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A B S T R A C T

Given the popularity of fired clay bricks in increasingly taller buildings, as well as the large variety of raw
materials, additives, tempers, and production technology, microstructure-based modeling of the brick strength
is essential. This paper aims at linking the microstructural features of bricks, i.e. the volume, shape, and
size of mineral phases, pores, and the glassy binding matrix in between, to the multiaxial failure behavior of
bricks. Therefore, a continuum micromechanics multiscale model, developed originally for stiffness and thermal
conductivity upscaling, is adopted and complemented with a Mohr–Coulomb failure criterion at the microscale.
By micromechanics-based downscaling of uniaxial brick strength tests, quantitative insights into the strength
of the binding matrix are obtained for the first time. After successful nanoindentation-based validation of the
identified micro-strength, the model is used for predicting the macroscopic multiaxial brick strength, which in
turn is successfully validated against independent bi- and triaxial compressive strength test results.
. Introduction

The mechanical strength of brick masonry is of paramount im-
ortance as it often is, together with the thermal conductivity, the
ritical aspect in construction design and planning. The popularity as
conomically and ecologically efficient building material has motivated
he use of fired clay bricks for increasingly taller and increasingly
ore complex masonry constructions, such as multi-storey residential

uildings, where the load-bearing capacity of masonry is pushed to
ts limit. The strength of masonry walls is often governed by brick
ailure (Ganz, 1985; Lourenço, 1997; Lourenço and Vasconcelos, 2015),
ore precisely by failure of the brick body in solid bricks or in the webs

f customarily used perforated bricks. Even in simple vertically loaded
alls, the brick body is subjected to complex multiaxial stress states. To
ssess the mechanical stability, construction engineers therefore require
suitable material model for multiaxial failure of bricks.

Modern bricks come in a huge variety. Different clays, mixed with
ifferent pore-forming additives (e.g. extruded polystyrene, sawdust,
aper sludge) and different tempers (quartz, slag, fly-ash), are ex-
ruded through different molds and fired at different temperatures
ranging typically from 800−1200 °C), making it impossible to per-
orm laboratory tests on each and every brick under each and every
oading scenario, in order to assess its multiaxial failure behavior.
odel predictions are therefore essential. In this context, numerical

∗ Corresponding author.
E-mail address: josef.fuessl@tuwien.ac.at (J. Füssl).

finite element (FE) models (Kiefer et al., 2017; Suda et al., 2021;
Graubner and Richter, 2007; Nguyen and Meftah, 2014) have con-
siderably advanced recently and can accurately predict the failure of
extruded bricks based on a multiaxial failure behavior of the brick
body. This paper deals with failure of the latter, which is, still either
described only qualitatively (Müller et al., 2010, 2015; Kilikoglou et al.,
1995, 1998) or modeled phenomenologically (D’Orazio et al., 2014;
Wagh et al., 1993; Chapagain et al., 2020) by fitting the measured
strength to compositional features such as porosity and/or temper
volume fraction and temper shape. The limited predictive capabilities
of these phenomenological models motivate a shift to microstructure-
based strength models, fostered by continuously improving small-scale
characterization techniques.

Morphometrical features (Krakowiak et al., 2011; Allegretta et al.,
2017; Coletti et al., 2016a,b; Kariem et al., 2018, 2020b; Buchner et al.,
2021c,a) as well as mechanical (Krakowiak et al., 2011; Kariem et al.,
2020a) properties of the brick microstructure have been deciphered
within the last two decades. The emerging microstructural image of
bricks shows that nano- to micrometer-sized pores as well crystalline
mineral grains (mostly quartz, feldspar, and mica) are distributed ran-
domly but oriented preferably along the extrusion direction. The miner-
als are ‘‘glued’’ together by a stiff glassy matrix-like constituent which,
driven by the extrusion pressure, itself is anisotropic. Understanding
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the link between these microstructural features and the macroscopic
properties is the key for predicting the brick performance. Microstruc-
tural features have already been successfully linked to the macroscopic
stiffness as well as the macroscopic thermal conductivity based on
analytical multiscale approaches (Pichler et al., 2015; Pabst and Gre-
gorová, 2007, 2017; Pabst and Uhlířová, 2021; Živcová et al., 2009a,b;
Kiefer et al., 2020; Buchner et al., 2021b) or numerical multiscale
models (Grandjean et al., 2006; Uhlířová et al., 2018; Hříbalová et al.,
2021). Similar microstructure-based links for strength are, however,
still missing, a micro-to-macro gap tackled to be bridged herein.

Motivated by the already successful application of continuum mi-
cromechanics models to predict the elastic limit or strength of cement
paste (Pichler and Hellmich, 2011), concrete (Königsberger et al.,
2014a,b, 2018; Königsberger and Staquet, 2018), lime-based mor-
tar (Nežerka et al., 2017), and wood (Bader et al., 2010; Hofstetter
et al., 2008; Gangwar and Schillinger, 2019), we herein aim at extend-
ing the micromechanics model developed for stiffness and conductivity
homogenization of fired clay bricks (Buchner et al., 2021b) towards
failure modeling. Continuum micromechanics modeling (Hill, 1963; Za-
oui, 2002) is, on the one hand, able to incorporate the microstructural
features in suitable detail (almost matching numerical FE approaches),
but on the other hand, computationally efficient and robust given its
analytical nature. Thereby, the macroscopic properties are obtained
from upscaling of morphometric (volume, shape, size) features and me-
chanical properties of the individual constituents, which are considered
to interact at distinct observation scales.

The remainder of the paper is structured as follows. In Section 2,
the micromechanics representation of brick (Buchner et al., 2021b) is
revisited and complemented with a failure criterion at the microscale.
The required morphometric, elastic, and strength properties of the solid
constituents (mineral phases and glassy matrix) of bricks are discussed
in Section 3. Section 4 is devoted to comprehensive model validation
attempts, at both the microscale and the macroscale. To corroborate
the considered microscale strength criterion and its constants, it is
incorporated into a finite element (FE) model to analyze a nanoin-
dentation test performed by Kariem et al. (2020a). To corroborate the
predicted macroscopic brick strength, model predictions are compared
to published test results from multiaxial compression tests. The paper is
closed with a summary, concluding remarks and an outlook (Section 5).

