
Design and Implementation of a
Blockchain-based Zero Trust

Architecture on the Edge

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Cem Bicer, BSc.
Matrikelnummer 01425692

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof.Dr. Schahram Dustdar
Mitwirkung: Dr. Ilir Murturi

Wien, 2. Mai 2023
Cem Bicer Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Design and Implementation of a
Blockchain-based Zero Trust

Architecture on the Edge

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Cem Bicer, BSc.
Registration Number 01425692

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof.Dr. Schahram Dustdar
Assistance: Dr. Ilir Murturi

Vienna, 2nd May, 2023
Cem Bicer Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Cem Bicer, BSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Mai 2023
Cem Bicer

v

Danksagung

An dieser Stelle möchte ich mich bei meinem Professor, Dr. Schahram Dustdar, bedanken,
der mir die Chance gegeben hat, diese Diplomarbeit zu schreiben. Des Weiteren möchte
ich mich bei meinem Mitbetreuer Dr. Ilir Murturi bedanken, der mir während meiner
Arbeit stets zur Seite gestanden hat und mir wertvolle Ratschläge gegeben hat.

Ein großer Dank gilt meinen Eltern und Geschwistern, die mich in meiner gesamten
Ausbildungslaufbahn unterstützt haben. Ohne ihre Ermutigung und Unterstützung wäre
ich nicht hier, wo ich heute stehe.

Insbesondere möchte ich meiner Frau Eda danken, die mich nicht nur emotional, sondern
auch fachlich unterstützt hat. Ihre Geduld, Unterstützung und Ermutigung haben mich
während dieser intensiven Zeit sehr gestärkt.

Ich bin dankbar für all die Menschen in meinem Leben, die mich auf diesem Weg begleitet
haben.

vii

Acknowledgements

At this point, I would like to express my gratitude to my professor, Dr. Schahram
Dustdar, who gave me the opportunity to write this thesis. Additionally, I would like
to thank my co-advisor Dr. Ilir Murturi, who supported me throughout my work and
provided valuable advice.

A big thanks goes to my parents and siblings who have supported me throughout my
education. Without their encouragement and support, I would not be where I am today.

In particular, I would like to thank my wife Eda, who has supported me not only
emotionally but also professionally. Her patience, support, and encouragement have
greatly strengthened me during this intense time.

I am grateful for all the people in my life who have accompanied me on this journey.

ix

Kurzfassung

Internet der Dinge (IoT) Netzwerke setzen sich üblicherweise aus einer enormen Anzahl
an verbundenen Geräten zusammen, die alle verschiedene Software- und Hardware-
Eigentschaften aufweisen. Die Sicherheit in solch einem heterogenen System aufrechtzuer-
halten, kann zu einer Herausforderung werden, denn die Angriffsfläche dieses Systems ist
hier sehr groß und die Diversität der Knoten gibt Angreifern die Möglichkeit, eine Vielzahl
an verschiedenen Angriffsvektoren zu verwenden um in das System einzubrechen. Konven-
tionalle perimeterbasierende Systeme verwenden Zugangsdaten (Benutzername/Password,
Zertifikate, etc.), um die Authentizität der Akteure zu bestimmen und um zu entscheiden,
welchen Akteuren der Zugriff ins Netzwerk gewährleistet wird. Jedoch wird das nur
beim erstmaligen Eintritt ins System überprüft, was bedeutet, dass ein Angreifer nur
die Zugangsdaten eines systembekannten Akteurs abgreifen muss, um Zugriff ins System
zu erlangen. Da die meisten IoT-Geräte nur mit schwachen Chips ausgestattet sind
und auch kaum Software oder Hardware zum Bekämpfen von böswilligen Aktivitäten
(z.B. AntiVirus Software) zur Verfügung stehen, ist das Risiko relativ hoch, dass Geräte
innerhalb des Systems gekapert werden. Um diese Gefahr zu verringern, könnte eine
andere Sicherheitsarchitektur verwenden werden: die Zero Trust Architektur. Zero Trust
Systeme vertrauen keinen Akteuren implizit. Die Vertrauenswürdigkeit jedes Akteurs
wird kontinuierlich überprüft und die Richtlinien zur Gewährung des Zugangs zum System
ändern sich dynamisch auf der Grundlage unterschiedlicher Eigenschaften dieses Akteurs.

Diese Arbeit schlägt eine neuartige Cybersecurity-Architektur vor, die eine Zero Trust
Architektur verwendet, wie sie vom National Institute of Standards and Technology
(NIST) beschrieben wird. Zusätzlich integriert die neue Architektur ein Blockchain-
Netzwerk, um die Sicherheitslage des Systems noch weiter zu verbessern. Die Blockchain-
Komponente dient als unveränderliche Datenbank zur Speicherung von Anfragehistorien,
die zur Verifizierung der Vertrauenswürdigkeit von Akteuren verwendet werden. Wir
stellen das Design dieses Systems bereit und geben eine umfassende Beschreibung der
Verantwortlichkeiten jeder Komponente.

Schließlich bewerten wir das Design, indem wir es tatsächlich implementieren und auf
einer Testumgebung bereitstellen, um dann einige Testfälle auszuführen. Wir haben
außerdem verschiedene Varianten dieses Systems implementiert und dieselben Tests auf
diesen durchgeführt. Die Ergebnisse werden dann zwischen den Systemen verglichen,
um zu demonstrieren, wie sich einige Designentscheidungen auf nichtfunktionale Ei-

xi

genschaften der von dieser Arbeit entworfenen Architektur auswirken. Die Bewertung
konzentriert sich auf nichtfunktionale Eigenschaften wie Performance, Skalierbarkeit,
Implementierungsaufwand und Komplexität. Die Ergbenisse unserer Evaluierung zeigen,
dass es möglich ist, ein IoT-System zu implementieren, das die Zero Trust Architektur
mit integrierter Blockchain umsetzt.

Abstract

Internet of Things (IoT) networks usually contain a huge number of connected devices,
which are very diverse in hard- and software. Maintaining security in such a heterogeneous
system can be very challenging, as the attack surface of that system is very large and the
diversity of the nodes allows attackers to use a variety of different attack vectors to breach
into the system. Today’s conventional perimeter-based systems use credential-based
authenticity (username/password, certificates, etc.) to decide if an actor is allowed to
access the network. However, this is only verified once on the system’s perimeter, which
means that gaining access as an attacker is as hard as getting access to the credentials
of a device already known to the system. As most IoT devices are equipped with
low-performance chips and often lack software or hardware to block any breaches (e.g.
antivirus software), the risk of devices getting hijacked is relatively high. To reduce this
risk, a different security architecture could be used: the Zero Trust Architecture. Zero
trust systems do not trust any actors implicitly. The trustworthiness of each actor is
constantly verified and the policies for giving access to the system change dynamically
based on the different properties of that actor.

This thesis proposes a novel cybersecurity architecture that uses a Zero Trust Architecture
as described by the National Institute of Standards and Technology (NIST) and integrates
a blockchain network into it to further enhance the security posture of the system. The
blockchain component serves as an immutable database for saving request history, which
is used for verifying the trustworthiness of actors. We provide the design of the said
system and give a comprehensive description of each component’s responsibilities.

We provide an actual implementation of the designed system and evaluate non-functional
properties by executing some test cases against it. We also implemented different variants
of that system and executed the same tests against those as well. The results are then
compared between the systems to demonstrate how some design decisions affect the
non-functional properties of the architecture designed by this thesis. The evaluation
focuses on non-functional properties like performance, scalability, implementation effort,
and complexity. Our evaluation results show that it is feasible to design and implement
an IoT system implementing the Zero Trust Architecture with an integrated blockchain.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the work . 2
1.3 Running example . 3
1.4 Research questions . 4
1.5 Structure . 4

2 Background 7
2.1 Edge-to-Cloud Continuum . 7
2.2 Zero-Trust Architecture . 8
2.3 Blockchain . 13

3 Related work 17
3.1 Zero Trust . 17
3.2 Blockchain-based Zero Trust . 19

4 System Design 21
4.1 Components . 21
4.2 Security measures . 28
4.3 Technology stack . 31
4.4 Communication . 33

5 Evaluation 41
5.1 Implementation effort . 41
5.2 Performance . 42
5.3 Scalability . 48
5.4 Complexity . 49
5.5 Advantages and Challenges . 49

xv

6 Conclusion 51
6.1 Research Questions Revisited . 52
6.2 Limitations . 53
6.3 Future work . 54

List of Figures 55

List of Tables 57

List of Algorithms 59

Acronyms 61

Bibliography 63

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Most current cybersecurity methods for computer networks use perimeter-based security
models which focus on protecting resources with identity-checking mechanisms using
cryptography to ensure that only authorized entities can access a secure area. The
identity of an actor - be it a user or a thing - is proven by providing login credentials -
like username and password - or by providing a certificate which contains details about
the actor. In both cases, there is a logical component in the network, which checks the
authenticity of a peer before they can access the requested resource. After a successful
check, the actor is considered trustworthy and they get access to the requested resource.
This authentication strategy worked very well in the past and is still actively used in
many secured networks.

However, with the rise of the Internet of Things (IoT), new challenges emerged regarding
securing resources. IoT networks typically have many heterogeneous devices which all
communicate with each other or with servers within the network. Those devices usually
send data to or read data from the servers. Ideally, all "things" in the network are
authenticated somehow and the network only accepts data from those authenticated
and trusted devices to prevent unauthorized access. This cybersecurity characteristic
rejects requests from external, untrusted and maybe even malicious entities by design.
However, as the number of connected devices in an IoT network is often very high, the
risk of data leaks is also high due to more potential points of failure. If trusted devices
are hijacked by attackers they could access resources from the secured network without
being detected, as the network already authenticated the compromised devices on the
first connection and assumes that it is still trustworthy.

An example of an IoT network with a large number of heterogeneous devices is a smart city.
The things in a smart city can have different types of sensors to sense the environment,

1

1. Introduction

such as cameras for monitoring pedestrian crossings or traffic jams, temperature and
humidity sensors for monitoring weather conditions in public parks or sensors for detecting
technical defects of elevators in malls. All those devices communicate either directly
with the cloud or with an edge server which then sends the data to the cloud. In a
smart city, there could be sub-networks that group some devices or servers together to
function as a standalone IoT network, or all public devices could be part of a single huge
IoT network. With such a large number of devices operating in a smart city, the attack
surface for potential attacks is huge and the risk of the system being attacked is more
likely. Furthermore, if an attacker is successful in compromising a device and gaining
access to the internal infrastructure of the smart city, it could have a significant impact
on the smart city’s security.

In such a scenario, the Zero-Trust (ZT) approach can help to reduce the above-mentioned
security risks. The principles of zero-trust focus on protecting resources such as data or
services, rather than protecting an entire network or domain. With the ZT approach, no
implicit trust is assumed and all entities are treated as untrustworthy at any point in
time by default, whether they are internal or external. On each incoming request, the
ZT system verifies some properties of the requester to decide if the access is granted
or rejected, and if the access is granted the given access rights are always as strict and
atomic as possible to only allow executing this specific request. This approach assumes
that a connected peer could be compromised at any time at any transaction and therefore
checks its privileges, access rights and previous behaviour on every transaction [RBMC20].
The philosophy of a zero trust system is "never trust, always verify" [SD18].

In this sense, it is very critical that such a system does not allow tampering with the
request history of actors and that the request validation component, which is responsible
for granting or rejection incoming requests, cannot be manipulated or controlled by
attackers. To overcome the risk of manipulating persisted data, a distributed ledger can
be utilized, and for preventing hijacked or dead validation nodes to decide on granting or
rejecting requests, a consensus mechanism between all validating nodes can be utilized.
The request history of actors can be logged in a blockchain for immutability of the request
history and the request validation can be distributed to multiple components and the
final decision can be made using a consensus algorithm.

1.2 Aim of the work

The goal of this thesis is to showcase a Proof-of-Concept (PoC) system which uses the
ZT architecture - as defined in the publication of the National Institute of Standards and
Technology (NIST) "Zero Trust Architecture" [RBMC20] - in the context of IoT networks,
backed by a private blockchain and extended by a consensus-based request validation
process. The PoC is designed to meet the requirements of a ZT architecture (Zero Trust

2

1.3. Running example

Architecture (ZTA)) according to NIST and implemented as an almost1-production-
ready system to show the applicability of such systems in an edge-to-cloud continuum
environment. The implementation meets the requirements of all the mentioned basic
tenets within the NIST’s definition of ZT and ZTA - either fully or partly (see Section 2.2
for a description of the tenets) [RBMC20, pp. 6-7]. The PoC also sheds a light on
challenges and advantages that arise when opting for using the ZT paradigm as the
security mechanism for an IoT network. The evaluation and discussion specifically focus
on the scalability, general performance and complexity - not in the sense of computational
complexity, but rather level of difficulty in understanding, designing, or managing - of
the system.

1.3 Running example
The running example will be in the context of smart cities, as already hinted in the
previous sections. A smart city can be a huge network of devices all connected to the
internet. To not go beyond the scope of this thesis, we only implemented a small portion
of a smart city in the PoC. This way we can focus on the core concept of the ZTA and
how it fits into the concept of IoT.

The PoC concretely implements the public park monitoring system part of a smart city,
more precisely the basic components of such a monitoring system. There are stationary
actors and users which interact with the system. Stationary actors can be temperature
or humidity sensing IoT devices which are mounted somewhere in a public park - hence
the term "stationary" - and which send temperature or humidity data to the system
periodically. Users, on the other hand, are humans which read those data for monitoring
purposes, like gardeners from the public service. Those two components are the only
"external" components, meaning that they are not part of the components of the ZTA
itself.

To further help understanding the way the system works, we will focus on some use
cases which will be mentioned throughout this thesis and which will demonstrate some
properties of the system. Consider situations as below:

• A gardener of the public service wants to know the current humidity level of the
soil in a park without having to be on-site.

• The system should notice compromised devices and should not let them access
resources or send data anymore

• The system should notice malicious transactions, like requesting access to data
which is not meant to be accessed by the requester.

1The implemented PoC cannot be used in production as-is. To make the system ready for production,
one has to think of typical non-functional requirements like availability, fault-tolerance, etc. The PoC
shall only be considered as a proof that the concept is realizable as a running system.

