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Kurzfassung

Edge Computing hat sich zu einer weit verbreiteten Technologie in verschiedenen rea-
len Anwendungsszenarien entwickelt, einschließlich in Mission-critical Systemen (z. B.
Rettungseinsätzen, Gesundheitssystemen usw.). Solche Systeme haben Anforderungen
an niedrige Latenz und hohe Verfügbarkeit, während Zuverlässigkeit und Fehlertoleranz
untrennbare Systemanforderungen sind. Traditionell werden geschäftskritische Systeme,
wie sie im Gesundheitswesen eingesetzt werden, in der Cloud bereitgestellt und betrieben.
Mit der wachsenden Datenmenge, die von Geräten des Internets der Dinge (IoT) (z. B.
Sensoren, Aktoren usw.) erzeugt wird, wird die Cloud jedoch nicht in der Lage sein, stren-
ge Anforderungen (d. h. Latenz, Verfügbarkeit und Zuverlässigkeit) zukünftiger kritischer
Anwendungen (z. B. Verarbeitung von Sensordaten zur Gesundheit von Patienten in
Echtzeit) zu erfüllen. So kann die Konvergenz zwischen Edge Computing und Blockchain
mehrere betriebliche Herausforderungen lösen und beim Aufbau Mission-critical Systeme
mit hoher Verfügbarkeit und einer zuverlässigen Umgebung für die Ausführung kritischer
Operationen in der Nähe der Datenquelle bzw. am Rand des Netzwerks helfen.

Diese Arbeit zielt darauf ab, eine Edge-basierte Plattform aufzubauen, die die zuverlässige
Verarbeitung der von IoT-Geräten generierten Gesundheitsdaten von Patienten gewähr-
leistet. Die generierten Elektrokardiogramm-Daten (EKG) werden mit der Convolutional
Neural Network (CNN) -Technik verarbeitet und in Arrhythmiekategorien eingeteilt. Die
Arbeit stellt die Hypothese auf, dass der Aufbau eines Blockchain-Ledgers die Fehler-
toleranz erhöht, ohne die Gesamtsystemleistung zu beeinträchtigen. Wir haben unsere
Lösung anhand genauer Patienten-EKG-Daten evaluiert und auf einem realistischen
Testbed aus mehreren Edge-Geräten getestet. In allen Anwendungsfällen messen wir
Performance-Aspekte, Fehlertoleranz und analysieren Skalierbarkeitsaspekte. Die Ergeb-
nisse sind vielversprechend, und die Fehlertoleranz des Systems wird durch Blockchain
erhöht, ohne die Leistungsqualität zu beeinflussen.
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Abstract

Edge computing has become a widely applied technology in various real-life use case
scenarios, including those in mission-critical systems (e.g., rescue operations, healthcare
systems, etc.). Such systems have low-latency and high availability requirements, while
reliability and fault tolerance are inseparable system demands. Traditionally, mission-
critical systems such as those within healthcare are deployed and operated on the
cloud. However, with the growing amount of data produced by the Internet of Things
(IoT) devices (i.e., sensors, actuators, etc.), the cloud won’t be able to fulfill stringent
requirements (i.e., latency, availability, and reliability) of future critical applications (e.g.,
processing in real-time patients health sensory data). Thus, the convergence between
edge computing and blockchain can solve several operational challenges and assist in
building mission-critical systems with high availability and a reliable environment for the
execution of critical operations in proximity to the data source, respectively, at the edge
of the network.

This thesis aims to build an edge-based platform that ensures the reliable processing
of patients’ health data generated by IoT devices. The generated Electrocardiogram
(ECG) data is processed and classified into arrhythmia categories using the Convolutional
Neural Network (CNN) technique. The thesis hypothesizes that building a blockchain
ledger increases the fault-tolerance without affecting the overall system performance. We
evaluated our solution using accurate patient ECG data and tested it on a realistic testbed
comprising several edge devices. Throughout the use cases, we measure performance
aspects, fault tolerance and analyze scalability aspects. The results are promising, and
the system’s fault tolerance is increased by blockchain without decreasing performance
quality.
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CHAPTER 1
Introduction

This chapter discusses the motivational scenario that forms the basis of the thesis. The
problem statement is formulated to understand better what needs to be solved within
this thesis. The research questions focus on different aspects of the system that need to
be investigated. The solution approach describes the platform in a nutshell. The thesis
structure provides the structure of the thesis.

1.1 Motivation
Edge computing is a new paradigm where substantial storage and computational resources,
referred to as cloudlets, micro data centers, fog nodes, are located to the proximity of the
data where it is generated. This paradigm aims to overcome the issues coming along with
cloud computing [Sat17]. With the emerging number of IoT devices, it plays an essential
role between the IoT devices and the cloud. The IoT devices are limited in computational
power and storage; thus, sending all the data to the cloud results in high latencies and
bandwidth usage. Hence, Edge computing can be thought of as a middleware between
the IoT devices and the cloud to increase the performance of a system and mitigate the
issues coming along with the cloud.

A mission-critical system is a system in which a failure or interruption comes with an
unacceptable business or human cost [STÅK18]. In such systems, latency is among the
most critical requirements. Thus, placing edge devices in such environments, respectively
mission-critical systems, keeps the latency low and acts on processed data in a limited time
constraint. A blockchain is a distributed immutable ledger that can store transactions.
It started as a promising technology in the financial industry but nowadays goes beyond
financial transactions. The main characteristic of blockchain is that the nodes operating
in blockchain can perform without a trusted third party [EIPH18]. The main benefits
provided by the characteristics of the blockchain are security, privacy, fault tolerance,
and autonomous behavior.
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1. Introduction

Throughout this thesis, we consider emergency rooms respectively Intensive Unit Cares
(ICUs) as mission-critical systems. Essentially, the emergency department (room) spe-
cializes in taking acute care of patients. Patients lying in the emergency room have no
prior appointment; however, they need to be taken care of immediately in most cases.
During the stay, various sensors and monitoring devices are attached to the patient’s
body providing the medical staff with the patient’s health status. The collected data
needs to be processed within a limited time constraint and, countermeasures need to
be developed as the circumstances require. Otherwise, immutable severe consequences
could occur that, in the worst cases, could lead even to live lost. Therefore, the velocity
of processing the collected data goes hand in hand with the accurate knowledge of the
patient’s current health status. The more up-to-date data is present for doctors and
nurses, the sooner can be acted in case of emergency, and the more lives can be saved.

Furthermore, it is also important to save the collected data for future analysis. Having
an overall picture of a patient’s health status as medical records can help doctors predict
and better understand different diseases.

Figure 1.1: Emergency room with one bed [Eur17].

1.2 Problem statement

The mentioned scenario belongs to a category what is called a mission-critical system.
Mission-critical (MC) systems have a common characteristic: reaction on the collected
and processed data must happen within a limited time constraint to prevent loss. On
the one hand, this means that the consumed time between collecting data and acting if
certain conditions are met must be minimized. On the other hand, such systems require
a high level of Quality of Service (QoS), like reliability, fault tolerance, to avoid tragedies.
Also, an important aspect of the mentioned scenario is privacy since the data produced
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within healthcare is extremely sensitive. The possibility to backup the data to a central
cloud for further analysis needs to be addressed as well.

Summarizing up the described problems the following keywords and requirements are
introduced:

• Latency - The data that the patient generates must be collected, processed, and
acted on within a limited time constraint. The time constraint is not defined in an
exact value; an ASAP policy will be followed within the thesis. The doctors can
decide afterward whether the given results and performance are suitable for them.

• Quality of Service - Reliability and fault tolerance must be ensured. The system
must stay reliable during the tests. All the data must be collected and evaluated
to get a clear picture of the patients’ health status. If some computational units
become faulty during the evaluation, that must be also handled without a significant
impact on the performance.

• Privacy and security - Sensitive data produced during the process must be
handled properly. The health area operates on sensitive data that is coming from
the patients. It needs to be ensured that no data can be stolen or checked by an
unauthorized person. Secure communication between the different layers must be
ensured as well.

• Offloading - Data must be backed up to a central cloud for further analysis. This
backup helps to understand the collected data better and allows more complex
evaluations. The offloaded data must arrive safely, secure from the edge devices on
the cloud.

1.3 Research Questions
The motivation for this work is based on the above challenges and formulated as the
following research questions:

(RQ1) What is the maximum amount of patients that the system can handle simultaneously?

The system needs to be tested in a simulated ICU room, where various sensors
attached to patients produce the sensory data. An important measurement is
to determine the number of patients the system can handle simultaneously. We
focus on measuring two main system aspects such as i) latency and ii) reliability.
The latency shows the time required to process sensory data and produce the
final results. The reliability shows the data loss percent rate and success rate of
processing sensory data.

3



1. Introduction

(RQ2) What is the relationship between the number of edge servers, fault tolerance, and
the overall system performance?

The number of edge servers applied in the ICU is increasing the fault tolerance of
the system. The more edge servers are in charge; the more faulty nodes can be
present in the platform. However, this implies also that more edge servers need to
be involved in the consensus algorithm, which could lead to more overhead in terms
of time. This question focuses on the number of edge servers and their impact on
fault tolerance and latency.

(RQ3) What is the latency overhead introduced by the blockchain technology compared to
the non-blockchain solutions?

Blockchain technology has numerous advantages, but it also has some disadvantages.
Among the biggest disadvantage is the overhead introduced by the consensus
algorithm, which impacts on the latency. To answer this question, the latency
needs to be analyzed in the platform, where only one edge server is involved, and
therefore no consensus algorithm needs to be performed.

(RQ4) What is the impact of the faulty nodes on the performance?

To have a reliable system the faulty nodes need to be handled in the system. In
addition to that, we must analyze the overall impact of faulty nodes on the system
performance. To achieve this goal a comparison is needed between two use cases:
the ones, where no faulty nodes are present, and the ones, where faulty nodes are
present.

1.4 Solution approach
The thesis aims to design and develop an appropriate platform for the scenario described
above. The four defined keywords need to be addressed and the mentioned requirements
should be met. Naturally, various approaches exist to reach the desired solution.

Traditionally, processing and streaming sensory and non-sensory data directly to the
cloud is a viable solution. Infinite resources are available, the data can be easily backed
up immediately, while no other middleware is needed. However, cloud computing comes
with a huge latency, since the data must be forwarded to a location far away. This is
the point where edge computing comes into play. Edge computing is a computational
paradigm, that brings the computational resources closer to the place where the data is
generated to bridge the gaps that come along with cloud computing e.g., high latency or
bandwidth occupation. One key concept considering edge computing is offloading, which
is well-researched in this area. The concepts and techniques can be reused to offload data
from edge devices to the cloud for backup and further and more complex analysis.

4
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Hence, Edge computing within the mission-critical application could ensure the low
latency along with quick reactions to emergency cases, and the offloading is considered
as well. However, the desired QoS needs to be still taken into account and has to be
handled properly. One possible answer to ensure the QoS measurements is blockchain.
The technology addresses fault tolerance, data immutability, privacy and security, and
provides a solution to the mentioned bottlenecks.

The suggested solution is, therefore, to build a lightweight blockchain platform among
the edge devices. The ledger will be constructed using the collected data from sensors.
The edge devices processing the data coming from the sensors ensure low latency and
provide offloading techniques to the cloud. The lightweight blockchain is taking care of
the QoS and privacy. This paper hypothesizes that despite the introduced overhead of
building a blockchain ledger, the latency could still be kept below a decent threshold, the
system’s reliability is maximized, privacy and security are ensured.

