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Abstract: Recrystallization kinetics and two critical temperatures—the non-recrystallization tempera-
ture TNR and the static recrystallization critical temperature TSRCT—of five Nb, Ti, and V microal-
loyed steel grades are evaluated. The experimental examination is realized by employing isothermal
double-hit compression tests and continuous hot torsion tests, both performed on a Gleeble® 3800
thermo-mechanical simulator. The experimental results are used for the critical assessment of pre-
dicted TNR using four empirical equations from the literature, and for the validation of simulated TNR

and TSRCT. The thermokinetic computer simulations are realized using the mean-field microstruc-
ture modeling software MatCalc. Analysis shows that higher microalloying contents increase both
critical temperatures, TNR and TSRCT, whereby the effect of recrystallization retardation of Nb is
more pronounced than that of Ti or V. The most accurate reproduction of the experimental recrys-
tallization behavior of the five examined steel grades is realized by the employed physics-based
simulation approach.

Keywords: microalloyed steel; microstructural control; precipitation; recrystallization delay; TNR;
TSRCT; steel properties

1. Introduction

Hot rolling processes at elevated temperatures can induce coarse and non-uniform
austenite grain structures, which impair the mechanical properties of the final steel prod-
uct [1,2]. Additions of microalloying elements, e.g., titanium, niobium, and vanadium, to
low-carbon steel help to prevent austenite grain coarsening due to pinning of grain bound-
aries by precipitates and solute drag [3–5]. During thermo-mechanical treatments, the
deformation-affected nucleation of (Nb/Ti/V)(C,N) MX (M standing for metallic elements,
and X for C,N) carbonitride precipitates retards static recrystallization of the austenite
phase and helps to control the austenite grain size [6,7]. Therefore, the formation of these
complex MX particles can suppress austenite grain recrystallization in microalloyed steels.
For precise planning of industrial rolling schedules at reduced costs, predictive knowledge
of the temperature at which the impediment of recrystallization takes place in different mi-
croalloyed steels is crucial. The literature on the recrystallization behavior of microalloyed
steel is generally based on examinations by performing isothermal double-hit compression
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tests (DHT) and continuous hot torsion tests (TT) [8,9]. To date, it is in question whether
one is superior to the other.

Within this work, the recrystallization kinetics of five microalloyed steel grades are
examined experimentally and computationally. First, the differences and complexity of the
two experimental methods, DHT and TT, for the assessment of the critical temperatures of
the static recrystallization of microalloyed steel, are evaluated and discussed. These are the
non-recrystallization temperature TNR, Section 1.1, and the static recrystallization critical
temperature TSRCT, Section 1.2, respectively. Secondly, TNR and TSRCT values are simulated
by employing the semi-physical recrystallization modeling by Buken et al. [10], which has
been implemented into the mean-field microstructure modeling software MatCalc [11],
http://matcalc.at (accessed on 10 April 2023). Aside from the dislocation density evolution,
the thermokinetic simulation takes into account Calphad-modeled MX stabilities [12].
Thirdly, the predictive power of semi-physical simulation results on the recrystallization
retardation of five experimentally studied microalloyed steel grades is compared to the
purely phenomenological approach, by application of Equations (1)–(4), Section 1.1.3. The
inaccuracies of these empirical equations from literature are identified and discussed.

1.1. Non-Recrystallization Temperature

The softening behavior of microalloyed steels at deformation up to ~0.5 critical strain is
regulated by pure static recrystallization, whereas above it can be affected by metadynamic
recrystallization. The value of the critical strain depends on microalloying, the strain rate,
and temperature [13,14]. In the majority of microalloyed steels, dynamic recrystallization
of the austenite matrix does not occur below an equivalent strain of 0.35, even at elevated
temperatures [15].

The non-recrystallization temperature (TNR) is the temperature, below which complete
static recrystallisation between consecutive rolling passes does no longer occur. TNR is
determined for continuous cooling [16]. It is notable that TNR thus also depends on the
inter-rolling pass time.

1.1.1. The Role of Process Parameters for TNR

The value of TNR is strongly dependent on process parameters during thermo-mechanical
treatments. Significantly prolonged intermediate holding times between passes, increas-
ing strain rates, higher strains, and lower cooling rates lead to a decrease in TNR [17–19].
The condition of the austenite matrix before the deformation also plays a vital role in
the TNR, since increasing reheating temperatures elevate the non-recrystallization tem-
perature due to higher austenite supersaturation concerning microalloying elements [20].
Deformation below TNR results in elongated austenite grains, where so-called ‘pancaking’
occurs due to accumulated strain, and more nucleation sites for grain boundary ferrite
are provided [16,17]. At conventional controlled rolling, roughing passes are performed
above TNR to ensure complete recrystallization of the austenite grains during the interpass
time [21].

1.1.2. The Impact of Microalloying Elements on TNR

Extensive literature is available on the role of the alloying elements Nb, Ti, and V on the
TNR [16,19,22,23]. Higher amounts of microalloying elements lead to an increase in the non-
recrystallization temperature. Figure 1 shows the comparison of different microalloying
and associated TNR. Additions of Nb increase the TNR more effectively than those of V
and Ti [24,25]. Akben et al. [26] reported that both Nb carbonitrides and dissolved Nb in
the steel matrix have a higher impact on recrystallization retardation than solute V. Abad
et al. [20] differentiate between deformation at low and high pass-strains (ϕ) within their
experiments using Nb-microalloyed steel. They show that at ϕ = 0.1, recrystallization is
impeded by solute drag due to dissolved Nb, while strain-induced precipitation is the
controlling factor at ϕ > 0.2.

http://matcalc.at
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Figure 1. Impact of varying contents (x) of microalloying elements on TNR of microalloyed steels for
deformation to ϕ = 0.2 and intermediate holding time of 5 s [25,27]. Lines are guides to the eye.

