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Lay Summary

Connected vehicles can share information with their surroundings to make better deci-
sions. Their shared information is typically evaluated based on measurements, which
are depending on weather conditions. This thesis looks at how bad weather affects
the ability of vehicles to share information with their surroundings. It suggests a new
approach to tell whether certain vehicles tend to make inaccurate measurements based
on the impact of strong sun light. Simulation results show that taking this information
into account makes vehicle evaluation more meaningful and prevents the use of data
from affected vehicles.
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Abstract

Collective perception is a promising technology in the field of autonomous driving. It
enables vehicles to connect with their environment by sending and receiving informa-
tion to help them make decisions. So-called trust management models, which have the
purpose of evaluating connected vehicles or other entities based on their measurements,
play an important role in this context. Among other challenges, the quality of the
transmitted data depends on the quality of sensor measurements, which is particularly
influenced by the weather. As a result, difficult weather conditions affect the transmit-
ted information and can lead to incorrect decisions by the receiving vehicles.

This thesis investigates the impact of challenging weather conditions on collective per-
ception and in particular on the rating of the impacted vehicles. It proposes a novel
approach that determines whether certain vehicles tend to make wrong measurements
based on their orientation relative to the sun. This should in turn affect their rating
and make them to be considered less in the collective perception fusion process.

The model has been tested using the open-source simulator CARLA. The evaluation
shows that considering weather leads to an overall improvement of detection perfor-
mance. It is therefore a reasonable factor to consider in the evaluation process of
connected vehicles and leads to more meaningful ratings.
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Chapter 1

Introduction

Autonomous driving has become a very popular topic in recent years due to a multi-
tude of hoped-for benefits such as increased energy efficiency and passenger comfort.
For autonomous driving to work, a reasonably accurate profile of the environment must
be established in order for the algorithm to plan maneuvers and make decisions. For
this purpose, a new technology called Collective Perception has recently emerged [1].
It is based on the idea of sharing data measured by multiple vehicles in order to obtain
a more accurate picture of the environment. It aims to enable vehicles to spot objects
that may be obscured by an obstacle, which could drastically improve their decision-
making and ultimately make them safer in day-to-day operations. Since data vehicles
received from others is not directly known to be correct, transmitting vehicles should
be rated in a certain way to avoid using biased or malicious measurements for maneuver
planning. To address this issue, trust management models are introduced, which use a
wide range of techniques to rate the vehicles performance or their sent data by assigning
them with trust values [2].

In order for autonomous driving vehicles to perceive their surroundings, they are usu-
ally equipped with a variety of sensors such as cameras or LiDAR sensors, which ideally
complement each other and compensate for their weaknesses [3, 4, 5]. Most of these sen-
sors are known to be very sensitive to weather conditions such as fog, rain or excessive
sunlight. Therefore, it is desirable to account for this type of contextual information
when analyzing the received measurement data. Although many types of trust man-
agement models have been presented in the past, none of them considered the influence
of weather when assigning a trust score to vehicles.

This work is proposing a novel approach to consider weather context for computing trust
of sending vehicles. It utilizes Fuzzy Logic, a method that allows the consideration of
human expertise and scores with its interpretability [6]. These benefits are particularly
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important for models applied in the field of autonomous driving since safety is is a key
part of making this technology become more suitable for the real world.

The thesis is structured as follows: First the main principles of collective perception
and trust management models are examined. Then, state-of-the-art trust management
models are shown to give an overview of the current model architectures. Subsequently,
the novel algorithm is proposed and explained in detail. Finally, the algorithm will be
tested by performing a simulation study and by comparing the model performance for
different scenario cases.



Chapter 2

Background

2.1 Autonomous Driving
Autonomous systems (AS) are becoming increasingly popular and have already con-
quered many areas of our world. They can be defined as systems that can change
their behavior in response to unanticipated events during their operation [7]. This
fundamentally distinguishes them from classical automated systems, where predicted
environments are required for their usage and where the system is usually restricted in
what tasks it can perform. AS are particularly advantageous in remote environments
where human interaction is not possible or in hostile environments where it is just
too dangerous for humans to interact and work [8]. Moreover, for activities that are
very long and repetitive, AS can play a significant role in achieving better results than
humans while working faster and more efficiently.
For AS to truly act without human intervention, they must be able to handle complex
scenarios that may not even have been foreseeable at the time of their development.
This is why they are usually defined using artificial intelligence to model and classify
the complexity of real world environments with high accuracy [9].
There are numerous application areas of AS [10, 11, 12, 13], whereas this work addresses
Autonomous Driving (AD). Autonomous Vehicles (AV’s) equipped with AD technology
relieve the burden on human drivers by performing various tasks such as obstacle avoid-
ance, road sign recognition or lane departure warning. In addition, AD may enable the
reduction of traffic congestion and lower emissions through the use of advanced fuel
economy. Finally, AV’s are designed to help people in their daily lives by providing a
safe and reliable transportation option, e.g. for the elderly and disabled [14].
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Figure 2.1: Overview on the SAE levels of driving automation [15, 16].

In general, AD can be divided into six levels defined by the Society of Automotive
Engineers (SAE) [17]. Figure 2.1 shows the corresponding levels and a brief description.
In summary, level 0 means no driving automation, level 1 limited driving support,
and level 2 partial driving automation. Level 3 corresponds to conditional driving
automation, level 4 to high driving automation, and level 5 to full driving automation.
It should be noted that in the first three levels, the driver still has to perform all
dynamic driving tasks himself, while in the last three levels the AD system takes over
the corresponding tasks [18]. Since the system is not truly autonomous at the first three
levels, the term AD is typically used for systems at level 3 and above.
Level 0 to 2 AD systems are already approved on the European market, while level 3
and 4 AD systems are currently being tested and are expected to be launched between
2020 and 2030. However, level 5 AD systems are not likely to enter the market before
2030 [19]. In both the U.S. and China, AD systems at Level 3 and above are not
expected to be available before 2025 [15, 20].

2.1.1 Sensor types
In order for AV’s to act independently, they need to measure their surroundings in
the most accurate way, which requires them to have a sufficiently broad set of sensors.
There are mainly four different sensor types installed in AV’s, namely LiDAR, RADAR,
Ultrasonic sensors, Cameras and GNSS sensors. In addition, IMU and odometry sensors
are also installed in most AV’s. However, these will not be discussed further in this
work [3, 4, 5].
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LiDAR

LiDAR (Light Detection and Ranging) sensors use lasers to create a point cloud of
their environment with the aim of detecting and categorizing objects. Some typical
applications are surveying, archaeology, robotics and last but not least AV’s. They
principally work by illuminating their field of view by a laser source while an array of
photo-detectors at the image plane pick up time-of-flight information of each individual
pixel. With this information, one is not only able to get the position of an object but
also to calculate the distance. Despite their excellent ability to provide an accurate map
of the environment, they have difficulty in certain weather conditions, as described in
section 2.4.1, and are still quite expensive, although prices continue to drop for mass
market use [21].

RADAR

RADAR (Radio Detection and Ranging) sensors transmit radio waves to their sur-
roundings to detect the distance and speed of objects in the environment. They are
mainly used to detect obstacles, as they are usually designed to identify any type of
object. In contrast to LiDAR technology, RADAR sensors are more resistant to weather
conditions. They are also quite inexpensive compared to other types of sensors, which
is why they play a central role in AV’s. Despite some other operational challenges such
as interference and limited resolution, their main drawback is object classification, so
they cannot be used exclusively for developing a fully autonomous system [3, 22].

Cameras

Cameras are important for the AV’s to gather visual information about their environ-
ment, which can help them detect and classify objects based on their shape, color or
infrared radiation. Usually, multiple cameras are installed in an AV to get a 360° view
and not miss any object. The advantages of this type of sensor are that it is cheaper
and easier to integrate than LiDAR, for example. However, there are also some dis-
advantages, such as their poor performance in bad lighting conditions, as this severely
impairs their visibility and thus object detection and classification. In addition, they
cannot provide information on depth as a primary metric, requiring it to be calculated
separately, which can lead to imprecise estimates [23].

Ultrasonic sensors

Ultrasonic sensors emit high-frequency sound waves to their surroundings, which are
reflected by the object and then processed by the internal system. The result is the
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distance between the sensor and the corresponding object. Ultrasonic sensors can make
a precise measurement within their sensing range, and their relatively low cost makes
them user-friendly for many applications. In addition, their performance is not affected
by weather or lightning, making them very attractive for AVs as well. However, due to
their limited range and measurement rate, as well as their varying detection accuracy
with different object materials, they cannot be used exclusively for AV’s [24].

In table 2.1, the performance of LiDAR, RADAR, camera and ultrasonic sensors are
compared. Their performance under specific weather and lightning conditions will fur-
ther be discussed in section 2.4.1.

Feature LiDAR RADAR Camera Ultrasonic sensor
Primary Technology Laser beam Radio wave Light Sound wave
Range 200m 250m 200m 5m
Resolution Good Average Very good Poor
Detects distance Good Very good Poor Good
Cost High Low Medium Low
Size Bulky Small Small Small

Table 2.1: Summary of AV sensor performance [25].

GNSS position sensors

The Global Navigation Satellite System (GNSS) is a constellation of satellites that de-
liver signals from space as position and time data to GNSS sensors [26]. These sensors
can then use this data to determine their location in terms of latitude, longitude, and
altitude in real time, making them very suitable for AV’s, where knowing the location
of objects in the environment can greatly improve their detection and classification per-
formance [27].
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2.2 Vehicle-to-Everything and Collective Perception
Over the past years, a new technology called Internet of Things (IoT) has become one
of the most important inventions of the 21st century. It describes a network that con-
nects any objects that are equipped with software or sensors to its surroundings over
the internet [28]. In this way, devices can exchange information as needed, allowing not
only themselves but also other devices to adapt their interaction to their surroundings.
IoT has many application fields [29, 30], though in this work the focus lies on Intelligent
Transportation Systems (ITS). These systems are advanced applications that aim to
provide innovative services related to different transport modes and traffic management,
enabling users to be better informed and to use transport networks in a safer, more
coordinated and "smarter" way [31]. A recent suggestion for the foundation of ITS are
so-called Vehicular Ad-Hoc Networks (VANET’s) [32].
Recently, Vehicle-to-Everything (V2X) communication got very popular in the field of
ITS. According to [33], V2X refers to a set of standards and technologies that enables
vehicles to cooperate with their current infrastructure, including road users like pedes-
trians and roadside units (RSU’s). Through this collective sharing of information, a
vehicle should be able to extend the perception beyond its Field of View (FoV), leading
to the notion of Collective Perception (CP). The basic principle of CP is shown in the
figure 2.2. Here it can be seen that vehicle 1 is not able to directly observe vehicle 3,
while vehicle 2 is able to do so.

CPM 3

1 2

3

Figure 2.2: The basic principle of Collective Perception [34].

