenstretches and the eigencurvatures of the walls and the slabs,
obtained 30 min after the start of the fire, are listed in Table 3.

The eigenwarping of the cross-sections of the walls and slabs is
hindered. The resulting stresses of concrete, see Eq. (21) and the third
term on the right-hand-side of Eq. (26), are computed according to
the flowchart of Table 4, see Fig. 13. Their tensile maxima amount
to 4.3MPa and 4.7MPa, respectively. These values are of the same
order of magnitude as the tensile strength of concrete. However, these
tensile stresses are reduced by compression in the structural elements,
resulting from the point loads of Table 1, which were not considered
in Fig. 13.
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Table 3
Cross-sectional properties of the structural elements: ‘‘equivalent properties’’ refer to a fictitious cross-section consisting of concrete only, ‘‘real properties’’ refer to the actual
concrete part of the actual cross-section, ‘‘ratio factors’’ are defined in Eq. (33), eigenstretches and eigencurvatures are defined in Eqs. (28)-(30), evaluated for 𝑡 = 30min.

Cross-section Equivalent properties Real properties Equivalence ratios Eigenstretch & -curvature
𝑏, ℎ [mm] 𝐴𝑒𝑞 [mm2], 𝐼𝑒𝑞 [mm4] 𝐴 [mm2], 𝐼 [mm4] [−], see Eq. (33) 𝜀𝑒0 [−], 𝜅

𝑒
0 [mm−1]

Top slab 𝑏 = 1000 𝐴𝑒𝑞 = 2.684 × 105 𝐴 = 2.520 × 105 𝜂𝐴 = 1.065 𝜀𝑒0 = 1.1848 × 10−4

ℎ = 210 𝐼𝑒𝑞 = 1.019 × 109 𝐼 = 9.261 × 108 𝜂𝐼 = 1.100 𝜅𝑒
0 = 2.4632 × 10−6

Bottom slab 𝑏 = 1000 𝐴𝑒𝑞 = 2.411 × 105 𝐴 = 2.280 × 105 𝜂𝐴 = 1.058 𝜀𝑒0 = 1.2860 × 10−4

ℎ = 190 𝐼𝑒𝑞 = 7.415 × 108 𝐼 = 6.859 × 108 𝜂𝐼 = 1.081 𝜅𝑒
0 = 2.8946 × 10−6

Lateral wall 𝑏 = 1000 𝐴𝑒𝑞 = 2.279 × 105 𝐴 = 2.100 × 105 𝜂𝐴 = 1.085 𝜀𝑒0 = 1.1362 × 10−4

𝑏 = 175 𝐼𝑒𝑞 = 5.953 × 108 𝐼 = 5.359 × 108 𝜂𝐼 = 1.111 𝜅𝑒
0 = 2.7662 × 10−6

Columns 𝑏 = 240 𝐴𝑒𝑞 = 4.387 × 104 𝐴 = 3.840 × 104 𝜂𝐴 = 1.143 𝜀𝑒0 = 13.7000 × 10−4

ℎ = 160 𝐼𝑒𝑞 = 9.291 × 107 𝐼 = 8.192 × 107 𝜂𝐼 = 1.134 𝜅𝑒
0 = 0
Table 4
Flowchart for the computation of 𝜎𝑒

𝑥𝑥,𝑐 for the walls, the slabs, and the columns according
to Eq. (21).

1. Define numerical values for the material and cross-sectional
properties, see Table 2 and Table 5.

2. Compute the area, 𝐴𝑒𝑞 , and the second moment of inertia, 𝐼𝑒𝑞 , of
the equivalent cross-section according to Eqs. (34) and (35).

3. Define the temperature steps at the heated surfaces according to
Eq. (3), based on data from Fig. 7.

4. Determine the eigenstretch 𝜀𝑒0 and the eigencurvature 𝜅𝑒
0 according

to Eqs. (28) and (29) for the walls and slabs, and according to
Eq. (30) for the columns, respectively.

5. Compute the temperature change in Eq. (10) under consideration of
Eq. (5) for the walls and slabs, and Eq. (8) for the columns.

6. Compute the third term in Eq. (26) for the
hindered-warping-induced stresses of concrete.
4.4. Eigenstretches and hindered eigenwarping of the columns

Insertion of the temperature solution according to Eq. (8) into
Eq. (10), and of the resulting expression into Eq. (23) yields the
eigenstretch of the reinforced concrete columns as

𝜀𝑒0(𝑡) = 𝛼𝑐
𝐴𝑐
𝐴𝑒𝑞

[

𝛥𝑇 𝑙𝑎𝑡 −
30
∑

𝑘=1

∞
∑

𝑚=0

∞
∑

𝑛=0

64𝛥𝑇 𝑙𝑎𝑡
𝑘

(2𝑚 + 1)2(2𝑛 + 1)2𝜋4

exp
(

−
(

( 2𝑚 + 1
ℎ

)2
+
( 2𝑛 + 1

𝑏

)2)

𝜋2𝑎⟨𝑡 − 𝑡𝑘⟩
)]

+ 𝑛𝐸
𝐿
∑

𝑗=1
𝛼𝑠𝛥𝑇𝑗

𝐴𝑗

𝐴𝑒𝑞
. (30)

30 min after the start of the fire, the eigenstretch amounts to
13.7 × 10−4. This is by one order of magnitude larger than the
eigenstretches of the walls and slabs, see Table 3. The eigencurva-
ture according to Eq. (25) vanishes because of the double-symmetric
temperature field: 𝜅𝑒

0 = 0.
The eigenwarping of the cross-sections of the columns is hindered.

The resulting stresses of concrete, see Eq. (21) and the third term on the
right-hand-side of Eq. (26), are computed according to the flowchart of
Table 4, see Fig. 14. Their tensile maximum amounts to 37.5MPa. This
is one order of magnitude larger than the tensile strength of concrete. In
order to find out whether or not these tensile stresses are compensated
by the point load-induced compressive normal forces in the columns, a
structural analysis is required. It will be described next.