(Nb/Ti/V)(C,N) precipitates possess the ability to elevate TNR, but increasing the inter-
pass time causes coarsening of the carbonitrides [27]. At first, prolonged holding elevates
the TNR, since pinning by deformation-induced carbonitrides increases. A prolongation of
the interpass time above 50 s, on the other hand, reduces their power for recrystallization
impediment [27] due to coarsening of the precipitates, which leads to a decrease in TNR.
Besides the substantial effect of grain boundary pinning by deformation-induced parti-
cles, further physical mechanisms, such as solute drag of microalloying elements, affect
TNR [17,20]. According to Bai et al. [17], solute drag dominates at short interpass times
below 12 s within their research on microalloyed steel.

1.1.3. Empirical Equations for TNR

An empirical relation between the increase in TNR, induced by the microalloying
elements Nb, Ti, and V, was given for low-carbon steels by Boratto et al. [28] with

TNR = 887 + 464C + 890Ti +
(

6445Nb− 644
√

Nb
)
+
(

732V− 230
√

V
)
+ 363Al − 357Si, (1)

where the chemical composition is to be entered in wt.% [29].
Unfortunately, the content of nitrogen, which is essential for the formation of (Nb/Ti/V)

(C,N) precipitates, is not taken into account.
Homsher [25,27] presented an equation for TNR developed by Bai et al. [30]:

TNR = 174 log
[

Nb·
(

C +
12
14

N
)]

+ 1444. (2)

The variables Nb and C represent the element content of the steel grade in wt.%. N
describes the amount of remaining free nitrogen after the precipitation of TiN. Therefore,
the equation directly takes the effect of Nb into account and indirectly includes the impact
of Ti on recrystallization via the N content.

Fletcher [31] investigated the TNR values of several different steel grades, which
delivered the following equation [25,27]:

TNR = 849− 349C + 676
√

Nb + 337V. (3)

Here, the microalloying elements Nb and V are accounted for in wt.%. Titanium is
not mentioned.

Another equation discussed by Homsher [25,27] for the prediction of TNR by Fletcher [31]
is given as:

TNR = 203− 310C− 149
√

V + 657
√

Nb + 683e−0.36·ϕ. (4)

The content of Nb and V is given in wt.%, while ϕ describes the applied pass strain.
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1.2. Static Recrystallization Critical Temperature

In microalloyed steel, the maximum temperature, at which the static austenite recrys-
tallization starts to be impeded solely by the strain-induced precipitation of MX carbonitride
precipitates, is defined as the static recrystallisation critical temperature (TSRCT). It is always
determined by isothermal conditions and does not involve a dependence of inter-rolling
pass time. Below TSRCT, no complete recrystallization of the austenite phase can thus be
realized, independently of intermediate holding times during processing [18].

Figure 2 depicts the correlation between the amount of microalloying and the TSRCT,
as well as the applied strain, found in the literature by Medina et al. [19,23,32–35]. Higher
microalloying contents of the elements Nb, Ti, and V and lower true strain values increase
the TSRCT. Nb has the biggest effect on recrystallization retardation, followed by V and Ti.

Metals 2023, 13, x FOR PEER REVIEW 4 of 22 
 

 

1.2. Static Recrystallization Critical Temperature 
In microalloyed steel, the maximum temperature, at which the static austenite recrys-

tallization starts to be impeded solely by the strain-induced precipitation of MX carboni-
tride precipitates, is defined as the static recrystallisation critical temperature (TSRCT). It is 
always determined by isothermal conditions and does not involve a dependence of inter-
rolling pass time. Below TSRCT, no complete recrystallization of the austenite phase can 
thus be realized, independently of intermediate holding times during processing [18]. 

Figure 2 depicts the correlation between the amount of microalloying and the TSRCT, 
as well as the applied strain, found in the literature by Medina et al. [19,23,32–35]. Higher 
microalloying contents of the elements Nb, Ti, and V and lower true strain values increase 
the TSRCT. Nb has the biggest effect on recrystallization retardation, followed by V and Ti. 

 
Figure 2. TSRCT of microalloyed steels for deformation to φ = 0.2 (continuous line) and φ = 0.35 
(dashed line) [19,23,32–35]. Lines are guides to the eye. 

1.3. Comparison of TNR and TSRCT 
Figure 3 displays experimental TNR and TSRCT values of Nb microalloyed steels from 

the literature [16,19,22,33–35]. It shows that the non-recrystallization temperature reaches 
lower values compared to the TSRCT at longer interpass times, independently of microal-
loying. 

 
Figure 3. TSRCT and TNR of Nb microalloyed steels for deformation to φ = 0.2 and varying intermediate 
holding times [16,19,22,33–35]. The line is a guide to the eye. 

Both critical temperatures indicate the start of recrystallization impediment but may 
deviate from each other as the TSRCT only considers the recrystallization-retarding effect of 
precipitated carbonitrides, while the TNR marks the temperature at which total static re-
crystallization does not occur. 

2. Materials and Methods 

Figure 2. TSRCT of microalloyed steels for deformation to ϕ = 0.2 (continuous line) and ϕ = 0.35
(dashed line) [19,23,32–35]. Lines are guides to the eye.