1.5 Thesis structure
The thesis has the following structure. Chapter 1 gives a brief introduction to the thesis,
discusses the problem statement and the solution approach. Chapter 2 provides the
background information, the theory that needs to be known to understand the thesis.
Chapter 3 discusses the state-of-the-art solutions and describes how our approach is
different from the solutions proposed by the research papers. Chapter 4 describes the
technical solution, the architecture of the platform, and the solutions. In Chapter 5,
the evaluation methodology is discussed, the use cases are introduced, and the testbed
is described. Chapter 6 presents the results from the different use cases defined in the
previous chapter and briefly discusses them. Chapter 7 provides the overall discussion of
the platform and states the limitations. With Chapter 8, the thesis is concluded, the
research questions are answered, and the future work is discussed.
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CHAPTER 2
Background

This chapter provides the basic information that is necessary to understand the theory
behind the thesis. First, the ICU, in general, is discussed, the dysfunction that needs
to be detected is described, and the used dataset is introduced. The workload gives an
understanding in a nutshell of the deep learning technique used in the platform. The main
concepts of the platforms are discussed, such as Edge computing, blockchain, and the
relation between those two. The consensus that forms the heart of blockchain technology
is discussed in more detail because that forms the essential kernel of our platform and
has a major impact on fault tolerance and performance.

2.1 Motivational scenario
The emergency department or ICU (Intensive Care Unit) is the place where critically ill
patients without any prior appointment are handled. Due to the serious life risk present
in such rooms, it is crucial to respond to any event occurring here immediately. To
achieve this goal, all the patients staying in this department are constantly monitored by
several sensors and monitoring devices.

In our case, each patient, that is laying in the room is represented by one monitoring
device. In the focus of this thesis stands one specific health problem, i.e., arrhythmia.
That means, the monitoring device attached to the patient body collects ECG signals,
from which arrhythmia can be detected. The ECG signals are represented as individual
heartbeats.

2.1.1 Arrhytmia
Arrhythmia is when an abnormal or improper heart beating rate is present by the patient,
which leads to a failure in the blood pumping. If the heart rate is over a certain threshold,
i.e., the heartbeats are faster than usual, it is called tachycardia. If the heart rate is under
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2. Background

a certain threshold, i.e., the heartbeats are slower than usual, it is called bradycardia.
Arrhythmias are not related to the age of the person and, they can occur to anyone.
Although, it is more common in people who suffer from high blood pressure, diabetes,
and coronary artery disease. Some arrhythmias have no symptoms, while others can even
cause death; therefore, the arrhythmia can be a serious problem and even life-threatening.
The typical symptoms of arrhythmia are: premature beats skipped beats, dizziness,
fatigue, fainting [AIH18].

Arrhythmias can be categorized by many factors, each identified by a pattern. However,
the two major groups of arrhythmias are morpho-logical arrhythmia and rhythmic
arrhythmias. Morpho-logical arrhythmia consists of arrhythmias formed by one irregular
heartbeat. Rhythmic arrhythmia consists of arrhythmias of several irregular heartbeats
[AIH18]. The thesis will check morpho-logical arrhythmias. Each arrhythmia will be
analyzed and categorized into groups. To analyze the group of arrhythmias and derive
further consequences from them is out of the scope of this thesis.

To represent the heart activity, an electrocardiogram is used. It is a graphical represen-
tation of the electrical waves generated by a heart. The information provided by ECG
is heart rate, rhythm, morphology. Therefore, ECG is used by a cardiologist to detect
abnormal heart rates produced by a patient. This detection has several difficulties. The
main of them is the non-stationary nature of the heartbeat signal. It means ECG can
identify the arrhythmia only if the arrhythmia occurs during the examination, monitoring.
The arrhythmia can occur at any random time scale and any point of the day, and the
symptoms of a disease do not show up all the time. As constant monitoring produces an
enormous amount of data, it needs to be processed effectively [AIH18].

To test the platform’s performance accurately, realistic scenarios using real data need to
be constructed. The MIT-BIH database provides us with the mentioned data.

2.1.2 Dataset
The MIT-BIH Arrhythmia database is a set of data containing various records of an
electrocardiogram. It was the first generally available dataset for evaluating arrhythmia
detectors and for research purposes as well. In 1975 the researchers of MIT recognized
the need for long-term ECG data for the research, so they began to collect, analyze
and annotate ECG data obtained from the Beth Israel Hospital (BIH), hence the name
MIT-BIH [MM01].

The MIT-BIH Arrhythmia Database contains 48 half-hour excerpts of two-channel
ambulatory ECG recordings obtained from 47 subjects studied by the BIH Arrhythmia
Laboratory between 1975 and 1979. Twenty-three recordings were chosen at random from
a set of 4000 24-hour ambulatory ECG recordings. The data was collected from a mixed
population of inpatients (about 60%) and outpatients (about 40%) at Boston’s Beth
Israel Hospital. The remaining 25 recordings were selected from the same set to include
less common but clinically significant arrhythmias that would not be well-represented in
a small random sample [MM01].

8



2.1. Motivational scenario

Figure 2.1: Heartbeat categorized as normal according to the AAMI standard [DA14].

The recordings were digitized at 360 samples per second per channel with 11-bit resolution
over a 10mV range. Two or more cardiologists independently annotated each record,
disagreements were resolved to obtain the computer-readable reference annotations for
each beat (approximately 110,000 annotations in all) included with the database [MM01].
The data in the MIT-BIH Arrhythmia Database is in raw format that needs to be
pre-processed and segmented to make it usable for our thesis. Fortunately, this does not
need to be done by us because a proper data extraction already exists.

Kachuee et al. [KFS18] created an extraction of the database, where ECG lead II was
used as the input, that was re-sampled to the sampling frequency of 125 Hz. Each
sample refers to a heartbeat, and the total number is 109 446. For the classification
of the heartbeats, five different categories were used following the Association for the
Advancement of Medical Instrumentation (AAMI) EC57 standard. The mapping is
shown in Table 2.1.

2.1.3 Workload
The workload of the system is to identify arrhythmias based on heartbeat signals. The
platform should be able to classify each heartbeat signal into different arrhythmia
categories described in Table 2.1. For that, a deep learning technique is used. In this
case, a Convolutional Neural Network is built. In this subsection, CNN is discussed, to
an extent, that is feasible to understand its main concepts. It is worth mentioning that
although in the explanations of CNN, the input is usually referred to as an image, any
arbitrary data can be substituted as input.

A Convolutional Neural Network (CNN) is a deep learning algorithm. To describe it
in a nutshell, the algorithm assigns importance (learnable weights and biases) to the
various aspects of the input (mostly image) to differentiate objects contained by the
input. The pre-processing costs of this technique are lower than the costs of other

9



2. Background

Category Annotations

N

Normal
Left/Right bundle branch block

Atrial escape
Nodal escape

S

Atrial premature
Aberrant atrial premature

Nodal premature
Supra-ventricular premature

V Premature ventricular contraction
Ventricular escape

F Fusion of ventricular and normal

Q
Paced

Fusion of paced and normal
Unclassifiable

Table 2.1: Summary of mappings between beat annotations and AAMI EC57 categories
[KFS18].

classification algorithms, which makes this technique popular. The CNN applies filters on
the input to capture the spatial and temporal dependencies. Simply put, CNN is trained
to understand the sophistication of the input better. It can reduce the input into a form
that is easier to comprehend without losing features that are critical to getting a good
prediction. That makes the CNN scalable with acceptable pre-processing costs [Sah18].

The first layer of CNN is the convolutional layer. The convolutional layer is constructed
by applying a kernel. A kernel is a matrix that is applied on the top of the input
matrix. It is shifted with the given stride on the top of the input performing a matrix
multiplication within each frame. The purpose of the kernel is to capture the high-level
features and dependencies of the input. For example, if an image represents the input,
those properties could be edges or color gradients. With added convolutional layers, more
sophisticated features of the input can be detected. [Sah18]

After the convolutional layers, a pooling layer is next. It is used to reduce the spatial size
of the input and decrease the computational power needed to process it. Two types of
pooling are known: max pooling and average pooling. The former returns the max value
from the portion of the input the latter returns the average. The convolutional layer,
together with the pooling layer, forms the i-th layer of the network. The well-chosen
number of such layers can increase the understanding of the input and hence can lead to
better classification [Sah18].

The last piece of CNN is the fully connected layer. The fully connected layer is usually a
cheap way of learning non-linear combinations of the features represented by the output
processed by the series of convolutional and pooling layers. The output is first flattened
and fed to a feed-forward neural network and, backpropagation is applied to each iteration
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Figure 2.2: Convolutional Neural Network overview [Sah18].

of training. After a given amount of epochs, the CNN can distinguish certain features of
the input and classify them into classification groups. The output is a classification vector
that contains a probability for each classification category [Sah18]. Therefore, to solve
the arrhythmia categorization problem convolutional network is built. The network can
classify each heartbeat into different categories of arrhythmia with a certain likelihood.
The category with the highest probability is chosen as the prediction of the system.

2.2 Main concepts of the platform
Within this thesis, a new platform is created. The platform is named McEdgeChain,
which stands for a blockchain solution over an Edge computing environment applied in a
mission-critical (Mc) area. The further sections describe the concepts in detail, focusing
on knowledge that is required for the platform.

2.3 Edge computing
In Edge computing, the most important term is physical proximity, which has been
overseen by the endless connectivity offered by the internet. The physical proximity is
characterized by low latency, low jitter, and high bandwidth. However, the question
"How close is physically enough" can’t be answered in general because it depends on
many factors [Sat17]. Although, in general, deploying edge servers in the proximity of
the network could bring the following benefits as discussed in [Sat17]:

• Highly responsive cloud services - the proximity allows to achieve low end-to-end
latency, high bandwidth, and low jitter to services located on the edge server.

• Scalability via edge analytics - the data could be analyzed and pre-processed on the
edge servers and, the much smaller extracted information and metadata must be
transmitted to the cloud.
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• Privacy-policy enforcement - by serving as the first point of contact in the infras-
tructure for sensor data, an edge server can enforce the privacy policies before
sending the data to the cloud.

• Masking cloud outages - if a cloud service becomes unavailable due to network
failure, cloud failure, or a denial-of-service attack, a fallback service on a nearby
cloudlet can temporarily mask the failure.

2.4 Blockchain
Blockchain as technology was proposed in 2008 and was implemented in 2009 through the
famous cryptocurrency Bitcoin. The technology could be described as a ledger, in which
all the transactions are stored in chains of blocks. The blocks are added by autonomous,
decentralized nodes integrating technologies such as cryptographic hash, digital signature,
and distributed consensus mechanism. Hence, blockchain applied in certain situations can
improve efficiency. Although blockchain was meant to use for cryptocurrencies, several
areas exist where blockchain technology can be applied since it allows the creation of
verified data ledgers without third-party [ZXD+18].

The main building blocks of a Blockchain are [EIPH18]:

• Transactions, that are signed pieces of information created by the participating
nodes in the network that are broadcasted to the rest of the network.

• Blocks, that are collections of transactions appended to the blockchain after being
validated.

• Blockchain is a ledger (sequence of blocks) of all the created blocks, each block
containing a reference to the previous block.

• Consensus mechanism is used to decide which blocks are added to the blockchain.