5. Structural analysis of the monitored fire test by Lu et al. (2019)

5.1. Timoshenko beam theory

Beam analysis software (Dlubal Software GmbH, 2020) is used
to provide exact analytical solutions to the differential equations of
Timoshenko beam theory (Elishakoff, 2020; Öchsner, 2021), including
equilibrium conditions
d𝑉 = −𝑞 , d𝑀 = 𝑉 + 𝑚 , d𝑁 = 𝑛 , (31)
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d𝑥 d𝑥 d𝑥
Fig. 14. Hindered-warping-induced stresses experienced by concrete of the columns,
according to the third term on the right-hand-side of Eq. (26), 30 min after the start
of the fire.

and combined geometric-constitutive relations

d𝑤
d𝑥

= 𝜑 + 𝑉
𝐺𝐴̃

,
d𝜑
d𝑥

= −
[

𝑀
𝐸𝐼

+ 𝜅𝑒
0

]

, d𝑢
d𝑥

= 𝑁
𝐸𝐴

+ 𝜀𝑒0 . (32)

For the present application, the transversal, axial, and rotational loads
per unit length vanish: 𝑞 = 𝑛 = 0 kN/m and 𝑚 = 0 kNm/m. In
Eqs. (31) and (32), 𝑉 denotes the shear force, and 𝐺𝐴̃ the shear
stiffness of the structural elements. For reinforced concrete members
with rectangular cross-sections, it reads as 𝐺𝐴̃ = (5∕6)𝐺𝑐𝐴𝑒𝑞 , where
𝐺𝑐 is the shear modulus of concrete, see Table 2. Bending moments 𝑀
and normal forces 𝑁 resulting from the external point loads as well as
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Fig. 15. Idealized representation of the tested segment of a subway station, as the
asis for structural analysis using beam analysis software: for the numerical values of
he point loads 𝑃1, 𝑃2, and 𝑃3 see Table 1.

Table 5
Reinforcement properties of the structural elements: the ‘‘𝑧-coordinate’’ refers to the
distance of the axis of the rebar from the center of gravity of the reinforced-concrete
cross-section, ‘‘number of rebars’’ refers to the number of rebars with the same
𝑧-coordinate, and ‘‘rebar area’’ refers to the cross-sectional area of each rebar.

𝑧-Coordinate
𝑧𝑗 [mm]

Number of
rebars

Rebar area
𝐴𝑗 [mm2]

Top slab 𝑧𝑗 = −75 11 𝐴𝑗 = 153.9
𝑧𝑗 = +75

Bottom slab 𝑧𝑗 = −65 12 𝐴𝑗 = 113.1
𝑧𝑗 = +65

Walls 𝑧𝑗 = −58 12 𝐴𝑗 = 153.9
𝑧𝑗 = +58

Columns
𝑧𝑗 = −50 4

𝐴𝑗 = 113.1𝑧𝑗 = 0 2
𝑧𝑗 = +50 4

from the eigenstretches 𝜀𝑒0 and the eigencurvatures 𝜅𝑒
0 of the structural

elements (see Fig. 1 and Tables 1–3) are computed by means of an
exact analytical solution of the differential equations of Timoshenko
beam theory, see Eqs. (31) and (32). The analyzed structure is a closed-
cell frame which is statically indeterminate to the twelfth degree. The
dashed lines in Fig. 15 define the local coordinate systems, as illustrated
in Fig. 2. The used beam analysis software requires, as input for every
structural element, the ratios 𝜂𝐴 and 𝜂𝐼 , which are defined as:

𝜂𝐴 =
𝐴𝑒𝑞

𝐴
, 𝜂𝐼 =

𝐼𝑒𝑞
𝐼

. (33)

here 𝐴 = 𝑏 ℎ denotes the real cross-sectional area, and 𝐼 = 𝑏ℎ3∕12 the
eal second moment of inertia, see also Fig. 2. The equivalent properties
f the reinforced concrete cross-sections read as

𝑒𝑞 = 𝐴 +
(

𝑛𝐸 − 1
)

𝐿
∑

𝑗=1
𝐴𝑗 , (34)

𝑒𝑞 = 𝐼 +
(

𝑛𝐸 − 1
)

𝐿
∑

𝑗=1

(

𝐴2
𝑗

4𝜋
+ 𝐴𝑗 𝑧

2
𝑗

)

, (35)

where 𝑛𝐸 = 𝐸𝑠∕𝐸𝑐 = 5.838, see also Table 2. Two types of computations
ill be carried out. The first one refers to the point loads only, see Sec-

ion 5.2. This simulation provides insight into the structural behavior
efore the start of the fire. The second type of computation refers to the
oint loads, the eigenstretches, and the eigencurvatures, representing
he thermal loading 30 min after the start of the fire, see Section 5.3.
he differences of the results of the two simulations, regarding the nor-
al forces and bending moments, refer to load redistributions resulting

rom the fire.
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Fig. 16. Beam-theory-related stress resultants before the start of the fire, due to the
point loads listed in Table 1: (a) bending moments, (b) normal forces.

5.2. Mechanical loading simulating ground pressure

The structural model is subjected to point loads 𝑃1, 𝑃2, and 𝑃3, see
Table 1. The obtained stress resultants (i.e. normal forces and bending
moments) are virtually symmetric with respect to a column-parallel axis
through the center of the structure, see Fig. 16.

The largest absolute values of the bending moments range from
52 kNm to 65 kNm. They are activated in the top slab, at the connections
with the walls and the columns, see Fig. 16(a). The bending moments of
the bottom slab are significantly smaller. Despite the rigid connections
between the columns and the slabs, the bending moments in the
columns are almost equal to zero.

The normal forces are negative and constant throughout every
structural element, see Fig. 16(b). The normal force of the top slab is
larger than that of the bottom slab. The largest compressive normal
forces are activated in the columns. They amount to −339.3 kN and
−335.7 kN, respectively.

