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Kurzfassung

Graph Neural Networks (GNNs) haben in den letzten Jahren große Aufmerksamkeit
erlangt. Sie stellen ein flexibles und leistungsfähiges Konzept für die multimodale Analyse
von graph-strukturierten Daten dar. Die Vielfältigkeit dieser Daten ermöglicht ein breites
Anwendungsspektrum in den unterschiedlichsten Bereichen. Das Potenzial von GNNs für
die Analyse komplexer, biologischer, netzwerkstrukturierter Systeme wurde bisher jedoch
noch nicht umfassend erforscht. In dieser Arbeit werden GNNs für die Klassifizierung von
Graphen eingeführt, die das Lymphgefäßsystem und das enterische Nervensystem des
Darms modellieren. Light-Sheet Fluorescence Microscopy (LSFM) in Kombination mit
Immunolabeling und Tissue Clearing ermöglicht die Bildgebung solcher Strukturen in
ihrer vollen Komplexität im gesamten Körper einer Maus. Allerdings ist LSFM auf drei
unterscheidbare Fluorophore im sichtbaren Lichtbereich beschränkt. Diese Limitierung
motiviert dazu, das Problem des Multiplexing für die Darmdaten zu lösen. Dafür, wurden
GNNs eingesetzt, die die extrahierten Darmgraphen nach der Bildgebung klassifizieren.
Unter Verwendung von Mehrkanal-Bilddaten, bei denen Lymphgefäße und Nerven mit
verschiedenen Fluorophoren gefärbt sind, war es möglich, einen Graphen mit bekannten
Gefäßannotationen zu extrahieren. Durch Training auf diesem Graphen konnte ein Modell
erstellt werden, das auf Graphen angewendet werden kann, die aus Einkanal-Bilddaten
stammen. Bei diesen ist die Annotation des Nerven- und Lymphsystems ansonsten nur
manuell durch einen Biologen möglich. Es wurde eine auf dem SAGE GNN-Modell
basierende Methode entwickelt, die eine Balanced Accuracy von 75,9% und eine Accuracy
von 77,0% erreicht und damit Algorithmen wie den Random Forest (RF) (Balanced
Accuracy von 71,8%) übertrifft. Über die reine Klassifizierungsgenauigkeit hinaus zeigte
die Analyse der Konnektivität innerhalb der Klassen ein überlegenes Verhalten der GNN-
Modelle. Der Jaccard-Index (JI) der größten Connected Component in der Ground Truth
mit den beiden größten Connected Components in der SAGE-Vorhersage ergab Werte von
0,52 bzw. 0,53 für die Lymph- und Nervennetzwerke. Im Gegensatz dazu erreichte der RF-
Algorithmus in JI nur 0,43 und 0,18. Dieses Ergebnis zeigt, dass die RF-Vorhersagen trotz
akzeptabler Genauigkeit die Konnektivität schlecht erhalten, was für die weitere Analyse
entscheidend ist. Schließlich wurden verschiedene Ansätze für die Merkmalsextraktion aus
Rohbildern untersucht, um die aufgabenspezifische Klassifikationsleistung zu verbessern.
Ein GNN-Modell mit einem LSTM-Merkmalsextraktor auf den Gefäßmittellinien erreichte
eine Balanced Accuracy von 76,9% auf dem Testteil des Mehrkanalgraphen, während der
RF-Algorithmus einen Wert von 70,6% erreichte.
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Abstract

Graph Neural Networks (GNNs) have gained significant attention in recent years. They
comprise a flexible and powerful deep learning concept for multimodal graph-structured
data analysis. The abundance of graph-structured data facilitates a wide range of appli-
cations across vastly different domains. However, the potential of GNNs for the analysis
of complex, biological, bodily network structured systems has not been comprehensively
explored to this date. In this work, GNNs are introduced to the tasks of node-level
classification for graphs that model the lymphatic vessel system and the enteric nervous
system of the gut. Light-Sheet Fluorescence Microscopy (LSFM), in combination with
immunolabeling and tissue clearing, allows the imaging of such structures in their full
complexity in the entire mouse body. However, LSFM is limited to three distinguishable
fluorophores in the visible light range. This limitation motivates to solve the multiplexing
challenge for the gut data. To address this challenge, GNNs are employed to perform
post-imaging classification on extracted gut graphs. Using multi-channel imaging data,
where lymphatic vessels and nerves are stained with different fluorophores, it was possible
to extract a graph representation with known labels. Training on this ground truth graph
a model could be created that generalizes towards a graph extracted from single-channel
imaging data, where labeling of the nervous and lymphatic system is otherwise only
possible manually by a trained biologist. A method based on the SAGE GNN model
was developed, which reaches a balanced accuracy of 75.9%, and an accuracy score of
77.0%, which outperforms baseline algorithms such as Random Forest (balanced accu-
racy of 71.8%). Beyond pure classification performance, the analysis of within-class
connectivity revealed superior behavior of the GNN classifiers. The Jaccard index (JI)
of the largest connected component in the ground truth with the combined two largest
connected components in the SAGE prediction resulted in values of 0.52 and 0.53 for
the lymph and nerve networks, respectively. In contrast, the Random Forest algorithm
performs at only 0.43 and 0.18 in JI. This result shows that despite acceptable accuracy,
the baseline predictions are bad at preserving connectivity, which is crucial for further
analysis. Finally, different modalities for feature extraction from raw images to improve
task-specific classification performance were investigated. A GNN model with an attached
learnable LSTM feature extractor on the vessel centerlines achieved a balanced accuracy
of 76.9% on the test partition of the multi-channel graph while the baseline Random
Forest algorithm achieved a value of 70.6%.
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CHAPTER 1
Introduction

Graph Neural Networks (GNNs) are among the most investigated and developed neural
networks in recent years [ZCH+20]. They are designed to deal with non-euclidean data,
more specifically graph-structured data [BBL+17]. This is the decisive difference to
other common Deep Learning (DL) structures that are designed to work with Euclidean
data representations like two-dimensional grids (e.g., Computer Vision (CV)) or one-
dimensional sequences (e.g., Natural Language Processing (NLP)). GNNs successfully
extract node-level features and topological information about a network, making them
the models of choice for graph-structured data. Such structures are abundant in a
wide range of different domains [ZCH+20]. Sometimes graphs seem to be the inherent
representation of the data, while in other cases underlying graph structures might be less
evident. Molecules are commonly modeled as graphs with atoms as nodes and bonds as
edges. Given molecules as input, GNNs can be used to estimate molecular properties,
e.g., the toxicity of a chemical or the activity of a certain drug. These tasks correspond to
graph classification/regression tasks, where a graph of any given size is provided as input
to generate an output of fixed size. A completely different application field are social
sciences, where graphs can represent social networks with people and their relationships
as nodes and edges, respectively. Here, a GNN can perform predictions on people that
are likely to connect in the social network [AA03]. Such a link prediction task (i.e., a
relationship prediction between entities) is another example where GNNs have excelled.
[ZC18]. Lastly, a highly relevant task is the prediction of certain properties for every node
in a graph. In a street network, predicting the traffic volume at all junctions, represented
as nodes, is a critical task. The traffic volume at a junction is influenced by the traffic at
neighboring junctions and the general structural properties of the street network.
The listed examples correspond to graph, edge, and node-level tasks. Beyond the
versatility of the tasks that GNNs can handle, the examples also display the diversity of
the domains, ranging from chemistry/physics over sociology to traffic planning.

Network structures are also abundant in living systems. Mammalian physiology relies
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1. Introduction

on network-structured systems, e.g., the blood vessel system, that allow a fast supply of
oxygen and nutrients through the body. Other fine-grained network structures include
the Central Nervous System (CNS) and the Peripheral Nervous System (PNS). Finally,
the lymphatic system is network-structured and spans the whole body. The abundance
of these networks suggests that GNNs are an architecture that might be useful for
biomedical applications. Previous work, e.g., focusing on the analysis of the brain
vasculature, has clearly demonstrated the utility of graph representations in this domain
[TPS+20, PMS+21].

Light Sheet Fluorescence Microscopy (LSFM) is a technology that allows the visual-
ization of these bodily network structures in their full complexity. LSFM relies on the
principle of fluorescence, a phenomenon where the excitation of a molecule (referred
to as fluorophore) results in the emission of lower energetic light with a certain time
delay. This emission can then be detected and used to localize the fluorophore spatially.
LSFM allows the visualization of fluorophores in 3D by slicing a light sheet through a
sample that was previously rendered transparent [EBJ+12]. This method is potent in its
ability to visualize biological structures in 3D dimensions with high spatial resolution.
Todorov et al. [TPS+20] showed how it is possible to visualize the vasculature of a whole
mouse brain. The possibilities for the visualization of single biological components are
almost unlimited. Every structure that can be specifically targeted can be potentially
visualized and investigated. One technique that allows precise targeting of biological
structures is immunolabeling. Roughly sketched in immunolabeling, a fluorescent com-
pound is attached to an antibody which then specifically binds to antigens in the sample.
Immunolabeling on its own does not enable the imaging of 3D biological specimens due
to the opacity of the sample. Opaque samples do not allow the light for excitation nor
the emitted light to penetrate through the specimen. For this reason, tissue clearing is a
crucial step in LSFM imaging. Tissue clearing is a process where an opaque sample is
chemically altered to appear transparent in the visible light range.

While the combination of tissue clearing and LSFM allows visualizing structures of
interest, a limitation for the number of different structures that can be distinctly visualized
remains. This arises from the problem that only a small number of fluorophores can be
perfectly differentiated in the visible light range. There are several approaches towards
an instrumentation-based solution to this problem. Notably, Jahr et al. proposed a
hyperspectral approach where a diffractive component allows the measurement of emitted
light for different wavelengths [JSS+15]. While such approaches are rich in information,
they still come with the prize of non-trivial changes to standard commercial instruments.

A more elegant solution that circumvents any changes to the instruments is a post-
processing-based signal differentiation. Ideally, this eliminates the need to use different
fluorophores. The classification should be possible by only considering the image in-
formation of a single channel. The traditional approach to solve such a problem is
segmentation. Here, each voxel is assigned either to the background or to one of the
foreground classes. Segmentation using DL in this area is well-researched and often
provides compelling results [RFB15, HTN+22, SPS+21]. However, there is a multitude of
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downstream tasks that have no explicit demand for segmentation and where an expressive
but compact graph representation is all it needs. These representations are lightweight
regarding storage demand and at the same time, regarding the models that operate on
them. This allows for fast and also energy-efficient training and inference of models
for downstream tasks, such as disease classification. At the same time, the reduction
of learnable parameters reduces the demand for training data, which is a compelling
argument for the biological and medical domain, where training data is often sparse.
Graph generation is a rapidly developing field [SKW+22]. With the rising abundance of
available graph data, there will be increased interest in tasks that can be directly solved
on graph-structured data.

