
ATLAS: Automated Amortised
Complexity Analysis of

Self-Adjusting Data Structures

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

European Master's Program in Computational Logic

eingereicht von

Lorenz Leutgeb, BSc
Matrikelnummer 01127842

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Dipl.-Math. Dr.techn. Florian Zuleger

Wien, 1. Jänner 2021
Lorenz Leutgeb Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

ATLAS: Automated Amortised
Complexity Analysis of

Self-Adjusting Data Structures

MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

European Master's Program in Computational Logic

by

Lorenz Leutgeb, BSc
Registration Number 01127842

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Math. Dr.techn. Florian Zuleger

Vienna, 1st January, 2021
Lorenz Leutgeb Florian Zuleger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit

Lorenz Leutgeb, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen
undHilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabel-
len, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn
nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht ha-
be.

Wien, 1. Jänner 2021
Lorenz Leutgeb

v

Acknowledgements

Florian Zuleger and Georg Moser invited me to join their collaboration. We spent many hours dis-
cussing, debugging, researching. Without them, this thesis would not have been possible.
Thank you!

My family always supports me in every way possible.
Thank you!

This thesis concludes my studies in the European Master’s Program in Computational Logic, and I
look back on adventures in Dresden, Bolzano, and Canberra, full of gratefulness. What makes these
places and memories special for me, is the excellent bunch of people that I share the experiences with.
Thank you!

vii

Kurzfassung

Seit der Vorstellung der amortisierten Analyse durch Sleator und Tarjan wird an der systematischen
Analyse des Verhaltens von selbst-organisierenden Datenstrukturen wie z.B. Splay-Bäumen gearbei-
tet. Solch Analyse erfordert komplizierte Potentialfunktionen, welche typischerweise logarithmische
Ausdrücke enthalten.

Vielleicht deshalb, und trotz der jüngsten Fortschritte in der automatisiertenRessourcenanalyse, konn-
te dies bisher noch nicht automatisiert werden. In dieser Arbeit berichten wir von der ersten, vollstän-
dig automatisierten Analyse der amortisierten Komplexität von selbst-organisierenden Datenstruktu-
ren.

Wir liefern folgende Beiträge:

1. Wir stellen eine neuartige amortisierteRessourcenanalyse in Form einesTypsystems vor.Unsere
Analyse ist im Stil der Physiker-Methode formuliert, und basiert auf dem Konzept des Potenti-
als. Das Typsystem verwendet logarithmische Potentialfunktionen und ist das erste solche, das
logarithmische amortisierte Komplexität behandelt.

2. Wir codieren die Suche nach konkreten Koeffizienten fuer Potentialfunktionen als Optimie-
rungsproblem über einem passendenGleichungssystem.Unsere Zielfunktion steuert die Suche
in Richtung kleinerer Koeffizienten, sodass die inferierte amortisierte Komplexität minimiert
wird.

3. Automatisierungwird durch ein linearesGleichungssystem inVerbindungmit entsprechenden
Hilfssätzen erreicht, die nichtlineare Eigenschaften des Logairthmus ausdrücken. Wir diskutie-
ren unsere Entscheidungen, die eine Skalierung des Ansatzes ermöglichen.

4. Wir präsentieren unser Computerprogramm ATLAS zur automatischen Analyse und berich-
ten über experimentelle Ergebnisse zu Splay-Bäumen, Splay-Halden und Pairing-Halden. Wir
inferierenvollautomatischKomplexitätsabschätzungen,welchedenenderLiteratur entsprechen,
obwohl diese nur durch komplexe Beweise auf Papier erzielt werden konnte, und verbessern die-
se in einigen Fällen sogar.

ix

Abstract

Being able to argue about the performance of self-adjusting data structures (such as splay trees) has
been a main objective when Sleator and Tarjan introduced the notion of amortised complexity.

Analysing these data structures requires sophisticated potential functions, which typically contain log-
arithmic expressions. Possibly for these reasons, and despite the recent progress in automated resource
analysis, they have so far eluded automation. In this thesis, we report on the first fully automated
amortised complexity analysis of self-adjusting data structures.

We make the following contributions:

1. We introduce a novel amortised resource analysis couched in a type-and-effect system. Our anal-
ysis is formulated in terms of the physicist’smethod of amortised analysis, and is potential-based.
The type systemmakes use of logarithmic potential functions and is the first such system to ex-
hibit logarithmic amortised complexity.

2. We encode the search for concrete potential function coefficients as an optimisation problem
over a suitable constraint system. Our target function steers the search towards coefficients that
minimise the inferred amortised complexity.

3. Automation is achieved by using a linear constraint system in conjunction with suitable lem-
mata schemes that encapsulate the required non-linear facts about the logarithm. We discuss
our choices that achieve a scalable analysis.

4. We present our tool ATLAS and report on experimental results for splay trees, splay heaps and
pairing heaps. We completely automatically infer complexity estimates that match previous re-
sults (obtained by sophisticated pen-and-paper proofs), and in some cases even infer better com-
plexity estimates than previously published.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 State of the Art and RelatedWork . 3
1.2 Contributions . 4
1.3 Outline . 8
1.4 The Physicist’s Method of Amortised Analysis 8

2 Preliminaries 11
2.1 Setting the Stage . 11
2.2 A Necessarily Simple and Sufficiently Complex Programming Language 16
2.3 Motivating Example: Splay Trees . 17

3 A Type System for Analysis of Logarithmic Amortized Complexity 21
3.1 Resource Functions . 21
3.2 A Type System for Logarithmic Amortised Resource Analysis 25
3.3 Example Analysis . 33

4 Automation 41
4.1 Linearisation and Expert Knowledge . 41
4.2 Type Inference . 45

5 Implementation 49
5.1 The Three Phases of ATLAS . 50
5.2 Optimisation . 55
5.3 Evaluation . 56

6 Conclusion 59

List of Figures 61

xiii

List of Tables 61

Bibliography 63

CHAPTER 1
Introduction

Amortised analysis, as pioneered by Sleator and Tarjan [DR85; RE 85], is a method for the worst-case
cost analysis of data structures. The innovation of amortised analysis is to not only consider the cost of
performing a single operation on a data structure, but the cost of performing a sequence of operations.
The methodology of amortised analysis allows one to assign a low (e.g. constant or logarithmic) amor-
tised cost to a data structure operation even though the worst-case cost of a single operation might be
high (e.g. linear, polynomial or worse).

The setup of amortised analysis guarantees that for a sequence of data structure operations the worst-
case cost is indeed the number of data structure operations (i.e. the length of given sequence) times the
amortised cost. In this way, amortised analysis provides a methodology for worst-case cost analysis.

Notably, the cost analysis of self-adjusting data structures, such as splay trees, has been a motivating
example already in the initial proposal of amortised analysis [DR85; RE 85].

These data structures have the behaviour that a single data structure operation might be expensive (i.e.
linear in the size of the tree) but the cost is guaranteed to „average out“ in a sequence of data structure
operations (i.e. logarithmic in the size of the tree).

Analysing these data structures requires sophisticated potential functions, which typically contain log-
arithmic expressions. Possibly for these reasons, and despite the recent progress in automated complex-
ity analysis, they have so far eluded automation.

In this thesis, we present the first automated amortised cost analysis of self-adjusting data structures,
that is, of splay trees, splay heaps and pairing heaps, for which only results obtained by manual on pen-
and-paper, or by using interactive theorem provers, have been reported.

We extend the line of work byMartinHofmann and his collaborators on amortised analysis, where the
search for suitable potential functions is encoded as a type system. This line of work has led to several
successful tools for deriving accurate bounds on the resource usage of functional [JKM12a; S J+09;
MLG15; MG16] and imperative [HR13; JZ14] programs, as well as term rewriting systems [MGM16;
MG14; MG15; MS20]. The cited approaches employ a variety of potential functions: While initially

1

1. Introduction

confined to inferring linear cost [MS03], themethodswere subsequently extended to cover polynomial
[JM10b], multivariate polynomial[JKM12a], and also exponential cost [HR13].

In this thesis, we present the first fully automated amortised cost analysis of self-adjusting data struc-
tures, that is, of splay trees, splay heaps and pairing heaps,We for thefirst timepropose a type system that
supports logarithmic potential functions (and at the same time enables a multivariate cost analysis).

Our analysis is coached in a simple first-order functional language just sufficiently rich to provide a
full definition of our motivating examples (intially splay trees, but also splay heaps and pairing heaps).
We employ a big-step semantics, following similar approaches in the literature. We note that this de-
cision only supports the resource analysis of terminating programs. However, it is straightforward to
provide a partial big-step semantics [JM10a] or a small-step semantics [MS20] to overcome this limi-
tation. Furthermore, our type system is geared towards runtime as computation cost i.e. we assign a
unit cost to each function call and zero cost to every other evaluation step). Again it would not be
difficult to provide a parametric type system that supports other cost models. We consider both issues
as complementary to our main agenda.

Our type system has been designed with the goal of automation. As in previous work on type-based
amortised analysis, the type system infers constraints on unknown coefficients of template potential
functions in a syntax directed way from the program under analysis. Suitable coefficients can then
be found automatically by solving the collected constraints with a suitable constraint solver (i.e. an
SMT solver that supports the theory of linear arithmetic). The derivation of constraints is straightfor-
ward for all syntactic constructs of our programming language. However, our automated analysis also
requires a weakening rule, which supports the comparison of different potential functions. As our
potential functions are logarithmic, we cannot directly encode the comparison between logarithmic
expressions within the theory of linear arithmetic. Here we propose several ideas for linearising the
required comparison of logarithmic expressions. The obtained linear constraints can be then be added
to the constraint system. Our proposed linearisation makes use of

1. mathematical facts about the logarithm,

2. facts inferred from the program under analysis about the arguments of the logarithmic expres-
sions—we call both these facts expert knowledge—, and

3. Farkas’ Lemma (Lemma 5) for turning the universally-quantified premise of the weakening rule
into an existentially-quantified statement that can be added to the constraint system.

Our work takes the seminal study of Schoenmakers [Sch92; B S93] as a starting point, who has for the
first time formulated self-adjusting data structures in a functional setting and analysed the amortised
cost of the obtained functional data structures. An important precursor of ourwork is the recent effort
by Nipkow et al. [T N15; NB19], who has verified the amortised cost of these data structures with the
interactive theoremprover Isabelle/HOL, which allows for a semi-automated verification (most of the
calculations need some manual intervention though).

Achieving full automation required substantial implementation effort as the structural rules need to
be applied carefully — as we learned during our experiments — in order to avoid a size explosion of

2

1.1. State of the Art and RelatedWork

the generated constraint system. We evaluate and discuss our design choices that lead to a scalable
implementation.

1.1 State of the Art and Related Work
To the best of our knowledge the established type-and-effect system for the analysis of logarithmic
amortised complexity is novel and also the automated resource analysis of self-adjusting data structures
like splay trees, is unparalleled in the literature.

The automated cost analysis of imperative, functional and object-oriented programs as well as ofmore
abstract programming paradigms such as term rewriting systems and logic programming is an active
research topic [C A+10; Bla+10; GZ10; E A+11; MV +12; MLG15; MGM16; A F17; J G+17].

(Constant) amortised cost analysis has been in particular pioneered by Martin Hofmann and his col-
laborators. Starting with seminal work on the static prediction of heap space usage [MS03; HR13],
the approach has been generalised to (lazy) functional programming [S J+09; S J+10; JKM11; JKM12b;
JKM12a] and rewriting [MG14; MG15].

A fewpapers also target the inference of exponential and logarithmicbounds [Alb+08; AEM11; CFG17;
WWC17; KH20; SG20]. Some of the cited approaches are able to conduct an automated amortised
analysis in the sense of Sleator and Tarjan: The work on type-based cost analysis byMartin Hofmann
and his collaborators [MS03; S J+09; S J+10; JH11; JKM12a;MG14;MG15; JZ15a; JZ15b; S J+17; JAS17],
which we discuss in more detail in Section 2.1.1, directly employs potential functions as proposed by
Sleator and Tarjan [DR85; RE 85].

For imperative programs, a line of work infers cost bounds from lexicographic ranking functions using
arguments that implicitly achieve an amortised analysis [SZV14; SZV15; SZV17; Fie+18] (for details we
refer the reader to [SZV17]). The connection between ranking functions and amortised analysis has
also been discussed in the context of term rewriting systems [MG14]. Proposals that incorporate amor-
tised analysis within the recurrence relations approach to cost analysis have been discussed in [AG12;
A F17]. To the best of our knowledge, none of the cited approaches is able to conduct a worst-case
cost analysis for self-adjusting binary search trees such as splay trees. One notable exception is [TN15]
where the correct amortised analysis of splay trees [DR85; RE 85] and other data structures is certified
in Isabelle/HOL with some tactic support. However, it is not clear if the approach can be further
automated.

Automation of amortised resource analysis has also been greatly influenced by Hofmann, yielding to
sophisticated tools for the analysis of higher-order functional programs [JM10b; JM10a; J H11], as well
as of object-oriented programs [HR13; BJH18]. We mention here the highly sophisticated analysis
behind the RaML prototype developed in [JZ14; JZ15a; JZ15b; JAS17] and the RAJA tool [HR13].

We now overview alternatives to conducting amortised cost analysis by means of a type-and-effect sys-
tem. The line of work [Zul+11; SZV14; SZV15; SZV17; Fie+18] has focused on identifying abstractions
resp. abstract programmodels that can be used for the automated resource analysis of imperative pro-
grams. The goal has been to identify programmodels that are sufficiently rich to support the inference
of precise bounds and sufficiently abstract to allow for a scalable analysis, employing the size-change ab-
straction [Zul+11], (lossy) vector-addition systems [SZV14] and difference-constraint systems [SZV15;

3

1. Introduction

SZV17]. This work has led to the development of the tool LOOPUS, which performs amortised anal-
ysis for a class of programs that cannot be handled by related tools from the literature. Interestingly,
LOOPUS infers worst-case costs from lexicographic ranking functions using arguments that implic-
itly achieve an amortised analysis (for details we refer the reader to [SZV17]). Another line of work has
targeted the resource bound analysis of imperative and object-oriented programs through the extrac-
tion of recurrence relations from the programunder analysis, whose closed-form solutions then allows
one to infer upper bounds on resource usage [Alb+08; E A+11; AG12; A F17]. Amortised analysis with
recurrence relations has been discussed for the toolsCOSTA [AG12] andCoFloCo [AF17]. Amortised
analysis has also been employed in the resource analysis for rewriting [MS20] and non-strict function
programs, in particular, if lazy evaluation is conceived, see [S J+17].

Sublinear bounds are typically not in the focus of these tools, but can be inferred by some tools. In the
recurrence relations based approach to cost analysis [Alb+08; E A+11] refinements of linear ranking
functions are combined with criteria for divide-and-conquer patterns; this allows their tool PUBS to
recognise logarithmic bounds for some problems, but examples such as mergesort or splaying are be-
yond the scope of this approach. Logarithmic and exponential terms are integrated into the synthesis
of ranking functions in [CFG17], making use of an insightful adaption of Farkas’ and Handelman’s
lemmata. The approach is able to handle examples such asmergesort, but again not suitable to handle
self-adjusting data structures. A type based approach to cost analysis for an ML-like language is pre-
sented in [WWC17], which uses the Master Theorem to handle divide-and-conquer-like recurrences.
Very recently, support for the Master Theorem was also integrated for the analysis of rewriting sys-
tems [SG20], extending [MG16] on the modular resource analysis of rewriting to so-called logically
constrained rewriting systems [FKN17]. The resulting approach also supports the fully automated
analysis ofmergesort.

We also mention the quest for abstract program models whose resource bound analysis problem is
decidable, and for which the obtainable resource bounds can be precisely characterised. We list here
the size-change abstraction, whose worst-case complexity has been completely characterised as polyno-
mial (with rational coefficients) [CDZ14; Zul15], vector-addition systems [Brá+18; Zul20], for which
polynomial complexity can be decided, and LOOP programs [BH19], for which multivariate polyno-
mial bounds can be computed. We are not aware of similar results for programs models that induce
logarithmic bounds.

1.2 Contributions
Summarising, we make the following contributions:

• We propose a new class of template potential functions suitable for logarithmic amortised anal-
ysis; these potential functions in particular include a variant of Schoenmakers’ potential (a key
building block for the analysis of the splay function) and logarithmic expressions. Based on
these template potential functions, we present a type system for potential-based resource analy-
sis capable of expressing logarithmic amortised costs, and prove its soundness.

• We encode the search for concrete potential function coefficients as an optimisation problem
over a suitable constraint system. Our target function steers the search towards coefficients that

4

1.2. Contributions

minimise the inferred amortised complexity. Our approach does not rely on manual annota-
tions, it is a „push button“ automation.

• We give the details of our implementation that enable an automated analysis. The main chal-
lenge consists in automating the calculations about the logarithmic potential functions. We
achieve automation by using Farkas’ Lemma (5) for the linear part of the calculations, and iso-
latemonotonicity and a simple inequality between logarithmic expressions as the necessary non-
linear facts that need to be added to the linear reasoning.

• We present our tool ATLAS and report on experimental results for splay trees, splay heaps and
pairing heaps. We completely automatically infer complexity estimates that match previous re-
sults (obtained by sophisticated pen-and-paper proofs), and in some cases even infer better com-
plexity estimates than previously published.

• We report on experimental results for three self-adjusting data structures, that is splay trees, splay
heaps and pairing heaps, and automatically infer logarithmic amortised cost for their operations.

The theory presented in this thesis (mainly in Chapter 3) was developed in collaboration with Martin
Hofmann, DavidObwaller, GeorgMoser, and Florian Zuleger. The software toolATLAS (subject of
Chapter 5) was developed solely by the author of this thesis, and can be considered the main contribu-
tion of the thesis.

To some extent, the theory and the tool implementing it were developed in parallel, with a synergistic
effect. Improvements to the theory, caused by advancing the implementation, pointing out problem-
atic cases, and asking the right questions, were part of this process. Chapter 4 gives some insight into
the intersection of the two parts.

To provide sufficient context, this thesis also combines the contents of the following two publications,
fruits of the collaborative effort mentioned above, in the style of an extended version.

1. MartinHofmannet al. „Type-BasedAnalysis ofLogarithmicAmortisedComplexity“. In:Math-
ematical Structures Computer Science (2021). to appear

2. Lorenz Leutgeb, Georg Moser, and Florian Zuleger. „ATLAS: Automated Amortised Com-
plexity Analysis of Self-Adjusting Data Structures“. In: Computer Aided Verification - 33rd
International Conference, CAV 2021, July 18-23, Online, 2021, Proceedings. LectureNotes in Com-
puter Science. to appear. Springer, 2021

1.2.1 New Results for Amortised Complexity Analysis of Self-Adjusting Data
Structures

We either improve the best known complexity bounds or provide new (alternative) proofs for known
complexity bounds. In Table 1.1 we state the complexity bounds computed by ATLAS next to results
from the literature. We match or improve the results from [Sch92; B S93; NB19]. To the best of our
knowledge, the bounds for splay trees and splay heaps represent the state-of-the-art. We improve the

5

1. Introduction

Function ATLAS [Sch92]1 [NB19]

SplayTree
splay 3/2 log(|𝑡 |) 3/2 log(|𝑡 |) + 1 3/2 log(|𝑡 |) + 1
splay_max 3/2 log(|𝑡 |) — 3/2 log(|𝑡 |) + 1
insert 2 log(|𝑡 |) + 3/2 2 log(|𝑡 | + 1) +𝑂 (1) 2 log(|𝑡 |) + 3/2
delete 5/2 log(|𝑡 |) + 3 3 log(|𝑡 | + 1) +𝑂 (1) 3 log(|𝑡 |) + 2

SplayHeap
partition 3/4 log(|𝑡 |)+ — 2 log(|𝑡 | + 1) + 1

log(|𝑡 | + 1)
insert 3/4 log(|𝑡 |)+ — 3 log(|𝑡 | + 2) + 1

log(|𝑡 | + 1) + 3/2
del_min log(|𝑡 |) — 2 log(|𝑡 | + 1) + 1

PairingHeap
merge_pairs 3/2 log(|ℎ |) — 3 log(|ℎ |) + 4
insert 1/2 log(|ℎ |) — log(|ℎ | + 1) + 1
merge 1/2 log(|ℎ1 | + |ℎ2 |) + 1/2 log(|ℎ1 | + |ℎ2 |) log(|ℎ1 | + |ℎ2 | + 1) +

1 2
del_min log(|ℎ |) log(|ℎ |) 3 log(|ℎ | + 1) + 4

Table 1.1: Amortised complexity bounds for splay trees (module name SplayTree, abbrev. ST), splay
heaps (SplayHeap, SH) and pairing heaps (PairingHeap, PH).

bound for the delete function of splay trees and all bounds for the splay heap functions. For pair-
ing heaps, Iacono [Iac00; IY16] has proven (using a more involved potential function) that insert
and merge have constant amortised complexity, while the other data structure operations continue to
have an amortised complexity of 𝑘 log(|𝑡 |); while we leave an automated analysis based on Iacono’s
potential function for future work, we note that his coefficients 𝑘 in the logarithmic terms are large,
and that therefore the small coefficients in Table 1.1 are still of interest. We will detail below that we
used a simpler potential function than [Sch92; B S93; NB19] to obtain our results. Hence, also the new
proofs of the confirmed complexity bounds can be considered a contribution.

1.2.2 A New Approach for the Complexity Analysis of Data Structures

Establishing the prior results in Table 1.1 required considerable effort. Schoenmakers studied in his
PhD thesis [Sch92] the best amortised complexity bounds that can be obtained using a parametrised
potential function 𝜙(𝑡), where 𝑡 is a binary tree, defined by 𝜙(leaf) � 0 and 𝜙((𝑙, 𝑑, 𝑟)) � 𝜙(𝑙) +
𝛽 log𝛼 (|𝑙 |+|𝑟 |)+𝜙(𝑟), for real-valuedparameters𝛼, 𝛽 > 0. Carrying out a sophisticated optimisation
with pen and paper, he concluded that the best bounds are obtained by setting 𝛼 = 3

√
4 and 𝛽 =

1[Sch92] uses a different cost metric, i.e. the numbers of arithmetic comparisons, whereas we and [NB19] count the
number of (recursive) function applications. We adapted the results of [Sch92] to our cost metric to make the results easier
to compare, i.e. the coefficients of the logarithmic terms are by a factor 2 smaller compared to [Sch92].

6

1.2. Contributions

1
3 for splay trees, and by setting 𝛼 =

√
2 and 𝛽 = 1

2 for pairing heaps (splay heaps were proposed
only some years later by Okasaki in [CO99]). Brinkop andNipkow verify their complexity results for
splay trees in the theorem prover Isabelle/HOL [NB19]. They note that manipulating the expressions
corresponding to 𝛽 log𝛼 (|𝑡 |) could only partly be automated.2 For splay heaps, there is to the best of
our knowledge no previous attempt to optimise the obtained complexity bounds, whichmight explain
why our optimising analysis was able to improve all bounds. For pairing heaps, Brinkop and Nipkow
did not use the optimal parameters reported by Schoenmakers—probably in order to avoid reasoning
about polynomial inequalities —, which explains the worse complexity bounds. In contrast to the
discussed approaches, we were able to verify and improve the previous results fully automatically. Our
approach uses a variation of Schoenmakers’ potential function, where we roughly fix 𝛼 = 2 and leave
𝛽 as a parameter for the optimisation phase (see Section 2.1 for more details). Despite these choices,
our approach was able to derive bounds that match and improve the previous results, which came as a
surprise tous. Lookingback at our experiments and interpreting the obtained results, we recognise that
wemight have been in luck with the particular choice of the potential function (because we can obtain
the previous results despite fixing 𝛼 = 2). However, we would not have expected that an automated
analysis is able to match and improve all previously reported coefficients, which shows the power of
the optimisation phase.

We believe that our results suggest a new approach for the complexity analysis of data structures. So far,
self-adjusting data structures had to be analysed manually. This is possibly due to the use of sophisti-
cated potential functions, which may contain logarithmic expressions. Both features are challenging
for automated reasoning. Our results suggest that the following alternative (see Sections 2.1 and 4.1 for
more details):

1. Fix a parametrised potential function;

2. derive a (linear) constraint system over the function parameters from the AST of the program;

3. capture the required non-linear reasoning in lemmata, and use Farkas’ Lemma (Lemma 5) to
integrate the application of these lemmata into the constraint system (in our case two lemmata,
one about an arithmetic property and one about the monotonicity of the logarithm, were suffi-
cient for all of our benchmarks); and finally

4. find values for the parameters by an (optimising) constraint solver.

We believe that our approach will carry over to other data structures: one needs to adapt the potential
functions and add suitable lemmata, but the overall setup will be the same. We compare the proposed
methodology to program synthesis by sketching [Sol09], where the synthesis engineer communicates
her main insights to the synthesis engine (in our case the potential functions plus suitable lemmata),
and a constraint solver then fills in the details.

2Nipkow et al. [NB19] state „The proofs in this subsection require highly nonlinear arithmetic. Only some of the poly-
nomial inequalities can be automated with Harrison’s sum-of-squares method [Har07].“

7

1. Introduction

1.3 Outline

The rest of this thesis is organised as follows:

In Chapter 2, to set the stage (Section 2.1) we review the key concepts underlying type-based amortised
analysis (Sections 2.1.1 and 2.1.2) and present our ideas for their extension (Sections 2.1.1 and 2.1.2 respec-
tively). We also present a necessarily simple but at the same time sufficiently complex programming
languge (Section 2.2) to be used in the later chapters, and spell out the motivating example of splay
trees in this programming language (Section 2.3).

Chapter 3 presents a type system for logarithmic amoritsed resource analysis. We first discuss resource
functions in Section 3.1, then present the type system and its rules in Section 3.2, and finally apply it to
analyse two programs in Section 3.3.

Chapter 4 bridges between the theory itself (Chapter 3) and its implementation (Chapter 5): Anumber
of challenges at this intersection needed to be solved. We group them as follows: In Section 4.1 we
address translation of non-linear properties of the logarithm into aworkable linear constraint system as
well as clarify the role of Farkas’ Lemma. The steps required to go from type checking to type inference
are covered in Section 4.2.

The implementation of the tool is described in Chapter 5. We report experimental results for splay
trees, splay heaps and pairing heaps in Section 5.3.

We conclude in Chapter 6.

1.4 The Physicist’s Method of Amortised Analysis

Before we elaborate any further, we revisit the seminal work [DR85; RE 85] introducing amortised
analysis, since it is foundational for this thesis. Originally, amortised analysis was presented from two
points of view, called the the banker’s view and the physicist’s view, respectively. In this section we focus
on the latter, since it is the approach taken in this thesis.

In the physicist’s view, amoritsed analysis revolves around the notion of a potential function. A po-
tential function Φ(𝐷) maps any datastructure configuration 𝐷 into a number. We call Φ(𝐷) the
potential of 𝐷.