5.3. Mechanical and thermal loading representative for a moderate tunnel
fire

The structural model is subjected to point loads 𝑃1, 𝑃2, and 𝑃3, see
Table 1, and to eigenstretches and eigencurvatures representative for
the time instant 30 min after the start of the fire, see Table 3. The
obtained stress resultants are virtually symmetric with respect to a
column-parallel axis through the center of the structure, see Fig. 17.

Because of the fire, the bending moments are significantly increased
throughout the structure, compare Figs. 16(a) and 17(a). The largest
absolute values of the bending moments range from 91 kNm to 181 kNm.
They are activated in the top slab, at the connections with the walls
and the columns, see Fig. 17(a). The bending moments of the bottom
slab range from −66.8 kNm to −85.0 kNm. Despite the rigid connections
between the columns and the slabs, the bending moments in the
columns remain rather small.

The redistributions of the normal forces are governed by the eigen-

stretches of the columns, which are by one order of magnitude larger
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Fig. 17. Beam-theory-related stress resultants due to both the point loads listed in
Table 1 and the fire-induced eigenstretches and eigencurvatures listed in Table 3:
(a) bending moments, (b) normal forces.

than those of the walls. Because the expansion of the columns is con-
strained, their compressive normal forces rise, during the first 30 min
of the fire, from −335 kN to −392 kN. This goes along with a reduction
of the normal forces of the left wall from −196 kN to −143 kN, and of
the right wall from −199 kN to −144 kN.

5.4. Total stresses at half-height of the left column, 30min after the start
of the fire

Axial stresses result, in every cross-section, from three contributions:
the normal force 𝑁 and the bending moment 𝑀 (Fig. 17), as well
as the hindered-warping-induced stresses, 𝜎𝑒𝑥𝑥 (Fig. 14). The following
analysis is focused on the cross-section at half-height of the left column,
where the stress resultants read as 𝑁 = −391.8 kN and 𝑀 = −1.6 kNm.
The normal force and the (vanishing) bending moment result in a
uniform distribution of the axial normal stresses, see the dotted lines
in Fig. 18. Adding the hindered-warping-induced stresses from Fig. 14,
leads to non-linearly distributed total stresses, see the thick solid lines
in Fig. 18. The solution for the total stresses, obtained with the de-
scribed beam-theory-based approach, are compared with the stress
distributions obtained from a linear elastic FE simulation, with temper-
ature independent properties of concrete and steel. The FE-computed
stresses are uniform within each element, because trilinear displace-
ment shape functions were used. The element-wise uniform stresses
agree quantitatively well with the smooth stress solution obtained from
the beam model, see Fig. 18.

The linear-elastic analysis delivers an unreasonable result. The ten-
sile axial normal stresses at the center of the cross-section of the column
amount to 28.5MPa. This is by one order of magnitude larger than
the tensile strength of concrete at room temperature: 𝑓𝑡 = 3.5MPa.
Unrealistically large tensile stresses are obtained in the core region of
9

Fig. 18. Axial stresses along the local 𝑦- and 𝑧-axes at the half-height of the columns,
30 min after the start of the fire, obtained with the approach combining Timoshenko
beam theory and Fourier series-defined non-linear temperature distributions (thick solid
lines), with FE simulation (thin solid lines); the dotted lines refer to stresses resulting
from external loads, as well as from thermal eigenstretches and eigencurvatures.

Fig. 19. Distribution of axial stresses across half-height cross section through left
column; the result corresponds to the solid thick lines in Fig. 18.

the cross-section, over some 80% of its height and 45% of its width, see
Fig. 19. In order to improve this situation, brittle tensile failure will be
considered inside the core regions of the columns, as described next.

5.5. Tensile cracking of the core of the columns

Tensile cracking is accounted for in cross-sectional planes of the
columns, see the dark gray ellipses in Fig. 20. Determination of the
axial spacing between these cracks is a complex task and an open
research question. As a remedy, it is assumed that the crack spacing
is so small that the material volume between two neighboring cracks
(see the light gray domains in Fig. 20) does not experience significant
stresses. This situation will be modeled by reducing, for all cross-
sections along the entire length of the columns, the effective extensional
and bending stiffness [defined by Eqs. (15) and (18)], such that the
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Fig. 20. Tensile cracking in elliptic domains around the centers of gravity of the
columns.

updated values are representative of cracked cross-sections. In more
detail, the following considerations are made:

Tension-induced cracking of concrete is modeled in elliptic domains
around the centers of the columnar cross-section. This is motivated
by the quasi-elliptic isolines of axial normal stresses in the innermost
region of the cross-sections, see Fig. 19. Denoting the radius of the semi-
major-axis (= 𝑦-axis) as ℎ𝑒 and that of the semi-minor-axis (= 𝑧-axis)
as 𝑏𝑒, the elliptic domain is defined as:

𝑦2

ℎ2𝑒
+ 𝑧2

𝑏2𝑒
= 1 . (36)

The corresponding equivalent geometric properties read as

𝐴𝑐𝑟
𝑒𝑞 = 𝐴𝑒𝑞 − ℎ𝑒 𝑏𝑒 𝜋 , (37)

𝐼𝑐𝑟𝑒𝑞 = 𝐼𝑒𝑞 −
𝜋 ℎ𝑒 𝑏3𝑒

4
, (38)

where the superscript 𝑐𝑟 stands for ‘‘cracked’’, and where 𝐴𝑒𝑞 and 𝐼𝑒𝑞
follow Eqs (34) and (35), see also Table 3. Numerical values of the
semi-radii of the elliptic cracks, ℎ𝑒 and 𝑏𝑒, are determined iteratively,
with the aim to obtain, along the contour of the crack, axial tensile
stresses which are equal to the tensile strength of concrete; see Table 6.
Before explaining the individual steps of this calculation, its result is
anticipated:

ℎ𝑒 = 95.0mm , (39)
𝑏𝑒 = 57.6mm . (40)

Corresponding values of the equivalent cross-sectional area and the
equivalent moment of inertia are listed in Table 7.