In order for vehicle 1 to extend its perception, vehicle 2 sends its measurement and
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state information to vehicle 1 so that the latter can detect vehicle 3.

2.2.1 Advantages
V2X communication provides many benefits for ITS, especially in the field of AD. The
most important of them are listed below.

Safety

According to the U.S. Department of Transportation’s National Highway Traffic Safety
Administration (NHTSA), 38824 people got killed in a traffic accident in 2020 in the
U.S.. Even though the number of crashes decreased by 22% compared to 2019, the
number of fatal crashes increased by 6%. In 45% of these fatal crashes, the drivers of
the vehicles were engaged in at least one of the following risky behaviors: speeding,
alcohol impairment, or not wearing a seat belt [35].
NHTSA believes that AD systems have a high life saving potential, since they are dis-
connecting the human driver from the chain of events that can lead to a crash. However,
the implementation of AD is highly dependent on the vehicle’s ability to perceive the
environment. AV’s require a certain level of knowledge about its environment in order
to drive safely [36]. V2X communication has proven to be a promising technology to
address this shortcoming by gathering helpful information such as sensor measurements
from surrounding vehicles, road users or RSU’s, allowing an AV to use CP in its favor
and coordinate its actions [37].

Comfort

V2X communication reassures a sense of security. Vehicles with enhanced visibility
through CP are also able to make driving in unfavorable conditions like poor visibility
easier [38].

Cost Efficiency

V2X can help build a more efficient transportation system, which in turn saves money.
Congestion and construction cause delays and can drive up the cost of doing business.
V2X can help identify these obstacles and change the route of travel to save fuel and
time [39].

Environmental Factors

V2X can help reduce environmental impact. Advanced applications such as platooning
allow vehicles to follow each other at a very close distance while continuously interact-
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ing with each other [40]. Not only does this have various safety or business benefits,
but it is also believed that platooning can reduce fuel consumption and thus carbon
dioxide emissions by up to 20%, depending on the driving scenario [41].

2.2.2 V2X Communication standards
An AV participating in the V2X communication network can interact with the envi-
ronment in several ways, as shown in figure 2.3. With all these sources of information,
each AV should get the information it needs to act in a safe and reliable manner and
fulfill the objectives mentioned above.
Nowadays, two main communication standards are used to enable information exchange
within the V2X network. These standards are briefly explained below.

IEEE standard

This standard, specified in 2010, is based on the IEEE 802.11p interface (IEEE 802.11
Outside the Context of Basic Service Set (OCB) mode), which operates in the 5.9 GHz
band [42]. In Europe, the ETSI committee called an ITS system based on IEEE 802.11
OCB mode Intelligent Transport System G5 (ITS-G5), and the upper layer is denoted
as Cooperative Intelligent Transportation System (C-ITS) [43, 44].
The target scenario of ITS-G5-based systems is short-range communication involving
only vehicles and RSU’s. This means, for these systems the term V2X refers to V2I
and V2V only. There are several issues coming with ITS-G5-based systems as blocked
transmission of specific frames or a lack of reliability and performance due to frame
collisions and channel fading coming with higher traffic load [44].

3GPP standard

Starting in 2014, the 3rd Generation Partnership Project (3GPP) has been working on
the standardization of in-vehicle communications based on the previously standardized
4G Long-Term Evolution (LTE) and later 5G mobile communications. This enables an
operation not only in the 5.9-GHz band but also in the licensed bands of the cellular
networks. For their systems, two different interfaces are used: A PC5 interface used for
short-range data transmission and a Uu interface for long-range communication [44].
This technological approach relying on 4G LTE or 5G V2X communications is combined
under the 3GPP standard for Cellular V2X (C-V2X) [45].
The C-V2X technology standard introduced two new communication paradigms, that
significantly extend the range of interaction and use case scenarios: the involvement of
the Cellular Mobile Network (V2N) directly connecting the vehicle with a ITS central
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Vehicle-to-
Pedestrian (V2P)

Vehicle-to-
Network (V2N)

Vehicle-to-
Vehicle (V2V)

Vehicle-to-
Infrastructure (V2I)

Figure 2.3: The figure above shows different ways in which an AV can interact
with the environment.

system, and the involvement of pedestrians or cyclists through the use of mobile devices
(V2P) [44]. According to [46], C-V2X systems can provide better performance than
ITS-G5-based systems regarding latency, coverage length and throughput, especially in
lower traffic densities.

2.3 Collective Perception Service
As mentioned in the previous sections, CP means the exchange of measurement and
state information between vehicles (V2V) or other entities such as road users (V2P),
infrastructure (V2I) or a mobile network (V2N). This distinguishes CP in particular
from the concept of Cooperative Awareness (CA), where only information about the
current state of the vehicle is exchanged. The concept of CA is not discussed further
in this thesis; for more information, see [47]. The service providing CP within the V2X
network is currently being standardized by ETSI and known as Collective Perception
Service (CPS) [1].
In the following sections, the main components of the CPS are described and its specific
message type is elaborated. In addition, use cases of CP are highlighted and redundancy
mitigation techniques are explained.
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2.3.1 Components
According to [48], any CPS can be split into three parts: Sensing, Communication, and
Data Fusion. The corresponding components are further discussed in the following.

Sensing

This component includes the detection and classification of objects. One can divide
these objects between static objects, such as buildings or trees, and dynamic objects
as vehicles or pedestrians. Usually, static objects are obtained using map information,
while dynamic objects have to be detected by sensors [48].
The raw data obtained from the sensors can either be transmitted directly or pre-
processed first, the latter being recommended by ETSI, as raw data would place very
high demands on data rates and transmission frequencies, which would further increase
with the number of sensors attached to an entity [1].

Communication

The communication part deals with the transmission of data. As mentioned in section
2.2.2, there are two communication standards that entities can use: the IEEE standard
used for ITS-G5 systems and the 3GPP standard used for C-V2X systems. The ex-
changed information is contained in CA messages and CP messages, the latter being
the focus of this work and described in section 2.3.2.

Data Fusion

Entities in the CPS receive information from their own sensors as well as from other
entities. All data must be pre-processed and fused accordingly to make it usable and
thus enhance perception. There are mainly two different fusion approaches:

• Early Fusion: Multiple spatially diverse sensor measurements are combined before
feature detection (fusion in feature space)

• Late Fusion: Sensor measurements are combined after feature detection (fusion
in semantic space)

When to use early or late fusion schemes highly depends on the application field [49, 50],
in chapter 3 common techniques for AV’s are described.
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2.3.2 Collective Perception Messages
The CPS uses so-called Collective Perception Messages (CPM’s) for the transmission
of measurement data and state information. These messages allow entities to transmit
their sensor information as well as their state information to others.
A CPM currently consists of an ITS PDU header and five different types of containers:
a Management Container, a Station Data Container, one or more Sensor Information
Containers, one or more Perceived Object Containers and one or more Free Space
Addendum Containers. The general CPM structure is shown in figure 2.4 [1].

Figure 2.4: In the above figure, the basic structure of a Collective Perception
Message (CPM) is shown [1].

2.3.3 Use-Cases
Applying the previously presented CPMs, several use-cases arise for which CP can be
particularly useful. They are briefly described below.

Detection of Non-Connected Road Users

Road users who are not able to communicate by themselves can only be perceived by
sensors of other road users. If so, the perception range is limited to the sensors’ field-
of-view, which is particularly critical for objects that are occluded by obstacles. With
the CPS, the number of road users detected and shared by entities using the CPS can
be significantly increased. In addition, as the number of entities sharing information
about the same object increases, the accuracy of the estimated parameters (such as
object position, speed, etc.) increases [1].
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Detection of Safety-Critical Objects

In addition to road users who cannot communicate, there may be unwanted objects
on or near the road that could become a potential safety hazard to road users. These
items may be lost cargo, a tree stump, or debris on or adjacent to the roadway. Sharing
information about these objects enables road safety applications that warn approaching
entities such as vehicles of their presence. In addition, road users who are not equipped
with sensors or whose sensors cannot detect these safety-critical objects can also be
warned [1].

CAM Information Aggregation

Sometimes it can be useful to not only consider sensor data but to also include infor-
mation from CA messages (CAM’s) to generate and send out a CPM. In this work,
however, the aggregation with CAM’s is not considered [1].

2.3.4 CPM Dissemination Concept
Channel overload is an issue that can easily occur when sending CPM’s over the V2X
network. Each entity is usually generating multiple CPM’s per second, sharing their
sensor measurements and state information to others. Depending on the amount of
sensors, this can result in very high data throughput.
Therefore, it can be useful to define CPM generation rules, aiming to balance frequent
updates about detected objects and to minimize channel utilization [1].
According to [1], there are many ways of managing CPM generation. As an example,
CPM Generation Frequency Management aims to manage the inclusion of the Perceived
Object Containers and Sensor Information Containers.

2.4 Challenges
There are many challenges coming with the use of a CPS, as discussed in [48]. Channel
overload due to huge amounts of data sent between entities such as vehicles or RSU’s
has already been discussed in section 2.3.4. This section discusses two other very critical
issues: the impact of severe weather on data accuracy and the potential trust and safety
risks associated with using the resulting erroneous CPM’s. Due to the importance of this
topic and the fact that it has not been adequately addressed in current CPS algorithms,
as shown in chapter 3, it is the focus of this work.
At this point it has to be mentioned that there are several other issues that may
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(indirectly) affect the CPS and the measured data, such as electromagnetic interference
or the ambient temperature, but these are not addressed in this work.

2.4.1 Impact of Adverse Weather Conditions
Currently, one of the most critical problems in the development of AV’s is the poor
performance of their sensors in adverse weather conditions such as rain, snow, and fog.
This generally results in false readings, which in CPS terms can mean the following:
Vehicles that send false information should be considered less of a source of information.
It is therefore critical to consider the performance of individual sensors under certain
weather conditions [51].
In this section, the common sensor types used in AV’s, mentioned in section 2.1.1, are
being reviewed for various weather and lightning conditions.