3

1. Introduction

• It should be possible to add new IoT devices to the system and they should be able
to send or read data, depending on their roles.

Some of those use cases will be demonstrated more theoretically, some more practically -
by showing how the PoC behaves in certain scenarios.

1.4 Research questions
The main research questions the thesis is going to focus on and answer are as follows.

RQ1: How can the zero-trust paradigm be applied to secure smart city
systems with heterogeneous IoT devices using blockchain technology?

In particular, what components are needed for implementing such a system to meet the
requirements of a ZTA? How do those components communicate with actors or with each
other and how do they validate the trustworthiness of actors on incoming requests? A
PoC will be used to demonstrate concrete implementations of the ZT concepts.

RQ2: Which implementation advantages and challenges are implied when
deciding to apply the zero-trust architecture in general?

Here we concentrate on the advantages and challenges of implementing a zero-trust
system, not on the zero-trust concept itself. This should give future technical architects
and system designers some hints on what they should consider when either switching
from a conventional cybersecurity system to a ZT system or when starting to develop a
system from scratch and needing to decide which security concept they want to use.

RQ3: How scalable/performant is the system compared to today’s
conventional systems?

This question, on the other hand, concentrates on the concept design used in the PoC. It
clarifies how the chosen system design is either more or less scalable or performant in
comparison to conventional security systems. This is evaluated in a theoretical manner,
as well as with actual performance tests on a test environment.

1.5 Structure
The remaining sections of this thesis are organized as follows: In Chapter 2, we discuss the
background of the thesis and the current state-of-the-art in the context of IoT networks,
ZTA systems and blockchains. Chapter 3 presents the design of the implemented PoC,
by listing its components with their responsibilities and the security measures taken to
have an almost-production-ready system. In Chapter 4 we will present some technical
details about the PoC implementation. In Chapter 5 we present the evaluation results of

4

1.5. Structure

some important non-functional characteristics of the PoC. Last but not least, Chapter 6
offers a conclusion and a discussion of the findings and opportunities for future work.

5

CHAPTER 2
Background

This chapter provides the background and context for the key concepts used in this thesis:
the edge-to-cloud continuum, the zero-trust architecture, and blockchain technology. It
briefly explains the relevance of the edge-to-cloud continuum in today’s world. It also
introduces the concept of ZTA with its tenets and core components and explains its
significance in today’s increasingly connected and complex digital landscape, and how
blockchain technology can play a crucial role in securing it.

2.1 Edge-to-Cloud Continuum
More and more devices get connected to the internet as time passes. According to IoT
Analytics, there were around 10bn connected IoT devices in 2019 and they forecast
that there will be more than 3x the number in 2025 (30.9bn) [Lue20]. The more
devices communicate via the internet, the more data they will produce. This can lead
to performance problems when the data is directly sent to cloud servers for real-time
processing, as those servers are usually located far away from the device sending or
receiving the data. Not only is the latency an issue, but also the processing power of
cloud servers is usually not strong enough to handle huge loads of data at once.

To overcome these issues, another layer of servers can be employed: the Edge or Fog
[BMZA12]. Edge computing - or Fog computing as it is called by Cisco - is a relatively
new computing strategy that essentially moves the computational power of a network
closer to the end user - i.e. the computation is done "on the edge of the network". By
doing this, data does not have to travel the long way to the cloud server to be processed,
but the closer-located edge servers undertake the processing, reducing latency. When
those edge devices are equipped with powerful processing units, the performance of the
network can also increase in comparison to usual cloud computing. Like the actors and
users within an IoT network, the edge servers in the edge-to-cloud continuum can also
be very heterogeneous.

7

2. Background

Although there is no standardized definition for a "smart city" [YXC+15] and there are
also no instructions on how to build such a city, the edge-to-cloud continuum makes
perfect sense to be used within a smart city. In fact, Dapeng et al. [LLT+21] were even
able to show in a practical way that the edge-to-cloud continuum - which they refer to
as fog-cloud continuum in their paper - is applicable to smart cities. Applying this to a
whole city which is basically a network of sub-networks, where a sub-network is an IoT
network on its own, we get a huge number of dissimilar devices all being connected to
the smart city network.

2.2 Zero-Trust Architecture
Using a conventional perimeter-based approach in a smart city, by having a perimeter in
which authenticated users are trusted, may not be the most secure security model. The
huge number of heterogeneous devices connected to the network opens up a large surface
for potential cyber attacks against the network. Additionally, most IoT devices are only
equipped with processing units with limited processing power to save energy and cost,
which results in those devices not being able to appropriately defend themselves against
cyber attacks. This increases the risk of attackers breaching the perimeter of a network
through an already authenticated connected device. Once entered, an attacker can move
freely within the network as the authentication process had already been finished and
will not be repeated again. Unfortunately, it is almost impossible or at least very hard to
detect if a device requesting resources from the network is still trustworthy or if it had
been hijacked by a malicious entity. The authenticity of that device may be validated
successfully, but this does not rule out the possibility, that someone else is trying to
hide behind the device’s identity. Thus, trusting only the authenticity of actors is not
sufficient anymore.

The term "zero-trust" had been used by John Kindervag for the first time in 2010
[KB+10]. In the same year, the NIST introduced guidelines for a zero-trust architecture
[RBMC20]. In a network implementing the ZTA, no entity is trusted by default and
each and every request to the system is checked for possible malicious activities. The
zero-trust architecture tries to combat the above-mentioned issue with the high number
of potential entry points for attackers, by introducing additional security checks during
the process of validating the trustworthiness of actors. Identity checks are not enough to
guarantee that an actor is trustworthy.

2.2.1 The 7 Tenets
The NIST suggests extending the security checks and using a more dynamic policy. A
dynamic policy not only checks for identity, but also for the application or service the
actor used for making their request, the resource they want to access, the environment the
actor is in, how the actor requested the resource, and how they behaved in the past. All
those checks together form a policy that is not as static as checking user credentials, but
rather adapts to changing actors, environments, and behavior. Based on those criteria,

8

2.2. Zero-Trust Architecture

the actor is allowed to execute their request or the request will be rejected. Using a
dynamic policy to determine access to resources is one of the tenets the NIST listed
(tenet no. 4) [RBMC20, p. 6].

In a ZTA, the target to be secured is not the whole network or a domain but rather
single resources. A resource can be a file, a service (e.g., an API), or a database, meaning
that even if an actor wants to read something from the system and then - depending
on the read value - wants to save something in a database, the ZT mechanism may not
allow those actions to be executed in a single transaction but could rather split them
into two requests, where each request is validated on its own. Those two characteristics
are another two tenets defined by the NIST (tenets no. 1 and 3): (1) every data
and service is a resource and (2) access to resources is granted on a per-session basis,
which means that it may not be allowed to request two independent resources in a single
transaction (or session).

There is also no secure area within the network which automatically implies trust.
Network location alone is not enough to tell if an actor is trusted (tenet no. 2). Applied
to the running example this means that even if actors request resources from within a
government-owned private network, they are not given access without validating the
request first. There is, however, an "implicit trust zone" which is an area where entities
that have been given access to a resource can stay in. This area is ideally as small as
possible and the duration an actor stays in this zone is very small so that they only have
the chance to execute their initial request and nothing more.

As already mentioned, in a ZTA all requests are validated before access is given to the
requested resource. The whole authentication and authorization process is a constant
cycle of evaluating the trustworthiness of the requester with each incoming request (tenet
no. 6). This implies that no permission is inherited from previous requests. Depending
on the granularity of the policy, a system could grant access to multiple resources at
once to finish a transaction without validating each access to a resource, or it could
reauthenticate and reauthorize each resource access separately. A ZTA system could also
reevaluate the trustworthiness of actors on a time-based approach - e.g. an actor could
be allowed to access a resource a couple of times within a given time period - or it could
trigger the evaluation only when resources are modified or written. Different variants are
allowed here, as long as authentication and authorization happen regularly.

Another important criterion in a ZTA is monitoring (tenet no. 5). It is always a good
idea to monitor activities in a system to be able to understand how the system behaves
in certain situations and how the system is used by actors. In a ZTA system, it is even
more crucial to have good monitoring mechanisms in place, because there it’s not only
important for understanding specific flows of the system, but also to be able to validate
the trustworthiness of actors more accurately. The more details the system has about an
incoming request, the better it can identify any malicious actions. Not only that, but
with good monitoring capabilities a system is able to find vulnerabilities and subverted
entities more efficiently and can adapt policies more dynamically according to that.

9

2. Background

Linking to the previous tenet, a zero-trust system should not only monitor activities, but
also collect as much information as possible (tenet no. 7.). For instance, information
about the last interactions of actors and requests to specific resources can increase the
quality of decision-making. ZTA system could include those information when enforcing
their policies. The more a system collects about actors, the more it can verify the
authenticity and intentions of them, and the better it can predict the next actions. Being
able to predict subsequent interactions of actors can be very valuable. Deviations in the
predicted behavior pattern could be a sign of hijacked devices.

It is important to note that, while it is recommended that a ZTA network complies to
those basic tenets, the NIST emphasizes that it is not necessary to implement all of them
in their purest form into the ZT system [RBMC20, p. 6]. They see it more as an ideal
goal to have all seven incorporated into the security mechanism.

2.2.2 Assumptions for network connectivity
Enterprises implementing the ZTA should not only apply the above-mentioned tenets,
but should also make the following assumptions about the ZTA network according to
NIST [RBMC20, p. 8].

1. There is no implicit trust zone in the network, not even the enterprise-
owned private network should be assumed to be an implicit trust zone.
This assumption is more or less implied by tenet 2 (see above). Every request
could come from a malicious attacker and should also be handled as such. All
communication should therefore be authenticated and all traffic should be encrypted.

2. Not all connected devices and actors may be owned or configurable by the
enterprise. This needs to be considered when designing the policies. Enterprises
may define policies for enterprise-known actors trying to access enterprise-owned
resource, but from nonenterprise-owned devices.

3. No resources are inherently trusted. This is similar to tenet 6 but applies to
resources.

4. Enterprise-owned resources could be located in nonenterprise-owned
infrastructure. Those resources could, for instance, be located in external cloud
servers.

5. Enterprise subjects and assets not located in the enterprise-owned in-
frastructure cannot fully trust their local network connection. Remote
enterprise subjects and assets always have to assume that the cloud server they are
located in, is potentially malicious or hostile.

6. Assets being passed between enterprise- and nonenterprise-owned com-
ponents need to retain their security posture. The communication workflow
between enterprise and nonenterprise components and the assets transferred in

10

2.2. Zero-Trust Architecture

between need to consistently retain their security posture and not leak any vulner-
abilities.

2.2.3 Logical components
Apart from the above-mentioned tenets and assumptions, NIST also define components
of a ZTA. There are core components that are crucial for every ZTA and components
that can vary according to the system’s intentions and use cases. However, the core
components do not have to be present as physical (hardware or software) components but
should rather be seen as logical components, meaning that a component could be split
into multiple actual components which together form the logical components, or multiple
logical components could be merged into a single physical component, respectively. All
components mentioned in this section are depicted in Figure 2.1. The following list
describes the core logical components of a ZTA according to NIST [RBMC20, p. 9].

• Policy Engine (PE): The PE component is responsible for the actual decision-
making. It gathers input from multiple data sources and based on that calculates if
access to the requested resource should be granted or not. The set of instructions
for the decision calculation is called the trust algorithm (see Section 2.2.4). The
trust algorithm is fed with the incoming request and inputs from the data sources
and outputs a yes/no decision, where "yes" means "the request is allowed to be
executed and the access to the requested resource shall be granted" and "no" means
the opposite. The policy engine component together with the Policy Administrator
(PA) component forms the "Policy Decision Point (PDP)" logical component. As
mentioned previously, the PE and PA components could also be merged into a
single PDP component.

• Policy administrator (PA): As the name suggests, this component administers
the granting/rejecting of requests. The PA is closely tied to the PE and relies on its
decision result. When the PE calculates a yes decision, the PA starts establishing
the connection to the requested resource. When the PE calculates a no decision,
the PA shuts down the connection and the request is rejected. The PA is, however,
not responsible for actually shutting down the connection or for providing the
requested resource, but it rather instructs the Policy Enforcement Point (PEP)
component (see description of this component below) to shutdown the connection
or it configures it for establishing a connection to the requested resource. This
configuration could be an access token that can be used to access the requested
resource. The access token should only be valid within a predefined time-period,
which depends on the policies of the system. It could, for instance, be valid for only
this single request or it could be a time-based token that expires after a given time.

• Policy enforcement point (PEP): This component is the entry point to the
system. Requests to resources are sent to the PEP and the PEP either tell the
requester, that the request is rejected or gives access to the requested resource.

11

2. Background

As explained before, the PEP gets instructions from the PA to decide whether to
grant or deny access. Here again, the PEP does not have to be a single physical
component, but could also be split into a client-side and a resource-side component.
The client-side component would be installed on the actor device (e.g. as an agent
on their laptop) and the resource-side component would be installed in front of
the actual resource (e.g. as a gateway controlling access to it). As can be seen in
Figure 2.1, the PEP is the gateway between the untrusted and the trusted zone.

Aside from the core components, there are also additional components with various
different responsibilities. Those components are mainly used for feeding the trust
algorithm with input to decide if an incoming request should be granted or rejected. The
additional components may not be located within the enterprises internal network and
may even not be controlled by them. Some of them are listed and described below. Not
all of the listed components have to be implemented in a ZTA, and on the other hand,
a ZTA could introduce other additional components as well. The NIST describes the
following additional components [SD18].

• Continuous diagnostics and mitigation (CDM) system: This component is
responsible for checking properties of the requesting actor’s agent. This includes,
but is not limited to, checking the agent’s operating system for vulnerabilities and
its integrity. CDM systems are also responsible for validating nonenterprise-owned
devices, i.e. agents not controlled by the enterprise.

• Industry compliance system: This component contains all policies to comply
to any regulations of a regime. This includes, for instance, being compliant with
the GDPR (General Data Protection Regulation) of the European Union.

• Threat intelligence feed(s): Any newly discovered threats, attacks, vulnerabili-
ties, or any kind of flaws in software are reported by this component to the policy
engine. Those information could be gathered from internal or external sources.