For the given reasons, this work tries to evaluate the potential of directly using graph
representations for multiplexing in LSFM. Specifically, the lymphatic systems in the gut
and the interwoven PNS are at the center of this work. Given the network-structured
nature of both systems, it makes sense to represent them as graphs and solve the
downstream multiplexing problem using the most promising group of graph learning
architectures, namely GNNs.
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CHAPTER 2
Background

2.1 Light Sheet Fluorescence Microscopy
LSFM is an imaging technique that emerged in the early 2000s due to light sheet
generation and detection advances. LSFM is a non-destructive, high-resolution imaging
technique that allows for 3D imaging of fluorescently labeled biological specimens, such
as cells, tissues, and whole organisms. LSFM works by using a thin sheet of light to
illuminate a sample from one angle while a camera captures images from a perpendicular
angle. This allows for high-speed, high-resolution imaging of large specimens with minimal
phototoxicity and photobleaching [LLYA14].

LSFM is used in various applications, from developmental biology and neuroscience to
cancer research and drug discovery. It is particularly useful for imaging large, complex
samples, such as whole organs, where traditional imaging techniques, like confocal
microscopy, can be limited by the thickness of the specimen.

2.1.1 Tissue Clearing
Tissue clearing is a technique used in microscopy and imaging to make biological tissues
transparent to light, allowing for high-resolution 3D imaging of intact tissues [RL15,
UEC+20, RGM+21]. Most biological tissues are opaque to visible light due to the
presence of lipids and other light-scattering molecules. This limits the achievable depth
of imaging for traditional microscopy techniques. Tissue clearing involves treating the
tissue with various chemicals that dissolve the light-scattering molecules while preserving
the structure and fluorescence of the tissue. Once the tissue has been cleared, it can be
imaged using various imaging techniques, such as light-sheet fluorescence microscopy,
enabling the study of complex biological processes in healthy and diseased specimens in
unprecedented detail. Tissue clearing is still rapidly evolving, with new techniques and
applications constantly being developed.

5



2. Background

There are several techniques for achieving tissue clearing, including CLARITY [CD13], CU-
BIC [STP+14], and DISCO [EBJ+12, PCQ+16, RWS+14, TPS+20, PSAM+19], among
others. These techniques involve treating the tissue with chemicals, such as acrylamide
or urea, that dissolve lipids and other light-scattering molecules while preserving the
structure and fluorescence of the tissue.

2.2 Graph Neural Networks
GNNs emerged from the desire to transfer the advances made in DL for Euclidean spaces
towards the Non-Euclidean domains such as graphs and manifolds. Convolutional Neural
Networks (CNNs) proved to be essential for the successful application of DL [LBBH98].
Given the performance of CNNs, it was desired to generalize the convolution operation
towards Non-Euclidean spaces. For graphs, the approaches to perform convolutions
can be roughly separated into two strategies [BBL+17]. First, a spectral approach that
relies on spectral graph theory [Chu97]. Secondly, a spatial approach that tries to define
the convolution spatially as an operation on the node neighborhood. Bronstein et al.
[BBL+17] point out that, however, these two methods are fundamentally different in the
way the convolution is derived, it is still possible that a definition in the spectral domain
boils down to the application of a filter in the spatial domain.

2.2.1 Graph Convolutional Networks
The introduction of the Graph Convolutional Network (GCN) by Kipf and Welling
[KW16] was the start of a new age for the concept of the GNN. Their approach is based
on spectral graph theory and uses convolutions over the spectral representations of graphs
[Chu97].

The spectral definition for convolutions on graphs relies on the computation of the graph
Laplacian L and its eigenvectors. The graph Laplacian is defined as L := D − A. Where
A is the adjacency matrix, and D is the degree matrix of a graph. For undirected graphs,
the degree matrix D is a positive diagonal matrix and A is a nonnegative symmetric
matrix. L is a positive-semidefinite matrix with potentially positive and negative values.
A normalized version of L is defined as Lsym := D− 1

2 LD− 1
2 .

The convolution of a graph in the spectral domain defines as

gθ ⋆ s = UgθUT s , (2.1)

where gθ is a spectral filter, ∗ is the convolution operator, s ∈ RN is the spectral signal
over the N nodes in the graph and U is the eigenvector matrix from the eigenvalue
decomposition of the Laplacian L = UΛUT [HVG11]. For large graphs, it is computa-
tionally expensive to calculate the eigendecomposition of the n × n Laplacian matrix
because of the cubic time complexity O(n3) of the eigendecomposition.
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2.2. Graph Neural Networks

Kipf and Welling proposed an estimation of the graph convolution with a first-order
approximation using Chebyshev polynomials. Limiting the expansion of the Chebyshev
polynomials to K = 1 results in a 1-localized convolution. This means every node is
only influenced by its 1-hop neighborhood. Adding the identity matrix I is equivalent to
adding self-loops to the graph. This makes every node part of its own 1-hop neighborhood.
Consequently, Equation (2.1) can be approximated as

gθ ⋆ s ≈ θ0s + θ1 (L − I) s = θ0s − θ1D− 1
2 AD− 1

2 s (2.2)

and when the operation is further limited to a single learnable parameter θ, it can be
expressed as

gθ ⋆ s ≈ θ(I + D− 1
2 AD− 1

2 )s , (2.3)

where θ = θ0 = −θ1.

Furthermore, Kipf and Welling replace I + D− 1
2 AD− 1

2 by D̃− 1
2 ÃD̃− 1

2 . Equation 2.3 then
defines as

gθ ⋆ s ≈ θ(D̃− 1
2 ÃD̃− 1

2 )s , (2.4)

which resolves the exploding/vanishing gradient problem that arises when multiple
convolutions are stacked. Here Ã is the adjacency matrix with added self-loops Ã = A+ I
and D̃ is the to Ã associated degree matrix.

Finally, a single GCN layer performs the following operation

H(l+1) = σ
�
D̃− 1

2 ÃD̃− 1
2 H(l)Θ(l)


, (2.5)

where H(l+1) represents the node embeddings in the l+1-th layer and Θ(l) is the learnable
weight matrix. The embedding before the first GCN layer H(0) is the node feature matrix
X ∈ Rn×c, where n is the number of nodes and c is the number of features in the
embedding of the nodes.

Similarity to Laplacian Filtering

Li et al. [LHW18] further investigated the GCN and made the connection to Lapla-
cian surface smoothing that was introduced by Taubin already in 1995 [Tau95]. The
comparison reveals some interesting conclusions about the GCN architecture.

Stacking GCN layers makes closely connected nodes more similar, which is the expected
behavior of a smoothing operation. This can be potentially useful for further classifica-
tion as clustered nodes become more similar but are not strongly influenced by nodes

7



2. Background

from other clusters. Stacking an infinite number of GCN layers would result in equal
embeddings for all nodes within a connected component. This (partly) undesirable effect
is commonly referred to as the over-smoothing problem. It holds when there are no
bipartite components in the graph, which is always the case because self-loops are added
for a GCN layer. For detailed proof of this property, refer to Theorem 1 in the work of
Li et al. [LHW18].

This effect makes it desirable to have high connectivity of nodes with the same class
and low connectivity of nodes from different classes. Furthermore, it indicates that
stacking many layers is not necessarily a good idea to generate good node embeddings
for any given task. This is a crucial step for understanding the GCN layers in contrast to
conventional CNN networks where stacking many convolutional layers is often favorable
for the task due to the hierarchical feature extraction.

2.2.2 GraphSAGE
Based on the idea of the GCN Hamilton, Ying et al. [HYL17] introduced the GraphSAGE
architecture in 2018. Compared to the GCN, the function of the layer is not defined using
spectral graph theory. Instead, SAGE stands for SAmple and aggreGateE, representing
the two major steps of a SAGE layer. While the GCN utilizes the whole neighborhood,
SAGE uniformly samples a fixed number of nodes from the neighborhood. This poses a
major difference in the message-passing scheme. The second step is aggregation; here,
a SAGE layer can use different aggregator functions invariant to permutations of the
neighbor nodes. The initial SAGE paper proposes a mean aggregator, a Long Short-Term
Memory (LSTM) aggregator, and a pooling aggregator. The LSTM is used with random
permutations of the neighborhood, which aims to adapt it to unordered sets. Additionally,
a pooling operator (max-pooling) is proposed, where a learnable function processes each
neighborhood node embedding before a max aggregation.

In contrast to a GCN-layer, the node embedding itself is concatenated to the aggregated
information from the neighborhood. This allows a different transformation of the previous
node embedding and the aggregated neighborhood information. In a GCN-layer, the
introduction of self-loops makes the node part of its own neighborhood, and no explicit
concatenation of the node embedding to the aggregate is performed.

Mixed Aggregators

With the invariance to permutation being the only requirement for the aggregation, the
opportunity to use a wide range of different aggregation modes opens up. Modes such as
standard deviation, maximum, minimum, mean, or other robust estimates of location
and variance are all possible. Figure 2.1 illustrates how different aggregation schemes
can fail to distinguish the signals from a specific neighborhood.

Corso, Cavalleri et al. [CCB+20] could show that combining different aggregation schemes
improves the expressive power of GNNs. Beyond that, they validate their theory by a

8



2.3. Graph Generation

boost in performance on real-world applications. The SAGE model explicitly allows the
usage of such combined aggregators, which makes the model more attractive for complex
tasks that can only be solved with a combination of different aggregators.

Figure 2.1: Graph structures that result in the failure of certain aggregation modes.
Comparison of aggregation with mean, maximum, minimum, and standard deviation.
Figure published by Corso, Cavalleri et al. [CCB+20].

2.2.3 DGCNN
The Dynamic Graph Convolutional Neural Network (DGCNN) proposed by Wang et al.
[WSL+19] was inspired by PointNet [QSMG17] and is designed for the processing of 3D
point clouds, but the proposed concepts have a significant impact in the field of GNNs.
First, DGCNN introduces the concept of an edge convolution where a learnable edge
function processes the concatenated information of both adjacent nodes; the edge function
is free to define and can be, for example, a simple Multilayer Perceptron (MLP) model.
In the second step, edge feature vectors are aggregated, as is typical for GNN models.
Notably, the edge convolution focuses on the relationship of node embeddings regarding
their neighbors, in contrast to other GNN models where the graph neighborhood only
defines the message passing. The other interesting concept is the introduction of a
dynamic graph structure where adjacency changes from layer to layer and is defined by
proximity in the feature space. This results in a layerwise k-nearest neighbor graph that
is used for the edge convolutions.