Hence, blockchain provides trustless, decentralized peer-to-peer data storage that is
synchronized around all the participants. The data is organized as a sequence of blocks,
where each block is connected to the previous block. The connection is immutable
because of the cryptographic hash function used by each block. The very first block of
the chain, called the genesis block, is a dummy block containing no relevant information.
Let’s see that no restriction on the data exists; thus, any arbitrary data can be stored in
a blockchain [IPG+20]. The immutability is ensured by the fact that each hash of the
block contains the previous block’s hash. Hence, each new block committed to the chain
contains all the information of the subchain indirectly before the block. To alter one
block in the chain, the whole chain needs to be changed.

To decide which block should be added to the chain, the P2P network needs to reach
a consensus. The new proposed block should be validated and approved by the other
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nodes to extend the chain. The consensus allows the system to operate without a trusted
third party.

The main characteristics of blockchain technology are: [IPG+20]

• Decentralization – the data is spread over multiple participants, and the integrity
of the data is provided by many decentralized parties;

• Immutability - information integrity is created by immutable ledgers, blocks rely
on each other.

• Security – the elimination of single-point failure and usage of public key infrastruc-
ture makes this architecture more secure.

• Efficiency - distributed transactions in the database make the verification more
transparent so efficiency is reflected in terms of cost settlement speed, and risk
management.

• Transparency - transactions details are shared between all users involved in a
blockchain network.

In general, the blockchain platforms can have 3 different types as specified in [EIPH18]:

• Public permissionless blockchains, that serves a "low trust" environment enabling
everyone to join the network and participate in the consensus protocol. Besides
that, the whole ledger of transactions can be read by any participant. Examples of
such a platform are Bitcoin or Ethereum.

• Private blockchains, where all the participants are added by a trusted central
organization. Therefore, access to the network is managed by a central organization,
and the consensus protocol is controlled by them as well. Examples of such a
platform are Multichain or Eris.

• Public permissioned blockchains, that provide a hybrid model between the two
aforementioned platforms. The main characteristic of such a blockchain is, that the
access and the control of consensus protocol are managed by a single set of nodes.
Examples of such platforms are Hyperledger Fabric or Ripple.

2.5 Blockchain & Edge computing
As was stated earlier, blockchains demonstrated a great potential in many areas, not just
in the financial sector. It is worth to consider using blockchain in areas, where usually
a centralized client/server architecture is used, such as in IoT ecosystems. The used
blockchain architecture can mitigate the delays and failures caused by the centralized
architecture [EIPH18]. El et al. [EIPH18] focus on three challenges, that can be solved
by introducing blockchain technology to the Edge computing paradigm.
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Confidentiality and integrity: Applying blockchain technology among devices makes it
much harder to corrupt them by i) using immutable cryptographically verifiable data
that is shared by all the participants in the network, and ii) validating the integrity of
the network transactions before accepting them. Also, the linked nature of the blocks in
a blockchain makes the schema hard to break. When it comes to confidentiality, some
blockchains allow the encryption of the payload data to add another layer of security.

Autonomous behavior: Blockchains offer functionality allowing the management of infras-
tructure for autonomous agents in the form of smart contracts, which are self-executing
programs residing on the blockchain itself. Smart contracts encapsulate business logic
and conditions determining when a contract is going to be executed. The behavior of a
device can be specified by a set of smart contracts that allow it to interact with the rest
of the network.

Fault tolerance: The peer-to-peer nature of blockchain technology increases fault tolerance
and availability of the system as the failure of some nodes will not paralyze the whole
network. The decentralized architecture of blockchain also allows for lighter, faster, more
reliable, and secure communication between nodes.

2.6 Consensus algorithm
The nodes maintaining the blockchain need some common agreement to decide which of
the nodes is allowed to append the next block to the chain. For this purpose, consensus
algorithms are used. In basic terms, a consensus algorithm is a technique to conclude
inside of a group. The nodes participating in the decision need to reach a consensus. Not
the individual choices are important, but the choice that works best for all the nodes
[PKP19]. This consensus guarantees that no third party is needed for supervision, and
hence the nodes can operate autonomously, and uniformity is provided. Two kinds of
consensus algorithms rule the blockchain world: proof-based and voting-based. The
former is used mainly in public blockchains and ensures the consensus by providing that
a specific work (mathematical puzzle solved, more stake in blockchain, more space) has
been done. The latter is preferred in private blockchains, and the consensus is made by
collecting the votes from the nodes [PKP19].

In distributed systems, no perfect consensus protocol exists. If a protocol is chosen, a
trade-off must be made between consistency, availability, and partition fault tolerance.
Besides the mentioned properties, the Byzantine Generals Problem needs to be addressed
as well. This problem assumes that malicious nodes will appear in the systems that can
falsify the consensus algorithm. The most famous consensus protocols are provided below
to give an overview [ZL19].

2.6.1 Proof of work (PoW)
PoW is a consensus algorithm adopted by Bitcoin or Ethereum. The main idea of
this consensus algorithm is computational competition. The nodes participating in the
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algorithm need to solve a challenging cryptographic puzzle, and the node that solves
this puzzle first has the right to attach the new block to the chain. The puzzle can be
solved by adjusting a nonce value to get the correct format of the hash. It is feasible
to overthrow one block in the chain, but the more blocks exist in the chain, the more
computational power is needed to replace fractions of the chain. PoW belongs to the
probabilistic-finality consensus protocols because it ensures eventual consistency [ZL19].

2.6.2 Proof of Stake (PoS)
In PoS, selecting each round of nodes that creates a new block depends on the held stake
rather than the computational power. In PoS, compared to the PoW, the key is not to
adjust the nonce-value but to have a proper amount of the stakes. The PoS algorithm is
energy-saving because it uses far less computational power than the PoW [ZL19].

2.6.3 Delegated Proof of Stake (DPoS)
The principle of the DPoS is to let the stakeholders elect dedicated nodes that will serve
as block creators in the systems. The creation of a new block is delegated to nodes,
thus reducing the energy consumption of the stakeholders. In DPoS, if a delegated node
can not generate a new block, it will be dismissed and replaced by a new node selected
by the stakeholders. To reach the consensus, the votes are taken into account fairly
and democratically. This consensus algorithm, compared to the former is low-cost and
high-efficiency. Examples adopting this technique are BitShares, EOS, etc. [ZL19]

2.6.4 Ripple
Ripple is an open-source payment protocol. The transactions are initiated by clients
and spread across the network to validating nodes. Each validating node holds a list
of trusted nodes UNL (Unique Node List). Nodes contained by the UNL list can vote
on transactions they support. The proposed transaction will get a vote if the same
transaction exists in the local transaction set. If a transaction gets 50% support, it is
allowed to step into the next round. The threshold is increased in each round and, in the
last round, a transaction with more than 80% of votes will be added to the blockchain
ledger. Ripple is an absolute-finality consensus protocol [ZL19].

2.6.5 Practical Byzantine Fault Tolerance (PBFT)
The Practical Byzantine Fault Tolerance consensus algorithm has low algorithm complex-
ity and high practical use in the distributed systems. In PBFT five phases exist: request,
pre-prepare, prepare, commit, reply. The primary node that is responsible for generating
the next block sends its proposal to the other nodes. The message needs to pass through
the five phases, each time validated by nodes. If enough message is received in the current
phase, the proposed block enters the next phase. It is then distributed again with the
new phase header. If the block reaches the final state, we know that all the nodes agree
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on the validity. In that case, the block can be safely added to the chain. PBFT ensures
a commons state among the nodes by taking consistent action in each round. Because of
the strong consistency, PBFT is an absolute-finality consensus protocol [ZL19].

Property PoW PoS DPoS PBFT Ripple
Finality Type Probab. Probab. Probab. Abs. Abs.
Fault tolerance 50 % 50 % 50 % 33 % 20 %

Power consumption Large Less Less Negligible Negligible
Scalability Good Good Good Bad Good
Application Public Public Public Permissioned Permissioned

Table 2.2: Main consensus protocols comparison [ZL19].

2.6.6 Bully Algorithm
The bully algorithm is not a typical blockchain consensus algorithm. The bully algorithm
is an election algorithm, where a set of peers need to elect a specific node, the coordinator.
If the coordinator fails, the peers should be able to detect the failure and elect a new
coordinator in the system [RN10]. The coordinator is responsible to perform tasks in the
platform. It can be a scheduling task or to act as a worker and execute jobs.

Bully algorithm was proposed by Garcia-Molina in 1982. The algorithm presumes basic
assumptions [RN10]:

• the system is synchronous, and the coordinator failure is tracked by timeout
mechanism

• each node has a unique identifier

• every node is discovered by every other node

• the nodes does not know the current up and down status of the other nodes

• in the election the node with the highest id is selected as a coordinator

The bully algorithm uses 3 types of messages [RN10]:

• election - this type of message is used to initiate an election

• ok - this message is use as an acknowledgement to a certain message

• coordinator - the node, that is up and has the highest ID sends it to the other
nodes, to announce the victory of the election

The procedure of the bully algorithm is the following: [RN10]
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1. A node detects, that the coordinator does not respond in a certain timeout

2. The node sends an election message to all the nodes that have higher IDs. If
none of the nodes with the higher ID acknowledges this message, that means that
the current node is the active node with the highest ID, and hence it sends the
coordinator message to the other nodes.

3. If the node gets an acknowledgment to the election message, that means an active
node with a higher ID exists in the system. In that case, the node waits for the
coordinator message from another node.
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CHAPTER 3
Related work

In this chapter, different papers are examined and analyzed to get an overview about
the state of the art solutions and the related work. The papers are grouped by topic.
The first group checks the papers about Edge computing in healthcare, the second group
the Edge computing in mission-critical systems, and the third the relation between
blockchain in Edge computing and healthcare. At last, our approach is described and
what differentiates it from the afore-mentioned approaches.

3.1 Edge computing in Healthcare

Several attempts have been made to apply the Edge computing paradigm in the healthcare
area. Akrivopoulos et al. [ACTA17] sketch the usage of fog (edge) computing in healthcare.
Use case scenarios are provided, the important requirements towards such system are
described and, a prototype is developed focusing on ECG analysis. Gia et al. [GJR+15]
realize a healthcare system based on fog computing providing a detailed description of
the services and requirements towards such system. Chen et al. [CLH+18] propose a
healthcare system realized on edge devices where the focus is placed on determining
the risk level of the patients based on the collected data and reallocating the resources
accordingly. In the work of Rahmani et al. [RGN+18] smart gateways are used as edge
devices that take care of data-preprocessing, compression, encryption, and revealing
the emergencies using early warning scores. Azimi et al. [AAR+17] analyze an existing
healthcare system MAPE-K and suggest a novel computing architecture suitable for
hierarchical partitioning and execution of machine learning-based data analytics and a
closed-loop management technique capable of autonomous system adjustments concerning
patient’s condition.
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3.2 Edge computing in mission-critical system
Mission-critical systems provide also opportunities to research the benefits of using Edge
computing in that area. Skarin et al. [STÅK18] define a testbed for a mission-critical
system Edge computing environment and justifies the applicability of Edge computing in
the mission-critical systems with 5G. Zhang et al. [ZF15] elaborate on software-defined
networks, classify IoT and focus on the communication and latency among them. Xu
et al. [XYYZ19] propose a software-defined mission-critical wireless sensor networking,
define the mission-critical task and establish an algorithm to make offloading decisions.