Heat conduction into the column is not affected by cracking, be-
cause concrete remains intact in between neighboring cracks, see
Fig. 20. The material conducts heat in the two in-plane directions,
as modeled in Section 3.2. Consequently, the temperature distribution
inside the columns (Fig. 11) remains valid.

The spatial distribution of the thermal eigenstrains remains the
same as in the case without cracking. However, the tensile eigenstrains
in the cracked core region are now (virtually) free to develop. They re-
duce the opening widths of the cracks, but do not activate (significant)
stresses. Eigenstrains in the intact (= non-cracked) outer part of the
columns, in turn, are constrained. Therefore, they are subdivided into
their stiffness–weighted mean value (= eigenstretch of the columns)
and the spatially non-linear rest (= eigenwarping of the cross-section
of the columns), as explained next.

The eigenstretch of the cracked columns is equal to the stiffness–
weighted mean value of thermal eigenstrains in the intact (= non-
cracked) outer region of the columns. Insertion of the temperature
distribution from Eq. (8) into Eq. (10), and of the resulting expression
10
Fig. 21. Hindered-warping-induced stresses according to Eq. (21), along local 𝑦- and
𝑧-axes, at the half-height of the columns, 30 min after the start of the fire, under
consideration of tensile cracking of the core region (dashed gray ellipse), obtained
from the Fourier-series-defined non-linear temperature distributions (thick solid lines).

for the temperature change into Eq. (23), while limiting the integration
over the outer intact area of the cross-section, yields

𝜀𝑒,𝑐𝑟0 = 1
𝐴𝑐𝑟
𝑒𝑞

{

𝐴𝑒𝑞𝜀
𝑒
0−

[

ℎ𝑒𝑏𝑒𝜋 𝛼𝑐𝛥𝑇
𝑙𝑎𝑡

− 𝛼𝑐
30
∑

𝑘=1

∞
∑

𝑚=0

∞
∑

𝑛=0

64𝑏 𝛥𝑇 𝑙𝑎𝑡
𝑘 (−1)𝑚

(2𝑚 + 1)2(2𝑛 + 1)𝜋3
(41)

exp
(

−
(

(2𝑛 + 1)2

𝑏2
+

(2𝑚 + 1)2

ℎ2

)

𝑎𝜋2
⟨𝑡 − 𝑡𝑘⟩

)

∫

ℎ𝑒

0
cos

(

(2𝑚 + 1)𝜋
ℎ

𝑧
)

cos
(

(2𝑛 + 1)𝜋𝑏𝑒
𝑏ℎ𝑒

√

ℎ2𝑒 − 𝑧2
)

d𝑧
]}

,

see Table 7 for the numerical result.
The eigenwarping of the cracked columns is equal to the total

thermal eigenstrains in the intact outer part of the cross-sections minus
the eigenstretch of Eq. (41), see also Table 7. This eigenwarping is
hindered because the intact parts of the cross-sections remain plane
according to the Bernoulli–Euler hypothesis.

The corresponding stresses are computed based on Eq. (21), see
also the third term on the right-hand-side of Eq. (26). To this end, 𝐸𝑐
and 𝛼𝑐 are taken from Table 2. 𝛥𝑇 is computed according to Eq. (10)
with 𝑇 (𝑦, 𝑧, 𝑡) from Fig. 12 and 𝑇𝑟𝑒𝑓 from Eq. (2). 𝜀𝑒0 in Eqs. (21) and
(26) is set equal to 𝜀𝑒,𝑐𝑟0 from Table 7, and 𝜅𝑒

0 equal to 𝜅𝑒,𝑐𝑟
0 = 0. The

resulting hindered-warping-induced stresses are self-equilibrated, i.e.
their mean value vanishes. They are compressive in the outer region
of the cross-sections, and they are tensile in the vicinity of the crack,
see Fig. 21.

In order to compute the stresses resulting from the external loads as
well as from the thermally induced eigenstretches and eigencurvatures,
an updated structural analysis is performed. This simulation is carried
out by means of beam analysis software (Dlubal Software GmbH, 2020),
with the following input values: the extensional stiffnesses, the bending
stiffnesses, the eigenstretches, and the eigencurvatures of the walls
and the slabs are taken from Table 3, corresponding values of the
cracked columns from Table 7, and the values of the point loads from
Table 1. The obtained distributions of bending moments and normal
forces are illustrated in Fig. 22. Dividing the normal force of the left
column (𝑁 = 401 kN, see Fig. 22) by the equivalent cross-sectional
area of the cracked column (𝐴𝑐𝑟 = 26673 mm, see Table 7) delivers
𝑒𝑞
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Table 6
Flowchart for the computation of ℎ𝑒 and 𝑏𝑒 according to Eqs. (39) and (40).

1. Define initial numerical values for ℎ𝑒 and 𝑏𝑒.

2. Compute 𝐴𝑐𝑟
𝑒𝑞 and 𝐼 𝑐𝑟

𝑒𝑞 according to Eqs. (37) and (38).

3. Compute the effective ‘‘cracked’’ column stiffnesses 𝐸𝐴𝑐𝑟 = 𝐸𝑐 𝐴𝑐𝑟
𝑒𝑞 and 𝐸𝐼 𝑐𝑟 = 𝐸𝑐 𝐼 𝑐𝑟

𝑒𝑞

4. Determine the updated eigenstretch 𝜀𝑒,𝑐𝑟0 according to Eq. (41).

5. Subject the structural model to point loads 𝑃1, 𝑃2, and 𝑃3, see Table 1, and to
eigenstretches and eigencurvatures representative for the time instant 30 min after the
start of the fire, see Table 3, except for the columns, for which the updated eigenstretch
is given in Eq. (41). Run a structural simulation, in order to compute the stress
resultants (normal forces and bending moments).

6. Determine the total concrete stresses in the outer intact part of the columns based on
Eq. (26), in which 𝐸𝐴, 𝐸𝐼 , 𝜀𝑒0, and 𝜅𝑒

0 are replaced by 𝐸𝐴𝑐𝑟, 𝐸𝐼 𝑐𝑟, 𝜀𝑒,𝑐𝑟0 , and 0,
respectively.