2.3 Graph Generation
Generating graph representation based on an underlying image or volume is a long-studied
task. Multiple domains require graph representation for efficient processing, while the
initial representation domain is an image or volume. Representative examples are road
graphs for navigation tasks [HBJ+20], vascular graphs for brain analysis [PMS+21], or
scene graphs for image retrieval [JKS+15]. While multi-step approaches have dominated
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2. Background

the approaches for graph generation in the past, novel approaches are fusing the process
of object and relation prediction [SKW+22, PSP+]. Moreover, the Relationformer by
Shit et al. [SKW+22] works directly on the raw input volumes, obliterating the need for
in-between segmentations. In a submitted paper to ICCV, which I contributed to within
my master’s thesis research, we could show that single-step graph generation transformer
models can be efficiently pretrained on data-rich domains such as street networks and
then be fine-tuned to biological and medical domains where data is sparse. Among other
approaches, this work will make graph representations more available in the biomedical
domain, which motivates the further investigation of graph learning applications.

10



CHAPTER 3
LSFM Gut Data

3.1 Multi-Channel Gut Data
3.1.1 Data Properties
The multi-channel gut data portrays the gut of a mouse in a 3D volume and includes
valuable structural information. Immunolabeling was utilized to create the data, focusing
on the nervous and lymphatic system structures [MLH+23]. During the immunolabeling
process, primary antibodies were employed to specifically target these structures. In the
second step, two secondary antibodies, each with different fluorophores, were introduced,
selectively binding to one of the two primary antibodies. Finally, incubation was performed
actively by pumping the solutions containing the antibodies through the vasculature of
the mouse. The antibody-fluorophore complexes that were used for the visualizations are
described below:

• Lymphatic vessels that are present in the villi and the submucosa of the gas-
trointestinal wall [CE19] are labeled, taking advantage of the Lymphatic Vessel
Endothelial Hyaluronan Receptor 1 (LYVE1) binding Anti-LYVE1 antibody. The
attached fluorophore is a 647 nm (far-red) fluorophore with an emission maximum
roughly at the mentioned wavelength.

• The Enteric Nervous System (ENS) that is present in the gut is visualized using a
Tyrosine Hydroxylase (TH) binding primary antibody (Anti-Tyrosine Hydroxylase
Antibody). TH is an enzyme that is specifically present in cells of the CNS and the
PNS. The attached fluorophore is a 568 nm (orange) fluorophore with an emission
maximum roughly at the mentioned wavelength.

The two complexes, consisting of the primary antibody, secondary antibody, and fluo-
rophore, emit light at distinct wavelengths within the visible light spectrum range of
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3. LSFM Gut Data

400-800 nm. These unique emissions are then measured and stored within two separate
image channels. To allow the visible light used for excitation and the emitted light to
penetrate tissue, the sample is rendered transparent with tissue clearing [EBJ+12].

Data acquired from LSFM is anisotropic because of differences in the spatial resolution
arising from the thickness of the light sheet (z-dim) and the pixel size of the camera
(x-dim, y-dim). This needs to be considered for the following downstream tasks. Table 3.1
describes the spatial characteristics of the multi-channel gut data. Regarding precision,
the channel-wise data is saved as unsigned int16 (min = 0, max = 65535).

Table 3.1: Multi-channel gut dataset characteristics.

Multi-Channel Gut Data x-dim y-dim z-dim
Voxel Range 5853 3457 194
Spatial Resolution / µm 1.625 1.625 6.000
Size / mm 9.5 5.6 1.2

3.1.2 Volumetric Segmentation
On the previously described data, a patch of 920 × 632 × 136 voxels in x-, y-, and
z-dimensions was hand-annotated by a biologist. Thereby, ground truth for segmenting
the lymphatic and nervous system structures is created. The hand-annotated set covers
slightly more than 2% of the complete data. Figure 3.1 a, b) show the raw data for the
two imaging channels, and Figure 3.1 d, e) displays the corresponding hand-annotated
segmentation.

To create a segmentation for the whole data, the hand annotations were used as ground
truth for two Swin UNETR [HTN+22, HNT+22] segmentation models for the lymphatic
and the nervous system. Both models were trained on the data from their associated
image channels. Because of the limited ground truth data, the pre-trained UNETR
models were only finetuned on the hand-annotated data. Pre-training was performed on
numerous datasets containing a total of ∼ 5050 3D Computer Tomography (CT) images
1. Although there is a significant shift from the pre-training domain (CT) to the target
domain (LSFM), the pre-trained model worked excellently for the LSFM data.

3.1.3 Volume Merging
A volume synthesis step is necessary to mimic a scenario where only a single imaging
channel contains the information for lymph and nerve structures. This corresponds to
both the segmentation, as well as to the raw imaging data.

Segmentation: Regarding the segmentations, a simple max combination of the images
results in an ideal resemblance of the single-channel scenario. After this step, the segmen-

1For more details refer to:
https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/Pretrain
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3.1. Multi-Channel Gut Data

tation is processed by a fill-hole algorithm followed by binary closing. This procedure
can be regarded as denoising of the segmentation mask, and it is necessary due to the
susceptibility of the graph extraction algorithm to holes and isolated pixels.

Raw Image: For the raw data, the combination steps pose a more difficult question. Differ-
ences in the background noise, e.g., from autofluorescence, or in the signal intensities, e.g.,
differences in the quantum yield of different fluorophores, make a simple max combination
a poor approximation. A scenario where both lymph and nerve structures have highly
comparable signal distributions would constitute the worst case for classification based
on the raw image data. If such a scenario is mimicked by the merging of the channels it
guarantees that the information from the raw imaging data is not artificially increasing
the classification performance.

In later experiments (see Section 5.2), the effect of different merging scenarios on the
classification performance is tested. The step-by-step merging procedure works as follows:

1. First, the statistical moments of the signal distribution are estimated with the robust
metrics, median and Median Absolute Deviation (MAD). The signal distribution is
constituted by the values of all the voxels that were masked in the segmentation
step.

2. These metrics are then used to perform channel-wise centering and scaling. This
centering/scaling is performed for all the relevant voxels. Meaning that the center-
ing/scaling is performed on each raw data channel for all voxels from the merged
segmentation mask.

3. Consequently, the processed data of each channel is combined. Depending on the
experiment, the voxels were combined with a max() or mean() operation. Note
that the combination is only relevant for all the voxels in the merged segmentation.
Other voxels are not considered for any feature extraction.

4. Finally, the merged data needs to be centered and scaled again, which is again
done using the robust median and MAD. Without the second centering, the max()
combination results in a right-shifted distribution, while the opposite is true for
the mean() combination

The proposed image merging pipeline results in two different raw data sets that are
evaluated in this work:

1. Equal center and scale of both signal distributions and max() combination of
combined mask voxel values.

2. Equal center and scale of both signal distributions and mean() combination of
combined mask voxel values.
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A schematic example of the merged image channels is displayed in Figure 3.1 c) and
the corresponding merged segmentations in 3.1 f). The segmentations in the image are
combined by a simple logical or, while the raw data is combined by channel-wise centering
and scaling followed by a max combination.

Figure 3.1: a) Raw imaging data visualizing the nervous network. b) Raw imaging data
visualizing the lymphatic network. c) Combination of the channels a) and b) into a single
channel. d) Segmentation of the nerves. e) Segmentation of the lymphatic vessels. f)
Combined segmentations.

3.1.4 Graph Extraction and Labeling
The graph Ggut is extracted from the merged segmentation mask described above. To do
so, the vessel-to-graph algorithm described by Drees et al. [DSH+21], implemented in
the Voreen software [MSRMH09], is used. Before the segmentation is passed on to the
graph extraction algorithm, it is upsampled to isotropic pixel size; this was done using
third-order spline interpolation. After the interpolation, the size along the x- and the
y-axis is unchanged while the size along the z-axis is increased by the factor 6.000

1.625 . The
bulge size hyperparameter, which defines when a bulge is considered a separate node, was
set to 2 for this and all other graph extractions. Additionally, to the creation of nodes,
that represent bifurcation points, and edges that represent vessel-like structures, the
algorithm extracts geometric edge features. These features contain rich information about
the structural properties of the vessels, such as curvature, length, roundness, standard
deviations, and mean values of the vessel radii. An overview of all the features that are
extracted by the algorithm is provided in Appendix A (see Appendix A Table 1).

Importantly the algorithm also extracts a centerline for each edge in the graph. These
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centerlines are represented by a list of variable lengths containing pixel positions of the
input segmentation. The positional information of the centerline allows the labeling of
the edges based on the segmentation label (lymph vs. nerve) predominant along the
centerline. Thereby, a labeled ground truth data set that closely resembles the data that
can be obtained from a single imaging channel is generated.

Table 3.2 summarizes the most important properties of the multi-channel gut graph.
Self-loops that occurred in a negligible amount were eliminated to create a simple graph.
Furthermore, isolated nodes were eliminated since they are neither corresponding to
vessels nor bifurcations.

Table 3.2: Multi-channel gut graph Ggut characteristics.

Characteristic Ggut

Bifurcations (Nodes) 271100
Total Edges 340202
Lymph Edges (Lymphatic Vessels) 215674 (∼ 63%)
Nerve Edges (Nerves) 124528 (∼ 37%)
Avg. Degree 2.51
Connected Components 23

The biological expectation for Ggut is that it forms a single connected component. Biolog-
ically no parts of the lymphatic system or the nervous system are isolated from the rest.
In fact, the extracted graph fulfills this expectation with 98.1% of the nodes (265986)
being part of a single connected component. In reverse, the other connected components
combined sum up to only 1.9% of the nodes (5114). These smaller connected components
likely arise from a mixture of missing links in the segmentation step and imaging artifacts
from the LSFM measurement.

3.1.5 Line Graph

In the biological graph of the nervous and lymphatic system, the major information lies
in the vessels and not in the nodes, which only represent bifurcation points. A line graph
representation Lgut where the vessels are represented as nodes and edges represent bifur-
cation points that connect vessels is a better choice. Thereby, the feature-rich lymphatic
vessels/nerves are the instances that are classified in a node classification setting. A
description of the gut line graph is displayed in Table 3.3. For further evaluation, only the
largest connected component is used as the smaller connected components mostly only
cover a few umpteen nodes and likely arise from artifacts along the pipeline of sample
preparation, imaging, segmentation, and graph extraction.
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Table 3.3: Multi-channel gut line graph Lgut characteristics.

Characteristic Lgut

Total Nodes 340202
Lymph Nodes (Lymphatic Vessels) 215674 (∼ 63%)
Nerve Nodes (Nerves) 124528 (∼ 37%)
Edges 641842
Avg. Degree 3.77
Connected Components 23

For a line graph L(G), the properties that are listed below hold [HNW65]. These
properties give a rough insight into the characteristics of the line graph representation
and explain the relationship of the properties displayed in Table 3.2 and Table 3.3.

• The cardinality of the edge set |EG | is equal to the cardinalty of the node set |VL|,
|EG | = |VL|. Where EG is the edge set of G and VL is the node set of L.

• A graph that is connected in G is also connected in L, with the exception of isolated
nodes. Thereby, if G does not contain isolated nodes, the number of connected
components in G is equivalent to the number of connected components in L.

