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Kurzfassung

Autonomes Fahren lässt sich in 6 Level der Autonomie unterteilen. Während bei Level 0
keine Automatisierung am Fahrzeug vorgesehen ist, beschreibt Level 5 ein voll automati-
siertes Fahrzeug das ganz ohne menschlichen Fahrer auskommt [Int18]. Die Fahrzeuge
der Autobauer haben derzeit Level 2 erreicht und sind kurz davor Level 3 abzuschließen.
Bei Level 3 muss noch eine Person im Fahrzeug anwesend und aufmerksam sein aber
kann die Hände vom Lenkrad nehmen und das Fahrzeug fährt selbstständig [QLL22].
Um die nächste Autonomiephase zu erreichen sind weitere Entwicklungen im Bereich des
Maschinellen Lernens erforderlich. Damit Autonomes Fahren generell möglich ist, muss
das Fahrzeug während des Fahrprozesses wissen wo es sich beĄndet und weiters seine
unmittelbare Umgebung wahrnehmen. Um das zu gewährleisten, benötigen Neuronale
Netze ein menschenähnliches Szenenverständnis. Dies geschieht, indem sie speziĄsche
Fahrdaten von verschiedenen bildgebenden Sensoren wie etwa Bilder von RGB Kameras
über einen längeren Zeitraum analysieren. Die daraus gewonnenen Daten und abgeleite-
ten Erkenntnisse unterstützen autonome Fahrzeuge dabei ihre Umgebung zu erkennen
und zu verstehen. Diese gesammelten Informationen können auch an andere Fahrzeuge
weitergegeben werden und können genutzt werden, um das Fahrverhalten auf kommende
Ereignisse anzupassen. Dadurch sind zum Beispiel Hindernisse und deren geograĄsche
Positionen für autonome Fahrzeuge bereits bekannt, obwohl sie diese selbst mit ihren
Sensoren noch nicht erfasst haben. Es muss jedoch auch eine Phase der Koexistenz
berücksichtigt werden in der sich sowohl autonome als auch von Menschen gesteuerte
Fahrzeuge im Straßenverkehr über einen langen Zeitraum gemeinsam bewegen können.
Daher sind statische Infrastrukturen wie zum Beispiel Verkehrszeichen und Ampelanlagen
für die Sicherheit und das richtige Verhalten im Straßenverkehr unerlässlich. Für den
Fahrprozess ist die Eigenlokalisation des autonomen Fahrzeugs wichtig, um sich zu orien-
tieren und eine passende Wegstrecke zu Ąnden. Jedoch ist die Eigenlokalisierung teilweise
zu ungenau. Grund dafür ist ein gestörtes Signal, von welchem die ungenauen GPS Daten
produziert werden. Um die Lokalisierung des Fahrzeugs als auch von anderen Objekten
zu gewährleisten, muss die Umgebung durch einen Sensor wie zum Beispiel eine Kamera
wahrgenommen werden. Jedoch wird die Wahrnehmung der Umgebung auf Basis von
Kamerabildern erschwert durch gewisse Störfaktoren wie etwa durch Aufnahmeartefakte,
Verkehrshindernisse während der Fahrt oder erschwertes Detektieren und Tracken von
Objekten während dem Fahrprozess auf Grund von bewegten Kameraaufnahmen während
der Fahrt.
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Um diese Herausforderungen zu meistern und eine robuste Wahrnehmung mit anschlie-
ßender Lokalisierung zu unterstützen, wird im Zuge dieser Arbeit eine Kombination
aus Convolutional Neural Networks untersucht. Die Objektlokalisierung im Rahmen
dieser Arbeit ist das Ergebnis von drei Hauptkomponenten: ein Modul für Datenvor-
verarbeitung und -aggregation, ein Modul zur Objekterkennung und -klassiĄkation und
ein Lokalisierungsmodul. Während das erste vorverarbeitete Daten aufbereitet um die
Modelle zu trainieren und optimieren, extrahieren die resultierenden Modelle in den
Erkennungs- und KlassiĄzierungsmodulen die straßenbezogenen Informationen aus den
Bilddaten. Es werden dabei Autos, Radfahrer, Lastwagen, Personen, Verkehrsampeln
und Verkehrsschilder entlang der Fahrbahn identiĄziert. Durch Optimierungen unter
Verwendung der zeitlichen Komponente werden die Ergebnisse mit Hilfe von Optical
Flow und Object Tracking verbessert. Abschließend erfolgt im Lokalisierungsmodul die
Ąnale Berechnung und Positionierung der Objekte in einer Straßenkarte.

Das Projekt auto.Bus – Seestadt wird gefördert bzw. finanziert im Rahmen des FTI-Programms
Mobilität der Zukunft durch das Bundesministerium für Klimaschutz und von der Österreichischen
Forschungsförderungsgesellschaft (FFG) abgewickelt.



Abstract

There are 6 levels of autonomous driving, whereby level 0 means the driver is steering the
car with no automation and level 5 is fully automation and can drive without any human
driver [Int18]. Today car manufacturers are above level 2 and close to level 3 where the
autonomous vehicle is driving by its own but it is required that the driver take over the
control of the vehicle if it is requested by the vehicle [QLL22]. To reach the next level,
further developments of machine learning are essential. To enable autonomous driving,
the vehicle must know where it is during the driving process and perceive its immediate
surroundings. Therefore, algorithms for autonomous driving need human like scene
understanding by analyzing speciĄc driving data from various sensors like images from a
RGB camera over time. The collected data and the derived information from the data
supports the autonomous vehicles to recognize and understand their surroundings. To
further improve autonomous driving, it is necessary to get access to accurate information
of obstacles and their geolocations. Autonomous vehicles are able to share and exchange
the collected information with other autonomous vehicles. This means, for example,
that obstacles and its geographical positions are already known to autonomous vehicles,
even though they have not yet detected the obstacles itself with their sensors. However,
stationary infrastructure is still essential like traic signs and lights are essential for
safety and proper behavior in road traic due to the fact that autonomous vehicles and
human-driven cars have to share the roads as long as humans are still driving cars by
their own. Self-localization is needed for autonomous driving even though the localization
can be inaccurate due to a disturbed GPS signal. To ensure the localization of the vehicle
as well as other objects, the driving environment must be perceived by a sensor such as
a camera. However, the environmental perception by image sequences is hampered by
certain disturbing factors such as recording artifacts, traic obstacles while driving or
moving background. To address the challenges and to support a robust visualization,
a combined approach based on convolutional neural networks is introduced. Within
this thesis the performance of traic sign localization and self-localization are the result
of three major factors, namely: the data preprocessing and aggregation approach, the
object detection and classiĄcation part and the localization module. While the Ąrst one
prepares preprocessed data to train the models, the next two modules, the detection and
classiĄcation modules extract the road-related information. The models are trained to
identify cars, bicycles, trucks, persons, traic lights and traic signs along the traic area.
By using the temporal data, the results of the previous modules are improved. For that,
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optical Ćow and object tracking are used. The localization module performs the Ąnal
localization of the objects within the street map.