7. Stop algorithm if the tensile strength is reached at the intersections of the
semi-major-axes with the crack edge.

8. Increase the value of ℎ𝑒, if the total tensile stresses at the intersection of the
semi-major-axis (= 𝑦-axis) with the crack edge are larger than the tensile strength of
concrete, and vice versa.

9. Increase the value of 𝑏𝑒, if the total tensile stresses at the intersection of the
semi-minor-axis (= 𝑧-axis) with the crack edge are larger than the tensile strength of
concrete, and vice versa.

10. Go back to step 2.
Table 7
Properties of cracked columns used for thermo-elasto-brittle analysis.

Property Value

Equivalent area 𝐴𝑐𝑟
𝑒𝑞 = 26673mm2

Equivalent moment of inertia 𝐼 𝑐𝑟
𝑒𝑞 = 78634000mm4

Ratio factor 𝜂𝑐𝑟𝐴 = 0.695
Ratio factor 𝜂𝑐𝑟𝐼 = 0.960
Eigenstretch 𝜀𝑒,𝑐𝑟0 = 18.6 × 10−4

Eigencurvature 𝜅𝑒,𝑐𝑟
0 = 0mm−1

uniformly distributed axial normal stresses experienced by concrete,
which amount to −15.0MPa, see the dotted lines in Fig. 23.

The total stresses of the left column, see Fig. 23, follow from the
superposition of the stresses associated with the beam-theory-related
normal forces and bending moments, (see the previous paragraph) with
the hindered-warping-induced stresses, see Fig. 21. At the intersections
of the crack contour with the 𝑦-axis and with the 𝑧-axis, respectively,
he total stresses are tensile and amount to 3.49MPa and 3.39MPa,

respectively. These values are close to the tensile strength of concrete.
This underlines that the semi-radii of the cracks according to Eqs. (39)
and (40) are realistic.

The beam theory solution was based on temperature-independent
thermo-mechanical properties of concrete and steel, see Table 2. In
addition, linear elastic material behavior was assumed for both con-
crete and steel, except for the tensile behavior of concrete, for which
linear elastic behavior up to the tensile strength was assumed to be
followed by brittle cracking. It is interesting to compare the obtained
total stresses with those from a non-linear elasto-plastic FE simula-
tion (Díaz et al., 2018). The latter was carried out with the ‘‘Concrete
Damaged Plasticity’’ model (Dassault Systemes Simulia Corp, 2019) and
accounted for both temperature-dependent thermo-mechanical prop-
erties and non-linear stress–strain relations of concrete and steel, see
Figs. 16–18 in (Díaz et al., 2018). The element-wise uniform stresses
obtained from the FE simulation, see the thin solid lines in Fig. 23,
are quantitatively well reproduced with the smooth stress solution
obtained from the much simpler, temperature distribution-informed
beam-theory-based simulation, see the thick solid lines in Fig. 23. This
underlines that the hindered-warping-induced stresses triggered tensile
cracking of concrete inside the columns, while other material non-
linearities and temperature-dependent properties of concrete and steel
were of minor importance, at least during the first 30 min of the fire

◦

11

test, with maximum temperatures up to 300 C.
Fig. 22. Beam-theory-related stress resultants due to the point loads and the fire-
induced eigenstretches and eigencurvatures, under consideration of tensile cracking of
the core region of the columns: (a) bending moments, (b) normal forces.

5.6. Evolution of cracking inside the columns

The evolution of cracking of the columns is simulated throughout
the first 30 min after the start of the fire. The analysis steps described
for the beam-theory-based approach are repeated for several time in-
stants. During the first 11 min after the start of the fire, the axial stresses
inside the columns are smaller than the tensile strength of concrete.
Thus, there is no need to simulate tensile cracking. 11.7 min after the
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Fig. 23. Axial stresses along the local 𝑦- and 𝑧-axes at the half-height of the columns,
30 min after the start of the fire, under consideration of tensile cracking of the core
region (dashed gray ellipse), obtained with the approach combining Timoshenko beam
theory with Fourier series-defined non-linear temperature distributions (thick solid
lines) and with the FE simulation (thin solid lines); the dotted lines refer to stresses
resulting from external loading (point loads of Table 1) as well as from thermally
induced eigenstretches and eigencurvatures.

Fig. 24. Distribution of axial stresses across the cross-section of the left column at
initiation of tensile cracking, 11.7 min after the start of the fire.

start of the fire, the tensile strength of concrete is reached at the axis
of the columns, see Fig. 24. At that time instant, the heat front has
propagated some 4 cm into the columns. An almost uniform stress state
with tensile stresses near the tensile strength of concrete, prevails in the
remaining central region of the columns, see Fig. 24. This explains why
the crack propagates very quickly from 11.7 to 12 min after the start
of the fire, up to a size which is equal to 80% of that reached 30 min
after the start of the fire, see Fig. 25. This first phase of fast cracking
is followed by a second phase of much slower crack propagation. The
compressive normal force increases throughout the first 30 min of the
fire from some 340 kN to some 400 kN, see Fig. 26 and Section 7.2 for
a more detailed discussion.
12
Fig. 25. Evolution of the radii of the semi-axes of the elliptic cracks, ℎ𝑒 and 𝑏𝑒, during
the first 30min after the start of the fire: the symbols denote simulation results (see
also Table 8); the solid lines refer to power-law trend lines.

Fig. 26. Evolution of the compressive normal force of the left column during the first
30min after the start of the fire: the squares denote simulation results computed with
beam analysis software (see also Table 8); the solid and dashed lines, respectively, refer
to the trend lines before and during cracking.