The idea is to use this concept of potential to reason about theamortised cost of anoperationperformed
on the datastructure. The notion of amortised cost relates to the actual cost as follows: For an operation
𝑓 with actual cost 𝑐(𝑓), the amortised cost of 𝑓 is 𝑎(𝑓) � 𝑐(𝑓) (𝐷) + Φ(𝑓 (𝐷)) − Φ(𝐷), i.e. the
sum of the actual cost of performing 𝑓 on 𝐷 and the potential of the result, minus the potential of 𝐷.

The analogy at work is that of physical objects conserving potential energy in classicalmechanics: Mov-
ing an object higher up (compared to some reference height) requires work, and will increase its gravi-
tational potential energy. This energy is converted back to kinetic energy when the object moves back
down. Operating on datastructures is thus analoguos to moving and up or down in space, depending
on the characteristics of the potential function and the operation.

8

1.4. The Physicist’s Method of Amortised Analysis

Another key aspect of amortised analysis is that it considers sequences of operations. We address this
next. We use ◦ to denote composition of operations. Amortised cost generalises in a simple way:

𝑎(𝑓 ◦ 𝑔) (𝐷) � 𝑎(𝑔)(𝐷) + 𝑎(𝑓) (𝑔(𝐷)) (1.1)

Further, we use exponentiation 𝑓 𝑛 to denote repeated composition of an operation with itself. We set
∀ 𝑓∀𝑥. 𝑓 0(𝑥) = 𝑥.

𝑎(𝑓 ◦ · · · ◦ 𝑓����������������
𝑛 times

)(𝐷) = 𝑎(𝑓 𝑛)(𝐷) �
�
𝑎(𝑓)(𝐷) 𝑛 = 1

𝑎(𝑓)(𝐷) + 𝑎(𝑓 𝑛−1) (𝑓 (𝐷)) otherwise
(1.2)

With the convention that the empty composition is equivalent to its unit, identity, which does not
incur any cost, we can express this recurrence as a sum.

𝑎(𝑓𝑛◦· · ·◦ 𝑓1) (𝐷) =
𝑛�
𝑖=1

𝑐(𝑓𝑖) (𝑓𝑖−1◦· · ·◦ 𝑓1(𝐷))+Φ(𝑓𝑖◦· · ·◦ 𝑓1(𝐷))−Φ(𝑓𝑖−1◦· · ·◦ 𝑓1(𝐷)) (1.3)

Note that two of the three terms in the sum telescope. By exploiting this, we arrive at a more direct
form that only talks about the potential before applying any operation,Φ(𝐷), and the potential after
all operations have been applied,Φ(𝑓𝑛 ◦ · · · ◦ 𝑓1(𝐷)).

𝑎(𝑓𝑛 ◦ · · · ◦ 𝑓1)(𝐷) = Φ(𝑓𝑛 ◦ · · · ◦ 𝑓1(𝐷)) −Φ(𝐷) +
𝑛�
𝑖=1

𝑐(𝑓𝑖)(𝑓𝑖−1 ◦ · · · ◦ 𝑓1(𝐷)) (1.4)

We also use 𝑐(𝑓𝑛 ◦ · · · ◦ 𝑓1) � �𝑛
𝑖=1 𝑐(𝑓𝑖)(𝑓𝑖−1 ◦ · · · ◦ 𝑓1(𝐷)) to refer to the actual cost of applying

operations 𝑓1 through 𝑓𝑛.

To use amortised cost as an upper bound for actual cost, we impose two restrictions on Φ. Firstly,
Φ(𝐷) = 0, which is to say that the initial potential is zero. This first condition is also intuitive in
the sense that an empty datastructure stores no data and therefore no „fuel“ for computation. And
secondly, ∀𝐷.Φ(𝐷) ≥ 0 which avoids „borrowing“ potential when there is none left. This gives an
upper bound for the actual cost of repeated application of 𝑓 :

𝑎(𝑓 𝑛)(𝐷) ≥ 𝑐(𝑓 𝑛) (𝐷) = 𝑎(𝑓𝑛 ◦ · · · ◦ 𝑓1)(𝐷) −Φ(𝑓𝑛 ◦ · · · ◦ 𝑓1(𝐷)) +Φ(𝐷)
= 𝑎(𝑓𝑛 ◦ · · · ◦ 𝑓1)(𝐷) −Φ(𝑓𝑛 ◦ · · · ◦ 𝑓1(𝐷))

With thismachinery, cost analysis is reframed as the task of choosingΦ in such away that the difference
between amortised cost and actual cost is minimal.

Note that amortised analysis has a compositional character. Even though we analyse each operation
only once, we arrive at cost for a sequence of operations. Amortised analysis allows to assign amortised
cost that is logarithmic in the size of the inputdata structure to anoperation, even though theoperation
analysed in isolation would yield higher, e.g. linear worst-case cost.

The challenge raised is to find a suitable Φ, with the goal of establishing bounds that are as tight as
possible. In automated analysis, our goal is to develop methods that will find a definition for Φ that
yields bounds for a given set of operations.

9

1. Introduction

The abovenotionof amortised cost for sequences of operations does not adequately capture operations
that take two or more datastructures as input (e.g. merging/union, difference). For a generalisation
from sequences to trees, refer to [NB19, Sec. 3].

Considering statically typed functional programming languages, operations on the data structureD
are functions 𝑓 : D → D. With partial application and polymorphism, examples would be insert :
𝛼 → D𝛼 → D𝛼 and delete : 𝛼 → D𝛼 → D𝛼. The approach taken in this thesis is to encode
theΦ in the types. In later chapters, we will define some structure𝑄 which characterisesΦ, and thus,
we get types of the form 𝑓 : D𝛼 |𝑄 → D𝛼 |𝑄 �.

Soundness of the modified type system will mean that 𝑓 : D𝛼 |𝑄 → D𝛼 |𝑄 � implies Φ𝑄 (𝐷) −
Φ𝑄� (𝑓 (𝐷)) ≥ 𝑐(𝑓)(𝐷). Annotations𝑄 and𝑄 � are constrained by typing rules, and thus the task of
choosing them is reframed as type inference.

10

CHAPTER2
Preliminaries

In this chapter, we briefly present the state-of-the-art that our approach builds on. The goal is to high-
light similarities between existing polynomial amortised analysis to our logarithmic analysis, andmark-
ing points for departure, such as cost-free typing. We also present our programming language.

2.1 Setting the Stage

Our analysis is formulated in terms of the physicist’smethodof amortised analysis in the style of Sleator
and Tarjan [DR85; RE 85]. This method assigns a potential to data structures of interest and defines
the amortised cost of an operation as the sumof the actual cost plus the change of the potential through
execution of the operation, i.e. the central idea of an amortised analysis as formulated by Sleator and
Tarjan is to choose a potential function 𝜙 such that

𝜙(𝑣) + 𝑎 𝑓 (𝑣) = 𝑐 𝑓 (𝑣) + 𝜙(𝑓 (𝑣)) ,

holds for all inputs 𝑣 to a function 𝑓 , where 𝑎 𝑓 , 𝑐 𝑓 denote the amortised and total cost, respectively, of
executing 𝑓 . Hofmann et al. [MS03; JKM11; JKM12b; JKM12a;MG14;MG15] provide a generalisation
of this idea to a set of potential functions 𝜙, 𝜓, such that

𝜙(𝑣) ⩾ 𝑐 𝑓 (𝑣) + 𝜓(𝑓 (𝑣)) ,

holds for all inputs 𝑣. This allowsone to readoffanupperboundon the amortised cost of 𝑓 , i.e.wehave
𝑎 𝑓 (𝑣) ⩽ 𝜙(𝑣) − 𝜓(𝑣). We add that the above inequality indeed generalises the original formulation,
which can be seen by setting 𝜙(𝑣) � 𝑎 𝑓 (𝑣) + 𝜓(𝑣) .
In this thesis, we present a type-based resource analysis based on the idea of potential functions that
can infer logarithmic amortised cost. Following previous work by Hofmann et al., we tackle two key
problems in order to achieve a semi-automated logarithmic amortised analysis:

11

2. Preliminaries

1) Automation is achieved by a type-and-effect system that uses template potential functions, i.e. func-
tions of a fixed shape with indeterminate coefficients. Here, the key challenge is to identify tem-
plates that are suitable for logarithmic analysis and that are closed under the basic operations of the
considered programming language.

2) In addition to the actual amortised analysis with costs, we employ cost-free analysis as a subroutine,
setting the amortised 𝑎 𝑓 and actual costs 𝑐 𝑓 of all functions 𝑓 to zero. This enables a size analysis
of sorts, because the inequality 𝜙(𝑣) ⩾ 𝜓(𝑓 (𝑣)) bounds the size of the potential𝜓(𝑓 (𝑣)) in terms
of the potential 𝜙(𝑣). The size analysis we conduct allows lifting the analysis of a subprogram to a
larger context, which is crucial for achieving a compositional analysis.

2.1.1 Type-and-Effect System

To set the scene, we briefly review amortised analysis formulated as a type-and-effect system up to and
including the multivariate polynomial analysis, see [S J+10; JM10b; JM10a; JKM11; JKM12a; MG14;
MG15; JAS17; S J+17].

Polynomial Amortised Analysis

Suppose that we have types 𝛼, 𝛽, 𝛾, . . . representing sets of values. We write �𝛼� for the set of values
represented by type 𝛼. Types may be constructed from base types such as Booleans and integers, de-
noted by Base, and by type formers such as list, tree, product, sum, etc. For each type 𝛼, we define
a (possibly infinite) set of basic potential functions BF (𝛼) : �𝛼� → R+0 . Thus, if 𝑝 ∈ BF (𝛼) and
𝑣 ∈ �𝛼� then 𝑝(𝑣) ∈ R+0 . An annotated type is a pair of a type 𝛼 and a function𝑄 : BF (𝛼) → R+0
providing a coefficient for each basic potential function. The function𝑄must be zero on all but finitely
many basic potential functions. For each annotated type 𝛼 |𝑄, the potential function 𝜙𝑄 : �𝛼� → R+0
is then given by

𝜙𝑄 (𝑣) �
�

𝑝∈BF(𝛼)
𝑄(𝑝) · 𝑝(𝑣) .

By introducing product types, one can regard functions with several arguments as unary functions,
which allows for technically smooth formalisations, see [JM10b; JM10a; J H11]; the analyses in the
cited papers are called univariate as the set of basic potential functions BF (𝛼) of a product type 𝛼
is given directly. In the latermultivariate versions of automated amortised analysis [JKM11; JKM12a;
MG15] one takes a more fine-grained approach to products. Namely, one then sets (for arbitrary 𝑛)

BF (𝛼1 × · · · × 𝛼𝑛) � BF (𝛼1) × · · · × BF (𝛼𝑛) ,

(𝑝1, . . . , 𝑝𝑛) (𝑣1, . . . , 𝑣𝑛) �
𝑛�
𝑖=1

𝑝𝑖 (𝑣𝑖) .

Thus, the basic potential function for a product type is obtained as the multiplication of the basic
potential functions of its constituents.1

1Suppose that for each type 𝛼 there exists a distinguished element 𝑢 ∈ BF (𝛼) with 𝑢(𝑎) = 1 for all 𝑎 ∈ �𝛼�. Then,
themultivariate product types contain all (linear combinations) of the basic potential functions, extending earlier univariate
definitions of product types.

12

2.1. Setting the Stage

Automation

The idea behind this setup is that the basic potential functions BF (𝛼) are suitably chosen and fixed
by the analysis designer, the coefficients 𝑄(𝑝) for 𝑝 ∈ BF (𝛼), however, are left indeterminate and
will (automatically) be fixed during the analysis. For this, constraints over the unknown coefficients are
collected in a syntax-directed way from the function under analysis and then solved by a suitable con-
straint solver. The type-and-effect system formalises this collection of constraints as typing rules, where
for each construct of the considered programming language a typing rule is given that corresponds to
constraints over the coefficients of the annotated types. Expressing the quest for suitable type anno-
tations as a type-and-effect system allows one to compose typing judgements in a syntax-oriented way
without the need for fixing additional intermediate results, which is often required by competing ap-
proaches. This syntax-directed approach to amortised analysis has been demonstrated to work well
for datatypes like lists or trees whose basic potential functions are polynomials over the length of a list
resp. the number of nodes of a tree. One of the reasons why this works well is, e.g., that functional
programming languages typically include dedicated syntax for list construction and that polynomials
are closed under addition by one (i.e. if 𝑝(𝑛) is a polynomial, so is 𝑝(𝑛 + 1)), supporting the formu-
lation of a suitable typing rule for list construction, see [JM10b; JM10a; J H11; JKM11; JKM12a]. The
syntax-directed approach has been shown to generalise from lists and trees to general inductive data
types, see [MG14; MG15; GM18].

Logarithmic Amortised Analysis

Wenowmotivate the design choices of our type-and-effect system. Themain objective of our approach
is the automated analysis of data structures such as splay trees, which have logarithmic amortised cost.
The amortised analysis of splay trees is tricky and requires choosing an adequate potential function:
our work makes use of a variant of Schoenmakers’ potential, rk(𝑡) for a tree 𝑡, see [B S93; T N15],
defined inductively by

rk(leaf) � 1,

rk((𝑙, 𝑑, 𝑟)) � rk(𝑙) + log(|𝑙 |) + log(|𝑟 |) + rk(𝑟) ,

where 𝑙, 𝑟 are the left resp. right child of the tree (𝑙, 𝑑, 𝑟), |𝑡 | denotes the number of leaves of a tree 𝑡,
and 𝑑 is some data element that is ignored by the potential function. Besides Schoenmakers’ potential
we need to add further basic potential functions to our analysis. This is motivated as follows: Similar
to the polynomial amortised analysis discussed above we want that the basic potential functions can
express the construction of a tree, e.g., let us consider the function

𝑓 (𝑥, 𝑑, 𝑦) � (𝑥, 𝑑, 𝑦),

which constructs the tree (𝑥, 𝑑, 𝑦) from some trees 𝑥, 𝑦 and some data element 𝑑, and let us assume
a constant cost 𝑐 𝑓 (𝑥, 𝑦) = 1 for the function 𝑓 . A type annotation for 𝑓 is given by

rk(𝑥) + log(|𝑥 |) + rk(𝑦) + log(|𝑦 |) + 1��
𝜙 (𝑥,𝑦)

⩾ 𝑐 𝑓 (𝑥, 𝑦) + rk(𝑓 (𝑥, 𝑑, 𝑦))��������������������������
𝜓 (𝑓 (𝑥,𝑦))

,

13

2. Preliminaries

i.e. the potential 𝜙(𝑥, 𝑦) suffices to pay for the cost 𝑐 𝑓 of executing 𝑓 and the potential of the re-
sult 𝜓(𝑓 (𝑥, 𝑦)) (the correctness of this annotation can be established directly from the definition of
Schoenmakers’ potential). As mentioned above, the logarithmic expressions in 𝜙(𝑥, 𝑦), i.e. log(|𝑥 |) +
log(|𝑦 |) + 1, specify the amortised costs of the operation.

We see that in order to express the potential 𝜙(𝑥, 𝑦) we also need the basic potential functions log(|𝑡 |)
for a tree 𝑡. In fact, we will choose the slightly richer set of basic potential functions

𝑝 (𝑎,𝑏) (𝑡) = log(𝑎 · |𝑡 | + 𝑏) ,
where 𝑎, 𝑏 ∈ N and 𝑡 is a tree. We note that by setting 𝑎 = 0 and 𝑏 = 2 this choice allows us
to represent the constant function 𝑢 with 𝑢(𝑡) = 1 for all trees 𝑡. We further note that this choice
of potential functions is sufficiently rich to express that 𝑝 (𝑎,𝑏) (𝑡) = 𝑝 (𝑎,𝑏+𝑎) (𝑠) for trees 𝑠, 𝑡 with
|𝑡 | = |𝑠 | + 1, which is needed for precisely expressing the change of potential when a tree is extended
by one node. Further, we define basic potential functions for products of trees by setting

𝑝 (𝑎1,...,𝑎𝑛 ,𝑏) (𝑡1, . . . , 𝑡𝑛) = log(𝑎1 · |𝑡1 | + · · · + 𝑎𝑛 · |𝑡𝑛 | + 𝑏) ,
where 𝑎1, . . . , 𝑎𝑛, 𝑏 ∈ N and 𝑡1, . . . , 𝑡𝑛 is a tuple of trees. This is sufficiently rich to state the equality
𝑝 (𝑎0,𝑎1,...,𝑎𝑛 ,𝑏) (𝑥1, 𝑥1, . . . , 𝑥𝑛) = 𝑝 (𝑎0+𝑎1,...,𝑎𝑛 ,𝑏) (𝑥1, . . . , 𝑥𝑛), which supports the formulation of
a sharing rule, which in turn is needed for supporting the let-construct in functional programming;
see [JKM11; JKM12a; MG15] for a more detailed exposition on the sharing rule and the let-construct.

2.1.2 Cost-Free Semantics

Polynomial Amortised Analysis

Webeginby reviewing the cost-free semantics underlyingpreviouswork [JM10a; JH11; JKM11; JKM12a]
onpolynomial amortised analysis. Assume thatwewant to analyse the composed function call𝑔(𝑓 ('𝑥), '𝑧)
using already established analysis results for 𝑓 ('𝑥) and 𝑔(𝑦, '𝑧). Supposewehave already established that
for all '𝑥, 𝑦, '𝑧 we have:

𝜙0('𝑥) ⩾ 𝑐 𝑓 ('𝑥) + 𝛽(𝑓 ('𝑥)) (2.1)
𝜙𝑖 ('𝑥) ⩾ 𝜙�

𝑖 (𝑓 ('𝑥)) for all 𝑖 (0 < 𝑖 ⩽ 𝑛) (2.2)

𝛽(𝑦) + 𝛾('𝑧) +
𝑛�
𝑖=1

𝜙�
𝑖 (𝑦)𝜙��

𝑖 ('𝑧) ⩾ 𝑐𝑔 (𝑦, '𝑧) + 𝜓(𝑔(𝑦, '𝑧)) , (2.3)

where as in the multivariate case above, 𝑛 is arbitrary and equations (2.1) and (2.3) assume cost, while
equation (2.2) is cost-free. Then, we can conclude for all '𝑥, '𝑧 that

𝜙0('𝑥) + 𝛾('𝑧) +
𝑛�
𝑖=1

𝜙𝑖 ('𝑥)𝜙��
𝑖 ('𝑧)��

𝜙 ('𝑥,'𝑧)

⩾ 𝑐 𝑓 ('𝑥) + 𝑐𝑔 (𝑓 ('𝑥), '𝑧) + 𝜓(𝑔(𝑓 ('𝑥), '𝑧)) ,

guaranteeing that the potential 𝜙('𝑥, '𝑧) suffices to pay for the cost 𝑐 𝑓 ('𝑥) of computing 𝑓 ('𝑥), the cost
𝑐𝑔 (𝑓 ('𝑥), '𝑧) of computing 𝑔(𝑓 ('𝑥), '𝑧) and the potential 𝜓(𝑔(𝑓 ('𝑥), '𝑧)) of the result 𝑔(𝑓 ('𝑥), '𝑧). We

14

2.1. Setting the Stage

note that the correctness of this inference hinges on the fact that we can multiply equation (2.2) with
𝜙��
𝑖 ('𝑧) for 𝑖 = 1 . . . 𝑛, using the monotonicity of the multiplication operation (note that potential

functions are non-negative). We highlight that the multiplication argument works well with cost-free
semantics, and enables lifting the resource analysis of 𝑓 ('𝑥) and 𝑔(𝑦, '𝑧) to the composed function call
𝑔(𝑓 ('𝑥), '𝑧).
Remark 1. We point out that the above exposition of cost-free semantics in the context of polynomial
amortised analysis differs from the motivation given in the literature [JM10a; J H11; JKM11; JKM12a],
where cost-free semantics are motivated by the quest for resource polymorphism, which is the problem of
computing (a representation of) all polynomial potential functions (up to a fixed maximal degree) for
the program under analysis; this problem has been deemed of importance for the handling of non tail-
recursive programs. We add that for the amortised cost analysis of inductively generated data-types, the
cost-free semantics proved necessary even for handling basic data structuremanipulations [MG14;MG15;
MS20]. In our view, cost-free semantics incorporate a size analysis of sorts. We observe that equation (2.2)
states that the potential of the result of the evaluation of 𝑓 ('𝑥) is bounded by the potential of the function
arguments '𝑥, without accounting for the costs of this evaluation. Thus, for suitably chosen potential func-
tions 𝜙𝑖 , 𝜙�

𝑖 can act as norms and capture the size of the result of the evaluation 𝑓 ('𝑥) in relation to the
size of the argument. As stated above, a separated cost and size analysis enables a compositional analysis,
an insight that we also exploit for logarithmic amortised analysis.

Logarithmic Amortised Analysis

Similar to the polynomial case, we want to analyse the composed function call 𝑔(𝑓 ('𝑥), '𝑧) using al-
ready established analysis results for 𝑓 ('𝑥) and 𝑔(𝑦, '𝑧). However, now we extend the class of potential
functions to sublinear functions. Assume that we have already established that

𝜙0('𝑥) ⩾ 𝑐 𝑓 ('𝑥) + 𝛽(𝑓 ('𝑥)) (2.4)
log(𝜙𝑖 ('𝑥)) ⩾ log(𝜙�

𝑖 ('𝑥)) for all 𝑖 (0 < 𝑖 ⩽ 𝑛) (2.5)

𝛽(𝑦) + 𝛾('𝑧) +
𝑛�
𝑖=1

log(𝜙�
𝑖 (𝑦) + 𝜙��

𝑖 ('𝑧)) ⩾ 𝑐𝑔 (𝑦, '𝑧) + 𝜓(𝑔(𝑦, '𝑧)) , (2.6)

where equations (2.4) and (2.6) assume cost, while equation (2.5) is cost-free. Equations (2.4) and (2.5)
represent the result of an analysis of 𝑓 ('𝑥) (note that these equations do not contain the parameters
'𝑧, which will however be needed for the analysis of 𝑔(𝑓 ('𝑥), '𝑧)), and equation (2.6) the result of an
analysis of 𝑔(𝑦, '𝑧). Then, we can conclude for all '𝑥, 𝑦, '𝑧 that

𝜙0('𝑥) + 𝛾('𝑧) +
𝑛�
𝑖=1

log(𝜙𝑖 ('𝑥) + 𝜙��
𝑖 ('𝑧))��

𝜙 ('𝑥,'𝑧)

⩾ 𝑐 𝑓 ('𝑥) + 𝑐𝑔 (𝑓 ('𝑥), '𝑧) + 𝜓(𝑔(𝑓 ('𝑥), '𝑧)) ,

guaranteeing that the potential 𝜙('𝑥, '𝑧) suffices to pay for the cost 𝑐 𝑓 ('𝑥) of computing 𝑓 ('𝑥), the cost
𝑐𝑔 (𝑓 ('𝑥), '𝑧) of computing 𝑔(𝑓 ('𝑥), '𝑧) and the potential𝜓(𝑔(𝑓 ('𝑥), '𝑧)) of the result 𝑔(𝑓 ('𝑥), '𝑧). Here,
we crucially use monotonicity of the logarithm function, as formalised in Lemma 2. This reasoning
allows us to lift isolated analyses of the functions 𝑓 ('𝑥) and 𝑔(𝑦, '𝑧) to the composed function call
𝑔(𝑓 ('𝑥), '𝑧); this is what is required for a compositional analysis!

15

2. Preliminaries

Example 1. We now illustrate the compositional reasoning on an example. We reconsider the func-
tion 𝑓 (𝑥, 𝑑, 𝑦) � (𝑥, 𝑑, 𝑦), which takes two trees 𝑥, 𝑦 and some data element 𝑑 and returns the tree
(𝑥, 𝑑, 𝑦). Assume that we already have established that

𝜓(𝑥) + 𝜓(𝑦) + 1 ⩾ 𝑐 𝑓 (𝑥, 𝑦) + rk(𝑓 (𝑥, 𝑑, 𝑦)) (2.7)
log(|𝑥 | + |𝑦 |) ⩾ log(| 𝑓 (𝑥, 𝑑, 𝑦) |) , (2.8)

where 𝜓(𝑢) = rk(𝑢) + log(|𝑢 |), 𝑐 𝑓 (𝑥, 𝑦) = 1, and 𝑑 is an arbitrary data element, which is not
relevant for the cost analysis of 𝑓 . We now want to analyse the composed function ℎ(𝑥, 𝑎, 𝑦, 𝑏, 𝑧) �
𝑓 (𝑓 (𝑥, 𝑎, 𝑦), 𝑏, 𝑧). We will use the above reasoning, instantiating equations (2.4) and (2.5) with equa-
tions (2.7) and (2.8) for the inner function call 𝑓 (𝑥, 𝑎, 𝑦), and equation (2.6) with the sum of equa-
tions (2.7) and (2.8) for the outer function call 𝑓 (𝑢, 𝑏, 𝑧). As argued above, we can then conclude for
all 𝑥, 𝑦, 𝑧 that

𝜓(𝑥) + 𝜓(𝑦) + 𝜓(𝑧) + log(|𝑥 | + |𝑦 |) + log(|𝑥 | + |𝑦 | + |𝑧 |) + 2 ⩾

⩾ 𝑐 𝑓 (𝑥, 𝑎, 𝑦) + 𝑐 𝑓 (𝑓 (𝑥, 𝑎, 𝑦), 𝑏, 𝑧) + 𝜓(𝑓 (𝑓 (𝑥, 𝑦), 𝑧)) ,
is a valid type annotation for ℎ(𝑥, 𝑎, 𝑦, 𝑏, 𝑧) � 𝑓 (𝑓 (𝑥, 𝑎, 𝑦), 𝑏, 𝑧); we have used equation (2.8) twice
in this derivation, once as log(|𝑥 | + |𝑦 |) ⩾ log(| 𝑓 (𝑥, 𝑎, 𝑦) |) and once lifted as log(|𝑥 | + |𝑦 | + |𝑧 |) ⩾
log(| 𝑓 (𝑥, 𝑎, 𝑦) |+ |𝑧 |). Kindly note that the above example appears in similar formas part of the analysis
of the splay function described in Section 3.3.

2.2 A Necessarily Simple and Sufficiently Complex Programming
Language

In this section we introduce a first-order programming language that will be used throughout the later
chapters. It is designed to be as simple as possible and comfortable, while still allowing to define all
operations on splay trees (presented as defined in [TN15] below, and analysed in detail in Section 3.3.2)
which are the primary motivating example.

2.2.1 Syntax

Consider following grammar in a BNF-like style that defines expressions 𝑒. Note that 𝑑 corresponds to
a functiondefinition,while 𝑓 is tobe substitutedby thenameof a functiondefinition and 𝑥, 𝑥1, . . . , 𝑥𝑛
are to be substituted by variable names.