• The cardinality of the edge set |EL| can be calculated as half the sum of the squares
of the degrees of all vertices in G, minus |EG |

|EL| =

1
2

�
v∈VG

deg(v)2)

 − |EG | .

3.1.6 Graph Generation Pipeline

A schematic pipeline for the creation of a line graph L(G) starting from the raw image in-
formation is displayed in Figure 3.2. Summarized the crucial steps comprise segmentation,
graph extraction, and line graph creation.
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Segmentation Graph Line GraphRaw Image

Figure 3.2: Pipeline for the creation of a line graph L(G) based on raw imaging data.
Note that the images are just schematic and do not necessarily correspond to each other.
The figure contains parts taken from Paetzold et al. [PMS+21].

3.2 Single-Channel Gut Data

3.2.1 Data Properties

In the single-channel gut data immunolabeling was used to simultaneously but not
distinctly visualize the gut’s lymphatic and nervous system structures. Primary antibodies
were employed to specifically target these structures during the immunolabeling process.
In the second step, two secondary antibodies with exactly the same fluorophore were
introduced to bind to the two primary antibodies. This results in a single-channel image
where low intensities refer to the background while high intensities refer to the presence
of either lymphatic or nervous system structures.

In contrast to the multi-channel gut data, the mouse gut was extracted, and the incubation
was performed passively. Here the antibody-containing solution is not pumped through
the vasculature, but the gut is submerged in the solution, which is constantly stirred.

Table 3.4: Single-channel gut dataset characteristics.

Single-Channel Gut Data x-dim y-dim z-dim
Spatial Resolution / µm 1.625 1.625 6.000

Section 22-05
Voxel Range 2048 2048 157
Size / mm 3.3 3.3 0.9

Section 35-24
Voxel Range 2048 2048 183
Size / mm 3.3 3.3 1.1

Section 27-46
Voxel Range 2048 2048 129
Size / mm 3.3 3.3 0.8
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3.2.2 Segmentation and Raw Data Normalization
The already existing UNETR segmentation models can create a segmentation of the
single-channel patches. This leads to suboptimal segmentation as the models are not
trained exactly for the target task. In the future, this bottleneck can be eliminated
by creating hand-annotated segmentations on the single-channel data and training a
UNETR segmentation model for all vessel-like structures in the image. However, at the
moment, such annotations are not available in a sufficient amount.

To circumvent the problem, a part of Section 22-05 (see Table 3.4) that was hand labeled
by a biologist was directly used as segmentation. Due to the lack of annotations, the
other sections can not be further evaluated as of now.

Based on the segmentation, the raw data distribution can be estimated, and a robust
normalization of the raw data using median and MAD is performed. Thereby, the
scale and location of the raw voxel intensities are equal to the scale and location of the
generated raw data from the merging procedures described in Section 3.1.

3.2.3 Graph Extraction and Line Graph
As described in Section 3.1, a graph and a line graph representation are extracted from a
segmentation. The characteristics of the graph and line graph from the annotated patch
in Section 22-05 are described in Table 3.5. The graph extracted from the hand-annotated
regions in Section 22-05 is here referred to as G22−05 and the associated line graph is
named L22−05.

From a total of 4744 edges in G22−05 2979 (∼ 63%) were ascribed to the nerve class and
1754 (∼ 27%) were ascribed to the lymph class. The rest, consisting of 11 nodes, was
not assigned to any class because more than 50% of the centerline pixels were not part
of the initial segmentation. These rare events occur due to the post-processing of the
annotations, with a fill-hole and binary closing step.

Figure 3.3 schematically shows the hand-annotated region in Section 22-05 (not cyan).
Notably, the annotated region covers a significant portion of the whole Section 22-05.

Table 3.5: Single-channel gut graph G22−05 and line graph L22−05 characteristics. The
graph G22−05 was extracted directly from the hand annotations on Section 22-05.

Characteristic G22−05 L22−05

Total Nodes 3330 4744
Edges 4744 10169
Avg. Degree 2.85 4.29
Connected Components 1 1
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Figure 3.3: Location of the annotation in Section 22-05. Note that the displayed graph
was extracted from a UNETR segmentation and is just a tool to visualize the annotated
region. The graph G22−05 (and consequently L22−05) that is used for further evaluation
was extracted directly from the hand annotations.
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CHAPTER 4
Feature Engineering for Graphs

The standard Machine Learning (ML) approach for node classification on graphs combines
existing node-level features with manual feature engineering to generate independent
instances that are then classified using a ML algorithm. Some feature engineering
approaches can be used for the inductive node representation learning setting, while
others only work in the transductive setting and don’t generalize to unseen graphs. In
node classification, the transductive setting describes a scenario where all nodes for which
inference is made are already present at training time. In contrast, in the inductive
settings, the model needs to generalize to fully unseen graphs. Multiplexing the lymphatic
and nervous systems corresponds to the inductive setting, as it is desired to have a model
that generalizes to completely unseen and continuously generated gut graphs.

Figure 4.1 schematically describes the traditional ML node classification procedure for
an inductive setting. Training, validation, and test set graphs must be disconnected
before the feature generation. Otherwise, this can lead to an information leak between
the nodes of each set.

Importantly the feature generation step is not obsolete also when GNN architectures
instead of traditional algorithms are used.

Data Split
(e.g. train, val., test)

Structured
Features

Machine
Learning Model

Feature
Engineering Prediction

Learning
Algorithm

Downstream
Prediction Tasks

Figure 4.1: Traditional ML pipeline for node-level classification tasks.
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4.1 Topological Features
Structural features about the graph that can be used are, e.g., node degree and the
Graphlet Degree Vector (GDV), which represents a count vector for different graphlets
that are rooted in a node. Other engineered features include node centrality features such
as eigenvector, betweenness, or closeness centrality. When there are already existing node
attributes, the new features can be concatenated with them. This approach generalizes
to inductive node classification tasks for completely unlabeled graphs.

Many of these graph topological features can not be directly extracted by common
GNNs architectures [XHLJ18, YGSYL21]. This makes the feature engineering step
advantageous for the later application of GNNs as well as for other types ML classifiers.

From a biological point of view, it makes sense that structural information about the
micro-environment contains helpful information for node classification. This suggests an
increase in classification performance after the inclusion of these topological features.

4.2 Factorization-Based Embeddings
Another popular approach for the extraction of graph features is the generation of a
low-dimensional embedding. This embedding is supposed to be a rich and compact
representation of the high-dimensional node neighborhood. Famous approaches for this
are, e.g., node2vec [GL16], deepwalk [PARS14] or line [TQW+15]. These approaches
work well for a transductive setting where the working graph is known from the start.
However, they are not specifically designed for use in an inductive setting and can not
guarantee to generate useful embeddings on completely unseen graphs. For that reason,
node2vec and similar embeddings are not suitable for the target task of this project,
which aims to create an inductive model.

4.3 Geometry Related Features
In scenarios where graphs are at the same time geometric graphs, it is possible to extract
features from the Euclidean properties of these graphs. In R2, nodes, and edges can have
areas and shape-specific properties related to them. Edges can have associated distances
in Euclidean space and many more features. Such features can also be extracted from
higher-dimensional Euclidean spaces.

The geometry of the structures that are modeled as graphs can be, e.g., extracted from a
segmentation. In that sense, this is information transfer from a lower to a higher level of
data abstraction. Many such features are extracted by the image-to-graph algorithm of
Drees et al. [DSH+21].

A feature not explicitly extracted by the mentioned graph generation algorithm is the
directional vector of a vessel between two bifurcations/vessel endpoints. The problem
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with the directional vector is that it can be defined in two ways for an undirected graph.

A unit directional vector, which is constrained to point only into one of two possible
half-spaces, can overcome this problem. This direction constraint is enforced by only
allowing positive x values. Furthermore, if the x value is zero, then no negative y value
is permitted, and lastly, if both x and y are zero, then the z value must be positive. If
one of those constraints is violated, the vector is simply inverted, i.e., it is multiplied by
−1. This approach creates an additional, valuable feature that can be easily calculated
for new graphs.

4.4 Raw Data Features
Graphs are often generated at a higher abstraction level from an underlying information-
rich representation. E.g., spatial graphs can be created from an underlying image/volume
representation. In such cases, node/edge features can be created from the associated raw
data representation. Notably, the useful information from the raw data representation is
very much task-dependent.

An excellent example of such cases can be found in street network graphs. Information
about the vegetation bordering the road might be crucial for graph-level tasks, like the
projected service time. In contrast, this information is probably irrelevant to other tasks,
such as travel time predictions. Due to the task dependency of feature quality, feature
extraction is ideally learned and targeted towards a specific prediction task.

In this work, first, a “handcrafted” image intensity feature extraction is proposed.
This approach extracts the median, mean, max, min, 25% quantile, 75% quantile, and
standard deviation from the centerline voxel intensity values. This approach catches the
distributional information of the raw image data. However, all these descriptive statistics
are order invariant, which means it is impossible to differentiate sequences with the same
values but in a different order. Both sequences, [1, 1, 2, 2, 3] and [1, 2, 3, 2, 1], will yield
the same results and are inseparable based on the mentioned statistics. To discriminate
sequences based on intensity patterns, the simple distributional approach will thus fail.

This weakness was addressed with a learnable feature extractor that captures sequence-
specific patterns. Furthermore, the feature extractor is directly integrated into the
GNN classification architecture, allowing the backpropagation to the feature extractor.
A detailed description of this approach follows in Section 5.2.3. From a biological
perspective, such a feature extractor is useful when the binding of the antibodies follows
specific patterns that are distinct for different vessel types.
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CHAPTER 5
Experiments and Results

5.1 Data Split on Graphs
In contrast to traditional ML approaches, in graph learning, the data split needs to be
done with care to the effects on the graph structure. Moreover, all edges between the
training graphs and the evaluation graphs must be cut. Otherwise, message-passing
occurs between them.

Various sampling methods to induce subgraphs are proposed in the literature, such as a
random node or edge selection, random walks, or random walks with jumping probabilities
[LF06]. Beyond simple sampling strategies, the problem boils down to graph partitioning,
which is an active branch of research [BMS+16].

5.1.1 Random Sampling
Random node/edge sampling or random walks/jumps are one potential way to partition
a graph. Here, the partitioning is created by the induced subgraph Gs of e.g., a sampled
node set Vs. The disadvantage of random node/edge sampling and random walks with
jumping is that it does not ensure connectivity of the induced subgraph Gs. While simple
random walks ensure connectivity of Gs, they do not ensure the connectivity of the
induced subgraph Gr from the complementary nodes Vr = V \ Vs.

Intact connectivity is crucial for GNNs to work properly, which makes random sampling
approaches mostly unfavorable. Figure 5.1 shows how random node sampling creates a
subgraph that has almost a full loss of connectivity between its nodes.