1.3. Comparison of TNR and TSRCT

Figure 3 displays experimental TNR and TSRCT values of Nb microalloyed steels
from the literature [16,19,22,33–35]. It shows that the non-recrystallization temperature
reaches lower values compared to the TSRCT at longer interpass times, independently
of microalloying.
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Figure 3. TSRCT and TNR of Nb microalloyed steels for deformation to ϕ = 0.2 and varying intermedi-
ate holding times [16,19,22,33–35]. The line is a guide to the eye.

Both critical temperatures indicate the start of recrystallization impediment but may
deviate from each other as the TSRCT only considers the recrystallization-retarding effect
of precipitated carbonitrides, while the TNR marks the temperature at which total static
recrystallization does not occur.
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2. Materials and Methods

Five different microalloyed steel grades are examined within the framework of this
study. The chemical composition of the investigated alloys is given in Table 1.

Table 1. Chemical composition of examined materials in wt.%.

Steel Grade C Mn Ti Nb V Cr Al Si

S1 0.15 1.27 0.01 0.01 0.07 0.20 0.03 0.22
S2 0.18 0.88 <0.01 <0.01 <0.01 0.02 0.03 0.26
S3 0.20 1.40 <0.01 <0.01 0.10 0.02 0.02 0.30
S4 0.18 0.93 <0.01 0.03 <0.01 0.03 0.03 0.26
S5 0.21 1.45 <0.01 0.04 0.10 0.03 0.03 0.50

The microalloyed steel grade S1 contains considerable amounts of Nb, Ti, and V, but
much more Cr than all other alloys. The steel grade S2 serves as reference material since it
only contains low additions of Ti, Nb, and V. S3–S5 are typical microalloyed steel grades
with varying contents of Nb, Ti, and V. S5 combines the effects of all three microalloying
elements, while S3 and S4 just contain higher amounts of V or Nb, respectively.

2.1. Experiments
2.1.1. Double-Hit Compression Tests (DHT)

DHT are a very successful method for the determination of recrystallization kinetics
in the austenite region of steels [19,23,32–35]. In fact, the softening fraction due to recrys-
tallization is measured by this kind of experiment. By the examination of the softening
fraction (all phase fractions in the present study are given in mol.%) of austenite at different
temperatures and varying holding times before the second deformation, the TNR and TSRCT
can be determined.

Double-hit tests are performed on a Gleeble® 3800 thermo-mechanical simulator. To
ensure the comparability between the experimental test results from DHT and torsion tests,
the same steel grade, S5, is investigated with both methods. On the cylindrical samples with
10 mm diameter and 15 mm length, an R-type thermocouple is welded onto the surface for
temperature control during resistive heating. A layer of Mo, nickel paste, and graphite is
placed between specimen and anvil to decrease the temperature gradient to < 10 K. Figure 4
depicts the schematic rolling pattern of the performed tests. The individual specimens
are solution annealed at 1553 K for 600 s. Previous MatCalc equilibrium calculations by
the authors [36] showed that the annealing temperature of 1553 K is above the solubility
limit of MX carbonitride solid solutions, while the test temperatures (1373–1273 K) are
low enough for their precipitation. After cooling down to the respective test temperature,
the samples are held for 20 s and subsequently deformed to ϕ = 0.2 with 0.5 s−1. The low
strain of 0.2 is chosen to exclude dynamic recrystallization during the treatment. The first
compression is followed by an intermediate holding time of 0.3–3000 s before the start of
the second deformation with a strain rate of again 0.5 s−1 to ϕ = 0.4 in total.

Metals 2023, 13, x FOR PEER REVIEW 5 of 22 
 

 

Five different microalloyed steel grades are examined within the framework of this 
study. The chemical composition of the investigated alloys is given in Table 1. 

Table 1. Chemical composition of examined materials in wt.%. 

Steel Grade C Mn Ti Nb V Cr Al Si 
S1 0.15 1.27 0.01 0.01 0.07 0.20 0.03 0.22 
S2 0.18 0.88 <0.01 <0.01 <0.01 0.02 0.03 0.26 
S3 0.20 1.40 <0.01 <0.01 0.10 0.02 0.02 0.30 
S4 0.18 0.93 <0.01 0.03 <0.01 0.03 0.03 0.26 
S5 0.21 1.45 <0.01 0.04 0.10 0.03 0.03 0.50 

The microalloyed steel grade S1 contains considerable amounts of Nb, Ti, and V, but 
much more Cr than all other alloys. The steel grade S2 serves as reference material since 
it only contains low additions of Ti, Nb, and V. S3–S5 are typical microalloyed steel grades 
with varying contents of Nb, Ti, and V. S5 combines the effects of all three microalloying 
elements, while S3 and S4 just contain higher amounts of V or Nb, respectively. 

2.1. Experiments 
2.1.1. Double-Hit Compression Tests (DHT) 

DHT are a very successful method for the determination of recrystallization kinetics 
in the austenite region of steels [19,23,32–35]. In fact, the softening fraction due to recrys-
tallization is measured by this kind of experiment. By the examination of the softening 
fraction (all phase fractions in the present study are given in mol.%) of austenite at differ-
ent temperatures and varying holding times before the second deformation, the TNR and 
TSRCT can be determined. 