Definition 1 (Syntax).

◦� < | > | = Comparison
𝑑 � 𝑓 𝑥1 . . . 𝑥𝑛 = 𝑒 Function Definition
𝑒 �

| 𝑓 𝑥1 . . . 𝑥𝑛 Function Application
| true | false | 𝑒1 ◦ 𝑒2 | if 𝑥 then 𝑒1 else 𝑒2
| (𝑥1, 𝑥2, 𝑥3) | leaf | match 𝑥 with | leaf -> 𝑒1 | (𝑥1, 𝑥2, 𝑥3) -> 𝑒2

| let 𝑥 = 𝑒1 in 𝑒2 | 𝑥

16

2.3. Motivating Example: Splay Trees

We skip the standard definition of integer constants 𝑛 ∈ Z as well as variable declarations, cf. [B P02].

In the definition of syntax above and semantics and typing rules below, expressions are given in let-
normal-form for simplicity. On the other hand, examplary code will not be presented in let-normal-
form for readability. A translation to let-normal-form is described in Chapter 5.

2.2.2 Semantics

To make the presentation more succinct, we assume only the following types: Boolean values Bool =
{true, false}, an abstract base type Base (abbrev. B), product types, and binary trees Tree (abbrev.
T), whose internal nodes are labelled with elements 𝑏 :Base. We use lower-case Greek letters for the
denotation of types. Elements 𝑡 :Tree are defined by the following grammar which fixes notation.

𝑡 � leaf | (𝑡1, 𝑏, 𝑡2) .

The size of a tree is the number of leaves: |leaf| � 1, |(𝑡, 𝑎, 𝑢)| � |𝑡 | + |𝑢 |.
Furthermore, we omit binary operators, and only define essential comparisons. For our analysis, these
are unimportant, as long as we assume that no actual costs are emitted.

A typing context is amapping fromvariablesV to types. Type contexts are denotedbyupper-caseGreek
letters (usuallyΓ,Δ). A programP consists of a signatureF together with a set of function definitions
of the form 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑒, where the 𝑥𝑖 are variables and 𝑒 an expression. A substitution or
(environment)𝜎 is amapping from variables to values that respects types. Substitutions are denoted as
sets of assignments: 𝜎 = {𝑥1 ↦→ 𝑡1, . . . , 𝑥𝑛 ↦→ 𝑡𝑛}. We write dom(𝜎) (rg(𝜎)) to denote the domain
(range) of 𝜎. Let 𝜎, 𝜏 be substitutions such that dom(𝜎) ∩ dom(𝜏) = ∅. Then we denote the
(disjoint) union of 𝜎 and 𝜏 as 𝜎 % 𝜏. We employ a simple cost-sensitive big-step semantics based on
eager evaluation, whose rules are given in Figure 2.1. The judgement 𝜎 ℓ

𝑒 ⇒ 𝑣 means that under
environment𝜎, expression 𝑒 is evaluated to value 𝑣 in exactly ℓ steps. Here only rule applications emit
(unit) costs.

2.3 Motivating Example: Splay Trees
Splay trees have been introduced by Sleator and Tarjan [DR85; RE 85] as self-adjusting binary search
trees with strictly increasing inorder traversal. There is no explicit balancing condition. All operations
rely on a tree rotating operation dubbed splaying; splay a t is performed by rotating element 𝑎 to
the root of tree 𝑡 while keeping inorder traversal intact. If 𝑎 is not contained in 𝑡, then the last element
found before leaf is rotated to the tree. The complete definition is given in Figure 2.2. Based on
splaying, searching is performed by splaying with the sought element and comparing to the root of
the result. Similarly, the definition of insertion and deletion depends on splaying. As an example the
definition of insertion and delete is given in Figure 2.3 and 2.4 respectively. See also [T N15] for full
algorithmic, formally verified, descriptions.

All basic operations can be performed in 𝑂 (log 𝑛) amortised runtime. The logarithmic amortised
complexity is crucially achieved by local rotations of subtrees in the definition of splay. Amortised
cost analysis of splaying has beenprovided for example by Sleator andTarjan [DR85], Schoenmakers [B

17

2. Preliminaries

𝜎
0 false ⇒ false 𝜎

0 true ⇒ true 𝜎
0 leaf ⇒ leaf

𝑥1𝜎 = 𝑡 𝑥2𝜎 = 𝑏 𝑥3𝜎 = 𝑢

𝜎
0 (𝑥1,𝑥2,𝑥3) ⇒ (𝑡,𝑏,𝑢)

𝑥𝜎 = 𝑣

𝜎
0
𝑥 ⇒ 𝑣

𝑏 is value of 𝑥1𝜎 ◦ 𝑥2𝜎
𝜎

0
𝑥1 ◦ 𝑥2 ⇒ 𝑏

𝑓 𝑦1 . . . 𝑦𝑘 = 𝑒 ∈ P 𝜎� ℓ
𝑒 ⇒ 𝑣

𝜎
ℓ+1

𝑓 𝑥1 . . . 𝑥𝑘 ⇒ 𝑣

𝜎
ℓ1

𝑒1 ⇒ 𝑤 𝜎[𝑥 ↦→ 𝑤] ℓ2
𝑒2 ⇒ 𝑣

𝜎
ℓ1+ℓ2 let 𝑥 = 𝑒1 in 𝑒2 ⇒ 𝑣

𝑥𝜎 = leaf 𝜎
ℓ
𝑒1 ⇒ 𝑣

𝜎
ℓ match 𝑥 with | leaf -> 𝑒1

| (𝑥0,𝑥1,𝑥2) -> 𝑒2

⇒ 𝑣

𝑥𝜎 = false 𝜎
ℓ
𝑒2 ⇒ 𝑣

𝜎
ℓ if 𝑥 then 𝑒1 else 𝑒2 ⇒ 𝑣

𝑥𝜎 = (𝑡,𝑎,𝑢) 𝜎� ℓ
𝑒2 ⇒ 𝑣

𝜎
ℓ match 𝑥 with | leaf -> 𝑒1

| (𝑥0,𝑥1,𝑥2) -> 𝑒2

⇒ 𝑣

𝑥𝜎 = true 𝜎
ℓ
𝑒1 ⇒ 𝑣

𝜎
ℓ if 𝑥 then 𝑒1 else 𝑒2 ⇒ 𝑣

Here𝜎[𝑥 ↦→ 𝑤] denotes theupdate of the environment𝜎 such that𝜎[𝑥 ↦→ 𝑤] (𝑥) = 𝑤 and the value
of all other variables remains unchanged. Furthermore, in the second match rule, we set 𝜎� � 𝜎 %
{𝑥0 ↦→ 𝑡, 𝑥1 ↦→ 𝑎, 𝑥2 ↦→ 𝑢} and for function applicationwe set𝜎� � {𝑦1 ↦→ 𝑥1𝜎, . . . , 𝑦𝑘 ↦→ 𝑥𝑘𝜎}.

Figure 2.1: Big-Step Semantics

S93], Nipkow [TN15], Okasaki [CO99], among others. Below, we followNipkow’s approach, where
the actual cost of splaying is measured by counting the number of calls to splay : B × T → T.

18

2.3. Motivating Example: Splay Trees

1 splay a t = match t with
2 | (cl, c, cr) → if a == c
3 then (cl, c, cr)
4 else if a < c
5 then match cl with
6 | leaf → (leaf, c, cr)
7 | (bl, b, br) → if a == b
8 then (bl, a, (br, c, cr))
9 else if a < b
10 then match bl with
11 | leaf → (leaf, b, (br, c, cr))
12 | bl1 → match splay a bl1 with
13 | leaf → leaf
14 | (al, a1, ar) → (al, a1, (ar, b, (br, c, cr)))
15 else match br with
16 | leaf → (bl, b, (leaf, c, cr))
17 | br1 → match splay a br1 with
18 | leaf → leaf
19 | (al, a1, ar) → ((bl, b, al), a1, (ar, c, cr))
20 else match cr with
21 | leaf → (cl, c, leaf)
22 | (bl, b, br) → if a == b
23 then ((cl, c, bl), a, br)
24 else if a < b
25 then match bl with
26 | leaf → ((cl, c, leaf), b, br)
27 | bl1 → match splay a bl1 with
28 | leaf → leaf
29 | (al, a1, ar) → ((cl, c, al), a1, (ar, b, br))
30 else match br with
31 | leaf → ((cl, c, bl), b, leaf)
32 | br1 → match splay a br1 with
33 | leaf → leaf
34 | (al, a1, ar) → (((cl, c, bl), b, al), a1, ar)

Figure 2.2: Function Definition SplayTree.splay.

19

2. Preliminaries

1 insert a t = match t with
2 | leaf → (leaf, a, leaf)
3 | t1 → match splay a t1 with
4 | leaf → leaf
5 | (l, a1, r) → if a == a1
6 then (l, a, r)
7 else if a < a1
8 then (l, a, (leaf, a1, r))
9 else ((l, a1, leaf), a, r)

Figure 2.3: Function Definition SplayTree.insert.

1 delete a t = match t with
2 | t1 → match splay a t1 with
3 | leaf → leaf
4 | (l, a1, r) → if a == a1
5 then match l with
6 | leaf → r
7 | l1 → match splay_max l1 with
8 | leaf → leaf
9 | (ll1, m, _) → (ll1, m, r)
10 else (l, a1, r)

Figure 2.4: Function Definition SplayTree.delete.

1 splay_max t = match t with
2 | (l, b, r) → match r with
3 | leaf → (l, b, leaf)
4 | (rl, c, rr) → match rr with
5 | leaf → ((l, b, rl), c, leaf)
6 | rr1 → match splay_max rr1 with
7 | leaf → leaf
8 | (rrl1, x, xa) → (((l, b, rl), c, rrl1), x, xa)

Figure 2.5: Function Definition SplayTree.splay_max.

20

CHAPTER3
A Type System for Analysis of

Logarithmic Amortized Complexity

In this chapter, we will present a type system designed for logarithmic amortised worst-case complex-
ity. It equips the programming language defined in Section 2.2 with a standard Hindley-Milner type
inference, enriched by type annotations that capture potential.

Wewill first introduce resource functions, thatmeasure the potential of a tree-based data structure, and
then proceed with presenting the type system in Section 3.2. To conclude the chapter, we will apply it
to our running example of splay trees in Section 3.3.

3.1 Resource Functions

In this section, we detail the basic potential functions employed and clarify the definition of potentials
used.

Only trees are assignednon-zeropotential. This is not a severe restriction aspotentials for basic datatypes
would only become essential if the construction of such types would emit actual costs. This is not the
case in our context. Moreover, note that lists can be conceived as trees of particular shape. The poten-
tialΦ(𝑡) of a tree 𝑡 is given as a non-negative linear combination of basic functions, which essentially
amount to „sums of logs“, see Schoenmakers [B S93]. It suffices to specify the basic functions for the
type of trees T. As already mentioned in Section 2.1, the rank rk(𝑡) of a tree is defined as follows

rk(leaf) � 1

rk((𝑡, 𝑎, 𝑢)) � rk(𝑡) + log�(|𝑡 |) + log�(|𝑢 |) + rk(𝑢) .

We set log�(𝑛) � log2(max{𝑛, 1}), that is, the (binary) logarithm function is defined for all num-
bers. This is merely a technicality, introduced to ease the presentation as it simplifies the statement of

21

3. A Type System for Analysis of Logarithmic Amortized Complexity

subsequent definitions. In the following, we will denote the modified logarithmic function, simply
as log. Furthermore, recall that |𝑡 | denotes the number of leaves in tree 𝑡. The definition of „rank“ is
inspired by the definition of potential in [B S93; T N15], but subtly changed to suit it to our context.

Definition 2. The basic potential functions of Tree, denotedBF , are

• rk(𝑡), and

• 𝑝 (𝑎,𝑏) (𝑡) � log(𝑎 · |𝑡 | + 𝑏), where 𝑎, 𝑏 are natural numbers.

Note that the constant function 1 is representable: 1 = log(0 · |𝑡 | + 2) = 𝑝 (0,2) .

Following the recipe of the high-level description in Section 2.1, potentials or more generally resource
functions become definable as linear combinations of basic potential functions.

Definition 3. A resource function 𝑟 : �T� → R+0 is a non-negative linear combination of basic poten-
tial functions, that is,

𝑟 (𝑡) �
�
𝑖∈𝐼

𝑞𝑖 · 𝑝𝑖 (𝑡) ,

where 𝑞𝑖 ∈ R+0 , 𝑝𝑖 ∈ BF and 𝐼 � {∗} ∪ (N × N). The set of resource functions is denoted RF .

A resource annotation over T, or simply annotation, is a sequence 𝑄 = [𝑞∗] ∪ [(𝑞 (𝑎,𝑏))𝑎,𝑏∈N] with
𝑞∗, 𝑞 (𝑎,𝑏) ∈ Q+

0 with all but finitely many of the coefficients 𝑞∗, 𝑞 (𝑎,𝑏) equal to 0. It represents a
(finite) linear combination of basic potential functions, that is, a resource function. The empty anno-
tation, that is, the annotation where all coefficients are set to zero, is denoted as∅.

Remark 2. We use the convention that the sequence elements of resource annotations are denoted by the
lower-case letter of the annotation, potentially with corresponding sub- or superscripts.

Definition 4. The potential of a tree 𝑡 with respect to an annotation𝑄 = [𝑞∗] ∪ [(𝑞 (𝑎,𝑏))𝑎,𝑏∈N], is
defined as follows.

Φ(𝑡 |𝑄) � 𝑞∗ · rk(𝑡) +
�

𝑎,𝑏∈N
𝑞 (𝑎,𝑏) · 𝑝 (𝑎,𝑏) (𝑡) ,

Recall that 𝑝 (𝑎,𝑏) = log(𝑎 · |𝑡 | + 𝑏) and that rk is the rank function, defined above.

Example 2. Let 𝑡 be a tree, then its potential could be defined as follows: rk(𝑡) +3 · log(|𝑡 |) +1. With re-
spect to the above definition this potential becomes representable by setting 𝑞∗ � 1, 𝑞 (1,0) � 3, 𝑞 (0,2) �
1. Thus,Φ(𝑡 |𝑄) = rk(𝑡) + 3 · log(|𝑡 |) + 1. □

We emphasise that the linear combination defined above is not independent. Consider, for example
log(2|𝑡 | + 2) = log(|𝑡 | + 1) + 1.

22

3.1. Resource Functions

3.1.1 Analysis of Products of Trees

We now lift the basic potential functions 𝑝 (𝑎,𝑏) of a single tree to products of trees. As discussed in
Section 2.1, we define the potential functions 𝑝 (𝑎1,...,𝑎𝑚,𝑏) for a sequence of 𝑚 trees 𝑡1, . . . , 𝑡𝑚, by
setting:

𝑝 (𝑎1,...,𝑎𝑚,𝑏) (𝑡1, . . . , 𝑡𝑚) � log(𝑎1 · |𝑡1 | + · · · + 𝑎𝑚 · |𝑡𝑚 | + 𝑏) ,
where 𝑎1, . . . , 𝑎𝑚, 𝑏 ∈ N. Equipped with this definition, we generalise annotations to sequences of
trees. An annotation for a sequence of length𝑚 is a sequence

𝑄 = [𝑞1, . . . , 𝑞𝑚] ∪ [(𝑞 (𝑎𝑚,...,𝑎𝑛 ,𝑏))𝑎𝑖 ,𝑏∈N] ,
again vanishing almost everywhere. Note that an annotation of length 1 is simply an annotation as
defined above, where the coefficient 𝑞1 is set to equal the coefficient 𝑞∗. Based on this, the potential of
a sequence of trees 𝑡1, . . . , 𝑡𝑚 is defined as follows:

Definition 5. Let 𝑡1, . . . , 𝑡𝑚 be trees and let𝑄 = [𝑞1, . . . , 𝑞𝑚] ∪ [(𝑞 (𝑎1 ,...,𝑎𝑚,𝑏))𝑎𝑖 ,𝑏∈N] be an anno-
tation of length𝑚 as above. We define

Φ(𝑡1, . . . , 𝑡𝑚 |𝑄) �
𝑚�
𝑖=1

𝑞𝑖 · rk(𝑡𝑖) +
�

𝑎1,...,𝑎𝑚,𝑏∈N
𝑞 (𝑎1,...,𝑎𝑚,𝑏) · 𝑝 (𝑎1,...,𝑎𝑚,𝑏) (𝑡1, . . . , 𝑡𝑚) ,

where 𝑝 (𝑎1,...,𝑎𝑚,𝑏) (𝑡1, . . . , 𝑡𝑚) � log(𝑎1 · |𝑡1 | + · · · + 𝑎𝑚 · |𝑡𝑚 | + 𝑏) as defined above. We use |𝑄 | to
denote the length of𝑄.

Note that for an empty sequence of trees, we have Φ(𝜖 |𝑄) =
�

𝑏∈N 𝑞𝑏 log(𝑏). Note that the rank
function rk(𝑡) amounts to the sum of the logarithms of the size of subtrees of 𝑡. In particular if the
tree 𝑡 simplifies to a list of length 𝑛, then rk(𝑡) = (𝑛 + 1) +�𝑛

𝑖=1 log(𝑖). Moreover, as
�𝑛

𝑖=1 log(𝑖) ∈
Θ(𝑛 log 𝑛), the above defined potential functions are sufficiently rich to express linear combinations
of sub- and super-linear functions.

Let 𝜎 denote a substitution, let Γ denote a typing context and let 𝑥1 :T, . . . , 𝑥𝑚 :T denote all tree
types in Γ. A resource annotation for Γ or simply annotation is an annotation for the sequence of trees
𝑥1𝜎, . . . , 𝑥𝑚𝜎. We define the potential of Γ|𝑄 with respect to 𝜎 as

Φ(𝜎;Γ|𝑄) � Φ(𝑥1𝜎, . . . , 𝑥𝑚𝜎 |𝑄) .
Definition 6. An annotated signature F is a mapping from functions 𝑓 to sets of pairs consisting of the
annotation type for the arguments of 𝑓 , 𝛼1 × · · · × 𝛼𝑛 |𝑄 and the annotation type 𝛽 |𝑄 � for the result:

F (𝑓) �
�
𝛼1 × · · · × 𝛼𝑛 |𝑄 → 𝛽 |𝑄 � : 𝑓 has 𝑛 arguments of which 𝑚 are trees,

|𝑄 | = 𝑚 and |𝑄 � | = 1

�
Note that𝑚 ⩽ 𝑛 by definition.

We confuse the signature and the annotated signature and denote the latter simply as F . Because the
signature is usually clear from the context (one per program), instead of 𝛼1 × · · · × 𝛼𝑛 |𝑄 → 𝛽 |𝑄 � ∈
F (𝑓), we typically write 𝑓 :𝛼1 × · · · × 𝛼𝑛 |𝑄 → 𝛽 |𝑄 �. As our analysis makes use of a cost-free seman-
tics any function symbol is possibly equipped with a cost-free signature, independent of F . The cost-
free signature is denoted as F cf.

23

3. A Type System for Analysis of Logarithmic Amortized Complexity

Example 3. Consider the function splay: B × T → T. The induced annotated signature is given
as B × T|𝑄 → T|𝑄 �, where 𝑄 � [𝑞∗] ∪ [(𝑞 (𝑎,𝑏))𝑎,𝑏∈N] and 𝑄 � � [𝑞�∗] ∪ [(𝑞�(𝑎,𝑏))𝑎,𝑏∈N].
The logarithmic amortised cost of splaying is then expressible through the following setting: 𝑞∗ � 1,
𝑞 (1,0) = 3, 𝑞 (0,2) = 1, 𝑞�∗ � 1. All other coefficients are zero.

This amounts to a potential of the arguments rk(𝑡) + 3 log(|𝑡 |) + 1, while for the result we consider only
its rank, that is, the annotation expresses 3 log(|𝑡 |) + 1 as the logarithmic cost of splaying. The correctness
of the induced logarithmic amortised costs for the zig-zig case of splaying is verified in Section 3.3 and is
also automatically verified by our prototype. □

Suppose Φ(𝑡1, . . . , 𝑡𝑛, 𝑢1, 𝑢2 |𝑄) denotes an annotated sequence of length 𝑛 + 2. Suppose further
𝑢1 = 𝑢2 � 𝑢 and we want to share the value 𝑢, that is, the corresponding function arguments ap-
pears multiple times in the body of the function definition. Then we make use of the operator ⋎(𝑄)
that adapts the potential suitably. The operator is also called sharing operator in analogy to [JKM12a,
Lemma 6.6].

Lemma 1. Let 𝑡1, . . . , 𝑡𝑛, 𝑢1, 𝑢2 denote a sequence of trees of length 𝑛 + 2 with annotation 𝑄. Then
there exists a resource annotation ⋎(𝑄) such thatΦ(𝑡1, . . . , 𝑡𝑛, 𝑢1, 𝑢2 |𝑄) = Φ(𝑡1, . . . , 𝑡𝑛, 𝑢 |⋎(𝑄)), if
𝑢1 = 𝑢2 = 𝑢.

Proof. W.l.o.g. we assume 𝑛 = 0. Thus, let𝑄 = [𝑞1, 𝑞2] ∪ [(𝑞 (𝑎1,𝑎2,𝑏))𝑎1,𝑎2,𝑏∈N]. By definition

Φ(𝑢1, 𝑢2 |𝑄) = 𝑞1 · rk(𝑢1) + 𝑞2 · rk(𝑢2) +
�

𝑎1,𝑎2,𝑏∈N
𝑞 (𝑎1,𝑎2 ,𝑏) · 𝑝 (𝑎1,𝑎2,𝑏) (𝑢1, 𝑢2) ,

where 𝑝 (𝑎1,𝑎2,𝑏) (𝑢1, 𝑢2) = log(𝑎1 · |𝑢1 | + 𝑎2 · |𝑢2 | + 𝑏). By assumption 𝑢 = 𝑢1 = 𝑢2. Thus, we
obtain

Φ(𝑢, 𝑢 |𝑄) = 𝑞1 · rk(𝑢) + 𝑞2 · rk(𝑢) +
�

𝑎1,𝑎2,𝑏∈N
𝑞 (𝑎1,𝑎2,𝑏) · 𝑝 (𝑎1,𝑎2,𝑏) (𝑢, 𝑢)

= (𝑞1 + 𝑞2) rk(𝑢) +
�

𝑎1+𝑎2,𝑏∈N
𝑞 (𝑎1+𝑎2,𝑏) · 𝑝 (𝑎1+𝑎2,𝑏) (𝑢)

= Φ(𝑢 |⋎(𝑄)) ,
for suitable defined annotation ⋎(𝑄), whose definition can be directly read off from the above con-
straints. □

We emphasise that the definability of the sharing annotation ⋎(𝑄) is based on the fact that the basic
potential functions 𝑝 (𝑎1,...,𝑎𝑚,𝑏) have been carefully chosen so that

𝑝 (𝑎0,𝑎1,𝑎2,...,𝑎𝑚,𝑏) (𝑥1, 𝑥1, . . . , 𝑥𝑚) = 𝑝 (𝑎0+𝑎1,𝑎2,...,𝑎𝑚,𝑏) (𝑥1, 𝑥2, . . . , 𝑥𝑚) ,
holds, see Section 2.1.

Remark 3. We observe that the proof-theoretic analogue of the sharing operation constitutes in a contrac-
tion rule, if the type system is conceived as a proof system.

24

3.2. A Type System for Logarithmic Amortised Resource Analysis

Let 𝑄 = [𝑞∗] ∪ [(𝑞 (𝑎,𝑏))𝑎,𝑏∈N] be an annotation and let 𝐾 ∈ Q+
0 . Then we define 𝑄 � � 𝑄 + 𝐾

as follows: 𝑄 � = [𝑞∗] ∪ [(𝑞�(𝑎,𝑏))𝑎,𝑏∈N], where 𝑞�(0,2) � 𝑞 (0,2) + 𝐾 and for all (𝑎, 𝑏) ≠ (0, 2)
𝑞�(𝑎,𝑏) � 𝑞 (𝑎,𝑏) . By definition the annotation coefficient 𝑞 (0,2) is the coefficient of the basic potential
function 𝑝 (0,2) (𝑡) = log(0|𝑡 | +2) = 1, so the annotation𝑄 +𝐾 , adds cost𝐾 to the potential induced
by 𝑄. Further, we define the multiplication of an annotation 𝑄 by a constant 𝐾 , denoted as 𝐾 · 𝑄
pointwise. Moreover, let 𝑃 = [𝑝∗] ∪ [(𝑝 (𝑎,𝑏))𝑎,𝑏∈N] be another annotation. Then the addition
𝑃 +𝑄 of annotations 𝑃,𝑄 is similarly defined pointwise.

3.2 A Type System for Logarithmic Amortised Resource Analysis

In this section, we present the central contribution of this thesis. We delineate a novel type-and-effect
system incorporating a potential-based amortised resource analysis capable of expressing logarithmic
amortised costs. Soundness of the approach is established in Theorem 3.

Our potential-based amortised resource analysis is couched in a type system, given in Figure 3.1. If the
type judgement Γ|𝑄 " 𝑒 :𝛼 |𝑄 � is derivable, then the worst-case cost of evaluating the expression 𝑒 is
bound from above by the difference between the potential Φ(𝜎;Γ|𝑄) before the execution and the
potentialΦ(𝑣 |𝑄 �) of the value 𝑣 obtained through the evaluation of the expression 𝑒. The type system
makes use of a cost-free semantics, which does not attribute any costs to the calculation. The cost-free
typing judgement is denoted asΓ|𝑄 "cf 𝑒 :𝛼 |𝑄 � andbased on a cost-free variant of the application rule,
denoted as (app : cf). The rule (app : cf) is defined as the rule (app), however, no costs are accounted
for. W.r.t. the cost-free semantics, the empty signature, denoted as 𝛼1 × · · · × 𝛼𝑛 |∅ → 𝛽 |∅, is always
admissible. We note that the cost-free signatures form a cone, as stated in the following remark:

Remark 4. If 𝛼1 × · · · × 𝛼𝑛 |𝑃 → 𝛽 |𝑃� and 𝛼1 × · · · × 𝛼𝑛 |𝑄 → 𝛽 |𝑄 � are both cost-free signatures
for a function 𝑓 , then any linear combination is admissable as cost-free signature of 𝑓 . I.e. we can assume
𝛼1 × · · · × 𝛼𝑛 |𝐾 · 𝑃 + 𝐿 · 𝑄 → 𝛽 |𝐾 · 𝑃� + 𝐿 · 𝑄 � ∈ F cf(𝑓), where 𝐾, 𝐿 ∈ Q+

0 .

Remark 5. Principally the type system can be parameterised in the resource metric (see e.g.[JKM12a]).
In this thesis, we focus on amortised and worst-case runtime complexity, symbolically measured through
the number of function applications. It is straightforward to generalise this type system to other monotone
cost models. W.r.t. non-monotone costs, like e.g. heap usage, we expect the type system can also be readily
be adapted, but this is outside the scope of the thesis.