6. Analysis of structural variations, in terms of the cross-sectional
area of the columns

In order to generalize the findings concerning tensile cracking of
the columns, structural variations are studied next. In more detail, the
equivalent cross-sectional area of the columns, 𝐴𝐶,𝑒𝑞 , is varied from 0.6
to 1.5 times the value which was actually realized by Lu et al. (2019),
the latter value amounting to 4.387×104 mm2. At the same time, the ℎ∕𝑏-
ratio of the equivalent cross sections remains unaltered, as do the other
geometric properties of the frame structure, the material properties
of concrete and steel, and the thermo-mechanical loading. What also
remains unaltered, is the reinforcement degree of the columns: it is kept
fixed at 𝜌 = 0.02945. The duration from the start of the fire until the
initiation of tensile cracking, 𝑡𝑐𝑟, is computed ten times, as described in
Section 4, see Table 9.

Throughout the entire range of investigated equivalent cross-
sectional areas, an increase of the value of 𝐴𝐶,𝑒𝑞 is always associated
with an earlier occurrence of cracking. This can be explained as follows:

• With increasing values of 𝐴𝐶,𝑒𝑞 , the extensional stiffness of the
columns increases relative to the constant stiffness of the frame
consisting of the walls and the slabs. This leads to load redistribu-
tions within the statically indeterminate structure. They manifest
themselves in a moderate increase of the compressive normal
force due to mechanical loads carried by the columns, 𝑁𝐶,0, see
the second column of Table 9. However, the significant increase
of the equivalent cross-sectional area outweighs the moderate
increase of the compressive normal force, so that the compressive
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Table 8
Input values for simulations with beam analysis software, referring to different time instants of the fire: eigenstretches and eigencurvatures are defined in Eqs. (28)-(30) and (41),
the equivalent geometric properties of the cracked columns are defined in Eqs. (37)-(38).

Top Slab Bottom Slab Lateral Wall Columns

𝜀𝑒0 [−], 𝜅
𝑒
0 [mm−1] 𝜀𝑒0 [−], 𝜅

𝑒
0 [mm−1] 𝜀𝑒0 [−], 𝜅

𝑒
0 [mm−1] 𝜀𝑒0 [−], 𝜅

𝑒
0 [mm−1] 𝐴𝑒𝑞 [mm2], 𝐼𝑒𝑞 [mm4]

𝑡1 = 5min
𝜀𝑒0 = 0.2123 × 10−5 𝜀𝑒0 = 0.2362 × 10−5 𝜀𝑒0 = 0.1172 × 10−5 𝜀𝑒0 = 0.2904 × 10−4 𝐴𝑒𝑞 = 4.387 × 104

𝜅𝑒
0 = 0.5436 × 10−7 𝜅𝑒

0 = 0.6719 × 10−7 𝜅𝑒
0 = 0.3575 × 10−7 𝜅𝑒

0 = 0 𝐼𝑒𝑞 = 9.291 × 107

𝑡2 = 8min
𝜀𝑒0 = 1.0781 × 10−5 𝜀𝑒0 = 1.1900 × 10−5 𝜀𝑒0 = 0.5273 × 10−5 𝜀𝑒0 = 1.3929 × 10−4 𝐴𝑒𝑞 = 4.387 × 104

𝜅𝑒
0 = 2.6598 × 10−7 𝜅𝑒

0 = 3.2532 × 10−7 𝜅𝑒
0 = 1.5325 × 10−7 𝜅𝑒

0 = 0 𝐼𝑒𝑞 = 9.291 × 107

𝑡3 = 11.7min
𝜀𝑒0 = 2.8454 × 10−5 𝜀𝑒0 = 3.1176 × 10−5 𝜀𝑒0 = 1.6116 × 10−5 𝜀𝑒0 = 3.4902 × 10−4 𝐴𝑒𝑞 = 4.387 × 104

𝜅𝑒
0 = 6.7536 × 10−7 𝜅𝑒

0 = 8.1695 × 10−7 𝜅𝑒
0 = 4.5273 × 10−7 𝜅𝑒

0 = 0 𝐼𝑒𝑞 = 9.291 × 107

𝑡3 = 12min
𝜀𝑒0 = 2.9903 × 10−5 𝜀𝑒0 = 3.2740 × 10−5 𝜀𝑒0 = 1.7070 × 10−5 𝜀𝑒0 = 5.7670 × 10−4 𝐴𝑐𝑟

𝑒𝑞 = 3.144 × 104

𝜅𝑒
0 = 7.0657 × 10−7 𝜅𝑒

0 = 8.5366 × 10−7 𝜅𝑒
0 = 4.7683 × 10−7 𝜅𝑒

0 = 0 𝐼 𝑐𝑟
𝑒𝑞 = 8.634 × 107

𝑡3 = 15min
𝜀𝑒0 = 4.3774 × 10−5 𝜀𝑒0 = 4.7718 × 10−5 𝜀𝑒0 = 2.9102 × 10−5 𝜀𝑒0 = 8.1324 × 10−4 𝐴𝑐𝑟

𝑒𝑞 = 2.974 × 104

𝜅𝑒
0 = 10.0297 × 10−7 𝜅𝑒

0 = 12.0190 × 10−7 𝜅𝑒
0 = 7.8817 × 10−7 𝜅𝑒

0 = 0 𝐼 𝑐𝑟
𝑒𝑞 = 8.408 × 107

𝑡4 = 20min
𝜀𝑒0 = 6.8219 × 10−5 𝜀𝑒0 = 7.4158 × 10−5 𝜀𝑒0 = 5.1733 × 10−5 𝜀𝑒0 = 11.8837 × 10−4 𝐴𝑐𝑟

𝑒𝑞 = 2.810 × 104

𝜅𝑒
0 = 15.0607 × 10−7 𝜅𝑒

0 = 17.9003 × 10−7 𝜅𝑒
0 = 13.3951 × 10−7 𝜅𝑒

0 = 0 𝐼 𝑐𝑟
𝑒𝑞 = 8.141 × 107
’