Double-hit tests are performed on a Gleeble® 3800 thermo-mechanical simulator. To 
ensure the comparability between the experimental test results from DHT and torsion 
tests, the same steel grade, S5, is investigated with both methods. On the cylindrical sam-
ples with 10 mm diameter and 15 mm length, an R-type thermocouple is welded onto the 
surface for temperature control during resistive heating. A layer of Mo, nickel paste, and 
graphite is placed between specimen and anvil to decrease the temperature gradient to 
< 10 K. Figure 4 depicts the schematic rolling pattern of the performed tests. The individ-
ual specimens are solution annealed at 1553 K for 600 s. Previous MatCalc equilibrium 
calculations by the authors [36] showed that the annealing temperature of 1553 K is above 
the solubility limit of MX carbonitride solid solutions, while the test temperatures (1373–
1273 K) are low enough for their precipitation. After cooling down to the respective test 
temperature, the samples are held for 20 s and subsequently deformed to φ = 0.2 with 0.5 
s−1. The low strain of 0.2 is chosen to exclude dynamic recrystallization during the treat-
ment. The first compression is followed by an intermediate holding time of 0.3–3000 s 
before the start of the second deformation with a strain rate of again 0.5 s−1 to φ = 0.4 in 
total. 

 
Figure 4. Thermo-mechanical rolling pattern for DHT. Figure 4. Thermo-mechanical rolling pattern for DHT.



Metals 2023, 13, 884 6 of 21

For the evaluation of the softening fraction, the 5% true strain method [37] is applied.
Using this technique, the fraction of the recrystallized material can be identified when
no significant recovery contributions are expected [38], and the softening fraction of the
material is here calculated by the following equation: [37]

Xa =
σm(5%) − σ2(5%)

σm(5%) − σ1(5%)
, (5)

where σm(5%) is the true stress in the zero-softening curve at 5% strain. The zero softening
curve describes the deformation and, therefore, the evolution of the true stress up to the
maximum true strain of 0.4, without an intermediate holding time or an interruption
for a second hit, while the parameters σ1(5%) and σ2(5%) describe the flow stresses at 5%
strain for the first and the second deformation, respectively. Since the holding between the
deformation hits initiates recrystallization of the material, the second flow curve would
be identical to the first one after a sufficiently long intermediate holding due to complete
recrystallization [21]. In the work of Homsher [25], the accurate identification of the
different stress values is illustrated and discussed in detail.

For the evaluation of the TNR from DHT, the fractional softening of the material is
plotted as a function of the different deformation temperatures [39]. The corresponding
value of TNR is determined at 20% fractional softening, since earlier studies showed that
below 20 percent, softening is caused by static recovery, whereas, above this limit, it is
evoked by static recrystallization [25,27,39].

By plotting the fractional softening as a function of time, the TSRCT can be evaluated.
At the TSRCT, as well as below this temperature, the slope of Xa against time decreases [19].
A plateau is formed at lower temperatures, which indicates the deformation-induced
precipitation of MX particles [25] and the retardation of recrystallization. Above the TSRCT,
no impediment of recrystallization due to precipitation of (Nb/Ti/V)(C,N) takes place.

2.1.2. Hot Torsion Tests (TT)

Hot torsion tests with continuous cooling are performed on all five steel grades using
the hot torsion mobile conversion unit of the Gleeble® 3800 thermo-mechanical simulator.
The experimental setup is similar to the one of the DHT but torsion tests demand for a
more complex sample shape with 165 mm length, a diameter of 10 mm at the center, and a
diameter of 14 mm at the borders. The specimens for the experiments are solution annealed
at 1553 K for 600 s, followed by constant cooling from 1553 K with 1 K/s. During cooling,
the samples undergo deformation consisting of 15 passes with 0.3 equivalent strain and a
strain rate of 2 s−1. The strain of 0.3 is not sufficient to produce dynamic recrystallization;
therefore, the examination of static recrystallization can be focused on. The interpass time
between the individual torsional loads is 30 s. The schematic rolling pattern for the torsion
tests is illustrated in Figure 5.
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The experimentally obtained values of torque T and twist θ provide the basis for the
calculation of the effective stress σeff and strain ϕeff according to the von Mises criterion,
adapted from Maccagno and Medina et al. [15,29]:

σeff =
T·3.3

√
3

2πR3 , (6)

ϕeff =
θR√
3L

, (7)

where the value of 3.3 accounts for strain rate sensitivity as well as strain hardening of
the examined microalloyed steels [40], R is the radius, and L represents the length of the
individual sample. The mean flow stress (MFS) corresponds to the area under each stress–
strain (σ − ϕ) curve of the separate passes, normalized by the applied strain, and can be
calculated by the following equation: [17,29]

MFS =
1

ϕb − ϕa

∫ ϕb

ϕa
σeqdϕeq. (8)

By use of the MFS plotted against the inverse absolute temperature during the defor-
mation, TNR is identified by a change in the slope of the curve [17,41].

For the examination of the TSRCT from torsion tests, isothermal torsion experiments
at varied temperatures with the same strain and strain rate are necessary. The TSRCT can
then be evaluated from the plot of fractional softening against time and it is, therefore,
independent of the interpass time [18,19].

3. Modeling
3.1. Substructure and Recrystallization Model

The MatCalc simulations in the present work utilize the modeling framework for static
recrystallization implemented by Buken et al. [10], which incorporates the combined influ-
ence of nucleation, growth and coarsening of recrystallized grains based on the dislocation
density evolution and precipitation kinetics [42]. The relevant equations, as implemented
in MatCalc (version 6.04.0087), are summarized in the subsequent sections.