We consider the typing rules in turn; recall the convention that sequence elements of annotations are
denoted by the lower-case letter of the annotation. Further, note that sequence elements which do not
occur in any constraint are set to zero. The variable rule (var) types a variable of unspecified type 𝛼.
As no actual costs are required the annotation is unchanged. Similarly no resources are lost through
the use of control operators. Hence the definition of the rules (cmp) and (ite) is straightforward.
As exemplary constructor rules, we have rule (leaf) for the empty tree and rule (node) for the node
constructor. Both rules define suitable constraints on the resource annotations to guarantee that the
potential of the values is correctly represented.

25

3. A Type System for Analysis of Logarithmic Amortized Complexity

The application rule (app) represents the applicationof a rule given inP. Each application emits actual
cost 1, which is indicated in the subtraction of 1. In its simplest form, that is, for the factor 𝐾 = 0,
the rule allows to directly read off the required annotation from the set of signatures F . For arbitrary
𝐾 ∈ Q+

0 , the rule allows to combine some signature with cost with a cost-free signature. We note
that Remark 4 would in fact allow us to add any positive linear combination of cost-free signatures;
however, for performance reasons we refrain from doing so.

In the patternmatching rule (match) the potential freed through the destruction of the tree construc-
tion is added to the annotation 𝑅, which is used in the right premise of the rule. Note that |𝑅 | = 𝑚+2,
where𝑚 equals the number of tree types in the type context Γ.

The constraints expressed in the typing rules (let : T) and (let : gen), guarantee that the potential
provided through annotation𝑄 is distributed among the call to 𝑒1 and 𝑒2, that is, this rule takes care
of function composition. The numbers 𝑚, 𝑘 , respectively, denote the number of tree types in Γ, Δ.
Due to the sharing rule — discussed in a moment — we can assume w.l.o.g. that each variable in 𝑒1
and 𝑒2 occurs at most once.

First, consider the rule (let : gen), that is, the expression 𝑒1 evaluates to a value 𝑤 of arbitrary type
𝛼 ≠ Tree. In this case the resulting value 𝑤 cannot carry any potential. This is indicated through the
empty annotation∅ in the typing judgement Γ|𝑃 " 𝑒1 :𝛼 |∅. Similarly, in the judgementΔ, 𝑥 :𝛼 |𝑅 "
𝑒2 : 𝛽 |𝑄 � for the expression 𝑒2, all available potential prior to the execution of 𝑒2 stems from the po-
tential embodied in the type context Δ w.r.t. annotation 𝑄. This is enforced by the corresponding
constraints. Suppose for '𝑎 ≠ '0 and '𝑏 ≠ '0, 𝑞 ('𝑎, '𝑏,𝑐) would be non-zero. Then the corresponding
shared potential between the contexts Γ and Δ w.r.t.𝑄 is discarded by the rule, as there is no possibil-
ity this potential is attached to the result type 𝛼.

Second, consider the more involved rule (let : T). To explain this rule, we momentarily assume that
in𝑄 no potential is shared, that is, 𝑞 ('𝑎, '𝑏,𝑐) = 0, whenever '𝑎 ≠ '0, '𝑏 ≠ '0. In this sub-case the rule can
be simplified as follows:

𝑝𝑖 = 𝑞𝑖

𝑝 ('𝑎,𝑐) = 𝑞 ('𝑎,'0,𝑐)

Γ|𝑃 " 𝑒1 :T|𝑃�

𝑟 ('𝑏,0,𝑐) = 𝑞 ('0, '𝑏,𝑐) ('𝑏 ≠ '0)
Δ, 𝑥 :T|𝑅 " 𝑒2 : 𝛽 |𝑄 �

𝑟 𝑗 = 𝑞𝑚+ 𝑗
𝑟𝑘+1 = 𝑝�∗
𝑟 ('0,𝑎,𝑐) = 𝑝�(𝑎,𝑐)

Γ,Δ|𝑄 " let 𝑥 = 𝑒1 in 𝑒2 : 𝛽 |𝑄 � (let : T)

Again the potential in Γ,Δ (w.r.t. annotation𝑄) is distributed for the typing of the expressions 𝑒1, 𝑒2,
respectively, which is governed by the constraints on the annotations. The simplified rule is obtained,
as the assumption that no shared potential exists, makes almost all constraints vacuous. In particular,
the cost-free derivation Γ|𝑃 ('𝑏,𝑑,𝑒) "cf 𝑒1 :T|𝑃� ('𝑏,𝑑,𝑒) is not required.

Finally, consider the most involved sub-case, where shared potentials are possible. Contrary to the
simplified rules discussed above, such shared potential cannot be split between the type contexts Γ
and Δ, respectively. Thus, the full rule necessarily employs the cost-free semantics. Consequently, the
premise Γ|𝑃 ('𝑏,𝑑,𝑒) "cf 𝑒1 :𝛼 |𝑃� ('𝑏,𝑑,𝑒) expresses that for all non-zero vectors '𝑏 and arbitrary indices
𝑑, 𝑒, the potentialsΦ(Γ|𝑃 ('𝑏,𝑑,𝑒)) suffices to cover the potentialΦ(𝛼 |𝑃� ('𝑏,𝑑,𝑒)), if no extra costs are

26

3.2. A Type System for Logarithmic Amortised Resource Analysis

emitted (compare Section 2.1). Intuitively this represents that the values do not increase during the
evaluation of 𝑒1 to value 𝑤.

At last, the type system makes use of structural rules, like the sharing rule (share) and the weakening
rules (w : var) and (w). The sharing rule employs the sharing operator, defined in Lemma 1. Note
that the variables 𝑥, 𝑦 introduced in the assumption of the typing rule are fresh variables, that do not
occur in Γ. Similarly, the rule (shift) allows to shift the potential before and after evaluation of the
expression 𝑒 by a constant 𝐾 .

Note that the weakening rules embody changes in the potential of the type context of expressions
considered. This amounts to the comparison on logarithmic expressions, principally a non-trivial task
that cannot be directly represented as constraints in the type system. Instead, the rule (w) employs a
symbolic potential expressions for these comparisons, replacing actual values for tree by variables. Let
Γ denote a type context containing the type declarations 𝑥1 :T, . . . , 𝑥𝑚 :T and let𝑄 be an annotation
of length𝑚. Then the symbolic potential, denoted asΦ(Γ|𝑄), is defined as follows.

Φ(𝑥1, . . . , 𝑥𝑚 |𝑄) �
𝑚�
𝑖=1

𝑞𝑖 · rk(𝑥𝑖) +
�

𝑎1,...,𝑎𝑚,𝑏∈N
𝑞 (𝑎1,...,𝑎𝑚,𝑏) · 𝑝 (𝑎1,...,𝑎𝑚,𝑏) (𝑥1, . . . , 𝑥𝑚) ,

where 𝑝 (𝑎1,...,𝑎𝑚,𝑏) (𝑥1, . . . , 𝑥𝑚) = log(𝑎1 · |𝑥1 | +· · ·+𝑎𝑚 · |𝑥𝑚 | +𝑏). In order to actually solve these
constraints over symbolic potentials, we have to linearise the underlying comparisons of logarithmic
expressions. This is taken up again in Section 4.1.

Definition 7. A program P is called well-typed if for any rule 𝑓 (𝑥1, . . . , 𝑥𝑘) = 𝑒 ∈ P and any
annotated signature 𝛼1 × · · · × 𝛼𝑘 |𝑄 → 𝛽 |𝑄 � ∈ F (𝑓), we have 𝑥1 :𝛼1, . . . , 𝑥𝑘 :𝛼𝑘 |𝑄 " 𝑒 : 𝛽 |𝑄 �. A
program P is called cost-free well-typed, if the cost-free typing relation is employed.

Before we state and prove the soundness of the presented type-and-effect system, we establish the fol-
lowing auxiliary result, employed in the correct assessment of the transfer of potential in the case of
function composition, see Figure 3.1. See also the high-level description provided in Section 2.1.

Lemma 2. Assume
�

𝑖 𝑞𝑖 log 𝑎𝑖 ⩾ 𝑞 log 𝑏 for some rational numbers 𝑎𝑖 , 𝑏 > 0 and 𝑞𝑖 ⩾ 𝑞. Then,�
𝑖 𝑞𝑖 log(𝑎𝑖 + 𝑐) ⩾ 𝑞 log(𝑏 + 𝑐) for all 𝑐 ⩾ 1.

Proof. W.l.o.g. we can assume 𝑞 = 1 and 𝑞𝑖 ⩾ 1, as otherwise we simply divide the assumed inequality
by 𝑞. Further, observe that the assumption

�
𝑖 𝑞𝑖 log 𝑎𝑖 ⩾ 𝑞 log 𝑏 is equivalent to�
𝑖

𝑎𝑞𝑖𝑖 ⩾ 𝑏 . (3.1)

First, we prove that
(𝑥 + 𝑦)𝑟 ⩾ 𝑥𝑟 + 𝑦𝑟 𝑟 ⩾ 1 𝑥, 𝑦 ⩾ 0 . (3.2)

This is proved as follows. Fix some 𝑥 ⩾ 0 and consider (𝑥 + 𝑦)𝑟 and 𝑥𝑟 + 𝑦𝑟 as functions in 𝑦. It is
then sufficient to observe that (𝑥 + 𝑦)𝑟 ⩾ 𝑥𝑟 + 𝑦𝑟 for 𝑦 = 0 and that 𝑑/𝑑𝑦(𝑥 + 𝑦)𝑟 ⩾ 𝑑/𝑑𝑦(𝑥𝑟 + 𝑦𝑟)
(the derivatives with regard to 𝑦) for all 𝑦 ⩾ 0. Indeed, we have 𝑑/𝑑𝑦(𝑥 + 𝑦)𝑟 = 𝑟 (𝑥 + 𝑦)𝑟−1 and

27

3. A Type System for Analysis of Logarithmic Amortized Complexity

𝑑/𝑑𝑦(𝑥𝑟 + 𝑦𝑟) = 𝑟𝑦𝑟−1. Because of 𝑟 ⩾ 1 and 𝑥 ⩾ 0, we can thus deduce that 𝑑/𝑑𝑦(𝑥 + 𝑦)𝑟 ⩾
𝑑/𝑑𝑦(𝑥𝑟 + 𝑦𝑟) for all 𝑦 ⩾ 0.

Now we consider some 𝑐 ⩾ 1. Combining (3.1) and (3.2), we get�
𝑖

(𝑎𝑖 + 𝑐)𝑞𝑖 ⩾
�
𝑖

(𝑎𝑞𝑖𝑖 + 𝑐𝑞𝑖) ⩾
�
𝑖

𝑎𝑞𝑖𝑖 +
�
𝑖

𝑐𝑞𝑖 ⩾ 𝑏 + 𝑐 ,

where we have used that 𝑖 ≥ 1, and that 𝑞𝑖 ⩾ 1 and 𝑐 ⩾ 1 imply

𝑖 𝑐
𝑞𝑖 ⩾ 𝑐. By taking the logarithm

on both sides of the inequality we obtain the claim. □

Finally, we obtain the following soundness result, which roughly states that if a programP terminates,
then the difference in potential has paid its execution costs.1

Theorem 3 (Soundness Theorem). Let P be well-typed and let 𝜎 be a substitution. Suppose Γ|𝑄 "
𝑒 :𝛼 |𝑄 � and 𝜎

ℓ
𝑒 ⇒ 𝑣. Then Φ(𝜎;Γ|𝑄) − Φ(𝑣 |𝑄 �) ⩾ ℓ. Further, if Γ|𝑄 "cf 𝑒 :𝛼 |𝑄 �, then

Φ(𝜎;Γ|𝑄) ⩾ Φ(𝑣 |𝑄 �).

Proof. The proof embodies the high-level description given in Section 2.1. It proceeds by main induc-
tion onΠ : 𝜎

ℓ
𝑒 ⇒ 𝑣 and by side induction on Ξ : Γ|𝑄 " 𝑒 :𝛼 |𝑄 �, where the latter is employed in

the context of the weakening rules. We consider only a few cases of interest. For example, for a case not
covered: the variable rule (var) types a variable of unspecified type 𝛼. As no actual costs are required
the annotation is unchanged and the theorem follows trivially.

Case. Π derives 𝜎 0 leaf ⇒ leaf. Then Ξ consists of a single application of the rule (leaf):
∀𝑐 ⩾ 2 𝑞 (𝑐) =

�
𝑎+𝑏=𝑐 𝑞�(𝑎,𝑏) 𝐾 = 𝑞�∗

∅|𝑄 + 𝐾 " leaf :T|𝑄 � (leaf) .
By assumption𝑄 = [(𝑞 (𝑐))𝑐∈N] is an annotation for the empty sequence of trees. On the other hand
𝑄 � = [(𝑞�(𝑎,𝑏))𝑎,𝑏∈N] is an annotation of length 1. Note that rk(leaf) = 1 by definition. Thus, we
obtain:

Φ(𝜖 |𝑄 + 𝐾) = 𝐾 +
�
𝑐

𝑞 (𝑐) · log(𝑐)

= 𝐾 +
�
𝑐≥2

𝑞 (𝑐) · log(𝑐)

= 𝑞�∗ +
�

𝑎+𝑏≥2
𝑞�(𝑎,𝑏) · log(𝑎 + 𝑏)

= 𝑞�∗ +
�
𝑎,𝑏

𝑞�(𝑎,𝑏) · log(𝑎 + 𝑏)

= 𝑞�∗ rk(leaf) +
�
𝑎,𝑏

𝑞�(𝑎,𝑏) 𝑝 (𝑎,𝑏) (leaf) = Φ(leaf|𝑄 �) .

1A stated, soundness assumes termination of P, but our analysis is not restricted to terminating programs. In order to
avoid the assumption the soundness theoremwould have to be formulatedw.r.t. to a partial big-step or a small step semantics,
see [JM10a; MS20]. We consider this outside the scope of this thesis.

28

3.2. A Type System for Logarithmic Amortised Resource Analysis

Case. SupposeΠ has the following from:

𝑥1𝜎 = 𝑡 𝑥2𝜎 = 𝑏 𝑥3𝜎 = 𝑢

𝜎
0 (𝑥1,𝑥2,𝑥3) ⇒ (𝑡,𝑏,𝑢) .

W.l.o.g. Ξ consists of a single application of the rule (node):
𝑞1 = 𝑞2 = 𝑞�∗ 𝑞 (1,0,0) = 𝑞 (0,1,0) = 𝑞�∗ 𝑞 (𝑎,𝑎,𝑏) = 𝑞�(𝑎,𝑏)

𝑥1 :T, 𝑥2 :B, 𝑥3 :T|𝑄 " (𝑥1,𝑥2,𝑥3) :T|𝑄 � (node)

Bydefinition,wehave𝑄 = [𝑞1, 𝑞2]∪[(𝑞 (𝑎1,𝑎2,𝑏))𝑎𝑖 ,𝑏∈N] and𝑄 � = [𝑞�∗]∪[(𝑞�(𝑎�,𝑏�))𝑎�,𝑏�∈N]. We set
Γ � 𝑥1 :T, 𝑥2 :B, 𝑥3 :T as well as 𝑥1𝜎 = 𝑢, 𝑥2𝜎 = 𝑏, and 𝑥3𝜎 = 𝑣. ThusΦ(𝜎;Γ|𝑄) = Φ(𝑢, 𝑣 |𝑄)
and we obtain:

Φ(𝑢, 𝑣 |𝑄) = 𝑞1 · rk(𝑢) + 𝑞2 · rk(𝑣) +
�

𝑎1,𝑎2,𝑏

𝑞 (𝑎1,𝑎2,𝑏) · log(𝑎1 · |𝑢 | + 𝑎2 · |𝑣 | + 𝑏)

⩾ 𝑞�∗ · rk(𝑢) + 𝑞�∗ · rk(𝑣) + 𝑞 (1,0,0) · log(|𝑢 |) + 𝑞 (0,1,0) · log(|𝑣 |) +
+
�
𝑎,𝑏

𝑞 (𝑎,𝑎,𝑏) · log(𝑎 · |𝑢 | + 𝑎 · |𝑣 | + 𝑏)

= 𝑞�∗ · (rk(𝑢) + rk(𝑣) + log(|𝑢 |) + log(|𝑣 |)) +
+
�
𝑎,𝑏

𝑞�(𝑎,𝑏) · log(𝑎 · (|𝑢 | + |𝑣 |) + 𝑏)

= 𝑞�∗ · rk((𝑢, 𝑏, 𝑣)) +
�
𝑎,𝑏

𝑞�(𝑎,𝑏) · 𝑝 (𝑎,𝑏) ((𝑢, 𝑏, 𝑣)) = Φ((𝑢, 𝑏, 𝑣)|𝑄 �) .

Case. Suppose 𝜎 ℓ
𝑒 ⇒ 𝑣 and let the last rule in Ξ be of the following form:

Γ|𝑄 " 𝑒 :𝛼 |𝑄 �

Γ|𝑄 + 𝐾 " 𝑒 :𝛼 |𝑄 � + 𝐾 ,

where 𝐾 ⩾ 0. By SIH, we have thatΦ(𝜎;Γ|𝑄) −Φ(𝑣 |𝑄 �) ⩾ ℓ, from which we immediately obtain:

Φ(𝜎;Γ|𝑄) + 𝐾 −Φ(𝑣 |𝑄 �) − 𝐾 = Φ(𝜎;Γ|𝑄) −Φ(𝑣 |𝑄 �) ⩾ ℓ .

Case. Consider the first (match) rule, whereΠ ends as follows:

𝑥𝜎 = leaf 𝜎
ℓ
𝑒1 ⇒ 𝑣

𝜎
ℓ match 𝑥 with| leaf -> 𝑒1| (𝑥0,𝑥1,𝑥2) -> 𝑒2 ⇒ 𝑣 .

W.l.o.g. we may assume that Ξ ends with the related application of the (match) rule:
𝑟 ('𝑎,𝑎,𝑎,𝑏) = 𝑞 ('𝑎,𝑎,𝑏)
𝑝 ('𝑎,𝑐) =

�
𝑎+𝑏=𝑐 𝑞 ('𝑎,𝑎,𝑏)

Γ|𝑃 + 𝑞𝑚+1 " 𝑒1 :𝛼 |𝑄 �

𝑟𝑚+1 = 𝑟𝑚+2 = 𝑞𝑚+1
𝑟 ('0,1,0,0) = 𝑟 ('0,0,1,0) = 𝑞𝑚+1

Γ, 𝑥1 :T, 𝑥2 :B, 𝑥3 :T|𝑅 " 𝑒2 :𝛼 |𝑄 � 𝑞𝑖 = 𝑟𝑖 = 𝑝𝑖
Γ, 𝑥 :T|𝑄 " match 𝑥 with | leaf -> 𝑒1| (𝑥1,𝑥2,𝑥3) -> 𝑒2 :𝛼 |𝑄 � .

29

3. A Type System for Analysis of Logarithmic Amortized Complexity

Let𝑄 be an annotation of length 𝑚 + 1 while𝑄 � is of length 1. Thus annotations 𝑃, 𝑅 have lengths
𝑚, 𝑚 + 2, respectively. We write '𝑡 � 𝑡1, . . . , 𝑡𝑛 for the substitution instances of the variables in Γ.
Further 𝑥𝜎 = leaf, where the latter equality follows from the assumption on Π. By definition and
the constraints given in the rule, we obtain:

Φ(𝜎;Γ, 𝑥 :T|𝑄) =
�
𝑖

𝑞𝑖 rk(𝑡𝑖) + 𝑞𝑚+1 rk(leaf) +
�
'𝑎,𝑎,𝑐

𝑞 ('𝑎,𝑎,𝑐) log('𝑎 |'𝑡 | + 𝑎 |leaf| + 𝑐)

=
�
𝑖

𝑞𝑖 rk(𝑡𝑖) + 𝑞𝑚+1(rk(leaf)) +
�
'𝑎,𝑎,𝑐

𝑞 ('𝑎,𝑎,𝑐) log('𝑎 |'𝑡 | + 𝑎 + 𝑐)

= Φ(𝜎;Γ|𝑃) + 𝑞𝑚+1 .

ThusΦ(𝜎;Γ, 𝑥 :T|𝑄) = Φ(𝜎;Γ|𝑃 + 𝑞𝑚+1) and the theorem follows by an application of MIH.

Now, consider the second (match) rule, that is,Π ends as follows:

𝑥𝜎 = (𝑡,𝑎,𝑢) 𝜎� ℓ
𝑒2 ⇒ 𝑣

𝜎
ℓ match 𝑥 with| leaf -> 𝑒1| (𝑥0,𝑥1,𝑥2) -> 𝑒2 ⇒ 𝑣 .

As above, wemay assume thatΞ ends with the related application of the (match) rule. In this subcase,
the assumption onΠ yields 𝑡 � 𝑥𝜎 = (𝑢, 𝑏, 𝑣). By definition and the constraints given in the rule,
we obtain:

Φ(𝜎;Γ, 𝑥 :T|𝑄) =
�
𝑖

𝑞𝑖 rk(𝑡𝑖) + 𝑞𝑚+1 rk((𝑢, 𝑏, 𝑣))+

+
�
'𝑎,𝑎,𝑐

𝑞 ('𝑎,𝑎,𝑐) log('𝑎 |'𝑡 | + 𝑎 |(𝑢, 𝑏, 𝑣)| + 𝑐)

=
�
𝑖

𝑞𝑖 rk(𝑡𝑖) + 𝑞𝑚+1(rk(𝑢) + log(|𝑢 |) + log(|𝑣 |) + rk(𝑣)) +

+
�
'𝑎,𝑎,𝑐

𝑞 ('𝑎,𝑎,𝑐) log('𝑎 |'𝑡 | + 𝑎(|𝑢 | + |𝑣 |) + 𝑐)

= Φ(𝜎;Γ, 𝑥1 :T, 𝑥2 :B, 𝑥3 :T|𝑅) ,
where we write '𝑎 |'𝑡 | as shorthand to denote componentwise multiplication.

ThusΦ(𝜎;Γ, 𝑥 :T|𝑄) = Φ(𝜎;Γ, 𝑥1 :T, 𝑥2 :B, 𝑥3 :T|𝑅) and the theorem follows by an application
of MIH.

Case. Consider the (let) rule, that is,Π ends in the following rule:

𝜎
ℓ1

𝑒1 ⇒ 𝑤 𝜎[𝑥 ↦→ 𝑤] ℓ2
𝑒2 ⇒ 𝑣

𝜎
ℓ1+ℓ2 let 𝑥 = 𝑒1 in 𝑒2 ⇒ 𝑣 ,

where ℓ = ℓ1 + ℓ2. First, we consider the sub-case, where the type of 𝑒1 is an arbitrary type 𝛼 but not
of type Tree. I.e. we assume that Ξ ends in the following application of the (let : gen)-rule

𝑝𝑖 = 𝑞𝑖 𝑝 ('𝑎,𝑐) = 𝑞 ('𝑎,'0,𝑐)

Γ|𝑃 " 𝑒1 :𝛼 |∅
𝑞 ('0, '𝑏,𝑐) = 𝑟 ('𝑏,𝑐) ('𝑏 ≠ '0)
Δ, 𝑥 :𝛼 |𝑅 " 𝑒2 : 𝛽 |𝑄 �

𝑟 𝑗 = 𝑞𝑚+ 𝑗
𝛼 ≠ T

Γ,Δ|𝑄 " let 𝑥 = 𝑒1 in 𝑒2 : 𝛽 |𝑄 � (let : gen) .

30

3.2. A Type System for Logarithmic Amortised Resource Analysis

Recall that '𝑎 = 𝑎1, . . . , 𝑎𝑛, '𝑏 = 𝑏1, . . . , 𝑏𝑚, 𝑖 ∈ {1, . . . , 𝑚}, 𝑗 ∈ {1, . . . , 𝑘} and 𝑎𝑖 , 𝑏 𝑗 , 𝑎, 𝑏 , 𝑐, 𝑑,
𝑒 are natural numbers. Further, the annotations 𝑄, 𝑃, 𝑅 are of length 𝑚 + 𝑘 , 𝑚 and 𝑘 , respectively,
while the corresponding resulting annotations𝑄 �, 𝑃� and 𝑅�, are of length 1.

By definition and due to the constraints expressed in the typing rule, we have:

Φ(𝜎;Γ,Δ|𝑄) =
�
𝑖

𝑞𝑖 rk(𝑡𝑖) +
�
𝑗

𝑞𝑚+ 𝑗 rk(𝑢 𝑗) +
�
'𝑎, '𝑏,𝑐

𝑞 ('𝑎, '𝑏,𝑐) log('𝑎 |'𝑡 | + '𝑏 | '𝑢 | + 𝑐)

Φ(𝜎;Γ|𝑃) =
�
𝑖

𝑞𝑖 rk(𝑡𝑖) +
�
'𝑎,𝑐

𝑞 ('𝑎,'0,𝑐) log('𝑎 |'𝑡 | + 𝑐)

Φ(𝑤 |∅) = 0

Φ(𝜎;Δ, 𝑥 :𝛼 |𝑅) =
�
𝑗

𝑞𝑚+ 𝑗 rk(𝑢 𝑗) + 𝑟𝑘+1 rk(𝑤) +
�
'𝑏,𝑎,𝑐

𝑞 ('0, '𝑏,𝑐) log('𝑏 | '𝑢 | + 𝑐) ,

where we set '𝑡 � 𝑡1, . . . , 𝑡𝑚 and '𝑢 � 𝑢1, . . . , 𝑢𝑘 , denoting the substitution instances of the variables
in Γ, Δ, respectively. Thus, we obtain

Φ(𝜎;Γ,Δ|𝑄) ⩾ Φ(𝜎;Γ|𝑃) +Φ(𝜎;Δ, 𝑥 :𝛼 |𝑅) .

By main induction hypothesis, we conclude that

Φ(𝜎;Γ|𝑃) −Φ(𝑤 |∅) ⩾ ℓ1 andΦ(𝜎;Δ, 𝑥 :𝛼 |𝑅) −Φ(𝑣 |𝑄 �) ⩾ ℓ2 ,

from which the sub-case follows.

Second, we consider the more involved sub-case, where 𝑒1 is ofTree type. Thus, w.l.o.g.Ξ ends in the
following application of the (let : T)-rule.