• Network and system activity logs: This component saves network activities
within the ZT system. Such activities include network traffic, access requests of
actors and other events which can be useful when enforcing the policies.

• Data access policies: The actual access policies to resources are provided to the
PE by this component. It contains access privileges needed to access resources,
among other data access properties.

• Enterprise public key infrastructure (PKI): This component is responsible
for generating public keys and logging issued certificate within the enterprise.

• ID management system: Details about known actors are saved in this component.
It contains subject information like username, email address and access rights and
roles of actors. This component could also use external services like lightweight
directory access protocol (LDAP) servers to identify subjects.

12

2.3. Blockchain

Figure 2.1: ZTA core components (within the Control Plane and Data Plane) and addi-
tional components used as data sources to enforce the policies (outside the Control/Data
plan area) [RBMC20, p. 9]

• Security information and event management (SIEM) system: This compo-
nent collects security-relevant information. With this data, the ZT system’s policy
can later be refined.

2.2.4 Trust algorithm (TA)
As mentioned before, the PE runs a trust algorithm which consists of instructions to
calculate a decision for an incoming request. Each incoming request is passed to the trust
algorithm and with the input of various data sources (i.e. the additional components as
mentioned above), a decision is made whether the incoming request should be trusted or
not. The actual input depends on the system’s use cases and security posture, but in
general the input types can be grouped as the following: information about the requester
(identity, authentication), information about the request itself (usage), information about
the agent the actor requested with (environment), the history of the requesting actor
(behaviour) and general threats observed within the system or "around" it - i.e. threats
that could affect the system, but have not been observed within yet.

The TA does not have to output a binary decision. It is also feasible that the trust
algorithm returns a score-based output which can be used to compare two or more
requests for confidentiality. This way the ZT system could, for instance, discover when
actors get less confidential with each request and could react accordingly, e.g. by adapting
the policies for that actor or for the whole system.

2.3 Blockchain
The term "blockchain" had been first introduced by Satoshi Nakamoto [Nak08] in the
context of the first ever cryptocurrency Bitcoin, and the technology gained popularity

13

2. Background

ever since. The blockchain technology is, however, not limited to the Bitcoin and not
even to cryptocurrencies in general. Many other applications arose, making use of the
characteristics and properties of the blockchain technology. One of them being the
concept of smart contracts - which will be briefly explained in Section 2.3.2.

Blockchain is a technology that allows for the creation of a digital, decentralized and
distributed ledger. It is a peer-to-peer network where each node holds a copy of the digital
ledger, and new entries added to it can be verified by all the peers. This property of the
blockchain technology allows for a consented network without requiring any centralized
authority to verify the correctness of transactions. The ledger in a blockchain is - as the
name suggests - a chain of blocks, where each block holds a reference to the previous
block. A block contains transactions that have been done within the network. One very
important property of a blockchain is the immutabily of the ledger. Although the ledger
is distributed - with each peer holding a copy of it - peers cannot simply change their
copy and use this as the correct ledger. Whenever a new block is added to the chain, all
the peers within the network validate the correctness of it and try to reach consensus.

2.3.1 Consensus algorithm
There are many different types of consensus algorithms used for blockchains. The very
first consensus algorithm type used in the context of blockchains was Proof-of-Work
(PoW) [Nak08], namely in the Bitcoin network. PoW is a Byzantine Fault Tolerant (BFT)
consensus algorithm, meaning that even if there are malicious or broken nodes within
the blockchain network, the system is still able to reach consensus. This characteristic
is analogues to the Byzantine Generals Problem [LSP82]. Since the introduction of the
Bitcoin network, we have had other consensus algorithms used in blockchain networks as
well, e.g. Proof-of-Stake (PoS) and Raft [OO14].

In general, in a proof-of-work consensus algorithm, a block contains a (hash) value,
which can only be obtained by doing an expensive calculation - this value is the proof
that the peer adding the new block did some work to generate this block. Consensus is
reached when all peers verified that the calculation is correct. Verifying the correctness
of that value, on the other hand, is very easy and fast (one-way function).

Proof-of-stake consensus algorithms try to get rid of the expensive calculation - which
costs a lot of energy [KÖ19] - by introducing pseudo-randomness. When there are two or
more block candidates, the block which comes from the peer biding the most coins will
be accepted more likely then the others. Coins are the rewards for adding a block to the
chain, so the more blocks a peer already added to the blockchain, the more it can bid
for the next block and the more likely the block of this peer is selected. Proof-of-stake
had been first introduced in the Ppcoin blockchain [KN12]. Proof-of-stake is also a BFT
algorithm.

The Raft consensus algorithm is not a BFT algorithm, but it is a Crash Fault Tolerant
(CFT) algorithm. Raft cannot prevent malicious nodes from being detected and overruled,
but it can handle crashes and unavailability of nodes very well - hence the term crash

14

2.3. Blockchain

fault tolerant. Raft is mainly used when the nodes in the network are known to be benign,
e.g. in a permissioned (= private) blockchain network, where the using organization has
control over the nodes. In general, nodes in the network are chosen randomly to be leader
candidates. All the candidates then send requests to all nodes in the network to vote for
it to be the leader - which node votes for which candidate is defined by an algorithm
that is not explained here, as this would go beyond the scope of this thesis. If a leader
candidate got the majority of votes, it sends a heartbeat to all other nodes, stating that
it is the leader now. Now this node is officially the leader and all other nodes are the
followers.

The Raft algorithm is crash fault-tolerant because it still can reach a consensus when
some followers crashed or are not available. As long as there are more than half of the
nodes available, consensus can be reached. Moreover, if no leader candidate got the
majority of votes or all leader candidates crashed for some reason, the election times
out, and a new round of leader candidates is selected [OO14]. Raft is the recommended
consensus algorithm in Hyperledger Fabric (HLF) (v2.4), a framework for permissioned
blockchains [ABB+18].

2.3.2 Smart contract
Although the term "smart contract" had been introduced in 1997 by Nick Szabo [Sza97],
it gained special attention with the rise in popularity of blockchain networks. A smart
contract is - in blockchain terminology - a software program containing a set of rules (=
instructions) that have been agreed on by some parties and which is saved and executed
in a blockchain. Due to the fact that a blockchain is immutable, smart contracts are also
immutable. This guarantees that all agreed parties have the same copy of the contract
and adhere to it without needing a third-party entity to ensure that. The HLF blockchain
framework uses the term "chaincode" for a group of smart contracts. In a HLF blockchain,
chaincodes are deployed and the contained smart contracts are executed [ABB+18].

A crowdfunding system could, for instance, be implemented using smart contracts.
There could be a smart contract collecting funds from donors until a certain amount is
reached, to then transfer the money to the peer who initiated the crowdfunding campaign.
Technically speaking, the donors would call a function with the amount as parameter,
which would accumulate all donations, and as soon as a given amount is reached, the
smart contract would automatically transfer the money to the crowdfunding initiator.

15

CHAPTER 3
Related work

As zero-trust architecture is a relatively new research area, there are many papers within
the last couple of years to this topic. In this chapter, we list and analyse some related
research papers in the context of the Internet of Things, Zero Trust Architecture, and
Blockchains. The focus is on papers employing the zero-trust security mechanism (see
Section 3.1) and systems utilizing a blockchain in a zero-trust system (see Section 3.2).
We briefly summarize the papers in the next couple of paragraphs.

3.1 Zero Trust
Xiaojian et al. proposed zero-trust security for a power IoT network [XLJ+21]. The
designed system checks multiple properties of actors, calculates a trust level based on
those attributes and compares this level with the security level of the requested resource.
The security level of a resource (e.g. a service) is defined according to the importance
of that resource. The trust level of actors are calculated on a per-session basis and the
access is granted or denied dynamically. There is a central rule base which contains
rules (=policies) for accessing a resource. This rule base is taken into consideration
when calculating the trust of actors and it is adapted dynamically based on the actor’s
behaviour and other properties, e.g. version, vulnerability patch, and identity. This
calculation is done by a central service, called the trust analysis engine - this is similar
to the Policy Engine component mentioned in the NIST definition.

In the paper from DeCusatis et al. [DLSP16] the zero-trust security approach is applied
in a cloud computing context in a different and interesting way. They proposed a
novel architecture which uses steganography to embed authentication data in TCP
packets. This approach eliminates the ability for attackers to fingerprint the network, as
a connection request fails silently if an actor is not trustworthy. This is due to the fact
that the authentication data is embedded in the transport layer. This means that the
TCP connection between an actor and the system will not even be established if the actor

17

3. Related work

is not trustworthy. From a technical point of view, the system consists of two gateways
which are responsible for enforcing policies: the first gateway embeds an authentication
token in the first packet of the TCP request, and the second gateway reads that token
and enforces the actual policies. If the actor is trusted, the second gateway allows the
TCP connection. If the actor is not trusted, e.g. it tries to access a resource which it is
not allowed to access, then the second gateway denies the connection by not allowing
the TCP connection request to finish. In NISTs ZTA terminology, the second gateway is
the Policy Enforcement Point (PEP) component. With this approach, the latency for
policy enforcement is low and the bandwidth is high, as the actual packet content is not
inspected during the trust-check.

One of the most sensitive data of human beings is their medical details. These data
needs to be secured very thoroughly and access should only be given to permitted people,
which are usually the patient the medical data is for or the doctor who created or issued
it. Since the rise of the IoT and the 5G network, this medical data is not only available
in paper form anymore but more and more medical institutions allow online downloads of
the patient’s medical documents. This comes with a big security risk as it allows malicious
people to spoof their identity to get sensitive data of others, or to get access to servers
holding the data through other malicious ways. Chen et al. presented a medical system
using a zero-trust architecture which tries to combat the above-mentioned security issues
[CQZ+20]. Instead of only checking the identity of the actor requesting data from the
system, they introduced a four dimensional (4D) access control framework which checks
the subject, object, environment and behaviour of actors. The subject is the identity of the
actor, the object is the resource the actor wants to access, the environment is the network
the actor requested data in or the system the actor requests with, and the behaviour
dimension is the access history of the actor. The system performs risk judgment based
on the the two dimensions subject and environment to calculate scores for potential risks
associated with different combinations of subject and environment. The risk report is
then used in the trust assessment process to decide whether the requesting actor is given
access to the requested resource or not.

In a system employing zero-trust security principals the amount and quality of data
collected from actors is crucial for a strong security posture. It is important to not only
rely on identity data but also collect other types of data, such as data about the current
system state the actor operates in. Garcia-Teodoro et al. [GTCMF+22] introduced a zero
trust access control mechanism that creates security profiles of actors and based on that
decide whether the actor is given access to the requested data or not. The mentioned
security profile is built by collecting lots of different information about the actor, e.g.
installed OS, MAC address of the used device, current status of the OS like RAM usage
or level of battery, recent network traffic of the used device, and many more (see page 7
in [GTCMF+22] for a full list of all collected data). This strategy has the huge advantage
that attacks would need to spoof lots of OS or device related data to fully whitewash
the hijacked device. Even if there is no malicious person involved, this approach is also
able to detect malfunctions of devices more accurately and thus it can react faster in

18

3.2. Blockchain-based Zero Trust

such a scenario. On top of the sheer amount of collected data the proposed system also
makes use of machine learning to improve the analysis quality with time. The more data
is collected and validated the more dynamic and accurate the system can operate.

3.2 Blockchain-based Zero Trust
Samaniego et al. introduced a blockchain-based middleware for managing access to
resources inside an IoT network, using the zero trust paradigm [SD18] and called it
Amatista. The unique selling point of Amatista is that it uses a two-level hierarchical
mining process. There are first-level miners which get the sensor data of IoT devices,
validate the identity of the sender and then forward the data to the second layer. The
second-level miners then validate the access rights of the sending device and check if
it has the privileges to execute the request, e.g. sending temperature measurements to
the weather station or fetching location data of another IoT device. The second layer
uses a consensus algorithm to agree on the validity of transactions before a block for
a transaction is stored in the blockchain. However, Amatista does not implement the
zero-trust part of its system as recommended by the NIST [RBMC20]. The zero-trust
part in Amatista is the embedding of a blockchain with miners which use a consensus
algorithm to decide whether to trust or not trust incoming requests.

Another zero-trust blockchain approach in the context of IoT was introduced by Sultana
et al. [SHL+20]. This paper focuses on a medical IoT network where patients and doctors
or medical technologists share medical test results like MRI scans or X-ray files. The
medical technologist, e.g. radiologist, sends the X-ray files to the system which creates
a block in the blockchain. This block contains some typical block information like the
sender and receiver of the X-ray files and also a reference to the location where the files
are saved - the files are persisted in a separate database. After the block has been written
to the blockchain, the receiver, e.g. the patient, can fetch the X-ray files. This system
has its focus on transferring large data and therefore uses the approach with the separate
database next to the blockchain. It also describes how the workflow of sending and
receiving data looks like and how the peers authenticate. Although the authors mention
the ”zero-trust” principle a lot and the paper states to define a system with zero trust, it
does not fully implement the actual zero-trust paradigm as defined by NIST. The senders
of data, e.g. the medical technologists, have to login with their username/password and
the sender’s device’s health is checked to make sure that it is not hacked or compromised
- which totally conforms with the zero trust paradigm - but the device of the receiver is
not checked when trying to fetch the data. The receiver, e.g. the patient, only has to
authenticate with a username/password pair and Two-Factor-Authentication and then
gets access to their test results. What is also missing in this conceptual system is the
validation of the peer’s behaviour before granting access to resources and also dynamically
adjusting privileges based on the observations of the behaviour - which is tenet no. 4 in
the NIST definition of a zero trust architecture [RBMC20].

Dorri et al. [DKJG17] utilised a blockchain to secure the communication between IoT

19

3. Related work

devices within a smart home. The network consists of IoT devices which communicate
with each other or with the cloud, a private local blockchain for saving transactions,
several local storages to save IoT data and a miner which handles all transactions inside
the network or incoming and outgoing transactions from or to the smart home network.
Each smart home only has a single miner which is the central processor for adding
blocks to the blockchain and for granting permissions for resources inside the network.
This approach, however, is missing the zero trust property. If a device wants to access
a resource or wants to communicate with another device in the network, it asks the
network’s miner for permission. The miner checks the access policies, and if the requester
has the needed privileges, both the requester and the requestee get a shared key for secure
communication. The requester is not checked for trustworthiness, but only checked for
identity. This check is, however, one of the main properties of a zero-trust architecture
[RBMC20].