3.1.1. Dislocation Density Evolution

The substructure is described with an extended one-parameter dislocation density
evolution model based on the work of Kocks and Mecking [43]. The three terms control the
generation of dislocations (A), dynamic recovery (B), and static recovery (C) [36]:

∂ρ

∂ϕ
=

M
bA
√

ρ− 2BM
dcrit

b
ρ− 2CDeff

Gb3
.
ϕkT

(
ρ2 − ρ2

eq

)
, (9)

where ρ describes the total dislocation density, ρeq the dislocation density of a well-annealed
microstructure, ϕ the true strain, M the Taylor factor, b the Burgers vector, dcrit the critical
annihilation distance between two dislocations [10], Deff the effective diffusion coefficient,
G the shear modulus,

.
ϕ the strain rate, k the Boltzmann constant, and T the temperature.

The effective diffusion coefficient used in this work accounts for pipe diffusion due to
dislocations DDis, according to the work by Stechauner and Kozeschnik [44].

The parameter ρeq is obtained from the sum of the equilibrium value for internal
dislocations ρeq,int and the Read–Shockley dislocation density required to uphold the given
subgrain structure ρRS [10,45]:

ρeq = ρeq,int + ρRS. (10)

The effect of precipitates on dislocation generation is not taken into account.
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3.1.2. Grain Boundary Pinning and Solute Drag

Carbonitride precipitates as well as alloying elements in solid solution both hinder
grain boundary movement via Zener pinning [46] and solute drag [47], respectively. The
implementation in MatCalc treats both effects within the mobility calculations. The effective
mobility Meff for simultaneous precipitation and solute drag is combined in the same way
for high angle grain boundaries (HAGBs) and low angle grain boundaries (LAGBs): [48]

1
Meff

=
1

Mprec
+

1
Msol

. (11)

In a system with precipitates, the intrinsic grain boundary mobility is reduced to
Mprec, depending on the driving pressure for grain boundary movement and the Zener
pressure [48]. The mobility term Msol accounts for the solute drag of elements according to
Cahn’s model [47].

3.1.3. Nucleation of Recrystallized Grains

According to the theory developed by Bailey and Hirsch [49], subgrains that are in
contact with high angle grain boundaries may evolve into recrystallized grains, provided
that the subgrain diameter δ exceeds a critical value δcrit, which is calculated as [10]:

δcrit =
4 · γHAGB

PD,RX
=

4 · γHAGB

0.5Gb2(ρtot − ρeq,int
) , (12)

where γHAGB is the high angle grain boundary energy and PD,RX is the driving pressure
for recrystallization. The nucleation rate of new grains

.
N depends on the number density

of potential nucleation sites Npot, the flow of subgrains reaching the critical size
.
F (as

determined by the time evolution of the subgrain distribution) and the saturation function
B, which accounts for the fraction of HAGBs occupied by recrystallized nuclei. Thus, the
consumption of nucleation sites is

.
N = Npot·

.
F·B. (13)

A more detailed summary of the calculation procedure for the nucleation rate can be
found in [10].

3.2. Simulation Setup

Both the TNR and the TSRCT are affected by the intricate interplay between the de-
formation impact, MX carbonitride precipitation, and recrystallization behavior of the
austenite matrix. MatCalc simulations of the thermo-mechanical treatments are performed
to describe the deformation-dependent dislocation density evolution, the precipitation
kinetics, and the progress of recrystallization. The models (see Section 3.1) are finally
calibrated with the experimentally determined softening fractions, the TSRCT, and the TNR
of the examined steel grades.

In Table 2, the input variables used for the dislocation density evolution as well as the
recrystallization and coarsening of the five microalloyed steel grades are summarized.
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Table 2. Parameter symbols and values for thermokinetic MatCalc simulations.

Symbol Name Value Unit Source

α Strengthening coefficient 0.12 - [36]
ν Poisson’s ratio 0.30 - MatCalc default value
G Shear modulus 193,000−73.33·T[◦C]

2(1+ν)
MPa MatCalc default value

b Burgers vector 2.50 × 10−10 m MatCalc default value
M Taylor factor 3.06 - MatCalc default value
k Boltzmann constant 1.381 × 10−23 JK−1 MatCalc default value

Deff Effective diffusion coefficient 6.4x 10−2 exp
(
− 119,000

RT

)
m2s−1 MatCalc default value

DGB Grain boundary diffusion coeff. 7.9x 10−1 exp
(
− 141,000

RT

)
m2s−1 MatCalc default value

DCB Cross-boundary diffusion coeff. 2·DB m2s−1 [50]

ρeq,int
Internal equilibrium dislocation

density 1011 m−2 MatCalc default value

γHAGB HAGB-energy 0.5 Jm−3 [51]
γLAGB LAGB-energy 0.3 Jm−3 MatCalc default value

ω Grain boundary width 1 × 10−9 m [50]
ηHAGB,int Free HAGB-prefactor 0.015 - [48]
ηLAGB,int Free LAGB-prefactor 10 - MatCalc default value
ηHAGB,pin Pinned HAGB-prefactor 0.001 - This work
ηLAGB,pin Pinned LAGB-prefactor 0.001 - This work

kd Pre-factor for coarsening 2 - This work
EB,Ti Binding energy of Ti 10,000 Jmol−1 [48]
EB,Nb Binding energy of Nb 11,000 Jmol−1 This work
EB,V Binding energy of V 3000 Jmol−1 This work

Tcrit,MX
Highest possible solution

temperature of (Nb/Ti/V)(C,N) * 3073/4073/2543 K This work

λ Mixing coefficient (1 − Xav)2 - MatCalc default value

* Determined from equilibrium peak temperature of the miscibility gap of respective Fe-MX systems.