𝑝𝑖 = 𝑞𝑖 𝑝 ('𝑎,𝑐) = 𝑞 ('𝑎,'0,𝑐) 𝑟 𝑗 = 𝑞𝑚+ 𝑗 𝑟𝑘+1 = 𝑝�∗ 𝑟 ('0,𝑑,𝑒) = 𝑝�(𝑑,𝑒)
∀'𝑏 ≠ '0

�
𝑟 ('𝑏,0,0) = 𝑞 ('0, '𝑏,0)

∀'𝑏 ≠ '0, '𝑎 ≠ '0 ∨ 𝑐 ≠ 0

�
𝑞 ('𝑎, '𝑏,𝑐) =

�
(𝑑,𝑒) 𝑝

('𝑏,𝑑,𝑒)
('𝑎,𝑐)

∀'𝑏 ≠ '0, 𝑑 ≠ 0 ∨ 𝑒 ≠ 0

�
𝑟 ('𝑏,𝑑,𝑒) = 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) ∧ ∀(𝑑 �, 𝑒�) ≠ (𝑑, 𝑒)

�
𝑝� (

'𝑏,𝑑,𝑒)
(𝑑�,𝑒�) = 0

∧

∧�
('𝑎,𝑐) 𝑝

('𝑏,𝑑,𝑒)
('𝑎,𝑐) ≥ 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) ∧ ∀'𝑎 ≠ '0 ∨ 𝑐 ≠ 0

�
𝑝 ('𝑏,𝑑,𝑒)
('𝑎,𝑐) ≠ 0 → 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) ⩽ 𝑝 ('𝑏,𝑑,𝑒)

('𝑎,𝑐)

Γ|𝑃 " 𝑒1 :T|𝑃� ∀'𝑏 ≠ '0, 𝑑 ≠ 0 ∨ 𝑒 ≠ 0
�
Γ|𝑃 ('𝑏,𝑑,𝑒) "cf 𝑒1 :T|𝑃� ('𝑏,𝑑,𝑒)

Δ, 𝑥 :T|𝑅 " 𝑒2 : 𝛽 |𝑄 �

Γ,Δ|𝑄 " let 𝑥 = 𝑒1 in 𝑒2 : 𝛽 |𝑄 � (let : T) ,

where the annotations𝑄, 𝑃, 𝑅,𝑄 �, 𝑃� and the sequences '𝑎, '𝑏 are as above. Further, for each sequence
'𝑏 ≠ '0,𝑃 ('𝑏,𝑢,𝑣) and𝑃� ('𝑏,𝑢,𝑣) denote annotations of length𝑚. By definition anddue to the constraints

31

3. A Type System for Analysis of Logarithmic Amortized Complexity

expressed in the typing rule, we have for all '𝑏 ≠ '0:

Φ(𝜎;Γ,Δ|𝑄) =
�
𝑖

𝑞𝑖 rk(𝑡𝑖) +
�
𝑗

𝑞 𝑗 rk(𝑢 𝑗) +
�

'𝑎≠'0∨'𝑏≠'0∨𝑐≠0
𝑞 ('𝑎, '𝑏,𝑐) log('𝑎 |'𝑡 | + '𝑏 | '𝑢 | + 𝑐)

Φ(𝜎;Γ|𝑃) =
�
𝑖

𝑞𝑖 rk(𝑡𝑖) +
�

'𝑎≠'0∨𝑐≠0
𝑞 ('𝑎,'0,𝑐) log('𝑎 |'𝑡 |

Φ(𝑤 |𝑃�) = 𝑟𝑘+1 rk(𝑤) +
�

𝑎≠0∨𝑐≠0
𝑟 ('0,𝑎,𝑐) log(𝑎 |𝑤 | + 𝑐)

Φ(𝜎;Γ|𝑃 ('𝑏,𝑑,𝑒)) =
�

'𝑎≠'0∨𝑐≠0
𝑝 ('𝑏,𝑑,𝑒)
('𝑎,𝑐) log('𝑎 |'𝑡 | + 𝑐)

Φ(𝑤 |𝑃� ('𝑏,𝑑,𝑒)) = 𝑝� (
'𝑏,𝑑,𝑒)

(𝑑,𝑒) log(𝑑 |𝑤 | + 𝑒)
Φ(𝜎;Δ, 𝑥 :T|𝑅) =

�
𝑗

𝑞 𝑗 rk(𝑢 𝑗) + 𝑟𝑘+1 rk(𝑤) +

+
�

'𝑎≠'0∨𝑑≠0∨𝑒≠0
𝑟 ('𝑏,𝑑,𝑒) log('𝑏 | '𝑢 | + 𝑑 |𝑤 | + 𝑒) ,

where we set '𝑡 � 𝑡1, . . . , 𝑡𝑚 and '𝑢 � 𝑢1, . . . , 𝑢𝑘 , denoting the substitution instances of the variables
in Γ, Δ, respectively.

By main induction hypothesis, we conclude that Φ(𝜎;Γ|𝑃) − Φ(𝑤 |𝑃�) ⩾ ℓ1. Further, for all '𝑏 ≠
'0, 𝑑 ≠ 0∨𝑒 ≠ 0, we have, due to the cost-free typing constraintsΦ(𝜎;Γ|𝑃 ('𝑏,𝑑,𝑒)) ⩾ Φ(𝑤 |𝑃� ('𝑏,𝑑,𝑒)).
The latter yields more succinctly (for all '𝑏 ≠ '0, 𝑑 ≠ 0 ∨ 𝑒 ≠ 0) that�

'𝑎,𝑐
𝑝 ('𝑏,𝑑,𝑒)
('𝑎,𝑐) log('𝑎 |'𝑡 | + 𝑐) ⩾ 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) log(𝑑 |𝑤 | + 𝑒) . (3.3)

A third application of MIH yields that Φ(𝜎;Δ, 𝑥 :T|𝑅) − Φ(𝑣 |𝑄 �) ⩾ ℓ2. Due to the conditions�
(𝑎,𝑐) 𝑝

('𝑏,𝑑,𝑒)
('𝑎,𝑐) ≥ 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) , for all (𝑑 �, 𝑒�) ≠ (𝑑, 𝑒), 𝑝� ('𝑏,𝑑,𝑒)(𝑑�,𝑒�) = 0 and for all '𝑎, 𝑐�

𝑝 ('𝑏,𝑑,𝑒)
('𝑎,𝑐) ≠ 0 → 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) ⩽ 𝑝 ('𝑏,𝑑,𝑒)

('𝑎,𝑐)

,

we can apply Lemma 2 to Equation (3.3) and obtain�
'𝑎≠'0∨𝑐≠0

𝑝 ('𝑏,𝑑,𝑒)
('𝑎,𝑐) log('𝑎 |'𝑡 | + '𝑏 | '𝑢 | + 𝑐) ⩾ 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) log('𝑏 | '𝑢 | + 𝑑 |𝑤 | + 𝑒) .

Due to the condition
�
𝑞 ('𝑎, '𝑏,𝑐) =

�
(𝑑,𝑒) 𝑝

('𝑏,𝑑,𝑒)
('𝑎,𝑐)

for all '𝑏 ≠ '0, '𝑎 ≠ '0 ∨ 𝑐 ≠ 0, we can sum those

equations for all 𝑑 ≠ 0 ∨ 𝑒 ≠ 0 and obtain (for all '𝑏 ≠ '0, 𝑑 ≠ 0 ∨ 𝑒 ≠ 0) that�
'𝑎≠'0∨𝑐≠0

𝑞 ('𝑎, '𝑏,𝑐) log('𝑎 |'𝑡 | + '𝑏 | '𝑢 | + 𝑐) ⩾
�

𝑑≠0∨𝑒≠0
𝑟 ('𝑏,𝑑,𝑒) log('𝑏 | '𝑢 | + 𝑑 |𝑤 | + 𝑒) .

32

3.3. Example Analysis

We can combine the above fact to conclude the case.

Case. Finally, we consider the application rules (app) and (app : cf). As the cost-free variant only
differs in sofar that costs are not counted by (app : cf), it suffices to consider the rule (app). Let
𝑓 (𝑥1, . . . , 𝑥𝑘) = 𝑒 ∈ P and letΠ derives 𝜎 ℓ+1

𝑓 (𝑥1, . . . , 𝑥𝑘) ⇒ 𝑣. We consider the costed typing
𝑥1 :𝛼1, . . . , 𝑥𝑘 :𝛼𝑘 | (𝑃 + 𝐾 · 𝑄) + 1 "cf 𝑓 (𝑥1, . . . , 𝑥𝑘) :𝛼 |𝑃� − 1 + 𝐾 · 𝑄 �, where 𝐾 ∈ Q+

0 . Set Γ �
𝑥1 :𝛼1, . . . , 𝑥𝑘 :𝛼𝑘 . As P is well-typed, we have

Γ|𝑃 " 𝑒 : 𝛽 |𝑃� and Γ|𝑄 "cf 𝑒 : 𝛽 |𝑄 � .

We can applyMIHw.r.t. the evaluationΠ� of 𝜎 ℓ
𝑒 ⇒ 𝑣 to concludeΦ(𝜎;Γ|𝑃) −Φ(𝑣 |𝑃�) ⩾ ℓ as

well asΦ(𝜎;Γ|𝑄) ⩾ Φ(𝑣 |𝑄 �). By monotonicity of addition and multiplication:

Φ(𝜎;Γ|𝑃 + 𝐾 · 𝑄) = Φ(𝜎;Γ|𝑃) + 𝐾 · Φ(𝜎;Γ|𝑄)
⩾ (Φ(𝑣 |𝑃�) + ℓ) + 𝐾 · Φ(𝑣 |𝑄 �) = Φ(𝑣 |𝑃� + 𝐾 · 𝑄 �) + ℓ .

Thus

Φ(𝜎;Γ|𝑃 + 𝐾 · 𝑄) −Φ(𝑣 |𝑃� − 1 + 𝐾 · 𝑄 �) =
= (Φ(𝜎;Γ|𝑃 + 𝐾 · 𝑄) −Φ(𝑣 |𝑃� + 𝐾 · 𝑄 �)) + 1 ⩾ ℓ + 1 .

From this, the case follows, which completes the proof of the soundness theorem. □

Remark 6. We note that the basic resource functions can be generalised to additionally represent linear
functions in the size of the arguments. The above soundness theorem is not affected by this generalisation.

In the next section, we exemplify the use of the proposed type-and-effect system, see Figure 3.1, on the
motivating example.

3.3 Example Analysis
In this sectionwe apply the proposed type-and-effect system toobtain an analysis of the amortised costs
of the zig-zig case of splaying, for type annotations that are fixed a priori. As a preparatory step, also to
emphasise the need for the cost-free semantics, wemake precise the informal account of compositional
reasoning given in Section 2.1.2.

3.3.1 Let-Normal-Form

We consider the expression 𝑡 � � (al,a,(ar,b,(br,c,cr))), which becomes the following expres-
sion 𝑒 in let-normal form:

1 let t''' = (br, c, cr) in (𝑒�)

where 𝑒� abbreviates

1 let t'' = (ar, b, t''') in (al, a, t'')

33

3. A Type System for Analysis of Logarithmic Amortized Complexity

The expression 𝑒 is typablewith the followingderivation. We ignore expressions of base type to increase
readability.

𝑏𝑟 :T, 𝑐𝑟 :T|𝑄1 " (𝑏𝑟, 𝑐, 𝑐𝑟) :T|𝑄 �
1

𝑞31 = 𝑞32 = 𝑞�3∗
𝑞3(1,0,0) = 𝑞3(0,1,0) = 𝑞�3∗
𝑞3(1,1,0) = 𝑞�3(1,0)

𝑎𝑟 :T, 𝑡 ��� :T|𝑄3 " (𝑎𝑟, 𝑏, 𝑡 ���) :T|𝑄 �
3 (3.4)

𝑎𝑟 :T, 𝑎𝑙 :T, 𝑡 ��� :T|𝑄2 " 𝑒� :T|𝑄 �

𝑏𝑟 :T, 𝑐𝑟 :T, 𝑎𝑟 :T, 𝑎𝑙 :T|𝑄 " 𝑒 :T|𝑄 � (∗)

Here,we employ thederivability of the following type judgement (3.4) by a single applicationof (node),
w.r.t. the annotation𝑄4,𝑄 � given below.

𝑎𝑙 :Tree, 𝑡 �� :Tree|𝑄4 " (𝑎𝑙, 𝑎, 𝑡 ��) :Tree|𝑄 � . (3.4)

It is not difficult to check, that the above derivation indeed proves well-typedness of the expression 𝑒
w.r.t. the below given type annotations.

𝑄 : 𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 = 1; 𝑞 (1,1,1,0,0) = 1; 𝑞 (1,1,0,0,0) = 1; 𝑞 (0,0,0,0,2) = 1 ,
𝑞 (1,0,0,0,0) = 𝑞 (0,1,0,0,0) = 𝑞 (0,0,1,0,0) = 𝑞 (0,0,0,1,0) = 1 ,

𝑄 � : 𝑞�∗ = 1, 𝑞�(0,2) = 1 ,

𝑄1 : 𝑞
1
1 = 𝑞1 = 1; 𝑞12 = 𝑞2 = 1; 𝑞1(0,0,2) = 𝑞 (0,0,0,0,2) = 1 ,

𝑞1(1,1,0) = 𝑞 (1,1,0,0,0) ; 𝑞1(1,0,0) = 𝑞 (1,0,0,0,0) = 1; 𝑞1(0,1,0) = 𝑞 (0,1,0,0,0) = 1 ,

𝑄 �
1 : 𝑞

�1
∗ = 1; 𝑞�1(1,0) = 1; 𝑞�1(0,2) = 1 ,

𝑃 (1,0,1,0) : 𝑝 (1,0,1,0)
(1,1,0) = 𝑞 (1,1,1,0,0) = 1 ,

𝑃� (1,0,1,0) : 𝑝� (1,0,1,0)(1,0) = 1 ,

𝑄2 : 𝑞
2
1 = 𝑞3 = 1; 𝑞22 = 𝑞4 = 1; 𝑞23 = 𝑞�1∗ = 1; ,
𝑞2(1,0,0,0) = 𝑞 (0,0,1,0,0) = 1; 𝑞2(0,1,0,0) = 𝑞 (0,0,0,1,0) = 1; ,

𝑞2(0,0,1,0) = 𝑞�1(1,0) = 1; 𝑞2(0,0,0,2) = 𝑞�1(0,2) = 1; 𝑞2(1,0,1,0) = 𝑝� (1,0,1,0)(1,0) = 1 ,

𝑄3 : 𝑞
3
1 = 𝑞21 = 1; 𝑞32 = 𝑞23 = 1; 𝑞3(0,0,2) = 𝑞2(0,0,0,2) = 1

𝑞3(1,0,0) = 𝑞2 (1,0,0,0) = 1; 𝑞3(0,1,0) = 𝑞2 (0,0,1,0) = 1; 𝑞3(1,1,0) = 𝑞2 (1,0,1,0) = 1 ,

𝑄 �
3 : 𝑞

�3
∗ = 1, 𝑞�3(1,0) = 1, 𝑞�3(0,2) = 1

𝑄4 : 𝑞
4
1 = 𝑞22 = 1; 𝑞4(0,0,2) = 𝑞�3(0,2) = 1; 𝑞4(1,0,0) = 𝑞2(0,1,0,0) = 1; 𝑞4(0,1,0) = 𝑞�3(1,0) = 1

In the inference marked with (∗), we employ the (almost trivial) correctness of the following cost-free
typing derivation for 𝑏𝑟 :T, 𝑐𝑟 :T|𝑃 (1,0,1,0) "cf (𝑏𝑟, 𝑐, 𝑐𝑟) :T|𝑃� (1,0,1,0) . (For instantiation of the
rule (let : T) note '𝑏 = (1, 0).)

𝑝 (1,0,1,0)
(1,1,0) = 𝑝� (1,0,1,0)(1,0)

𝑏𝑟 :Tree, 𝑐𝑟 :Tree|𝑃 (1,0,1,0) "cf (𝑏𝑟, 𝑐, 𝑐𝑟) :Tree|𝑃� (1,0,1,0) . (3.5)

34

3.3. Example Analysis

For all '𝑏 ≠ (0), '𝑏 ≠ (1) and arbitrary 𝑑, 𝑒, we set 𝑃 ('𝑏,𝑑,𝑒) = 𝑃� ('𝑏,𝑑,𝑒) � ∅. Our prototype fully
automatically checks correctness of the above given annotations.

We emphasise that the involved (let)-rule, employed in step (∗) cannot be avoided. In particular, the
additional cost-free derivation (3.5) is essential. Observe the annotationmarked in red in the calculation
above. Eventually these amount to a shared potential employed in step (∗). The cost-free semantics
allows us to exploit this shared potential, which otherwise would have to be discarded.

To wit, assume momentarily the rule (let) would not make use of cost-free reasoning, similar to the
simplified (let)-rule, that we have used in the explanations on page 26. Then the shared potential
represented by the coefficient 𝑞 (1,1,1,0,0) ∈ 𝑄 is discarded by the rule. However, this potential is then
missing, if we attempt to type the judgement

𝑎𝑟 :Tree, 𝑎𝑙 :Tree, 𝑡 ��� :Tree|𝑅 " 𝑒� :Tree|𝑄 � ,

where 𝑅 is defined as 𝑄2, except that 𝑟 (1,0,1,0) = 0. Thus, this attempt fails. (Note that the corre-
sponding coefficient of𝑄2, marked in red, is non-zero.)

Remark 7. To some extent this is in contrast to the use of cost-free semantics in the literature [J H11;
JKM12a; MG15; JAS17; MS20]. While cost-free semantics appear as an add-on in these works, essential
only if we want to capture non tail-recursive programs, cost-free semantics is essential in our context — it
is already required for the representation of simple values.

3.3.2 Splay Trees

In this subsection, we exemplify the use of the type systempresented in the last section on the function
splay, see Figure 2.2. Our amortised analysis of splaying yields that the amortised cost ofsplay a t is
boundby3 log(|𝑡 |)+1, where the actual cost counts the number of recursive calls tosplay, see [DR85;
B S93; T N15]. To verify this amortised cost, we derive

𝑎 :Base, 𝑡 :Tree|𝑄 " 𝑒 :Tree|𝑄 � , (3.6)

where the expression 𝑒 is the definition of splay given in Figure 2.2 and the annotations𝑄 and𝑄 � are
as follows:

𝑄 : 𝑞1 = 1, 𝑞 (1,0) = 3, 𝑞 (0,2) = 1 ,
𝑄 � : 𝑞�∗ = 1 .

Remark that the amortised cost of splaying is represented by the coeficients 𝑞 (1,0) and 𝑞 (0,2) , express-
ing in sum 3 log(|𝑡 |) + 1. Note, further that the coefficient 𝑞1, 𝑞�∗, represent Schoenmakers’ potential,
that is, rk(𝑡) and rk(splay a t), respectively.
We restrict to the zig-zig case which amounts to t = ((bl,b,br),c,cr) together with the recur-
sive call splay a bl = (al,a',ar) and side conditions 𝑎 < 𝑏 < 𝑐. Thus splay a t yields
(al,a',(ar,b,(br,c,cr))). Recall that 𝑎 need not occur in 𝑡, in this case, the last element 𝑎�
before a leaf was found, is rotated to the root. Our prototype checks correctness of these annotations
automatically.

35

3. A Type System for Analysis of Logarithmic Amortized Complexity

Let 𝑒1 denote the subexpression of the definition of splaying, starting in program line 4. On the other
hand let 𝑒2 denote the subexpression defined from line 5 to 15 and let 𝑒3 denote the program code
within 𝑒2 starting in line 8. Finally the expression in lines 11 and 12, expands to 𝑒4 as follows, if we
remove part of the syntactic sugar:

1 let x = splay a bl in (
2 match x with
3 | leaf -> leaf
4 | (al, a', ar) -> 𝑡 �
5)

Below, we show a simplified derivation of (3.6), where we have focused only on a particular path in the
derivation tree, suited to the considered zig-zig case of the definition of splaying. Omission of premises
or rules is indicated by double lines in the inference step. Again we make crucial use of the cost-free
semantics in this derivation. The corresponding inference step is marked with (∗) and the employed
shared potentials are marked in red. To ease presentation we take the liberty of removing types of tree
variables from the context.

We abbreviate Γ � 𝑎 :B, 𝑏 :B, 𝑐 :B, Δ � 𝑏 :B, 𝑐 :B. In addition to the original signature of splay-
ing, B × T|𝑄 → T|𝑄 �, we use the following annotations, induced by constraints in the type system,
see Figure 3.1. As in Section 3.3.1, wemark annotations that require cost-free derivations in the (let : T)
rule in red.

𝑄1 : 𝑞
1
1 = 𝑞12 = 𝑞1 = 1, 𝑞1(1,1,0) = 𝑞 (1,0) = 3, 𝑞1(1,0,0) = 𝑞1(0,1,0) = 𝑞1 = 1, 𝑞1(0,0,2) = 𝑞 (0,2) = 1 ,

𝑄2 : 𝑞
2
1 = 𝑞22 = 𝑞23 = 1, 𝑞2(0,0,0,2) = 1, 𝑞2(1,1,1,0) = 𝑞1(1,1,0) = 3, 𝑞2(0,1,1,0) = 𝑞1(1,0,0) = 1,

𝑞2(1,0,0,0) = 𝑞1(0,1,0) = 1, 𝑞2(0,1,0,0) = 𝑞2(0,0,1,0) = 𝑞11 = 1 ,

𝑄3 : 𝑞
3
1 = 𝑞32 = 𝑞33 = 1, 𝑞3(0,0,0,2) = 2,

𝑞3(0,1,0,0) = 3, 𝑞3(1,0,0,0) = 𝑞3(0,0,1,0) = 𝑞3(1,0,1,0) = 𝑞3(1,1,1,0) = 1 .

In the step marked with the rule (w) in the derivation above, a weakening step is applied, which
amounts to the following inequality:

Φ(Γ, 𝑐𝑟 :T, 𝑏𝑙 :T, 𝑏𝑟 :T|𝑄2) ⩾ Φ(Γ, 𝑐𝑟 :T, 𝑏𝑙 :T, 𝑏𝑟 :T|𝑄3) .

We emphasise that this step can neither be avoided, nor easily moved to the axioms of the derivation.
To verify the correctness of weakening through a direct comparison. Let 𝜎 be a substitution. Then,

36

3.3. Example Analysis

we have

Φ(𝜎; 𝑐𝑟 :T, 𝑏𝑙 :T, 𝑏𝑟 :T|𝑄2) = 1 + rk(𝑐𝑟) + rk(𝑏𝑙) + rk(𝑏𝑟) + 3 log(|𝑐𝑟 | + |𝑏𝑙 | + |𝑏𝑟 |) +
+ log(|𝑏𝑙 | + |𝑏𝑟 |) + log(|𝑐𝑟 |) + log(|𝑏𝑙 |) + log(|𝑏𝑟 |)

= 1 + rk(𝑐𝑟) + rk(𝑏𝑙) + rk(𝑏𝑟) + 2 log(|𝑡 |) + log(|𝑡 |) +
+ log(|𝑏𝑙 | + |𝑏𝑟 |) + log(|𝑐𝑟 |) + log(|𝑏𝑙 |) + log(|𝑏𝑟 |) (3.7)

⩾ 1 + rk(𝑐𝑟) + rk(𝑏𝑙) + rk(𝑏𝑟) + log(|𝑏𝑙 |) +
+ log(|𝑏𝑟 | + |𝑐𝑟 |) + 2 + log(|𝑏𝑙 | + |𝑏𝑟 | + |𝑐𝑟 |) +
+ log(|𝑏𝑙 | + |𝑏𝑟 |) + log(|𝑐𝑟 |) + log(|𝑏𝑙 |) + log(|𝑏𝑟 |) (3.8)

⩾ rk(𝑏𝑙) + 1 + 3 log(|𝑏𝑙 |) + rk(𝑐𝑟) + rk(𝑏𝑟) + log(|𝑏𝑟 |) +
+ log(|𝑐𝑟 |) + log(|𝑏𝑟 | + |𝑐𝑟 |) +
+ log(|𝑏𝑙 | + |𝑏𝑟 | + |𝑐𝑟 |) + 1

= Φ(𝜎; 𝑐𝑟 :T, 𝑏𝑙 :T, 𝑏𝑟 :T|𝑄3) .
Note that as we have |𝑡 | = |((𝑏𝑙, 𝑏, 𝑏𝑟), 𝑐, 𝑐𝑟)| = |𝑏𝑙 | + |𝑏𝑟 | + |𝑐𝑟 |, we use

2 log(|𝑡 |) ⩾ log(|𝑏𝑙 |) + log(|𝑏𝑟 | + |𝑐𝑟 |) + 2 ,

to go from (3.7) to (3.8). The general form, Lemma 4, is presented inChapter 4. Furthermore, we have
only used monotonicity of log and formal simplifications.

Further, we verify the use of the (let : T)-rule, marked with (∗) in the proof. Consider the following
annotation𝑄4:

𝑄4 : 𝑞
4
1 = 𝑞31; 𝑞

4
2 = 𝑞33; 𝑞

4
3 = 𝑞�∗; 𝑞

4
(1,0,0,0) = 𝑞3(1,0,0,0) ; 𝑞

4
(0,1,0,0) = 𝑞3(0,0,1,0) ;

𝑞4(1,1,0,0) = 𝑞3(1,0,1,0) ; 𝑞
4
(1,1,1,0) = 𝑝� (1,1,1,0)(1,0) = 1

𝑃 (1,1,1,0) : 𝑝 (1,1,1,0)
(1,0) = 𝑞3(1,1,1,0) = 1

𝑃� (1,1,1,0) : 𝑝� (1,1,1,0)(1,0) = 1

To see that𝑄4 is consistent with the constraints on resource annotations in the (let : T)-rule, we first
note that

𝑄 + 1: 𝑞 = 𝑞32 = 1, 𝑞 (1,0) = 𝑞3(0,1,0,0) = 3; 𝑞 (0,2) = 𝑞3(0,0,0,2) .

Hence the constraints on the annotations for the left typing tree in the (let : T)-rule amount to the
following:

𝑞 = 𝑞32 = 1 𝑞 (1,0) = 𝑞3(0,1,0,0) = 3 𝑞 (0,2) = 𝑞 (0,0,0,2) = 2 𝑞�∗ = 𝑞43 = 1 ,

which are fulfilled. Further, the right typing tree yields the constraints:

𝑞41 = 𝑞31 = 1 𝑞42 = 𝑞33 = 1 𝑞4(1,0,0,0) = 𝑞3(1,0,0,0) = 1 𝑞4(0,1,0,0) = 𝑞3(0,0,1,0) = 1

𝑞4(1,1,0,0) = 𝑞3(1,0,1,0) = 1 ,

37

3. A Type System for Analysis of Logarithmic Amortized Complexity

which are also fulfilled. Hence, it remains to check the correctness of the constraints for the actual cost-
free derivation. First, note that for the vector '𝑏 = (1, 1), the cost-free derivation needs to be checked
w.r.t. the annotation pair 𝑃 (1,1,1,0) = [𝑝 (1,1,1,0)

(1,0)] and 𝑃� (1,1,1,0) = [𝑝� (1,1,1,0)(1,0)]. Second, the various
constraints in the rule (let : T) simplify to the inequality 𝑝 (1,1,1,0)

(1,0) ⩾ 𝑝� (1,1,1,0)(1,0) , which holds. Third,
the actual cost-free type derivation reads as follows:

𝑎 :Base, 𝑏𝑙 :Tree|𝑃 (1,1,1,0) " splay a bl :Tree|𝑃� (1,1,1,0) . (3.9)

The typing judgement (3.9) is derivable if the following cost-free signatures are employed for splaying:

splay : Tree|𝑃 →cf Tree|𝑃� Tree|∅ →cf Tree|∅ ,

where 𝑃 = [𝑝 (1,0)], 𝑃� = [𝑝�(1,0)], with 𝑝 (1,0) = 𝑝�(1,0) � 1. Recall that ∅ denotes the empty
annotation, where all coefficients are set to zero. By definition, 𝑃 = 𝑃 (1,1,1,0) and 𝑃� = 𝑃� (1,1,1,0) .
Informally, this cost-free signature is admissible, as the following equality holds:

Φ(𝜎; 𝑎 :B, 𝑏𝑙 :T|𝑃) = log(|𝑏𝑙 |) = log(| (𝑎𝑙, 𝑎�, 𝑎𝑟) |) = Φ((𝑎𝑙, 𝑎�, 𝑎𝑟) :T|𝑃�) .