The project auto.Bus – Seestadt has received funding from the Mobility of the Future programme.
Mobility of the Future is a research, technology and innovation funding programme of the Republic
of Austria, Ministry of Climate Action. The Austrian Research Promotion Agency (FFG) has been
authorised for the programme management.
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CHAPTER 1
Introduction

Human drivers make mistakes during the driving process shown by the NHTSA study
[Sin15], which revealed that 94% of road accidents occurred due to human errors. The
number of people who die each year as a result of traic accidents is increasing steadily
which results in 1.35 million traic fatalities worldwide in 2016 [O+18]. The human
error-prone driving style results from emotional characteristics like overestimating the
own driving skills and becoming panicked or distracted by the environment and physical
exceptional situations like sleepiness or drunkenness [SBR21]. From this perspective,
there is an opportunity to increase car and road safety through reducing the amount
of workload for human vehicle operators. This results in the growing interest regarding
assistance systems and self-driving cars.

1.1 Motivation

Advanced Driver-Assistance Systems (ADAS) are promising to assist drivers with self-
driving functions as well as connecting the vehicle with other cars [APS20]. Currently
available ADAS support the driver with basic functionalities like lane-keeping or parking
assistance. In order to handle autonomous driving, the ADAS domain needs to reach
higher levels of autonomy described by the taxonomy of vehicle driving autonomous
systems [Int18].

Interacting with others ofers the opportunity to collect additional data which can be
transformed into knowledge about the environment of the vehicle [Kir15]. However, while
the information exchange between connected vehicles is integrated in autonomous and
humane-driven vehicles, the autonomous ones have further the opportunity for traic-
and infrastructure-related data exchange to adapt the autonomous driving style and
improve their traic steering [SM16]. This can enhance traic operations, which leads to
decreased traic delays and to increased road capacity. For example, to avoid stopping at
signal lights through automatically adapting the driving speed [DYC21] or by optimizing
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1. Introduction

the gap acceptance at roundabouts [MGE21]. As long as human-driven vehicles exist
the road environment must be shared between human-driven and autonomous vehicles.
Therefore, conditions must be set for mixed driving.

Figure 1.1: Scenery of a traic square containing diferent dynamic objects [Mad19] which
cope diferent essential research topics like object detection, multi object tracking, scene
understanding up to behavior prediction.

Figure 1.1 shows the complexity of a common traic scene within a city. The road can
have multiple crossings and driving lanes. Persons are waiting on the bus station or
moving through the cross walk, other cars are parking sideways next to the street or
driving through the crossing and bicycles driving on the road or on speciĄc cycle paths
on the street. Stationary navigation priors, like traic lights and traic signs, are utilized
from motorized vehicles, bicycles or pedestrians to interact with others. This results in
a large number of road users with various moving behaviors. Due to prior knowledge
of humans about the visual world in terms of moving and not moving objects and the
semantic context within a scene, humans can make forecast dependent on the current
traic scene [BCA+16]. Therefore, autonomous vehicles need human skills like scene
understanding to interpret the scene. To facilitate this the creation of an environmental
representation is needed. The road users as well as common traic regulations are
prerequisites within this environment. Therefore, the recognition of the surrounding is
a key feature to interpret the world and its inĆuence on the style of driving. This is
achieved through sensors like RGB cameras and further analyses based on the captured
images to monitor the current road situation during the driving time.

To recognize objects within the driving surrounding, they have to be identiĄed within
the captured images during driving. Thereby object variability increases the self-driving
complexity as well as various interfering factors hamper autonomous systems from making
right decisions like over- or underexposure, unexpected objects or crowded scenes including
various road users. To cope with the large variety, Convolutional Neural Network (CNN)s
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1.2. Problem Description

[LBD+89] can be used, which learn object representations from image training data.
The networks are systems that mimic the human nervous system which makes the
training comparable to humans learning from experience [Agg18]. By increasing the
experience they can collect of a speciĄc topic, the higher the probability to create specialist
knowledge.

1.2 Problem Description

Navigation is essential for driving in general. Zhou et al. [ZLK+17] state that an
autonomous vehicle must know the place and context, in which an object appears to make
assumptions and predictions concerning to future events. Thus, if the vehicle wants to get
from one place to another it needs to know its position during the whole driving process.
The present and future location of the self-driving vehicle must be provided accurately
to be able to navigate through the traic scene. But Global Positioning System (GPS)
has a lack of accuracy due to interference by buildings, bridges or trees and for indoor or
underground applications [gov22]. Even in the best-case scenario without interference
the GPS signals of smartphones are typically accurate to within a radius of 4.9 meters
when measuring outdoor under the open sky [VDE15].

To improve navigation and localization, visual features derived from camera input can
be used. Objects with known location within the scene nearby the self-driving vehicle
are detected and identiĄed. This is achieved by using CNNs. Trained models based on
selected networks predict and classify objects within the scene. However, the models
are not faultless. Objects within the image can be missed by the model or other objects
can be misidentiĄed. This means that the used data to create the needed models are
essential. Data variety and granularity difers between diferent datasets. For example,
the data captured in a single street results in a low data variety which results in a low
performance of the trained model if it is used in other locations containing unseen objects
or objects with unexpected appearance. The label granularity of a speciĄc class like
traic lights varies too. For example, in case that the dataset distinguishes between the
state of the active lights and its orientation, the label granularity is higher than in case
where just the label Ştraic lightŤ is provided. The active light and orientation allow
further assumptions like a red traic light on the current street means that the car has
to stop and must wait until the traic light is switching to green. Of course, if datasets
with diferent label granularity are combined, the labels have to be transformed into the
lower label granularity.

The autonomous vehicle is moving on the road which means that the camera mounted on
the vehicle is moving too. Resulting in a moving image background which is a challenging
task. Furthermore, other physical objects can move independently within the scene.
Temporal occlusions of the objects which have to be recognized during the capturing
time is additionally challenging. To limit the issues caused by temporal occlusions, it
is essential to have preliminary knowledge regarding which objects in an image tend to
move in the real world and which parts are stationary on a Ąxed position.

3



1. Introduction

The results must be accurate for mapping the results, placing the vehicle on a street map
and to feed further information into route planning and navigation algorithms.

1.3 Contributions

The goal of this thesis is to get a deeper scene understanding by computer vision techniques
to be able to support further mapping techniques based on monocular image sequences
from a moving camera. In the course of this thesis a framework is developed, which
detects, classiĄes and categorizes objects within a traic scene to Ąnally localize the
recognized derived objects and the autonomous vehicle itself within a street map. This
improves localization by using current available Deep Learning (DL) techniques.

Therefore, two methods are proposed: driver self-localization and localizing stationary
infrastructure. Both topics are useful for autonomous driving to localize themselves
and other objects within the scene. The selected infrastructures for localization have a
standardized size and are deĄned as static if they are mounted on Ąxed positions. The
Ąrst method assumes that the GPS positions of the stationary objects are known. By
concentrating on stationary infrastructure like traic signs and traic lights, they can
serve as navigation priors for readjustment of the GPS signal of the vehicle which leads
to an improved GPS localization. The second method assumes that the GPS signal of the
autonomous vehicle is accurate within a radius of 15 centimeters which can be achieved
with GPS RTK provided by the vehicle manufacturer. By automatically marking the
traic signs and traic lights during the drive and calculating their positions in world
coordinates, they are added into a street map. This leads to increased robustness of
street maps by automatically update them to integrate temporal traic sign changes like
from construction zones.