Precipitation (Rain, Snow)

Precipitation is generally understood to be water in either a liquid or frozen state. The
size and the distribution of the water droplets define the intensity of precipitation. The
intensity, in turn, can affect sensor readings from a LiDAR, for example, since they must
propagate through the precipitated medium. If the water droplet’s diameter exceeds
6 mm, it will be subject of so-called Mie scattering [52]. Mie scattering can affect the
propagation in two ways: firstly, due to the absorption of electromagnetic energy by
the water droplets, which leads to attenuation, and secondly, due to the volume back
scattering or rain clutter, which can lead to incorrect measurements [25].
LiDAR sensors in their 905 nm to 1550 nm wavebands are heavily affected by Mie scat-
tering from rain [53]. It has been shown, however, that slight rain conditions will not
have a big impact on the LiDAR’s range of visibility, while more heavy rain indeed will,
as shown in [54]. As mentioned in [51], there are already algorithms that can correct the
image by filtering out raindrops or snowflakes with pixel-oriented evaluation. However,
there are no studies yet on the accuracy that these algorithms can achieve under real
adverse weather conditions.
For RADAR systems, the effect of Mie scattering is not significant at short distances, it
can however decrease the maximum range of detectability, as discussed in [55, 56]. The
reason is that the size of the droplets is comparable to the wavelength of the RADAR.
The attenuation effect reduces the received power of the signals and the back scatter
effect increases the interference at the receiver. A detailed analysis on the correspond-
ing effects can be found in [51].
Cameras usually rely on scene brightness to determine intensity of pixels. Adverse
weather conditions however can result in sharp intensity fluctuations which can decrease
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the quality of images or videos. Rain or heavy snow can increase image intensities and
obscure edges of the patterns of objects, which makes it hard to detect them correctly
[25]. There are mainly two different technologies used to solve this problem: real-time
processing and post-time processing. In [51] they are explained in more detail.
Ultrasonic sensors in general are barely affected by scattering effects which is why pre-
cipitation is not a big problem for them, as stated in [25].
According to [57], GNSS position sensors are generally not affected by local weather con-
ditions, because of their specific signal frequency of approximately 1.575 GHz. However,
they can be affected by space weather. For example, irregularities in the ionospheric
layer can lead to rapid fading of signal power due to destructive interference. This effect
is called ionospheric scintillation and is described in [58].

Fog

Under fog someone typically understands a visible aerosol consisting of small water
droplets suspended in the air or near Earth’s surface [59]. For fog to occur, the air
must contain either dust or air pollution. If so, water vapor condenses around these
very small solid particles, generation droplets of the size from 1 to 20 microns [60].

LiDAR sensors are very much affected by fog and back scattering occurs because their
operating wavelengths are smaller than the size of the fog particles. However, the
strongest effect is attenuation, which leads to very high extinction coefficient, which in
turn drastically reduces the detection capability of LiDAR’ sensors [61].
Fog can indirectly affect RADAR if temperature requirements are met by condensing
on the radome or target in question, mimicking what is explained in the section about
precipitation [25].
Cameras are severely affected by fog because their operating wavelengths in the 400
nm to 750 nm range are smaller than the size of the fog particles, which in turn leads
to Mie scattering effects. As with precipitation, fog can also reduce the contrast of the
image and make it difficult to detect pattern edges [62]. According to [25], the pres-
ence of so-called air-light should also be considered when examining the performance
of cameras in fog. Air-light can be defined as the scattering of light by the interference
of fog particles. As stated in [25], in the presence of air-light it is almost impossible to
detect objects near the light source.
Even though ultrasonic sensors are not particularly affected by adverse weather con-
ditions, they work with sound waves, so air conditions and temperature fluctuations
could theoretically affect their performance. Since this type of sensor is only used for
very short distances, the effects of fog and precipitation are minor [25, 51].
Because of their specific signal frequency, GNSS sensors are not affected by foggy con-
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ditions [25].

Light Conditions

Having Poor or too bright light is a special and very critical problem for cameras and
partially LiDAR’s. It can be caused by the sun or artificial sources like air-light pollu-
tion form a skyscraper. In [63] it was shown that both a normal visual camera and a
LiDAR sensor perform very poorly when trying to measure the environment near the
light source, while a thermal imaging camera on the other hand was able to detect some
objects where the normal camera could not. In addition, reflections from all kinds of
shiny objects make it even more difficult to find the camera’s exposure selection, and
the camera’s detection performance drops to almost zero [64]. One solution proposed
in [65] is to use HDR cameras, which can mitigate lighting conditions: They can over-
come sudden light changes that occur when entering a tunnel and have better color
retention, which can improve their performance when driving in direct sunlight. There
is also techniques existing for LiDAR measurements to separate them from sunlight,
presented in [66].

2.4.2 Safety and Trust Issues
As previously discussed in this chapter, there are several challenges in implementing an
AD system. Although many of these were local problems of a particular AV, the cor-
rectness of messages transmitted between vehicles and other entities becomes a critical
issue when implementing a collective perception service. Collective perception makes
vehicles vulnerable to attack, and dishonest vehicles can influence the decisions of other
vehicles based on the data they send [22]. Regardless of whether the problems are
caused by CPS or not, it can be said that all of them lead to the same result for an
AV: They result in wrong decision-making, which in turn reduces safety. And more
generally, it can be said that an AV that acts less secure should be less trustworthy.
To address all these issues and to eradicate misbehaving entities from the V2X network,
the notion of trust is used. Trust can be understood as a degree of risk, vulnerability, or
uncertainty that establishes an expectation about a entity’s future behavior [67]. Trust
is assessed using trust management models in which entities typically evaluate trust for
other entities, with the evaluators referred to as trustors and those being evaluated as
trustees [2].
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Components of Trust

As already mentioned, trust mainly relies on the quality of interactions between entities,
which can be divided into two components:

• Direct Trust: Exhibits direct observations of a trustor on a target vehicle
(trustee), relying on the interactions between these two only [68].

• Indirect Trust: Considers the opinions of neighbors of a trustor about the
trustee, taking into account past experience with the trustee and its historical
behavior. It is said that direct trust is more important than indirect trust, but
both must be considered when evaluating a trustee’s trust [69]. Figure 2.5 com-
pares the concepts of direct and indirect trust.

Direct Trust Recommendation

Direct Trust Indirect Trust

Figure 2.5: Comparison of direct and indirect trust [2].

Categories of Trust Management Models

According to [70], such trust management models can be divided into three different
groups:

• Data-Centric Models: The correctness of the exchanged messages shared among
entities are in the main focus. These models evaluate the trust of every incident,
therefore, delays and data loss may be present in case of dense traffic. On the
other side, data-oriented trust models do not perform well in information sparsity
due to the lack of evidence.

• Entity-Centric Models: The credibility of vehicles and other entities is ranked
based on the indirect and direct trust scores of the trustee. Therefore, sufficient
data is required on the rating of a trustor and its neighbors with respect to a
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trustee. It is believed that message authenticity may be a challenge, as there is
no guarantee that the messages sent will not be corrupted by external sources, as
described above [71].

• Hybrid Models: The legitimacy of both, data and entity-based trust evaluation
is considered. Thus, the authenticity of the exchanged data, the recommendations
of the neighbors to the trustee and their historical behavior are taken into account.

While much research is in going for all three models as described in chapter 3, in this
work, the main focus lies on the entity-centric trust models. The evaluation of trust and
the algorithm proposed for it form the core of this thesis and are discussed in chapter
4.



Chapter 3

Trust Management Models

This chapter discusses and compares various modern approaches for building a trust
management model. According to [2], trust models can be divided into five differ-
ent categories: (1) Traditional, (2) bayesian-inference-based, (3) fuzzy-logic-based, (4)
machine-learning-based and (5) blockchain-based models.

3.1 Traditional
Traditional trust management models are usually widely accepted frameworks because
they do not require complex data analysis or statistical inference tools for the trust
evaluation. To calculate the trust value, several trust values are mainly aggregated to
obtain a final value for each entity. Usually, the aggregation is done by a weighted sum
with static or dynamic weights.
In [72], MARINE, a man-in-the-middle attack resistance trust model in connected ve-
hicles is presented. MARINE corresponds to a hybrid trust model that considers a
trustworthy vehicle to transmit false messages due to malfunctioning and a malicious
vehicle to send a malicious message. This trust management model evaluates three
different trust scores: node-centric trust, data-centric trust, infrastructure-based trust
and vehicle-based trust. Node-centric trust is calculated by combining past interactions
with the trustee and the opinions of its neighbors. Data-centric trust is evaluated by
considering the quality of the data received and the recommendations of its neighbors
by calculating direct and indirect trust values. While calculating these values, each
vehicle generates a positive report that includes honest vehicles and a negative report
that includes dishonest vehicles. These reports are then submitted to the RSU’s, which
calculate the infrastructure-based trust values and update the corresponding reports.
The updated reports are then shared with all units in the network. The proposed model
has been tested in a simulation of urban mobility (SUMO) and in a simulation of vehi-
cles in the network (VEINS) for three types of attacks.
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Hurl et al. [73] presents an approach for AV’s to communicate perceptual observations
that are mitigated by trust modeling of peers providing reports. The so-called TruPer-
cept model makes it possible to improve an ego-vehicle’s perceptual performance by
fusing the received messages from other vehicles according to their reported accuracy,
thus enabling collective perception. Trust is computed in three steps: In the first step,
trust scores are calculated for each detection of the ego-vehicle by aggregating the trust
scores from all nearby vehicles which detected the same object. Then, the trust value
for each detection is adjusted by aggregating over a given time window in order to
consider the time-domain. Finally, the confidence values of all detections that identi-
fied both the ego-vehicle and another vehicle are combined, leaving a single confidence
value that evaluates the corresponding vehicle. Additionally, to detect malicious agents
that insert false information, a plausibility checker is incorporated, that verifies LiDAR
point cloud data on plausibility. Their model is evaluated using a cooperative synthetic
dataset generated by a game engine in an urban environment.
Chuprov et al. [74] introduced an approach for reducing traffic management issues on
crossroads by identifying and excluding vehicles sending malicious or faulty messages.
They made use of three concepts, namely truth, reputation and trust, having the objec-
tive of assessing the legitimacy of the data sent. Truth defines the correctness of data
being exchanged by the vehicles, reputation considers the time-evolution of truth values
and trust is the weighted aggregation of truth and reputation values. After calculating
a trust value for each vehicle within the network, it is compared to a set threshold, and
vehicles whose value is above it are considered trustworthy. On the other hand, vehicles
whose trust values are below the threshold are not trusted and are excluded from the
communication network. The performance of the system is first evaluated using a cus-
tomized simulator. Then, the results are validated using hardware simulations based
on an autonomous vehicle model developed by the authors.