5.1.2 Breadth First Search
Breadth First Search (BFS) is another possibility to partition a graph, in contrast to
Depth First Search (DFS), it ensures that the node subset is spreading out evenly.
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Figure 5.1: Example for a data split by random node selection. Random sampling does
not guarantee a similar degree of connectivity as a geometric split. This is especially
visible for the smaller set that contains only 20% of the total nodes. Random sampling-
induced graph partitions are, therefore, highly undesirable for the creation of data split
on a graph.

However, there are two major problems with BFS. First, the selection of a proper start
node is necessary to create a meaningful partition. Second, the induced partition is
potentially leading to a large cut size, which deteriorates the structural integrity of the
subgraphs induced by the partitioning. A visualization of the shortcomings of BFS
compared to spectral partitioning is displayed in Appendix A in Figure 1.

5.1.3 Geometric Partitioning

In the specific context of the gut graph, the nodes also represent points in R3. This
allows for a data split based on the spatial position of nodes, by the elimination of all
edges that connect two node sets V1 and V2. Where V1 and V2 are the subsets of V that
lie on two different sides of a splitting plane H, and V = V1 ∪ V2.

In the biological context, such a split ideally causes a model to measure the generalization
from one part of the gut to another part of the gut. While in a perfect scenario, the
generalization of the models towards new specimens, i.e., new gut graphs, would be
measured, this seems to be the best possible approximation when only a single specimen
is available.

An ideal splitting hyperplane would create a partition of the graph that eliminates as few
edges as possible and finding such a hyperplane is not a trivial task. Figure 5.2 visualizes
different splitting hyperplanes on a small fraction of a gut graph. Notably, different
positions for the hyperplanes have a huge impact on the structure of the partitioned
graph. In Figure 5.2, the split along the y-axis would be desired as it creates a partition
perpendicular to the direction of the lumen. However, for larger graphs, which consist of
many gut loops with different orientations of the lumen, it is impossible to induce such a
split with a geometric hyperplane.
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Figure 5.2: Example for a data split of a geometric graph along the x, y, and z-axis.
Notably, the structural integrity is affected to varying degrees. The given split planes
divide the data into two fractions with 20% and 80% of the data. When the graph
consists of numerous gut loops, which is the case for Ggut, such a split is likely to severely
harm the structural integrity.

5.1.4 Spectral Partitioning
Spectral partitioning [DH73, Fie75, Che15] is derived from the need to create a bipartition
that minimizes the number of cut edges. Formally a vector for the bipartition of the
graph can be defined as

(xi) :=
�

1, i ∈ V1

−1, i ∈ V2
, (5.1)

with x ∈ {1, −1}n and a bipartition (V1, V2 = V \ V1) for a graph G. The number of
edges that are cut by such a bipartition is proportional to

xT Lx =
�

{i,j}∈E

(xi − xj)2 = 4 · |E (V1, V2)| , (5.2)

where E (V1, V2) is the set of edges that need to be cut to bipartition the node sets V1
and V2. This gives rise to the following optimization problem

min xT Lx
subject to xT 1 = 0

xi ∈ {−1, 1} ,

(5.3)

where 1 is a vector of ones.

Interestingly this problem can be solved considering the second smallest eigenvector of the
eigendecomposition of the graph Laplacian L already, which was already introduced in
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Section 2.2. In spectral graph theory, the number of zero eigenvalues corresponds to the
number of connected components in a graph. This means the second smallest eigenvector
can only then be used to induce a split if the graph is connected. This eigenvector is
commonly referred to as Fiedler Vector.

The Fielder Vector can be used for partitioning the node sets according to the sorted
weights in the vector. Notably, this partitioning does not guarantee the creation of two
connected components, but through a simple transfer of nodes that induce a small graph
to the other part of the bipartition, this problem can be solved.

Summarized, spectral partitioning generates subgraphs with minimal destruction of the
structural integrity of the full graph. Additionally, it does not need visual supervision in
contrast to a geometric splitting approach. Since spatial proximity is closely correlated
with connectedness in the gut graph, the split from spectral partitioning results in a split
that also closely resembles a spatial split. This leads to the desired characteristic of the
split, that it separates different parts of the gut while maintaining the structural integrity
of the partitioned parts.

5.1.5 Train-Validation-Test Split
Due to the given reasons spectral partitioning was used to generate a training, validation,
and test set for the multi-channel gut graph (see 3.1 for details). The split was directly
performed on the line graph, which ensures that no vessels are lost in the process of the
split. Regarding the spatial partition that is induced by spectral partitioning, experiments
showed that partitioning the graph or the dual graph results in almost identical splits.

For the split, only the largest connected component which covers > 98% of nodes (334411)
was considered. First, a split separating the graph into two subgraphs of size 260840
(78%) and 73571 (22%) was induced. This induces a cut of size 7 on the graph, which
suggests that the spectral partitioning finds a partition where the two parts of the graph
are almost disconnected. The larger of the two splits resulted in the training graph,
while the other graph was split again to create a test and a validation graph. A visual
representation of the first split is displayed in Figure 5.3 where the yellow part displays
the training graph and the cyan part contains the part which is split further. The
displayed representation is the line graph representation L where the spatial position
of the nodes is chosen as the center point of the connecting line segment between two
bifurcations.

In a second split on the smaller graph, the validation and test graph are created. This
split creates two subgraphs of size 30017 (9%) and 43554 (13%), that represent the
validation and test graph, respectively. The cut size of this second split amounts to
118, which shows that more connections are destroyed than for the first split. However,
compared to the total number of edges in both graphs, 118 is a relatively small number
of lost edges. The unequal sizes of the two graphs are a result of the search for a split
that maintains structural integrity. In contrast to the structural integrity of the graphs,
perfect equality of the partitions’ sizes is only of minor importance. Training, validation,
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and test graph are displayed in Figure 5.4, with the associated colors yellow, purple, and
cyan respectively.

It is important to mention that any feature engineering on the graph, that extracts topo-
logical information from the graph must be done strictly after the data split. Otherwise,
this leads to an information leak between the train, validation, and test set.

Figure 5.3: Graphical representation of
the first split (training vs. rest) using
spectral partitioning. The yellow part
indicates the training graph. The dis-
played graph is the line graph L gener-
ated from the multi-channel gut data.

Figure 5.4: Graphical representation of
the training (yellow), validation (purple),
and test (cyan) graphs that are created
by spectral partitioning. The displayed
graph is the line graph L generated from
the multi-channel gut data.

Table 5.1: Characteristics of the training, validation, and test graph created from spectral
partitioning of the multichannel gut line graph Lgut.

Line Graphs L Count Fraction
Training Partition

Nodes 260840 100%
Nerve Nodes 90040 35%

Lymph Nodes 170800 65%
Validation Partition

Nodes 30017 100%
Nerve Nodes 14430 48%

Lymph Nodes 15587 52%
Test Partition

Nodes 43554 100%
Nerve Nodes 18391 42%

Lymph Nodes 25163 58%
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5.2 Classification with GNNs
Before the application of any classification algorithm, all instance features were centered
and scaled. The parameters for centering and scaling are extracted exclusively from
the training graph, which prevents information to leak from the training graph to the
validation or test graph. Scaling and centering of the instance features from validation,
test, and single-channel graphs are then done with the parameters extracted from the
training graph.

5.2.1 Notes on the Computation Graph
The generated input data from the lymphatic and nervous system is already graph-
structured and can potentially be directly used as input for GNN models. However, the
existing graph structure is not necessarily optimal for the generation of expressive (in
terms of classification performance) node embeddings. Based on the working principle of
GNNs, the structure of the graph that is used for computation is essential for performance
and needs to be chosen with care. In this work, different approaches that change the
structure of the initial biological representation were investigated.

• Line Graph: GNNs generally rely on passing information between nodes. This
means that effectively the node features are crucial for the message-passing step,
while edges only indicate where the message passing occurs. In the biological graph
of the nervous and lymphatic system, the major information lies in the vessels
and not in the nodes which only represent bifurcation points, but no structural
information about the vessels. A line graph representation, where the vessels are
represented as nodes and edges represent bifurcation points that connect edges, is,
therefore, a better alternative. The line graph transformation for the gut graph is
discussed in detail in the dataset description.

• k-NN Graph: The Dynamic Edge Convolution layer proposed by Wang et al.
[WSL+19] updates not only the node embeddings but also the connectivity of the
graph. After every layer, the nodes are reconnected with the k-nearest neighbors in
the features space, thereby creating a k-NN graph. This non-static behavior of the
graph structure can be advantageous to cluster nodes that have structurally similar
roles in the initial graph. This, in turn, potentially eases the classification task.

5.2.2 Base GNN Architecture
The base architecture is a GNN that operates directly on the line graph representation
of the gut datasets. It uses the refined embeddings from the feature generation steps
that are outlined in Chapter 4. An overview of the basic hyperparameters for the GNN
architecture with a short description is provided in Table 5.2.

From the vast number of different GNN layer types, this work focuses on some of the
predominant architectures that were partly discussed in detail in Section 2.2. Namely,
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these layer types are SAGE, GCN, Graph Attention Network (GAT), and, later on, also
EdgeConv and the associated DGCNN model.

Other prominent architectures, such as ClusterGCN [CLS+19], were not used due to
their focus on large graphs that require a batching procedure for efficient training. This
is especially important for huge graphs that do not fit on GPU memory. This memory
limitation does not pose a problem for processing the gut graph. Moreover, ClusterGCN
works best if intuitive clusterings of the graph are available. Since the gut graph represents
a continuous structure, this is not the case.

Results:

Using Bayesian optimization, the ideal model parameters were identified with a hyperpa-
rameter sweep consisting of 50 individual runs. The sweeps were always performed with
a fixed layer type, while the other parameters were adjustable for optimization.

For all parameter sweeps, WANDB (Weights and Biases) was used [Bie20]. Model selection
was performed according to the balanced accuracy on the validation graph. Then the
best models from the hyperparameter tuning were evaluated for their performance on
the test graph and for some models also on the single-channel graph L22−05. During the
training, the AdamW [KB15, LH17] optimizer was used, and the loss was defined using
the Binary Cross Entropy (BCE).

An overview of the results achieved with the ideal hyperparameter settings for different
layer types is provided in Table 5.3, and more detailed results are in Appendix A in Table
3 and 4. Table 5.3 summarizes the performance regarding the accuracy, balanced accuracy,
and the F1 score for the nerve classification and the lymph classification, denoted as F1 -
N and F1 - L. Out of all the evaluated layer types, SAGE generated the best results on
the validation graph. In the first evaluation, all models were compared on the data set
without centerline statistics. Then in the second step, SAGE was further evaluated with
the centerline statistics, due to the favorable performance compared to the other GNN
layer types.