3.3 Blockchain in Edge computing & Healthcare
Blockchain as an emerging technology is involved in Edge computing as well. El et al.
[EIPH18] describe the benefits of using blockchain among IoT devices and develop a
decision framework on whether the technology is needed in the current situation. Esposito
et al. [EDST+18] sketch the usability of blockchain in healthcare and the challenges
as well. Stanciu et al. [Sta17] use a Hyperledger Fabric as a blockchain platform on
a supervision level (cloud) and edge device to control the devices on the lower level.
Rabah et al. [Rab17] research how the introduction of blockchain in healthcare could
improve the security, data privacy, and interoperability of medical records. Ekblaw et al.
[EAHL16] develop a prototype of blockchain for electronic health records and medical
research data addressing the following problems: fragmented, slow access to medical data,
system interoperability, patient agency. Zhang et al [ZSWL18] provide use cases where
blockchain could be used in healthcare and based on them a D-App blockchain platform
is designed and developed. The work also describes in detail the issues at design time
and proposed solutions to them. Buchman [Buc16] describes how blockchain can be used
to achieve Byzantine fault tolerance.

3.4 Our approach
What differentiates our approach from the above-mentioned works is that we apply
blockchain technology for medical data not on the cloud level but on the edge level to
ensure appropriate QoS. A blockchain ledger is built from sensor data rather than from
whole medical records. We hypothesize that blockchain used on the lower levels can
ensure the reliability, security, and fault tolerance of the system and at the same time
keep the latency of such mission-critical applications under an appropriate threshold.

20



CHAPTER 4
McEdgeChain

In this chapter, the platform is described in general. The problem setup is discussed
together with the actors of the system from which the requirements are derived. The
major decisions regarding the blockchain and the communication are described. At last,
the implementation details, which are the bottlenecks of the system, are discussed.

4.1 Problem setup
The first thing to do is to get an overview of the problem setup. The different actors are
discussed and how they relate to each other. It is necessary to derive all the requirements
for the platform. As it is visible from Figure 4.1 three main actors are present in the
platform.

Figure 4.1: Problem setup.

4.1.1 Sensor & End device layer
This layer is responsible for monitoring the patients that are present in the ICUs. In
this particular case, all the sensors are ECG sensors attached to the patient’s body. The
computational capacity of the sensors is marginal and, it is not able to do any analysis or
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evaluation. The collected data is raw that needs a comprehensive interpretation, which
is measurable. It is the point where the end devices come into play.

The end devices are connected to the sensors and take the responsibility to interpret the
collected data for further evaluation. In this paper, the terms end device and monitoring
device refer to the same expression. We also won’t separate the sensor layer from the
end device layer. That means the transmission time is omitted between those two layers
and does not play any role regarding the performance.
This layer serves as a starting point for our platform. The preprocessed and segmented
MIT-BIH testing dataset is broadcasted through end devices to the edge servers for
evaluation.

4.1.2 Edge layer

In this paper, the edge servers are connected to the end devices and receive the data
gathered by them. The edge server takes the responsibility to process the data and build
the blockchain ledger. On the other hand, they are also connected to the cloud. The
blockchain ledger needs to be offloaded to the cloud for backup purposes and further
analysis. Also, to improve the pre-trained model that makes predictions, the edge server
should be able to download the newly generated model by the cloud on regular basis.

4.1.3 Cloud

In this paper, the cloud will serve as a data center, where the ledger built by edge
servers must be offloaded for further analysis. It also trains the CNN model that predicts
arrhythmia. The blockchain coming from edge servers is used to improve the CNN model
by newly performing training.

4.2 Requirements towards the platform
In this section the requirements towards the different parts of the platform are discussed
and described.

4.2.1 Sensor & End device

ID Description

ReqED0 Having 18 subset from testing dataset of heart beats in .csv format,
each of them referring to half-hour period

ReqED1 Collect data from the corresponding .csv file
ReqED2 Create a data format for broadcasting
ReqED3 Broadcast the created data in each 1,496 sec to a dedicated channel

Table 4.1: Requirements towards end device.
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ID Description
ReqES0 Be able to build a P2P network from edge servers
ReqES1 Be able to add new edge servers to the network
ReqES2 Receiving data from the end devices
ReqES3 Decide which of the nodes should calculate the new block
ReqES4 Predict the arrhytmia based on the collected data
ReqES5 Transform the predicted data together with the samples into a block
ReqES6 Validate the proposed block
ReqES7 Append the new block to the chain
ReqES8 Offload the chain to the cloud
ReqES9 Receive the notification from the cloud, when a new model is ready
ReqES10 Download the new model from the cloud
ReqES11 Save the blockchains for performance analysis

Table 4.2: Requirements towards edge servers.

The end devices are broadcasting the data to the edge servers. Therefore, the first
requirement is to have appropriate data. We are using the testing dataset extracted
by Kachuee et al. [KFS18]. The data set needs initial pre-processing. It needs to be
split into 18 subsets of heartbeats, each subset referring to a half-hour period. It is
organized to .csv files to make it readable for the end devices. Each .csv contains 1209
rows representing 1209 heartbeats.
One row contains 188 columns, which refers to 187 samples, and one additional column,
which holds the category of the heartbeat. Because the sampling rate is 125 Hz, each
8 ms a sample is made. So, once the data is loaded, a Data Transfer Object (DTO)
is created, containing the following attributes: the end device ID, that in this case is
represented by a patient, the heartbeat ID, and all the belonging sample with the sample
value and the order in which it should be organized to get the heartbeat.

This DTO is broadcasted to the channels in each 1,496 sec because that time interval
covers one heartbeat with 187 samples each sample taken in 8 ms. Each time a whole
heartbeat is sampled, it is sent to the edge servers to process and evaluate it.

4.2.2 Edge server
The edge servers are the core part of the platform. They are responsible for the main
work done by McEdgeChain. First of all, because the platform operates on multiple
servers, a proper network should be built. We are using a P2P network, where each
node should know about the others. It is also essential to control the addition of a new
edge server. Since the blockchain is private, it needs to be ensured that no unknown
node can participate in the block creation and the consensus. To fulfill this requirement,
a message from a trusted host is broadcasted to existing nodes, with all the necessary
information about the new edge server. After the data is broadcasted to the other nodes,
the connections are established, and the new node is considered as a participant. The
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ID Description
ReqCL0 Init the CNN model at the first run
ReqCL1 Be able to receive the offloaded blockchains
ReqCL2 Be able to refine the existing CNN model based on the new data
ReqCL3 Notify edge server once the CNN model is ready
ReqCL3 Be able to provide the new model for the edge servers

Table 4.3: Requirements towards Cloud.

data coming from the end devices need to be handled properly. The heartbeats come in
json format, so it needs a transformation into a DTO. Afterward, a new block should be
created and proposed.

The platform should decide which of the given nodes should propose the next block to
the chain. It should be consistent, so each node should have the same node as the next
proposer. On the other hand, it needs to be simple enough to reduce the overhead as
much as possible. The workload that needs to be solved is the arrhythmia prediction. To
make precise predictions, a neural network model is built based on the training set, which
is used to decide in which arrhythmia category should be the given heartbeat categorized.
The predicted category, together with the samples, should be included in the next block.
If the block is ready, it should be broadcasted to other nodes. The nodes should validate
the incoming data, i.e. it contains the expected amount of heartbeats, the predicted
arrhythmia category, whether the proposed block comes from the elected node and the
data is in proper format. If it is valid, the block can be considered as the correct new
block and can be added to the chain. For each patient a new chain is created, thus at
the end the created amount of blockchains equals to the amount of patients.

After a certain amount of time, the blockchains created by the edge servers should be
offloaded to the cloud for further analysis. That job is done periodically, and each time
the whole blockchain is offloaded. The cloud should send a notification when the CNN
model that predicts the arrhythmia is refined (trained with the offloaded data) and ready
to be deployed on the edge servers. In that case, the edge server should download the
model and reload it to improve prediction accuracy. The created blockchains should be
saved for further analysis. Each patient should have at the end a json file, where the
created blockchain should be visible. This json can be used in the future to analyze the
correctness of the predictions and the performance of the platform.

4.2.3 Cloud
The cloud is the part of the platform that is in direct connection with edge servers. The
cloud has a high computational capacity, so it is responsible for initializing the CNN
model. That means the CNN model should be constructed and trained with the prepared
training data. The cloud should be able to receive the blockchains periodically offloaded
by the edge servers. This data is backed up in the cloud for further analysis and to refine

24



4.3. Blockchain

the model. If enough data from the edge server is available, the cloud should be able to
refine the existing model with the new data. The refining and the initialization are the
most computationally intensive tasks in this platform.

Once the refined model is ready, the cloud should notify all the edge servers. The cloud
should be able to provide an opportunity for edge servers to download the refined model
if it is requested.

4.3 Blockchain
Because the hospital where the platform is applied could be considered as a trusted client,
and there is no need to participate in the network by anyone without permission from
the trusted client, the type of blockchain used in this thesis is: Private blockchain.

Since the platform developed within this thesis is a private blockchain, a closer look is
taken into two consensus techniques PBFT and Ripple. Regarding the fault tolerance,
the PBFT performs better than the Ripple. The PBFT can tolerate at most f number of
malicious or faulty nodes if the the whole system consists 3f+1 nodes. That means the
normally behaving nodes should exceed an amount of 2f+1 [CL+99]. The fault tolerance
of Ripple is only 20 %, i.e., Ripple can tolerate Byzantine Problem in 20 % of nodes in
the entire network without affecting the correct result of consensus [SYB+14].

Figure 4.2: PBFT message exchange [PBF].

Regarding the performance, the PBFT requires each node to communicate with each
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other node, which can generate high network traffic, thus requiring extremely high
performance from the network (see Fig. 4.2). The identity of each node is known, so no
anonymity is present in the system. In Ripple, the round consensus is achieved in few
seconds, which is suitable for a payment scenario. [ZL19].

Regarding scalability, the Ripple performs better than the PBFT. PBFT, because of the
massive message exchange, is suitable for small networks with high network performance.
Ripple can be appropriate for large-scale networks, and contrary to the PBFT it has a
huge TPS (Transaction per Second) hence, it has good scalability. [ZL19].

Both consensus algorithms require private blockchain because to achieve such techniques,
the identity of all the nodes needs to be known. However, on the cost of decentralization,
strong consistency and high efficiency are provided hence they are suitable for some
commercial and medical scenarios [ZL19].

Considering the comparisons, the first attempt for the implementation was the PBFT
consensus algorithm. In the testbed with IoT devices involved, the given amount of
messages led to serious problems. The TCP buffers were full, and the exchanged messages
were dropped. Above four patients and approximately 20 minutes, the platform did
not get any messages from other nodes and, false failure was detected. It led to falsely
excluded nodes, and all the nodes started to operate individually. Therefore, the first
implementation was not successful according to the performance, and a new, simpler
consensus algorithm was introduced.

The bully algorithm is not a typical blockchain algorithm, but rather a technique used
in distributed systems to elect master and slave nodes. Since the bully algorithm is
used only if the master node gets unavailable, the only message exchange between edge
servers happens, when a new block is broadcasted. Keeping the previous experience in
mind, the goal was to achieve minimal interaction between the edge servers, to increase
the performance to an acceptable level. That’s the reason behind choosing the bully
algorithm as the final consensus algorithm for the platform.