3.2 Probabilistic
Since trust is a subjective rather than a hard measured quantity, it can be well cal-
culated using probabilistic approaches. Typically, Bayesian statistics are used in this
case, utilizing a prior distribution of parameters combined with a likelihood function to
generate a posterior distribution [2].
In [75], authors have proposed an anti-attack trust management scheme called AATMS
that uses a TrustRank-based algorithm which was initially introduced to combat web
spams. The model evaluated both global and local trust, which indicate the local and
global trust relationships between vehicles. RSU’s are assumed to be fully trusted. The
algorithm works as follows: first, local trust is computed by applying the Bayesian infer-
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ence model to past interactions. Second, a trust link graph is generated, that includes
all the local trust values that vehicles gave to each other. To compute the global trust
score, several additional parameters are considered: social parameters of the driver like
age or driving license score, general information regarding the vehicle like its type or
braking performance. All the previously mentioned parameters are then combined with
the local trust as well as the past global trust scores before applying the TrustRank-
based algorithm. The algorithm identifies the most trustworthy vehicles, which are also
named as seed vehicles, which in turn helps to evaluate the trust of other vehicles. The
model is tested using VEINS and evaluated using two introduced performance metrics:
the true negative and true positive rates.
Fang el al. [76] presented a Bayesian-based trust decision scheme named BTDS that
uses a Bayesian network to prevent on-off attacks. In these attacks, vehicles alternate
between being honest and dishonest, sending either correct or malicious data, respec-
tively [2]. A trust value is calculated by a weighted aggregation of direct and indirect
trust values. Here, the direct trust value evaluates the direct, current, and past interac-
tions between a trustor and a trustee and is calculated as the mathematical expectation
of a Gaussian distribution. The indirect trust value corresponds to the highest direct
trust value a trustee receives from all its neighboring vehicles. To identify the attack,
a window is defined to examine the change in trust values. The authors performed
simulations to evaluate their model using MATLAB.
Gao et al. [77] proposed a hybrid approach to evaluate trust nodes to identify and
exclude malicious nodes that might intercept or discard data, which in turn disrupts
the transmission process. To quantify the credibility of nodes, the concept of inte-
grated trust is presented, which consists of direct trust and recommended trust. The
direct trust is calculated by utilizing historical interaction records and Bayesian infer-
ence considering penalty factors. The recommended trust value represents the trust of
third-party nodes and their reputation. Since the direct confidence value is a probability
estimate with some error, a confidence value is used to describe its accuracy. If the accu-
racy is above a predefined threshold, the direct confidence value is considered accurate
and then defined as the integrated confidence value. If the confidence value is smaller,
the recommended confidence is needed, and to obtain the integrated confidence value,
the direct and recommended confidence are fused. After that, a time-sliding window
and a decay function are introduced to ensure timeliness and to update the integrated
trust scores. Thereby, the decay function ensures that the latest information has a
higher impact on the calculation of new trust values. The proposed algorithm is eval-
uated by means of a series of experiments and the authors propose that the method
outperforms baseline methods with respect to reliability.
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3.3 Fuzzy Logic-based
In general, fuzzy logic focuses on expressing the imprecision of human reasoning for
decision making in an imprecise and uncertain environment. It is a generalization of
standard logic, in which all statements have a truth value of one or zero. In fuzzy
logic however, statements can have a partial truth value, e.g. 0.9 or 0.5. This gives
the approach more opportunity to mimic real-world circumstances where statements of
absolute truth or falsehood are rare [6].
Guleng et al. [78] proposed a decentralized trust management framework that used
fuzzy logic to fuse the direct experience of vehicles (trustors) with recommendations
of all nearby vehicles towards a target vehicle (trustee) in order to identify dishon-
est behavior of the corresponding target. For this purpose, both direct and indirect
confidence values are calculated. To determine the direct trust value, the number of
messages forwarded by the target vehicle, the number of true messages forwarded by
the target vehicle and the number of intended incidents reported by the target vehicle
are considered before applying fuzzy logic. The indirect trust value is calculated for
vehicles that do not have a direct connection to the trust provider by applying rein-
forcement learning. The presented model was simulated using the network simulator
NS-2.34.
In [79], authors presented a novel fuzzy-logic-based scheme for malicious node detec-
tion. It uses a unique security strategy that utilizes node behaviour during message
exchange as a security metric to detect and exclude malicious nodes and their activities
from the communication network. They applied fuzzy logic to generate a rank of each
node named as a trust level, which describes the node’s reliability in exchanging safety
messages correctly. To compute trust, three criteria are mainly considered: Emulgation
attack attempts, collaboration degree and RSU assessment. The model has been eval-
uated using MATLAB and results show that the proposed model improves the network
performance, boosts network security and enhances throughput.
Hasan et al. [80] presented a hybrid fuzzy logic-based trust estimation model to ade-
quately model malicious characteristics of a vehicle and calculate its trust. The proposed
scheme uses three fuzzy set-based factors to assess the level of trust for a vehicle: (1)
A Packet Drop Factor that determines a vehicle’s willingness to cooperate in forward-
ing received packets as a function of the vehicle’s speed. (2) A False Packet Injection
Factor that determines whether vehicles generate false packets. (3) A Content Alter-
ation Factor, which evaluates a vehicle’s ability to modify content. After determining
these factors, they are fed into a fuzzy logic-based algorithm to determine a trust level.
According to the authors, their model consists of vehicles and so-called edge servers,
where the latter can be understood as semi-trusted cloud servers that collect informa-
tion about vehicles and calculate and update trust values in a timely manner. The
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model was tested using the OMNeT++ simulation system, and the results showed that
the proposed system performed better than that of Guleng et al. in terms of several
metrics [78].

3.4 Machine Learning-based
Machine learning is a subfield of artificial intelligence and relies primarily on experience
in the form of data to make predictions and make decisions with precision over time [81].
It can be used to classify trust levels of nodes based on measured information. There
are many different types of machine learning classification techniques. The choice of the
right method depends on many factors, such as access to training data, type of data,
speed, accuracy, etc. However, they are often associated with a high computational
cost and lack of interpretability, which makes them less suitable for many safety-related
applications in practice.
Gyawali et al. [82] presented a machine learning and reputation-based misbehaviour
detection system with the objective of enhancing the detection accuracy and ensuring
reliability of both vehicles and messages. To do so, the model utilizes three contribut-
ing parameters known as similarity, familiarity and packet delivery ratio. The scheme
works as follows: First, each vehicular message is evaluated using a machine learning
model. Afterwards, the results of the evaluation are sent to a local authority, which
combines them using the Dempster-Shafer theory [83, 84]. The result of this amalgama-
tion is then used to update the reputation value of each vehicle using beta distributions.
Subsequently, the reputation value is shared with other authorities and a warning is
sent for revocation if the reputation value is below a certain threshold. The model was
evaluated with VEINS, OMNeT++ and SUMO.
Abdelmaguid et al. [85] introduce situation awareness, a concept that uses environmen-
tal elements and events to gain a holistic view of a system at any given time. In the
proposed model, situation awareness is utilized to predict trust scores of surrounding
vehicles that are then applied to reevaluate the outcome of a trained machine learning
model. Depending on the outcome of the situation awareness and machine learning
models, a message will be classified as benign or not. The system works in two steps:
First, situational awareness is measured to reflect the state of the network at a given
time. This is done using a third-party ranking algorithm that uses logistic trust to
rank vehicles by calculating their trust scores. Second, the holistic view of the situ-
ation awareness model is combined with the information from the machine learning
model to achieve better results in detecting misbehavior attacks. The model was tested
with different machine learning classification models and evaluated against the publicly
available VeReMi dataset.



3.5 Blockchain-based 24

Huang et al. [86] present a trust management model based on machine learning and
active detection technologies, to evaluate trust of vehicles and events. By using active
detection technology, vehicles are able to detect the indirect trust of their neighbors,
which in turn can improve the speed of filtering malicious entities. Then, a Bayesian
classifier is used to assess whether a vehicle is a malicious entity based on the vehicle’s
state information. The proposed trust management model consists of two parts: A sys-
tem initialization and vehicle trustworthiness evaluation, which calculates direct and
indirect trust values. After calculating the trust values, the authors use a blockchain to
store the corresponding values and certificates, which ensures the consistency of vehicle
information in different domains and limits the influence of malicious vehicles or RSU’s.
To verify the feasibility and performance of the proposed model, it was implemented in
Python.

3.5 Blockchain-based
The blockchain is a computational paradigm that emerged with the Bitcoin protocol
in 2008 [87]. In general, blockchain technology deals with the distributed digital ledger
of transactions. It consists of an immutable decentralized database in the form of data
blocks that form chains [88]. Being a secure and decentralized computing infrastruc-
ture, it is widely recognized as a breakthrough solution to the problems of centralization
of centralization, privacy and security in storing, tracking, monitoring, managing and
sharing data [89].
Javaid et al. [90] propose DrivMan, a system model using blockchain and a certificate
authority to provide trust management. The aim of this system is to register vehicles
and, if necessary, to revoke their registration in order to promote the verification of
information. To ensure the trustworthiness of the data, so-called physically unclonable
functions are used. After data generation, a list of trusted registered vehicles is checked
for the originating vehicle. A certificate is issued by a certification authority (e.g., an
RSU) if the system successfully finds the vehicle in the trusted list and the responses
of the physical unclonable functions are correct. To simulate and test the model, an
Ethereum virtual machine was used in combination with a threat model. The threat
model provides an attacker that can mimic a vehicle and transmit forged information
to the certificate authority.
Ghovanlooy et al. [91] provides a scalable blockchain trust management system that
focuses on the reliability of incoming messages on the network. For this purpose, the ve-
hicles continuously check the validity of the received messages using a proposed Bayesian
equation and specific information stored in the blockchain. After the validation pro-
cess, depending on the result, the vehicle calculates a rate for each message type and
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vehicle from which the message originated. To calculate the net reliability value, ve-
hicles must upload their estimated rates to the RSU, which then applies a sharding
consensus mechanism to calculate a level of trust and to generate blocks. The most
recently updated blockchain is then maintained for all RSU’s. The proposed model is
simulated and evaluated using a python based simuator.
In [92], the authors presented a blockchain-based anonymous reputation system to
develop distributed trust management while protecting vehicle privacy. The system in-
corporates a trust model to improve message trustworthiness based on the reputation of
the sending vehicle derived from both direct historical interactions and indirect opinions
of neighbors about the sending vehicle. The scheme works as follow: First, anonymous
authentification has to take place, which is fundamental to trust communication and
privacy protection. To do so, the system has to be initialized, certificates have to be
updated and public keys have to be revoked. Second, the trust level of the broadcasted
messages are to be estimated, which in turn relies on a reputation score of the sending
vehicle. This reputation score is evaluated depending on the broadcasting pattern and
the message priority levels.

3.6 Comparison
In the previous sections, different types of trust management models were presented.
Table 3.1 compares the proposed models in terms of whether they take into account
weather conditions, multiple entities such as RSU’s or road users transmitting data, or
whether they are able to detect misbehaving entities.
It can be clearly seen that almost all of them are able to detect misbehavior, most of
them also consider RSU’s in their network. However, to the best of my knowledge,
none of the currently existing trust management models include the impact of context
information such as weather conditions in their trust management models.
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Chapter 4

Proposed Model

As mentioned in chapter 3, none of the currently existing algorithms take into account
the impact of contextual information on the computation of trust values. As a result,
those trust management models can produce inaccurate predictions, which in turn may
lead to wrong decision-making of AV’s.
In this work, a novel approach is proposed to address this issue, which is explained
in the following sections. The discussed framework is based on the approaches from
[93, 75, 74], however, new methods to compute the respective values are defined. In
the beginning of this chapter, the main components describing the trust management
model are introduced. Then, the framework and its scheme is described in more detail
to show the functionality.
The presented model is implemented using Python [94].

4.1 Model Architecture

4.1.1 Agent
The key component of the whole framework is called the agent. An agent in the sense
of this work is known as any entity that is part of the V2X communication network
making use of CPS. Here, it is assumed that the agent can be a vehicle as well as a RSU.