20

CHAPTER 4
System Design

The core of this thesis is the design and implementation of a Proof-of-Concept combining
all above mentioned technologies in a self-contained system. The design of the system
complies with the ZTA tenets and implements the core components mentioned in the
ZTA definition of the NIST [RBMC20]. Furthermore, the blockchain components are
implemented using the Hyperledger Fabric framework, building a permissioned blockchain.
The PoC is centered around a use case for a smart city, which means that it considers
properties of such a network, i.e. allowing distribution of components to multiple edge
servers or considering IoT devices with low computational power. By giving insights into
the PoC’s inner components and presenting the intercommunication of those components,
the reader shall be able to evaluate non-functional properties of the system, such as the
effort needed to implement it, the complexity, and the usability of it.

4.1 Components
The system consists of three groups of components: ZTA components, Blockchain
components, and IoT components. The ZTA components are the NIST core components
and additional components for ensuring zero-trust in the system. Together they enforce
the defined policies and grant or reject incoming requests. For logging the incoming
requests and their access decisions a distributed ledger is used, which is implemented
as a permissioned blockchain. The system is designed to be accessible by users as well
as stationary IoT devices equipped with environmental sensors. The big picture of the
system with all its physical components can be seen in Figure 4.1.

4.1.1 ZTA Components
The core components are listed above in Section 2.2.3. However, the components are only
described logically and are very high-level. In addition to the high-level definition, we

21

4. System Design

Figure 4.1: Network diagram of the PoC

provide their concrete responsibilities and their concrete technical parts within the PoC
in the next paragraphs. Apart from the core components, there are also some additional
components for building and evaluating policies.

Core components:

Policy Enforcement Point: The PEP is a single logical component, but can be
broken into two different physical components, as mentioned in the NIST definition
[RBMC20] and above in Section 2.2.3. In the PoC system, the Policy Enforcement Point
consists of a component on server-side - called PEP - and two client-side components
for connecting to the server - called Analyser and Client. Users and stationary IoT
devices communicate via the Client component and system maintainers interact with
the Analyser component. The Client component is implemented as a simple gateway
which enriches incoming requests by some important details about the actor and passes
them to the PEP component. The PEP component is only accessible via the two client-
side components. The Analyser component, on the other hand, is restricted to users

22

4.1. Components

with administration rights and it only fetches maintenance data like connected policy
engines, known actors and their request history. The PEP component takes incoming
requests from the client-side components and passes them to the Policy Administrator
for validation. After the request is validated and the access is granted, the PEP will fetch
or send the requested data from or to the corresponding Persistence Managers. If, for
instance, the government installed a new stationary device in a public park for measuring
the outside temperature and wants to connect this device to the smart city network, an
administrator would use the Client component to send the creation request to the PEP,
which further passes it to the PA. If the PA grants the access, the PEP sends the new
stationary device’s details to the Authentication Persistence Manager (AUTH-PM) to
persist and from now on, the new stationary device is recognised by the system. If the
access gets rejected, the PEP does not communicate with any Persistence Manager (PM),
but it tells the requester that the request had been rejected.

Policy Administrator: The PA is responsible for initiating the validation of incoming
requests and for creating access tokens for the PEP which are needed for accessing one
of the PMs. The Policy Administrator does not do the actual validation, but it sends
a validation request to all known PEs, which do the actual validation. The validation
process is executed using a simple consensus algorithm: all PEs are triggered to start
validating the incoming request, the PA is notified by each PE when the validation
finished, and if more than the half of all PEs resulted in the same decision, this decision
is taken as the correct one. Depending on the type of request, the PA either waits for the
PEs to finish validating or sends the validation request to all and immediately returns to
the PEP with the message that the validation had been triggered. Requests for saving
(non-administrative) data are executed asynchronously and all administrative requests
as well as all GET requests are executed synchronously. This is due to the fact that
actors are not always interested in the response to their request, e.g. when sending their
sensor data to the system. Additionally, the IoT devices send sensor data regularly, thus
blocking the system for those kinds of requests affects performance. If the request is
executed asynchronously, the PA notifies the PEP via a message broker. Regardless of
whether the request had been executed synchronously or asynchronously, the PA sends an
access token to the PEP and to the corresponding PM if the access is granted. The PM
then only accepts requests from this access token. An access token consists of a unique
secret (string), a time-to-live value representing the validity duration of this access token
(in seconds), and a list of access rights for telling the PM what type of requests the caller
is allowed to execute with this access token. The PEP needs to attach this token to the
request when accessing the PM.

Policy Engine: The PoC consists of a couple of PEs. All of them have the same source
code so they do exactly the same. Each PE runs an instance of the Trust Algorithm
(TA), which contains the policies and rules for granting access to a resource, hence the
TA is the brain of the whole validation system. The TA is executed as soon as the PE
gets a validation request from the PA. All PEs are triggered simultaneously and the TA is

23

4. System Design

executed synchronously. The Trust Algorithm fetches various data and details about the
requester - user or stationary actor - and the incoming request from different components.
This data is then evaluated step-by-step and a decision is generated out of them. The TA
checks the authenticity of the requester with data from the Authentication Service (AS)
(= identity checks), the operating system of the requester for vulnerabilities with data
from the Operating System Vulnerabilities (OSV) component (= environment checks),
the parameters of the incoming request with the help of the Parameter Checker (PC)
(= usage checks), and the history of the requester for any suspicious activities from the
Blockchain Peer Monitoring (BC-P-MON) component (= behaviour checks). As soon as
the validation finishes, the PE sends the decision to the PA.

Additional components:

Authentication Service: The AS is one of the components which provide input data
for the Trust Algorithm. Details about all known users and stationary actors are persisted
in the AS’s database, such as their IDs, access rights and IP/MAC addresses - IP and
MAC addresses are only saved for stationary actors. Checks against the AS’s data are:
(a) for users, only the access rights are checked, and (b) for stationary actors, in addition
to the access rights, the IP and MAC addresses from the incoming request are compared
with the addresses in the database. The TA fetches those details and checks, for instance,
that the requester is allowed to execute the incoming request according to their access
rights. The AS only reads data from the database and is not able to modify it. For
adding, updating or deleting authentication details about actors, the Authentication
Persistence Manager (AUTH-PM) has to be used (see the description of Persistence
Managers (PMs) below for more details about the responsibilities of PMs).

Operating System Vulnerability: The OSV is another component used for validation.
It saves details about known vulnerabilities of operating systems. The source of this
information could be an external service like the Common Vulnerabilities and Exposures
(CVE) service1 or the known vulnerabilities could be added manually via an API. For
simplicity, some hardcoded vulnerabilities are inserted on startup and new vulnerabilities
can be added via the OSV API in the PoC. Details about the requester’s operating
system are included in the incoming request and this information is checked against the
data in the OSV’s database.

Parameter Checker: The PC is responsible for checking parameters of incoming
requests, more precisely syntactic and semantic correctness of values, e.g. if an IP address
is syntactically correct or if the value of a temperature reading is semantically valid.

Blockchain Peer Monitoring (BC-P-MON): The BC-P-MON component has the
identity - i.e. certificate and private key - of a peer from within the blockchain network.
It is able to fetch the historical data of actors from the blockchain through the installed

1https://www.cve.org/

24

4.1. Components

chaincode (smart contract). The fetched data is checked for malicious or suspicious
activities by the TA. For instance, if the last X requests had been rejected because the
actor tried to fetch data from a restricted resource, and the next incoming request tries
to fetch the same data again, the TA is able to recognise this suspicious activity and can
therefore block the actor temporarily. There could be more sophisticated techniques when
analysing the history of actors in place. The TA could also check for specific patterns in
the history to identify malicious or hijacked actors.

Persistence Manager (PM): There are many different PM components in the PoC.
Each type of resource has a dedicated PM in front of it and accessing it is only possible
through the dedicated PM. Every incoming request has to go through the whole ZT
chain, starting with the client-side PEP component through the PA, PE, the validation
components, and at the end to the PM. No resource is allowed to take a shortcut - see ZTA
tenet no. 6 in Section 2.2.1. This implies that every request type has to have a PM to
handle it. For instance, if the system wants to support reading the electricity consumption
of public buildings, it has to implement a PM which can access the electricity data of
those buildings. As can be seen in the big picture of the PoC (see Figure 4.1), some PMs
access databases which are also accessed by validation components. For instance, the
AUTH-PM component and the AS component are both connected to the AS-DB. It is,
however, not possible to modify data in the AS-DB from the AS component. The AS
component only supports fetching data needed for validating incoming requests. It does
not have methods to e.g. delete or modify data, whereas the AUTH-PM component has
full access (read and write) to the database. Additionally, as already mentioned above,
the PM can only be accessed via a valid access token, which needs to be registered by
the PA first.

Blockchain Peer Logging (BC-P-LOG): This component is used for logging in-
coming actor requests in the blockchain. The PA sends a log request to this component
after the PEs consented to a validation decision. The BC-P-LOG component also has
the identity - again, certificate and private key - of a peer from the blockchain. It takes
the incoming request and the decision outcome as input from the PA and sends it to the
chaincode to persist it in the blockchain.

4.1.2 Blockchain Components

In addition to the above mentioned components for ensuring zero-trust in the PoC,
there are also dedicated components which are needed to build and run a permissioned
blockchain within the system2. The only connection between the ZT components and
the blockchain components are the BC-P-* components. This connection is established
by allowing those components to use the certificate and private key of the same peer

2The blockchain network is used as another additional component which provides input for the trust
algorithm.

25

4. System Design

from within the blockchain network to interact with the installed chaincode. All other
ZT components do not know the blockchain components and vice versa.

The blockchain technology of choice is the HLF framework3. HLF is an open source
framework for building permissioned blockchains which provides pre-built Docker images4

and good documentation [Hyp22b] to build a blockchain network. Before listing and
describing the components in the PoC, we first provide a brief and high-level introduction
to the Hyperledger Fabric infrastructure.

Hyperledger Fabric Blockchain Infrastructure

Hyperledger Fabric allows creating multi-organizational permissioned blockchain networks
[ABB+18]. Each organization can have one or more nodes collaborating in the blockchain.
An organization’s nodes are identified by the organization-owned certificate authority,
which issue certificates for them. There are also peers which are the fundamental
elements in a HLF network. They are basically nodes, that host the distributed ledger
and chaincodes. Organizations can contribute to the blockchain by deploying own peers.
They are also the entrypoints to the blockchain, as organizations can use those peers
to interact with the network, e.g. by sending or fetching data to or from it. Within
a HLF blockchain network, there can be one or more channels which peers can join
to create a blockchain. Each channel has its own ledger, and peers can join multiple
channels at once, leading to a very flexible network where organization could have some
peers in many channels and some peers only serving one ledger, i.e. being joined in only
one channel. This also means that peers could host multiple different smart contracts,
modifying multiple ledgers.

Smart contracts are the main tools to interact with ledgers. They are deployed by peers
and are only valid within the channel they had been deployed in. However, a channel can
have multiple smart contracts and chaincodes, respectively. There is a slight difference
between a smart contract and a chaincode: smart contracts are functions to interact with
the ledger and chaincodes are containers of one or more smart contracts. The ledger
consists of two pieces: the blockchain, which packages all transactions within the network
into chunks (blocks), chains them together and logs them in an immutable way, and
the world state, which is basically a data type containing business objects that can be
inserted, updated, deleted or fetched with the help of the installed chaincode.

In comparison to HLF blockchains, other blockchain networks like Ethereum5 or Bitcoin6

are not permissioned, meaning that any node can participate in the consensus process,
during which transactions are ordered and bundled to blocks. As there is no control
over all nodes, the consensus algorithms in such a network work with probabilities,
which will eventually guarantee consistency within the ledger. This is not the case

3https://www.hyperledger.org/use/fabric
4A list of all Docker images of the Hyperledger Team can be found in

https://hub.docker.com/u/hyperledger
5https://ethereum.org/de/
6https://bitcoin.org/

26

4.1. Components

for permissioned blockchains: all nodes within the network are controlled by one or
a couple of organizations. In HLF, this property of permissioned blockchains is used
to eliminate the probabilistic part of the consensus algorithm. To make the consensus
process deterministic, HLF networks contain so-called orderer nodes - which together form
the ordering service [ABB+18]. These nodes are responsible for ordering the transactions
within a blockchain.

The consensus algorithm of the HLF framework from chaincode invocation to adding a
block to the blockchain works like follows [ABB+18]:

1. When a smart contract is called, the calling application sends a transaction proposal
to one or more endorsers in the network, according to the endorsement policies of
the channel the transaction is executed in. The concrete framework which does this
in our PoC implementation is the Fabric gateway service. This service is the entry
point to interact with a blockchain, which implements a simple API for submitting
transaction proposals.

2. These endorsers execute the transaction proposal against the blockchain, but
without really modifying it - i.e. they only simulate the execution. They sign the
transaction afterward, which tells the other components that the signing endorser
actually handled the transaction.

3. When enough endorsers simulated the transaction to satisfy the endorsement policy -
this requires that all endorsers returned the same simulation result - the transaction
is created and sent to the ordering service.

4. This and other transactions are then packaged into blocks and distributed to all
peers within the channel to update their local copy of the distributed ledger. The
packaging is done by the ordering service.

5. Lastly, all peers independently validate the received block. This is done by e.g.
checking that all required signatures are present (according to the endorsement
policy)

PoC’s blockchain components:

Organizations: For simplicity, the PoC only consists of a single organization (called
org), with its own certificate authority (called org-ca).

Certificate authorities: Apart from the organizations certificate authority, there is
also a certificate authority for creating TLS certificates (called tls-ca). This TLS CA
creates certificates for the organization itself and the organization creates certificates for
its peers.

27

4. System Design

Peers: In the PoC, there are three peers (peer1, peer2 and peer3), but only one peer
(peer1) is used for submitting transaction proposals. This could be extended, such that all
peers are used for submitting transaction proposals so that the system can still continue
to work when one peer is down.