2. Multiscale micromechanics model for brick failure

2.1. Micromechanical representation

Extruded and fired clay brick is considered in the framework of
continuum micromechanics (Hill, 1963; Suquet, 1997; Zaoui, 2002;
Dormieux et al., 2006) as a macro-homogeneous, but micro-
heterogeneous body built up by two representative volume elements
(RVEs) at two observation scales (Buchner et al., 2021b), see Fig. 1. The
RVE at scale 𝑠 with characteristic size 𝑙𝑠 is built up by homogeneous

aterial phases with characteristic size 𝑑𝑠, with scale-specific phase
volume fractions 𝑓 𝑠

𝑝 , and with constant mechanical properties. At the
esoscale, the RVE characteristically measures 𝑙meso = 300 μm and

s built up by mineral grains (quartz, feldspar, muscovite, and Fe–Mg
ica) and mesopores with characteristic sizes 𝑑meso ≤ 150 μm, which

re embedded in a foam matrix. The heterogeneity of the foam matrix
s resolved at the microscale, with characteristic RVE size amounting
o 𝑙micro = 3 μm, and consists of a binding matrix hosting micropores
with characteristic sizes 𝑑micro ≤ 1 μm).

The RVEs fulfill the scale separation conditions

𝑑micro ≤ 1 μm ≪ 𝑙micro = 3 μm ⋘

𝑑meso ≤ 150 μm ≪

}

𝑙meso = 300 μm ⋘  = 15 mm

(1)
2

ith  = 15 mm as the characteristic size of the brick, and with
uch larger symbols ‘‘≪’’ referring to factors of only 2–3 (Drugan and

Willis, 1996) and very much larger symbols ‘‘⋘’’ referring to factors
of 10 (Kohlhauser and Hellmich, 2013).

All inclusion-type material phases are considered as oblate
spheroids with aspect ratios 𝑋𝑝 = 𝑎𝑝,𝑥∕𝑎𝑝,𝑧, whereby 𝑎𝑝,𝑥 and 𝑎𝑝,𝑧
enote the axes lengths of the spheroid, see Fig. 1(b). The extrusion
ressure in thickness direction 𝑧 causes a preferential orientation of all

inclusion-type material phases along the 𝑥–𝑦-plane (Krakowiak et al.,
2011; Bartusch and Händle, 2007; Bourret et al., 2015; Buchner et al.,
2021a), whereby the 𝑥-direction coincides with extrusion direction, see
Fig. 1(a). The orientations are quantified by means of a symmetric (with
respect to the 𝑥–𝑦-plane) orientation distribution function 𝑊𝑝(𝜃) =
𝜅𝑝 ⋅ cosh(𝜅𝑝 cos(𝜃))∕ sinh(𝜅𝑝), with 𝜅𝑝 denoting the scalar parameter of
the distribution, see Fig. 1(c), and with 𝜃 as the zenith angle between
the global 𝑧-axis and the local 𝑧-axis. The orientation distribution along
the azimuth angle 𝜑 is considered uniform.

2.2. Mohr–Coulomb failure at the binding matrix

We consider that brick failure at the macroscale is triggered by
failure of the binding matrix at the microscale. Given the granular
texture of the binding matrix in the sub-micron range at the present
firing temperature, see Krakowiak et al. (2011), we consider its failure
to be of cohesive-frictional nature, which is modeled by means of a
Mohr–Coulomb criterion reading as

𝑓𝑀𝐶 (𝝈bm) = 𝜎bm,𝐼
1 + sin𝜑bm
2𝑐bm cos𝜑bm

− 𝜎bm,𝐼𝐼𝐼
1 − sin𝜑bm
2𝑐bm cos𝜑bm

− 1 , (2)

ith 𝜎bm,𝐼 denoting the maximum and 𝜎bm,𝐼𝐼𝐼 denoting the minimum
rincipal normal stress in the binding matrix, 𝑐bm as cohesion, and 𝜑bm
s angle of internal friction. The binding matrix, and thus the brick,
esists as long as 𝑓𝑀𝐶 < 0, microscopic and macroscopic failure occurs
s soon as 𝑓𝑀𝐶 = 0.

.3. Macro-to-micro stress downscaling

Evaluation of the proposed microscale failure criterion Eq. (2) re-
uires quantification of the failure-inducing binding matrix stresses
bm. Herein, we consider spatial average stresses of the binding matrix
s suitable for modeling failure. These stresses are obtained from
acroscopic stresses 𝜮 applied on a piece of brick by an elastic (linear)
acro-to-micro stress concentration (‘‘stress downscaling’’) rule in the

ramework of continuum micromechanics (Zaoui, 2002), reading as

bm = Bbm ∶ 𝜮 . (3)

ith Bbm as fourth-order phase stress concentration tensor.
Access to the sought stress concentration tensor Bbm is provided by

he envisioned linear elastic phase behavior linking phase strains 𝜺𝑝 to
hase stresses 𝝈𝑝 via the phase stiffness C𝑝, by its macroscopic coun-
erpart 𝑬 = (Cbrick)−1 ∶ 𝜮 with Cbrick as homogenized brick stiffness,
nd by RVE-specific linear strain concentration relations allowing us to
oncentrate macrostrains to strains in the foam matrix, 𝜺fm = Afm ∶ 𝑬,
nd further down to strains in the binding matrix, 𝜺bm = Abm ∶
fm; whereby A𝑝 is the fourth-order phase strain concentration tensor.
ombination of the aforementioned strain concentration relations with
he constitutive relations and comparison to stress concentration rule
3) allows us to rewrite the stress concentration tensor Bbm as

bm = Cbm ∶ Abm ∶ Afm ∶ (Cbrick)−1 . (4)

brick is the homogenized stiffness of the RVE at the mesoscale, Cbrick =
meso
hom , and it is obtained from consecutive Mori–Tanaka (Mori and
anaka, 1973; Benveniste, 1987) stiffness homogenization at micro-
nd mesoscale, where the homogenized elastic stiffness tensor C𝑠
hom
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Fig. 1. (a) Two-scale micromechanics material model for fired clay brick (macroscale) adopted from Buchner et al. (2021b): mesoscale with foam matrix (homogenized at
icroscale), mineral phases, and mesopores; microscale with binding matrix and micropores. Mineral and pore phases are modeled as (b) oblate spheroids with aspect ratios
𝑝 = 𝑎𝑝,𝑥∕𝑎𝑝,𝑧 and with (c) orientation distributions function (ODF) 𝑊𝑝(𝜃) along the zenith angle 𝜃, while the orientation distribution along the azimuth angle 𝜑 is uniform.
of scale 𝑠 ∈ {micro,meso} reads as (Zaoui, 2002; Königsberger et al.,
2020; Buchner et al., 2021b)

C𝑠
hom =

∑

𝑟
𝑓 𝑠
𝑟 ∫

𝜋

0
𝑊𝑟(𝜃)∫

2𝜋

0
C𝑟 ∶ A𝑟(𝜑, 𝜃;𝑋𝑟)d𝜑

sin(𝜃)
4𝜋

d𝜃 , (5)

ith 𝑓 𝑠
𝑝 as volume fraction of phase 𝑝. The phase strain concentra-

ion tensors A𝑝 follow from matrix-inclusion problems (Eshelby prob-
ems Eshelby, 1957), where a single inclusion is embedded in and
erfectly bonded to an infinite matrix, and reads as (Zaoui, 2002;
önigsberger et al., 2020; Buchner et al., 2021b)