4.1.1.1 Properties

Specifically for this model, each agent has certain properties to provide base information.
They include a class name to know whether its a vehicle or a RSU, a clear identity
number, what kind of sensors it is equipped with as well as a value describing its initial
reputation. The latter one will be further discussed in section 4.3.5.



4.2 Occupancy Grid 29

4.1.1.2 Information Storage

Each agent is collecting and storing the information it has measured at discrete incre-
ments of time, also known as time frames. The following information is collected for
each time frame:

• Pose information: Values describing the pose of the agent, which is determined
by the x-y-z position as well as the orientation using pitch ◊a, roll „a and heading
angle Âa.

• Sensor information: Information associated with the sensors such as their type
or detection range. It also contains information about the local position of the
sensors within the agent, which is required to transform the measured signal from
the local sensor coordinate system to a global reference coordinate system.

• Perceived objects: Information regarding all the objects that have been de-
tected by the agent. This information includes the points of the point cloud
associated with the object as well as a two-dimensional bounding box computed
by an classification algorithm. More information about the used classification
algorithm can be found in section 4.3.2.

• Reputation and Trust: These values associated with each agent are computed
for each frame in time, for more information see sections 4.3.5 and 4.3.4, respec-
tively.

4.1.2 Central Server
The central server is the other key element of this algorithm. It receives all the mea-
surement data from surrounding agents and performs computations to evaluate their
performance. In this work, it is assumed that the central server has enough computation
power to run the algorithm in real time.

4.2 Occupancy Grid
In this model, an occupancy grid is introduced, which lies in the idea to model roads and
parts of the earth with the help of grid blocks, directly connected to each other. The
dimensions of the grids and their grid spacing can vary depending on the location that
should be analysed. However, in this work the grid is assumed to be two-dimensional.
Each grid block is associated with a central server, that receives the information sent
by the agents located in the same grid block. Through this separation into grid blocks,
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the amount of data sent between agents and central server should be reduced, since
only agents close to the scenery are taken into account for further computations. An
example of the structure of grid blocks is shown in figure 4.1.

y

xz

Figure 4.1: Example of a two-dimensional occupancy grid block modeling a
road intersection [95].

Each of the grid blocks consists of cells, that can be occupied with a certain occupancy
probability P [Oc]. This probability of occupancy is representing the main outcome of
this model and should help individual agents in locating arbitrary objects that may be
outside their FoV. Its value is calculated at the central server and described in more
detail in section 4.3.3.

4.3 Scheme Overview
The presented algorithm scheme can mainly be divide into two parts, the agent-side
computation and the server-side computation.
The former is shown in 1 and mainly incorporates two steps, which are 1) measuring the
environment and 2) performing the object detection. The two steps will be described in
more detail in sections 4.3.1 and 4.3.2, respectively. After the agent-side computation is
done, the agent sends a CPM to the central server, where further computation is done.
The server-side computation is shown in 2. It first receives all the CPM’s of the agents
located in the grid block. Then, it maps all the detection information to the grid
block and computes occupancy probabilities for each of its cells considering current
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reputation levels of the agents. Afterwards, values for trust and an update of the
reputation values are computed. While reputation and trust will temporary be stored
on the central server, values for the occupancy probabilities will be sent back to the
agents and deleted afterwards.
To be related to standard trust management model notation, the central server can be
seen as the trustor, that is assessing all the agents located inside the grid block, that
play the roles of trustees. However, this notation will not be used in this work.

Algorithm 1: Agent-Side Computation
Input: -
Output:

CPMa collective perception message containing all data of agent a for
current time frame

1 CPMa := {} // initialize CPM
2 CPMa Ω add(properties) // add general agent info
3 dataa = sensor_reading() // section 4.3.1
4 objects = object_detection(dataa) // section 4.3.2
5 CPMa Ω add(objects) // save results
6 send CPMa // send to central server

Algorithm 2: Server-Side Computation
Input:

CP M list of collective perception messages of all agents located in grid
block at current time frame

Output:
Pa[Oc] agent occupancy probability for any cell c
P [Oc] collective occupancy probability for any cell c
Ta trust score for every agent a
Ra,new updated reputation score for every agent a

/* compute occupancy probabilities */
1 Pa[Oc], P [Oc] = occupancy_grid_inclusion(CP M) // section 4.3.3

/* compute agent-based values */
2 Ta = compute_trust(Pa[Oc], CP M) // section 4.3.4
3 Ra,new = update_reputation(Ta, CP M) // section 4.3.5
4 send P [Oc] // send to agents
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4.3.1 Sensor Reading
At first, the agent is measuring the environment with its available sensors. In this work,
it is assumed that each agent is equipped with two types of sensors: 1) a RGB camera
and 2) a depth camera. The first one acts as a regular camera and captures images
from the scene, which are subsequently used from the detection algorithm to detect
objects. The latter one is a sensor specifically designed for the CARLA Simulator [96]
which provides raw data of the scene codifying distance for each pixel of an image which
allows creating a depth map. More information about the exact usage of the sensors is
explained in section 4.3.2. The main specifications can be seen in table 4.1. Therein,
vFoV and hFoV mean the vertical and horitontal FoVs of the cameras.

Sensor Setting Value Unit

RGB Camera
resolution 1280x720 pixel
hFoV 90 degree
vFoV ¥60 degree

Depth Camera
resolution 1280x720 pixel
hFoV 90 degree
vFoV ¥60 degree

Table 4.1: Specifications of the used camera sensors.

After measuring the environment, the data of both sensors is stored temporary and will
be manipulated in the following step.

4.3.2 Object Detection
In this step, the data form the depth camera and the RGB camera will be used to detect
objects and create two-dimensional bounding boxes. The principle scheme of the object
detection algorithm can be seen in 3.
Hereby, the captured image img will first be fed into the You Only Look Once (YOLO)
classification algorithm, which is briefly described in section 4.3.2.1. This algorithm
outputs the class labels of the detected objects, a class-specific confidence score Co

d,a as
well as a two-dimensional bounding box bbox lying on the image plane.
After detction, the bounding box is then fused with the depth information of the depth
camera to create a three-dimensional bounding box 3D_bbox of the object. This is
done by the projection algorithm as described in section 4.3.2.2. It has to be noted that
only the two-dimensional horizontal representation of the 3D_bbox named h_bbox is
used for further computation to simplify the problem.
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Algorithm 3: Object Detection Algorithm
Input:

dataa current measurement data of agent a
Output:

objectsa detected objects of agent a

1 depth_img, img Ω get(dataa) // get variable from data
2 bbox, class, Co

d,a = YOLO_v7(img) // section 4.3.2.1
3 3D_bbox = projection_algorithm(bbox, depth_img) // section 4.3.2.2
4 h_bbox Ω 3D_bbox // get horizontal bounding box
5 objectsa := {} // initialize
6 objectsa Ω add(h_bbox, Co

d,a, class) // save pre-processed data
7 return objectsa // return data

4.3.2.1 YOLO Classification

In this work, detections were made using the YOLO v7 classification algorithm [97],
which detects objects and computes class-specific confidence scores Co

d,a for each object
using a single convolutional neural network. The confidence scores are computed by
considering the following formula:

Co
d,a = Pa[class|o] Pa[o] IOU truth

pred,a (4.1)

where Pa[class|o] is a conditional class probability for the detected object o being a
specific class type and Pa[o] is the probability of agent a detecting the object correctly.
Further, IOU truth

pred,a is the Intersection-Over-Union describing how well the prediction of
agent a fits the ground truth bounding box. The scheme of the YOLO algorithm can
be seen in figure 4.2.

YOLO v7

Class, ܥௗ,

Bounding Box

Image

Figure 4.2: Principal scheme of the YOLO detection algorithm.

After detections were made, the algorithm outputs a two-dimensional bounding box
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bbox for each detected object, the class label as well as the class-specific confidence
score Co

d,a.

4.3.2.2 Projection Algorithm

The two-dimensional bounding box created by the YOLO classification algorithm sub-
sequently is used to create a three-dimensional bounding box of the object. This is
done by fusing the information of the depth camera with the bounding box. Since
depth information is assumed to be available for every pixel of the RGB image, the
pixels lying inside the two-dimensional bounding box are simply filtered and processed
with a clustering algorithm to remove ones lying significantly far away from the object
cluster. The principal scheme of the algorithm is shown in figure 4.3.

Projection
Algorithm

3D Bounding Box

Depth Information

Bounding Box

Figure 4.3: Overview of the projection algorithm fusing the depth informa-
tion with the two-dimensional bounding box to generate a three-
dimensional bounding box.

4.3.3 Occupancy Grid Inclusion
This step presents the inclusion of the occupancy grid into the model. It uses data
from the CPM’s sent from the agents to compute occupancy probabilities Pa[Oc] given
information of one agent as well as the collective occupancy probabilities P [Oc] for each
cell and current time frame. The procedure to do so is shown in algorithm 4.

4.3.3.1 Get Weather Information

First, weather has to be loaded, since the model is considering weather context for com-
putations. As already mentioned in the first chapter, there are various types of weather
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Algorithm 4: Occupancy Grid Inclusion
Input:

CP M list of collective perception messages of all agents located in grid
block at current time frame

Output:
Pa[Oc] agent occupancy probability for any cell c
P [Oc] collective occupancy probability for any cell c

1 dataw = get_weather_information() // get current weather data
2 for each agent a do
3 bbox, Co

d,a, label Ω get(CPMa)
4 Cm,a = compute_measurement_confidence(dataw) // section 4.3.3.2
5 µc,o

a = compute_membership_value(bbox) // section 4.3.3.3
6 Pa[Oc] = µc,o

a Co
d,a Cm,a // section 4.3.3.4

7 Ra Ω get(CP M) // get current reputations of agents
8 wa = (q

iœNc Ri)≠1 Ra // agent opinion weight

9 P [Oc] = q
iœNc wiPi[Oc] // section 4.3.3.4

10 return Pa[Oc], P [Oc] // return the probabilities for each cell

conditions that can negatively affect the performance of certain sensors. To reduce
complexity, however, this work only deals with the following weather information: the
sun altitude and azimuth angles –s and “s, respectively. The angles are defined accord-
ing to figure 4.4, where the drawn coordinate system represents the global system for
the respective grid block.
One reason for choosing the effect of strong light only lies in the fact that it mainly
affects the camera sensor. Since weather effects on other sensors cannot directly be
observed in the simulator I used to test the model, only impacts on the camera are
considered. The model can however easily be expanded if weather effects on other
sensors can be considered as well. The other reason for choosing these two parameters
is that they are physically comprehensible and follow a clear sense, thus making it easier
to understand their impact.