The SAGE model trained on the training graph from the multichannel gut data also
generated excellent results on the graph L22−05 from the single-channel data. A further
evaluation regarding their Receiver Operating Characteristic (ROC) curves and the Area
Under the Curve (AUC) scores on the test set and the L22−05 graph is displayed in Figure
5.5 and 5.6. The hyperparameter setting for this SAGE model was as follows:

Learning Rate: 0.004802, Weight Decay: 0.00023, Dropout: 0.5, No. Layers: 4, Hidden
Channels: 64, MLP: Yes, Skip Connections: Yes and Aggregation: Mean.

An insightful visual comparison of the SAGE predictions with the ground truth from the
hand annotation for the graph L22−05 is displayed in Figure 5.7 and 5.8. The predictions
that are shown in Figure 5.8 are from the best SAGE model without the use of any
centerline information.
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Figure 5.5: ROC Curve on the test graph
for the best SAGE classifier that does
not use any raw data information.

Figure 5.6: ROC Curve on the graph
L22−05 for the best SAGE classifier that
does not use any raw data information.

Both displayed plots are line graphs. To create a visualization of the line graphs in R3,
the position of the nodes is chosen as the middle of the straight line segment that defines
an edge in the initial graph G. Notably, the model succeeds in creating a prediction
where the lymph network, as well as the nerve network on its own, stay nicely connected.
This is a desired property as the biological expectation is full connectivity within each
network. Alterations from this expectation in the ground truth can occur due to the
limited size of the annotated patch and errors along the graph generation pipeline. A
more detailed discussion of this behavior follows in the main results section.

In Appendix A, Figure 3 visually shows the correctly and wrongly classified nodes. This
visualization impressively displays how errors occur almost exclusively at the border
regions of both networks. It can be concluded that the interaction areas of the two
biological networks are the most difficult part of the classification tasks.

Upon evaluating the covered total length of accurately classified vessel-like structures,
it was observed that the fraction of the total vessel length that is correctly classified is
comparable to the accuracy scores. Specifically, 74.88% of the total length is correctly
classified for the graph L22−05. This suggests that there is no significant bias towards
either short or long vessels being correctly classified.
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5.2. Classification with GNNs

Figure 5.7: Ground truth line graph
from the annotations on Section 22-05.
Magenta corresponds to nerve nodes, yel-
low corresponds to lymph nodes, and
cyan to unlabeled nodes.

Figure 5.8: Predictions for the line graph
from the annotations on Section 22-05.
Magenta corresponds to nerve nodes, yel-
low corresponds to lymph nodes, and
cyan to unlabeled nodes.
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Table 5.2: Hyperparameters for the GNN model for the lymph/nerve classification. The
table gives an overview of all the optimized hyperparameters.

Hyperparameter Description
No. of Layers The number of GNN layers that are in series. A

large number of layers makes the embedding of
the nodes dependent on a large neighborhood.

Layer Type The type of GNN layer that is used in the
model. One of SAGE, EdgeConv, GCN or GAT
[VCC+17].

Multilayer Perceptron Whether or not a MLP (two-layers) is attached
before and after the GNN layers. This makes
architecture more expressive while maintaining
the perceptive field for each node.

Hidden Channels The number of hidden channels for the GNN
layers.

Aggregation Scheme Defines the aggregation type performed in the
SAGE layers. It is also possible that multiple
different aggregation schemes are used. Common
aggregation modes are mean, max, standard de-
viation, and LSTMs on random permutations as
proposed in the SAGE paper[HYL17].

Skip Connections Whether or not skip connections in the form of
additions[HZRS16] are realized between consec-
utive GNN layers. In SAGE layers, the concate-
nation of the old node embedding already comes
close to a skip connection.

Dropout Compared to classical CNNs where dropout is
generally only applied on the final MLP head
that works on top of the convolutional feature
extractor [SHK+14], it is common to include
dropout layerwise in GNN architectures. The
indicated dropout ratio is introduced after every
layer of the GNN architecture.

Learning Rate The learning rate for the used AdamW [KB15,
LH17]. To optimize the training process for the
hybrid architecture, the learning rate for the
LSTM is separately adjustable by parameter
grouping.

Weight Decay The weight decay, again, the parameter can be
separately set for LSTM.

Hidden Channels LSTM The number of hidden channels for the LSTM
feature extractor.
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5.2. Classification with GNNs

Table 5.3: Performance of the GNN models without a coupled feature extractor. In
some experiments, the centerline statistics were used as features while other models are
completely unaware of the raw intensity data. F1 - N and F1 - L denote the F1 scores for
the nerve and lymph classification.

Dataset Performance Metrics
Graph Raw Data Acc. Bal. Acc. F1 - N F1 - L

SAGE CL-Statistics

Validation
Graph

Max Comb 0.7007 0.7021 0.7039 0.6974
Mean Comb 0.7240 0.7251 0.7239 0.7241

Test
Graph

Max Comb 0.7740 0.7678 0.7311 0.8051
Mean Comb 0.8079 0.7993 0.7658 0.8372

L22−05 Max Comb 0.7435 0.6924 0.8137 0.5885
SAGE No CL-Statistics

Validation Graph Not Used 0.6707 0.6728 0.6805 0.6599
Test Graph Not Used 0.7185 0.7175 0.6807 0.7483
L22−05 Not Used 0.7699 0.7586 0.8144 0.6972

GCN No CL-Statistics

Validation Graph Not Used 0.6548 0.6589 0.6813 0.6234
Test Graph Not Used 0.7013 0.7080 0.6799 0.7200

GAT No CL-Statistics

Validation Graph Not Used 0.6043 0.6022 0.5711 0.6327
Test Graph Not Used 0.6752 0.6607 0.5961 0.7284
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5.2.3 Hybrid Architecture
The idea of the hybrid architecture is to combine a GNN operating on the graph
representation with a feature extractor that is directly operating on the raw volume data.
A direct combination of a feature extractor with the GNN eliminates the need for the
repeated hand-crafting of features for different use cases. Figure 5.9 shows the working
principle of the proposed architecture.

The centerline feature extractor can be realized by any given model that is capable of
extracting a fixed-length feature vector from an input with a variable sequence length.
One of the possible models consists of 1D convolutions followed by a pooling operation,
e.g., mean or max pooling. This architecture allows the extraction of specific patterns
along the centerline that are characteristic of a certain class. However, problems arise with
extremely short sequences that limit the length of the possible 1D convolution kernels. An
alternative to the 1D convolution is an LSTM model [HS97] as feature extractor. These
networks are well known to show excellent performance in the classification and feature
extraction of variable-length sequences. LSTM networks are a form of Recurrent Neural
Network (RNN). From the final state, a fixed-length feature vector can be extracted and
used for concatenation with the existing embeddings. Whereas with 1D convolutions, it
is necessary to perform a pooling step to achieve a predefined length, in the LSTM it is
simply possible to use the features of the last state of the LSTM. Moreover, the LSTM
can be made bidirectional, making it invariant towards the centerline’s direction.

The biological reasoning for the proposed architecture is the hypothesis that the antibody
binding is not uniform along a certain vessel structure. This would result in different
intensity patterns along a vessel that can then be leveraged to improve classification
performance.

Line Graph Generation
Edge Embeddings -> Node Embeddings

Variable Sequence Length
Model:

1D Convolution
LSTM

Var. Length

Centerline
Fixed Length Embedding

Feature Enrichment

Graph Line Graph

Graph Neural Network (GNN)
Designed for Node Classification

Vessel A

Vessel B

Figure 5.9: Architecture for the extraction of raw data features from the centerline using
a variable length deep learning model (RNN, 1D convolution) combined with consecutive
node classification using a GNN.

Results:

Table 5.4 summarizes the results for the LSTM coupled GNN. The performance is roughly
comparable to the use of just centerline statistics (see Table 5.3).
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Table 5.4: Performance of the SAGE models with a coupled LSTM feature extractor. F1
- N and F1 - L denote the F1 scores for the nerve and lymph classification.

Dataset Performance Metrics
Graph Raw Data Acc. Bal. Acc. F1 - N F1 - L

SAGE LSTM

Validation
Graph

Max Comb 0.7026 0.7045 0.7095 0.6952
Mean Comb 0.7210 0.7224 0.7231 0.7189

Test
Graph

Max Comb 0.7746 0.7687 0.7325 0.8052
Mean Comb 0.8094 0.7987 0.7639 0.8402

5.2.4 DGCNN Architecture
The DGCNN architecture is expected to work well when the relationship of node em-
beddings to all its neighbors is more important than just the aggregated information
from the neighborhood embeddings. This is enforced by the EdgeConv GNN layer that
is used in DGCNN. Moreover, the dynamic change of the graph connectivity using a
k-NN graph might be beneficial to allow for a better clustering of same-type nodes. This
concept has been shown to be efficient for whole brain vessel graphs [WPP+23].

A disadvantage of the DGCNN structure lies in the increase of computation time that
arises from the dynamic change of the graph structure, which makes a neighborhood
search for every node necessary after every single layer. Implementation-wise, this is
realized by the construction of a KD-Tree in O(n log n) and the neighborhood querying
of every point in the KD-Tree in O(k · n log n).

Results:

First, the network was evaluated only with the simplest configuration, meaning that
no centerline statistics were used and also no learnable feature extraction in form of an
LSTM was used.

Simply using the edge convolution while maintaining the static graph did not show
favorable results in a hyperparameter optimization sweep with 25 separate evaluated
models. The best model yielded a balanced accuracy of 0.6555 and an accuracy of 0.6515
on the validation set (see Table 5.5), which is clearly no improvement to the evaluated
SAGE models. For the dynamic graph structure, a single promising hyperparameter
setting was evaluated but again failed to improve performance. Due to the increased
training time of the dynamically changing graph structure and the lack of performance,
this approach was not considered further.
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Table 5.5: Performance of the EdgeConv models with a static graph structure. F1 - N
and F1 - L denote the F1 scores for the nerve and lymph classification.

Dataset Performance Metrics
Graph Acc. Bal. Acc. F1 - N F1 - L

EdgeConv (Static Graph) No CL-Statistics

Validation Graph 0.6515 0.6555 0.6766 0.6222
Test Graph 0.7044 0.7090 0.6785 0.7264

5.3 Classification with Baseline Algorithms
Factorization followed by classification is a well-established and high-performing approach
in the transductive setting. However, this does not work in an inductive setting and can
therefore not be considered a baseline.

The alternative is the extraction of topological features from the graph to enrich node
embeddings, followed by traditional ML approaches that consider the nodes as independent
instances as described in Chapter 4. The baselines were evaluated with the same feature
vectors that were already used for the classification with GNNs.

Due to the comparably smaller computational cost, these models could be evaluated
based on Cross-Validation (CV), which ensures higher confidence in the results. However,
this comes at the expense of comparability to the GNN models. Moreover, as described
earlier, the partitioning of a graph is a non-trivial task that prevents the out-of-the-box
application of CV. For that reason, the same procedure as for the GNN models was
chosen. Namely, the multi-channel gut graph split into a training, validation, and test
graph was used, followed by feature generation, model selection on the validation graph,
and performance estimation on the test graph and the single-channel gut graph.