𝑝(𝜑, 𝜃;𝑋𝑝) = [I + P𝑝(𝜑, 𝜃;𝑋𝑝) ∶ (C𝑝 − C𝑚)]−1

∶

[

∑

𝑟
𝑓 𝑠
𝑟 ∫

𝜋

0
𝑊𝑟(𝜃)∫

2𝜋

0
[I + P𝑟(𝜑, 𝜃;𝑋𝑟) ∶ (C𝑟 − C𝑚)]−1

× d𝜑 sin(𝜃)
4𝜋

d𝜃
]−1

, (6)

with P𝑝 denoting the fourth-order Hill tensor (see Mura (1987) and Hill
(1965) for tensor components), and I denoting the fourth-order identity
tensor defined as 𝐼𝑖𝑗𝑘𝑙 = 1∕2(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) with 𝛿𝑖𝑗 as Kronecker delta.
Homogenization at the microscale requires the evaluation of Eqs. (5)
and (6) for the material phases 𝑝, 𝑟 ∈ {bm, micropores} and C𝑚 = Cbm.
Homogenization at mesoscale, in turn, requires the consideration of
material phases
𝑝, 𝑟 ∈ {fm, mesopores, quartz, feldspar, muscovite, Fe–Mg mica}
and C𝑚 = Cfm = Cmicro

hom , see Fig. 1. Notably, integration along
the surface of a unit sphere in Eqs. (5) and (6) is necessary due
to the non-uniform phase orientation distributions 𝑊𝑝(𝜃). Thus, az-
imuth angle 𝜑 and zenith angle 𝜃 run along the unit sphere’s surface,
and 𝜑, 𝜃 represent fixed orientation angles. On account of spheroidal
nclusion geometries and transversal isotropic phase stiffnesses, as
3

c

given in Section 3.1, the applied Mori–Tanaka scheme leads to a non-
symmetric brick stiffness tensor Cbrick. Symmetrization of this tensor,
Cbrick =

[

Cbrick + (Cbrick)𝑇
]

∕2, provides a very accurate approximation
of the symmetric Mori–Tanaka scheme according to Sevostianov and
Kachanov (2014), see also Buchner et al. (2021b) for more details.

3. Material characteristics

3.1. Phase morphometry

The model is evaluated for a typical calcareous clay brick fired at
880 °C,1 which microstructure, chemical and mineralogical composition
were investigated by Kariem et al. (2018, 2020a,b). The phase volume
fractions related to the mesoscale 𝑓meso

𝑝 , aspect ratios 𝑋𝑝, and orienta-
tion distribution parameters 𝜅𝑝 of all material phases were investigated
using scanning electron microscopy coupled with energy dispersive X-
ray spectroscopy, and subsequent image analysis, see Table 1 and Buch-
ner et al. (2021b) for numerical values. The microscale-related volume
fractions are calculated as 𝑓micro

bm = 𝑓meso
bm ∕𝑓meso

fm and 𝑓micro
micropores =

𝑓meso
micropores∕𝑓

meso
fm with 𝑓meso

fm = 𝑓meso
bm + 𝑓meso

micropores.

3.2. Phase stiffness

Phase stiffness tensors C𝑝 are given in terms of phase compliance
tensors D𝑝 =

(

C𝑝
)−1 with respect to the local base frame (𝑥, 𝑦, 𝑧) in

1 The brick is labeled F in Buchner et al. (2021b) who analyzed its thermal
onductivity and stiffness.
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Table 1
Experimentally-identified morphometry parameters (mesoscale-related volume fractions
𝑓meso
𝑝 , aspect ratios 𝑋𝑝, and orientation distribution parameters 𝜅𝑝) and elasticity

constants (Young’s moduli 𝐸𝑝,𝑥 = 𝐸𝑝,𝑦 and 𝐸𝑝,𝑧, Poisson’s ratio 𝜈𝑝) of all considered
material phases.

𝑓meso
𝑝 𝑋𝑝 𝜅𝑝 𝐸𝑝,𝑥 = 𝐸𝑝,𝑦 𝐸𝑝,𝑧 𝜈𝑝
[%] [–] [–] [GPa] [GPa] [–]

micropores 10 4.82 3.80 0 0 –
mesopores 26 4.82 3.80 0 0 –
quartz < 10 μm 5 3.09 2.96 113.3 80.8 0.077
quartz > 10 μm 11 3.09 2.96 0 0 –
feldspar 9 3.40 4.88 81.2 60.9 0.290
muscovite 7 9.86 6.08 62.0 35.5 0.249
Fe–Mg mica 2 10.83 12.29 60.0 37.7 0.288
binding matrix 30 – – 62.5 45.8 0.200

Kelvin–Mandel notation as

D𝑝 =
(

C𝑝
)−1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
𝐸𝑝,𝑥

−𝜈𝑝
𝐸𝑝,𝑥

−𝜈𝑝
𝐸𝑝,𝑧

0 0 0
−𝜈𝑝
𝐸𝑝,𝑥

1
𝐸𝑝,𝑥

−𝜈𝑝
𝐸𝑝,𝑧

0 0 0
−𝜈𝑝
𝐸𝑝,𝑧

−𝜈𝑝
𝐸𝑝,𝑧

1
𝐸𝑝,𝑧

0 0 0

0 0 0 1
2𝐺𝑝,𝑥𝑧

0 0

0 0 0 0 1
2𝐺𝑝,𝑥𝑧

0

0 0 0 0 0 1
2𝐺𝑝,𝑥𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦𝑥,𝑦,𝑧

. (7)

hereby three independent quantities are considered, two independent
oduli 𝐸𝑝,𝑥 = 𝐸𝑝,𝑦 and 𝐸𝑝,𝑧 and a single value for the Poisson’s ratio

𝜈𝑝, and whereby 𝐺𝑝,𝑥𝑦 =
𝐸𝑝,𝑥

2(1+𝜈𝑝)
and 𝐺𝑝,𝑥𝑧 =

𝐸𝑝,𝑥+𝐸𝑝,𝑧
4(1+𝜈𝑝)

, see Buchner et al.
(2021b) for more details on the underlying assumptions. The elastic
constants of all mineral phases are compiled in Table 1. Phase moduli
were adopted from a grid nanoindentation study performed by Kariem
et al. (2020a). The Poisson’s ratios of inclusion-type mineral phases
were adopted from ultrasound measurements by Christensen (1996),
and the Poisson’s ratio of binding matrix is assumed to 0.20, inspired by
the Poisson’s ratio of glass according to Buchner et al. (2021b). Notably,
we distinguish between quartz grains with diameter <10 μm, which
exhibit typical quartz stiffness, and grains with diameter >10 μm. Large
quartz grains very often show cracks along or close to their boundaries,
which are induced by an erratic volume decrease of quartz during
cooling, more precisely, during the transformation of 𝛽- to 𝛼-quartz
at 573 °C (Kilikoglou et al., 1998; Müller et al., 2010). In the model,
quartz (diameter >10 μm) is assumed to entirely loose the contact to
the surrounding matrix, which is why the stiffness of all quartz grains
>10 μm is considered to vanish, see Table 1.