Figure 1.2: Three main aspects to cope within this thesis: (a) Objects must be detected
and classiĄed within the traic scene. (b) The detections are improved by temporal
propagation which is achieved by robust classiĄcation and occlusion handling over
consecutive frames. (c) Finally, the relevant detected objects are geolocalized within the
scene to estimate the main camera position in space.

In Figure 1.2 the steps of the developed pipeline are visualized. At Ąrst, to identify the
deĄned objects within an image captured during the drive, robust scene understanding
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1.4. Structure Of The Work

techniques are employed which are based on consecutively detecting and classifying
objects and obstacles within the scene. To increase the quality of the trained model
and to decrease the training time, data aggregation techniques are applied. In the next
step, wrong and missing predictions are considered to improve the Ąnal localization by
using prior knowledge to make assumptions about objects interacting or appearing with
others. Combining scene understanding techniques with other computer vision topics
such as multi object tracking achieves a continuous spatial and temporal propagation
of the estimated GPS locations. Subsequently, the objects in the scene are categorized
into static, which means a Ąxed geographical position, and dynamic ones, like cars
or pedestrians which tend to move on the urban areas. Consequently, static objects
which are occluded by dynamic ones can be noticed so that object tracking and object
localization do not get lost which increases the robustness. The approach is evaluated
on monocular RGB image sequences captured from a moving camera mounted on an
autonomous bus.

To summarize, this thesis introduces (1) a combination of CNN approaches based on (2)
adaptive data aggregation to decrease training time and increase the accuracy of the
Ąnal model to identify essential objects along the traic area. Furthermore, the temporal
factor (3) is essential to handle occlusions and to decrease missing or wrong predictions.
Finally, (4) the positions of the detected objects are estimated and (5) visualized into a
street map. Thereby, the following research questions are examined:

• Which functions are needed for autonomous vehicles to understand their surrounding
with regard to current computer vision techniques?

• How can CNNs be combined to perform object geolocalization?

• How to merge various tasks to support a robust visualization process?

1.4 Structure Of The Work

This thesis is organized as follows. Section 2 gives a wide overview of commonly used
state-of-the-art of datasets and their strengths and weaknesses, visual recognition like
object detection and object classiĄcation, spatial and temporal propagation as well as
diferent localization techniques. In Section 3, the selected methods and their adaptations
are discussed. The used data for training and evaluation purposes are presented in
Section 4. Section 5 focuses on evaluating the customized approach and summarizes the
outcome. Finally, Section 6 concludes the thesis and shows potential future research
topics.
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CHAPTER 2
Related Work

Traditional navigation tasks consist of three main components as deĄned by Kim et al.
[KJY18]. First, visual features are extracted from the camera input of a scene. Following,
the current positions of the objects are calculated based on the resulting visual features.
Finally, rules are deĄned to move the autonomous vehicle by its own. Within this thesis
the Ąrst two components are investigated to provide an improved self-localization and a
street map including stationary navigation priors based on trained models during the
driving process. To accomplish this task, the proposed approach combines concepts of
multiple computer vision topics.

Within this section, the relevant steps data aggregation, visual recognition, temporal
propagation and localization mentioned in Section 1 are discussed in detail. Since the
proposed approach contains multiple challenging research topics like object detection
and classiĄcation, object tracking and object localization, a concluding review is beyond
the scope of this section. Therefore, for each topic representative literature based on
monocular RGB images is provided and their diferences are highlighted, starting with a
short introduction of qualitative and quantitative aspects of datasets and their impact
on object detection and classiĄcation performance. Subsequently, insights are given
into relevant state-of-the-art learning techniques. Afterwards, techniques for spatial and
temporal propagation are examined. The chapter Ąnishes by presenting work of existing
localization processes.

2.1 Dataset Bias

Since the aim of supervised learning is to Ąnd robust features which generalize to new
unseen data, the performance of models strongly depends on the quality, quantity and
variability of the annotated training data. Therefore, the dataset which is used to train
the model is an essential factor for the performance of the resulting model. The detectable
objects can have an increased variability and complexity, for example diferent shapes
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2. Related Work

and appearances or varying object size from at least 100 pixels up to the whole image
area. The quality and quantity of the annotated dataset as well as the image recording
conditions like viewpoint, camera to object distance and image resolution are essential.
This results in the hypotheses that any Ąnite dataset for a visual task can only describe
speciĄc aspects of speciĄc regions from the whole visual world [TE+11].

As such, a dataset needs a balance between generalization and specialization. While
the generalization degree has to meet the speciĄc needs for the underlying task, the
specialization degree must handle the whole range of Ąne-grained object categories. An
unbalanced dataset results in a dataset bias. Diferent papers try to analyze, measure
and categorize this dataset bias [TPCT17] [TE+11] [MS15] [GDL+17]. Gauen et al.
[GDL+17] describe, analyze and compare diferent visual datasets for object detection
in terms of label distribution and size within the image space. As a result, the authors
state the increasing signiĄcance of meta information of a dataset like label distribution
when selecting the data to train a model for a speciĄc learning problem.

Instead of manipulating the datasets itself to decrease the dataset bias, there are tech-
niques to adapt the data and their features during the training. Wang et al. [WZMG19]
develop a regularization technique called Stochastic Feature Reuse. Thereby, feature
maps are randomly dropped during training and reused in new down sampled sub-
networks. This results in decreased training costs, decreased overĄtting and increased
performance by training multiple sub-networks at once. Another approach is to handle
missing annotations within a dataset. Pon et al. [PAHW18] state that public datasets
contain only labeled traic lights or traic signs. They combine a Faster R-CNN with a
mini-batch proposal selection mechanism. With their approach, they can detect classes
in merged datasets where the class in one dataset is not annotated in other datasets from
the merged one. These partly missing classes are correctly trained by not penalizing
unlabeled objects if they are detected by the model. They use a background threshold for
these detections, which results in a reduced likelihood for unlabeled objects of interest,
which are considered as background.

2.2 Visual Recognition

Within this thesis, two main methods are processed for visual recognition in detail:
Object classiĄcation ([KSH12], [HZRS16]) and object detection. Both are fundamental
visual recognition problems. While the classiĄcation part typically predicts a label for
the input image, the detection part deals with predicting instances of predeĄned objects
to deĄne which objects are present in the scene and where they are located in image
space.

In the context of computer vision tasks, Gauen et al. [GDL+17] state that Machine
Learning (ML) approaches made improvements within the last years. Furthermore,
Xiao et al. [XTY+20] state that object detection techniques based on DL perform
better compared to traditional feature-based methods due to the fact that learned
features represent the underlying data better than handcrafted features. Recognition
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and localization tasks are involved during the training of the detection network. As seen
in Equation 2.1, this is indicated within the loss measurement, which is responsible that
the model Ąts the training data. The loss function is divided into two parts: localization
loss and classiĄcation loss.

Loss=Lcls+Lloc (2.1)

Lloc trains the localization regression to distinguish the target object from the background
and Lcls trains the classiĄcation head to determine the target object type [WSH20]. In
Figure 2.1 the development process of diferent object detection algorithms is visualized.
As shown in this Ągure, CNNs become a new standard for visual recognition approaches
in the visual computing community and traditional detection algorithms are replaced by
DL based approaches. Girshick et al. [GDDM14] present at Ąrst a CNN based detection
approach called R-CNN. Within short temporal intervals, new detectors were presented.