4.4 Communication
Another crucial aspect of the platform that should be discussed is communication. Three
different levels of communication need to be considered within this platform, i.e., the
communication between end devices and edge servers, the communication among edge
servers, and the communication between edge servers and the cloud.

4.4.1 End device to Edge server
For the communication between end devices and edge servers, an MQTT message broker
is used. MQTT stands for MQ Telemetry Transport and was invented by Dr. Andy
Stanford-Clark of IBM, and Arlen Nipper of Arcom (now Eurotech), in 1999. It is a
publish/subscribe, simple, and lightweight messaging protocol designed for constrained
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devices and low-bandwidth, high-latency, or unreliable networks. The design principles are
to minimize network bandwidth and device resource requirements while also attempting
to ensure reliability and some degree of assurance of delivery. These principles also turn
out to make the protocol ideal of the emerging “machine-to-machine” (M2M) or “Internet
of Things” world of connected devices and for mobile applications where bandwidth
and battery power are at a premium. MQTT supports basic end-to-end QoS [MQT].
Depending on how reliably messages should be delivered to their receivers, MQTT
distinguishes between three QoS levels. QoS level 0 is the simplest one: it offers a
best-effort delivery service, in which messages are delivered either once or not at all to
their destination. No re-transmission or acknowledgment is defined. QoS level 1 provides
more reliable transport. A message with such QoS level is re-transmitted until they get
acknowledged by the receivers. Consequently, QoS level 1 messages are certain to arrive,
but they may arrive multiple times at the destination because of the re-transmissions.
The highest QoS level is QoS level 2. It ensures the unique reception of the message
without any duplicates. It is up to the application to select the appropriate QoS level for
its publications and subscriptions [HTSC08].

In our example Eclipse Mosquitto [Ecl] is used as a message broker server. For producing
messages, the python-paho package [Pyt] is utilized. The QoS level of the broadcasting
is 2 because this ensures that each message is delivered only once. It is necessary not
to deal with the same job several times, which increases the overhead of the servers.
Each job is sent to the same channel to provide the flexibility of subscribing only to one
channel and receiving all the produced jobs there.

4.4.2 Communication between edge servers

The edge servers form a P2P network. For asynchronous communication, ZeroMQ is used.
As per the documentation:" ZeroMQ (also known as ØMQ, 0MQ, or zmq) looks like
an embeddable networking library but acts like a concurrency framework. It gives you
sockets that carry atomic messages across various transports like in-process, inter-process,
TCP, and multicast. You can connect sockets N-to-N with patterns like fan-out, pub-
sub, task distribution, and request-reply. It’s fast enough to be the fabric for clustered
products. Its asynchronous I/O model gives you scalable multicore applications built
as asynchronous message-processing tasks. It has a score of language APIs and runs on
most operating systems." [Zer]. It provides intelligent sockets that can be used for fast,
reliable, asynchronous inter-node communication. It also has good community support
and a good library for python. Therefore, it was chosen as the library in this thesis.

From the various types of sockets provided, the ROUTER and the DEALER are used.
The former for distributing messages, the latter to connect to the ROUTER sockets
and receive messages. Synchronous communication happens through HTTP requests
between the edge servers. If the master node gets unavailable, the consensus algorithm is
initiated through an HTTP request, such as all the other message exchanges regarding
the consensus.
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4.4.3 Edge server to Cloud
The communication between Edge servers and Cloud happens through synchronous
HTTP requests. The edge server can offload the built blockchain to the Cloud via HTTP
requests. If the Cloud refined the CNN model, it informs the edge server via an HTTP
request that the new model is available for download.

4.4.4 Security
Another aspect that needs to be tackled considering communication is security. Two
main parts of the system exist, where security is considered and handled. The first level
is the communication between edge devices and the end devices. The end devices, that
are simulating monitoring devices attached to patients and providing sensor data. It is
broadcasted to the edge devices via the MQTT message broker. To keep the blockchain
private, only authorized edge servers can be registered to the MQTT message broker
therefore only authorized edge servers can receive the data coming from end devices.
That measurement ensures that no malicious third party catches the sensitive data.

The second layer, where security is considered is the communication between the edge
servers and the cloud. The edge server is offloading the blockchains in a certain period
to the cloud for further examination and deeper analysis. HTTP as a communication
protocol is used, but the data sent in the request body is encrypted. The secret key
to decode the data is only known by the edge servers that encode the messages and
the cloud that decodes them. In that way, no malicious third party can observe the
blockchain containing sensitive information unless they possess the secret key.

4.5 Implementation details
The whole platform is implemented in Python3 language. The implementation consists
of three main modules: cloud, edge server, and end-devices. Additional three modules
are introduced: (1) evaluator responsible for evaluating the blockchains, (2) statistics
responsible for providing statistical information, and (3) publish a new server module
responsible for distributing new edge server information among the edge devices.

4.5.1 Data pre-processing
First of all, the test data needs to be split to have proper subsets of the data. It can be
done by the end device. The end device must run with the parameter –preprocess, where
the parameter must define the test data file in .csv format. This data is not provided
within this thesis, it must be downloaded from kaggle.com. Once the data is downloaded,
the script will read the file specified in the arguments. Because the heartbeats (rows) are
grouped by categories, the script must reshuffle the rows in a random manner to have
more diverse data by patients. After reshuffling, the script reads the data in a 1209-row
window, and each of them is written into .csv files named with the patient prefix and
the numerical order from 1 to 18, such patient_1.csv, patient_2.csv, etc. At the end, in
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the patient_test_data directory eighteen csv files representing patients each with 1209
heartbeat information are waiting to be broadcasted.

4.5.2 Blockchain
The blockchain module, as the name implies is responsible to build the blockchain ledger.
First, the structure of the two main building blocks, namely the block and the blockchain
is discussed.

The block is the fundamental building block of the blockchain. It has the following
attributes:

• index - refers to the index of the block in the chain where it is chained in

• timestamp - the time when the block was created

• previous_hash - the hash of the previous block in the chain

• hash - the hash of the block. The whole block object is converted into a json string,
from which with the help of sha256 python library a hash is computed

• signalId - the id of the heartbeat signal

• transactions - the samples, that identify the heartbeat

• proposer - the id of the node, that proposed the block

• arrhytmia_category - the arrhytmia category predicted by the system based on
the samples

• job_created - the timestamp, when the job was initiated. It is equal to to the
created attribute of the incoming heartbeat

The blocks are the basic building elements of the chain. Each block is chained to another
block, based on the previous hash, that is contained in each block ( Figure 4.3). With
that structure, to tamper a block in the chain, the whole chain should be replaced. This
ensures the immutability of the chain. Once a block is created and added to the chain,
the alteration is not possible anymore. The first block of the chain is the genesis block. It
is a special block generated by each chain individually, containing no useful information.

Figure 4.3: Chaining blocks into blockchain.

The blockchain object has the following attributes:
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• chain - the actual chain containing initially the genesisis block, and the added
blocks

To operate on blockchains BlockchainService class provides us with a helping hand. It
is a singleton class, which can return the requested blockchain if exist, or create a new
one with the given patient id. This class is responsible for adding new blocks to the
blockchain of the given patient as well. The blockchain module contains converters to
convert the JSON objects (blocks, blockchains) into a proper format.

It is worth mentioning that one classic blockchain concept is missing here. The majority
of blockchains contain a transaction pool. It is a pool fed by transactions that need to be
involved in the next block. The initial implementation of the platform did not send whole
heartbeats, but the samples every eight milliseconds. This data was the transaction.
When the block creation was commenced all the samples were red from the pool to
construct the block. As one can predict, this approach led to serious performance and
scalability problems, later on, so the part was refactored and, since a job queue already
existed in the system, the transaction pool lost its purpose and was entirely omitted.

4.5.3 Scheduler
The scheduler module takes care of the job queue, scheduling and starting the jobs, and
predicting the arrhythmia category.

The CNNPredictor as the name would suggest, is responsible for predicting the arrhythmia
category via the CNN Keras model. It is responsible for loading the model that is stored
in h5 format. If it is not stored locally yet, the predictor downloads the latest version
from the cloud. The model can be refreshed as well, that is a download followed by a
reload of the model. The core functionality of the predictor is to predict the arrhythmia
categories. It takes one heartbeat and creates the probability vector for it based on the
loaded model. Once the vector is created, the category with the highest likelihood is
returned.

The QueueManager is responsible to manage the job queue that is populated by the
incoming heartbeats from the end devices. It can add the new incoming job to the queue.
After adding a new job, it is sorted by the created attribute of the job. It ensures that
each time the oldest job is on the top of the queue. It is also responsible to mark a job if
it is executed. In this case, the job is dropped from the queue.

JobScheduler as the name implies takes care of scheduling and executing the jobs. When
the first job appears on the channel, the scheduler is initiated, starts to populate the
QueueManager, and a new Thread is created to perform the execution of the jobs. To
start a job, an eternal while loop is initiated. It checks whether the current node should
execute the job. It is possible if no ongoing election is present in the network, and the
current node is elected as a leader. In that case, the lock is acquired, and the next job is
taken from the queue, which is executed and broadcasted to the other nodes.
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The TaskSolver is responsible for creating the blockchain. Once it is called, it creates
the new block, predicts the arrhythmia. It adds the block to the chain and refreshes
the leader’s heartbeat information. Afterward, a new message is broadcasted among the
peers with the new block. The whole process is presented on Figure 4.4.

Figure 4.4: Block creation process.

4.5.4 CNN model
The core functionality of the cloud is to train and refine a Keras model. The instructions
of [Kag] are followed to build an appropriate model. This model has promising results
on the dataset, that is used by also our thesis.

At the first time starting the cloud a new model needs to be initialized. The following
steps describe how a new model is initialized:

1. The data needs to be loaded. The training dataset (mitbih_train.csv) is loaded via
pandas in csv format.

2. The TrainingsetService prepares the data for the training. Because the dataset is
highly unbalanced and some arrhythmia categories are overrepresented, the set is
resampled with 20 000 samples. Therefore, after the resampling is done, all the
arrhythmia categories are represented equally by 20000 samples. If a category has
more than 20000 samples, then it is simply reduced to that amount.

3. The last column of the resampled dataset contains the category. The five different
values there form the five arrhythmia categories.

4. The model is constructed with 3 one dimensional convolutional layers (each sample
is represented by a one-dimensional array) and three fully connected layers. The
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activation function for each layer is relu. At the end of the fully connected layers,
a softmax function is used, that provides a probability vector representing each
category with a probability. The one, with the highest probability, is the best
prediction of the model.

5. The model is trained with the prepared and upsampled training set. The adam
optimizer is used with 40 epochs. Each epoch takes approximately 64 seconds, so
the whole training is around 40 minutes.

6. After the model is trained it is saved in .h5 format. This model can be downloaded
and used by the edge servers.

As we stated earlier, the model can be refined as well. In that case, the samples coming
from edge servers are used. The procedure is the same, except that the already created
model is loaded at the beginning, and the blockchain data is used to refine the model.
However, if the blockchain data is not diverse enough (there aren’t enough categories
represented), the model is not refined. If a model were trained with data that has
overrepresented categories, it would falsify the predictions with the new model.

4.5.5 Consensus algorithm
Within the consensus algorithm, as was mentioned earlier the bully algorithm is im-
plemented. The bully algorithm is based on the leader election, where the leader is
responsible for executing the jobs in our case. To set a new leader, an election should
be initiated. An election is initiated if a new edge server is added to the peers, or five
seconds passed during which no message was exchanged between the elected node and
the others.