Note that, in the precipitation and recrystallization simulation setup, instead of con-
sidering the full mixing/demixing of solute atoms Ti, Nb, and V with C and N, the mixing
between the substitutional microalloying atoms is assumed to be negligible. This goes
along with microanalysis of MX particles, which shows clear separation between Ti-rich,
Nb-rich, and V-rich types in comparable steel grades [52–54]. Three separate MX com-
pounds, Nb(C,N), Ti(C,N), and V(C,N), are used, accordingly, which was for the benefit of
the numerical stability during the thermokinetic simulations.

Previous research by the authors [36] revealed that the dislocation density evolution
(Equation (9)) for microalloyed steel can be reasonably well approximated by using the
temperature- and strain rate-dependent parameters A, B, and C, depicted in Figure 6.
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4. Results and Discussion
4.1. Experiments

Our research has shown that torsion tests are less time-consuming, given that only
one specimen and a single thermo-mechanical treatment is needed for the evaluation of
the TNR for a specific material. At double-hit tests, a high number of experiments and
extensive data analysis are necessary to examine the recrystallization behavior at different
temperatures and varying holding times for the assessment of a corresponding TNR and
TSRCT. When comparing the information about the recrystallization behavior received
by the two different experimental methods, DHT are somewhat superior as the entire
recrystallization evolution between two deformations is represented and both critical
temperatures can be evaluated.

4.1.1. Double-Hit Compression Tests

Figure 7 depicts the flow curves of alloy S5 from DHT at three different test tempera-
tures and varying holding times before the second deformation. The critical strain, which
divides stress–strain curves in static and metadynamic recrystallization is not reached yet,
as it is strongly related to the unattained maximum stress of the curve [14]. Therefore, pure
static recrystallization is observed.
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Figure 7. Flow curves of steel grade S5 during isothermal DHT with varying deformation temper-
atures and intermediate holding times. (a) 1373 K, 0.5 s−1, 0.3–30 s; (b) 1323 K, 0.5 s−1, 0.3–1000 s;
(c) 1273 K, 0.5 s−1, 10–3000 s.

At higher temperatures, lower true stress values are generally attained. A reduction
in the intermediate holding time between the two hits increases the yield stress of the
second hit. Since shorter holding times after the first hit induce static recrystallization,
work hardening becomes more pronounced at the second deformation. Additionally, the
grain refinement due to the recrystallization is concomitant with the formation of new
grain boundaries, which impede the deformation of the material and result in higher stress
peaks at the second hit.

The softening fraction is derived by applying the 5% true strain method on the exper-
imentally determined flow curves, Figure 8a. The non-recrystallization temperature for
DHT with a 30 s interpass time is determined at 1274 K. An increase in the intermediate
holding time shifts the TNR to lower temperatures.
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lines are guides to the eye.

In Figure 8b, the influence of the test temperature on the softening of alloy S5 is
illustrated. As a result of higher grain boundary mobilities at elevated temperatures,
the softening fraction increases. At 1373 K, the material is fully recrystallized after ap-
proximately 100 s and the sigmoidal graph equals those of steels without microalloying.
Retardation of recrystallization due to the strain-induced formation of MX can be observed
at temperatures ≤ 1323 K. As a consequence, the TSRCT of alloy S5 is defined as 1323 K, the
temperature, where the formation of (Nb/Ti/V)(C,N) precipitates starts. Thus, recrystal-
lization is impeded, and the slope of the softening fraction against time is decreased. This
effect becomes stronger at the lower deformation temperature of 1273 K, indicative from
Figure 8b.

4.1.2. Hot Torsion Tests

The resulting stress–strain curve of alloy S1 during the continuous torsion experiment
clearly shows that the effective stress rises at a higher effective strain and decreasing tem-
perature (Figure 9a). Figure 9b–f display the derived mean flow stresses as a function of
the inverse temperatures for all materials. The TNR values are identified by the intersection
point of a vertical auxiliary line—which indicates the onset of the slope change in the flow
curve—with the x-axis [41]. The experimental TNR of alloy S2 is determined at 1156 K,
representing the lowest value of all studied materials. This is in line with the fact that S2
contains the lowest amount of microalloying elements. The higher non-recrystallization
temperatures of the other alloys can be explained by the deformation-induced precipitation
of Ti-, Nb-, and V-carbonitrides, which impede the recrystallization. When comparing S3
and S4, it is evident that the high Nb content in S4 leads to strongly retarded recrystalliza-
tion, whereas alloy S3, with high V contents and smaller amounts of Nb, exhibits lower
TNR values. The recrystallization impediment due to V(C,N) is less pronounced compared
to Ti- or Nb-carbonitrides.
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Figure 9. Stress–strain curves of steel grade S1 (a) and dependence of MFS on inverse absolute
temperature for steel grades S1–S5 corresponding to a 15-pass torsion sequence (b–f). Lines are
guides to the eye.

The slope change in the mean flow stress curves in Figure 9 allows the graph to be
divided into two zones. The first region refers to the deformation at elevated temperatures
and the MFS increases as the temperature drops. In this zone, complete recrystallization of
the austenite phase takes place between each pass and recrystallization-controlled rolling
is achieved. Since the microstructure fully recrystallizes, no work hardening caused by
dislocations remains in the final microstructure. The stress increase is solely induced
by the increasing yield strength at lower temperatures. The second region is defined as
deformation below TNR, where hardly any recrystallization occurs between the passes and
the stress increases due to the accumulation of dislocations in the austenite phase from pass
to pass. Figure 9 also shows that, with increasing MFS, the tendency for strain hardening
also increases.
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4.2. Simulation

Isothermal single-hit compression tests on the basis of the temperature profiles given
in the schematic schedule of Figure 4 with a strain rate of 0.5 s−1 up to a total strain of 0.2
are simulated for all five investigated steel grades. Subsequently, prolonged holding at the
respective test temperature is added to examine the time-dependent evolution of austenite
recrystallization after the single-hit deformation.