3.3. Phase strength: Back-identification of cohesion and friction angle

To complete the model, quantification of the Mohr–Coulomb failure
constants of the binding matrix (cohesion 𝑐bm and angle of internal
friction 𝜑bm) is necessary. Direct experimental access, however, is out
of reach, given the lack of reliable small-scale experimental techniques
for the determination of the material strength. As a remedy, we aim at
their identification from macroscopic tensile and compressive strength
tests, as described next.

The tensile strength was approximated as the maximum cross-
sectional stress 𝛴𝑥𝑥 in a three-point bending test on a specimen measur-
ing 125×30×15 mm with 𝑥-direction coinciding the extrusion direction,
see the scheme in Fig. 2(a). Applying Bernoulli’s beam theory, the max-
imum stress in the cross section at failure reads as 𝑓𝑡,𝑥 = 3𝐹𝑚𝑎𝑥𝑙∕(2𝑏ℎ2),
with 𝑏 = 30 mm as horizontal and ℎ = 15 mm as vertical cross-sectional
dimension, respectively, 𝑙 = 50 mm as distance between the two
bearings, and 𝐹𝑚𝑎𝑥 as peak load. Mean value and standard deviation of
the tensile strength 𝑓𝑡 were obtained from 12 single experiments and
4

amount to 𝑓𝑡,𝑥 = 23.10 ± 1.60 MPa.
The compressive strength was determined by means of uniaxial
compression tests on extruded vertically perforated brick specimens
measuring 50 × 25 × 25 mm, see Fig. 2(b). The perforation of 30% of
the cross-sectional area 𝐴tot increases the specimen slenderness of the
webs, which renders the influence of friction-induced shear stresses
negligible, at least in the central region of the brick where failure
is initiated. To ensure a uniform load transmission from the testing
machine to the specimen, the top and bottom surfaces were carefully
ground. Through dividing the applied force at peak load, 𝐹𝑚𝑎𝑥, by the
net cross section 𝐴𝑛𝑒𝑡 = 0.7𝐴tot, the compressive strength amounts to
𝑐,𝑥 = 𝐹𝑚𝑎𝑥∕𝐴𝑛𝑒𝑡 = 74.29 ± 5.07 MPa, whereby mean value and standard

deviation were obtained from 16 single experiments.
Finally, the strength test results are downscaled to the binding

matrix level. Therefore, the macroscopic stress states at failure in the
three-point bending test and the uniaxial compression test read as
𝜮𝑡 = 𝑓𝑡,𝑥𝒆𝑥 ⊗ 𝒆𝑥 and 𝜮𝑐 = −𝑓𝑐,𝑥𝒆𝑥 ⊗ 𝒆𝑥, respectively, with the unit
vector 𝒆𝑥 = (1 0 0)𝑇 pointing in extrusion direction. The corresponding
microstresses in the binding matrix (𝝈𝑡

bm, 𝝈𝑐
bm), are readily obtained

from evaluation of stress downscaling Eq. (3). Inserting 𝝈𝑡
bm and 𝝈𝑐

bm,
respectively, into the Mohr–Coulomb failure function 𝑓𝑀𝐶 (𝝈bm) accord-
ing to Eq. (2), and setting 𝑓𝑀𝐶 = 0 results in two algebraic equations,
which allow for the identification of the two sought Mohr–Coulomb
constants, yielding 𝑐bm = 37.59 MPa and 𝜑bm = 33.14◦.

4. Multiscale model validation and discussion

4.1. Nanoindentation-based validation of the binding matrix failure

4.1.1. Strategy
We herein aim at the validation of the envisioned Mohr–Coulomb-

type failure behavior of the binding matrix including the two back-
identified failure constants (𝑐bm and 𝜑bm). Therefore, we rely on
nanoindentation tests in combination with numerical modeling. The
response of a material to indentation experiments is well known to
correlate with the material strength, as shown e.g. for steel (Brinell,
1901; Williams, 1942; Tabor, 1951) and for cementitious materi-
als (Ganneau et al., 2006; Igarashi et al., 1996; Constantinides et al.,
2003; Kholmyansky et al., 1994). Given the complex stress field below
the indenter tip, numerical approaches based on the finite elements
(FE) have been developed more recently (Sarris and Constantinides,
2013; Chen et al., 2006; Kermouche et al., 2008; Zhang et al., 2006b,a),
to quantitatively link the indentation test-related force–displacement
behavior to the material strength. Extending this modeling idea to our
brick material, we aim at (i) predicting the load–displacement curve
for nanoindentation in the binding matrix using FE simulations based
on the implied Mohr–Coulomb failure behavior, (ii) comparing the FE
predictions to measured load–displacement curves, and (iii) this way
validating the binding matrix properties.

4.1.2. Nanoindentation tests
Kariem et al. (2020a) performed nanoindentation experiments on

the very same bricks as studied herein. The material was indented in
extrusion direction 𝑥 as well as thickness direction 𝑧 using a TI900 Tri-
boindenter (Hysitron, USA) with a Berkovich tip (three-sided pyramid)
with fillet radius of 100 nm. The authors executed load-controlled grid
nanoindentations (33 × 23 indents) with two load cycles at each indent,
the first one to anticipate plastic deformations and the second one
to obtain viscoelastic material properties. The load protocol, depicted
in Fig. 3, consisted of fast loading in 0.2 s up to 280 μN followed
by unloading in 0.2 s and a holding phase of 10 s with 2 μN load.
Thereafter, the load was increased to 250 μN within 0.3 s, held for 20 s
followed by unloading to 2 μN within 0.3 s and a final holding phase
of 15 s. We focus solely on the very short first load cycle in order to
eliminate most of the viscose effects.

Indents in the binding matrix are isolated from the 33 × 23 = 759
measurements in 𝑥 and the 759 measurements in 𝑧-direction as follows:
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Fig. 2. Macroscopic strength tests: (a) three-point bending, (b) uniaxial compression.
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Fig. 3. Load function applied for nanoindentation experiments by Kariem et al.
2020a).

ll indents, that refer to reduced elastic moduli within an interval of
3 GPa from the average amounting to 𝐸𝑥,𝑟 = 61.6 GPa in 𝑥-direction
nd 𝐸𝑧,𝑟 = 45.8 GPa in 𝑧-direction, are assigned to the binding matrix
esulting in roughly 40 characteristic indents in each direction, see
ig. 4 for the 40 individual displacement–time responses, together with
verages (thick lines). Notably, the elastic moduli of the binding matrix
s well as of the other microstructural phases were obtained according
o the evaluation method of Oliver and Pharr (1992, 2004), and thus
re an input for the micromechanical model, see Section 3.2.

