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Loudspeakers based on piezoelectric micro-electro-mechanical system (PMEMS) are attracting an increasing interest due
to their small size, low electronic power consumption, and easy assembly. These aspects are particularly advantageous
in applications like earphones, mobile phones, and in-ear hearing aid devices. However, creating sufficiently high sound
pressure levels challenges many existing MEMS loudspeakers. Furthermore, their small dimensions require the consideration
of additional physical phenomena like thermoviscous losses, which are often negligible in large loudspeakers. We model
and characterize a 3D piezoelectric MEMS loudspeaker in this work using our open-source finite element method (FEM)
program openCFS. We use the linearized conservation of mass, momentum, and energy (thermoviscous acoustic PDEs) for
a compressible Newtonian fluid (air) and describe the linear elastic solid using the linearized balance of momentum. The
coupling between flow and solid fields is then applied using a non-conforming FEM formulation. The standard acoustic
partial differential equation (PDE) is used in the far-field, where the thermal and viscous effects are negligible. We study
the viscous effects on the displacement and the sound pressure levels (SPLs) of the loudspeaker by parameter studies. These
results indicate that at a distance of 13 mm, an SPL of 55 dB at 5 kHz is achieved by a single PMEMS loudspeaker with a
footprint of 1.7×1.7mm2 under a low driving voltage of only 1V, which is promising considering its dimensions.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

A PMEMS loudspeaker consists of a piezoelectric actuation mechanism, a membrane (cantilever), and an air chamber. The
cantilever is excited by a piezoelectric layer sandwiched between two electrodes bonded to a silicon substrate. Due to their
small size, the viscous boundary layer is in the same order of magnitude as the characteristic length; therefore, the ther-
moviscous effects have to be considered. To model these effects, various methods are proposed: impedance-like boundary
condition [1, 2] and low reduced frequency models [3, 4]. However, these models have geometry restrictions. The former is
suggested for cases where the viscous boundary layer thickness is sufficiently small compared to the characterized length of the
investigated geometry. The latter is suitable for cases where the acoustic wavelength is larger than the geometry length scale.
Furthermore, one can use the linearized conservation of mass, momentum and energy to model the thermoviscous effects.
Although this method is computationally demanding, it does not have constraints with respect to the geometry [3, 5, 6].

The acoustic behavior of the MEMS loudspeakers depends on the solid structure, its material behavior and acoustic design
[7]. To design and characterize PMEMS, various methods such as FEM and lumped element modeling are often applied [8,9].
Using low reduced frequency, Naderyan et al, [10] suggested an analytical solutions for modeling the thermoviscous damping
in perforated MEMS. Their work showed good agreements with FEM model. Based on lumped and FEM models, Liechti et
al. developed a model for predicting the viscous losses between the frame and the plate in PMEMS [11].

In this work, we model a 3D PMEMS loudspeaker using our open source FEM program openCFS [12], where thermovis-
cous effects are taken into account. The device is simulated in two configurations, closed and open back-volume where in the
latter, the back and front volumes are connected. Then, PMEMS cantilever displacements are compared in these cases, and
the SPL of the device is studied. Finally, the cantilever’s displacement and PMEMS resonance frequencies are studied under
various atmospheric pressure.

2 Governing Equations

Modeling a PMEMS loudspeaker requires simulating various domains including solid Ωs, piezoelectric Ωp, thermoviscous
acoustics Ωtv and acoustic Ωa. Figure 1 shows an exemplary sketch of these fields and their interfaces. The conservation of
energy and the viscous stress tensor should be included to model the thermal and viscous effects in air, especially in small
dimensions. In this work, we stick to harmonic analysis, where the assumption of small perturbation around a reference
state is acceptable. This assumption allows us to use linearized constitutive laws. The perturbation ansatz is applied to the
conservation of mass, momentum, and energy for the pressure p, the density ρ, the temperature T and the velocity v to split
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Fig. 1 Simple sketch of a piezoelectric MEMS loudspeaker problem
with structure s, piezoelectric p, thermoviscous acoustics tv and acous-
tic a domains. Where Ω, Γ and n show the domains, interfaces and
normal directions.

the total quantities (̄.) into a background (.)0 and (acoustic) perturbation part, i.e.

p̄ = p0 + p(x, t) , ρ̄ = ρ0 + ρ(x, t) ,

T̄ = T0 + T (x, t) , v̄ = v0 + v(x, t) .