Figure 10 illustrates the simulated softening fraction of the five alloys plotted against
the deformation temperatures. TNR of the examined materials is determined by the inter-
section point of the corresponding curve and the auxiliary line for 20% fractional softening.
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The lowest value of TNR is determined for the reference alloy S2, which contains
negligible amounts of microalloying elements. The non-recrystallization temperatures of
the other steel grades rise in the sequence S3 (highest V and high Ti), S4 (high Ti and Nb),
S1 (highest Ti and Cr; high Nb, V), and S5 (highest Nb, V; high Ti).

Figure 11 depicts the temperature-dependent softening fractions of the materials S1–S5
as a function of holding times after deformation. The slopes of the graphs clearly change at
the respective static recrystallization critical temperatures and a plateau is formed due to
deformation-induced precipitation of MX particles. As the retarding pressure decreases
at prolonged holding times due to precipitate coarsening, the curves continue afterwards
with a sigmoidal shape.

The simulation results show that larger amounts of microalloying result in higher
values of the TSRCT. In the alloy S2, which does not contain significant amounts of Ti, Nb,
and V, the inhibition of recrystallization is triggered only below 1173 K. S1 and S3 reach the
TSRCT at 1223 K, as both alloys contain a sufficient amount of V to impede recrystallization
at a higher temperature. Contrary to the Ti-, Nb-, and V-microalloyed S5, the material
S4 only contains Nb, which explains why the TSRCT of the material is located at a lower
temperature of 1273 K. The simulated static recrystallization temperature of S5 is in close
agreement with the experiments, as both methods result in a high TSRCT of 1323 K.

Figure 12 depicts the simulated time–temperature–precipitation (TTP) curves without
deformation for 5% precipitated relative phase fraction of (Nb/Ti/V)(C,N) MX compounds
for the investigated steel grades. During simulation of the single-hit compression tests,
MX phases form right at the minimum start temperature for precipitation, TPS, of the
corresponding TTP curve. A decrease in temperature accelerates the nucleation of new
carbonitride phases until TN, which describes the temperature at the “nose” of the TTP
curve, is reached. Above TN, precipitation is strongly impeded by low driving forces, even
though diffusion would be high. The opposite is true at temperatures below TN. Thus, at a
temperature of ~973 K, significant precipitation does not occur within a technologically
relevant holding time (expectedly below 10 h).
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In Figure 13, the TPS and TN of the individual MX phases from simulated TTP curves
and the TNR from simulated compression tests are compared to the experimental TNR from
hot torsion tests. The evaluated non-recrystallization temperatures are in the range of TN,
where the peak of microalloy carbonitride precipitation is located. This indicates sound
simulative thermokinetics of MX precipitation, since it is expected that the impediment
of recrystallization is governed by grain boundary pinning by MX phases [5]. Due to the
low solubility of Ti(C,N) in austenite, this phase is observed at higher temperatures than
Nb(C,N) and V(C,N) [36]. Thus, microalloying of titanium is highly effective for grain
boundary pinning by individual MX phases at elevated temperatures. Only in alloy S4
does the formation of Nb(C,N) start at a higher temperature than Ti(C,N) due to the much
lower content of Ti in comparison to Nb.
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The impeding influence on the static recrystallization is explained by the combination
of austenite grain boundary pinning of precipitates and solute drag of the substitutional
elements Nb, Ti, and V. To examine which of these two mechanisms predominates during
the recrystallization retardation, the formation of (Nb/Ti/V)(C,N) phases and the remaining
dissolved elements, causing solute drag in the matrix during deformation, are examined in
detail. Figure 14 presents the atomic fractions of the microalloying elements Nb, Ti, and V
in the austenite matrix and the softening fraction of austenite during the simulation of the
compression tests at the determined non-recrystallization temperature of each steel grade.
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The softening fraction clearly increases at the beginning of the deformation. The simul-
taneous strain-induced precipitation of carbonitrides, as seen by the drop of the respective
dissolved element fraction, hinders the grain boundary movement subsequently. After
compression start, significant amounts of dissolved microalloying elements in austenite
are observed in the alloys S1, S3, S4 and S5. Here, a combination of precipitate pinning
and solute drag is likely relevant for the retarded static recrystallization. In S2, due to the
low microalloying content, no significant effect of either precipitation and solute drag is
observed, and recrystallization is, thus, fastest.
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Nevertheless, the effect of solute drag is expected to be presumably small, since the
amount of precipitated carbonitrides is assumed to be sufficient for the present retardation
of recrystallization. The results correlate well with the literature; Abad et al. [20] reported
that solute drag only has a high impact on recrystallization at a small strain ϕ = 0.1.