Figure 2.1: Object Detection Milestones based on [ZCS+23] and extended by [XTY+20].
At the beginning, traditional detection methods were predominant. Since 2012 the DL
approaches outperform the traditional approaches. The DL based methods are further
divided into one-stage and two-stage detectors. While the Ąrst one is usable for real-time
applications, the second one provides a higher degree of accuracy compared with the
one-stage detectors.

The learning-based object detection methods are split into one-stage and two-stage
detectors. Two-stage detector models are based on a Region Proposal Network (RPN)
to generate regions of interest. They are needed to make predictions for each region,
which might contain an object. Within these regions bounding box regression and object
classiĄcation are performed [SI18]. This detector type is represented by diferent Region-
based Convolutional Neural Network (RCNN) approaches ([GDDM14], [Gir15], [RHGS15],
[HGDG17]). By comparison, one-stage detectors ([RDGF16],[LAE+16],[LGG+17]) are
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faster by skipping the region proposal stage. In addition, the localization task of the
detection is treated as a simple regression problem instead of running detection and
classiĄcation steps multiple times [SI18]. Thus, all predictions of an image are performed
in a single pass through the network. Due to this characteristic, each detector is assigned
to a speciĄc position in the image and the predictions can be computed simultaneously.
Due to the parallel computation, they are used for real-time applications.

A detector consists of multiple stages and within every step, hyper-parameters can be
adapted to increase the model accuracy. Following, main basic components of each stage
from a single-shot detector are described in detail.

Feature Pyramid Network (FPN). Objects from one class are presented in a wide
range of scales within an image. To handle diferent scale stages, Lin et. al [LDG+17]
presented FPN, which is built on an image pyramid. Processing images at diferent sizes
allows to detect small objects depending on the scale stage, which leads to higher accuracy
in terms of small object detection. While simple image pyramids are computationally
relatively expensive and need high memory consumption [LDG+17], they construct
custom feature pyramids. They are built on high-level semantic features based on further
lateral connections as seen in Figure 2.2.

Figure 2.2: FPN with three prediction levels which is used for object detection at diferent
resolutions [Wen18].

Anchor Boxes. Ren et al. [RHGS15] introduce anchor boxes. They are used to create
a dense set of anchors by generating region proposals of various size and shape. The boxes
represent the appearance of the most typical shapes, regarding object size and aspect
ratio. In Figure 2.3 an example of nine predeĄned anchor boxes with three diferent
scales and three diferent aspect ratios are shown. A bounding box is predicted if the
trained model recognizes a deĄned object, which lies within the area of the box. A
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disadvantage of this technique is, that the anchor appearance is uniformly sampled over
the whole space. New techniques try to extend the anchors by eliminating the uniform
distribution. Yang et al. [YZL+18] state that Ćexible anchor boxes increase robustness.
Wang et al. [WCY+19] create a guided anchoring approach, which improves the model
performance. Instead of using predeĄned scales and aspect ratios, they take non-uniform
anchors. Hence, they predict the center of objects from arbitrary object scale and aspect
ratio by using semantic features.

Figure 2.3: Concept of anchor boxes with three diferent scale levels and three diferent
aspect ratios resulting in nine anchor boxes for each feature map location.

The output of the object detector are multiple predicted anchor boxes with diferent
scores which results in overlapping detections of the same object. To Ąnalize the detection
process the redundant predictions are removed [ZCS+23]. For this step, Neubeck et al.
[NVG06], for example, uses Non-Maximum Suppression (NMS) to Ąlter the predictions
so that only relevant detections remain. This is done by extracting only those predictions
which reach a certain threshold. After selecting one, all other detections which have a
lower score and a deĄned overlap measured by Intersection over Union (IoU) with the
selected one are suppressed. This method has two disadvantages. It does not guarantee
to take the best Ątting bounding box and objects of the same class which are close to
each other within the image tend to be suppressed. Bodla et al. [BSCD17] propose an
extension which is called soft-NMS. Instead of suppressing a prediction by using IoU, its
score is penalized by a continuous penalty function of their overlap. If a prediction still
reaches the deĄned threshold after applying the penalty, the overlapping predictions are
accepted as a potential detection.
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2.3 Spatial and Temporal Propagation

While object detection and classiĄcation detects and categorizes speciĄc objects from
a single image, instance re-identiĄcation tracks object instances in diferent images to
Ąnd corresponding bounding boxes of a speciĄc object in an image sequence [BFM21].
Derived from image sequences, further features are extracted like temporal occlusion,
object orientation or speed of the vehicle where the camera is mounted. The spatial factor
extended by temporal dependencies leads to an extensive range of diferent approaches
based on traditional computer vision techniques. To support scene interpretations
based on DL datasets with additional tracking information are needed [COR+16]. By
integrating the temporal factor sequence-based learning methods can be developed, as
demonstrated in [CWW+17] and [CWM+17]. The authors introduce methods on relative
pose estimation based on monocular video streams. The additional temporal information
leads to a decreased pose estimation error.

With optical Ćow, which is a low-level computer vision problem, motion is analyzed
for every pixel between images of sequential time [Mar10]. It creates a 2D vector Ąeld
by evaluating the pixel movement in horizontal and vertical direction of consecutive
frames. The resulting motion vectors are divided into two diferent granularity degrees:
while sparse motion vectors are calculated only for speciĄc points of an image, dense
motion vectors are worked out for each pixel. In recent years, optical Ćow calculations
are based on end-to-end trainable DL approaches, which improve them in terms of
accuracy and performance [Pat19]. In Figure 2.4 Ćow vector techniques are compared.
The learning-based approaches have a lower End-Point-Error (EPE) compared with the
other ones.

Figure 2.4: Average EPE from diferent optical Ćow approaches [Pat19]. The EPE
compares the estimated optical Ćow vector with the ground truth optical Ćow vector.
While traditional methods have an EPE over 5, the DL based methods are lower with an
EPE of 4.44 and 4.84.
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2.4 Localization

Keeping street maps manually up to date is traditionally slow and costly because of
the manual efort. Within this speciĄc Ąeld, Mapillary1, which is a crowdsourcing-
based platform, makes progress to increase the level of automation of the street map
making process by using DL. The research group of Mapillary has investigated global
signage systems and deĄne features, which are most relevant for various applications, like
robotic cars, derived by a database of street-view images [NORBK17], [EMO+20]. Their
framework tries to create an inventory list of traic signs within a speciĄc area by using
computer vision techniques. This approach tries to help cities to decrease time and costs
when monitoring their street assets 2,3.