Recall that we have splay a bl = (𝑎𝑙, 𝑎�, 𝑎𝑟) for the recursive call and that |𝑏𝑙 | = |(𝑎𝑙, 𝑎�, 𝑎𝑟)|.
As depicted below, the type derivation of (3.9) proceeds similarly to the derivation above in conjunc-
tion with the analysis in Subsection 3.3.1.

As indicated the cost-free derivation also requires the use of the full version of the rule (let : T), as
marked by (∗). In particular, the informal argument on the size of the argument and the result of
splaying is built into the type system. We use the following annotations:

𝑃 : 𝑝 (1,0) = 1 𝑃� : 𝑝�(1,0) = 1

𝑃1 : 𝑝
1
(1,1,0) = 𝑝 (1,0) = 1

𝑃2 : 𝑝
2
(1,1,1,0) = 𝑝1(1,1,0) = 1

𝑃3 : 𝑝
3
(1,1,1,0) = 𝑝�(1,0) = 1

𝑃4 : 𝑝
4
(1,1,1,1,0) = 𝑝3(1,1,1,0) = 1

Finally, one further application of the (match)-rule, yields the desired derivation for suitable𝑄5. See
also the previous subsection. Note that one further application of the weakening rule is required here.

38

3.3. Example Analysis

∀𝑐 ⩾ 2 𝑞 (𝑐) =
�

𝑎+𝑏=𝑐 𝑞�(𝑎,𝑏) 𝑘 = 𝑞�∗
∅|𝑄 + 𝑘 " leaf :T|𝑄 � (leaf) Γ|𝑄 " 𝑒 :𝛼 |𝑄 � 𝐾 ⩾ 0

Γ|𝑄 + 𝐾 " 𝑒 :𝛼 |𝑄 � + 𝐾
(shift)

Γ|𝑅 " 𝑒 : 𝛽 |𝑄 � 𝑟𝑖 = 𝑞𝑖 𝑟 ('𝑎,𝑏) = 𝑞 ('𝑎,0,𝑏)
Γ, 𝑥 :𝛼 |𝑄 " 𝑒 : 𝛽 |𝑄 � (w : var) Γ, 𝑥 :𝛼, 𝑦 :𝛼 |𝑄 " 𝑒[𝑥, 𝑦] : 𝛽 |𝑄 �

Γ, 𝑧 :𝛼 |⋎(𝑄) " 𝑒[𝑧, 𝑧] : 𝛽 |𝑄 � (share)

𝑞1 = 𝑞2 = 𝑞�∗ 𝑞 (1,0,0) = 𝑞 (0,1,0) = 𝑞�∗ 𝑞 (𝑎,𝑎,𝑐) = 𝑞�(𝑎,𝑐)
𝑥1 :T, 𝑥2 :B, 𝑥3 :T|𝑄 " (𝑥1,𝑥2,𝑥3) :T|𝑄 � (node)

◦ ∈ {<, >, =}
𝑥1 :𝛼, 𝑥2 :𝛼 |𝑄 " 𝑥1 ◦ 𝑥2 :Bool|𝑄 (cmp) Γ|𝑄 " 𝑒1 :𝛼 |𝑄 � Γ|𝑄 " 𝑒2 :𝛼 |𝑄 �

Γ, 𝑥 :Bool|𝑄 " if 𝑥 then 𝑒1 else 𝑒2 :𝛼 |𝑄 � (ite)

𝑟 ('𝑎,𝑎,𝑎,𝑏) = 𝑞 ('𝑎,𝑎,𝑏)
𝑝 ('𝑎,𝑐) =

�
𝑎+𝑏=𝑐 𝑞 ('𝑎,𝑎,𝑏)

Γ|𝑃 + 𝑞𝑚+1 " 𝑒1 :𝛼 |𝑄 �

𝑟𝑚+1 = 𝑟𝑚+2 = 𝑞𝑚+1
𝑟 ('0,1,0,0) = 𝑟 ('0,0,1,0) = 𝑞𝑚+1

Γ, 𝑥1 :T, 𝑥2 :B, 𝑥3 :T|𝑅 " 𝑒2 :𝛼 |𝑄 � 𝑞𝑖 = 𝑟𝑖 = 𝑝𝑖
Γ, 𝑥 :T|𝑄 " match 𝑥 with | leaf -> 𝑒1| (𝑥1,𝑥2,𝑥3) -> 𝑒2 :𝛼 |𝑄 � (match)

𝑝𝑖 = 𝑞𝑖 𝑝 ('𝑎,𝑐) = 𝑞 ('𝑎,'0,𝑐) 𝑟 𝑗 = 𝑞𝑚+ 𝑗 𝑟𝑘+1 = 𝑝�∗ 𝑟 ('0,𝑑,𝑒) = 𝑝�(𝑑,𝑒)
∀'𝑏 ≠ '0

�
𝑟 ('𝑏,0,0) = 𝑞 ('0, '𝑏,0)

∀'𝑏 ≠ '0, '𝑎 ≠ '0 ∨ 𝑐 ≠ 0

�
𝑞 ('𝑎, '𝑏,𝑐) =

�
(𝑑,𝑒) 𝑝

('𝑏,𝑑,𝑒)
('𝑎,𝑐)

∀'𝑏 ≠ '0, 𝑑 ≠ 0 ∨ 𝑒 ≠ 0

�
𝑟 ('𝑏,𝑑,𝑒) = 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) ∧ ∀(𝑑 �, 𝑒�) ≠ (𝑑, 𝑒)

�
𝑝� (

'𝑏,𝑑,𝑒)
(𝑑�,𝑒�) = 0

∧

∧�
('𝑎,𝑐) 𝑝

('𝑏,𝑑,𝑒)
('𝑎,𝑐) ≥ 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) ∧ ∀'𝑎 ≠ '0 ∨ 𝑐 ≠ 0

�
𝑝 ('𝑏,𝑑,𝑒)
('𝑎,𝑐) ≠ 0 → 𝑝� (

'𝑏,𝑑,𝑒)
(𝑑,𝑒) ⩽ 𝑝 ('𝑏,𝑑,𝑒)

('𝑎,𝑐)

Γ|𝑃 " 𝑒1 :T|𝑃� ∀'𝑏 ≠ '0, 𝑑 ≠ 0 ∨ 𝑒 ≠ 0
�
Γ|𝑃 ('𝑏,𝑑,𝑒) "cf 𝑒1 :T|𝑃� ('𝑏,𝑑,𝑒)

Δ, 𝑥 :T|𝑅 " 𝑒2 : 𝛽 |𝑄 �

Γ,Δ|𝑄 " let 𝑥 = 𝑒1 in 𝑒2 : 𝛽 |𝑄 � (let : T)

𝑝𝑖 = 𝑞𝑖 𝑝 ('𝑎,𝑐) = 𝑞 ('𝑎,'0,𝑐)

Γ|𝑃 " 𝑒1 :𝛼 |∅
𝑞 ('0, '𝑏,𝑐) = 𝑟 ('𝑏,𝑐) ('𝑏 ≠ '0)
Δ, 𝑥 :𝛼 |𝑅 " 𝑒2 : 𝛽 |𝑄 �

𝑟 𝑗 = 𝑞𝑚+ 𝑗
𝛼 ≠ T

Γ,Δ|𝑄 " let 𝑥 = 𝑒1 in 𝑒2 : 𝛽 |𝑄 � (let : gen)

Γ|𝑃 " 𝑒 :𝛼 |𝑃� Φ(Γ|𝑃) ⩽ Φ(Γ|𝑄) Φ(Γ|𝑃�) ⩾ Φ(Γ|𝑄 �)
Γ|𝑄 " 𝑒 :𝛼 |𝑄 � (w) 𝑥 a variable

𝑥 :𝛼 |𝑄 " 𝑥 :𝛼 |𝑄 (var)

𝛼1 × · · · × 𝛼𝑛 |𝑃 → 𝛽 |𝑃� ∈ F (𝑓) 𝛼1 × · · · × 𝛼𝑛 |𝑄 → 𝛽 |𝑄 � ∈ F cf (𝑓) 𝐾 ∈ Q+
0

𝑥1 :𝛼1, . . . , 𝑥𝑛 :𝛼𝑛 |𝑃 + 𝐾 · 𝑄 " 𝑓 (𝑥1, . . . , 𝑥𝑛) : 𝛽 | (𝑃� + 𝐾 · 𝑄 �) − 1
(app)

To ease notation, we set '𝑎 � 𝑎1, . . . , 𝑎𝑚, '𝑏 � 𝑏1, . . . , 𝑏𝑘 for vectors of indices 𝑎𝑖 , 𝑏 𝑗 ∈ N. Further,
𝑖 ∈ {1, . . . , 𝑚}, 𝑗 ∈ {1, . . . , 𝑘} and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ N. Sequence elements of annotations, which are
not constrained, are set to zero.

Figure 3.1: Type System for Logarithmic Amortised Resource Analysis

39

3. A Type System for Analysis of Logarithmic Amortized Complexity

splay:T|𝑄 → T|𝑄 �

𝑎 :B, 𝑏𝑙 |𝑄 " splay a bl :T|𝑄 � − 1

Δ, 𝑐𝑟, 𝑏𝑟, 𝑎𝑙, 𝑎� :B, 𝑎𝑟 |𝑄5 " 𝑡 � :T|𝑄 �

Δ, 𝑐𝑟, 𝑏𝑟, 𝑥 |𝑄4 " match 𝑥 with |(𝑎𝑙,𝑎�,𝑎𝑟) -> 𝑡 � :T|𝑄 �

Γ, 𝑐𝑟, 𝑏𝑙, 𝑏𝑟 |𝑄3 " 𝑒4 :T|𝑄 � (∗)
Γ, 𝑐𝑟, 𝑏𝑙, 𝑏𝑟 |𝑄3 " 𝑒3 :T|𝑄 �

Γ, 𝑐𝑟, 𝑏𝑙, 𝑏𝑟 |𝑄2 " 𝑒3 :T|𝑄 � (w)
𝑎 :B, 𝑏 :B, 𝑐𝑙, 𝑐𝑟 |𝑄1 " match 𝑐𝑙 with |leaf -> (𝑐𝑙,𝑐,𝑐𝑟)|(𝑏𝑙,𝑏,𝑏𝑟) -> 𝑒3 :T|𝑄 �

𝑎 :B, 𝑐𝑙, 𝑐 :B, 𝑐𝑟 |𝑄1 " if 𝑎 = 𝑐 then (𝑐𝑙,𝑐,𝑐𝑟) else 𝑒2 :T|𝑄 �

𝑎 :B, 𝑡 |𝑄 " match 𝑡 with|leaf -> leaf|(𝑐𝑙,𝑐,𝑐𝑟) -> 𝑒1 :T|𝑄 �

Figure 3.2: Partial Typing Derivation for splay, focusing on the zig-zig Case.

splay:T|∅ → T|∅
𝑎 :B, 𝑏𝑙 |∅ " splay a bl :T|∅

Δ, 𝑐𝑟, 𝑏𝑟, 𝑎𝑙, 𝑎� :B, 𝑎𝑟 |𝑃4 " 𝑡 � :T|𝑃�

Δ, 𝑐𝑟, 𝑏𝑟, 𝑥 |𝑃3 " match 𝑥 with |(𝑎𝑙,𝑎�,𝑎𝑟) -> 𝑡 � :T|𝑃�

Γ, 𝑐𝑟, 𝑏𝑙, 𝑏𝑟 |𝑃2 " 𝑒4 :T|𝑃� (∗)
Γ, 𝑐𝑟, 𝑏𝑙, 𝑏𝑟 |𝑃2 " 𝑒3 :T|𝑃�

𝑎 :B, 𝑏 :B, 𝑐𝑙, 𝑐𝑟 |𝑃1 " match 𝑐𝑙 with |leaf -> (𝑐𝑙,𝑐,𝑐𝑟)|(𝑏𝑙,𝑏,𝑏𝑟) -> 𝑒3 :T|𝑃�

𝑎 :B, 𝑐𝑙, 𝑐 :B, 𝑐𝑟 |𝑃1 " if 𝑎 = 𝑐 then (𝑐𝑙,𝑐,𝑐𝑟) else 𝑒2 :T|𝑃�

𝑎 :B, 𝑡 |𝑃 " match 𝑡 with|leaf -> leaf|(𝑐𝑙,𝑐,𝑐𝑟) -> 𝑒1 :T|𝑃�

Figure 3.3: Cost-Free Derivation for splay, focusing on the zig-zig Case.

40

CHAPTER4
Automation

The type systempresented inChapter 3 is a sound, theoretical basis. In Section 2.1.1 wementioned how
inferring coefficients allows analysis. However, development of a tool that performs fully automated
analysis, comes with additional challenges.

In this chapter, we want to highlight the challenges and how they were met.

4.1 Linearisation and Expert Knowledge

In the context of the presented type system (see Figure 3.1) an obvious challenge is the requirement to
compare potentials symbolically (see Section 3.2) rather than to compare annotations directly. This is
in contrast to results on resource analysis for constant amortised costs, see e.g. [S J+09; S J+10; JKM12a;
JAS17; S J+17].

Comparison between logarithmic expressions, constitutes a firstmajor challenge, as such a comparison
cannot be directly encoded as a linear constraint problem.

To achieve such linearisation, we make use of the following:

(i) a subtle and surprisingly effective variant of Schoenmakers’ potential (not covered below, refer to
Section 3.1);

(ii) mathematical facts about the logarithm function— like Lemma 4 below— referred to as expert
knowledge; and finally

(iii) Farkas’ Lemma (Lemma 5) for turning the universally-quantified premise of the weakening rule
into an existentially-quantified statement that can be added to the constraint system.

41

4. Automation

Furthermore, the presence of logarithmic basic functions seems to necessitate the embodiment of non-
linear arithmetic. In particular, as we need tomake use of basic laws of the log functions, as the follow-
ing one. A variant of the below fact has already been observed by Okasaki, see [C O99].

Lemma 4 (l2xy). Let 𝑥, 𝑦 ⩾ 1. Then 2 + log(𝑥) + log(𝑦) ⩽ 2 log(𝑥 + 𝑦).

Proof. We observe
(𝑥 + 𝑦)2 − 4𝑥𝑦 = (𝑥 − 𝑦)2 ⩾ 0 .

Hence (𝑥 + 𝑦)2 ⩾ 4𝑥𝑦 and from the monotonicity of log we conclude log(𝑥𝑦) ⩽ log((𝑥+𝑦)24). By
elementary laws of log we obtain:

log

	 (𝑥 + 𝑦)2
4

�
= log

	�𝑥 + 𝑦

2

2�
= 2 log(𝑥 + 𝑦) − 2 ,

from which the lemma follows as log(𝑥𝑦) = log(𝑥) + log(𝑦). □

We remark that our automated analysis shows that Lemma 4 is not only crucial in the analysis of splay-
ing, but also for the other data structures we have investigated.

A refined and efficient approach which targets linear constraints is achievable as follows. All logarith-
mic terms, that is, terms of the form log(.) are replaced by new variables, focusing on finitely many.
For the latter, we exploit the condition that in resource annotations only finitely many coefficients are
non-zero. Consider the following inequality as prototypical example. Validity of the constraint ought
to incorporate the monotonicity of log.

𝑎1 log(|𝑡 |) + 𝑎2 log(|𝑐𝑟 |) ⩾ 𝑏1 log(|𝑡 |) + 𝑏2 log(|𝑐𝑟 |) , (4.1)

where we assume 𝑡 = (𝑐𝑙, 𝑐, 𝑐𝑟) for some value 𝑐 and thus |𝑡 | ⩾ |𝑐𝑟 |, see Section 3.3.2. Replacing
log(|𝑡 |), log(|𝑐𝑟 |) with new unknowns 𝑥, 𝑦, respectively, we represent (4.1) as follows:

∀𝑥, 𝑦 ⩾ 0. 𝑎1𝑥 + 𝑎2𝑦 ⩾ 𝑏1𝑥 + 𝑏2𝑦 , (4.2)

Here we keep the side-condition 𝑥 ⩾ 𝑦 and observe that the unknowns 𝑥, 𝑦 can be assumed to be non-
negative, as they represent values of the log function. Thus properties like e.g. monotonicity of log, as
well as properties like Lemma 4 above, can be expressed as inequalities over the introduced unknowns.
E.g., the inequality 𝑥 ⩾ 𝑦 above represents the axiom of monotonicity log(|𝑡 |) ⩾ log(|𝑐𝑟 |). All such
obtained inequalities are collected as expert or prior knowledge. This entails that (4.2) is equivalent to
the following existential constraint satisfaction problem:

∃𝑐, 𝑑. 𝑎1 ⩾ 𝑏1 + 𝑐 ∧ 𝑎2 ⩾ 𝑑 ∧ 𝑏2 ⩽ 𝑐 + 𝑑 . (4.3)

We seek to systematise the derivation of inequalities such as (4.3) from expert knowledge. For that, we
assume that the gathered prior knowledge is represented by a system of inequalities as 𝐴'𝑥 ⩽ '𝑏, '𝑥 ⩾ 0,
where 𝐴 denotes a matrix with as many rows as we have prior knowledge, '𝑏 a column vector and '𝑥 the
column vector of unknowns of suitable length; '𝑥 ⩾ 0 because log evaluates to non-negative values.

42

4.1. Linearisation and Expert Knowledge

Below we discuss a general method for the derivation of inequalities such as (4.3) based on the affine
formofFarkas’Lemma. First, we state the variant ofFarkas’Lemma thatweuse in this article, see [Sch99].
Note that '𝑢 and '𝑓 denote column vectors of suitable length.

Lemma 5 (Farkas’ Lemma). Suppose 𝐴'𝑥 ⩽ '𝑏, '𝑥 ⩾ 0 is solvable. Then for all vectors '𝑢 and scalars 𝜆, the
following assertions are equivalent.

∀'𝑥 ⩾ 0. 𝐴'𝑥 ⩽ '𝑏 ⇒ '𝑢𝑇 '𝑥 ⩽ 𝜆 (4.4)

∃ '𝑓 ⩾ 0. '𝑢𝑇 ⩽ '𝑓 𝑇 𝐴 ∧ '𝑓 𝑇 '𝑏 ⩽ 𝜆 (4.5)

Proof. It is easy to see that from (4.5), we obtain (4.4). Assume (4.5). Assume further that 𝐴'𝑥 ⩽ '𝑏 for
some column vector '𝑥. Then we have

'𝑢𝑇 '𝑥 ⩽ '𝑓 𝑇 𝐴'𝑥 ⩽ '𝑓 𝑇 '𝑏 ⩽ 𝜆 .

Note that for this direction the assumption that 𝐴'𝑥 ⩽ '𝑏, '𝑥 ⩾ 0 is solvable is not required.

With respect to the opposite direction, we assume (4.4). By assumption, 𝐴'𝑥 ⩽ '𝑏, '𝑥 ⩾ 0 is solvable.
Hence, maximisation of '𝑢𝑇 '𝑥 under the side condition 𝐴'𝑥 ⩽ '𝑏, '𝑥 ⩾ 0 is feasible. Let 𝑤 denote the
maximal value. Due to (4.4), we have 𝑤 ⩽ 𝜆.

Now, consider the dual asymmetric linear program to minimise '𝑦𝑇 '𝑏 under side condition '𝑦𝑇 𝐴 = '𝑢𝑇
and '𝑦 ⩾ 0. Due to the Dualisation Theorem, the dual problem is also solvable with the same solution

'𝑦𝑇 '𝑏 = '𝑢𝑇 '𝑥 = 𝑤 .

We define '𝑓 � '𝑦, which attains the optimal value 𝑤, such that '𝑓 𝑇 𝐴 = '𝑢𝑇 and '𝑓 ⩾ 0 such that
'𝑓 𝑇 '𝑏 = 𝑤 ⩽ 𝜆. This yields (4.5). □

Second, we discuss a method for the derivation of inequalities such as (4.3) based on Farkas’ Lemma.
Our goal is to automatically discharge symbolic constraints such asΦ(Γ|𝑃) ⩽ Φ(Γ|𝑄) — as well as
Φ(Γ|𝑃�) ⩾ Φ(Γ|𝑄 �)—as required by the weakening rule (w) (see Section 3.2).
According to the above discussion we can represent the inequalityΦ(Γ|𝑃) ⩽ Φ(Γ|𝑄) by

'𝑝𝑇 '𝑥 + 𝑐𝑝 ⩽ '𝑞𝑇 '𝑥 + 𝑐𝑞 ,

where '𝑥 is a finite vector of variables representing the base potential functions, '𝑝 and '𝑞 are column
vectors representing the unknown coefficients of the non-constant potential functions, and 𝑐𝑝 and 𝑐𝑞
are the coefficients of the constant potential functions. We assume the expert knowledge is given by
the constraints 𝐴'𝑥 ⩽ '𝑏, '𝑥 ⩾ 0. We now want to derive conditions for '𝑝, '𝑞, 𝑐𝑝 , and 𝑐𝑞 such that we
can guarantee

∀'𝑥 ⩾ 0. 𝐴'𝑥 ⩽ '𝑏 ⇒ '𝑝𝑇 '𝑥 + 𝑐𝑝 ⩽ '𝑞𝑇 '𝑥 + 𝑐𝑞 . (4.6)

By Farkas’ Lemma it is sufficient to find coefficients '𝑓 ⩾ 0 such that

'𝑝𝑇 ⩽ '𝑓 𝑇 𝐴 + '𝑞𝑇 ∧ '𝑓 𝑇 '𝑏 + 𝑐𝑝 ⩽ 𝑐𝑞 . (4.7)

43

4. Automation

Hence, we can ensure (4.6) by (4.7) using the new unknowns '𝑓 .
We illustrate Equation (4.7) on the above example. We have 𝐴 = (−1 1), 𝑏 = 0, '𝑝 = (𝑏1 𝑏2)𝑇 ,
'𝑞 = (𝑎1 𝑎2)𝑇 as well as 𝑐𝑝 = 𝑐𝑞 = 0. Then, the inequality 𝑓 𝑏 + 𝑐𝑝 ⩽ 𝑐𝑞 simplifies to 0 ⩽ 0 and can
in the following be omitted. With the new unknown 𝑓 ⩾ 0we have

(𝑏1 𝑏2) ⩽ 𝑓 (−1 1) + (𝑎1 𝑎2) ,
which we can rewrite to

𝑏1 ⩽ − 𝑓 + 𝑎1 ∧ 𝑏2 ⩽ 𝑓 + 𝑎2 ,
easily seen to be equivalent to Equation (4.3).

Thus, the validity of constraints incorporating the monotonicity of log becomes expressible in a sys-
tematic way. Further, the symbolic constraints enforced by the weakening rule can be discharged
systematically and become expressible as existential constraint satisfaction problems. Note that the
incorporation of Farkas’ Lemma in the above form subsumes the well-known practice of coefficient
comparison for the synthesis of polynomial interpretations [E C+05], ranking functions [AA04] or
resource annotations in the context of constant amortised costs [JKM12a].

The incorporation of Farkas’ Lemma with suitable expert knowledge is already essential for type check-
ing, whenever (w) needs to be discharged.
ATLAS incorporates two facts into the expert knowledge: Lemma 5 and the monotonicity of the log-
arithm (see Chapter 5). We found these two facts to be sufficient for handling our benchmarks, i.e.
expert knowledge of form (ii) and (iii) was not needed. (We note though that we have played with
adding a dedicated size analysis (ii), which interestingly increased the solver performance, despite gen-
erating a large constraint system).

Further, the following variant of Farkas’ Lemma, lies at the heart of an effective transformation of
comparisons demanded by (w) into a linear constraint problem.

The lemma allows the assumption of expert knowledge through the assumption 𝐴'𝑥 ⩽ '𝑏 for all '𝑥 ⩾ 0.
The, thus formalised expert knowledge is a clear point of departure for additional information.

Further, we emphasise that Lemma 5 subsumes the well-known practise of coefficient comparison for
the synthesis of polynomial interpretations [E C+05], ranking functions [AA04] or resource annota-
tions in the context of constant amortised costs [JKM12a].

We indicate howATLASmay be used to solve the constraints generated for the example in Section 2.1.
We recall the crucial application of the weakening step between annotations𝑄2 and𝑄3. This weaken-
ing step canbe automatically dischargedusing themonotonicity of logs andLemma4. (More precisely,
ATLAS employs the mode w{mono l2xy} see, Chapter 5.) For example, ATLAS is able to verify the
validity of the following concrete constants:

𝑄2 : 𝑞
2
1 = 𝑞22 = 𝑞23 = 1; 𝑞2(1,0,0,0) = 1; 𝑞2(0,1,0,0) = 1;

𝑞2(1,1,1,0) = 3, 𝑞2(0,1,1,0) = 1; 𝑞2(0,0,0,2) = 1;

𝑄3 : 𝑞
3
1 = 𝑞32 = 𝑞33 = 1; 𝑞3(0,1,0,0) = 3; 𝑞3(1,0,0,0) = 𝑞3(0,0,1,0) = 1;

𝑞3(1,0,1,0) = 𝑞3(1,1,1,0) = 1; 𝑞3(0,0,0,2) = 2 .

44

4.2. Type Inference

In the next section, we briefly detail our implementation of the established logarithmic amortised re-
source analysis, based on the observations in this section.

4.2 Type Inference

Second, we reckon to what these ideas are sufficient for type checking and detail further challenges to
fully automated type inference and the main design choice in ATLAS, to overcome these challenges.
Finally, we indicate how our tool solves the gathered constraints induced by the type system for the
motivating example andwe remark on challenges posed by our benchmarking code base for splay heaps
and pairing heaps.