4.3. Comparison of Experimental and Predicted TNR and TSRCT

Figure 15 summarizes the results of the experimentally derived critical temperatures
for static recrystallization from double-hit tests (exp. TSRCT (DHT), exp. TNR (DHT)) and
torsion tests (exp. TNR (TT)) as well as the corresponding temperatures resulting from
recrystallization simulation (sim. TSRCT, sim. TNR). The TSRCT from compression tests of
S5 matches exactly with the simulated value and the experimental TNR also correlates well
with the simulated one. Medina et al. [23] stated that TNR and TSRCT overlap in experiments
with the same experimental setup. Our obtained results confirm this, since the experimental
and simulation-based TSRCT show only minor deviations from the determined TNR values.
For the alloys S3, S4, and S5, the value of the simulated TNR is ≤ 45 K lower than that
of the simulated TSRCT, while the TNR of S1 and S2 slightly exceed the TSRCT (≤20 K).
This difference in the trend may be explained by the quite large temperature step of 50 K
for the test temperatures, used within the simulations for the determination of TSRCT. A
smaller temperature step within the simulation increases the TSRCT of S1 and S2 above the
computational TNR. Furthermore, the simulation results confirm that higher microalloying
contents increase both critical temperatures. The alloy S2, with the lowest TSRCT and TNR,
contains hardly any microalloying additions, while the alloy S5, with the highest contents
of Nb, Ti, and V, reaches the highest values of TSRCT and TNR.
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Figure 15. Comparison of experimentally determined recrystallization critical temperatures to values
from semi-physical recrystallization simulation for alloys S1–S5.

Figure 16 compares the TNR values calculated with Equations (1)–(4) and the simula-
tion results to the experimental values from torsion tests. The physics-based simulation of
the present study matches the experimental data best, followed by the empiric relation of
Boratto et al. [28], which shows a systematic relatively small underestimation of about 50 K.

This is in contrast to the findings by Homsher [25,27], who claimed that the obtained
values from the Boratto equation would exceed their experimental ones. It is notable that
Homsher’s alloys contain twice as much Nb (~0.06 wt.%) as the steel grades of the present
study. Since Equation (1) attributes a large impact on the TNR to Nb, it may only be applied
for alloys with lower Nb content. Equation (2) by Bai et al. [30], on the other hand, coincides
with the experimental data of Homsher (max. C content of 0.062 wt.%) but shows the
highest deviation for our experiments. Only alloy S1, which contains the lowest amount of
C (0.15 wt.%), shows a negligible difference between the experimental TNR and the value
derived from Equation (2). This indicates that the equation by Bai should only be applied
to steels with very low C levels. Equations (3) and (4) by Fletcher [25,27] match the trend in
our experimental data, but the TNR values are roughly 60 K and 120 K too low, respectively.
Both equations exclude the impact of N and Ti, which are known to elevate TNR during
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recrystallization. The consideration of the applied strain in Equation (4) does not raise
the values to the predicted temperatures. These comparisons clearly show the problem of
empiric relations. Whereas each of the empiric equations may precisely match experimental
data in a narrow composition range without any relation to processing parameters, their
predictive power is limited.
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5. Conclusions

Good consistency between the two experimental methods, isothermal double-hit com-
pression tests (TNR and TSRCT) and continuous hot torsion tests (TNR), for the determination
of the critical temperatures for static recrystallization of five microalloyed steel grades is
achieved in our work. Concerning the information about recrystallization kinetics, inves-
tigations using double-hit experiments should be preferred as they allow us to study the
interpass time, and both critical temperatures can be determined from the same experimen-
tal setup. The main disadvantage of double-hit compression tests is the large number of
tests needed for the determination of TNR and TSRCT. Torsion testing is less time-consuming
as it only demands one sample to obtain TNR, but the applied experimental procedure does
not cover the investigation of TSRCT.

The moderate interpass time of 30 s in DHT initiates deformation-supported precipitation
of MX phases, which leads to grain boundary pinning and retardation of recrystallization.
The effect of solute drag is negligible in our experiments with a strain of 0.2 per hit.

The experimental data for the TNR and the TSRCT are compared to a semi-physical
parameter-based simulation model for static recrystallization in combination with a mean-
field dislocation density evolution model. Our investigations lead to a maximum deviation
of the simulation results for TNR by less than 50 K from the experimental data throughout
the investigated microalloying contents. A benefit of our simulation approach, aside from
its high predictive power, is that we additionally obtain predictions on the TSRCT. The
according simulation results are consistent with experimental data, exemplarily determined
for S5 with the highest microalloying contents of the studied steel grades.

The comparative computations with TNR values are calculated by using four empirical
equations from the literature, showing that most of the proposed empirical formulae deviate
from the experimental data, indicated by a difference between evaluated and experimental
TNR of more than 100 K. The equations do not take processing parameters into account and
can only be employed for a narrow composition range. Only the formula by Boratto et al.
yields a more appropriate trend for TNR with varying microalloying, with a systematic
deviation around 50 K.

To conclude, the critical temperatures for static recrystallization TNR and TSRCT are
significantly raised by the microalloying element Nb, rather than Ti and V. The best match
of all experimental data of the studied steel grades is obtained by the simulation with
combined thermodynamic and microstructural semi-physical modeling. The physical-
based predictions additionally help to understand the interplay of steel compositions and
precipitation kinetics with recrystallization. Nevertheless, there are limitations concerning
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the applied parameters and models as metadynamic or dynamic recrystallization are not
taken into account. The ABC parameters for the dislocation density evolution are evaluated
for the current process parameters and have to be adapted to the temperature and strain rate.
It can be stated that the recrystallization behavior of the examined microalloyed steel grades
during the performed treatments can be thoroughly simulated by computational mean-
field microstructure modeling, and it therefore helps to reduce the extent of preliminary
experimental investigations for future industrial process optimizations. The developed and
validated semi-physical modeling approach has high predictive power for TNR and TSRCT
for wide composition variations within microalloyed steel.
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