We solve for the acoustic perturbation quantities, and assume temporally constant background quantities. By assuming air as
an isotropic Newtonian fluid, the viscous stress tensor is linear proportional to the strain rate

τ̄ = 2µṡd + µBṡv, (1)

where µB is the second viscosity and µ is the dynamic viscosity. The deviatoric ṡd and the volumetric ṡv parts of the strain
rate tensor are defined by

ṡd = ṡ− 1

3
ṡv , ṡv = ∇ · v̄I , and ṡ =

1

2
(∇v̄ + (∇v̄)T ) , (2)

where ṡ is the total strain rate tensor. The distortion is measured by the deviatoric strain rate, which is the difference between
the total and mean volumetric strain rates. Deviatoric strain rate tensor expresses all the deformation rates that cause a shape
change without changing the volume. The final definition for the viscous stress tensor is obtained by substituting the strain
tensors (2) into the fluid viscous stress tensor expression (1)

τ̄ = µ(∇v̄ + (∇v̄)T ) + (µB − 2

3
µ)(∇ · v̄)I . (3)

This decomposition of viscosities is widely used in literatures as well [13–15]. The ideal gas relation is used to remove the
density degrees of freedom.

Finally, the linearized conservation equations are obtained by inserting the perturbation ansatz into the conservation equa-
tions and ignoring all nonlinear terms. We also assume the source terms in heat and momentum equations to be zero (v0 = 0).
For an ideal gas with no background flow, we arrive at

1

p0

∂p

∂t
+∇ · v − 1

T0

∂T

∂t
= 0 in Ωtv , (4a)

ρ0
∂v

∂t
−∇ · σ = 0 in Ωtv , (4b)

ρ0cp
∂T

∂t
+∇ · q − ∂p

∂t
= 0 in Ωtv , (4c)

where, the fluid stress tensor is σ̄ = −p̄I + τ̄ . The heat flux is expressed by Fourier’s law q = −γT∇T̄ , where γT is the heat
conductivity of the fluid.

The acoustic wave equation can be used to model the air behavior where the viscous boundary layers can be neglected. In
this case, viscous and thermal dissipation is ignored. This relation is as

1

c2
∂2pa

∂t2
−∇ ·∇pa = 0 in Ωa , (5)

where c is the isentropic speed of sound in air.
PMEMS devices contain the flexible solid domain, which is modeled using the conservation of momentum

∂2ρiu

∂t2
−∇ · σi = 0 i ∈ {s,p} and in Ωs ∪ Ωp , (6)

where u denotes the displacement, ρi the density of the solid/piezoelectric material, and σi is the stress tensor. We consider
the material behavior in the structure domain as linear elastic but anisotropic, relating stress and strain tensor through the
material stiffness tensor C by

σs = C : s in Ωs , (7)
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where the solid strain s is defined as s = 1
2

(∇u+ (∇u)T
)

. In the piezoelectric domain, the linearized piezoelectric
constitutive law is used

σp = C : s− e ·E and D = e : s+ ϵ ·E in Ωp , (8)

where e denotes the piezoelectric coupling tensor, E and D are the electric field and flux vectors, respectively, and ϵ is the
electric permittivity tensor. Furthermore, we use Gauss’ law to describe the electric flux density by

∇ ·D = 0 in Ωp, (9)

and describe the electric field as E = −∇ϕ , where ϕ is the electric scalar potential. This identically fulfills the Faraday’s law
for the electrostatic case, ∇×E = 0. The final linear formulation for piezoelectricity is obtained by inserting (8) into (6) and
(9).

Thermoviscous acoustic domains surround the flexible solid regions. To couple these domains, the following coupling
conditions are applied

−σ · ntv = σs · ns ,
∂u

∂t
= v , on Γstv .

These equations enforce the traction continuity and the velocity continuity on the solid-thermoviscous acoustic interface Γstv.
At the interface between the thermoviscous and the acoustic domain, the following coupling conditions are considered

σ · n = −pan = σa · n , v · n = va · n on Γatv ,

i.e., we apply the traction continuity and the normal velocity continuity on the acoustic and thermoviscous acoustic interface
Γatv.