.1.3. Finite element model
A 2D-axisymmetric FE model is developed using the commercial FE

oftware ABAQUS (Dassault Systèmes, France), see Fig. 5. Therefore,
he diamond indenter tip is modeled as cone with half apex angle
= 70.3◦, giving the same projected area as the Berkovich tip, a

implification already used by Sarris and Constantinides (2013). The
ip radius amounts to 100 nm, matching the one reported in the
xperimental study (Kariem et al., 2018). The indenter is subjected to
n area load which resultant linearly increases to 280 μN followed by
inear unloading.

The material to be indented is represented geometrically by a
ylindrical domain with 40 μm diameter and 40 μm height, see Fig. 5(a).
hus, the material domain is by almost three orders of magnitude

arger than the indentation depth amounting to roughly 50 nm, which
enders the effects of the boundary conditions on the modeling results
egligible. The domain size is also much larger than the characteristic
ize of binding matrix phase at the microscale RVE in Fig. 1(a), which is
onsidered to amount to 1 μm. Therefore, we consider the FE modeled
5

aterial domain inhomogeneous in accordance with the envisioned
ultiscale micromechanics representation. In more detail, the binding
atrix is represented as a hemispherical domain with radius of 0.5 μm,

nd is embedded into a hemispherical foam matrix domain (radius
.5 μm), which in turn is embedded into a brick matrix domain, see
ig. 5(b).

As for discretization, 8-node biquadratic axisymmetric quadrilateral
CAX8) and 6-node quadratic axisymmetric triangle (CAX6) elements
re used. The element size is continuously refined from 1 μm along the
ixed (bottom and right) boundary down to 3 nm in the region close to
he indenter tip. Mesh insensitivity was carefully analyzed.

The diamond tip is modeled as isotropic with elastic stiffness 𝐸i =
140 GPa and 𝜈i = 0.07 (Oliver and Pharr, 2004). Brick, foam, and
inding matrix are transversely isotropic materials (see Section 2.1).
owever, for FE modeling, we enforce the stiffness of all domains to
e isotropic by considering a single Young’s modulus 𝐸∗

𝑝 accompanied
ith a single Poisson’s ratio 𝜈∗𝑝 in order to maintain the axissymmetry of

he FE model. To compensate this simplification, we study the following
wo cases:

1. To model the indentation test in 𝑥-direction, the material-specific
(single) modulus in the FE model is considered to be identical
to the homogenized material-specific modulus in 𝑥-direction,
𝐸∗
𝑝 = 𝐸𝑝,𝑥, and the Poisson’s ratio is considered as 𝜈∗𝑝 = 𝜈𝑝,𝑥𝑦.

Given that 𝐸𝑝,𝑥 > 𝐸𝑝,𝑧 (see Table 2 for the micromechanics-based
results), this assumption refers to upper stiffness bounds of the
indented materials and consequently to a lower bound for the
sought displacement.

2. To model the indentation test in 𝑧-direction, we consider the
much smaller modulus in 𝑧-direction as isotropic modulus, 𝐸∗

𝑝 =
𝐸𝑝,𝑧, and moreover that 𝜈∗𝑝 = 𝜈𝑝,𝑥𝑧. This case refers to lower
stiffness bounds of the indented materials and consequently to
an upper bound for the sought displacement.

Diamond indenter, foam matrix and brick matrix are considered
o be purely (linear) elastic. The binding matrix is modeled as elasto-
lastic material with a failure surface according to the Mohr–Coulomb
riterion (2) with identified constants 𝑐bm = 37.59 MPa and 𝜑bm =
3.14◦. For the plastic potential, a smooth Menétrey–Willam surface
Menétrey and Willam, 1995) is considered and fitted as close as possi-
le (without running into computational issues) to the Mohr–Coulomb
ailure surface in order to mimic associated plasticity.

Finally, friction at the interface between indenter and indented ma-
erial is discussed. Experimental determination of the friction behavior
s out of reach. As a remedy, we rely on results from FE-based sensitivity
nalysis of Sarris and Constantinides (2013). Assuming Coulomb-type
riction in the interface, the authors showed that material pile-up
round the indenter tip decreases significantly when increasing the
riction coefficient, while the modeled load–displacement curves are
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Fig. 4. Displacement–time diagrams of indents in the binding matrix reported by Kariem et al. (2018) in (a) 𝑥-direction and (b) 𝑧-direction with averages represented by thick
lines.
Fig. 5. 2D axisymmetric FE model of nanoindentation test with conical indenter and inhomogeneous cylindrical material domain discretized by CAX6 and CAX8 elements with
sizes ranging from 1 μm along the fixed (bottom and right) boundary to 3 nm at the indent: (a) whole cylindrical domain with both height and diameter amounting to 40 μm; (b)
detail of the inhomogeneous material domain with a binding matrix hemisphere embedded in a foam matrix hemisphere, which, in turn, is embedded in the brick matrix cylinder
according to the characteristic sizes introduced in the micromechanics multiscale representation of Fig. 1(a).
virtually unaffected. Seeking for the latter, we simply adopt a typical
friction coefficient amounting to 0.5.

Evaluating the FE model reveals significant permanent deforma-
tions after unloading with significant pile-up around the imprint, see
Fig. 6(a). Plastic zones are rather localized, see Fig. 6(b), which con-
firms our ad-hoc assumption that failure is only possible within the one
micron large inner hemisphere representing the binding matrix.
6

4.1.4. Comparison and validation
Experimentally measured force–displacement curves (𝑃 − ℎ curves)

in 𝑥- and 𝑧-direction are compared to the model-predicted bounds
next. Notably, loading paths in nanoindentation tests are significantly
affected by contact uncertainties, e.g. contact force settings of the
testing machine and slip. This uncertainty may likely lead to the large
scatter in the loading branches of the 40 isolated force–displacement
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Fig. 6. FE modeling results at maximum load and after unloading for indentation in 𝑥-direction (upper stiffness bound): (a) displacement magnitude and (b) equivalent plastic
strain.
Table 2
Isotropic elastic constants (Young’s modulus 𝐸∗

𝑝 and Poisson’s ratio 𝜈∗𝑝 ) of matrix
domains used for FE simulation of intentation tests in 𝑥-direction (first row) and
𝑧-direction (second row).