4.3.3.2 Compute Measurement Confidence

In the next step, the so-called measurement confidence level Cm,a is calculated, a value
that assesses a very critical issue described in the first chapter representing the core of
this work: how likely the detection is to be reasonable or not, given certain weather
context.
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x

y

z

Horizon

Agent
࢙ࢻ

Sun

࢙ࢽ
Figure 4.4: Azimuth and altitude angles “s and –s for the sun with respect to

the global x-y-z coordinate system.

This metric, having values between 0 and 1, should give information about the fact,
that specific sensor types are very sensitive to certain weather conditions and therefore
cannot be able to measure correctly. In order to calculate the measurement confidence
Cm,a of agent a being able to measure any object correctly, Fuzzy Logic is used.
In many real world scenarios, where one cannot determine whether a state is true or
false, Fuzzy Logic scores with its valuable flexibility of reasoning, allowing to consider
the inaccuracies or uncertainties of of any situation. In general, a Fuzzy Logic System
FLS consists of four parts:

• Rule Base: Contains a collection of if-else based rules provided by experts to
manage the decision-making system determining whether certain states affect a
sensor or not. For each sensor type, a different rule base is created. The full set
of the linguistic rules used for this model can be found in table 4.2.

• Fuzzifier: It converts so called crisp inputs into fuzzy values by using membership
functions. The crisp inputs are basically the exact inputs we can measure (or
calculate).

• Fuzzy Inference Engine: It represents the key unit of any fuzzy logic system
and maps given fuzzy input values to fuzzy output values using if-else rules from
the rule base. In this work a Mamdani inference engine is used, that utilizes
linguistic rules.
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• Defuzzifier: It converts the fuzzy output values back to crisp outputs by using
membership functions. In this model, the center-of-gravity method was chosen
for computing the crisp output. For further explanations the reader is referred to
[98].

In order to classify our inputs and outputs, so called membership functions need to be
defined. They determine, how each point in our input or output space is mapped to a
membership value between zero and one. In this work, two different crisp inputs are
used for the FLS to determine the measurement confidence: the relative pitch ◊̃a(–s)
and the relative heading angles Ẫa(“s) of agent a with respect to the sun altitude and
azimuth angles –s and “s. They both determine how direct the sun is shining onto the
front of agent a, given the assumption that the only camera used for detecting objects
is mounted there. The relative angles are calculated as follows:

◊̃a(–s) = min
I

|–s ≠ ◊a|, vFoV
2

J

Ẫa(“s) = min
I

|“s ≠ Âa|, hFoV
2

J (4.2)

To give a better idea of how they are calculated, figure 4.5 shows the corresponding
angles of the camera (equal to the orientation of the agent body frame) and the sun
with respect to the global coordinate system of the grid block.

y

z
Sun

࢙ࢻ
ࢇࣂ x

y
Sun

࢙ࢽ
ࢇ࣒

Figure 4.5: Comparison of the agent and the sun orientation.

Computing the angles as in equation 4.2 ensures that Ẫa(“s) and ◊̃a(–s) stay within
the respective FoVs. If the relative angles get bigger than half of the FoVs, then it the
sun is assumed to not affect the camera measurements anymore. That is why looking
at bigger angles than the corresponding vertical and horizontal FoVs is not necessary.
The membership functions for the inputs and the output can be seen in figure 4.6.
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Figure 4.6: Membership functions used to describe the crisp inputs and the
crisp output.

Finally, the relationship between the measurement confidence and the weather infor-
mation can be written as follows:

Cm,a = FLS
1
Ẫa(“s), ◊̃a(–s)

2
(4.3)

whereas FLS is the fuzzy logic system using the rule base shown in table 4.2.

4.3.3.3 Compute Membership Value

To compute the membership value of each cell being part of the object, it is generally
assumed that the value equals one, if the cell lies within the two-dimensional bounding
box representing the object o. On the borders of the bounding box, the membership
value is assumed to decrease with a Gaussian. Let Co be the set of cells lying inside
the bounding box of object o, then the membership value for each cell is calculated as

µc,o
a =

Y][1 ’c œ Co

e≠ r2
2‡2 otherwise

(4.4)



4.3 Scheme Overview 39

If-Then Rules Ẫa(“s) ◊̃a(–s) Cm,a

Rule 1 LOW LOW LOW
Rule 2 LOW MEDIUM LOW
Rule 3 LOW HIGH MEDIUM
Rule 4 MEDIUM LOW LOW
Rule 5 MEDIUM MEDIUM LOW
Rule 6 MEDIUM HIGH HIGH
Rule 7 HIGH LOW HIGH
Rule 8 HIGH MEDIUM HIGH
Rule 9 HIGH HIGH HIGH

Table 4.2: Rule Base used to determine the fuzzy output Cm,a, by the fuzzy
inputs Ẫa(“s) and ◊̃a(–s)

In the above equation, r is the distance between the cell and the closest border of the
bounding box and ‡ is the standard deviation controlling the width of the "bell". The
standard deviation ‡ is assumed to have a value of 0.4, and the maximum padding rmax

around the bounding-box is defined to be the 95% confidence interval bound, which is
according to the empirical rule:

rmax = 2‡ (4.5)

An example showing the membership values for an object can be seen in figure 4.7.

Bounding Box Membership Values µc,o
a

0.0

0.2

0.4

0.6

0.8

1.0
µ
c,
o

a
in

-

Figure 4.7: The left figure shows the actual two-dimensional bounding box and
the right figure the corresponding membership values of cells being
part of the object o.
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4.3.3.4 Compute Occupancy Probability

The final step is computing the collective occupancy probability P [Oc] for each cell
c. This is done by aggregating the information of all agent occupancy probabilities
Pa[Oc], which can be seen as opinions about the cell states given from specific agents.
This combination of opinions is done using the linear pooling method [99]. Its pooling
function looks like the following:

P [Oc] =
ÿ

aœNc

waPa[Oc] (4.6)

Hereby, Pa[Oc] are the agent occupancy probabilities for cell c being occupied given
from the opinion of agent a alone. It is computed as:

Pa[Oc] = µc,o
a Co

d,a Cm,a (4.7)

Further, wi are fixed non-negative weights with sum-total of 1, that should reflect the
agents’ competence. This allows more competent agents to have a greater influence on
the collective occupancy probability. The competence value is assumed to be equal to
the agent’s current reputation score Ra, further described in section 4.3.5. The weights
are calculated as:

wa = 1ÿ
iœNc

Ri

Ra (4.8)

where Nc is the set of agents that are measuring the cell c. In the case of only agent a

measuring the cell c or in the case of the other agents to have reputation values equal to
zero, wa in equation 4.8 is equal to 1 and the collective occupancy probability becomes:

P [Oc] = Pa[Oc] (4.9)

4.3.4 Compute Trust
In this section, the procedure of calculating trust for each agent is shown. In general,
trust should be a measure describing how trustworthy the measurements of a specific
agent are. The Trust value Ta for every agent a œ A and every time frame is com-
puted in two steps: (1) by computing trust values T c

a for each grid cell c œ Ca measured
by agent a and (2) through fusing them by performing a weighted averaging aggregation.

Trust for each gird cell c is computed by comparing the assessments of all the agents
measuring the cell. To do so, every measurement of the agents first has to be translated



4.3 Scheme Overview 41

into a binary value by assessing each grid cell c with a state xc
a œ X = {O, F}. Hereby,

O means the cell is occupied and F means the cell is free. To determine this state xc
a,

the following cases have to be distinguished:

xc
a =

Y][O Pa[Oc] > Ÿ

F Pa[Oc] Æ Ÿ
(4.10)

In equation 4.10, Pa[Oc] is the previously computed agent occupancy probability for cell
c given that information of agent a is correct. It can be observed that the cell should
be only marked as occupied, if the probability is greater than a predefined threshold Ÿ,
which is assumed to be 0.5. After each agent made its assessment for each cell c, Trust
T c

a for the respective agent a can be computed in the following way:
Assuming that Nc is the subset of agents measuring the same cell c and Kc

a ™ Nc is a
subset of agents assessing the cell the same way as agent a. To compute the trust value
T c

a of agent a, one has to consider two cases as presented in equation 4.11: If more than
one agent is measuring the cell c, trust is computed according to the first case. If only
agent a is measuring the cell, however, then trust for this cell should be equal a default
trust value, in this case 0.5.

T c
a =

Y___]___[
1ÿ

iœNc

Ri

ÿ
jœKc

a

Rj |Nc| > 1

0.5 |Nc| = 1
(4.11)

Above, Ri, Rj are values for the current reputation of an agent, described in section
4.3.5. After computing the trust values for every cell, the trust value Ta for agent a can
be computed according to

Ta = 1ÿ
cœCa

wc,o

ÿ
cœCa

T c
a wc,o. (4.12)

In 4.12, wc,o are object-depending weights that consider the importance of measuring
specific object classes correctly and Ca is the subset of cells measured by agent a.
Assuming that only vehicles exist in the scenery the weights are:

wc,o = 1 (4.13)

For the case that agent a is detecting no object, a trust score Ta of 0.5 is assumed.
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4.3.5 Update Reputation
Reputation is introduced to provide information regarding how well agents have per-
formed over time. It assesses the trust values of an agent and should increase in value, if
the agent performed well throughout a predefined sliding window. On the other side, it
should decrease if the agent is not making correct measurements and thus not matching
with the assessments of the other agents. Reputation in the context of this work can be
seen as a value that requires time to evolve, it cannot change rapidly but more slowly
and with inertia.
The first time agent a is sending and receiving data from the central server, it has an
initial value for the reputation Ra,0, that depends on how likely it is that the agent
will perform well in the V2X network based on its technical features. It is assumed
that agents with better autonomous driving technology or higher likelihood to measure
correct have a higher initial reputation. In this work, it is assumed that a RSU is
measuring worse than a vehicle and the initial reputation values are chosen according
to 4.14.

Ra,0 =
Y][0.7 a = vehicle

0.5 a = RSU
(4.14)

To model reputation in this work, a logistic growth function with variable growth rates
is used, as described in the following: Logistic growth is generally described by the
standard form of the logistic differential equation [100]:

df(t)
dt

= kf(t)
A

1 ≠ f(t)
a

B
(4.15)

where k is the growth rate, and a is the carrying capacity, which corresponds to the
maximum value the function f(t) can reach. In this work, k is assumed to be variable
and is determined by the current value of Trust Ta of the agent. It is computed as the
output of a shifted sigmoid function as

k(Ta) = c1

A
1

1 + c2 e≠Tac3
≠ c4

B
(4.16)

In equation 4.16, c1≠c4 are constants used to shift the sigmoid function from its original
position and scale it. In this case, these constants are tuned to let the function intersect
the ordinate at a value 0.55, in order for the growth rate to be bigger than 0 only if trust
values are bigger than 0.55. The resulting sigmoid function can be viewed in figure 4.8.
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Figure 4.8: The above figure shows the function used to compute the growth
rate.