3 Finite element formulation

The coupling between the solid and thermoviscous domains are enforced using non-conforming interfaces [6]. The coupling
between thermoviscous and acoustics are applied using Nitsche-type mortaring method [16]. These methods apply the inter-
face conditions in the weak sense; therefore, the non-conforming grids are supported on their interfaces. Using these methods,
the final FEM formulation for modeling PMEMS is obtained by multiplying the described formulations by appropriate test
functions denoted by ()′ and integrating over the whole computational domains

∫

Ωtv

1

p0
p′
∂p

∂t
dΩ+

∫

Ωtv

p′∇ · v dΩ−
∫

Ωtv

1

T0
p′
∂T

∂t
dΩ = 0 , (10a)

∫

Ωtv

ρ0cpT
′ ∂T
∂t

dΩ+

∫

Ωtv

γT∇T ′ ·∇T dΩ−
∫

Ωtv

T ′ ∂p
∂t

dΩ+

∫

Γtv

T ′q · ntv dΓ = 0 , (10b)

∫

Ωtv

ρ0v
′ · ∂v

∂t
dΩ +

∫

Ωtv

∇v′ : σtv dΩ +

∫

Γtv

v′ · σ · n dΓ +

∫

Γtva

v′ · npa dΓ

+

∫

Γvs

v′ · σs · ndΓ− β
p2e
he

∫

Γvs

v′ · (∂u
∂t

− v) dΓ = 0 , (10c)

∫

Ωa

1

c2
p′a
∂2pa

∂t2
dΩ+

∫

Ωa

∇p′a ·∇pa dΩ−
∫

Γatv

ρ0 p
′
a
∂v

∂t
· n dΓ = 0 , (10d)

∫

Ωs∪Ωp

u′ · ρi
∂2u

∂t2
Ω+

∫

Ωs∪Ωp

∇u′ : C : s dΩ+

∫

Ωp

∇u′ : e · ∇ϕ dΩ−
∫

Γs∪Γp

u′ · σs · n dΓ

−
∫

Γstv

u′ · σs · n dΓ + β
p2e
he

∫

Γstv

u′ · (∂u
∂t

− v) dΓ = 0, (10e)

−
∫

Ωp

∇ϕ′ · e : sdΩ +

∫

Ωp

∇ϕ′ · ϵ ·∇ϕ dΩ = 0. (10f)

Equations (10a), (10b) and (10c) are the weak form of conservation of mass, energy and momentum for the thermoviscous
domain which includes coupling with acoustic and solid domains. Equations (10d), (10e) and (10f) are the weak form of
the acoustic wave equation, flexible solid and piezoelectric Gauss formulation. On the walls, we enforce the homogeneous
Dirichlet boundary condition. This means applying u = 0 and v = 0 on the solid and thermoviscous acoustic boundaries,
respectively.
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4 of 6 Section 12: Waves and acoustics

(a) Simple sketch of PMEMS. Different layers of the solid struc-
ture are displayed (dimensions are not to scale).

(b) Mesh discretization of PMEMS in closed back-volume configuration.
Non-conforming mesh discretizations are used on the interfaces.

Fig. 2: PMEMS loudspeaker

Table 1: PMEMS loudspeaker layers

Layer Silicon (Si) Top electrode (te) Bottom electrode (be) PZT
Thickness in µm 9.1 0.1 0.13 2.1
Density ρ in kgm−3 2330 21450 7700 7600
Young’s Modulus E in Pa 1.12·1011 1.68·1011 9.8·1010 1.2·1011
Poisson’s ratio ν 0.28 0.38 0.23 0.33

Table 2: Piezoelectric material properties

Property Value
Permittivity ϵ ϵ11 = ϵ22 2.771·10−8

in As/Vm ϵ33 3.010·10−8

Piezoelectric coupling e31 = e32 -3.88
tensor e in Asm−2 e24 = e15 = e33 7.76

Table 3: Additional dimensions (values in µm)

Property values in µm
tBV 280
ttable 2000
ls 1700
ws 1700

4 Numerical simulation and results

Using the described formulation, we model and characterize a PMEMS loudspeaker. This loudspeaker is modeled in two
configurations: closed and open back-volume. Figure 2(a) shows the composition of this model including cantilever’s multiple
layers, acoustic domains and the cylindrical hole with 1mm diameter. The closed or open cylindrical hole separates or
connects the back and front volumes and creates the closed back-volume and open back-volume configurations, respectively.
This connection leads to complete different behaviors of the studied PMEMS due to the damping and viscous forces. The
studied PMEMS contains four flexible solid layers showed in Fig. 2(a). The material parameters and thickness of these layers
are given in tables 1 and 3. In these tables, tBV, ls and ws are the thickness of back-volume, the length and the width of solid
layers. Air material properties such as density, visosity and etc. at room temperature and under atmopheric pressure of 1 bar
are illustrated in [16].