Table 9
Results of the analysis regarding structural variations in terms of the equivalent cross-
sectional areas of the columns, 𝐴𝐶,𝑒𝑞 : values of the compressive normal force due to

echanical loads, 𝑁𝐶,0, the compressive normal force due to the thermal load 11.7min
fter the start of the fire, 𝑁𝐶,𝜀, and the duration from the start of the fire until the
nitiation of tensile cracking, 𝑡𝑐𝑟.
Equivalent area Normal force Crack time

𝐴𝐶,𝑒𝑞 [mm2] 𝑁𝐶,0 [kN] 𝑁𝐶,𝜀 [kN] 𝑡𝑐𝑟 [min]

2.632 × 104 −335.0 −18.8 13.4
3.071 × 104 −336.6 −18.2 12.7
3.510 × 104 −337.8 −17.7 12.2
3.948 × 104 −338.7 −17.4 11.9
4.387 × 104 −339.4 −17.1 11.7
4.826 × 104 −340.0 −16.9 11.5
5.265 × 104 −340.5 −16.7 11.4
5.703 × 104 −340.9 −16.5 11.3
6.142 × 104 −341.2 −16.4 11.2
6.581 × 104 −341.5 −16.3 11.1

axial normal stresses in the columns decrease with increasing
value of 𝐴𝐶,𝑒𝑞 .

• With the same temperature evolution being imposed at the sur-
face of the columns with varying cross-sectional areas, the columns
thermal stretches according to Eq. (30) evolve the slower the
larger the value of 𝐴𝐶,𝑒𝑞 . This implies two counteracting effects:
(i) The incompatibility between the thermal elongation of the
columns and the deformation of the walls decreases. Therefore,
the columns are pushing less against the surrounding frame
consisting of slabs and walls, and the compressive normal force
experienced by the columns, 𝑁𝐶,𝜀, increases more slowly, see the
third column of Table 9. This effect tends to decrease the duration
from the start of the fire to the initiation of tensile cracking.
(ii) The hindered-warping-induced tensile stresses at the core of
the columns evolve more slowly. This effect tends to increase
the duration from the start of the fire to the initiation of tensile
cracking.

Total tensile stresses at the center of the column increase with
ncreasing cross-sectional area, see the thick solid line in Fig. 27. This
esults from a significant reduction of the compressive normal force
nduced stresses (dash-dotted line) and a moderate reduction of the
indered-warping-induced tensile stresses (dashed line).

. Discussion

.1. Stress redistributions due to tensile cracking

It is interesting to discuss redistributions of stress resultants and
hanges of stresses induced by tensile cracking of the left column.
13
Fig. 27. Results of the analysis regarding structural variations in terms of the
equivalent cross-sectional areas of the columns, 𝐴𝐶,𝑒𝑞 : Evolution of the hindered-
warping-induced stresses (dashed line), the total axial stresses (solid line), and the
normal force related stresses (dash-dotted line), 11.7min after the start of the fire.

To this end, results from two simulations are compared. They are
performed with and without consideration of tensile cracking and they
refer to 30 min after the start of the fire.

The eigenstretch of the cracked left column is by 36% larger than
the value obtained without consideration of tensile cracking (Table 10).
This change results from the fact that the average temperature in the
outer intact part of the column is by 36% higher than the average
temperature of the entire cross-section.

The extensional stiffness of the cracked left column is by 39%
smaller than the value obtained without consideration of cracking, see
Table 10. This change results from the fact that cracking reduces the
equivalent area of the cross-section by 39%, see Eq. (37).

As regards the normal force experienced by the left column, the
larger eigenstretch and the smaller extensional stiffness result in two
competing effects:

• Because of the larger thermal eigenstretch, the columns expand
more and could be expected to push even stronger against the
slabs. This effect tends to increase the compressive normal force
carried by the columns.

• Stiffer elements of a statically indeterminate structure attract a
larger share of the load than less stiff elements. Because of the
reduced stiffness of the columns, this effect tends to redistribute
the stress resultants towards the stiffer walls, decreasing the
expected compressive normal force carried by the columns.

The described structural analysis clarifies that the former effect slightly
outperforms the latter: the compressive normal force carried by the

left column increases, because of cracking, by only some 2.3% from



Applications in Engineering Science 14 (2023) 100128M. Sorgner et al.

t
2
t
g
i
h
c
c
d
i
o

a
A
−
t
b
s

e
f
4
s

7

b
s
m
t
r

Table 10
Cracking-induced changes of properties of the left column, its normal force, and stresses experienced by
concrete.

Property Intact Cracked (change)

Equivalent area 43870mm2 26673mm2 (−39%)
Extensional stiffness 1465 kN 891 kN (−39%)
Eigenstretch 13.7 × 10−4 18.6 × 10−4 (+36%)
Normal force −391.8 kN −401.0 kN (+2.3%)
Stresses associated with
normal forces and bending
moments

−8.9MPa −15.0MPa (+68.5%)

Maximum hindered-
warping-induced
compressive stresses

−39.8MPa −23.6MPa (−40.7%)

Maximum compressive
total stresses

−47.5MPa −38.6MPa (−18.7%)
−391.8 kN to −401.0 kN, see Table 10. Thus, the redistributions of the
stress resultants, resulting from tensile failure of concrete at the core of
the left column, are rather insignificant, compare Fig. 17 with Fig. 22.

The beam-theory-related stresses resulting from a slightly increased
compressive normal force and a significantly reduced cross-sectional
area, are by some 68.5% larger than the values obtained without con-
sideration of cracking, see Table 10. They increase from −8.9MPa (with-
out cracking, see Fig. 18) to −15.0MPa (with cracking, see Fig. 23).

Hindered-warping-induced stresses remain qualitatively the same in
he intact outer region of the cracked column, compare Figs. 14 and
1, but they are equal to zero in the cracked core region. Because
he hindered-warping-induced stresses are self-equilibrated, the inte-
ral over the remaining hindered-warping-induced stresses must van-
sh, such that they do not contribute to the normal force. Thus, the
indered-warping-induced stresses change quantitatively: at the outer
ontour of the cross-section, they decrease from −39.8MPa (without
racking, see Fig. 14) to −23.6MPa (with cracking, see Fig. 21). The re-
uction of the hindered-warping-induced stresses, resulting from crack-
ng of concrete is sometimes referred to as ‘‘reduction of the constraint
f the reinforced concrete member’’, see e.g. (El-Tayeb et al., 2017).