Orderer: Again for simplicity, there is only one orderer node, which is also the only
component in the ordering service.

Chaincode: There is only one channel and it only contains one chaincode. This
chaincode contains smart contracts for fetching history data from actors - which are saved
in the world state - and for persisting incoming requests of actors in the world state.

4.2 Security measures
Zero-trust is not the only cybersecurity property of the PoC. Having a system implement
a ZT architecture alone, does not make it safe against cyberattacks or malicious actors
by any means. Nowadays, encryption is used in many high-quality production software
applications as a security measure. Encryption can take place in, e.g. the login process,
during communication between actors, or when saving credentials in the persistence layer.
The PoC also makes use of encryption to strengthen the system against some types of
cyberattacks. There are some additional security measures the PoC uses, which are listed
and explained in the next paragraphs.

Zero-Trust

The most obvious security measure within the PoC is the zero-trust property. Within a
zero-trust system, even known-to-be-good devices and actors are checked for trustworthi-
ness continuously, in the case that they one day could be untrustworthy because they got
hijacked or manipulated in a malicious way. Zero-trust also implies that every interaction
with the system and within the system is logged and policies are changed dynamically
according to - but not limited to - these logs. Dynamic policies also make sure that the
system is flexible and can adapt to new vulnerabilities more efficiently.

Encryption

Like most secure production systems, the PoC also employs encryption. All traffic within
the system is encrypted using Transport Layer Security (TLS). Each component has its
own certificate and private key and communication is encrypted (e.g. using HTTPS)
between components. The blockchain peers have certificates signed by the organization’s
CA and they only communicate with nodes which are known to the system - this is
guaranteed by HLF’s Membership Service Provider (MSP) concept. In summary, the
MSP[ABB+18] is a directory which contains a list of known identities. Each component
has its own MSP, which it can use to verify the identity of nodes within the network.

28

4.2. Security measures

The ZTA components, on the other hand, have certificates signed by the system’s root
Certificate Authority (CA) and all ZTA components only communicate with components
with certificates signed by this root CA.

Blockchain

As mentioned above, blockchain technology also comes with some implicit security
measures. The fact that blocks within a blockchain cannot be tampered with easily7,
also introduces a security measure for such systems. In the PoC, an attacker would only
need to hijack two out of three peers to have control over more than 51% of the nodes,
but in a real production system, there would be more than only three peers to operate
the blockchain.

Another security measure which comes with a blockchain is the redundancy of data. As
the blockchain is distributed over all peers within the network, data can not get lost that
easily. As long as one peer is still running, the blockchain state can always be recovered
from that peer. The blockchain within the PoC is a permissioned blockchain, which
means that the ledger data is always in the hands of known peers.

Consensus

In addition to the consensus algorithm of the blockchain, our Proof-of-Concept imple-
mentation uses another consensus algorithm in a different place as well. As mentioned
in Section 4.1.1 in the context of the PA component, the validation process is also
implemented to use a consensus algorithm. The consensus algorithm of choice is Practical
Byzantine Fault Tolerance (PBFT) [CL+99]. In the PoC, the PA lets all PEs validate
the incoming request and when the majority resulted in the same decision outcome, this
result is taken as the correct decision. The Policy Administrator acts as the moderator,
which initiates the validation process and then waits for the results to accept the one
with the most occurrences (Majority Voting system). Figure 4.2 shows how the validation
process with a compromised PE would look like. Again, for an attacker to control the
validation process, it needs to have control over at least half of all PEs.

Network segmentation

As already mentioned before, the ZTA components do not know the blockchain compo-
nents - except for the BC-P-* components. Additionally, some components within the
network are only accessible from specific components. In the PoC this is guaranteed with
Docker’s networking feature and by restricting access to some critical communication
endpoints of components to only specific identities via their certificates (see Section 4.4
for more details). For instance, the PEP cannot connect to the PEs, the PA cannot

7Easily does not mean, that it impossible to manipulate the blockchain. There are many attack
vectors against blockchains, but in general, the attacker needs lots of resources or power to do that,
e.g. for the 51% attack, an attacker needs control over more than half of all nodes within a blockchain
[SMG19]

29

4. System Design

Figure 4.2: Validation process starting from the PA. PE2 is compromised and acts
maliciously (it returns "not OK" for a valid request). The PA still returns OK to the
caller, as three out of four PEs answered with OK. For readability, only the AS is shown
from the validation components and the rest is represented by the "..." lifeline

connect to any of the additional validation components (e.g. AS, OSV, etc.), and a
validation component cannot register an access token in a PM, because the endpoint for
doing that is restricted to some components only. This has the advantage that the whole
network cannot be compromised if only one component is controlled by an attacker. In
addition to that, we can make sure that the system is only accessible by the provided
clients, by only allowing interactions with the server-side PEP component with a valid
client certificate.

Resource separation

As far as resources are concerned, they are somehow secured by all above security
measures (e.g. encryption, consensus, zero-trust) and in addition to them, the PoC also
separates the physical resource (e.g. a database) as follows: when authentication data
like an IP address is needed for validating the IP address provided by a stationary actor

30

4.3. Technology stack

in an incoming request, the AS component fetches it from the authentication database
(read-operation). However, when an administrator wants to change the IP address of a
stationary actor, the actual update-operation is done from the dedicated PM, hence the
PoC separates validation-relevant resource access from actual actor request operations.

4.3 Technology stack
Each component in the PoC, i.e. in Figure 4.1, runs in a Docker container - except for the
actual actors and users (e.g. public service) - and they are all orchestrated with Docker
Compose8. All blockchain components use Docker images provided by HLF, all ZTA core
components, validation components, PM components, and the Blockchain (BC) logging
component use Spring Boot Docker images. The HLF blockchain components had to be
set up and initialised correctly and the ZTA components had been implemented from
scratch in a microservice manner9, meaning that the system is split up into its smallest
possible units (microservices) and the communication between those units happen via
REST APIs (synchronously). The client-side components of the PEP are implemented
with Angular (Analyser component) and Python (Client component). For asynchronous
communication, Redis10 is used as the message broker of choice.

4.3.1 ZTA components
The ZTA-specific components are all Spring Boot Applications11 which are implemented
in Java12. Spring Boot is specifically designed for implementing microservices and it has
great support for many technologies used in microservices, such as JSON serialization,
asynchronous communication via messages brokers and API encryption, to name some.
The Spring Boot applications are implemented in a 3-tier architecture, i.e. there is
a presentation layer (the REST API), an application layer (the services containing
the business logic) and a persistence layer (the database connection). Not all ZTA
components need a persistence layer, but those who do (e.g. the AS component for
reading authentication data of actors), use the SQL database PostgreSQL13 and/or the
NoSQL key-value database Redis.

4.3.2 HLF components
As mentioned before, the HLF components are Docker containers built from Docker
images provided by Hyperledger themselves. There are images for peers, orderers, CAs,

8https://docs.docker.com/compose/
9The proof-of-concept implementation does not employ a pure microservice approach. All validation

components connect to databases which are also used by the dedicated Persistence Managers. In a
microservice system, two microservices should not share the same database with each other. To overcome
this, there could be two separate databases which are synchronized regularly.

10https://redis.io/
11https://spring.io/
12https://www.java.com/
13https://www.postgresql.org/

31

4. System Design

and chaincode environments. These images are very powerful in terms of customization
and configuration possibilities. It is possible to configure an image almost completely from
within a Docker compose file with the help of environment variables. HLF also provides
binaries to build a blockchain network natively on a Linux, Windows or OSX machine.
For the connection between the blockchain network and the ZTA components, we used
the Hyperledger Fabric SDK for Java14. This is a convenient framework for connecting to
a HLF permissioned blockchain from a Java application - in this case from a Java Spring
Boot application. As far as the chaincode implementation is concerned, Hyperledger
Fabric provides interfaces for Java, Go and Node.js [Hyp22c] for implementing chaincode
logic. The proof-of-concept implements a chaincode in Java, so the chaincode is packaged
into a JAR file and deployed in a separate Docker container.

4.3.3 Client components
There are two different PEP client-side components which have to be used to interact
with the system: the Analyser component and the Client component. The former is
implemented as an Angular application and can be used for monitoring the system’s state,
e.g. active policy engines, known actors, and actors’ request history. The Analyser client
component has its own certificate which is the entry key to the whole system. The Client
component, on the other hand, is some kind of proxy server for interacting with the system.
It is implemented in Python and provides a REST API which basically mirrors the API
of the server-side PEP component. However, incoming requests will not be passed to the
PEP as they come in, but the Client component intercepts the request and adds system
specific details to the request, like installed OS, MAC address, etc. The Client component
needs to be installed on the actor’s device directly or on an edge device receiving requests
from an IoT device, if the IoT device does not have enough resources to run a Python
application. This component has a client certificate as well to allow interactions with the
backend system. The system does not allow connections to the API from other sources
because the two client components have to inject environment-specific information like
OS version and MAC address. An incoming request without environmental details like
the two mentioned device information are rejected, as the zero-trust system can only work
as expected, if these kind of information is given - remember that the PoC checks identity,
usage, behaviour and environment properties of the actor. Restricting the system to only
the known clients is done by only allowing access to the server-side Policy Enforcement
Point for entities with a root-CA-signed client certificate15. Access for entities, which
cannot provide such a valid client certificate, is rejected.

4.3.4 Other components
The big picture in Figure 4.1 shows a cloud component with the text "data". In the PoC,
we did not really use a cloud for sensor data, but simply used a SQL database - running
in a Docker container defined in the Docker compose file - to store it. However, in a

14https://hyperledger.github.io/fabric-gateway-java/
15The PoC uses X509 certificates and identifies "client certificates" with the attribute OU=client

32

4.4. Communication

production environment, this simple database would be a data center which could be
located far away from the smart city and is reachable via a cloud service.

The remaining components (User, IoT device and Public service) are actual users and
devices with sensors, respectively. A user could be an employee working for the government
(e.g. gardener) who needs to read data from the smart city (e.g. humidity level in a
park). This employee would use a device like a smartphone or computer which has
the Python client component running. On top of that, a user-friendly UI application
(e.g. a smartphone app or a website) could be implemented which is connected to the
Python client. The public service office would use the Analyser UI directly for monitoring
purposes.

4.4 Communication
All components within the system communicate over the internet - in the PoC, the
host machine acts as the internet. We used a mix of synchronous and asynchronous
communication in our implementation. Synchronous calls are executed against the REST
APIs when the result of the request contains important data. For instance, when creating
a new user, the request needs to be done synchronously, as the system returns an API key
for that user. On the other hand, if an IoT device sends temperature data, the system
does not need to create a response and can silently save the incoming temperature data
in the background. In general, all GET requests are executed synchronously.

Although some requests are handled synchronously and others asynchronously, all incom-
ing requests go the same route (see Figure 4.3 for the workflow of an example request). As
mentioned before, the first stop for every request to the system is one of the known client
components. Here the request is extended by details about the device’s environment.
The extended request is sent to a Policy Enforcement Point16 which is the gateway from
the outside world to the trust zone. From now on, the remaining communication needed
for validating and finally executing this request happens within the so-called implicit
trust zone [RBMC20, p. 5]. In this zone, components always trust each other, i.e. the
receiver of a message does not validate the sender’s trustworthiness and assumes that it
can trust the sender and the incoming message. However, this does not really affect the
system’s security as the request from the not-yet-trusted actor is only passed as payload
between the internal components until it got validated for trustworthiness, only then it
gets executed - or ignored, if the request is not trusted. Additionally, the communication
within this trusted zone is encrypted and even internal components are limited in their
capabilities, as they are only allowed to communicate with components they need to
communicate with for handling the incoming request. This makes the implicit trust zone
very small - actually, the trust zone is only a linear path within the system’s workflow.

16Although our proof-of-concept only implements a single Policy Enforcement Point, it is possible to
have many server-side PEP components. There could be one per sub-network - e.g. each building in
the smart city could have its own PEP - or there could be many distributed components which are only
accessible through a load balancer.

33

4. System Design

Figure 4.3: Sequence diagram of a use case: An administrator updates the access rights
of an actor. The marked area (red) is where the Trust algorithm is executed. Note: for
readability only one PE and only two validation components are shown, but it should be
easy to imagine all remaining PEs and validation components in this diagram.

The PEP component forwards the incoming request and the actor’s identity (see Section
4.4.1 for details) to the Policy Administrator. This component initiates the validation
request by instructing all active Policy Engines to validate the trustworthiness of the
actor and the validity of its request. As already mentioned in Section 4.2, here is where
the majority voting starts. Depending on the type of request, the PA either waits for all
PEs to finish their task (synchronous requests) or the PA immediately returns to the PEP
stating that the validation started (asynchronous requests). The former type of requests
is realised very straightforwardly: the PA iterates through all PEs, sends a validation
request to each and blocks until the PE’s trust algorithms terminated and returned a
decision outcome before it continues with the next PE. If all PEs returned a decision,
the PA picks the most occurrent decision and returns it in the ongoing validation request
from the PEP. The latter type of requests is implemented with the help of a message
broker: the PA sends the API requests to all PEs, which start the execution of their trust
algorithm (see Section 4.4.2) in a background task and return immediately. Meanwhile,
the Policy Administrator started listening for messages within a specific topic of the
message broker. After the trust algorithm of a Policy Engine terminated, this Policy
Engine instance sends the result of the validation to this specific topic. The PA then
counts this validation result as one vote and continues listening for the other PEs to

34

4.4. Communication

finish. In total, the Policy Administrator only waits X seconds for the votes - in the
PoC implementation, this time is set to five seconds - to not be slowed down by any
Policy Engine which runs very slow or does not even respond at all. Also, the Policy
Administrator does not wait for all Policy Engines to finish, but immediately finishes the
validation process if a decision outcome got more than 51% of the votes. This redundancy
is a security measure to overrule malicious or dead PEs. As long as more than the half
of all PEs are running (or are benevolent), the system can correctly validate incoming
requests. When consensus is reached, the Policy Administrator notifies the PEP about
the validation result by calling the API method for executing incoming requests. The
API call either tells the PEP that the incoming request shall be rejected, which will
animate the PEP to return to the requesting actor with a message saying the the request
got rejected, or it will contain an access token for the Persistence Manager responsible
for executing the actual request. In both the synchronous and asynchronous type of
requests, the access token had been registered on the responsible PM by the PA before
and is only valid for a given amount of time - in our PoC the time-to-live of access tokens
is set to 60 seconds. The PEP then has time to call the PM with this access token to
actually execute the request, e.g. access or modify a resource, until the token expires.
Depending on the type of request, the result of the PM is passed to the original requester
via the PEP or the PEP ignores the result. In both cases, the workflow of this request
finishes here.