5.3.1 Random Forest

Random Forest (RF) is a versatile classification algorithm that provides good performance
on a wide range of classification tasks. The hyperparameter grid that was used to find the
optimal model is displayed in 5.6. For the model selection, balanced accuracy was used.
The results for the model that performed best on the validation graph are described in
Table 5.7. For the full results refer to Table 2 in Appendix A.

Table 5.6: Hyperparameter grid search for the RF model.

RF Parameters Values
Number of Decision Trees {10, 20, 100, 200}

Tree Depth {6, 10, 14, 18, 20}
Features per Split {log2(p), √

p}
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Table 5.7: Evaluation of the Random Forest Models with the optimal hyperparameter
setting. Setting with features from max combined raw data: (Trees: 200 Depth: 20,
Features per Split: √

p). Setting with features from mean combined raw data: (Trees:
200, Depth: 18, Features per Split: √

p). Setting without centerline features: (Trees: 100,
Depth: 20, Features per Split: √

p). F1 - N and F1 - L denote the F1 scores for the nerve
and lymph classification.

Dataset Performance Metrics
Graph Raw Data Acc. Bal. Acc. F1 - N F1 - L

Random Forest CL-Statistics

Validation
Graph

Max Comb 0.6494 0.6464 0.6094 0.6820
Mean Comb 0.6718 0.6690 0.6362 0.7011

Test
Graph

Max Comb 0.7239 0.7058 0.6432 0.7748
Mean Comb 0.7541 0.7284 0.6592 0.8077

Random Forest No CL-Statistics

Validation Graph Not used 0.6000 0.5936 0.5071 0.6635
Test Graph Not used 0.6638 0.6343 0.5277 0.7389
L22−05 Not used 0.7467 0.7179 0.8047 0.6396

5.3.2 SVM

Support Vector Machines (SVMs) are among the best-performing non-deep learning
models in ML. Considering this, it makes sense to use them as a baseline classification
algorithm. SVMs perform a classification of the data based on a separating hyperplane.
However, this separation is done in higher dimensionality using kernelization, which
allows non-linear classification boundaries. An overview of the hyperparameter grid is
provided in Table 5.8. The results for the model that performed best on the validation
graph regarding balanced accuracy are described in Table 5.9. For the full results refer
to Table 2 in Appendix A.

Table 5.8: Hyperparameter grid search for the SVM model.

SVM Parameters Values
Reg. Param. C {0.1, 1}

Kernel {Linear, Radial Basis Function (RBF) }
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Table 5.9: Evaluation of the SVM model with the optimal hyperparameter setting.
Setting with features from max combined raw data: (Reg. Param. C: 1 Kernel: RBF)
Setting with features from mean combined raw data:: (Reg. Param. C: 1, Kernel: RBF).
Setting without centerline features: (Reg. Param. C: 1, Kernel: RBF). F1 - N and F1 -
L denote the F1 scores for the nerve and lymph classification.

Dataset Performance Metrics
Graph Raw Data Acc. Bal. Acc. F1 - N F1 - L

Support Vector Machine CL-Statistics

Validation
Graph

Max Comb 0.6325 0.6277 0.5682 0.6801
Mean Comb 0.6590 0.6556 0.6151 0.6939

Test
Graph

Max Comb 0.6990 0.6727 0.5857 0.7637
Mean Comb 0.7427 0.7152 0.6386 0.8002

Support Vector Machine No CL-Statistics

Validation Graph Not used 0.5779 0.5693 0.4405 0.6612
Test Graph Not used 0.6486 0.6108 0.4691 0.7374
L22−05 Not used 0.7418 0.6730 0.8207 0.5389

5.4 Main Results
5.4.1 Baseline vs GNN
A comparison of the classification performance with exactly the same features shows the
superiority of GNN models compared to standard algorithms (SVM and RF) that disregard
network information for message passing. Consistently the classification performance in
terms of accuracy, balanced accuracy, and F1-scores shows that the SAGE architecture
is the superior model. Notably, the optimization effort for the baseline models is not
comparable to the optimization effort of the GNN models. However, the quite drastic
performance difference of often close to 5% indicates that there is an unbridgeable
performance difference between standard ML classifiers and GNNs for the multiplexing
task.

The comparison to the standard algorithms also showed that hyperparameter tuning
and the selection of the right GNN architecture is crucial to achieving top performance.
Often, wrong settings of the hyperparameters, such as the wrong layer type or a wrong
aggregation mode already nullify the advantages compared to simple algorithms. Efforts to
easily find the ideal GNN architecture like the GraphGym approach by You et al.[YYL20]
are therefore highly relevant to the field of geometric deep learning.

A detailed investigation of the differences in the SAGE model (without CL-Statistics)
predictions to the baseline predictions showed that the SAGE model is better at enforcing
connectivity among the lymph and nerve network. Table 5.10 shows the differences
between the SAGE and RF predictions for the within-call connectivity on the graph
L22−05. With only the two largest nerve components for the SAGE predictions, already
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∼ 58% of the nerve nodes are correctly classified, for the lymph components the respective
value is ∼ 69%. This stands in strong contrast to the RF predictions where the two values
are ∼ 44% and ∼ 28% respectively. The trend stays the same for all the k values ranging
from 1 to 10. The k values represent the number of considered connected components
ordered by decreasing size.

The induced nerve subgraph on L22−05 of the ground truth nerve nodes consists of 33
connected components, but the largest among the connected components covers already
90% of all nerve nodes. The induced lymph subgraph consists of 12 connected components
with the largest connected component covering 94% of all lymph nodes. A comparison of
the number of connected components for the induced subgraphs, from SAGE and RF
predictions and also from the ground truth labels is exhibited in Table 5.11. It shows
that the SAGE predictions produce fewer connected components, even at some point
over-connecting the networks. However, the number of connected components for the
within-class subgraphs is still better approximated by the SAGE predictions.

An analysis that combines aspects of connectivity with classification accuracy is the
Jaccard index

J(A, Bk) = |A ∩ Bk|
|A ∩ Bk| , (5.4)

when A is the node set of the largest connected component of the induced subgraph of a
certain class based on the ground truth and Bk is the union of the k largest connected
components of the subgraph from the respective class that is created from the predictions.
The results displayed in Appendix A in Table 5 underline the superior behavior of the
SAGE model compared to a simple baseline when it comes to the simultaneous evaluation
of accuracy and connectivity. The observed trends are similar to the results that are
depcited in Table 5.10.

The SAGE algorithm with mean aggregation exhibits far superior connectivity compared
to other models due to its message passing and aggregation scheme. As previously
discussed in the Background Chapter, a GCN functions similarly to a smoothing operator
where neighboring node embeddings gradually converge to the same embedding. This
behavior is also observed in the SAGE model with a mean aggregation mode, which
closely resembles the GCN model. Consequently, the SAGE model with mean aggregation
mode enhances connectivity within a class, which is desirable for the given task. Figure
5.10 illustrates this behavior.

Preserving connectivity is crucial, especially for common graph analysis tasks like detecting
the shortest path or calculating flow. Future biological assessments of the lymphatic
system graph and the nervous system graph are therefore dependent on intact connectivity
within the systems.
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Table 5.10: Connectivity analysis using connected components. For the analysis, the
induced subgraph from all the predicted nerve nodes and the induced subgraph from all
the predicted lymph nodes are used.

L22−05 Connect.
Analysis SAGE No CL RF No CL

Con. Comps.
k

Recall@k
Nerve Subgraph

Recall@k
Lymph Subgraph

Recall@k
Nerve Subgraph

Recall@k
Lymph Subgraph

1 0.3273 0.6140 0.2779 0.0895
2 0.5750 0.6916 0.4710 0.1807
3 0.6230 0.7109 0.5445 0.2531
4 0.6465 0.7109 0.5737 0.2970
5 0.6700 0.7109 0.6029 0.3284
6 0.6868 0.7109 0.6318 0.3637
7 0.7043 0.7127 0.6566 0.3905
8 0.7190 0.7138 0.6761 0.4156
9 0.7328 0.7144 0.6888 0.4379
10 0.7402 0.7149 0.6986 0.4527

Table 5.11: Connected component comparison of the induced subgraphs of classified
nerve and lymph nodes. The SAGE and the RF models are the models without centerline
statistics that performed best on the validation graph.

L22−05 Comparison Connected Components Isolated Nodes
Induced Nerve Subgraph

Ground Truth 33 11
SAGE Predictions 10 2

RF Predictions 187 87
Induced Lymph Subgraph

Ground Truth 12 6
SAGE Predictions 77 26

RF Predictions 255 154

5.4.2 GNN Model Comparison

The SAGE models outperformed the GAT, GCN, and EdgeConv approaches that were
evaluated. The comparison was based on the input graph with the least information
content (no raw data information), and since GAT, GCN, EdgeConv did not perform
well, they were omitted in favor of SAGE for further analysis on the single-channel graph
and experiments with a learnable raw data feature extractor.

The favorable performance compared to the GCN suggests that the initial node embedding
is important for the classification since SAGE concatenates the old node embedding
in every layer while the GCN only introduces self-loops. Another hint towards this
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Figure 5.10: Illustration of how a GCN or SAGE with mean aggregation are enhancing
the within-class connectivity.

assumption is that in the best-performing hyperparameter settings, skip connections
were consistently used across all layer types. Interestingly, even for the SAGE layers
that inherently used skip connections by concatenation, the skip connections in form of
additions were still favorable.

From the comparison to EdgeConv, where the relationship of node embeddings is at
focus, it can be concluded that not the relationship of embeddings is decisive for the
classification but the pooled neighborhood information.

Finally, the trend towards good performance with the mean aggregator compared to stan-
dard, deviation, max, or combined aggregators indicate that no single nodes dominate the
classification in a certain neighborhood, and the averaged features in the neighborhoods
are more decisive than the variability of the neighborhood embeddings.

5.4.3 Impact of Raw Image Information
Both proposed merging scenarios result in useful information for classification, as ev-
idenced by the performance gain achieved through the introduction of voxel intensity
information along the centerline in the form of descriptive statistics. The mean combina-
tion mode produces a stronger performance increase than the max combination mode,
indicating that the latter is a poor choice for estimating the worst-case performance
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increase of raw data information for the single-channel data set.

On the multi-channel gut graph, the introduction of centerline statistics leads to a
relatively consistent increase of approximately 5% in balanced accuracy and accuracy for
all the evaluated GNN and baseline classifiers. This observation roughly estimates the
potential performance increase achievable when properly utilizing raw data information.
However, as expected, directly applying these trained models to the single-channel gut
graph L22−05 did not yield the same results. Detailed results can be found in Appendix
A in Table 3 and in Figure 2 that shows the ROC for the predictions on the L22−05 graph.
The lacking performance can be partly attributed to the different intensity distributions
of the lymph and nerve voxels in the single-channel volume compared to the assumed
distributions in the merged multi-channel volume. This is evident from the voxel intensity
distributions of the hand annotations of the single-channel volume Section 22-05 (refer
to Figure 5.11), which show that the lymph voxel intensity distribution and the nerve
voxel density distribution neither share the same location nor scale.