Figure 4.5: Election flow chart.

To initiate the election, a peer must announce one. The ElectionService is responsible
for that. If an election is initiated, the election state is set to prevent any job execution
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during the ongoing election. The peer fetches all the other peers, that have a bigger
id, than the actual peer. In this case, bigger means a comparison of ids in alphabetical
order. If bigger peers exist, the election is announced through an HTTP request via
AnnouncerService. The synchronous request must be justified by the peer with a bigger
id, i.e., an HTTP 200 must be sent as a response. If a peer with a bigger id responds
to that it means, it is active, and the actual peer should wait until a coordinator is
announced. If none of the peers responded, the actual peer is the peer that is alive and
has the biggest id. In this case, the actual peer sends an announce coordinator HTTP
message to the other peers with smaller ids via AnnouncerService. The whole scenario is
visible on Figure 4.5.
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CHAPTER 5
Evaluation methodology

In this chapter, an overall description of the evaluation methodology is provided. The
basic approach describes one test case in general, and the measurements are discussed
as well. The four aspects of the platform are described, e.g., the performance, fault
tolerance, edge scalability, reliability. At last, the test environment is provided in which
the tests are conducted.

5.1 Basic approach
The evaluation method informs how the platform is tested, what aspects of the platform
are analyzed and evaluated. However, first, the basic approach is discussed.

The extracted data set by Kachuee et al. [KFS18] consists of two types of data set, one
for training the models and one for the testing. The testing data set contains 21 892
heartbeats. One heartbeat contains 187 samples, which at 125 Hz sampling rate means
the 1.496-second duration for one heartbeat signal. As the MIT-BIH Arrhythmia database
uses a half-hour time slot to collect the heartbeats, the thesis will follow this policy as
well. At this amount of heartbeats contained in the testing data set appr. eighteen
subsets can be generated, each containing heartbeats worth for half-hour duration. Before
the heartbeats are divided into 18 subsets, a random shuffling is performed.

Therefore one test case takes a half-hour to be finished. To examine the different aspects
of the platform, the tests have various numbers of patients, edge servers, and faulty edge
servers.

5.2 Measurements
The different measurements that are taken into account to examine the platform are
visible in the table 5.1. In each scenario, the described performance measurements are
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Name Abbr. Description Unit
Accurate predictions Acc. Measures the prediction accuracy %

Min proc. time Min. Min proc. time of one job sec
Max proc. time Max. Max proc. time of one job sec
Avg proc. time Avg.. Avg proc. time of one job sec

Sample lost Smp. l. Heartbeats lost during the scenario %
Undecided predictions Un. pr. Heartbeats unable to be predicted %

Proposer rate Prop. r. Rate of proposed blocks per proposer %
Blockchains equality Eq Blockchain equality among the devices Boolean

Table 5.1: Measurements to evaluate performance.

measured and evaluated.

5.3 Evaluation process
To evaluate the results, and evaluation script is written. This script takes all the
blockchains in JSON format generated by the different use cases, and evaluates them in
the following manner:

1. The script takes two command-line arguments. The first one is the root directory,
where the generated blockchains are found for all the nodes. The second one is
the root directory of the test data in .csv format because it provides the proper
arrhythmia categories that can measure the accuracy of the CNN network.

2. First, the blockchains are evaluated, whether they are identic, or not. It is done
by taking the md5 hash of the content of the JSON files and comparing them to
each other. If all the hashes are the same, that means that all the file contents
are the same. In this case, the script continues. In case, if there is a blockchain
that is different from the others, the script gives an error message and terminates.
It makes only sense to evaluate the performance if the blockchains are the same.
Otherwise, the whole concept of the platform is violated.

3. If all the blockchains are the same, the first node is taken as a reference. The script
iterates through all the patients (all the .json files), evaluates the measurements
seen in Table 5.1 on them, and provides the results for each patient individually.

4. After the evaluation is done the results are printed on the screen and are available
for further examination

5.4 Aspects
The four aspects of the platform are presented, that need to be evaluated based on
different test setups and scenarios.
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5.4.1 Performance analysis
The first aspect of the system is performance. To check the performance the test cases
are conducted with different amounts of patients. All the other actors stay the same
during every test. As it was discussed earlier the performance can be examined for up
to 18 patients. Therefore seven use cases are constructed that are visible in table 5.2.
These use cases are run and, for each use case, the measurements in Table 5.1 evaluated.

ID Number of patiens
UC_1 1 patient
UC_2 5 patients
UC_3 7 patients
UC_4 10 patients
UC_5 13 patients
UC_6 16 patients
UC_7 18 patients

Table 5.2: Summary of use case scenarios constructed for the thesis.

The other actors of the system stay the same in each scenario. That means:

• 3 edge servers

• 1 cloud

• 1 message broker

5.4.2 Fault tolerance
The fault tolerance tests should discover the performance of the platform if faulty nodes
are present in the system. Within the fault tolerance tests, all the use cases from Table
5.2 are run again. However, this time after approximately 10 minutes one of the servers
is shut down, and after 20 minutes another one is killed. It implies that the system runs
10 minutes without failure, 10 minutes with one failed node, and 10 minutes with two
failed nodes, hence with only one node alive.

The shut down is done on the master node in the system, which actively calculates
and distributes blocks in the platform. It is necessary to see how the failure affects the
performance. If not the master node would be shut down the effect would be invisible.
The system detects the fault if the active master node does not distribute the blocks. A
new election can be initiated only if the master node gets unavailable.

The performance results of the scenarios under this chapter are interesting in light of
the results of the previous chapter. A comparison needs to be done to see how the
performance was affected by the failure.
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It is also worth mentioning, that if any difficulties are detected in the performance
analysis scenarios, a new upper limit of the platform is identified, i.e., a smaller amount
of patients. In that case, not all the fault tolerance tests are run again only up to the
new upper limit of the number of patients. The number of the other actors of the system
stays the same in each scenario:

• 3 edge servers (at the beginning)

• 1 cloud

• 1 message broker

5.4.3 Edge scalability
The edge scalability checks, what is the reaction of the platform at the various amount
of edge servers. Because of the limited physical resources available for us, the maximum
amount of edge servers is four. So in this scenario, four tests are run, at first with one
edge server, and afterward, the servers are increased by one in each scenario. The number
of patients is determined by the performance analysis. The upper limit of the platform
gives the number of patients in this scenario. The number of the other actors stays the
same. The same measurements are evaluated, and each scenario is evaluated in the light
of the other scenarios. The result of the test shows how the number of edge servers
impacts the measurements. Hence the actors:

• n edge servers (where n is between 1 and 4)

• 1 cloud

• 1 message broker

• n patients - the upper limit of the platform regarding the number of patients

5.4.4 Reliability
The reliability tests show the range within one test case can vary by running it at different
times. In this case, one test with the same setup is conducted ten times in a row. The
ten results are compared, and the range is checked in which the results are spread. To
visualize the results box plot charts are used. The actors in this scenario are:

• 3 edge servers

• 1 cloud

• 1 message broker

• n patients - the upper limit of the platform regarding the number of patients
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The measurements are the same, but under reliability tests also new measurements
are introduced. The new characteristics with description can be seen at Table 5.3. To
generate the values a web tool is used BoxPlotR. [Box]

Name Description
Upper whisker The maximum value of the given measurement

3rd quartile The value under which lie the 75% of the values
Median The value that separates the higher half from the lower half

1st quartile The value under which lie the 25% of the values
Lower whisker The minimum value of the given measurement

Mean The average value of the numbers

Table 5.3: Box plot statistics measurements.

5.5 Test setup
In this section, a quick introduction to the setup of the tests is given. As per the
architecture, four main actors participate in all the scenarios. The difference is only in
the amount of them. The five actors are cloud, edge server, message broker, patients.

Ideally, all the actors should be simulated on different devices. This means, each patient’s
end device should be a different device, all the edge servers should have a dedicated
computer. The message broker should be located on a different device and, in the end,
the cloud needs to be located relatively far away from the setup, simulated by a powerful
machine. With the biggest use case scenario, this would mean 23 different devices.
Unfortunately, due to a lack of resources, this realistic setup can’t be simulated. The
available resources allow me to use the following setup:

• Each edge device is simulated on a different raspberry pi

• the message broker is simulated on a raspberry pi

• the cloud is simulated on my local computer

• the patients are simulated on my local computer

5.5.1 Local computer
Our local computer has the following specification:

• 2.3GHz dual-core Intel Core i5, Turbo Boost up to 3.6GHz, with 64MB of eDRAM

• 8GB of 2133MHz LPDDR3 onboard memory

• 256GB SSD
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The local computer’s properties are good enough to simulate a cloud on it. Admittedly,
for the patients would be good to have at least another powerful machine, but except for
the heat generated by the local machine, no serious issue was caused by simulating such
a high amount of actors on one computer.

5.5.2 Raspberry Pi
All the Raspberry Pi’s occurring in the testbed was Raspberry Pi 3 B models, with the
following specifications:

• Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

• 1GB RAM

• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on board

• 16 GB flash drive

The Raspberry Pi 3B model fulfills the requirements of an IoT edge device. However,
simulating one edge server on one device was enough pressure to take regarding the
performance. Out of curiosity, simulating more edge servers on one device led to serious
performance issues and crashes. Probably because the TensorFlow 2.2 is not well
supported on 32-bit architecture, which is the recommended OS architecture used by the
Pi. Using 64-bit OS on them caused a serious slow down even without starting an edge
server. Furthermore, simulating patients on the RPi caused crashes on the devices when
more than two patients’ data on one machine was simultaneous.

The edge devices and MQTT broker (represented by Raspberry Pis) were connected
wired, to speed up the P2P communication between them. The connection to the local
computer (cloud and patients) was wireless.
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CHAPTER 6
Evaluation results

This chapter provides the results from the conducted tests as described previously in
Chapter 5.

6.1 Performance analysis
In the performance analysis, the use cases with the growing patient numbers are analyzed.
After seven patients, the platform has shown difficulties that made the platform inadequate
to deploy it in such a mission-critical environment. Hence, the upper limit of the platform
is defined with seven patients.

6.1.1 Use case 1
The evaluation returned by the script is seen on Table 6.1. The platform’s performance
on one patient is promising. No information is lost, all the samples are delivered, no
undecided predictions, and the total amount of signals is processed. The percentage of
accurate arrhythmia predictions is above 96 %, which is considered good as well. The
workload is concentrated at one proposer which is the expected behavior because no
failure was present during the test. The average processing time is 30 milliseconds, and
the max processing time is around 1 second. It is worth mentioning, that every 1.496
seconds a new job is generated, so even the worst processing time did not exceed that.

Acc. Min. Max. Avg. Smp. l. Un. pr. Prop. r.

P1 96.27% 0.030 s 1.004 s 0.057 s 0% 0%
p1: 100%
p2: 0%
p3 0%

Table 6.1: Use case 1 evaluation - 1 patient.

41



6. Evaluation results

Acc. Min. Max. Avg. Smp. l. Un. pr. Prop. r.