A important detail about the sigmoid function defined through 4.16 is that its maxi-
mum value is smaller than the absolute minimum value, which results in reputation to
decrease faster than to increase. This is a desired property of reputation and should
help releasing opinion power from agents that are performing poorly as fast as possible.
Finally, discretizing equation 4.15, replacing f with Ra and inserting 1 for a delivers the
desired update function for reputation as shown in equation 4.17. It has to be noted,
that for Ra,new not to remain at zero for all times, it has to be set equal to a very small
value ‘ > 0 in case Ra,old becomes smaller than ‘.

Ra,new =
Y][Ra,old + k(Ta) Ra,old (1 ≠ Ra,old) Ra,old Ø ‘

‘ Ra,old < ‘
(4.17)



Chapter 5

Quantitative Experiments

In this chapter, the simulation experiments conducted in this thesis will be described
in detail. First, the settings used for the corresponding simulation scenarios will be
elaborated and the evaluation metrics used for testing the model performance will be
introduced. Afterwards, the simulation results for each scenario will be shown and
compared to the others.

5.1 Simulation Design

5.1.1 Simulation Platform
As already mentioned, the simulation platform used for testing and evaluating the
proposed trust management model is CARLA [96]. It is a open-source simulator running
on the Unreal Engine, that allows simulating real-world scenario analysis. The main
reason it has been chosen is the simulator’s is not only its user-friendliness but also the
flexibility in deciding which sensors should be attached. Last but not least, the model
allows the consideration of weather context information, which makes it a perfect fit for
analyzing the model. However, the model can be applied to any kind of data, making
it theoretically usable for real-world applications.

5.1.2 Simulation Scenario
The scenario presented in this work to test the proposed model is shown in figure 5.1.
It is build as follows: The environment is a T-intersection and two agents, a vehicle
(agent 1) as well as a RSU (agent 2) are measuring the scenery. Another vehicle, from
now on referred to as Non-Player-Character (NPC), is approaching the intersection.
The NPC is not equipped with any sensors and cannot communicate with the agents,
thus not being part of the V2X network. Agent 1 is not able to measure the NPC at
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first, since its FoV is restricted by a building, only agent 2 has the NPC in its FoV and
can eventually detect it.

NPC

Agent 2

Agent 1

y

xz

Figure 5.1: Simulation scenario proposed in this work. It consists of two agents
and one NPC object, that is approaching a T-intersection.

The standard settings used in this scenario are listed in table 5.1.

Parameter Value Description
number of agents 2 One RSU and one vehicle
number of objects 1 The approaching vehicle
simulation time 3s Total simulation time
frames 60 Number of time frames considered
grid size 30m x 60m Dimension of the two-dimensional grid
grid spacing 0.2m x 0.2m For the grid block

Table 5.1: Standard simulation parameters which are used throughout the sim-
ulation analysis.

In this scenario, none of the agents are moving, only the NPC does. The agents’ only
purpose is to measure their environment and detect objects. Since the only weather
influence considered in this work is the impact of strong light, the exact orientation
of the cameras is of high importance. The orientations of agent 1 and 2 sensors with
respect to the global coordinate system are shown in table 5.2.
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Agent Property Value Unit

Agent 1
heading Â1 180 degree
pitch ◊1 0 degree
roll „1 0 degree

Agent 2
heading Â2 75 degree
pitch ◊2 -10 degree
roll „2 0 degree

Table 5.2: Orientation angles of agents 1 and 2 with respect to the global co-
ordinate system shown in figure 4.5.

To demonstrate that the proposed model is considering weather context and as a re-
sult does make more accurate predictions, three scenario cases are considered. The
corresponding cases are the following:

• Case 1: No weather context is considered, the sun is at high altitude, thus not
affecting the RGB cameras.

• Case 2: No weather context is considered when computing the collective occu-
pancy probabilities for all cells inside the grid. The sun is at a position such as
to affect the measurements of agent 2 only.

• Case 3: Weather context information is considered this time. The sun is again
at a position to only affect the measurements of agent 2.

By differentiating between the above cases and by comparing their results, one should
get a better idea of how well the model works and why considering weather context is
important for trust management models. In section 5.2, the results of the respective
cases are shown in detail.

5.1.3 Evaluation Metrics
The evaluation metrics defined to measure the performance between individual agents’
assements and the assessment of CP are defined in this section.
As already mentioned in section 4.3.4, one can determine the state of each cell by
comparing the agent occupancy probabilities Pa[Oc] as well as the collective occupancy
probabilities P [Oc] with a threshold Ÿ. If the corresponding values are higher or not
determines whether the cell is assessed to be occupied O or free F .
To go further with computation, some terms first have to defined, that are comparing
agent and CP assessments with the ground truth:
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• True Positives (TP): cells that both, ground truth and agents/CP assessed as
occupied

• False Positives (FP): cells that agents/CP assessed as occupied, but ground truth
as free

• False Negatives (FN): cells that agents/CP assessed as free, but ground truth as
occupied

With the above terms, the following performance metrics are defined in order to evaluate
the model and compare the accuracy of agents with CP.

Precision

Precision, also known as the positive predicted value, is a metric that depicts the ability
of the agent or CP to correctly predict an occupied cell. It is defined as:

Prec = nT P

nT P + nF P

(5.1)

whereas nT P , nF P are the numbers of cells assessed as true positive and false positive,
respectively.

Recall

This metric also referred to as Sensitivity, describes how well the agent/CP correctly
predicts a free cell. It is calculated by using the following equation:

Rec = nT P

nT P + nF N

(5.2)

To make a comparison between the agents, CP and the different scenario cases more
concise, mean values for precision and recall are first calculated according to:

P̄rec = 1
T

ÿ
Prec R̄ec = 1

T

ÿ
Rec (5.3)

where T is the total number of time frames considered for the simulation. Using the
mean values, the F2-Score is calculated for each agent and CP separately as described
below:
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F2-Score

The more general version of the F—-Score is a metric that combines both recall and
precision to a single value. It is calculated as follows:

F— = (1 + —2) P̄recR̄ec

—2P̄rec + R̄ec

(5.4)

where — is a weight that is penalizing either precision or recall more. Since in this work
the main goal is to correctly measure obscured objects in order to extend the FoV,
recall plays a more important role. Therefore, a — value of 2 is chosen. This results in
the following equation:

F2 = 5 P̄recR̄ec

4P̄rec + R̄ec

(5.5)

5.2 Model Performance Evaluation
In this section, the model is evaluated by presenting the results of the three cases
presented. To highlight the differences in performance between the cases, two specific
time frames are considered, as described below:

• Initial frame t0: This time frame marks the initial state of the scenario. Here,
only agent 2 has the possibility to recognize the NPC. Agent 1’s visibility is
restricted by a building, which is why he cannot spot the approaching NPC.

• Time frame t1: In this time frame, agent 1 can recognize the NPC in scenario
case 1 for the first time. After this time frame, both agents recognize the NPC
and are rated accordingly.

• Time frame t2: This time frame should show the algorithm about two seconds
after both agents have detected the NPC for the first time simultaneously. It
should give an impression of how the corresponding ratings develop after some
time.

5.2.1 Case 1: No Context Information and No Sun Impact
In the first case, no information about the weather context is taken into account when
evaluating the agents. In particular, this means that the measurement confidence scores
Cm,a for each agent a do not vary, but always remains equal to 1. It is also assumed that
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the sun does not affect the sensor measurements, which means that the RGB images
are not distorted by sunlight. The sun orientation angles for this case are

–s = 90¶ “s = 87¶ (5.6)
with respect to the global coordinate system described in chapter 4. Figure 5.2 shows
the images taken by agents 1 and 2 with their RGB cameras for time frame t2. The
two-dimensional bounding box generated by the YOLO v7 algorithm is highlighted in
red. It is evident that neither camera is affected by the sunlight and both detect the
NPC, while Agent 2 also detects Agent 1.

(a) (b)

Figure 5.2: RGB images captured by agent 1 (a) and agent 2 (b) in time frame
t2 for scenario case 1. The red boxes mark detections from YOLO
v7.

Then, the occupancy probabilities of agent 1 and agent 2 are compared with the col-
lective occupancy probabilities, as shown in figure 5.3. Here, the results from three
different time frames t0, t1 and t2 are presented.
In figure 5.3 it can be seen that agent 1 cannot detect the NPC in time window t0 be-
cause it is still hidden by the building. Agent 2, on the other hand, can detect the NPC
from the beginning, which causes the collective occupancy probability to take values
equal to the agent occupancy probability. In this case, we can say that agent 1 benefits
from agent 2’s discoveries and could use the grid of collective occupancy probabilities
as an advantage in its decision-making process. In time frame t1, agent 1 may discover
the NPC for the first time, resulting in occupancy probabilities greater than zero. The
probabilities are fused using the linear pooling method, yielding the collective occu-
pancy grid. Time frame t2 shows the detections approximately two seconds after time
frame t1. It indicates that agent 1 now detects the NPC with greater certainty because
it is more visible to its sensors. This leads to higher values for occupancy probability.
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Figure 5.3: Comparison of agent occupancy probabilities and collective occu-
pancy probabilities for all grid cells, the three time frames t0, t1, t2
and scenario case 1. Hereby, the RSU is marked as a red triangle.

The trust and reputation values of agents 1 and 2 are now shown in 5.4. Agent 1 detects
nothing in the first time window t0, resulting in a trust value of 0.5. Agent 2 is the only
one who detects the NPC, so the trust values of the cells are also set to the value 0.5.
After t1, agent 1’s trust increases and eventually remains at a higher level than agent 2’s
trust, which can be explained by the fact that agent 1 is better able to detect the NPC
since it observes it from the side that has a larger surface area. Another important fact
is that agent 2 benefits from agent 1 because he recognizes the same object. This leads
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to a higher confidence value, which is why agent 2’s confidence level also increases.

Figure 5.4: Comparison of trust and reputation scores for the two agents 1 and
2.

Looking at the reputation values, we can directly observe the initial reputation of the
two agents in the time frame t0. Since the trust values of both agents are less than
0.55, their reputations decrease in the first period. After time frame t1, both reputation
values slowly increase again and finally reach the highest level.

Finally, the precision and recall values for individual agents are compared to collective
perception values in figure 5.5. The results are consistent with the previous observations
on trust and reputation. Regarding accuracy, agent 1 has values equal to zero in the first
period because it does not recognize any objects. Agent 2 recognizes fairly consistently
and is consistent with collective perception since it is the only agent that recognizes
in the first period. After time frame t1, the agent 1 also detects the NPC, resulting
in precision greater than zero. Note that precision and recall are a bit noisy, since the
recognition algorithm computes a new bounding box for each time frame.
When comparing the recall values, the differences between the agents and the collective
perception become clearer: Agent 2 recognizes from the beginning, which is why he has
an almost constant recall value in the first period between t0 and t1. After t1, it can be
seen that agent 1 achieves a higher recall value than agent 2 because it can recognize
the NPC better, which leads to fewer false negative predictions for the grid cells. Agent
2, on the other hand, can only recognize the foremost part of the NPC, which explains
the lower hit rate. Also, collective perception has a higher recall than agent 2 in the last
period, since it benefits from agent 1’s detections. In this case, agent 2 would benefit
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Figure 5.5: Comparison of precision and recall scores of the two agents 1 and
2 as well as collective perception for case 1.

from agent 1 and could use the collective occupancy grid to observe the NPC more
closely.