When geotagging objects in the scene, a GPS signal with an appropriate accuracy is
essential. Park et al. [PLCL14] estimate the camera direction of geotagged images. By
combining images from Google Street View and Google Earth satellite, they are able to
use them as reference images to determine the camera direction. ShariĄ et al. [SNQP+20]
develop a DL approach that takes storefronts from street-level imagery as input and
provides the geolocation and type of commercial function as output. Zhang et al. [ZFL21]
combine semantic segmentation, object detection and classiĄcation to identify traic
sings and lights. An attributed topological binary tree combined with six urban rules
to place the objects into the world map is developed for identifying relations of road
objects. The Ąnal localization is done by combining the binary tree with map features on
OpenStreetMap. The object recognition rate is high with 97% completeness but they do
not make any quantitative statements about their localization accuracy. Other scientiĄc
papers use depth information for the 3D triangulation in world space like [CJR+19].
Instead of using distance estimation by performing geometric relations of image points
and real-world physical distances the following approaches try to predict object distances
and coordinates by using CNNs. Krylov et al. [KKD18] geolocalizes traic lights and
telegraph poles from monocular image sequences by using two CNNs. While the Ąrst one
performs object segmentation, the other one is used for distance estimation. Furthermore,
they introduce a novel Markov Random Field model to perform the automatic object
triangulation in areas containing multiple objects. With their approach, they reach a
localization precision of about two meters. Zhu et al. [ZF19] present a trained model,
which predicts distances of objects within an image. Furthermore, Nassar et al. [NLW19]
predict the geolocations of objects by using two CNNs, one for projection and one for
geo regression. Their approach reaches a mean absolute error of 4.36 meters at Mapillary
Dataset. The mean absolute errors of these approaches depend on the predicted object
types and the used methods and lie in the range of two meters up to ten meters like
[ZWL+18].

1https://www.mapillary.com/
2https://www.geospatialworld.net/blogs/putting-traffic-signs-on-the-map/
3https://www.traffictechnologytoday.com/news/mapping/mapillary-adds-186-million-ai-generated-

roadside-features-to-its-global-map.html
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2.5 Summary

This thesis cope with a combination of diferent disciplines. Each one is presented with
explanations based on a selection of state-of-the-art papers. It starts with the challenges
coming from training data to be able to train a robust model. Following by a comparison
of one-stage and two-stage object detectors and their strengths and weaknesses. To
make use of temporal propagation, methods for instance re-identiĄcation are researched.
Concluding, geolocalization techniques are discussed.
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CHAPTER 3
Methodology

The goal of this thesis is to examine computer vision techniques which are used for
a scene understanding of the driving environment including localization estimations
and self-localization. Therefore, a framework is developed that consists of multiple
components. An overview of the modular structure of the intended system is shown in
Figure 3.1.

Figure 3.1: Overview of the system where the produced output in the lower row is
generated by the operations in the upper row. It describes the process from two consec-
utive image frames up to the Ąnal output which consists of estimated localization and
visualizations.

Within this chapter a detailed description of the developed framework is given and
each step within the pipeline is discussed. At Ąrst the objects of interest are identiĄed
in Section 3.1. Section 3.2 describes the implementation of the image detection and
classiĄcation tasks. While the former detects the speciĄed objects within the scene, the
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latter classiĄes the objects into Ąne-grained subcategories. A DL model is trained on
a dataset with high object variability. This dataset is created by aggregating multiple
open-source datasets which results in improved target datasets to train the models.
Training a model from scratch is preferred instead of Ąne-tuning approaches in order to
have full control and gain a thorough understanding of all parts of the processing pipeline.
Following, reĄnement steps are used to optimize the results of the previous learning tasks
which are discussed in Section 3.3. For example, two consecutive images are taken to
calculate optical Ćow to readjusts the predicted bounding boxes and decrease bounding
box oscillations within an image sequence. Furthermore, the objects are categorized
according to their static, dynamic and transient properties. This is supported by prior
knowledge dependent on the selected object classes and derived movement assumptions
based on optical Ćow calculations. Finally, the positions of the deĄned objects are
calculated 3.4 and subsequently visualized within a street map 3.5. Section 3.6 concludes
the chapter by describing the used frameworks and setup to implement the presented
pipeline.

3.1 Object Space

The object space characterizes the data and all relevant classes which are handled in
this thesis. The developed approach is applied on objects in the ADAS area including
objects on the driving area or close to it. Therefore, monocular RGB images are used.
Furthermore, the data is extended by the GPS signal of the current camera capturing
position to perform and evaluate object localization and GPS accuracy optimization. The
training data is taken from available open-source datasets. For the evaluation process,
camera recordings are taken from an autonomous bus during the auto.Bus project of
AIT which are captured in Seestadt Aspern, Vienna. Hence, the driving environment
is similar to a suburban area and contains diferent scenes and navigation priors. The
driving area investigates chronological priors extended with drives of a road from both
directions.

In Figure 3.2 the self-driving shuttle bus from the manufacturer Navya1 is shown. In
the course of the auto.Bus project, the sensor systems are developed further by AIT2,3.
Within this thesis the output of two sensors is used. A RGB camera marked with label
(1) is collecting street view images within a predeĄned area. The camera is mounted
inside the bus behind the windshield at an approximate height of 2.5 meters. Icon (2)
shows the position of the second sensor which is a GNSS antenna. The bus antenna is
mounted two meters behind the camera and measures one GPS signal per second with
a maximum deviation of ten centimeters. The signals for the frames in between are
interpolated which decreases the accuracy of the resulting outputs. Between GPS and
image data there is a time delay of 17 seconds which must be taken into consideration
during the dataset setup.

1https://navya.tech/en/
2https://www.ait.ac.at/themen/integrated-mobility-systems/projects/autobus-seestadt
3https://www.wienerlinien.at/web/wiener-linien/auto-bus-seestadt
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Figure 3.2: Autonomous bus from manufacturer Navya. A RGB camera is mounted on
the upper side of the windshield (1). A GPS antenna is placed on top of the bus (2).

Objects are either moving or not moving in the real world. To examine the localization
approach of this thesis, not moving objects with a Ąxed geographic position and explicit
GPS coordinates are expected. Therefore, three categories are deĄned:

• Static objects: Navigation priors like traffic signs and traffic lights are essential
for the driving and navigation process and have a Ąxed GPS location. Poles and
street lighting systems are discarded due to inconsistencies between the diferent
open-source datasets.

• Dynamic objects: This category contains moving objects which change their
position over time. The bus needs to detect pedestrians as well as other human-
driven vehicles to guarantee an optimized and safe road handling. Therefore, the
classes bus/truck, car, bicycle and pedestrian are deĄned.

• Transient objects: The static and dynamic objects are able to switch into transient
state. For example, parking cars on the roadside or temporal mounted traic signs
during roadworks. However, transient traic signs are treated like static traic
signs and are recognized by the bus.

In Figure 3.3 the deĄned object space is visualized. On the left side samples of the static
objects, traic lights and traic signs, as well as dynamic ones, like other busses, trucks,
cars, pedestrians or bikers, are shown. Further examples of Ąne-grained subcategories
for static objects are illustrated in the right. While static objects have a Ąxed position,
dynamic objects are moving and temporarily occlude static objects. To model such
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occlusions and limit the impact on the localization accuracy by decreasing missing data
by occlusions, it is essential to divide the object space into dynamic, transient and static
objects.

Figure 3.3: Illustration of the deĄned object space and the Ąnal registration of static
objects within a street map. On the left side the static and dynamic objects of interest
are shown whereby on the right side the static objects are visualized within the street
map.