4.4.1 The X-Requester Header
The identity of an actor is given in the HTTP request’s "X-Requester" header. This
information is in JSON format and has the following structure:

X-Requester:
{

"agent": "...",
"actor": "...",
"ip_address": "...",
"mac_address": "...",
"os_id": "...",
"os_version": "...",
"auth_token": "..."

}

Actors have to add their actor ID and their authentication token (API key) to it when
accessing one of the client components. The Analyser component guarantees this by
forcing the user to provide their credentials (i.e. actor ID and API key) before opening
the actual dashboard page. The Client component, on the other hand, has to be called
with the X-Requester header already present in the HTTP header, but only with the
credentials filled out, which will then simply be passes to the PEP component. Both

35

4. System Design

the Analyser and Client component will, however, populate the remaining properties of
the requester header - they don’t have to and even cannot be provided explicitly by the
actors themselves.

The X-Requester object is then moved from the header to the payload in the remaining
API calls within the trust zone, together with a description of the original incoming
request of the actor. During the whole validation process, this payload is not modified.

4.4.2 Trust algorithm

The trust algorithm is the brain of the validation process. It defines how an incoming
request is validated and decides which actor is trustworthy and which access request
should be granted or rejected. The TA collects relevant data from different validation
components to then calculate a decision based on that data. In the PoC implementation,
the trust algorithm is static in the order of security checks, which means that each
incoming request from any actor is always validated the same way. The trust algorithm’s
instructions for validating incoming requests are shown in Algorithm 4.1, 4.2 and 4.3,
respectively. The actual logic for the different validation types are not present in the
pseudo-code algorithms, but we provide a brief textual description of them in the next
paragraphs.

Algorithm 4.1: Trust algorithm pseudo-code
Input: The X-Requester header requester and the incoming request of this

actor incomingRequest
Output: A validation decision containing the decision (OK/NOK) and a list of

validation failures
1 validationFailures = executeSecurityChecks(requester, incomingRequest);
2 decision = evaluateV alidationFailures(result);
3 return decision;

Algorithm 4.2: executeSecurityChecks
Input: The X-Requester header requester and the incoming request of this

actor incomingRequest
Output: A list of validation failures

1 validationFailures = [];
2 validationFailures.add(validateAuthenticity(requester, incomingRequest);
3 validationFailures.add(validateOperatingSystem(requester);
4 validationFailures.add(validateParameters(requester, incomingRequest);
5 validationFailures.add(validateBehaviour(requester);
6 return validationFailures;

36

4.4. Communication

Algorithm 4.3: evaluateValidationFailures
Input: The list of validation failures from the security checks

validationFailures
Output: A decision for the list of validation failures

1 decisionOutcome = {};
2 if validationFailures has critical or behavioural failures then
3 decisionOutcome.decision = NOK;
4 else
5 decisionOutcome.decision = OK;
6 end
7 decisionOutcome.decidedAt = now();
8 return decisionOutcome;

validateAuthenticity(requester,incomingRequest): In this validation method,
the Authentication Service is asked for details about the requesting actor. This identity
data contains the actor’s ID, the actor’s IP and MAC address (in the case of stationary
actors) and a list of access rights assigned to this actor. The API key of the actor is
implicitly validated by providing it to the AS as a parameter when fetching the actor’s
details from the database. The AS fetches the data with the actor’s ID and its API
key. The persisted IP and MAC addresses are compared with the ones provided in the
X-Requester header (for stationary actors) and the incoming request is compared with
the access rights of the actor.

validateOperatingSystem(requester): This method checks the operating system
for any vulnerabilities by requesting all known vulnerabilities of the requester’s OS from
the OSV component and then comparing the requester’s OS version with the versions in
which these vulnerabilities had been found.

validateParameters(requester,incomingRequest): Here the request itself is checked
for syntactical or semantical issues, like format of IP address and value of the humidity
reading (e.g. 0 <= value <= 100).

validateBehaviour(requester): This is the validation method with the most complex
logic, as it does not only fetch and compare data from another component, but it also
asserts some special conditions (see Algorithm 4.4). The history of the requester is
retrieved from the BC-P-MON component, which calls a chaincode method with the
help of the Fabric Gateway API. This call runs through the whole Hyperledger Fabric
consensus process, i.e. endorsing, ordering and validating of the transaction. After
consensus is reached, the last 50 requests of the actor is fetched from the ledger’s world
state and afterwards returned to the TA. The trust algorithm then analysis the history
and enforces the behavioural policies (again, see Algorithm 4.4).

37

4. System Design

The above mentioned validation checks are all static, but the system could be extended
to have a self-adapting trust algorithm which can change the security checks or priorities
them differently depending on the requester or the incoming request (see Section 6.3 for
how this could be done).

Algorithm 4.4: Identify behavioural issues
Input: The X-Requester header requester, the incoming request of this actor

incomingRequest, the maximum number of allowed critical issues within
the last X requests maxAllowedCrit and the amount of seconds after
which a critical issue is not considered anymore critV alidity

Output: A list of validation failures
1 validationFailures = [];
2 history = get history of actor with ID requester.actor;
3 criticalCount = count critical failures in history;
4 lastCriticalIssue = get last critical issue in history;
5 if criticalCount Ø maxAllowedCrit then
6 if lastCriticalIssue is within last critV alidity seconds then
7 validationFailures.add(POSSIBLY _MALICIOUS_ACTOR);
8 end
9 else if criticalCount > 0 then

10 if incomingRequest has issues then
11 if lastCriticalIssue is within last duration seconds then
12 validationFailures.add(ZERO_TOLERANCE);
13 end
14 else
15 no behavioural issues found
16 else
17 no behavioural issues found
18 return validationFailures;

The TA itself runs synchronously and is deterministic. All security checks are executed
and the result of all of them are taken into consideration when building the validation
decision. The caller is also informed about all security check failures and their severity.
In our PoC implementation, for instance, we use the severity levels LOW, MODERATE,
HIGH and CRITICAL. All critical failures result in the rejection of the validated request.
The other failures are considered more as informative failures - except for two specific
behavioural failures: (1) if the actor has more than a defined threshold of critical issues
within the last X requests and the last critical issue is within the last Y seconds, the
system creates a high severity behavioural failure saying that the actor could possibly
be malicious, and (2) if the actor has some critical issues in its history, but still less
than the given threshold, and the currently validated request has any kind of validation
failure, the trust algorithm also creates a high severity behavioural failure saying that
zero tolerance is applied on that actor. Both cases will set the decision to NOK, i.e. the

38

4.4. Communication

incoming request is rejected. Algorithm 4.4 contains pseudo-code of the relevant part of
the trust algorithm showing the handling in both mentioned cases.

Some input parameters of the trust algorithm are hardcoded in the PoC, but making
them editable on runtime is also possible by either adding a new API endpoint to the
system for managing such rules, if actual users need to be able to adapt them or by
adding a mechanism into the system’s internals that changes the rules depending on
some criteria. Such hardcoded rules are, for instance, the number of last history requests
to consider for validation (= 50 in the PoC), the maximum number of allowed critical
issues within the history (= 5 in the PoC) and the duration for how long the last critical
issue is considered as a behavioural issue (= 2 seconds in the PoC), among others.

39

CHAPTER 5
Evaluation

In this chapter, we present the evaluation results of the non-functional properties of the
proof-of-concept system. We do not discuss or rate actual computational logic like the
trust algorithm or low-level system functionality, but rather consider the system as a
whole during the evaluation. For testing performance and scalability, we defined some
test cases and executed them against the PoC implementation on a test environment. To
be able to compare the PoC with other security approaches, we implemented additional
systems in different variants and executed the same test cases against them, on the same
testbed.

The ZTA system design with all its core and additional components can get very com-
plex. All the ZTA-specific components introduce an overhead compared to conventional
perimeter-based systems, which increases the number of active components by a non-
negligible amount. On top of that, implementing a whole self-contained permissioned
blockchain adds even more complexity to the system. This not only makes the system
complex in terms of orchestration but also the implementation effort increases. The
complexity and implementation effort is discussed in more detail in this chapter.

In the following sections, we will discuss the evaluation process and results of the non-
functional properties performance, scalability, implementation effort, and complexity in
more detail.

5.1 Implementation effort
This section discusses the additional effort needed to implement a zero-trust system
backed by a blockchain, compared to perimeter-based systems. It is obvious that the
zero-trust architecture defined by the National Institute of Standards and Technology
comes with an additional implementation effort to guarantee zero-trust. Assuming the
functionality is the same in a zero-trust and a non-zero-trust (= perimeter-based) system

41

5. Evaluation

and that there is no additional implementation effort required for the actual business
logic, the zero-trust architecture needs to implement ZTA-specific components to verify
the trustworthiness of requesters, in addition to the base components which serve the
system’s functionality. This includes implementing the trust algorithm, the policy engines,
the validation components like OSV and AS, and all the persistence managers in front of
each resource. Increasing the number of requestable resources in a zero-trust system also
increases the number of components linearly. For instance, if we want to extend the PoC
implementation by a smart meter resource for persisting and reading power consumption
of smart homes, we would need to implement a persistence manager for that resource as
well and connect it to the system.

In our PoC system the trust algorithm is kept very basic. Each request goes through the
same validation process, i.e. the same set of instructions to verify the trustworthiness
of requesters, and there is no mechanism to dynamically self-align policy rules for
requesters on specific events - those properties would ideally be implemented in a fully
production-ready system. Even with these limitations the system still has a significant
implementation overhead compared to conventional systems. In a perimeter-based system
actors also have to be authenticated somehow, but usually not on each and every request
and the number of validated properties are also less compared to a zero-trust setup.

Another aspect that increases the implementation effort is the integration of a permis-
sioned blockchain. Not only do technical architects need to implement, connect, and
startup components that host the blockchain, but if this blockchain is also used within
the trust validation process as a ledger containing actors’ requests history, there also
needs to be a connection between the validation component and the blockchain nodes.
In the PoC, we decided to implement a blockchain client in the ZTA part of the system
which uses the HLF gateway API to interact with chaincode, by using a blockchain peer’s
identity. As mentioned in Section 4.1.2, the implemented system could also be extended
to connect each blockchain peer with a dedicated ZTA-side component to have a more
fail-safe validation process. In this case, the blockchain clients would also grow linearly in
relation to the available blockchain peers, which in turn would also come with an extra
implementation cost. In front of those blockchain clients, there would ideally also be a
load balancer to split the system’s load to multiple peers.

5.2 Performance

The performance of such a PoC system is best evaluated by having another system in
place with which we can compare the PoC with. We implemented other systems with the
exact same functionality as the PoC system, but with architectural differences. These
systems and the PoC system were deployed on a test environment and some test cases
were defined to be executed against them. In the following sections, we demonstrate the
test environment, the implemented variants of the PoC, the test cases, and the evaluation
results of those tests.

42

5.2. Performance

Table 5.1: Software and hardware specifications of the test environment

Operating system CPU RAM
Linux Ubuntu v22.04.2 (headless) 22 vcores 32 GB

Table 5.2: Five different variants were used for testing. The variants are described relative
to the originally implemented PoC system, i.e. the "excludes" column in this table means
that the listed components are missing compared to the PoC system.

Variant Name Description Excludes
1 Conventional Basic security mechanism

where only authenticity and
access rights are checked

All BC components, PE, PA,
all validation components

2 No BC ZTA system but without a
blockchain

All BC components

3 No BC (x4) Same as Variant 2, but with
4x more PEs (12 in total)

All BC components

4 ZTA-BC The original PoC Nothing
5 ZTA-BC (x4) The original PoC, but with

4x more PEs (12 in total)
Nothing

5.2.1 Testbed

The proof-of-concept system consists of 30+ components. In a real-world scenario, the
components would be split into multiple edge servers and devices, but for testing the
performance and scalability of the system, we decided to start everything up on a single,
yet powerful server. The hardware and software details about the server are presented in
Table 5.1. The components were executed inside Docker containers which had the whole
power of the host available.

5.2.2 Variants

To have a comparable evaluation result, we implemented different variants of the PoC
system and we even implemented a basic system that does not have any zero-trust
properties and no blockchain in place. The concrete variants are listed and described
in Table 5.2 and the big picture of two of them is depicted in Figure 5.1. The variants
are defined in such a way that the main technologies of the PoC can be evaluated for
performance impact, e.g. there are variants with zero-trust properties, but no blockchain
properties, or variants with less and variants with more policy engine instances. This
way we are able to evaluate which part of the system slows down the execution time
more than others. All variants produce the same output when fed with the same inputs.
This means that the functional properties are the same for all variants and we can fully
concentrate on evaluating the non-functional properties.

43

5. Evaluation

(a) The big picture of the "conventional" sys-
tem. It excludes all blockchain components,
the policy administrator, the policy engines
and all validation components.

(b) The big picture of the "no-blockchain" sys-
tem. It excludes all blockchain components
and persists the request history of actors in a
simple SQL database

Figure 5.1: The two additional systems implemented for the performance evaluation of
the proof-of-concept system. The "no-blockchain" variant (b) has yet another variant
with 12 policy engines.

5.2.3 Test cases
The actual test cases were implemented as Python scripts which were executed against
the different variants. Every test script starts in the Client component, which means that
each request goes through the whole process beginning from the Client component down
to the database. We define five test cases which all have a different focus. There are tests
checking the performance impact of synchronous requests in comparison to asynchronous
requests, or measuring how the number of policy engines affects the overall performance,
giving insides into the scalability of a system variant, etc. The test cases and the actual
requests executed in them are described in the following list. It needs to be mentioned
that each test case sets itself up, meaning that needed users or stationary actors are
initialized within the test case’s process. The initialization steps are, however, excluded
from the execution time.