Total stresses are the sum of the hindered-warping-induced stresses
nd the stresses associated with normal forces and bending moments.
t the outer contour of the left column, the total stresses decrease from
47.5MPa (without cracking, see Fig. 18) by 18.7% (see Table 10)

o −38.6MPa (with cracking, see Fig. 23). This change is governed
y cracking-induced changes regarding the hindered-warping-induced
tresses.

Finally, it is noteworthy that the compressive stress of concrete was
qual to −7.7MPa at half-height of the left column before the start of the
ire. This stress increased, during the first 30 min of the fire, by almost
00% to −38.6MPa, which is virtually equal to the 28-days compressive
trength of the concrete (Díaz et al., 2018).

.2. Behavior of reinforced concrete columns during a fire

The finding that the core regions of the columns were damaged can
e generalized from the here-analyzed statically indeterminate frame
tructure to other reinforced concrete structures. Corresponding argu-
ents refer to changes of the compressive normal forces experienced by

he columns, resulting from the fire loading and from tensile cracking,
espectively:

• In the here-analyzed statically indeterminate frame structure, fire
loading increased the compressive normal force of the columns
from some 340 kN to some 400 kN, because of the following
two reasons: 1. The columns were heated more than the walls
and slabs. This led to larger eigenstretches in the columns, and
smaller eigenstretches in the walls. 2. The larger eigenstretches
of the columns were constrained by the statically indeterminate
frame structure surrounding them. This led to an increase of
the compressive normal forces experienced by the columns, see
Fig. 26. Still, this increase of compression could not prevent the
columns from tensile cracking in their core regions, see Fig. 25.
14
• In statically determinate structures, compressive normal forces
experienced by columns are independent of fire loading, because
they are controlled by equilibrium only. Therefore, it is even more
likely that statically determinate columns will suffer from tensile
cracking in their core regions, compared to the here-studied case.

• Herein, core-cracking of the columns was shown to result in an
increase of the compressive normal forces of the columns by some
3% only. This is reminiscent of statically determinate structures,
where partial cracking of a reinforced concrete column has no
influence on its normal force. Thus, the cracking-related stress
redistributions inside the here-analyzed column are similar to
those found in other reinforced concrete structures.

Fire-loaded columns undergo a sequence of characteristic processes
during the initial phase of the fire, the high-temperature situation, and
after the fire.

In the initial phase of the fire, transient heat conduction results
in non-linear temperature profiles. The outer surface is already hot,
while the core is still rather cool. Corresponding hindered-warping-
induced stresses are compressive in the outer region and tensile in
the core region of the columns. While temperatures are not yet high
enough to significantly reduce the stiffness and strength of concrete,
the hindered-warping-induced stresses increase the total compressive
stresses at the outer contour of the columns, and decrease them in the
core region around the axis of the columns. As shown in the presented
example, it is likely that hindered-warping-induced stresses will give
rise to tensile stresses at the core of the columns, see also (Elbadry
and Ghali, 1986; Vecchio and Sato, 1990). Once they reach the tensile
strength of concrete, the core region of the columns will crack. It is
likely that this will occur unnoticed during fire testing, unless there
are build-in sensors measuring the axial normal stresses and possible
cracking at the core of the columns.

During the main phase of the fire, with temperatures rising up say
1000 ◦C, dehydration of concrete and associated effects (Ulm et al.,
1999b,a) reduce the stiffness (and strength) of concrete, particularly
so in the region of the heated surface of the columns. More compliant
concrete close to the surface exhibits stress relaxation. This process
results in the re-distribution of compressive stresses from the outer to
the inner region of the columns, where concrete is still much stiffer (Ali
et al., 2010). Thus, cracks that have appeared during the first phase of
the fire will close during the main phase of the fire.

After the fire, when the columns cool down, transient heat conduc-
tion changes its direction. The core of the columns is warmer than their
surfaces. Corresponding hindered-warping-induced stresses are tensile
in the outer region and compressive in the core region of the columns.
Thus, also during cooling damage of columns is expected to progress,
see also (Ožbolt et al., 2014; Molkens, 2022).

8. Conclusions

Three-dimensional nonlinear thermo-mechanical FE simulations of
the fire test by Lu et al. (2019) and a beam-theory-related analy-
sis delivered very similar results regarding internal cracking of the
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columns. This is remarkable because the FE simulation accounted
for temperature-dependent thermo-mechanical properties and non-
linear stress–strain relations of concrete and steel, while the beam-
theory-based analysis was based on temperature-independent thermo-
mechanical properties and linear stress–strain relations, except for
concrete subjected to tension, which was idealized to exhibit linear
elastic behavior followed by sudden brittle failure. The results suggest
the following conclusions:

• Model reduction allowed for a speed-up of the structural analysis
by a factor of 500.

• The modular beam-theory-based approach delivers a continuous
(rather than discretized) resolution of non-linear stress distribu-
tions.

• Temperature-dependent thermo-mechanical properties of con-
crete and steel (including the thermal diffusivity, the elastic
stiffness, pre-peak non-linearities of stress–strain diagrams, and
the tensile strength) are only of secondary importance when it
comes to stress states inside columns subjected to a moderate
fire which lasts for 30 min and leads to a maximum surface
temperature of 300 degrees centigrade.

• Hindered-warping-induced stresses, which are compressive in
near-surface regions and tensile in the vicinity of the axis of the
columns, are first-order effects. They result in tensile cracking of
the core of the compressed columns already 11 min after the start
of the fire, during which the surface temperature increased from
20 to 170 ◦C.

• Even if a fire can be extinguished quickly, and even if no sig-
nificant damage can be detected at the fire-exposed surface of a
reinforced concrete column, it is very likely that it got damaged
nonetheless.
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