𝐸bm
a 𝜈bma 𝐸∗

fm
b 𝜈∗fm

b 𝐸∗
brick

c 𝜈∗brick
c

[GPa] [–] [GPa] [–] [GPa] [–]

𝑥-direction 62.50 0.20 35.08 0.18 17.85 0.18
𝑧-direction 45.80 0.20 19.32 0.14 7.46 0.12

aFrom nanoindentation test in binding matrix from Kariem et al. (2020a), see also
Table 1.
bFrom micromechanical homogenization of the microscale stiffness Cfm = Cmicro

hom .
cFrom micromechanical homogenization of the mesoscale stiffness Cbrick = Cmeso

hom .

diagrams, see Fig. 7(a,b). The unloading branches, however, are rather
parallel. As a consequence, and also in accordance with previous stud-
ies (VanLandingham et al., 2001), we only consider the unloading
path (of the first load cycle) for validation purposes. Moreover, we
initialize the measured and predicted displacements ℎ by the maximum
displacement at the (first) peak, ℎmax, to define the unloading distance
ℎunl = ℎmax − ℎ, which will be further used for comparison.

Experimentally measured (average) and model-predicted unloading
branches of the force-unloading distance curves (𝑃 − ℎunl) are now
compared to each other. Both experimentally measured 𝑃 −ℎunl curves
nicely fall within the model-predicted 𝑃 −ℎunl range (hatched domain)
between the two modeled cases, see Fig. 7(c). Moreover, the measured
𝑃 − ℎunl curve obtained from indenting in the stiff extrusion direction
(𝑥-direction) is close to the model-predicted 𝑃 − ℎunl curve for the
case 𝐸∗

𝑝 = 𝐸𝑝,𝑥, i.e. when the homogenized modulus in 𝑥-direction is
considered representative for the isotropic modulus in the FE model. A
small underestimation of the permanent unloading distance (compare
the continuous orange with the blue curve in Fig. 7(c)) is expected and
is even targeted, given the necessary assumption of an isotropic stiffness
in the FE model, which in the case of 𝐸∗

𝑝 = 𝐸𝑝,𝑥 leads to an overestima-
tion of the stiffness orthogonal to the indent. By analogy, the measured
𝑃 − ℎunl curve obtained from indenting orthogonal to the extrusion
direction (in the soft 𝑧-direction) is close to the model-predicted 𝑃−ℎunl
curve for the case 𝐸∗

𝑝 = 𝐸𝑝,𝑧, i.e. when the homogenized modulus in 𝑧-
direction is considered representative for the isotropic modulus in the
FE model. The measured unloading distances are slightly lower than the
predicted counterparts (compare the dotdashed orange with the green
7

curve in Fig. 7(c)), which is in line with the underestimation of the
stiffness orthogonal to the indent.

All FE results presented so far refer to the Mohr–Coulomb constants
𝑐bm = 37.59 MPa and 𝜑bm = 33.14◦, which were identified from
micromechanics-based downscaling of macroscopic strength tests, as
discussed in Section 3.3. To further highlight the agreement between
FE model and nanoindentation experiment, and to finally validate the
identified constants, we now re-evaluate the FE model for the case
𝐸∗
𝑝 = 𝐸𝑝,𝑥 by considering different failure constants. Reducing the

cohesion to one half of the reference (while keeping the friction angle
constant) leads to a significant decrease of the permanent unloading
distance, see Fig. 8. The reason is that the material is more prone
to plastic strains; more energy is dissipated during the loading rather
than stored as elastic energy in the material, which, in turn, leads
to smaller elastic strains after unloading, and thus smaller unloading
distances. The agreement between the predicted 𝑃 −ℎunl curve and the
experimental result would thus be much worse, compare Figs. 7 and
8. Doubling the reference cohesion (while keeping the friction angle
constant) leads to a significant increase of the unloading distances.
While this would lead to a very close match of the experimental and
modeled 𝑃 − ℎunl curves for the case 𝐸∗

𝑝 = 𝐸𝑝,𝑥, it would lead to
a significant mismatch when comparing measurements in 𝑧-direction
with model results considering 𝐸∗

𝑝 = 𝐸𝑝,𝑧. Similarly to the variation
of the cohesion, the model was also evaluated for varying friction
angles by dividing/multiplying the friction angle by 1.3, while main-
taining the reference cohesion. The resulting 𝑃 − ℎunl graphs follow
the aforementioned principle; a reduction of the friction angle reduces
plastic but increases elastic strains and thus leads to an increase of
the permanent unloading distance, and vice versa. A good fit with the
nanoindentation-derived 𝑃 − ℎunl curves for indentation in both 𝑥-and
𝑧- direction simultaneously, however, is not possible with any friction
angle other than the reference one.

The sensitivity with respect to variations of the cohesion is less pro-
nounced but still noticeable. This finally validates the Mohr–Coulomb
failure function and the constants 𝑐bm = 37.59 MPa, 𝜑bm = 33.14◦ which
are identified from micromechanics-based downscaling of macroscopic
strength tests. Combining nano- and macroscale testing with microme-
chanics and finite element modeling, quantitative insights into brick
failure at the microscale could thus be provided for the first time in
brick mechanics.
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Fig. 7. Nanoindentation-derived 𝑃 − ℎunl curves of 40 indents related to the binding matrix in (a) 𝑥- and (b) 𝑧-direction from double-indent tests of Kariem et al. (2020a); (c)
comparison of the first unloading branch of the model-predicted 𝑃 − ℎunl curves with nanoindentation-derived counterparts. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Fig. 8. Sensitivity study regarding FE model-predicted 𝑃 − ℎunl curves with respect
to varying Mohr–Coulomb constants (reference cohesion 𝑐bm = 37.59 MPa and friction
angle 𝜑bm = 33.14◦ according to Section 3.3.

4.2. Macrotest-based validation of the multiaxial brick failure

4.2.1. Strategy
After successful validation of the binding matrix strength constants

based on nanoindentation tests, we here compare the micromechan-
ics model predictions with published macroscopic strength data from
multiaxial compression strength tests (Drobiec, 2005; Szojda, 2009;
Jasiński, 2011). Microstructural information, however, is not provided
by the experimenters. As a remedy, we normalize all tested multiaxial
strengths by the corresponding uniaxial compressive strengths, and we
normalize all predicted multiaxial strengths by the predicted uniaxial
compressive strength 𝑓mod

𝑐,𝑥 = 74.29 MPa. This way, we aim at checking
whether micromechanics-based upscaling of the Mohr–Coulomb failure
criterion (2) together with the identified and validated strength con-
stants 𝑐bm = 37.59 MPa, 𝜑bm = 33.14◦ can reliably predict macroscopic
brick failure under multiaxial loads.
8

Table 3
Results of triaxial compression tests performed by Drobiec (2005) who investigated the
two loading paths A and B.