3.2 Object Detection and Classification

The object detection part identiĄes object instances of predeĄned classes from object space
within a RGB image by putting a bounding box around the object. Object classiĄcation is
performed to further divide the identiĄed objects into subcategories. Both techniques are
applied as a preprocessing step to Ąnd and identify the objects of interest in image space.
Following, all relevant steps are discussed in detail which are used to setup, train and
evaluate the used models of this thesis. At Ąrst the data aggregation stage is discussed.
It is used to optimize the training progress. Afterwards, the used CNN architectures are
described, and their custom adaptations are explained.

3.2.1 Data Aggregation

"The bottleneck for software engineers is about finding good-enough training data with
enough variability" by Jan Erik Solem (Mapillary’s CEO)4

4https://www.citylab.com/transportation/2017/02/how-to-teach-a-car-a-traffic-sign/516030/
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Each dataset has weaknesses and contains a bias, for example a trained model for object
detection based on a dataset consisting of camera recordings from highway results in a
decreased performance on other scenarios with increased object variability like recordings
from a city containing diferent traic signs and an increased number of other moving
obstacles. Furthermore, image variability is decreased if, for example, images are captured
only on sunny days. In such a case, the dataset as well as the model trained on this
dataset are biased towards speciĄc weather conditions and other conditions are excluded
like rainy days which leads to a decreased robustness of the trained model against varying
weather conditions. The central idea of data aggregation is that the data variability is
increased when combining diferent images from diferent sources. By using multiple
open-source datasets, combining their classes to new datasets and aggregating the source
datasets to new target datasets, the dataset bias is decreased and dataset variability is
increased. Therefore, datasets are selected which contain objects that appear within
the selected object space to evaluate the developed approach. The distribution of the
target classes is balanced to avoid overĄtting. Finally, the aggregated datasets have to
be converted into a uniĄed structured to combine them and use them for the training
and the evaluation of a model. Thereafter, they are used to train the learning models for
object detection and classiĄcation.

The following aspects have to be considered when combining multiple image datasets:

• Annotations of diferent open-source datasets are combining traic signs with other
signs into a single class and thus makes it impossible to combine them into a
Ąne-grained target dataset.

• To focus on speciĄc traic signs, redundant signs have to be identiĄed and discarded.
Therefore, the static objects are categorized into sub-classes.

• Each label category has a diferent appearance, variability and quantity depending
on the source dataset. For example, single classes are underrepresented or have a
lack of variability within the recordings. To be able to generate a balanced and
well-deĄned dataset, adaptive data aggregation is needed.

The data aggregation is performed by union of diferent open-source datasets. At Ąrst
the labels for the target dataset are deĄned and the open-source datasets are selected
based on the previous mentioned aspects. During the aggregation the labels of the source
datasets are reorganized and Ąnally combined and merged into the aggregated target
dataset. Section 4 describes the used datasets and the data aggregation approach for
creating new target datasets based on the selected open-source datasets in detail. The
resulting aggregated datasets are used for this thesis and the Ąnal evaluation progress.

3.2.2 Object Detection

Object detection is used to identify objects within a monocular RGB image. The resulting
predictions are further processed to interpret and understand the driving scenes. Object
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detection models trained on the newest state-of-the-art architectures resulting in increased
accuracy and decreased false positives as already mentioned in Section 2.2. Figure 2.1
shows the variety of available DL networks to perform object detection. RetinaNet
[LGG+17] is selected for the training from scratch. It belongs to the one-stage detectors
and performs predictions in real-time which is needed when integrating the models into the
bus. Furthermore, the FPN allows to adapt the network to focus on small objects which
is a use case when driving through the city. Compared to two-stage detectors, RetinaNet
has the same detection accuracy as two-stage detectors with the speed of a one-stage
detection algorithm [LGG+17]. The network is composed of a backbone network and two
task-speciĄc subnetworks. One is used for classiĄcation and the other one for regression.
The backbone computes a convolutional feature map over the entire input image. The
output of the backbone gets classiĄed by the classiĄcation subnetwork. The regression
subnetwork performs convolution bounding box regression. An adopted FPN builds the
backbone network. It provides Ąve feature levels in the pyramid. They are called P3
to P7 whereby P3 is the Ąnest one up to P7 which is the coarsest feature map. Each
level is built on top of a network like ResNet [HZRS16] in a fully convolutional fashion.
This allows the network to handle images of arbitrary size and outputs proportionally
sized feature maps. On the bottom-up pathway, the last feature maps of each group
of consecutive layers are taken. With the top-down pathway and their added lateral
connections, nearest neighbor upsampling is used so that the last feature map is expanded
to the same scale as the second-to-last feature map [LDG+17]. In RetinaNet a focal
loss calculation is introduced, which down-weight easier classiĄcations than harder ones.
This reduces negative predictions within background regions and lead to decrease the
imbalance of examples with varying degrees of complexity [LGG+17].

The methodology proposed adapts the RetinaNet to decrease the inference time of the
trained network. The NMS calculations are moved to Graphics Processing Unit (GPU).
Inspired by the mmdetection framework[CWP+19] the origin RetinaNet project is divided
into 3 independent parts. They are backbone, neck and head. The backbone consists of
diferent scale levels from the FPN whereby the used network forms image features at
diferent granularity levels which pass their results to the neck. The neck combines the
image features from the backbone and in the head the anchor head handling take place
to perform the Ąnal bounding box and class prediction steps. This results in a framework
with modular design. For example, for mobile or embedded applications a smaller and
faster backbone network can be used like mobileNetv2 instead of ResNet101.

3.2.3 Object Classification

As seen in Figure 3.4 there are multiple signs detected in a single image. Not all of
them are relevant for the driving process as they are advertising signs that resemble
traic signs and signs for other road users like signs close to the sidewalk with further
information for pedestrians. By applying object classiĄcation, the objects are categorized
and not relevant objects which do not belong to the deĄned subclasses are ignored.

Two classiĄcation models are trained for the categorization approach. One to classify
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detected traic signs whereby the other one is used to classify traic lights. Furthermore,
a negative class is integrated for each model. Both models are based on a DRN-C-26
neural network architecture[YKF17]. Further data aggregation techniques like class
balance are used to avoid overĄtting and to create a trained classiĄcation model with
high precision. During the training, regularization techniques are used like dropout
which set random layer activation to zero and data augmentation techniques like image
transformations which are explained in detail in Section 5 for each experiment.

Figure 3.4: Example image from Seestadt Aspern of various signs marked with green
bounding boxes. In addition to regular traic signs, the image contains traic signs
captured from backface where the type of the object is not visible and further signs which
are not applicable when driving a motorized vehicle like the sign in the right upper corner
which is an information sign for construction workers at the construction site mounted
approximately 5m above the ground.