• A user requests data that it does not have access to (TC1): This is a
very simple test case to demonstrate which system is faster in recognizing that a
user does not have permission to the requested resource. It creates a user with
insufficient access rights and this user then executes a request to a resource it does
not have the access right for. The forbidden request is executed 5 times in a row to
eliminate any outliers because of server hiccups or other unexpected things. The
execution time of this test case is the time between the sending of the first request
and the response to the last request.

• A stationary actor sends 20 temperature readings (POST) and a user

44

5.2. Performance

reads them afterward (TC2): In this test case a stationary actor is created and
this actor then sends 20 temperature readings to the system in a row - i.e. without
halting in between the requests. Immediately after, a user is created which reads
all readings of this actor in a single read request. The execution time of this test
case contains the 20 write requests only.

• A stationary actor sends 1000 temperature readings (POST) and a user
reads them afterward (TC3): This test case is similar to the previous one (TC2),
with the only difference that the stationary actor sends 1000 temperature readings
to the system. This test case can be compared with the next test case (TC4)
to evaluate the performance difference between synchronous and asynchronous
requests. The execution time in this test case only contains the execution time of
the 1000 requests, i.e. the synchronous read request is not taken into consideration.

• A user sends 1000 requests (GET) containing some temperature data
(TC4): This test case creates a stationary actor and a user. The stationary actor
sends five temperature readings to persist and the user reads the persisted data 1000
times (synchronous GET requests). Similar to the above test case, the execution
time only contains 1000 requests.

• Four stationary actors send data simultaneously (TC5): This test case
demonstrates how the system handles a high load from 4 simultaneously running
threads. Each thread sends and reads data and all threads execute the same
requests. Here the execution time contains the whole execution from start to end,
i.e. it includes the creation of the required actors and it also waits until all threads
are finished.

5.2.4 Performance evaluation
The above-listed test cases had been executed against each above-mentioned system
variant. The system had been pre-filled with some data before the tests were executed.
Each test case had been executed five times in succession and each system variant had
been built and deployed from scratch before each test run - not before each test case,
but each test run, i.e. before running the script for filling the system with initial data.
This way we can guarantee that every test is executed under the same conditions on
each variant. The test cases are executed five times in a row without resetting the
system in between, because we also wanted to consider any increases in execution time
with increasing data in the system, and as a running system is usually not empty, this
also makes the test cases more realistic. For the evaluation of the performance, the
average execution time of the 5 executions is taken and compared between variants. The
evaluation process is drawn in Figure 5.2.

The results of this performance evaluation are depicted in Figure 5.3. There are some
key takeaways that can be extracted from this figure. We will discuss some important
key observations in the following paragraphs.

45

5. Evaluation

Reset testbed Run init script Execute 5x Calc. avg. exec. time

Figure 5.2: Process for executing a test case against a system variant. This process is
done for each pair of test cases and variants, i.e. 25 times in total

1 2 3 4 5

0

200

400

600

800

1,000

1,200

0.
74 3.

2

14
3.

14

15
5.

39

33
1.

08

2.
26

4.
18

17
9.

33

49
0.

83

40
9.

31

5.
64

6.
65

26
2.

94

1,
17

4.
28

71
6.

01

2.
41

4.
14

18
0.

46

51
0.

44

41
6.

4

6.
35

6.
64

26
6.

59

1,
23

9.
96

72
1.

76

Test case

se
c

Conventional
No-BC
No-BC (x4)
ZTA-BC
ZTA-BC (x4)

Figure 5.3: Execution times (in seconds) of the test cases against five different system
setups: "Conventional" system (blue), ZTA without BC (red), ZTA without BC with 4x
more PEs (lightbrown), ZTA with BC (grey), ZTA with BC with 4x more PEs (gold)

46

5.2. Performance

Read operations take much longer than write operations in our zero-trust
system. Comparing test cases 3 and 4 between different variants, we see that in
all zero-trust variants TC3 (1000 read requests) takes around 2x the execution time
compared to TC4 (1000 write requests), only in the "conventional" system, the time is
almost the same. The reason for the huge time difference is obvious: read requests are
validated synchronously and write requests are asynchronous. For all zero-trust variants,
this means that each read request waits for the PEs to reach consensus, whereas write
requests only trigger the background validation task and immediately after return to the
requester. The conventional system does not encounter this difference, because there
is no validation process involved, i.e. read requests do not have to wait for consensus
between policy engines, because there are none.

More policy engines means longer execution time - especially for read requests.
As the validation process includes waiting for consensus between the policy engines, the
execution time of a request validation increases the more policy engines are added to
the system. The difference is, however, surprisingly not very big in all cases. For write
requests, where the validation process is executed asynchronously, the execution time
with 4 times more policy engines increases only around 2,4x (TC1, ZTA-BC), 1,5x (TC2,
ZTA-BC), 1,5x (TC3, ZTA-BC) and 1,7x (TC5, ZTA-BC), respectively. This effect is
more significant for read requests (synchronous validation): the increase in execution
time in TC3 on the "ZTA-BC (x4)" in relation to TC4 on the "ZTA-BC (x4)" system
is higher (approx. +4.7x) than in TC3 on the "ZTA-BC" in relation to TC4 on the
"ZTA-BC" (approx. +2.8x)

The presence of a blockchain does not affect the performance significantly
in our zero-trust system. When reading data from the blockchain, the query is
executed without consensus between the blockchain peers. This is the default behaviour
in the Hyperledger Fabric framework [Hyp22a]. As the logging of actors’ requests in
the blockchain is executed asynchronously and fetching actors’ request history from the
blockchain does not go through a consensus process, the presence of a blockchain does not
decrease the zero-trust system’s performance significantly. For instance, the difference
in execution time between the No-BC and ZTA-BC systems is around +1.05x (approx.
+5%) in all test cases.

The validation process takes the most time in our zero-trust system. This
is verified empirically by checking the increase in execution time when extending the
number of policy engines by multiple. For instance, increasing the number of policy
engines from 3 to 12 (4x) almost triples the execution time. This means that the increase
in execution time is almost linear to the increase in policy engines. Recall that the
consensus algorithm in the request validation process asks all PEs for validation and only
notifies the PEP about the validation result when more than half of the policy engines
returned the same decision (see Section 4.2). This has the consequence that the more
PEs are added to the system, the more decisions of PEs are needed to reach consensus,

47

5. Evaluation

the longer it takes for the policy administrator to accept a decision and the longer the
overall execution time of the request takes.

5.3 Scalability

We already showed above that the system can theoretically be extended by as many policy
engines as desired and can still serve the system’s functionalities. We also discussed that in
a real-world scenario, there would be more policy enforcement points, e.g. one per smart
home (see the footnote in Section 4.4), which means that the system is technically also
able to handle multiple PEPs. Although the system is extendable by those components,
the actual PoC implementation slows down noticeably when doing so (see Section 5.2.4).
However, this does not necessarily mean that the design of the system is not scalable at
all. Many factors could cause the proof-of-concept to slow down when confronted with
a huge load of requests or lots of policy engines. For instance, as the PoC spawns new
threads for each policy engine when the incoming request is validated asynchronously
(i.e. write requests) and the test environment is limited to 22 CPU cores, the system will
lose performance on high-load because of the number of context switches needed between
the threads.

It is also possible to add more resources to the system and the validation process could
also be extended by more validation properties by adapting the trust algorithm. This,
however, requires some implementation effort (see Section 5.1) and is not feasible during
runtime with the system design presented in this thesis. Adding new resources does not
affect the overall execution time of requests as the resource is only touched when an actor
actually requests it, but adding more policies to the trust algorithm does, as this affects
all incoming requests and slows down the overall validation process.

Scaling up the actors is done by installing the client-side part of the policy enforcement
point on the actor’s device. The client software could be provided as a download to
install it on that device or it could be pre-installed on proprietary devices which are used
by the actors. Another option is to install it on an edge server which acts as the gateway
to the system. In this case, increasing the number of actors does not require any further
tasks except for registering new users or actors. The scalability in this context depends
on the actual use cases. In the smart city example used in this thesis, all actors and
users are known to the system, which means that they will be provided with devices with
pre-installed client software.

In the end, the PoC should only show that the designed system concept is indeed
implementable and that it is applicable in the context of smart cities. It should not
be used in production as-is, because it lacks non-functional properties which typical
real-world systems should take care of (see Section 6.3).

48

5.4. Complexity

5.4 Complexity
The designed PoC system contains lots of components. There are 8 components that are
sole needed for enabling zero-trust - PA, PE 1-3, OSV, AS, PC and BC-P-MON - and
6 with are needed for enabling and hosting the permissioned blockchain. Additionally,
there is one PM per available resource. Incoming requests are passed through a lot
of components until they are actually executed, more precisely an incoming request
touches the PEP, PA, each PE, all validation components a couple of times (once per
PE), all blockchain peers and the blockchain orderer component, the PM and then
finally the database, i.e. the actual resource - if the requester is trustworthy. When
counting the components in the big picture (see 4.1), we get 30 components, i.e. each
successfully validated and trusted request touches around 60% of the system’s components
(19 components). This fact shows that the PoC design which just implements CRUD
operations, is very complex in relation to its functional capabilities. Not only does it
require implementing a relatively high number of components, but the orchestration of
them and establishment of secure and robust communication between them can also
get very complex - especially when there is a mix of synchronous (REST APIs) and
asynchronous communication (Message Broker - Pub/Sub).

Setting up the blockchain is a relatively complex task on its own. Although the Hyper-
ledger Fabric framework offers extensive documentation of each and every aspect of their
permissioned blockchain components, it still needs a lot of steps to go through the needed
documentation pages. Starting from setting up the organization, the certificate author-
ities, the peers, and the orderer components, to setting up encrypted communication
between them (TLS), to implementing and setting up a chaincode, to then implement
clients to connect to the peers.

There are other aspects which further increase the complexity: the consensus algorithm for
validation and the validation algorithm (trust algorithm) itself. Although the employed
consensus algorithm for the validation process itself is kept fairly simple, it still adds
extra computational complexity to the system. Additionally, the current implementation
of the trust algorithm is very linear and static. If it would be extended to be more flexible
and dynamic in enforcing policies, it would also increase the complexity significantly and
the comprehensibility of validation decisions would also suffer.

5.5 Advantages and Challenges
The main goal of introducing zero-trust aspects to an already running system or imple-
menting a new system with zero-trust properties in contrast to a perimeter-based system,
is usually to increase the security of that system. With a zero-trust architecture, the
system is more flexible in trusting actors and policies can be adapted more dynamically.
Especially in the context of the Internet of Things where a huge number of actors are
involved in a network, the security of all of them cannot be guaranteed at any time.
Even if all of those actors are enterprise-owned, being able to maintain the security of all

49

5. Evaluation

the heterogeneous devices is a very hard task. In such a case the zero-trust architecture
comes in handy, as it allows for defining dynamic policies and enforcing them on each
request. So with the correct policies in place, it is possible for a zero-trust system to
identify if an actor had potentially been compromised and to reject all its requests. This
can be a very useful property of a network depending on the use cases of the system.

Additionally, with the integrated permissioned blockchain another level of trustworthiness
is added. The actors’ request history is very valuable in such a zero-trust system as
it allows for recognizing behavioural patterns of actors and based on that rejecting
requests of them, hence enabling some sort of early warning system. If this history data
is manipulated, the system would not be able to decide efficiently and correctly whether
to reject a request or not, as an attacker could always whitewash the history of the actor
it hijacked to not get rejected by the system. Because of this, it is a good idea to save
history in a distributed ledger. Having the history distributed to many peers eliminates
the risk of being tricked by a malicious blockchain peer and thus taking a manipulated
history for validation.

All the security advantages of a blockchain-based zero-trust system mentioned in this
thesis come with the cost of having a more complex system and losing performance -
in terms of execution time. Not only is the implementation effort higher but also the
maintenance of a running zero-trust system is higher compared to a perimeter-based
system with the same functional requirements. However, as this PoC is within the context
of smart cities and such networks anyway consist of a huge number of nodes that need
to be implemented, connected to the network and maintained, the additional effort for
implementing zero-trust in the back-end of that system should be tolerable.

50

CHAPTER 6
Conclusion

In an Internet of Things network like a smart city, there is usually a huge number of
interconnected and mostly heterogeneous devices. Even if all connected devices are
enterprise-owned and no third party is allowed to connect to them or talk with them,
the risk of a device getting hijacked is relatively high, as the attack surface is large due
to the huge number of connected devices. The heterogeneity of those devices makes it
even more likely that one of them got compromised, as attackers are given more options
for different attack vectors. On top of that, IoT devices usually have low computational
power and are in most cases not able to defend against many attacks.
In this thesis, we introduced a system design for such a huge smart city network that
implements the zero-trust architecture as defined by NIST. A system implementing the
ZTA does not trust any actors in its network by default and validates their trustworthiness
of them on each request. With such a system in place, even if an IoT device gets
compromised the system is still able to recognize it and take measures against it, e.g.
reject requests coming from that device. The better the policies are defined the more
efficient the system is able to do that. In our designed system, the policies are heavily
focused on actors’ request history to decide whether or not to trust actors. The request
history of the connected devices is very valuable in our designed system, as it allows
for more accurate decision-making when it comes to trusting a device or not. For that
reason, the history needs to be stored in a way such that it is impossible or very hard
to tamper with it. We connected a permissioned blockchain to the zero-trust system to
persist the history of actors, which is hosted by multiple blockchain nodes - in the PoC
there are three peers hosting the blockchain.
We focused on the design and implementation of a system with the zero-trust architecture
which is backed by a blockchain. This thesis demonstrated that such a system is
indeed implementable and also applicable in the context of the Internet of Things. We
also showed some non-functional properties of it by theoretically discussing them and
comparing them with conventional perimeter-based systems, and we also implemented

51

6. Conclusion

test cases and executed them against a running system on a test environment to show
other non-functional properties of the system. We came to the conclusion that such a
system is very dynamic in terms of policy enforcement and can react on a per-request
basis. With the trust algorithm being the central component in the validation process,
system designers can find the policies in a single place, making policy management a lot
easier. However, the initial implementation effort is higher compared to perimeter-based
systems, and the overall system can get very complex as it has a lot more components to
maintain. In fact, the system consists of two sub-networks with many components in
them: the zero-trust network and the blockchain network. Also, from our performance
and scalability experiment, we saw that the system is scalable on some levels but that the
performance suffers when the system is scaled up too high. Nevertheless, the designed
system is still able to maintain its security posture even on high load, i.e. it is still able
to validate each incoming request separately.