Further, we automate the application of structural rules like sharing or weakeningWe emphasise that
it is not sufficient to include all weakening steps into the axioms of the typing rules. This is in contrast
to the situation of earlier work by Hofmann et al.,e.g. [MS03; JKM11; JKM12b; HR13; JAS17; S J+17],
which could rely on so-called algorithmic typing rules.

Concretely, they came about by a novel

(i) optimisation layer;

(ii) a careful control of the structural rules;

(iii) the generalisation of user-defined proof tactics into an overall strategy of type inference; and

(iv) provision of an automated amortised analysis in the sense of Sleator and Tarjan.

In the sequel of the section, we will discuss these stepping stones towards full automation in more
details.

4.2.1 Optimisation Layer

We add an optimisation layer to the setup, in order to support type inference. This allows for the in-
ference of (optimal) type annotations based on user-defined type annotations. For example, assume
the user-provided type annotation rk(𝑡) + 3 log(|𝑡 |) + 1 → rk(splay(𝑡)) can in principle be checked
automatically. Then— instead of checking this annotation—ATLAS automatically optimises the sig-
nature, by minimising the deduced coefficients. (In Chapter 5 we discuss how this optimisation step
is performed.) That is, ATLAS reports the following annotation

splay : 1/2 rk(𝑡) + 3/2 log(|𝑡 |) → 1/2 rk(splay(𝑡)) ,

which yields the optimal amortised cost of splaying of 3/2 log(|𝑡 |). Optimality here means that no
better boundhas been obtained by earlier pen-and-paper verificationmethods (compare the discussion
in Chapter 1).

45

4. Automation

1 (match (* t *) leaf
2 (match (* cl *) ?
3 (w{l2xy} (let:tree:cf (* s *)
4 app (* splay_eq a bl *)
5 (match leaf
6 (let:tree:cf node (let:tree:cf node (w{mono} node))))))))

Figure 4.1: Tactic that matches the zig-zig case of splay as shown in Fig. 2.2.

4.2.2 Structural Rules

We observed that an unchecked application of the structural rules, that is of the sharing and the weak-
ening rule, quickly leads to an explosion of the size of the constraint system and thus to de-facto un-
solvable problems. Towit, an earlier version of our implementation ran continuously for 24/7without
being able to infer a type for the complete definition of the function splay.

The type-and-effect system proposed by Hofmann et al. is in principle linear, that is, variables occur
at most once in the function body. For example, this is employed in the definition of the (let)-rule,
see Section 2.1. However, a sharing rule is admissible, that allows to treat multiple occurrences of vari-
ables. Occurrences of non-linear variables are suitably renamed apart and the carried potential is shared
among the variants. The number of variables strongly influences the size of the constraint problem.
Hence, eager application of the sharing rule proved infeasible. Instead, we restricted its application to
individual program traces. For the considered benchmark examples, this removed the need for sharing
altogether.

With respect to weakening, however, a refinement of the employed weakening steps proved essential.
I.e. we make use of different levels of granularity of this automation, ranging from a simple coeffi-
cient comparison (indicated in the tactics as w) to full endowment of themethodology discussed above
(w{mono l2xy}); see the detailed discussion in Chapter 5.

The structural rules can in principle be applied at everyASTnode of the programunder analysis. How-
ever, they introduce additional variables and constraints and for performance reasons it is better to ap-
ply them sparingly. For the sharing rule we proceed as follows: We recall that the sharing rule allows us
to assume that the type system is linear. In particular, we can assume that every variable occurs exactly
once in the type context, which is exploited in the definition of the let rules. However, such an eager
application of the sharing rule would directly yield to a size explosion in the number of constraints,
as the generation of each fresh variables requires the generation of exponentially many annotations.
Hence, we only apply sharing only when strictly necessary. In this way the typing context can be kept
small. Similar to the sharing rule (share), variable weakening (w : var) is employed only when re-
quired. This in turn reduces the number of constraints generated. For the weakening rule, we employ
our novel methods for symbolically comparing logarithmic expressions, which we discussed in Sec-
tion 4.1. Because of our use of Farkas’ Lemma, weakening introduces new unknown coefficients. For
performance reasons, we need to control the size of the resulting constraint system and rely on the user
to insert applications of the weakening rule. We note that the weakening rule may need to be applied
in the middle of a type derivation, see for example the typing derivation for our motivating example
in Figure 3.2. This contrasts to the literature where the weakening rule can typically be incorporated

46

4.2. Type Inference

into the axioms of the type system and thus dispensed with. Perhaps a similar approach is possible in
the context of logarithmic amortised resource analysis. For now we have not been able to verify this.

4.2.3 Proof Tactics

In combination with our optimisation framework, tactics allow to signifcantly improve type annota-
tions. To wit,ATLAS can be invoked with user-defined resource annotations for the function splay,
representing its „standard“ amortised complexity (e.g. copied from Okasaki’s book [C O99]) and an
easily definable tactic. For example, employing the tactic for the zig-zig case depicted in Figure 4.1.
Then, ATLAS automatically derives the improved bound reported above. Still, for full automation,
tactics are clearly not sufficient. In order to obtain type inference in general, we developed a generalisa-
tion of all the tactics that proved useful on our benchmark and incorporated this proof search strategy
into the type inference algorithm. Using this, the aforementioned (unsuccessful) week-long quest for
a type inference of splaying can now be successfully answered (with the best known result) in minutes.

4.2.4 Automated Amortised Analysis

In Section 2.1, we provided a high-level introduction into the potential method and remarked that
Sleator and Tarjan’s original formulation is re-obtained, if the corresponding potential functions are
defined such that 𝜙(𝑣) � 𝑎 𝑓 (𝑣) + 𝜓(𝑥), see page 11. Formally this can be achieved by careful con-
trol of the annotated signatures of the functions studied. Suppose, we are interested in an amortised
analysis of pairing heaps — in the original sense of Sleator and Tarjan. For that, it suffices to con-
trol the annotated type of the result the functions defined over pairing heaps, that is, we add the ad-
ditional constraint that the type annotations for the results are equal. We now discuss how we can
extract amortised complexities in the sense of Sleator and Tarjan from our approach. Suppose, we are
interested in an amortised analysis of splay heaps. Then, it suffices to equate the right-hand sides of
the annotated signatures of the splay heap functions. That is, we set del_min: B × T|𝑄1 → T|𝑄 �,
insert: B × T|𝑄2 → T|𝑄 � and partition: T|𝑄3 → T|𝑄 � for some unknown resource annota-
tions𝑄1, 𝑄2, 𝑄3, 𝑄

�. Note that we use the same annotation𝑄 � for all signatures. We can then obtain
a potential function from the annotation𝑄 � in the sense of Sleator and Tarjan and deduce𝑄𝑖 −𝑄 � as
an upper bound on the amortised complexity of the respective function. In Chapter 5, we discuss how
to automatically optimise 𝑄𝑖 − 𝑄 � in order to minimise the amortised complexity bound. Thus, we
can (by soundness) derive the amortised cost for pairing heaps by utilising the above definition. This
automatic minimisation is the second major contribution of our work. Our results suggest a new ap-
proach for the complexity analysis of data structures. On the one hand, we obtain novel insights into
the automated worst-case runtime complexity analysis of involved programs. On the other hand, we
provide a proof-of-concept of a computer-aided analysis of amortised complexities of data-structures
that so far have only be analysed manually. For example, our approach allows the automated verifi-
cation of certificates in program code, stating the (expected) amortised complexity. Most often these
comments only refer to the expectation of the programmer, but have not been verified in any way, let
alone in a formally verifiable one.

47

CHAPTER 5
Implementation

Based on the principal approach, delineated in Section 2.1, we have implemented the logarithmic amor-
tised resource analysis detailed above. In this chapter, we briefly indicate the corresponding design
choices and heuristics used.

Our tool ATLAS implements the type system partly presented in Figure 3.1. Its core is the syntax-
directed application of typing rules.

It operates in three phases:

1.) Preprocessing, ATLAS parses and normalises the input program;

2.) Generation of the Constraint System, ATLAS extracts constraints from the normalised program
according to the typing rules (see Figure 3.1); and

3.) Solving, the derived constraint system is handed to an optimising constraint solver and the solver
output is converted into a type annotation.

In terms of overall resource requirements, the bottleneck of the system is phase three. Preprocessing
is both simple and fast. While the code implementing constraint generation might be complex, its
execution is fast. All of the underlying complexity is shifted into the third phase. Onmodernmachines
with multiple gibibytes of main memory,ATLAS is constrained by the CPU, and not by the available
memory.

In the remainder of this section, we first detail these phases of ATLAS. We then go into more details
of the second phase. Finally, we elaborate the optimisation function which is the key enabler of type
inference.

49

5. Implementation

5.1 The Three Phases of ATLAS
5.1.1 Preprocessing

The parser used in the first phase is generated with ANTLR1 and transformation of the syntax is im-
plemented in Java. The preprocessing performs two tasks:

(i) Transformation of the input program into let-normal-form, which is the form of program input
required by our type system.

(ii) The unsharing conversion creates explicit copies for variables that are used multiple times. Mak-
ing multiple uses of a variables explicit is required by the (let)-rule of the type system.

In order to satisfy the requirement of the (let)-rule, it is actually sufficient to track variable usage on
the level of program paths. It turns out that in our benchmarks variables are only used multiple times
in different branches of an if-statement, for which no unsharing conversion is needed. Hence, we do
not discuss the unsharing conversion further in this thesis and refer the interested reader to related
approaches [J H11; JKM12b; JKM12a; JAS17] for more details.

Let-Normal-Form Conversion

Since programs are not usually written in the restricted syntax demanded by the type system, the input
program is first converted to let-normal-form. The conversion is performed recursively and rewrites
composed expressions into simple expressions, where each operator is only applied to a variable or
a constant. This conversion is achieved by introducing additional let-constructs. We exemplify let-
normal-form conversion on a code snippet in Figure 5.1.

Unsharing

The unsharing operation introduces an explicit share node before a let-expression whenever its sub-
expressions have a shared variable, as shown in Figure 5.2. It introduces fresh variables and renames
occurrences of the shared variable. Note that this is a departure from the type system and makes the
application of the (share) rule syntax-directed. We give an example for unsharing in Figure 5.2. We
note that unsharing is only required when variables can be used multiple times on the same program
path However, in none of our benchmarks variables are shared, so this step is not of relevance for the
presented results.

5.1.2 Generation of the Constraint System

After preprocessing, we apply the typing rules. Each rule application generates a set of constraints,
which are collected over multiple passes over the syntax tree. Importantly, the application of all typing
rules, except for the weakening rule, which we discuss in further detail below, is syntax-directed: This
means that each node of the AST of the input program dictates which typing rule is to be applied.

1See antlr.org.

50

https://antlr.org

5.1. The Three Phases of ATLAS

1 LNF[if a < a'
2 then (l,a,(leaf,a',r))
3 else ((l,a',leaf),a,r)]

(a) An if-then-else expression before translation to
let-normal-form.

1 let x1 = a < a' in if x1
2 then LNF[(l,a,(leaf,a',r))]
3 else LNF[((l,a',leaf),a,r)]

(b) Recursive translation to let-normal-form

1 let x1 = a < a' in if x1
2 then let x2 = leaf in let x3 = (x2, a', r) in (l, a, x3)
3 else let x4 = leaf in let x5 = (l, a', x4) in (x5, a, r)

(c) Completed translation to let-normal-form.

Figure 5.1: Example of translation to let-normal-form.

1 g (f y) y

(a) Before unsharing. Note that y is shared.

1 share y ≡ y1 ≡ y2 in
2 let x = f y1 in
3 g x y2

(b) After unsharing. Potential of y is carried by y1
and y2.

Figure 5.2: Example of unsharing a function call.

The weakening rule could in principle be applied at each AST node, giving the constraint solver more
freedom to find a solution. This degree of freedom needs to be controlled by the tool designer. In
addition, recall that the suggested implementation of the weakening rule (see Section 4.1) is to be pa-
rameterised by the expert knowledge, fed into the weakening rule. In our experiments we noticed that
theweakening rule has to be applied sparingly in order to avoid an explosion of the resulting constraint
system.

We summarise the degrees of freedom available to the tool designer, which can be specified as parame-
ters to ATLAS on source level.

1.) The selected template potential functions, i.e. the family of indices '𝑎, 𝑏 for which coefficients
𝑞 ('𝑎,𝑏) are generated (we assume not explicitly generated are set to zero).

2.) The number of annotated signatures (with costs and without costs) for each function.

3.) The policy for applying the (parameterised) weakening rule.

We now discuss our choices for the aforementioned degrees of freedom.

51

5. Implementation

Potential Function Templates

For eachnode in theASTof the considered input program,where𝑛 variables of typeTree are currently
in context, we create the coefficients 𝑞1, . . . , 𝑞𝑛 for the rank functions and the coefficients 𝑞 ('𝑎,𝑏) for
the logarithmic terms, where '𝑎 ∈ {0, 1}𝑛 and 𝑏 ∈ {0, 2}. This choice turned out to be sufficient in
our experiments.

Our potential-based method employs linear combinations of basic potential functions BF , see Def-
inition 2. In order to fix the cardinality of the set of resource functions to be considered, we restrict
the coefficients of the potential functions 𝑝 (𝑎1,...,𝑎𝑚,𝑏) . For the non-constant part, we demand that
𝑎𝑖 ∈ {0, 1}, while the coefficients 𝑏, representing the constant part are restricted to {0, 1, 2}. This re-
striction to a relative small set of basic potential functions suitably controls the number of constraints
generated for each inference rule in the type system.

Number of Function Signatures

We fix the number of annotations for each function 𝑓 to (i) One indeterminate type annotation rep-
resenting a function call with costs; (ii) one indeterminate cost-free type annotation to represent a
zero-cost call; and (iii) one fixed cost-free annotation with the empty annotation that doesn’t carry any
potential. These restrictions were sufficient to handle our benchmarks. A larger, potentially infinite
set of type annotations is conceivable, as long as well-typedness is respected, see Definition 7. As noted
in the context of the analysis of constant amortised complexity an enlarged set of type annotationsmay
be even required to handle non-tail recursive programs, see [JKM12a; JAS17].

Weakening

In a weakening step, we need to discharge symbolic comparisons of form

Φ(Γ|𝑃) ⩽ Φ(Γ|𝑄) .
In the implementation, we slightly simplify the constraints in Equation 4.7 by setting '𝑏 = '0. and
treating 𝑐𝑝 and 𝑐𝑞 like the non-constant functions, moving them intomatrix 𝐴, thus obtaining '𝑝𝑇 ⩽
'𝑓 𝑇 𝐴 + '𝑞𝑇 ⩽ '0. As indicated in Section 4.1, we employ Farkas’ Lemma to derive constraints for the
weakening rule. For context Γ = 𝑡1, . . . , 𝑡𝑛, we introduce variables 𝑥 ('𝑎,𝑏) where '𝑎 ∈ {0, 1}𝑛, 𝑏 ∈
{0, 2}, which represent the potential functions 𝑝 ('𝑎,𝑏) = log(𝑎1 |𝑡1 | + . . . + 𝑎𝑛 |𝑡𝑛 | + 𝑏). Next, we
explain how the monotonicity of log and Lemma 4 can be used to derive inequalities on the variables
𝑥 ('𝑎,𝑏) ; these inequalities can be used to instantiate matrix 𝐴 in Farkas’ Lemma as stated in Section 4.1.

Monotonicity We observe that if 𝑎1 ⩽ 𝑎�1, . . . , 𝑎𝑛 ⩽ 𝑎�𝑛 and 𝑏 ⩽ 𝑏�, then

𝑝 ('𝑎,𝑏) = log(𝑎1 |𝑡1 | + . . . + 𝑎𝑛 |𝑡𝑛 | + 𝑏) ⩽ log(𝑎�1 |𝑡1 | + . . . + 𝑎�𝑛 |𝑡𝑛 | + 𝑏�) = 𝑝 ('𝑎�,𝑏�) .

From this observationwe obtain the lattice shown in Figure 5.3. A path from 𝑥 ('𝑎�,𝑏�) to 𝑥 ('𝑎,𝑏) signifies

𝑥 ('𝑎,𝑏) ⩽ 𝑥 ('𝑎�,𝑏�)
𝑥 ('𝑎,𝑏) −𝑥 ('𝑎�,𝑏�) ⩽ 0

which we represent by a row with coefficients 1 and −1 in the corresponding columns of matrix 𝐴.

52

5.1. The Three Phases of ATLAS

𝑥 (1,1,2)

𝑥 (1,0,2)𝑥 (0,1,2) 𝑥 (1,1,0)

𝑥 (0,0,2) 𝑥 (0,1,0) 𝑥 (1,0,0)

𝑥 (0,0,0)

Figure 5.3: Monotonicity Lattice for |𝑄 | = 2.

Mathematical facts, like Lemma 4 For an annotated context of length 2, Lemma 4 can be stated
by the inequality

2𝑥 (0,0,2) +𝑥 (0,1,0) +𝑥 (1,0,0) ⩽ 2𝑥 (1,1,0)
2𝑥 (0,0,2) +𝑥 (0,1,0) +𝑥 (1,0,0) −2𝑥 (1,1,0) ⩽ 0

we add a corresponding row with coefficients 2, 1, 1,−2 to the matrix 𝐴. Likewise, for contexts of
length > 2, we add, for each subset of 2 variables, a row with coefficients 2, 1, 1,−2, setting the coeffi-
cients of all other variables to 0.

Sparse Expert KnowledgeMatrix Weobserve for both kinds of constraints thatmatrix 𝐴 is sparse.
We exploit this in our implementation and only store non-zero coefficients.

Parametrisation of Weakening Each applications of the weakening rule is parametrised by the
matrix 𝐴. In our tool, we instantiate 𝐴 with either the constraints for

(i) monotonicity, shortly referenced as w{mono};

(ii) Lemma 4 (w{l2xy});

(iii) both (w{mono l2xy}); or

(iv) none of the constraints (w).

In the last case, Farkas’ Lemma is not needed because weakening defaults to point-wise comparison
of the coefficients 𝑝 ('𝑎,𝑏) , which can be implemented more directly. Each time we apply weakening,
we need to choose how to instantiate matrix 𝐴. Our experiments demonstrate that we need to apply
monotonicity and Lemma 4 sparingly in order to avoid blowing up the constraint system.

53

5. Implementation

Tactics and Automation

ATLAS supports manually applying the weakening rule — for this the user has to provide a tactic —
and a fully automated mode.

The first goal of the implementation was to verify the annotations obtained from manual proofs. We
developed a system that allows the user to give the input program andprovide tactics to guide the proof
derivation, fixing the decision on when to apply non-syntax-directed rules such as (w). Furthermore
we allow the user to fix coefficients by giving explicit annotations. The implementation follows the
tactics and derives constraints for the given program, which are finally sent to the SMT solver for ob-
taining a solution or proving unsatisfiability. A tactic is given as a text file that essentially contains a
tree of rule names that indicates how rules should be applied to the syntax tree of the input program.
The basic node is a rule name, e.g. match for the (match) rule. Depending on the number of sub-
expressions a node may have several children that direct how the sub-expressions should be proved.
Some special nodes exist that allow the user to control the behaviour of the prover. The user can place
a ? node to indicate a hole in the proof, place a sub-tree under a ! node to fix the left- and right-hand-
side annotations of the nested proof, or a _ node to use a heuristic for choosing a rule. Figure 4.1 shows
the basic syntax of a tactics file. Additionally the user can name sub-trees for reference in the result of
the analysis and includeML-style comments in the tactics text.

Our tool also features a fully automated mode. However, the automated analysis is currently very
memory intensive at the moment and is subject to ongoing performance optimisations.

Naive Automation

Our first attempt to automation applied the weakening rule everywhere instantiated with the full
amount of available expert knowledge. This approach did not scale.

Manual Mode via Tactics

A tactic is given as a text file that contains a tree of rule names corresponding to the AST nodes of
the input program, into which the user can insert applications of the weakening rule, parametrised
by the expert knowledge which should be applied. A simple tactic is depicted in Figure 4.1. Tactics
are distributed with ATLAS, see [Lor21a]. The user can name sub-trees for reference in the result of
the analysis and include ML-style comments in the tactics text. We provide two special commands
that allow the user to directly deal with a whole branch of the input program: The question mark
(?) allows partial proofs; no constraints will be created for the part of the program thus marked. The
underscore (_) switches to the naive automation of ATLAS and will apply the weakening rule with
full expert knowledge everywhere. Both, ? and _, were invaluable when developing and debugging the
automated mode. We note that the manual mode still achieves solving times that are by a magnitude
faster than the automated mode, which may be of interest to a user willing to hand-optimise solving
times.

54

5.2. Optimisation

Automated Mode

For automation, we extracted common patterns from the tactics we developed manually: Weakening
with mode w{mono} is applied before (var) and (leaf), w{mono l2xy} is applied only before (app).
Further, for AST subtrees that construct trees, i.e. which only consist of (node), (var) and (leaf) rule
applications, we apply w{mono} for each inner node, and w{l2xy} for each outermost node. For all
other cases, no weakening is applied. This approach is sufficient to cover all benchmarks, with further
improvements possible.

5.1.3 Solving

For solving the generated constraint system, we rely on the Z3 SMT solver, see [MB08]. We employ
Z3’s Java bindings, loadZ3 as a shared library, and exchange constraints for solutions. ATLAS forwards
user-supplied configuration toZ3, which allows for flexible tuning of solver parameters. We also record
Z3’s statistics, most importantly memory usage. During the implementation of ATLAS, Z3’s feature
to extract unsatisfiable cores has proven valuable. It supplied us with many counterexamples, often
directly pinpointing bugs in our implementation. The tool exports constraint systems in SMT-LIB
format to the file system. This way, solutions could be cross-checked by re-computing themwith other
SMT solvers that support minimisation, such as OptiMathSAT [ST15].

5.2 Optimisation

Given an annotated function 𝑓 : 𝛼1 × · · · × 𝛼𝑛 |𝑄 → 𝛽 |𝑄 �, wewant to find values for the coefficients
of the resource annotations 𝑄 and 𝑄 � that minimise Φ(Γ|𝑄) − Φ(Γ|𝑄 �), since this difference is an
upper bound on the amortised cost of 𝑓 , see Section 4.2.4 . However, as with weakening, we cannot
directly express such a minimisation, and again resort to linearisation: We choose an optimisation
function that directly maps from𝑄 and𝑄 � toQ. Our optimisation function combines fourmeasures,
three ofwhich involve a difference between coefficients of𝑄 and𝑄 �, and a fourth one that only involves
coefficients from 𝑄 in order to minimise the absolute values of the discovered coefficients. We first
present these measures for the special case of |𝑄 | = 1.

The first measure 𝑑1(𝑄,𝑄 �) � 𝑞∗ − 𝑞�∗ reflects our goal of preserving the coefficient for rk; note that
for 𝑑1(𝑄,𝑄 �) ≠ 0, the resulting complexity bound would be super-logarithmic. The secondmeasure
𝑑2(𝑄,𝑄 �) � �

(𝑎,𝑏) (𝑞 (𝑎,𝑏) −𝑞�(𝑎,𝑏)) ·𝑤(𝑎, 𝑏) reflects the goal of achieving logarithmic bounds that
are as small as possible. Weights are defined to penalise more complex terms, and to exclude constants.
(Recall that 1 is representable as log(0 + 2).) We set

𝑤(𝑎, 𝑏) �
�
0, for (𝑎, 𝑏) = (0, 2),
(𝑎 + (𝑏 + 1)2)2, otherwise.

The third measure 𝑑3(𝑄,𝑄 �) � 𝑞 (0,2) − 𝑞�(0,2) reflects the goal of minimising constant cost. Lastly,
we set 𝑑4(𝑄,𝑄 �) � �

(𝑎,𝑏) 𝑞 (𝑎,𝑏) in order to obtain small absolute numbers. The last measure does
not influence bounds on the amortised cost, but leads to more beautiful solutions. These measures
are then composed to the linear objective functionmin

�4
𝑖=1 𝑑𝑖 (𝑄,𝑄 �) · 𝑤𝑖 . In our implementation,

55

5. Implementation

we set 𝑤𝑖 = [16127, 997, 97, 2]; these weights are chosen (almost) arbitrary, we only noticed that 𝑤1

must be sufficiently large to guarantee its priority.

For |𝑄 | > 1, we set 𝑑1 �
� |𝑄 |

𝑖=1 𝑞𝑖 − 𝑞�∗ and 𝑑2(𝑄,𝑄 �) � �
(𝑎,𝑎,...,𝑏) (𝑞 (𝑎,𝑎,...,𝑏) − 𝑞�(𝑎,𝑏)) ·𝑤(𝑎, 𝑏).

The required changes for 𝑑3 and 𝑑4 are straight-forward. Inourbenchmarks, there is only one function
(merge of pairing heaps) that requires this minimisation function.

Our main results have already been stated in Table 1.1 in Chapter 1. We illustrate in Table 5.1a that the
naive automation does not terminate within 24h for the core operations of the three considered data
structures, whereas the improved automated mode produces optimised results within minutes. Here,
„Selective“ means that limited expert knowledge is chosen by the automated mode, „all“ means that
monotonicity and Lemma 4 are used. Timeouts are denoted by „t/o“. Naive automation does not
support selection of expert knowledge for weakening, thus resulting in no answer, denoted „n/a“. In
Table 5.1b, we compare the (improved) automatedmodewith themanualmode, and report on the sizes
of the resulting constraint system and on the resources required to produce the same results. Observe
that even though our automated mode achieves reasonable solving times, there is still a significant gap
between the manually crafted tactics and the automated mode, which invites future work.

5.3 Evaluation

We first describe the benchmark functions employed to evaluate ATLAS and then detail this experi-
mental evaluation, already depicted in Table 1.1.

5.3.1 Automated Analysis of Splaying et al.

Splay Trees

Introduced by Sleator and Tarjan [DR85; RE 85], splay trees are self-adjusting binary search trees with
strictly increasing in-order traversal, but without an explicit balancing condition. Based on splaying,
searching is performed by splaying with the sought element and comparing to the root of the result.
Similarly, insertion and deletion are based on splaying. Above we used the zig-zig case of splaying,
depicted in Figure 2.2 as motivating code example. While the pen-and-paper analysis of this case is the
most involved, type inference for this case alone did not directly yield the desired automation of the
complete definition. Rather, full automation required substantial implementation effort, as detailed
in Chapter 5. As already emphasised, it came as a suprise to us that our tool ATLAS is able match up
and partly improve upon the sophisticated optimisations perfomed by Schoemakers [Sch92; B S93].
This seems to be evidence of the versatility of the employed potential functions. Further, we leverage
the sophistication of our optimisation layer in conjunction with the current power of state-of-the-art
constraint solvers, like Z3 [MB08].