P1 96.27% 0.017 s 12.969 s 0.827 s 0% 0%
p1: 100%
p2: 0%
p3: 0%

P2 95.53% 0.021 s 12.757 s 0.845 s 0% 0%
p1: 100%
p2: 0%
p3: 0%

P3 95.20% 0.025 s 11.956 s 0.880 s 0% 0%
p1: 100%
p2: 0%
p3: 0%

P4 96.52% 0.033 s 12.598 s 1.010 s 0% 0%
p1: 100%
p2: 0%
p3: 0%

P5 95.28% 0.018 s 12.651 s 0.790 s 0% 0%
p1: 100%
p2: 0%
p3: 0%

Table 6.2: Use case 2 evaluation - 5 patients.

6.1.2 Use case 2
The evaluation returned by the script is seen on Table 6.2. The platform’s performance
on five patients is promising as well. No information is lost, all the samples are delivered,
no undecided predictions, and the total amount of signals is processed. The percentage of
accurate arrhythmia predictions is around 95 % by each patient, which is considered good
as well. The workload is concentrated at one proposer which is the expected behavior
because no failure was present during the test. The worst average processing time is
1 second, and the max processing time is around 12 seconds. In the light of the fact
that every 1.496 seconds a new job is generated, it is visible that some of the jobs were
queued.

6.1.3 Use case 3
The evaluation returned by the script is seen on Table 6.3. The platform’s performance on
seven patients shows some difficulties. One heartbeat is lost in one patient, which is good
at such a level of pressure. No undecided predictions and the total amount of received
signals is processed. The percentage of accurate arrhythmia predictions is around 95 %
by each patient, which is considered good as well. The workload is concentrated at one
proposer which is the expected behavior because no failure was present during the test.
The worst average processing time is around 80 seconds, and the max processing time is
around 170 seconds. In the light of the fact that every 1.496 seconds new job is generated,
it is visible that some of the jobs were queued and processed after the patients finished
producing samples. In this case, it is almost 3 minutes (10% of the whole experiment
time) after the generation of the heartbeats is over.
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Acc. Min. Max. Avg. Smp. l. Un. pr. Prop. r.

P1 96.27% 0.050 s 169.947 s 79.179 s 0% 0%
p1: 100%
p2: 0%
p3: 0%

P2 95.53% 2.508 s 169.932 s 79.047 s 0% 0%
p1: 100%
p2: 0%
p3 0%

P3 95.19% 1.765 s 169.716 s 78.900 s 0.08% 0%
p1: 100%
p2: 0%
p3 0%

P4 96.52% 2.328 s 170.144 s 79.058 s 0% 0%
p1: 100%
p2: 0%
p3 0%

P5 95.28% 2.109 s 169.293 s 78.900 s 0% 0%
p1: 100%
p2: 0%
p3 0%

P6 96.85% 2.135 s 169.896 s 79.241 s 0% 0%
p1: 100%
p2: 0%
p3 0%

P7 95.94% 2.296 s 169.694 s 79.257 s 0% 0%
p1: 100%
p2: 0%
p3 0%

Table 6.3: Use case 3 evaluation - 7 patients.

6.1.4 Rest of the use cases

After seven patients the performance of the platform showed difficulties to an extent,
that is unacceptable for a mission-critical system. Hence, this section only provides the
measurements of the system depicted by charts.

The first chart 6.1 depicts the accurate predictions according to the number of patients.
Although a slight decrease is present after increasing the number of patients, the platform
regarding the accurate predictions performs very well. The accuracy is around 96% and,
only minor differences could be spotted.

The second chart 6.2 shows the biggest problem of the platform. It is visible that after
seven patients, the increased pressure to handle the requests to build the blocks leads to
massive losses regarding the heartbeats. The problem is in the communication. In the use
case, it was visible, that all the heartbeats were sent towards the edge servers. However,
on the other side, the logs show that not all the messages have arrived. Although the
TCP buffer was relieved by applying the bully algorithm, the massive message exchange
at a high pressure still led to omitting messages. The messages were not dropped by the
application but by the underlying system. At ten patients, the platform loses a third of
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Figure 6.1: Accurate predictions for different amount of patients.

the heartbeats. At the highest amount of patients in the experiment, around two-third
of the heartbeats are lost. That ratio is unacceptable for a mission-critical system and
that is why the upper limit of the system is defined as up to seven patients.

Figure 6.2: Heartbeat loss rate for different amount of patients.

The average processing time seen in Figure 6.3 is the most descriptive above all the
measurements regarding the processing time. It depicts, how the average processing time
increases after increasing the number of patients, hence increasing the workload. The
expectation is that by increasing the workload the average processing time will increase
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with linear growth. However, after ten patients, the chart starts to sink. This paradox
behavior can be understood by keeping in mind the heartbeat lost ratio. The increased
number of heartbeats thrown away by the TCP buffer decreases the workload. That is
the cause of the shape of Figure 6.3.

Figure 6.3: Average processing time for different amount of patients.

The max processing time, shown in Figure 6.4 depicts the maximum processing time
between a heartbeat was produced and it was added to the block. Because of the
heartbeat loss, it shows a similar shape as the average processing time. The heartbeats
are processed in sequence, and they are buffered in the queue hence the maximum
processing time provides information, how long it takes to process the last generated
heartbeat. It is useful because it shows us how much time is needed after the test is
finished to see the final results (blockchains).

6.1.5 Summary
In this section, the overall picture of the performance analysis is summarized. The first
measurement is accurate predictions. The platform can stick to the success rate predicted
by [Kag]. The values are over 94% in each case, and no undecided predictions are present
in the blockchain. Therefore, the predictions are reliable, and the platform is useful to
predict arrhythmia categories.

The average procession time varies across the different use cases. Until five patients, it
could be considered excellent. At five patients, it barely exceeds 1 second. Considering
the 1.496 seconds period producing heartbeat samples leads to nearly immediate results.
After seven patients, a delay is experienced. That delay, according to the increased
number of collected data means in real life that after monitoring seven patients for 30
minutes, 80 seconds needs to pass to get the final state of the blockchain. The average
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Figure 6.4: Max processing time for different amount of patients.

processing time at ten patients and 18 patients is around 2 minutes, but this is because
of the high number of lost heartbeats.

The max and the min processing time are various by different use cases, as we expect from
edge values. However, the particular values across the patient don’t vary significantly.
This means in a real-life scenario, that all the patients have appr. the same values, hence
the platform is balanced and, no starving of patients is experienced.

The sample lost shows the greatest lack of the platform. After seven patients, the number
of the lost heartbeats has reached an unacceptable level and undermines the reliability.
In a conclusion, the platform scales well to a particular threshold, but afterwards too
much information is lost.

6.2 Fault tolerance
As it was discussed earlier, the upper limit of the platform is seven patients in parallel.
Therefore, the fault tolerance tests are presented and discussed only for up to seven
patients, e.g., the first three use cases. The values are analyzed in the light of the previous
scenarios, where no faulty nodes were injected during the tests.

6.2.1 Use case 1
The evaluation returned by the script is seen on Table 6.4. The fault tolerance is promising
in the scenario of 1 patient. The max processing time is the only main difference, where
the idle time is included, that was necessary to detect the failure of the master node. The
average processing time is 0.1 seconds, which is considered good, however, it is doubled
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Acc. Min. Max. Avg. Smp. l. Un. pr. Prop. r.

P1 96.27% 0.017 s 8.365 s 0.100 s 0% 0%
p1: 39.86%
p2: 33.66%
p3: 26.47%

Table 6.4: Use case 1 evaluation - 1 patient (fault tolerance).

Acc. Min. Max. Avg. Smp. l. Un. pr. Prop. r.

P1 96.27% 0.032 s 14.668 s 1.046 s 0% 0%
p1: 32.50%
p2: 33.25%
p3: 34.25%

P2 95.53% 0.036 s 15.314 s 1.122 s 0% 0%
p1: 32.50%
p2: 33.25%
p3: 34.25%

P3 95.20% 0.029 s 14.867 s 1.079 s 0% 0%
p1: 32.50%
p2: 33.25%
p3: 34.25%

P4 96.52% 0.029 s 15.949 s 1.054 s 0% 0%
p1: 32.50%
p2: 33.25%
p3: 34.25%

P5 95.28% 0.023 s 599.190 s 1.535 s 0% 0%
p1: 32.50%
p2: 33.25%
p3: 34.25%

Table 6.5: Use case 2 evaluation - 5 patients (fault tolerance).

than at the non-fault tolerance scenario. The workload distribution is also considered
balanced.

6.2.2 Use case 2
The evaluation returned by the script is seen on Table 6.5. The fault tolerance is promising
in the scenario of 5 patients. The max processing time is the only main difference, where
the idle time is included, that was necessary to detect the failure of the master node.
The average processing time is 1.5 seconds, which is considered good, however, it is
50% higher than at the non-fault tolerance scenario. The workload distribution is also
considered balanced.

6.2.3 Use case 3
The evaluation returned by the script is seen on Table 6.6. The fault tolerance is promising
in the scenario of 7 patients. The max processing time and the average processing time
show very little differences with the non-fault tolerance scenario. This proximity to
the previous results comes from the fact that the jobs needed to be queued anyway, so
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6. Evaluation results

Acc. Min. Max. Avg. Smp. l. Un. pr. Prop. r.

P1 96.27% 0.769 s 176.052 s 81.992 s 0% 0%
p1: 30.52%
p2: 30.10%
p3: 39.38%

P2 95.53% 0.576 s 176.338 s 81.983 s 0% 0%
p1: 30.52%
p2: 30.10%
p3: 39.38%

P3 95.20% 0.067 s 176.235 s 81.586 s 0% 0%
p1: 30.52%
p2: 30.19%
p3: 39.29%

P4 96.52% 0.222 s 175.684 s 81.660 s 0% 0%
p1: 30.52%
p2: 30.19%
p3: 39.29%

P5 95.28% 0.410 s 176.544 s 81.724 s 0% 0%
p1: 30.52%
p2: 30.19%
p3: 39.29%

P6 96.85% 0.054 s 176.383 s 80.772 s 0% 0%
p1: 31.18%
p2: 30.19%
p3: 38.63%

P7 95.94% 0.061 s 176.417 s 80.780 s 0% 0%
p1: 31.18%
p2: 30.19%
p3: 38.63%

Table 6.6: Use case 3 evaluation - 7 patients (fault tolerance).

the idle time does not affect significantly the results. The workload distribution is also
considered balanced.

6.2.4 Summary

In this section, the results of the fault tolerance scenarios are discussed, and an overall
picture is presented. If we look at the results, two important conclusions can be made.
The fault tolerance scenarios, in terms of accurate predictions or sample, lost performed
not worse than the original use cases. From the values that can be derived, that the
platform overall can handle the faulty scenarios and no significant performance issue is
presented. However, this does not change the fact that after seven patients the platform
reaches its limits.

6.3 Edge scalability
The edge scalability is evaluated based on the average values of the seven patients in
one scenario. The interesting measurements are taken for each scenario, and the average
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6.4. Reliability

Acc. Min. Max. Avg. Smp. l. Un. pr.
1 Edge server 95.94 % 2.21 s 165.25 s 50.61 s 0.0 % 0.0 %
2 Edge server 95.94 % 2.29 s 159.21 s 66.57 s 0.0 % 0.0 %
3 Edge server 95.94 % 1.88 s 169.80 s 79.08 s 0.0 % 0.0 %
4 Edge server 95.94 % 2.06 s 206.48 s 75.04 s 0.0 % 0.0 %

Table 6.7: Edge scalability - overall picture.

value over the seven patients is examined. This helps us to identify the characteristics of
the platform on different amounts of edge servers without the unnecessary details.