5.2.2 Case 2: No Context Information and High Sun Impact
In the second scenario, weather information is also not considered in the simulation.
The measurement confidence Cm,a for each agent a remains equal to 1 throughout the
simulation. In this case, however, sunlight is assumed to affect the sensors, particularly
the RGB camera of agent 2. The sun orientation angles are now chosen to be equal to

–s = 7¶ “s = 87¶ (5.7)

To get an idea of how much the sunlight affects the RGB images, figure 5.6 is shown.
It illustrates the images of agent 1 and agent 2 taken in the time frame t2. It can be
seen that agent 2 is very much affected by sunlight, which leads to stray light distortion
and blur. It must be mentioned at this point that the lens flare effects were adjusted
manually, since CARLA does not change them directly as a function of the sun posi-
tion relative to the FoVs. For this purpose, the two parameters lens flare intensity and
bloom intensity are set to 2.0 and 15.0, respectively.

First, the occupancy probabilities of the agents are compared with collective occupancy
probabilities in figure 5.7. It can be seen that agent 1 detects the NPC similar to
scenario 1. It is not affected by the sunlight, resulting in high measurement confidence
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(a) (b)

Figure 5.6: RGB images captured by agent 1 (a) and agent 2 (b) in time frame
t2 for scenario cases 2 and 3. The red boxes mark detections from
YOLO v7.

and higher occupancy probabilities. Agent 2, on the other hand, is strongly affected
by sunlight because the relative tilt and heading angles are comparatively low. The
detection algorithm has difficulty in detection, as can be seen in figure 5.6. It even
detects an object on the roof of a building, which can also be seen in the occupancy
grids in figure 5.7. In addition, agent 2 does not recognize agent 1, as can be seen in
the corresponding figures.
Although agent 2 detects objects poorly, it is certain of them, which is reflected in
high detection confidence values and agent occupancy probabilities. The problem of
certainty about fictitious objects becomes clearer when comparing the performance
values precision and recall.
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Figure 5.7: Comparison of agent occupancy probabilities and collective occu-
pancy probabilities for all grid cells, the three time frames t0, t1, t2
and scenario case 2. Hereby, the RSU is marked as a red triangle.

Next, the trust and reputation values of the agents are shown in figure 5.8. It can
be observed that the trust values of the two agents are very similar throughout the
simulation. This phenomenon can be explained by the fact that agent 2 recognizes
more objects than agent 1 and is certain of them (agent occupancy probabilities higher
than Ÿ = 0.5 lead to the cell being evaluated as occupied). This would theoretically
lead to agent 1 having a lower trust value at the same reputation level. Since the
reputation for agent 2 is initially set lower than for agent 1, the effects compensate
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each other, resulting in correlated trust values. This effect is particularly evident in
this scenario because only two agents rate each other and there is no other agent with
whom they share the same opinion than with Agent 1 or Agent 2. In general, however,
agent 2’s trust scores are relatively high, which is a poor indicator because it makes
poor discoveries and should therefore be rated lower than agent 1.
Another point visible in the figure is that the trust and reputation values do not change
directly in the time frame t1. This can be explained by the fact that it is more difficult
for the detection algorithm to identify in low light conditions. This leads to a lower
detection probability and an agent occupation probability that is eventually lower than
Ÿ.

Figure 5.8: Comparison of trust and reputation scores for the two agents 1 and
2.

Finally, in figure 5.9 one can look at the evolution of the precision and recall values
of the two agents and collective perception. Looking at the precision values, the same
pattern can be observed for agent 1 as in scenario case 1. It is initially zero as the
agent detects nothing, and increases rapidly once it begins to detect the NPC. After
time frame t1, the precision of the collective perception and the two agents is similar.
When comparing the recall scores, it becomes clear that the differences in recall are
much larger compared to case 1. In particular, agent 2 performs poorly because it
recognizes fictitious objects with high probabilities. Although this also leads to a sig-
nificant deterioration in recall scores in the collective perception, agent 1 can contribute
to an improvement in performance due to its high recall scores. These can be explained
by the fact that he recognizes the NPC very well, since he observes him from the side
and is hardly influenced by the poor lighting conditions.



5.2 Model Performance Evaluation 56

Figure 5.9: Comparison of precision and recall scores of the two agents 1 and
2 as well as collective perception for case 2.

5.2.3 Case 3: Including Context Information and High Sun
Impact

In the last scenario, a high sun exposure on agent 2 is assumed again. This time,
however, the context information in the form of the solar orientation is taken into
account. The measurement confidence values Cm,a can therefore now vary between 0
and 1. The angles of the solar orientation are again set to:

–s = 7¶ “s = 87¶ (5.8)

The RGB cameras are affected in the same way as in scenario 2, resulting in blurred
images of agent 2, as shown in figure 5.6.
Again, the agent occupancy probabilities are first compared to the collective occupancy
probabilities and plotted in figure 5.10. It is directly visible that all agent 2 detections
now have lower occupancy probabilities because the measurement confidence values
Cm,a for agent 2 are set low. This should have the following implications: First, it
should lower Agent 2’s confidence values, since it now classifies almost all cells as free,
while Agent 1 does not. Also, agent 1 has a higher reputation value, which means that
its opinion is worth more in the trust evaluation, which just makes agent 2 score lower.
Second, it should increase the performance of the collective perception by reducing the
number of false positives by lowering the occupancy probabilities of the agents to a
level below Ÿ.
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Figure 5.10: Comparison of agent occupancy probabilities and collective occu-
pancy probabilities for all grid cells, the three time frames t0, t1, t2
and scenario case 3. Hereby, the RSU is marked as a red triangle.

Looking at the trust and reputation values of the agents in figure 5.11, the effects
described above become clearly visible. The trust values of agent 2 are now lower than
those of agent 1 after time frame t1 due to agent 1’s higher reputation and its different
observations regarding cell occupancy. Moreover, the reputation of agent 2 now grows
much slower compared to case 2, which reflects the lower trust values and is a desired
outcome.
Finally, comparing the performance results of the agents with collective perception in



5.2 Model Performance Evaluation 58

Figure 5.11: Comparison of trust and reputation scores for the two agents 1
and 3.

figure 5.12, one can see similar patterns as in case 2. However, in this case, agent
2’s accuracy is close to 100% throughout the simulation, which is due to the lower
occupancy probabilities of the agents that do not generate false positives.

Figure 5.12: Comparison of precision and recall scores of the two agents 1 and
2 as well as collective perception for case 3.

When comparing the recall values, it again becomes apparent that agent 2 performs
poorly because it hardly recognizes anything correctly, which leads to many false-
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negative cell evaluations. Agent 1, on the other hand, performs much better because it
is not affected by sunlight and recognizes the NPC quite well.

5.2.4 Performance Comparison
In this section, the performance of the two agents is compared to the collective per-
ception. The comparison is done by analyzing the F2-Scores, where a higher F2-Score
means an overall better performance during the simulation. The results are shown in
the 5.3 table for each agent, collective perception, and the 3 scenarios. Ideally, the
collective perception should perform better than the agents alone for each case, since
it benefits from the readings of both agents.

F2-Score Agent 1 Agent 2 Collective Perception
Case 1 77.3% 85.3% 93.6%
Case 2 77.4% 48.7% 67.2%
Case 3 77.4% 46.6% 69.0%

Table 5.3: Comparison of F2-Scores of individual agents, collective perception
and scenario cases.

Looking at scenario case 1, it is clear that the collective perception outperforms both
agents as it has more information at its disposal and can produce a more accurate oc-
cupancy probability map than each of the agents individually. In addition, Agent 2 is
overall more performant than agent 1, as it can detect the objects from time frame t0,
while agent 1 can detect the NPC only after t1.
Comparing the F2-Scores in the case 2, it can be seen that agent 2 scores significantly
worse compared to case 1. This seems to be exactly the influence of the sun on the
agents’ measurements. Consequently, the collective perception naturally performs worse
than in case 1. Agent 1, on the other hand, remains at almost the same performance
level, which may be explained by the fact that the sun only affects agent 2.
Finally, comparing the results of case 3, similar patterns can be seen. Agent 2 now per-
forms even worse because it is downgraded by taking the weather context into account.
However, this downgrading does not seem to affect the performance of the collective
perception in the same way as in case 2. In this case, the collective perception seems
to improve by downgrading agent 2. This results in the collective perception in case 3
performing better overall than in case 2.
The results from table 5.3 show that taking the weather context into account is useful
and leads to an improvement in collective perception. However, the improvement in
this case is quite small, which can be explained simply by the fact that only a small
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amount of data is available since the scenario is designed to be as simple as possible.
In larger scenarios, this effect should be amplified, and the downgrading of agents by
peers becomes easier.



Chapter 6

Conclusions and Future
Development

Autonomous driving is on the verge of becoming a reality, but safety concerns need to
be addressed. Collective perception technology could be of great benefit to the industry,
but its implementation is challenging due to the poor detection performance of some
vehicles. Trust management models have been developed to filter out biased detections
and improve information quality. However, weather conditions remain a challenge that
has not been addressed by existing trust management models.

In this thesis, a grid-based trust management model is proposed to account for the poor
detection performance in bad weather. The model considers sun orientation as contex-
tual information when evaluating agents by applying fuzzy logic. Based on this, trust
and reputation values are calculated for each agent to evaluate its detection quality. In
addition, the model outputs a cell occupancy grid based on the fused information of all
agents.

The model was tested and evaluated using the open-source simulator CARLA. The
simulation results show that detections of agents strongly affected by bad weather can
be filtered by taking contextual information into account. Compared to the case where
the weather context is not considered and bad weather conditions are present, collective
perception improves its overall performance. This highlights that taking weather into
account does indeed have a positive impact on performance and can help to avoid the
use of biased detections.

Even though the results already show that the model works, some improvements can
still be made, as described below:

• A major improvement for the model would be to expand the rule base and consider



6 Conclusions and Future Development 62

more parameters when calculating measurement confidence. This leads to an even
better filtering of biased detections and could improve the rating process of the
model. As an example, a rule base could be generated from a trained neural
network.

• Another improvement is the extension of the model to three dimensions. Although
the proposed model is theoretically already capable of doing this, it was not
considered for this work because it would complicate the evaluation.

• Finally, the detection algorithm could be improved to make the generation of
three-dimensional bounding boxes more accurate. In this work, the combination
of RGB and depth cameras was chosen because it greatly facilitates the calculation
of three-dimensional bounding boxes. In a more realistic case, the use of LiDAR
point clouds in combination with RGB camera images could be used.
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