A B

𝛴𝑥𝑥 [MPa] −28.4 −40.5 −48.8 −52.9 0.0 −2.0 −4.0
𝛴𝑦𝑦 = 𝛴𝑧𝑧 [MPa] 0.0 −2.1 −4.1 −6.0 −28.7 −31.3 −35.5

4.2.2. Multiaxial compression tests
A comprehensive strength test campaign was performed by Drobiec

(2005) and is shortly summarized next. The authors executed triaxial
compression tests on cylindrical brick specimens with a diameter of
60 mm and a height of 120 mm, with the latter dimension parallel to
the extrusion direction 𝑥. Independent control of vertical stresses 𝛴𝑥𝑥
and radial stress 𝛴𝑦𝑦 = 𝛴𝑧𝑧 allowed them to investigate two different
loading paths, (A) keeping 𝛴𝑦𝑦 = 𝛴𝑧𝑧 constant while 𝛴𝑥𝑥 is increased
until failure, and (B) keeping 𝛴𝑥𝑥 constant while 𝛴𝑦𝑦 = 𝛴𝑧𝑧 is increased
until failure, see Table 3 for the stresses at failure.

Applying vertical stress 𝛴𝑥𝑥 only revealed that the uniaxial com-
pressive strength amounts to 𝑓Dro

𝑐,𝑥 = 28.4 MPa. The biaxial compressive
strength was determined by increasing 𝛴𝑦𝑦 = 𝛴𝑧𝑧, with 𝛴𝑥𝑥 = 0, and
amounts to 𝑓Dro

𝑐𝑐,𝑦𝑧 = 28.7 MPa. The sought bi-to-uniaxial compressive
strength ratio thus amounts to 𝑓Dro

𝑐𝑐,𝑦𝑧∕𝑓
Dro
𝑐,𝑥 = 1.01. Jasiński (2011) also

performed uniaxial and biaxial compression tests on brick cylinders
with 60 mm diameter and 120 mm height. The author reported a
uniaxial compressive strength of 𝑓 Jas

𝑐,𝑥 = 23.2 MPa and a biaxial com-
pressive strength of 𝑓 Jas

𝑐𝑐,𝑦𝑧 = 26.5 MPa leading to a ratio of 𝑓 Jas
𝑐𝑐,𝑦𝑧∕𝑓

Jas
𝑐,𝑥 =

1.14. Similar experiments were also carried out by Szojda (2009), who
reported a bi-to-uniaxial compressive strength ratio of 0.80.

4.2.3. Micromechanics predictions of multiaxial brick failure
Evaluation of the micromechanics model for macroscopic multiaxial

stress states and comparison with the aforementioned experimental
results from the literature is discussed herein. In order to predict the
ultimate stress at failure for any macroscopic loading 𝜮, we proportion-
ally increase the components of 𝜮 in small increments, downscale the
macrostresses to microstresses in the binding matrix 𝝈 according to
bm
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Fig. 9. Model-predicted macroscopic failure surface in principal stress space 𝛴𝑥𝑥 −𝛴𝑦𝑦 −𝛴𝑧𝑧, with 𝛴𝑥𝑧 = 𝛴𝑦𝑧 = 𝛴𝑥𝑦 = 0. Biaxial sections are plotted in orange (𝛴𝑧𝑧 = 0) and purple
(𝛴𝑥𝑥 = 0 or 𝛴𝑦𝑦 = 0), deviatoric sections in yellow (𝜉 = 0 MPa) and blue (𝜉 = −100 MPa), and meridians representing predictions corresponding to the experimental loading paths
A and B in green (𝜗 = 180◦) and red (𝜗 = 0◦), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
stress concentration relation (3) and subsequently evaluate the Mohr–
Coulomb failure function 𝑓𝑀𝐶 (Eq. (2)). This is repeated as long as
𝑓𝑀𝐶 (𝝈bm) < 0. As soon as 𝑓𝑀𝐶 (𝝈bm) = 0, the applied stress state is
equal to the ultimate stress at failure.

By variation of the macroscopic load, macroscopic failure surfaces
can be predicted, such as the failure surface in principal stress space
(with principal stresses 𝛴𝑥𝑥, 𝛴𝑦𝑦, 𝛴𝑧𝑧 along the three axis and 𝛴𝑥𝑧 =
𝛴𝑦𝑧 = 𝛴𝑥𝑦 = 0), depicted in Fig. 9. Any macroscopic loading lead-
ing to stress states which are located inside the failure surface, i.e.
between the surface and the hydrostatic axis 𝛴𝑥𝑥 = 𝛴𝑦𝑦 = 𝛴𝑧𝑧, is
tolerated by the brick. Failure occurs once the macrostresses fall at the
surface. Notably, the failure surface exhibits the shape of a five-sided
pyramid, which is very close to a Mohr–Coulomb failure surface, see
also the deviatoric section in Haigh–Westergaard coordinates (with 𝜉 as
hydrostatic coordinate, 𝑟 as deviatoric coordinate, and 𝜗 as Lode angle)
depicted in Fig. 10. Unlike the deviatoric sections through the predicted
failure surface are not symmetric with respect mirroring along 𝜗 = 0
or 𝜗 = 2𝜋∕3. Given the axisymmetrical microstructure with symmetry
axis 𝑧, the uniaxial compressive as well as tensile strengths in 𝑥- and
𝑦-direction (𝑓mod

𝑐,𝑥 = 𝑓mod
𝑐,𝑦 = 74.29 MPa, 𝑓mod

𝑡,𝑥 = 𝑓mod
𝑡,𝑦 = 23.10 MPa)

are slightly larger than those in 𝑧-direction (𝑓mod
𝑐,𝑧 = 68.70 MPa, 𝑓mod

𝑡,𝑧 =
22.18 MPa). We note that microstructures with larger aspherities of min-
eral and pore phases and/or more pronounced orientation distributions,
as compared to the studied reference brick, lead to larger asymmetries
of the failure surfaces.

Moreover, we study shear failure surfaces. Failure surfaces in the
𝛴𝑥𝑥 − 𝛴𝑦𝑦 − 𝛴𝑥𝑦 stress space (with 𝛴𝑧𝑧 = 𝛴𝑥𝑧 = 𝛴𝑦𝑧 = 0) in Fig. 11(a)
is very similar to the 𝛴𝑥𝑥 − 𝛴𝑧𝑧 − 𝛴𝑥𝑧 failure surface (with 𝛴𝑦𝑦 =
𝛴𝑥𝑦 = 𝛴𝑦𝑧 = 0). For interpretation, we focus on symmetric biaxial
stress states 𝛴𝑥𝑥 = 𝛴𝑦𝑦 in Fig. 11(a). As the symmetric biaxial stress
decreases (the compression increases), the transmittable shear stress
also increases and reaches its maximum at 𝛴𝑥𝑥 = 𝛴𝑦𝑦 = 𝑓mod

𝑐,𝑥 ∕2. If
the biaxial compression is further increased, the transmittable shear
stress decreases and reaches zero at the biaxial strength 𝑓mod

𝑐𝑐,𝑥𝑦. The
intersections of the vertical axes with the failure surfaces represent the
predicted brick shear strengths, 𝑓mod

𝑠,𝑥𝑦 = 17.6 MPa and 𝑓mod
𝑠,𝑥𝑧 = 𝑓mod

𝑠,𝑦𝑧 =
17.4 MPa, respectively. The difference between the two is caused by the
transversal isotropic characteristic of the brick.
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Fig. 10. Deviatoric section through the failure surface of Fig. 9 at the different
hydrostatic pressures 𝜉 = 0 MPa and 𝜉 = −100 MPa.