The results are visible on Table 6.7. Each measurement is analyzed by comparing it to
the other scenarios.

The first measurement is the accuracy of the CNN model. It is visible that by rounding
all the values are the same. It implies that only minor differences are present between
the scenarios, which is the expected behavior. The edge server is working with the same
model hence, no impact is taken by increasing the number of the edge devices. The
minimum and maximum processing time results serve as an interesting fact rather than
values from which a strong conclusion could be made. As edge values, they vary across
the devices without a significant pattern.

The average processing time provides us more interesting results. It is visible that
by increasing the number of edge servers, the average processing time also increases.
However, the growth is not linear in terms of edge servers. It depends probably on the
TCP communication, where at one edge server scenario no block needs to be distributed
and, at four edge server scenario, the master node needs to send the calculated block to
three more edge servers. In general, we can say that the performance is better with fewer
edge servers, but this sacrifice brings the drawback of the decreased number of possibly
faulty nodes in the system.

The sample lost and undecided predictions depict, that increasing the number of edge
servers does not affect the reliability of the system. On each level, no samples are lost,
and no undecided predictions were made.

6.4 Reliability
The reliability measurements are visible in the Table 6.8. In each scenario, seven patients
were simulated and, the rows show the average values by each attempt. Each measurement
is depicted on box plot charts (except avg. predictions), which makes them easier to
evaluate. The average predictions only differ in the third digit after the comma, but the
BoxPlotR rounds it up to 2 digits, which leads to 95.95% for each attempt.

Figure 6.5 shows the heartbeat loss and undecided predictions on the box plot. The y
axis represents the values in percentage. It is visible that the ten attempts of one test
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6. Evaluation results

Acc. Min. Max. Avg. Smp. l. Un. pr.
1. 95.947 % 2.55 s 169.14 s 73.56 s 0.0 % 0.0 %
2. 95.946 % 2.30 s 171.93 s 70.92 s 0.01 % 0.0 %
3. 95.947 % 2.00 s 240.45 s 73.35 s 0.0 % 0.0 %
4. 95.946 % 2.68 s 236.29 s 75.57 s 0.01 % 0.0 %
5. 95.947 % 2.47 s 164.03 s 73.78 s 0.0 % 0.0 %
6. 95.947 % 2.65 s 205.13 s 69.82 s 0.0 % 0.0 %
7. 95.947 % 2.53 s 183.66 s 78.29 s 0.0 % 0.0 %
8. 95.946 % 1.73 s 198.39 s 63.69 s 0.01 % 0.0 %
9. 95.947 % 2.03 s 230.92 s 64.95 s 0.0 % 0.0 %

10. 95.946 % 1.99 s 199.94 s 80.59 s 0.01 % 0.0 %

Table 6.8: Reliability - overall picture.

case show a minor difference in terms of heartbeat loss and undecided predictions. Hence,
the results in the other scenarios can be considered reliable.

Figure 6.5: Heartbeat loss and undecided predictions.

The minimum processing time (Fig. 6.6 ) varies between the maximum value of 2.68
seconds and the minimum value of 1.73 seconds. The median is 2.38 seconds, and the
mean is 2.29 seconds. The 1st quartile is 2.00 seconds, and the 3rd quartile is 2.55
seconds, which means that half of the values are between this interval.

The average processing time (Fig. 6.7 ) varies between the maximum value of 80.59
seconds and the minimum value of 63.69 seconds. The median is 73.45 seconds, and the
mean is 72.45 seconds. The 1st quartile is 69.82 seconds, and the 3rd quartile is 75.57
seconds, which means that half of the values are between this interval.
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6.4. Reliability

Figure 6.6: Min processing time.

Figure 6.7: Average processing time.

The maximum processing time (Fig. 6.8) varies between the maximum value of 240.45
seconds and the minimum value of 164.03 seconds. The median is 199.16 seconds, and
the mean is 199.99 seconds. The 1st quartile is 171.93 seconds, and the 3rd quartile is
230.92 seconds, which means that half of the values are between this interval.

6.4.1 Summary

Table 6.9 sums up all the stated measurements and gives an overall overview of the box
plot numbers. From Table 6.9 it is visible that regarding the sample lost and undecided
predictions the system is reliable. A minor sample loss was present at seven patients in
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6. Evaluation results

Figure 6.8: Max processing time.

Min. Max. Avg. Smp. l. Un. pr.
Upper whisker 2.68 s 240.45 s 80.59 s 0.01 % 0.0 %

3rd quartile 2.55 s 230.92 s 75.57 s 0.01 % 0.0 %
Median 2.38 s 199.16 s 73.45 s 0.0 % 0.0 %

1st quartile 2.00 s 171.93 s 69.82 s 0.0 % 0.0 %
Lower whisker 1.73 s 164.03 s 63.69 s 0.0 % 0.0 %

Mean 2.29 s 199.99 s 72.45 s 0.0 % 0.0 %

Table 6.9: Box plot - overall picture.

general the values are promising. The average processing time shows a higher variation
across the attempts. However, in general, 50% of the results vary between 69.82 seconds
and 75.57 seconds. The median and mean shows also a minor difference, that is 1 second.
The max processing time, as an edge value, shows more variation. However, as an edge
value, it can’t be used to make solid conclusions. Checking Table 6.8 it is visible that no
correlation can be seen between the average processing time and maximum processing
time, so the impact of the maximum processing time on the average processing time is
not straightforward.
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CHAPTER 7
Discussion

In this section, an overall discussion is provided about the thesis. The key findings
summarize the results and discuss what can be derived and observed from them. The
implications describe the implications of the results and platform in the light of the
hypothesis. Limitations analyze what limitations the system has and what the results
can not tell us.

7.1 Key findings
The thesis aimed to build a platform that can handle sensor data in a mission-critical
system, use AI to make predictions, and create a blockchain ledger out of the evaluated
data. The platform was evaluated based on a test plan. It aims to provide results
to analyze four aspects of the platform: performance, fault tolerance, edge scalability,
reliability. From the results the following indications can be made:

1. The platform performs well up to seven patients in parallel. The data was handled
correctly, accurate predictions were made and, no serious information loss was
observed.

2. The average processing time at the maximum (seven patients) reasonable pressure
is 80 seconds and 95% accuracy. That means after a heartbeat is generated appr. 1
minute and 20 seconds needed to be a wait to receive an arrhythmia category with
95% accuracy

3. The scenarios, where faulty nodes were present in the system, has shown minor
difference according to the regular scenarios. That means the platform handles the
faulty nodes well.
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7. Discussion

4. With the rising number of edge servers, the performance is decreasing. However,
the number of faulty nodes that can be handled is increasing with each edge server.
In our scenario, where four edge servers could be deployed at most, three was
determined as an optimal number. For other cases, another number as an optimum
can be defined.

5. The reliability tests, where the same test setup was run several times in a row,
show minor differences across the different tests. That is visible on the box plot
charts, where the range of the results can be examined and analyzed.

All the points meet the previous expectations and it is supported by our hypothesis. The
blockchain concept is responsible for the fault tolerance and the introducing overhead is
still under an acceptable threshold.

7.2 Implications
The results have been shown that the hypothesis, namely to build a blockchain ledger from
the data without introducing significant overhead was correct. Blockchain technology
can be deployed on the edge of the network. It increases the fault tolerance of the system
without decreasing the performance significantly.

7.3 Limitations
The system was tested with at most four edge servers. We tested our solution on low-
powered edge servers to present scenarios as realistic as possible (i.e., Raspberry Pis
). The platform was not tested with more than four edge servers; therefore, we don’t
have an upper limit in terms of edge devices. Just predictions can be made on how
the system would react on more edge servers. As previously mentioned, our proposed
solution is tested only with RPis, and we did not evaluate our solution with more powerful
devices. Hence, within the presented results, one cannot determine whether a significant
improvement can be achieved with more computational power.

The results have shown that up to seven patients approximately 80 seconds evaluation
time can be observed on average. That means after the half-hour period is done, so
much time needs to be counted for each heartbeat on average. It was not tested, whether
this value depends on the duration of the tests. The results can not tell whether a
one-hour period or a 24-hour period will provide the same average value or increase
with time. In terms of the practical use of the system, the most significant limitation
is the lost heartbeats. During the message exchange at high pressure (above seven
patients), heartbeats were dropped, leading to an unacceptable ratio of data loss. In a
mission-critical system, it is crucial to have all the data. This phenomenon defines an
upper limit for the system and makes it unusable in practice above seven patients in
parallel. However, the results can not tell us whether a network with higher throughput
could provide augmentations here.
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CHAPTER 8
Conclusion

In this chapter, the research question that was stated at the beginning is answered. The
future work and improvement possibilities are discussed and at the end, a summary is
provided.

8.1 Research questions
Let’s recall and answer the research questions that we introduced in Chapter 1.

(RQ1) What is the maximum amount of patients that the system can handle at once?

As we stated multiple times earlier, the maximum amount of patients that can be
handled in parallel is seven. Above that amount, too much information is lost,
which violates the usability of such a platform.

(RQ2) How relates the number of edge servers to the fault tolerance and performance?

The number of edge servers, as from the definition of the consensus algorithm is
implied, increases the fault tolerance of the system. The more edge servers are
present, the more of them can be faulty. However, the number of edge servers
increases also the average processing time (latency), because the more edge servers
are present, the more message needs to be exchanged.

(RQ3) What it is the latency-overhead by introducing the blockchain technology compared
to the non blockchain solution?

To answer this question the edge scalability test needs to be considered. The main
overhead by introducing blockchain technology comes with the consensus algorithm.

55



8. Conclusion

In a test case, where only one edge server is present, no consensus algorithm needs
to be involved and no additional message exchange needs to be performed. It is
visible, that appr. 30 % increase in the average processing time can be observed
after introducing the first edge server.

(RQ4) What is the impact of the faulty nodes on the performance?

As the fault tolerance test scenarios are visible, minor differences can be observed
after introducing faulty nodes in the system. That means the platform performs
well in fault tolerance scenarios because the results are not significantly worse than
in the scenarios without faulty nodes.

8.2 Future work
In this section, future work regarding the platform is discussed. The results of the system
examine each heartbeat individually. It is capable to observe an arrhythmia, but no
further analysis or examination is implemented. In the cloud a more complex and further
analysis could be to examine the whole set of results, finding patterns or preludes from
which complex diseases can be foreseen.

As the main bottleneck of the system is the consensus algorithm, it is worth reconsidering
the messaging protocol used among the edge servers. Different messaging protocols can
be tested, which can maybe lead to better performance. A more extensive setup can also
provide more detailed information about the platform. The lack of resources(physical
machines) made us make compromises in the realistic test setup. However, it would be
interesting to conduct the test with a higher amount of edge servers, with more powerful
cloud, more powerful edge servers, etc.

The scheduling can be reconsidered as well. Currently, if no faulty node is present in the
system, all the work is done by only the master node, which was chosen at the start of
the test. It was necessary to decrease the message exchange among the edge servers. In
the future, this can be reconsidered and improved to get better workload distribution.

8.3 Summary
Within the thesis, we built a platform that predicts arrhythmia from realistic data. The
resulting data is collected in a blockchain ledger. The hypothesis at the beginning was
correct therefore a lightweight blockchain ledger can improve the fault tolerance of the
system without decreasing significantly the performance. All the research questions were
answered. Al last the future work and improvement possibilities were discussed.
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