3.3 Refinement by Optical Flow and Object Categorization

An object needs to be detected over time with correct bounding box size and bounding
box position to calculate its position in world space over time from a monocular image
stream. This requirement is needed to minimize uncertainties because uncertainties in
the detection part leads to further uncertainties at the Ąnal localization. The central idea
is to minimize missing detections and to make the predictions consistent over temporal
propagation by using a postprocessing temporal reĄnement step which is applied by
integrating optical Ćow. The resulting detections have an increased accuracy than without
this postprocessing step to localize objects within a street map with increased precision.
By using the temporal factor, the robustness is increased which is described in Figure
3.5. At Ąrst, a dense Ćow Ąeld is calculated by optical Ćow based on a previous and the
current RGB image. Based on the generated Ćow Ąeld and the previous model predictions,
object tracking is performed to get object instances over time. Afterwards, the following
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reĄnements are progressed to increase the robustness of the developed approach:

• Based on the object tracks missing detections are added by motion-guided propaga-
tion (3.3.3) which can occur if the detector was not able to detect the object due to
motion blur or changing lightning conditions which produce over- or underexposure
efects.

• Object tracks are analyzed and wrong classiĄcations are Ąxed (3.3.3).

• When the object tracking method is applied, not all predictions can be assigned to
an object track. These predictions have to be discarded (3.3.4).

• Increase the tracking robustness by occlusion handling (3.3.5).

• Increase the localization robustness by minimizing bounding box oscillations over
time (3.3.6). This is performed by smoothing their bounding box size over time.

Each part of the reĄnement stage is discussed in detail in the following subsections.

Figure 3.5: WorkĆow overview of the postprocessing reĄnement steps: at Ąrst the
classiĄed predictions of the object detector are used to generate

3.3.1 Optical Flow

A pretrained PWC-Net [SYLK18] from a python re-implementation of the network [Nik18]
is used within this thesis. It is a CNN based optical Ćow approach. The criterion for
choosing this network is that it is a small network with state-of-the-art performance. The
network architecture is based on image pyramidal processing, warping, and a cost volume
calculation which are classical optical Ćow estimation techniques. PWC-Net calculates a
dense Ćow Ąeld by computing a motion vector for every pixel. Compared with FlowNet2
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[IMS+17], the PWC-Net model is 17 times smaller. The runtime performance is quite
high at about 35 frames per second (FPS) on images with a resolution of 1024x436px
[SYLK18]. As seen in Figure 3.6 the optical Ćow is calculated each ith frame depending
on FPS or the video sequence and vehicle speed.

Figure 3.6: Example of an image sequence with calculation steps over multiple frames.

The dense Ćow Ąeld is calculated for the whole input image. However, to reduce the
runtime cost, only areas with predicted bounding boxes which contain the traic signs
are used for the motion vector calculation. As shown in Figure 3.7 the bounding box
areas are further scaled down to reduce background clutter.

Figure 3.7: The image composition shows the narrowing of the bounding box region for
calculating the resulting motion vector based on the calculated Ćow Ąeld. The image
on the left shows a close-up of a traic sign prediction marked as orange bounding box.
The image in the middle demonstrates the narrowing of the used are for further motion
vector calculations. The bounding box size is reduced by 25% for each direction indicated
by the yellow arrows and dashed lines to exclude background. The resulting calculation
area is shown as blue rectangle on the image on the right side.

For each narrowed region a mean vector is calculated which is the current motion vector
of the object. This leads to further bounding boxes derived from previous bounding
boxes and the calculated motion vectors in the case if the detector missed speciĄc objects
in the next frames over time. A visualization of this step is shown in Figure 3.8.
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Figure 3.8: Visualization of the progress when calculating a bounding box position based
on the previous frame and the calculated motion vector. The image on the bottom shows
a visualization of the Ćow image from the RGB images of frame n-3 and frame n with a
rectangle on the calculation area to get the resulting motion vector (black arrow). The
images in the top row describe the progress: the left image shows a detected traic sign
(orange bounding box) and the calculated motion vector (orange arrow). The image
in the middle shows an overlay of image n on image n-3 with the previous prediction
(orange bounding box) and the current one (yellow bounding box). The image on the
right shows the resulting prediction (yellow bounding box).

By using the motion-guided propagation approach based on optical Ćow, inaccurate
detections are compensated and False Negative (FN)s are decreased over the whole
sequence which is discussed in detail in the evaluation section. As an advantage the
motion vector calculation increases robustness against noise. The derived reĄnement
processes produced by applying optical Ćow leads to improved predictions of the resulting
detections which are presented in the following subsections.

3.3.2 Multi Object Tracking

To calculate a spatial position the object must be known and identiĄed over time. However,
the selected detector is not able to recognize objects over time within consecutive image
frames due to the fact that the model takes only the current image as input and doesn’t
have further knowledge about previous or next frames. The predictions of an object
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instance must be connected by another method. Furthermore, tracking multiple objects
of the same object type is a complex topic due to object occlusions or rapid changes
in the appearance of the tracked objects [LXM+21]. While the occlusion handling is
already covered by other methods within this thesis, the challenge of appearance changes
does not have to be observed due to rigid physical objects which do not have abrupt
appearance changes. Therefore, a lightweight method for object tracking5 is integrated
to merge the detection and motion results to get all bounding box predictions over time
of each physical traic sign within the image sequence. It allows simple tracking by using
object distance over consecutive frames and matching categories. The bounding box
within diferent frames are connected by using the calculated a motion vector based on
optical Ćow for each detected object. By using the motion vector, the successive object
can be estimated. The nearest detection is identiĄed within the next frame by calculating
the distances of bounding boxes from diferent frames in image space. Predictions with
the smallest distance diference between two consecutive frames within a 40-pixel range
are deĄned as an object instance. As a result, each detected object gets an own tracking
ID. The tracker tries to Ąnd object connections between the frames for an active tracked
object until it is not detected 15 times in a row.

The tracking approach results in reduced Ćickering of detections of an object instance
over a sequence of consecutive frames by adding missing detections through extrapolation.
Consequently, the robustness of the detection results is increased as well as the accuracy
of the optimized detection results. As a disadvantage, objects are only noticed if they are
detected within at least two consecutive images within a deĄned subsequence otherwise,
they are ignored.

3.3.3 Add Missing Detections and Fix Wrong Classification

Within this section a method for handling missing and wrong predictions is presented
and shown in Figure 3.9. While the Ąrst and third frame show correct detections and
classiĄcations, the trained models fail in the second and fourth image. The second image
shows a missing prediction and in the last frame the predicted label is set to no parking
sign instead of direction sign which is not correct. To overcome objects which are not
recognized by the object detector in a single frame, the estimated annotations are added in
the current frame by using the predictions and further estimations of the previous frames.
It is performed by extrapolating missing bounding boxes from previous predictions of an
object instance and add the calculated bounding box into the current frame. For example,
frame n-2 and frame n-1 have predictions of a speciĄc sign which is not predicted in
frame n which is the current frame. By extrapolating the bounding box based on frame
n-2 and n-1, a new bounding box is calculated which is the estimated bounding box of
the missed sign in frame n. To guarantee the same class of a tracked object over time,
wrong predictions of the classiĄcation model need to be corrected. This is ensured by
analyzing the label of the tracked object over time, Ąnding the wrong classiĄcations and
Ąx them. For that purpose, the previous tracked predictions are evaluated and the most

5https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
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common traic sign subclass for this sign over all frames is selected as the resulting class
of the object.

Figure 3.9: Example for possible errors during object detection and classiĄcation for a
speciĄc traic sign instance over time. Frame one and three show correct predictions.
Frame two has a missing annotation during object detection. In frame four a wrong
object classiĄcation is visualized.