Changing the atmospheric pressure affects air behavior. Density and compression modulus are air material properties that
vary with different pressures. The relation between air density and pressure is described using the ideal gas relation as ρ = p

RT ,
where R is the gas constant. Accordingly, the air compression modulus K varies for different pressure as K = κp0 , where κ
is the adiabatic exponent. Other air properties do not vary in different reference pressures. The air viscosity varies at different
temperatures; however, under different pressures at room temperature, it stays almost constant [17].

Figure 2(b) depicts the mesh discretization used for modeling the device in the closed back-volume configuration. In
the open back-volume, the same geometry is modeled by using a larger acoustic domain, and considering the table (where
the device is placed) and frame structures. Since these structures are assumed as perfectly rigid bodies, one can eliminate
them from the geometry. The non-conforming interfaces are used among the solid-thermoviscous acoustic and acoustic-
thermoviscous acoustic interfaces.

© 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH. www.gamm-proceedings.com
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Fig. 3: Maximum displacement of PMEMS in closed
and open back-volume configurations with excitation of
1V at 1 bar
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Fig. 4: Sound pressure level (SPL) at distance 13mm
in closed back-volume configuration with excitation of
1V under 1 bar.
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(a) Closed back-volume
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(b) Open back-volume

Fig. 5: PMEMS maximum cantilever’s displacement under various atmospheric pressure with excitation of 1V under 1 bar

Figure 3 shows the maximum displacement of the PMEMS cantilever over frequency range of 1 to 20 kHz with the exci-
tation of 1V, under the atmospheric pressure of 1 bar. In the closed back-volume, the first resonance frequency of the device
(∼4 kHz ) is completely damped; however, the displacement shows the first resonance in the open back-volume. The damping
forces are originated from two sources: viscous and pressure forces. In the closed back-volume case, the air is forced to move
thorough the narrow slit by cantilever displacement, which causes higher viscous damping. On the contrary, in the open back
volume this damping is negligible.

We further studied the SPL at the distance of 13mm in the closed back-volume configuration with the excitation of 1V
under the atmospheric pressure of 1 bar. The PMEMS produces an SPL of 55 dB at the frequency of the 5 kHz, which is
promising considering the loudspeaker’s small dimensions. In the range of 3 to 20 kHz, the SPL responses are relatively flat.

PMEMS device is further studied in various atmospheric pressures. Figure 5 shows the maximum displacement of PMEMS
cantilever over frequency in open and closed back-volume configurations. At lower frequencies, the closed back-volume sys-
tem shows sharper peaks with higher amplitudes. Increasing atmospheric pressure from 200 to 100 000Pa causes higher vis-
cous damping and additional pressure forces resulting in lower cantilever amplitudes. These higher forces also leads to higher
cantilever stiffness which shifts the resonances to the higher frequencies (Fig. 5(a)). In the open back-volume (Fig. 5(b)), the
viscous and pressure effects are much lower than in the closed back-volume configuration due to the connection of the front
and back volumes. Thus, we observe the resonance of ∼4 kHz for various atmospheric pressures from 3000 to 100 000Pa.
Similar to the closed back-volume, displacement amplitudes are higher with sharper peaks in lower atmospheric pressure. On
the contrary, the resonances are slightly shifted to lower frequencies under higher atmospheric pressures. Increasing pressure
results in an increase in air density, which causes lower resonances, due to the increased added-mass effect.

5 Conclusion

In this work, we first presented a finite element formulation for modeling thermoviscous effects in the acoustic domains.
Further, we add a non-conforming finite element formulation for coupling this domain to solid and acoustic domains. Using
these formulations, we have modeled a 3D PMEMS loudspeaker in closed and open back-volume configurations. In the closed
back-volume configuration, the air is forced to move thorough the narrow slit by cantilever displacement. This caused high
damping effects which faded out the first resonance frequency. These effects are not as pronounced in the open back-volume
as in the closed back-volume; therefore, the system still demonstrates its resonance frequency at ∼4 kHz. Furthermore,
atmospheric pressure was changed from 200 to 100 000Pa. This affected the viscous and pressure forces and, therefore,
the displacement amplitudes and resonance frequencies. In both configurations, lower pressures caused lower damping and

www.gamm-proceedings.com © 2023 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.
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6 of 6 Section 12: Waves and acoustics

subsequently higher displacement amplitudes and sharper peaks. In the closed back-volume, the resonances were shifted
to higher frequencies with higher atmospheric pressures. These higher resonances resulted from the increased stiffness of
PMEMS’ cantilever due to the higher pressure forces. In the open back-volume, this force was negligible; therefore, higher
pressures caused higher densities and lower resonances.
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