All in all, by combining zero-trust with a permissioned blockchain, the system adds many
useful layers of security for smart cities. The heterogeneity and low computational power
of IoT devices no longer pose a major security threat to the system as compromising a
device and using its identity is not enough for an attacker to gain access to the system
anymore. An attacker would need to spoof many more properties to gain access without
being noticed as an attacker by the system.

6.1 Research Questions Revisited
RQ1: How can the zero-trust paradigm be applied to secure smart city
systems with heterogeneous IoT devices using blockchain technology?

We showed that a zero-trust system is applicable to smart cities with the zero-trust
architecture definition provided by the National Institute of Standards and Technology
[SD18] and the permissioned blockchain technology provided by the Hyperledger Fabric
framework [Hyp22b]. We designed the system in Chapter 4 by complying to the zero-
trust tenets listed in Section 2.2.1 (defined by NIST [SD18, p. 6ff]), and described each
components in detail. The blockchain is used as an immutable database for the history of
actors’ requests. This history is a crucial component in the zero-trust system which help
deciding if an actor is trustworthy or not, by analyzing it and identifying (potentially)
malicious activity.

RQ2: Which implementation advantages and challenges are implied when
deciding to apply the zero-trust architecture in general?

The main advantage of using the designed system compared to perimeter-based security
models is the possibility of dynamically enforcing policies. An actor is checked for
trustworthiness on each request and the decision is made by checking some properties
of that actor. The policy enforcement is able to reject requests as soon as it recognizes
the malicious behaviour of the requester. The better the policies are defined and

52

6.2. Limitations

implemented, the more efficiently the system is able to block attackers or broken actors.
The algorithm logic for validating the trustworthiness of actors is the most important
part when implementing such a system. This algorithm - also called "trust algorithm"
[SD18, p. 17] - can be as static as having a set of rules which are always verified the same
for each request, or it can be as dynamic as deciding which policies to enforce for which
actors under which conditions - e.g. when a user requests a sensitive resource very often
during a time where the user usually does not request anything, the system could apply
stricter policies than having a user which requests usual resource during a work day.
The more dynamic the trust algorithm is and the more properties it includes in its
validation process, the more complex the system gets. The complexity can be very
challenging when implementing such a system with very complex trust algorithms.
Compared to conventional perimeter-bases systems, a blockchain-based zero-trust system
as designed in Chapter 4, has a lot more components to implement and maintain. The
system consists of two sub-networks which are already complex on their own, namely
the zero-trust network with all the components for enforcing policies and validating
trustworthiness of actors and requests, and the permissioned blockchain for saving the
request history immutably.

RQ3: How scalable/performant is the system compared to today’s
conventional systems?

Another challenge when deciding to implement such a system is performance. The
performance suffers from intense policy enforcement. The actual validation is done
by dedicated components (policy engines) with a consensus algorithm in place which
makes sure that the request validation is done correctly even if some policy engines are
hijacked or manipulated. As the system validates each and every request and all policy
engines are involved in this process, the overall execution time of request - i.e. the time
from sending the request to actually executing it - is longer than requests executed in a
perimeter-based security system. This can, however, be mitigated with a more efficient
consensus algorithm in the validation process.
Adding more policy engines to the validation process is as easy as starting up a new
policy engine instance and calling an API method for registering it in the system. Scaling
the number of policy engines up will, however, slow down the system remarkably, as the
number of nodes which need to validate an incoming request - and thus the wait time for
reaching consensus - increases. Again, a more efficient consensus algorithm can help here.
On the other hand, adding more blockchain peers for hosting more copies of the request
history is not that easy, but it does not affect the validation time that much (see the
evaluation results in Section 5.2.4).

6.2 Limitations
This thesis concentrated on designing and implementing a proof-of-concept system with
zero-trust properties and an integrated blockchain component. Therefore, the evaluation

53

6. Conclusion

is done on non-functional properties which refer to the design and implementation of
said system, i.e. implementation effort, complexity, scalability and performance. The
most obvious non-functional property of such systems, namely the security property, is
not evaluated as it is assumed that the security of a zero-trust system is by design more
effective than the security in a perimeter-based system.

Additionally, the implemented PoC is not a solution ready to be used in production as it
is. We concentrated on demonstrating the feasibility of such a system and intentionally
left out the implementation of some non-functional properties which would be needed to
make the system run in a real-world scenario, e.g. fault-tolerance, high-availability, etc.

6.3 Future work
The PoC implementation is not complete by any means. As already mentioned a couple
of times throughout this thesis, the system lacks some crucial properties for making it
production-ready. There is no concept for making the whole system fault-tolerant - some
parts are fault-tolerant, like the validation process (see Section 4.2) and the blockchain
network (immutability). High availability is also not dealt with during the design of the
system. There is a lot of potential for increasing the mentioned and similar non-functional
properties.

Additionally, performance can be increased with a more efficient consensus algorithm
during the validation process, which is able to work with a multiple of policy engines
and a high request load, e.g. the consensus algorithm could always select a random
subset of policy engines for validation instead of all. Another possible improvement
could be to add more policy administrators to the system which are preceded by a load
balancer that makes sure that the system’s workload is distributed to all policy engines
and consequently to all policy engines. Caching is also not utilized in the whole system.
Although it could improve the system’s performance a lot, developers should be very
careful to not cache anything which affects validation results. This could hinder or
eliminate the flexibility of policy validation.

Last but not least, the policy enforcement process can be improved by adding a machine
learning component. This component could be trained to recognize malicious behaviour
patterns and to predict actors’ behaviour to be able to reject attackers or compromised
actors more effectively.

54

List of Figures

2.1 ZTA core components (within the Control Plane and Data Plane) and addi-
tional components used as data sources to enforce the policies (outside the
Control/Data plan area) [RBMC20, p. 9] 13

4.1 Network diagram of the PoC . 22
4.2 Validation process starting from the PA. PE2 is compromised and acts mali-

ciously (it returns "not OK" for a valid request). The PA still returns OK to
the caller, as three out of four PEs answered with OK. For readability, only
the AS is shown from the validation components and the rest is represented
by the "..." lifeline . 30

4.3 Sequence diagram of a use case: An administrator updates the access rights
of an actor. The marked area (red) is where the Trust algorithm is executed.
Note: for readability only one PE and only two validation components are
shown, but it should be easy to imagine all remaining PEs and validation
components in this diagram. 34

5.1 The two additional systems implemented for the performance evaluation of
the proof-of-concept system. The "no-blockchain" variant (b) has yet another
variant with 12 policy engines. 44

5.2 Process for executing a test case against a system variant. This process is
done for each pair of test cases and variants, i.e. 25 times in total 46

5.3 Execution times (in seconds) of the test cases against five different system
setups: "Conventional" system (blue), ZTA without BC (red), ZTA without
BC with 4x more PEs (lightbrown), ZTA with BC (grey), ZTA with BC with
4x more PEs (gold) . 46

55

List of Tables

5.1 Software and hardware specifications of the test environment 43
5.2 Five different variants were used for testing. The variants are described

relative to the originally implemented PoC system, i.e. the "excludes" column
in this table means that the listed components are missing compared to the
PoC system. 43

57

List of Algorithms

4.1 Trust algorithm pseudo-code . 36

4.2 executeSecurityChecks . 36

4.3 evaluateValidationFailures . 37

4.4 Identify behavioural issues . 38

59

Acronyms

AS Authentication Service. 24, 25, 30, 31, 37, 42, 49, 55

BC Blockchain. 31

CA Certificate Authority. 29, 31

HLF Hyperledger Fabric. 15, 26–28, 31, 32, 42

IoT Internet of Things. 1–4, 7, 8, 18–20, 23, 32, 33, 51, 52

MSP Membership Service Provider. 28

NIST National Institute of Standards and Technology. 2, 3, 8–12, 17–19, 21, 22, 51, 52

OSV Operating System Vulnerabilities. 24, 30, 37, 42, 49

PA Policy Administrator. 11, 12, 23–25, 29, 34, 35, 49

PBFT Practical Byzantine Fault Tolerance. 29

PC Parameter Checker. 24, 49

PE Policy Engine. 11–13, 23–25, 29, 34, 35, 47, 49, 55

PEP Policy Enforcement Point. 11, 12, 22, 23, 25, 29–35, 47–49

PM Persistence Manager. 23–25, 30, 31, 35, 49

PoC Proof-of-Concept. 2–5, 21–33, 35, 36, 38, 39, 41–43, 48–51, 54, 55, 57

TA Trust Algorithm. 23–25, 36–38

TLS Transport Layer Security. 28

ZT Zero-Trust. 2–4, 9, 10, 12, 13, 25, 26, 28

ZTA Zero Trust Architecture. 2–4, 7–13, 18, 21, 25, 29, 31, 32, 41, 42, 51, 55

61

Bibliography

[ABB+18] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, et al. Hyperledger fabric: a dis-
tributed operating system for permissioned blockchains. In Proceedings of
the thirteenth EuroSys conference, pages 1–15, 2018.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, page 13–16, New York, NY, USA, 2012. Association for Computing
Machinery.

[CL+99] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.
In OsDI, volume 99, pages 173–186, 1999.

[CQZ+20] Baozhan Chen, Siyuan Qiao, Jie Zhao, Dongqing Liu, Xiaobing Shi,
Minzhao Lyu, Haotian Chen, Huimin Lu, and Yunkai Zhai. A security
awareness and protection system for 5g smart healthcare based on zero-
trust architecture. IEEE Internet of Things Journal, 8(13):10248–10263,
2020.

[DKJG17] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram.
Blockchain for iot security and privacy: The case study of a smart home.
In 2017 IEEE international conference on pervasive computing and com-
munications workshops (PerCom workshops), pages 618–623. IEEE, 2017.

[DLSP16] Casimer DeCusatis, Piradon Liengtiraphan, Anthony Sager, and Mark
Pinelli. Implementing zero trust cloud networks with transport access
control and first packet authentication. In 2016 IEEE International
Conference on Smart Cloud (SmartCloud), pages 5–10. IEEE, 2016.

[GTCMF+22] P García-Teodoro, J Camacho, G Maciá-Fernández, JA Gómez-Hernández,
and VJ López-Marín. A novel zero-trust network access control scheme
based on the security profile of devices and users. Computer Networks,
212:109068, 2022.

63

[Hyp22a] Hyperledger. Frequently asked questions - application-side pro-
gramming model. https://hyperledger-fabric.readthedocs.io/en/release-
2.4/Fabric-FAQ.html#application-side-programming-model, Last checked:
13.03.2023, 2020-2022.

[Hyp22b] Hyperledger. Hyperledger fabric documentation. https://hyperledger-
fabric.readthedocs.io/en/release-2.4/, Last checked: 14.02.2023, 2020-
2022.

[Hyp22c] Hyperledger. Write your first chaincode. https://hyperledger-
fabric.readthedocs.io/en/release-2.4/chaincode4ade.html, Last checked:
14.02.2023, 2020-2022.

[KB+10] John Kindervag, S Balaouras, et al. No more chewy centers: Introducing
the zero trust model of information security. Forrester Research, 3, 2010.

[KN12] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake. self-published paper, August, 19(1), 2012.

[KÖ19] Sinan Küfeoğlu and Mahmut Özkuran. Bitcoin mining: A global review of
energy and power demand. Energy Research & Social Science, 58:101273,
2019.

[LLT+21] Dapeng Lan, Yu Liu, Amir Taherkordi, Frank Eliassen, Stéphane Delbruel,
and Liu Lei. A federated fog-cloud framework for data processing and
orchestration: A case study in smart cities. In Proceedings of the 36th
Annual ACM Symposium on Applied Computing, SAC ’21, page 729–736,
New York, NY, USA, 2021. Association for Computing Machinery.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages and
Systems, pages 382–401, July 1982.

[Lue20] Knud Lasse Lueth. State of the iot 2020: 12 billion iot connections,
surpassing non-iot for the first time, Nov 2020.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. De-
centralized business review, page 21260, 2008.

[OO14] Diego Ongaro and John Ousterhout. In search of an understandable
consensus algorithm. In 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), pages 305–319, 2014.

[RBMC20] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero
trust architecture. Technical report, National Institute of Standards and
Technology, 2020.

64

[SD18] Mayra Samaniego and Ralph Deters. Zero-trust hierarchical management
in iot. In 2018 IEEE international congress on Internet of Things (ICIOT),
pages 88–95. IEEE, 2018.

[SHL+20] Maliha Sultana, Afrida Hossain, Fabiha Laila, Kazi Abu Taher, and
Muhammad Nazrul Islam. Towards developing a secure medical image
sharing system based on zero trust principles and blockchain technology.
BMC Medical Informatics and Decision Making, 20(1):1–10, 2020.

[SMG19] Sarwar Sayeed and Hector Marco-Gisbert. Assessing blockchain consen-
sus and security mechanisms against the 51% attack. Applied sciences,
9(9):1788, 2019.

[Sza97] Nick Szabo. Formalizing and securing relationships on public networks.
First monday, 1997.

[XLJ+21] Zhang Xiaojian, Chen Liandong, Fan Jie, Wang Xiangqun, and Wang Qi.
Power iot security protection architecture based on zero trust framework.
In 2021 IEEE 5th International Conference on Cryptography, Security
and Privacy (CSP), pages 166–170. IEEE, 2021.

[YXC+15] ChuanTao Yin, Zhang Xiong, Hui Chen, JingYuan Wang, Daven Cooper,
and Bertrand David. A literature survey on smart cities. Sci. China Inf.
Sci., 58(10):1–18, 2015.

65

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the work
	Running example
	Research questions
	Structure

	Background
	Edge-to-Cloud Continuum
	Zero-Trust Architecture
	Blockchain

	Related work
	Zero Trust
	Blockchain-based Zero Trust

	System Design
	Components
	Security measures
	Technology stack
	Communication

	Evaluation
	Implementation effort
	Performance
	Scalability
	Complexity
	Advantages and Challenges

	Conclusion
	Research Questions Revisited
	Limitations
	Future work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