4.2.4. Comparison and validation
As for validation of the micromechanics model, the bi- and triaxial

test results, discussed in Section 4.2.2, are compared with the corre-
sponding model predictions, presented in Section 4.2.3. For comparison
of the triaxial compression test results from Drobiec (2005), failure
stresses for both loading paths are transformed from Cartesian com-
ponents 𝛴𝑥𝑥, 𝛴𝑦𝑦, and 𝛴𝑧𝑧, given in Table 3, to Haigh–Westergaard
coordinates 𝜉, 𝑟, 𝜗. Loading path A refers to Lode angles 𝜗 = 180◦

and is therefore compared to the model-predicted compressive meridian,
compare the green points to the green line in Fig. 12. Loading path B,
in turn, refers to Lode angles 𝜗 = 0◦ and is therefore compared to the
model-predicted tensile meridian, compare the red points to the red line
in Fig. 12. The agreement between the normalized failure stresses for
both loading paths is excellent.

Finally, biaxial compression tests from Drobiec (2005),
Szojda (2009) and Jasiński (2011) are compared to the corresponding
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Fig. 11. Model-predicted macroscopic failure surfaces: (a) 𝛴𝑥𝑥 − 𝛴𝑦𝑦 − 𝛴𝑥𝑦 stress space with 𝛴𝑧𝑧 = 𝛴𝑥𝑧 = 𝛴𝑦𝑧 = 0; (b) 𝛴𝑥𝑥 − 𝛴𝑧𝑧 − 𝛴𝑥𝑧 stress space with 𝛴𝑦𝑦 = 𝛴𝑥𝑦 = 𝛴𝑦𝑧 = 0. The
intersections of surface and vertical axis represent the brick shear strengths 𝑓mod

𝑠,𝑥𝑦 and 𝑓mod
𝑠,𝑥𝑧 .
Fig. 12. Comparison of model-predicted failure meridians in principal stress space
(𝑟− 𝜉-diagram) with experimentally measured failure stresses from triaxial compression
tests of Drobiec (2005) for two loading paths A and B. Predicted stresses are normalized
by the predicted uniaxial compressive strength (𝑓 *

𝑐,𝑥 = 𝑓mod
𝑐,𝑥 ) and measured stresses

are normalized by the measured uniaxial compressive strength (𝑓 *
𝑐,𝑥 = 𝑓Dro

𝑐,𝑥 ). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

model predictions. The experimentally determined biaxial-to-uniaxial
compressive strength ratios are close to one, and thus also agree very
well with the corresponding modeled ratio amounting to 𝑓mod

𝑐𝑐,𝑦𝑧∕𝑓
mod
𝑐,𝑥 =

65.72∕74.29 = 0.88, see Fig. 13 for a graphical illustration based on the
predicted biaxial failure surfaces.

5. Summary, conclusions and outlook

In this work, we aim at modeling the strength of extruded fired
(880 °C) clay brick by means of a continuum micromechanics approach.
Therefore, the complex microstructure of bricks, consisting of several
mineral phases as well as pores at several length scales, is resolved
down to the scale of micrometers where a vitrified binding matrix is
considered. Brick failure is associated to Mohr–Coulomb-type failure
of this matrix, with strength constants obtained from downscaling
macroscopic tensile and compressive brick strength tests. The scale
transitions required for this downscaling, as well as for upscaling of
the microscopic binding matrix strength to the macroscopic brick scale,
10
Fig. 13. Model-predicted normalized biaxial failure surface in the 𝛴𝑥𝑥−𝛴𝑦𝑦 plane with
𝛴𝑧𝑧 = 𝛴𝑥𝑧 = 𝛴𝑦𝑧 = 𝛴𝑥𝑦 = 0 (orange) and the 𝛴𝑥𝑥 − 𝛴𝑧𝑧 plane with 𝛴𝑦𝑦 = 𝛴𝑥𝑧 = 𝛴𝑦𝑧 =
𝛴𝑥𝑦 = 0 or the 𝛴𝑦𝑦−𝛴𝑧𝑧 plane with 𝛴𝑥𝑥 = 𝛴𝑥𝑧 = 𝛴𝑦𝑧 = 𝛴𝑥𝑦 = 0 (purple), and comparison
with experimentally determined biaxial-to-uniaxial compressive strength ratios. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

are provided by micromechanics-derived stress concentration relations,
relying on the microstructural representation.

Model validation is successfully achieved at both the microscale
and the macroscale. The strength constants of the microscopic binding
matrix are validated by comparing finite element results which rely
on the identified failure behavior to unloading curves obtained from
nanoindentation experiments (Kariem et al., 2020a). The predicted
multiaxial brick strength is compared to independent results from
triaxial and biaxial compression tests (Drobiec, 2005; Jasiński, 2011;
Szojda, 2009). For the first time in brick mechanics, the model es-
tablishes a microstructure-based quantitative link between microscopic
and macroscopic failure. At this point, it should be noted that the
authors are aware of the complexity of failure mechanisms in brick
materials and that the proposed model cannot fully describe reality.
However, the presented identification of strength properties of the
binding matrix provides a first mechanically sound estimate of the
magnitude of these, which should be a reasonable basis for further
developments.

The proposed micromechanics multiscale model is currently limited
to one type of clay brick fired at 880 °C. Extending the applicability to
different clays, different firing temperatures, as well as mixtures with
pore-forming additives (e.g. extruded polystyrene, saw dust, and paper
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sludge) or tempers (e.g. fly ash, slag, and quartz sand) is a challenging
but fertile task for future modeling attempts. A preliminary application
to different clay mixtures has already shown that their macroscopic
strengths can be predicted reliably, which will be presented in a follow-
up publication. The focus will be, on the one hand, on a detailed
investigation of the mechanical properties of the binding matrix as a
function of mineralogical brick composition and firing temperature,
and, on the other hand, on the investigation of structural changes in
the brick material due to the addition of pore-forming additives and
tempers. The microstructure observations should be combined with
macroscopic strength tests in order to validate the micro–macro link
provided by the model. This would finally allow revealing the full
potential of a micromechanics multiscale model: to quantitatively study
the brick strength and its sensitivity with respect to changes in com-
position or production and to provide a scientific basis for optimizing
existing bricks and developing new ones.
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