Figure 5.11: Comparison of the voxel intensities of nerve and lymph voxels from the
single channel data (Section 22-05 ). The considered voxels were hand-annotated by a
biologist and assigned to the respective class. The intensity is mapped within the int16
data range. Both histograms are normalized.

One approach to address this issue is to leverage the pre-existing information of the
different locations and scales from the single-channel data for the scaling of the distribu-
tions in the multi-channel data. Experiments that applied this approach demonstrated a
significant improvement in performance on the single-channel graph, but it still fell short
of the classifiers trained without any centerline information. It is highly probable that
the GNN classifier relies heavily on centerline information for classification, and even
minor changes in the intensity distribution can greatly impair the classifier’s performance.
This assumption is reinforced by the number of layers employed in the SAGE model
with and without centerline statistics. The majority of the top 5 SAGE models that lack
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centerline statistics used four layers, while the majority of the top 5 models with centerline
information (raw data max combined) had only a single GNN layer. This suggests that
the models without centerline statistics first need to refine the node embeddings based
on the neighborhood, while those with centerline information already possess expressive
enough node embeddings for classification.

In the future, fine-tuning the model on annotated single-channel gut data could potentially
solve this issue, but presently, such data is unavailable.

5.4.4 Impact of the Hybrid Architecture
The hybrid architecture may not yield drastic performance benefits, but it is a versatile
approach that can adapt to different tasks. Specifically, in scenarios where distributional
information is insufficient, an LSTM can still extract useful information. Although
the benefits of the hybrid architecture may not be immediately apparent in terms of
performance metrics, the general concept of a GNN model with the capacity for targeted
and learnable feature extraction in a different data representation domain is highly
intriguing and warrants further investigation.

5.4.5 DGCNN vs Other GNNs
Based on the limited number of experiments, it appears that there is no apparent benefit
in utilizing edge convolutions and a dynamic graph structure. The nearest neighbor
approach used to create the dynamic k-NN graph sampling was found to be detrimental
to the runtime. Furthermore, the dynamic graph calculation does not enforce within-class
connectivity on the initial input graph since connectivity is only promoted within the
dynamic k-nearest neighbors graph and not within the initial graph. In conclusion, the
DGCNN structure does not appear to be suitable for the given task as it does not improve
classification performance or intra-class connectivity.
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CHAPTER 6
Conclusion and Outlook

6.1 Conclusion
Despite the success of GNNs in the biomedical domain, e.g., in applications such as drug
development and discovery, disease prediction in bioinformatics, and advanced image
processing [ZLLT21, ZCH+20, WPC+20], research on using GNNs for tasks on biological
network graphs is limited. This work explores a use-case where GNNs are applied to a
graph representing the lymphatic and nervous systems in the gut of mice, by solving
the multiplexing problem with a graph representation. The results show that GNNs
constitute an excellent group of methods for this type of graph representation. Regarding
traditional performance metrics such as accuracy, balanced accuracy, and F1 scores,
the best GNN model clearly outperformed the baselines. Beyond that, a more detailed
analysis of connectivity revealed the favorable properties of the GNN predictions.

Given the drastic progress in LSFM and other biomedical imaging technologies, it is likely
that similar tasks will arise frequently in the near future. In this regard, the presented
work provides a first reference point for architectural choices and preprocessing routines
that have proven to be promising.

6.2 Outlook
The presented work is just a starting point towards a whole range of biomedical tasks that
inherently deal with graph-structured data and promise to be solvable with GNNs. Future
works could include investigating pathological changes in biological networks, such as the
classification of bowel diseases like Crohn’s disease or ulcerative colitis. Previous studies
have already shown a connection between structural changes in the lymphatic system with
inflammations, e.g., caused by Inflammatory Bowel Disease (IBD) [RDBD+11, RSR+18].
Combined with these graph-level tasks, there are also node-level and subgraph-level
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tasks, such as detecting single pathological vessels or regions that show pathological
alterations. Comparable tasks exist in the nervous system, where it could be beneficial
to identify changes in the network that are associated with pathological conditions. In
addition to pure predictive tasks, the graph representations will allow for a more detailed
understanding of structural properties that are potentially associated with pathological
changes. Approaches such as GNNExplainer [YBY+19], which identify critical subgraph
structures for predictions, will facilitate interpretability and explainability for these
applications of GNNs.

Another medical application where GNN will most likely be of significance soon is
Ophthalmology. In the evaluation of Optical Coherence Tomography Angiography
(OCTA) data, that visualizes the vessel structures in the eye, GNN are potentially an
ideal architecture for predictions on diseases and disease progressions such as Diabetic
Retinopathy (DR) and Age-Related Macular degeneration (AMD) [MHL+23].
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Appendix A

Figure 1: Comparison of the induced splits on a graph by BFS (starting from one of the
left outer nodes in the image) versus spectral partitioning. Notably, even after selecting
a good start node for BFS the split created by spectral partitioning is more even and
induces a smaller cut. The cut sizes (= number of deleted edges to induce the bipartition)
are 75 and 50 for the BFS and spectral partitioning respectively. Consequently, BFS is
inducing a bipartition by cutting 50% more edges.
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Table 1: Overview over the features in the initial node embeddings in the line graph
L(G). Features are extracted from different domains and are extracted at different
steps of the line graph generation. For details on the features that are generated in the
segmentation-to-graph step refer to the work by Drees et al. [DSH+21].

Feature Source Domain Generation
Step

Feature
Type

Length Segmentation Graph Gen. Geom.
Distance Segmentation Graph Gen. Geom.
Curveness Segmentation Graph Gen. Geom.
Mean Min. CL Surf. Dist. Segmentation Graph Gen. Geom.
Std. Min. CL Surf. Dist. Segmentation Graph Gen. Geom.
Mean Max. CL Surf. Dist. Segmentation Graph Gen. Geom.
Std. Max. CL Surf. Dist. Segmentation Graph Gen. Geom.
Mean Mean CL Surf. Dist. Segmentation Graph Gen. Geom.
Std. Mean CL Surf. Dist. Segmentation Graph Gen. Geom.
Mean Roundness CL Surf. Dist. Segmentation Graph Gen. Geom.
Std. Roundness CL Surf. Dist. Segmentation Graph Gen. Geom.
X-Orientation Spatial Graph G Handcrafted Geom.
Y-Orientation Spatial Graph G Handcrafted Geom.
Z-Orientation Spatial Graph G Handcrafted Geom.
Degree (Line Graph) Line Graph L(G) Handcrafted Struct.
G2 Graphlet Count (Triangles) Line Graph L(G) Handcrafted Struct.
G5 Graphlet Count (Squares) Line Graph L(G) Handcrafted Struct.
Betweenness Centrality Line Graph L(G) Handcrafted Struct.
Closeness Centrality Line Graph L(G) Handcrafted Struct.
Mean CL Voxel Value Raw Data Handcrafted Image
Min CL Voxel Value Raw Data Handcrafted Image
Max CL Voxel Value Raw Data Handcrafted Image
Std CL Voxel Value Raw Data Handcrafted Image
Median CL Voxel Value Raw Data Handcrafted Image
25% Quantile CL Voxel Value Raw Data Handcrafted Image
75% Quantile CL Voxel Value Raw Data Handcrafted Image
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Figure 2: ROC Curve on the graph L22−05 for the best SAGE classifier that used the
max combined raw data in the training stage.

Figure 3: Visualization of the misclassified nodes on the graph L22−05. Magenta indicates
correctly classified nerve nodes, yellow indicates correctly classified lymph nodes and red
indicates false classifications. The predictions are made by the best-evaluated SAGE
model without the use of centerline statistics.
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Table 5: Connectivity analysis with the Jaccard index using connected components. For
the analysis, the induced subgraph from all the predicted nerve nodes and the induced
subgraph from all the predicted lymph nodes are used.

L22−05 Connect.
Analysis SAGE No CL RF No CL

Con. Comps.
k

Jaccard@k
Nerve Subgraph

Jaccard@k
Lymph Subgraph

Jaccard@k
Nerve Subgraph

Jaccard@k
Lymph Subgraph

1 0.3080 0.4821 0.2608 0.0887
2 0.5195 0.5267 0.4327 0.1775
3 0.5364 0.5405 0.4897 0.2429
4 0.5554 0.5391 0.5122 0.2838
5 0.5756 0.5382 0.5340 0.3087
6 0.5655 0.5375 0.5318 0.3404
7 0.5810 0.5388 0.5515 0.3646
8 0.5932 0.5397 0.5675 0.3874
9 0.6051 0.5401 0.5585 0.4076
10 0.6011 0.5405 0.5652 0.4214
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AMD Age-Related Macular degeneration. 48

AUC Area Under the Curve. 31

BCE Binary Cross Entropy. 31

BFS Breadth First Search. 25, 26, 49, 57

CNN Convolutional Neural Network. 6, 8, 34

CNS Central Nervous System. 2, 11

CT Computer Tomography. 12

CV Computer Vision. 1

CV Cross-Validation. 38

DFS Depth First Search. 25

DGCNN Dynamic Graph Convolutional Neural Network. 9, 31, 37, 45

DL Deep Learning. 1, 2, 6

DR Diabetic Retinopathy. 48

ENS Enteric Nervous System. 11

GAT Graph Attention Network. 31, 34, 42

GCN Graph Convolutional Network. 6–8, 31, 34, 41–43, 57

GDV Graphlet Degree Vector. 22

GNN Graph Neural Network. 1–3, 6, 8, 9, 21–23, 25, 30, 31, 34–38, 40, 44, 45, 47, 48,
52, 54, 57, 59, 60
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IBD Inflammatory Bowel Disease. 47

LSFM Light Sheet Fluorescence Microscopy. 2, 3, 5, 12, 15, 47

LSTM Long Short-Term Memory. 8, 34, 36, 37, 45, 52, 59, 60

LYVE1 Lymphatic Vessel Endothelial Hyaluronan Receptor 1. 11

MAD Median Absolute Deviation. 13, 18

ML Machine Learning. 21, 22, 25, 38–40, 56

MLP Multilayer Perceptron. 9, 34

NLP Natural Language Processing. 1

OCTA Optical Coherence Tomography Angiography. 48

PNS Peripheral Nervous System. 2, 3, 11

RBF Radial Basis Function. 39, 40, 51, 59, 60

RF Random Forest. 38, 40–42, 51, 59, 60

RNN Recurrent Neural Network. 36, 57

ROC Receiver Operating Characteristic. 31

SVM Support Vector Machine. 39, 40, 51, 59, 60

TH Tyrosine Hydroxylase. 11
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