Splay Heaps

To overcome deficiencies of splay trees when implemented functionally, Okasaki introduced splay
heaps. Splay heaps are defined similarly to splay trees and its (manual) amortised cost analysis follows
similar pattern than the one for splay trees. Due to the similarity in the definitions between splay heaps

56

5.3. Evaluation

Function (w)
Proof automated

(naive)
automated
(improved) manual

ST.splay (zig-zig) Selective n/a 7718 18S 2552 <1S
All 11792 45S 9984 19S 2864 <1S

ST.splay Selective n/a 42095 8M1S 19111 12S
All 68103 t/o 24H 54377 14M19S 23323 1M27S

SH.partition Selective n/a 33729 7M9S 15213 6S
All 51995 t/o 24H 43549 15M2S 16829 10S

PH.merge_pairs Selective n/a 25860 1M3S 6414 <1S
All 43515 t/o 24H 34918 13M41S 6558 <1S

(a) Comparison of the number of constraints generated and time taken for the type inference of the core opera-
tion of each benchmark plus the zig-zig case of splay.

Module automated manual
Assertions Time Memory Assertions Time Memory

ST 54794 24M17S 3204 24677 43S 280
SH 37911 7M35S 1482 17877 12S 237
PH 29493 3M42S 760 7987 1S 29

(b) Number of assertions, solving time and maximummemory usage (in mebibytes) for the combined analysis
of functions per-module.

Table 5.1: Experimental Results

and splay trees, extension of our experimental results in this direction did not pose any problems. No-
tably, however, ATLAS derives fully automatically the best (or slight improvements of) known com-
plexity bounds on the amortised complexity for the functions studied. We also remark that typical
assumptions made in pen-and-paper proofs are automatically discharged by our approach. To wit,
Shoenmakers [Sch92; B S93] as well as Nipkow and Brinkop [NB19] make use of the (obvious) fact
that the size of the resulting tree 𝑡 � or heap ℎ� equals the size of the input. As discussed, this informa-
tion is captured through a cost-free derivation, see Section 2.1.

Pairing Heaps

These are another implementation of heaps, which are represented as binary trees, subject to the in-
variant that they are either leaf, or the right child is leaf, respectively. The left child is conceivable
as list of pairing heaps. Schoenmakers and Nipkow et al. provide a (semi-)manual analysis of pairing
heaps, that ATLAS can verify or even improve fully-automatically. We note that we analyse a single
function merge_pairs, whereas [NB19] breaks down the analysis and studies two functions pass_1
and pass_2with merge_pairs = pass_2 ◦ pass_1. All definitions can be found at [Lor21b].

57

5. Implementation

5.3.2 Experimental Results

Our main results have already been stated in Table 1.1 of Section 1.2. Table 5.1a compares the differ-
ences between the „naive automation“ and our actual automation („automatedmode“), see Section 5.1.
Within the latter, we distinguish between a „selective“ and a „full“ mode. The „selective“ mode is as
described in Section 5.1.2. The „full“ mode employs weakening for the same rule applications as the
„selective“mode, but always with option w{mono l2xy}. The same applies to the „full“manualmode.
The naive automation does not support selection of expert knowledge. Thus the „selective“ option is
not available, denoted as „n/a“. Timeouts are denoted by „t/o“. As depicted in the table, the naive au-
tomation does not terminatewithin 24h for the core operations of the three considered data structures,
whereas the improved automated mode produces optimised results within minutes. In Table 5.1b, we
compare the (improved) automatedmode with themanual mode, and report on the sizes of the result-
ing constraint system and on the resources required to produce the same results. Observe that even
though our automated mode achieves reasonable solving times, there is still a significant gap between
the manually crafted tactics and the automated mode, which invites future work.

58

CHAPTER 6
Conclusion

We have presented an amortised resource analysis using the potential method. Potential functions
take the shape of „sums of logarithms“. Themethod is rendered in a type-and-effect system. Our type
system has been carefully designed with the goal of automation, crucially invoking Farkas’ Lemma for
the linear part of the calculations and adding necessary facts about the logarithm.

Our contribution is novel, in the sense that this is the first approach to automation of a logarithmic
amortised complexity analysis. In particular, our system automatically infers competitive results for
the logarithmic amortised cost of multiple operations on various self-balancing data structures such as
splay trees, splay heaps and pairing heaps.

As our potential functions are logarithmic, we cannot directly encode the comparison between log-
arithmic expressions within the theory of linear arithmetic. This however is vital for e.g. expressing
Schhoenmakers’ and Nipkow’s (manual) analysis [B S93; T N15] in our type-and-effect system. In
order to overcome this algorithmic challenge, we proposed several ideas for the linearisation of the
induced constraint satisfaction problem.

These efforts can be readily extended by expanding upon the expert knowledge currently employed, e.g.
via incorporation of the results of a static analysis performed in a pre-processing step.

Immediate future work is concerned with replacing the „sum of logarithms“ potential function in
order to analyse skew heaps and Fibonacci heaps [Sch92]. In particular, the potential function for
skewheaps, which counts „right heavy“ nodes, is interesting, because this function is used as a building
block by Iacono in his improved analysis of pairing heaps [Iac00; IY16]. Further, we envision to extend
our analysis to related probabilistic settings such as the analysis of priority queues [GM98] and skip
lists [Pug90].

59

List of Figures

2.1 Big-Step Semantics . 18
2.2 Function Definition SplayTree.splay. 19
2.3 Function Definition SplayTree.insert. 20
2.4 Function Definition SplayTree.delete. 20
2.5 Function Definition SplayTree.splay_max. 20

3.1 Type System for Logarithmic Amortised Resource Analysis 39
3.2 Partial Typing Derivation for splay, focusing on the zig-zig Case. 40
3.3 Cost-Free Derivation for splay, focusing on the zig-zig Case. 40

4.1 Tactic that matches the zig-zig case of splay as shown in Fig. 2.2. 46

5.1 Example of translation to let-normal-form. 51
5.2 Example of unsharing a function call. 51
5.3 Monotonicity Lattice for |𝑄 | = 2. 53

List of Tables

1.1 Amortised complexity bounds for splay trees (module name SplayTree, abbrev. ST),
splay heaps (SplayHeap, SH) and pairing heaps (PairingHeap, PH). 6

5.1 Experimental Results . 57

61

Bibliography

[A F17] A. Flores-Montoya. „Cost Analysis of Programs Based on the Refinement of Cost Re-
lations“. PhD thesis. Darmstadt University of Technology, Germany, 2017. url: http:
//tuprints.ulb.tu-darmstadt.de/6746/.

[AA04] A. Podelski andA.Rybalchenko. „ACompleteMethod for the Synthesis of LinearRank-
ing Functions“. In: Proc. 5th VMCAI. Vol. 2937. LNCS. 2004, pp. 239–251.

[AEM11] M. Avanzini, N. Eguchi, and G. Moser. „A Path Order for Rewrite Systems that Com-
pute Exponential Time Functions“. In:Proceedings of the 22ndRTA. Vol. 10. LIPIcs. 2011,
pp. 123–138. doi: 10.4230/LIPIcs.RTA.2011.123.

[AG12] D. E.Alonso-Blas and S.Genaim. „On theLimits of theClassicalApproach toCostAnal-
ysis“. In:Proc. 19th SAS. Ed. byA.Miné andD. Schmidt.Vol. 7460.LNCS. Springer, 2012,
pp. 405–421. doi: 10.1007/978-3-642-33125-1_27.

[Alb+08] E. Albert et al. „Automatic Inference ofUpper Bounds for RecurrenceRelations inCost
Analysis“. In: Proc. 15th SAS. Vol. 5079. 2008, pp. 221–237. doi: 10.1007/978-3-540-
69166-2_15.

[B P02] B. Pierce. Types and programming languages. MIT Press, 2002.
[B S93] B. Schoenmakers. „A Systematic Analysis of Splaying“. In: IPL 45.1 (1993), pp. 41–50.
[BH19] A. M. Ben-Amram and G. W. Hamilton. „Tight Worst-Case Bounds for Polynomial

LoopPrograms“. In:Proc. 22ndFOSSACS. Ed. byM.Bojanczyk andA. Simpson.Vol. 11425.
LNCS. Springer, 2019, pp. 80–97. doi: 10.1007/978-3-030-17127-8_5.

[BJH18] S. Bauer, S. Jost, andM.Hofmann. „Decidable Inequalities over Infinite Trees“. In: Proc.
22nd LPAR. Ed. by G. Barthe, G. Sutcliffe, and M. Veanes. Vol. 57. EPiC Series in Com-
puting. EasyChair, 2018, pp. 111–130. url: https://easychair.org/publications/
paper/SSpj.

[Bla+10] R. Blanc et al. „ABC: Algebraic Bound Computation for Loops“. In: Proc. 16th LPAR.
Vol. 6355. LNCS. 2010, pp. 103–118. doi: 10.1007/978-3-642-17511-4_7.

[Brá+18] T. Brázdil et al. „Efficient Algorithms for Asymptotic Bounds on Termination Time in
VASS“. In:Proc. 33rdLICS. Ed. byA.Dawar andE.Grädel. ACM, 2018, pp. 185–194. doi:
10.1145/3209108.3209191.

[C A+10] C.Alias et al. „Multi-dimensionalRankings, ProgramTermination, andComplexityBounds
of Flowchart Programs“. In: Proc. 17th SAS. Vol. 6337. LNCS. 2010, pp. 117–133.

63

http://tuprints.ulb.tu-darmstadt.de/6746/
http://tuprints.ulb.tu-darmstadt.de/6746/
https://doi.org/10.4230/LIPIcs.RTA.2011.123
https://doi.org/10.1007/978-3-642-33125-1_27
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-030-17127-8_5
https://easychair.org/publications/paper/SSpj
https://easychair.org/publications/paper/SSpj
https://doi.org/10.1007/978-3-642-17511-4_7
https://doi.org/10.1145/3209108.3209191

[C O99] C. Okasaki. Purely functional data structures. Cambridge University Press, 1999.
[CDZ14] T. Colcombet, L. Daviaud, and F. Zuleger. „Size-Change Abstraction andMax-Plus Au-

tomata“. In: Proc. 39th MFCS. Ed. by E. Csuhaj-Varjú, M. Dietzfelbinger, and Z. Ésik.
Vol. 8634. LNCS. Springer, 2014, pp. 208–219. doi: 10.1007/978-3-662-44522-
8_18.

[CFG17] K. Chatterjee, H. Fu, and A. K. Goharshady. „Non-polynomial Worst-Case Analysis of
Recursive Programs“. In: Proc. 29th CAV. Vol. 10427. LNCS. 2017, pp. 41–63. doi: 10.
1007/978-3-319-63390-9_3.

[DR85] D. Sleator and R. Tarjan. „Self-Adjusting Binary Search Trees“. In: JACM 32.3 (1985),
pp. 652–686. doi: 10.1145/3828.3835.

[E A+11] E. Albert et al. „Closed-FormUpper Bounds in Static Cost Analysis“. In: JAR 46.2 (2011).
[E C+05] E.Contejean et al. „Mechanically proving terminationusingpolynomial interpretations“.

In: JAR 34.4 (2005), pp. 325–363.
[Fie+18] T. Fiedor et al. „From Shapes to Amortized Complexity“. In: Proc. 19th VMCAI. Ed. by

I. Dillig and J. Palsberg. Vol. 10747. LNCS. Springer, 2018, pp. 205–225. doi: 10.1007/
978-3-319-73721-8_10.

[FKN17] C.Fuhs,C.Kop, andN.Nishida. „VerifyingProcedural ProgramsviaConstrainedRewrit-
ing Induction“. In: TOCL 18.2 (2017), 14:1–14:50. doi: 10.1145/3060143.

[GM18] G.Moser andM. Schneckenreither. „AutomatedAmortisedResourceAnalysis for Term
Rewrite Systems“. In: Proc. 14th FLOPS. Vol. 10818. LNCS. 2018, pp. 214–229. doi: 10.
1007/978-3-319-90686-7.

[GM98] A. Gambin and A.Malinowski. „RandomizedMeldable Priority Queues“. In: SOFSEM
’98: Theory and Practice of Informatics, 25th Conference on Current Trends in Theory and
Practice of Informatics, Jasná, Slovakia,November 21-27, 1998, Proceedings. Ed. byB.Rovan.
Vol. 1521. Lecture Notes in Computer Science. Springer, 1998, pp. 344–349. doi: 10 .
1007/3-540-49477-4_26.

[GZ10] S. Gulwani and F. Zuleger. „The reachability-bound problem“. In: PLDI. Ed. by B. G.
Zorn and A. Aiken. ACM, 2010, pp. 292–304. doi: 10.1145/1806596.1806630.

[Har07] J.Harrison. „VerifyingNonlinearReal FormulasVia Sumsof Squares“. In:TheoremProv-
ing in Higher Order Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern,
Germany, September 10-13, 2007, Proceedings. Ed. by K. Schneider and J. Brandt. Vol. 4732.
LectureNotes in Computer Science. Springer, 2007, pp. 102–118. doi: 10.1007/978-3-
540-74591-4_9.

[HR13] M.Hofmann andD. Rodriguez. „Automatic Type Inference for AmortisedHeap-Space
Analysis“. In: Proc. 22nd ESOP. Ed. by M. Felleisen and P. Gardner. Vol. 7792. LNCS.
Springer, 2013, pp. 593–613. doi: 10.1007/978-3-642-37036-6_32.

[Iac00] J. Iacono. „Improved Upper Bounds for Pairing Heaps“. In: Algorithm Theory - SWAT
2000, 7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, July 5-7, 2000,
Proceedings. Ed. by M. M. Halldórsson. Vol. 1851. Lecture Notes in Computer Science.
Springer, 2000, pp. 32–45. doi: 10.1007/3-540-44985-X_5.

64

https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.1007/978-3-662-44522-8_18
https://doi.org/10.1007/978-3-319-63390-9_3
https://doi.org/10.1007/978-3-319-63390-9_3
https://doi.org/10.1145/3828.3835
https://doi.org/10.1007/978-3-319-73721-8_10
https://doi.org/10.1007/978-3-319-73721-8_10
https://doi.org/10.1145/3060143
https://doi.org/10.1007/978-3-319-90686-7
https://doi.org/10.1007/978-3-319-90686-7
https://doi.org/10.1007/3-540-49477-4_26
https://doi.org/10.1007/3-540-49477-4_26
https://doi.org/10.1145/1806596.1806630
https://doi.org/10.1007/978-3-540-74591-4_9
https://doi.org/10.1007/978-3-540-74591-4_9
https://doi.org/10.1007/978-3-642-37036-6_32
https://doi.org/10.1007/3-540-44985-X_5

[IY16] J. Iacono and M. V. Yagnatinsky. „A Linear Potential Function for Pairing Heaps“. In:
Combinatorial Optimization and Applications - 10th International Conference, COCOA
2016, Hong Kong, China, December 16-18, 2016, Proceedings. Ed. by T.-H. H. Chan, M. Li,
and L. Wang. Vol. 10043. Lecture Notes in Computer Science. Springer, 2016, pp. 489–
504. doi: 10.1007/978-3-319-48749-6_36.

[J G+17] J.Giesl et al. „AnalyzingProgramTermination andComplexityAutomaticallywithAProVE“.
In: JAR 58.1 (2017), pp. 3–31. doi: 10.1007/s10817-016-9388-y.

[J H11] J. Hoffmann. „Types with Potential: Polynomial Resource Bounds via Automatic Amor-
tized Analysis“. PhD thesis. Ludwig-Maximilians-Universiät München, 2011.

[JAS17] J. Hoffmann, A. Das, and S-C. Weng. „Towards automatic resource bound analysis for
OCaml“. In: Proc. 44th POPL. ACM, 2017, pp. 359–373. doi: 10.1145/3009837.

[JKM11] J.Hoffmann,K.Aehlig, andM.Hofmann. „MultivariateAmortizedResourceAnalysis“.
In: Proc. 38th POPL. ACM, 2011, pp. 357–370.

[JKM12a] J. Hoffmann, K. Aehlig, and M. Hofmann. „Multivariate amortized resource analysis“.
In: TOPLAS 34.3 (2012), p. 14.

[JKM12b] J. Hoffmann, K. Aehlig, and M. Hofmann. „Resource Aware ML“. In: Proc. 24th CAV.
Vol. 7358. LNCS. 2012, pp. 781–786.

[JM10a] J.Hoffmann andM.Hofmann. „AmortizedResourceAnalysiswithPolymorphicRecur-
sion and Partial Big-StepOperational Semantics“. In:Proc. 8th APLAS. Vol. 6461. LNCS.
2010, pp. 172–187.

[JM10b] J. Hoffmann and M. Hofmann. „Amortized Resource Analysis with Polynomial Poten-
tial“. In: Proc. 19th ESOP. Vol. 6012. LNCS. 2010, pp. 287–306.

[JZ14] J. Hoffmann and Z. Sho. „Type-Based Amortized Resource Analysis with Integers and
Arrays“. In: Proc. 12th FLOPS. Vol. 8475. LNCS. 2014, pp. 152–168.

[JZ15a] J. Hoffmann and Z. Shao. „Automatic Static Cost Analysis for Parallel Programs“. In:
Proc. 24th ESOP. Vol. 9032. LNCS. 2015, pp. 132–157.

[JZ15b] J. Hoffmann and Z. Shao. „Type-based amortized resource analysis with integers and ar-
rays“. In: JFP 25 (2015). doi: 10.1017/S0956796815000192.

[KH20] D. M. Kahn and J. Hoffmann. „Exponential Automatic Amortized Resource Analysis“.
In: Proc. 23rd FOSSACS. Ed. by J. Goubault-Larrecq and B. König. Vol. 12077. LNCS.
Springer, 2020, pp. 359–380. doi: 10.1007/978-3-030-45231-5_19.

[LGF21] Lorenz Leutgeb, Georg Moser, and Florian Zuleger. „ATLAS: Automated Amortised
Complexity Analysis of Self-Adjusting Data Structures“. In: Computer Aided Verifica-
tion - 33rd International Conference, CAV 2021, July 18-23, Online, 2021, Proceedings. Lec-
ture Notes in Computer Science. to appear. Springer, 2021.

[Lor21a] Lorenz Leutgeb. ATLAS: Automated Amortised Complexity Analysis of Self-Adjusting
Data Structures. Software. 2021. doi: 10.5281/zenodo.4724917.

[Lor21b] Lorenz Leutgeb. ATLAS: Examples. Dataset. 2021. doi: 10.5281/zenodo.4880499.

65

https://doi.org/10.1007/978-3-319-48749-6_36
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1145/3009837
https://doi.org/10.1017/S0956796815000192
https://doi.org/10.1007/978-3-030-45231-5_19
https://doi.org/10.5281/zenodo.4724917
https://doi.org/10.5281/zenodo.4880499

[Mar+21] Martin Hofmann et al. „Type-Based Analysis of Logarithmic Amortised Complexity“.
In:Mathematical Structures Computer Science (2021). to appear.

[MB08] L.M. deMoura andN. Bjørner. „Z3: AnEfficient SMTSolver“. In:Tools andAlgorithms
for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary,March 29-April 6, 2008. Proceedings. Ed. byC.R.Ramakrishnan
and J.Rehof.Vol. 4963. LectureNotes inComputer Science. Springer, 2008, pp. 337–340.
doi: 10.1007/978-3-540-78800-3_24.

[MG14] M.Hofmann andG.Moser. „AmortisedResourceAnalysis andTyped Polynomial Inter-
pretations“. In: Proc. of Joint 25th RTA and 12th TLCA. Vol. 8560. LNCS. 2014, pp. 272–
286.

[MG15] M.HofmannandG.Moser. „MultivariateAmortisedResourceAnalysis forTermRewrite
Systems“. In:Proc. 13th TLCA. Vol. 38. LIPIcs. 2015, pp. 241–256. doi: 10.4230/LIPIcs.
TLCA.2015.241.

[MG16] M. Avanzini and G. Moser. „A Combination Framework for Complexity“. In: IC 248
(2016), pp. 22–55. doi: 10.1016/j.ic.2015.12.007.

[MGM16] M.Avanzini,G.Moser, andM.Schaper. „TcT:TyroleanComplexityTool“. In:Proc. 22nd
TACAS. Vol. 9636. LNCS. 2016, pp. 407–423. doi: 10.1007/978-3-662-49674-9_24.

[MLG15] M. Avanzini, U. D. Lago, and G. Moser. „Analysing the complexity of functional pro-
grams: higher-order meets first-order“. In: Proc. 20th ICFP. ACM, 2015, pp. 152–164. doi:
10.1145/2784731.2784753.

[MS03] M.Hofmann and S. Jost. „Static prediction of heap space usage for first-order functional
programs“. In: Proc. 30th POPL. ACM, 2003, pp. 185–197.

[MS20] G. Moser and M. Schneckenreither. „Automated amortised resource analysis for term
rewrite systems“. In: Sci. Comput. Program. 185 (2020). doi: 10.1016/j.scico.2019.
102306.

[MV +12] M.V. Hermenegildo et al. „An overview of Ciao and its design philosophy“. In: TPLP
12.1-2 (2012), pp. 219–252.

[NB19] T.NipkowandH.Brinkop. „AmortizedComplexityVerified“. In: JAR62.3 (2019), pp. 367–
391. doi: 10.1007/s10817-018-9459-3.

[Pug90] W. Pugh. „Skip Lists: A Probabilistic Alternative to BalancedTrees“. In:Commun. ACM
33.6 (1990), pp. 668–676. doi: 10.1145/78973.78977.

[RE 85] R.E. Tarjan. „Amortized Computational Complexity“. In: SIAM J. Alg. Disc. Meth 6.2
(1985), pp. 306–318.

[S J+09] S. Jost et al. „“Carbon Credits” for Resource-Bounded Computations Using Amortised
Analysis“. In: Proc. 2nd FM. Vol. 5850. LNCS. 2009, pp. 354–369.

[S J+10] S. Jost et al. „Static determination of quantitative resource usage for higher-order pro-
grams“. In: Proc. 37th POPL. ACM, 2010, pp. 223–236.

66

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.4230/LIPIcs.TLCA.2015.241
https://doi.org/10.4230/LIPIcs.TLCA.2015.241
https://doi.org/10.1016/j.ic.2015.12.007
https://doi.org/10.1007/978-3-662-49674-9_24
https://doi.org/10.1145/2784731.2784753
https://doi.org/10.1016/j.scico.2019.102306
https://doi.org/10.1016/j.scico.2019.102306
https://doi.org/10.1007/s10817-018-9459-3
https://doi.org/10.1145/78973.78977

[S J+17] S. Jost et al. „Type-Based Cost Analysis for Lazy Functional Languages“. In: JAR 59.1
(2017), pp. 87–120. doi: 10.1007/s10817-016-9398-9.

[Sch92] B. Schoenmakers. „Data Structures and Amortized Complexity in a Functional Setting“.
PhD thesis. Eindhoven University of Technology, 1992.

[Sch99] A. Schrijver. Theory of linear and integer programming. Wiley, 1999. isbn: 978-0-471-
98232-6.

[SG20] S.Winkler andG.Moser. „RuntimeComplexityAnalysis ofLogicallyConstrainedRewrit-
ing“. In: Proc. LOPSTR 2020. 2020.

[Sol09] A. Solar-Lezama. „The Sketching Approach to Program Synthesis“. In: Programming
Languages and Systems, 7th Asian Symposium, APLAS 2009, Seoul, Korea, December 14-16,
2009. Proceedings. Ed. by Z.Hu. Vol. 5904. LectureNotes in Computer Science. Springer,
2009, pp. 4–13. doi: 10.1007/978-3-642-10672-9_3.

[ST15] R. Sebastiani and P. Trentin. „OptiMathSAT: A Tool for Optimization Modulo Theo-
ries“. In: CAV. 2015, pp. 447–454.

[SZV14] M. Sinn, F. Zuleger, andH.Veith. „ASimple and Scalable StaticAnalysis for BoundAnal-
ysis and Amortized Complexity Analysis“. In: Proc. 26th CAV. Vol. 8559. LNCS. 2014,
pp. 745–761.

[SZV15] M. Sinn, F. Zuleger, and H. Veith. „Difference Constraints: An adequate Abstraction
for Complexity Analysis of Imperative Programs“. In: FMCAD. Ed. by R. Kaivola and
T. Wahl. IEEE, 2015, pp. 144–151.

[SZV17] M. Sinn, F. Zuleger, and H. Veith. „Complexity and Resource Bound Analysis of Im-
perative Programs Using Difference Constraints“. In: JAR 59.1 (2017), pp. 3–45. doi: 10.
1007/s10817-016-9402-4.

[T N15] T. Nipkow. „Amortized Complexity Verified“. In: Proc. 6th ITP. Vol. 9236. LNCS. 2015,
pp. 310–324. doi: 10.1007/978-3-319-22102-1_21.

[WWC17] P. Wang, D. Wang, and A. Chlipala. „TiML: A Functional Language for Practical Com-
plexityAnalysis with Invariants“. In:Proc. ACMProgram. Lang. 1.OOPSLA (2017). doi:
10.1145/3133903.

[Zul+11] F. Zuleger et al. „Bound Analysis of Imperative Programs with the Size-Change Abstrac-
tion“. In: Proc. 18th SAS. Ed. by E. Yahav. Vol. 6887. LNCS. Springer, 2011, pp. 280–297.
doi: 10.1007/978-3-642-23702-7_22.

[Zul15] F. Zuleger. „Asymptotically Precise Ranking Functions for Deterministic Size-Change
Systems“. In: Proc. 10th CSR. Ed. by L. D. Beklemishev and D. V. Musatov. Vol. 9139.
LNCS. Springer, 2015, pp. 426–442. doi: 10.1007/978-3-319-20297-6_27.

[Zul20] F. Zuleger. „The Polynomial Complexity of Vector Addition Systems with States“. In:
Proc. 23rdFOSSACS. Ed. by J.Goubault-Larrecq andB.König.Vol. 12077.LNCS. Springer,
2020, pp. 622–641. doi: 10.1007/978-3-030-45231-5_32.

67

https://doi.org/10.1007/s10817-016-9398-9
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1007/s10817-016-9402-4
https://doi.org/10.1007/978-3-319-22102-1_21
https://doi.org/10.1145/3133903
https://doi.org/10.1007/978-3-642-23702-7_22
https://doi.org/10.1007/978-3-319-20297-6_27
https://doi.org/10.1007/978-3-030-45231-5_32

	Kurzfassung
	Abstract
	Contents
	Introduction
	State of the Art and Related Work
	Contributions
	Outline
	The Physicist's Method of Amortised Analysis

	Preliminaries
	Setting the Stage
	A Necessarily Simple and Sufficiently Complex Programming Language
	Motivating Example: Splay Trees

	A Type System for Analysis of Logarithmic Amortized Complexity
	Resource Functions
	A Type System for Logarithmic Amortised Resource Analysis
	Example Analysis

	Automation
	Linearisation and Expert Knowledge
	Type Inference

	Implementation
	The Three Phases of ATLAS
	Optimisation
	Evaluation

	Conclusion
	List of Figures
	List of Tables
	Bibliography

		2021-06-04T08:52:16+0200
	Lorenz Leutgeb