3.3.4 Discard False Positives

Wrong detections of static objects appear in a single frame instead of the whole sequence.
Position calculations of wrong detected objects or weakly detected objects over time
decrease the Ąnal localization results. Thus, predictions are only connected if they appear
over a period of time which means that the object have to be detected at least two times
within the last 20 frames. Annotations of static objects which are not connected within
this period of 20 frames are discarded. This decreases the False Positive (FP) rate by
over 50% which is shown in Section 5.3.2 in detail. Additionally, the position of a tracked
object is only calculated if the object is at least three times detected within the last 20
frames and two of these detections are within the last Ąve frames.

3.3.5 Occlusion Handling

During the tracking problems can occur which leads to a lost tracking ID. This is caused,
for example, from occlusions by other objects. A lost tracking ID results in at least two
tracks of an object instance or in a lost track of an object within an image sequence. To
minimize the tracking errors, it is possible to deal with occlusions caused by dynamic
objects moving in front of static ones. By calculating the mean vector of dynamic objects
based on the optical Ćow helps to distinguish the moving direction of these objects and
further to derive whether there is an occlusion of a traic sign by another road user or
not. Figure 3.10 visualizes an example of such an occlusion scenario. A truck is driving
in front of a detected traic sign so that the traic sign is occluded on the image. By
analyzing the motion vector of the driving object, it is obvious that the truck is driving
in front of the sign and is set as occluded until the occlude leaves the area where the
traic sign was predicted earlier in the sequence so that the tracking ID is not getting
lost.
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Figure 3.10: Example of occlusion handling: A detected moving object occludes a static
object. Both object instances are detected correct.

3.3.6 Minimize Bounding Box Oscillation

As seen in Figure 3.11 the bounding box predictions from the detection model are
oscillating if the predictions are shown in consecutive frames within an image sequence
which is a result of the changing visual appearance of objects as well as the changing
environmental conditions during the recordings and the used training data of the detection
model which have varying annotation policies depending on the source dataset. To increase
the accuracy of the bounding box position and appearance over time, the predictions are
readjusted. To do this, the object tracks are examined over time. It is assumed that the
bus is driving forward so that the bounding box size increases the closer the camera gets.
Outliers are detected by an inappropriate bounding box size, and they are readjusted by
extrapolating a new bounding box size based on the previous frames and the optical Ćow
reĄnement. It is assumed that the readjustment of the bounding boxes of an instance
decreases bounding box oscillation and increases the Ąnal object localization calculation.
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Figure 3.11: Example for bounding box oscillation from pure object detection result
compared with bounding box readjustment by using optical Ćow reĄnement and interpo-
lation.

3.4 Calculate Object Localization

In the previous sections techniques are used to increase the robustness of the developed
approach and to generate accurate predictions. Therefore, it is expected that the physical
object instances are consistently noticed over time. Now the concept for the Ąnal
calculation is presented to generate the GPS localizations. The applied approach in the
scope of this thesis is based on object size assumptions of the static objects and distance
calculations between the temporal object movement in image space. Consequently, the
accuracy and actuality of the street maps are increased by improving orientation, position
and direction in world space.

Calculations are needed to get an estimation of the Ąnal object position. At Ąrst the
distance between the camera and the object of interest is calculated for each frame.
Hence, the focus of this thesis is set on traic signs based on the assumption that they are
standardized by road traic regulations so that the real object size is known. Knowing the
real physical object size enables the following object to GPS sensor distance calculation
which are based on basic lens optics equations[Ful15]:

dobj =
f ∗ hrealObj ∗ himage

hvirtualObj ∗ hcam

+ dcam2sensor (3.1)

which is based on the magniĄcation m which is the ratio between image and object
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height:

m =
himage

hobj

(3.2)

f is the focal length, hrealObj the real object height and hcam the height of the mounted
camera. All three values are in centimeter as well as the dcam2sensor parameter which is
the distance between the camera and the GPS sensor mounted on the vehicle. himage is
the image height in pixel and hvirtualObj the object height in pixel. dobj is the resulting
object to camera distance in centimeter. The parameter hrealObj difers between the
diferent classiĄcation types between 42cm and 67cm dependent on the classiĄcation
label.

After the distance between the object and the sensor is known, the previous and current
position of the vehicle have to be in the same format for further calculations. The GPS
coordinates of the vehicle are in degrees so that they have to be converted into meters.
To calculate the distance of two GPS signals from two speciĄc camera positions the
Haversine formula[DSGL07] is used:

d = 2R arcsin

�
sin2


αlat − βlat

2


+ cos (αlat) cos (βlat) sin2


αlng − βlng

2

�
(3.3)

Where d is the distance from two positions on Earth’s surface in the format of latitude
and longitude coordinates in degrees. The radius of the earth is deĄned as R and the
two individual positions are described with latitude (lat) and longitude (lng) coordinates
of α and β. By using this formula, the shortest geographic distance between two deĄned
GPS points on earth is calculated which is given by the great-circle distance of these
points. As an advantage, the Haversine formula is simple to process and the accuracy is
higher compared to other distance measurement formulas like the law of cosines formula
or equirectangular formula when combining with speed [MMH17].

Since the object to camera distance dobj is already calculated, the Ąnal object position
can be identiĄed with triangulation. Therefore, multiple camera positions of the bus trail
over time are taken to generate derived triangulation of view-rays as already done by
Krylov et al. [KKD18].

While precision improvements are done by the previous pipeline parts, it is essential
to further decrease inaccuracies during the Ąnal localization process and to eliminate
apparent errors in object localization. Therefore, rules are established when performing
localization calculations. After an object prediction over time is available, the detected
object must be drawn into the street map. Therefore, the angle in relation to the origin
bus position and its driving vector is calculated. Figure 3.12 shows that the angle between
the bus direction vector (1) and the bus to object vector (2) is calculated. Depending
on the calculated x angle, the general object position regarding the current bus position
and the driving direction is derived:

• x < 0: The object is on the left side of the bus in driving direction.
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• x > 0: The object is on the right side of the bus in driving direction.

• x == 0: The object is in front of the bus because both vectors are pointing in the
same direction.

Figure 3.12: Calculation on which side of the bus the detected object occurred. (1) is the
current bus vector while (2) shows the current vector from the bus to the detected object.

If the autonomous vehicle stays on the same position in at least ten consecutive frames for
example stopping on a bus station, it is not feasible to perform triangulation. Therefore,
a minimal distance of an object instance between consecutive selected frames must consist
otherwise the frames are discarded, and the localization is not performed. This is assured
that only predictions of frames are combined if they have a minimum camera distance of
at least 150 centimeters apart from each other for calculating the static object locations.

3.5 Visualization

In the context of this study, the map making process is practically implemented as
a custom street map representation by drawing static objects within the evaluated
environment in real-time. The visualization part further helps to create and improve the
framework during the whole development progress. Therefore, a web user interface is
developed that facilitates a visualization of the current bus location and its camera view.
As seen in Figure 3.13 it is possible to select a subsequence with their GPS bus positions.
Current images with their detections are visualized on the left side whereby the current
bus position and estimated traic sign locations are visualized on the right side within
the street map. The blue line within the map shows the covered distance by the bus.
The label bars at the bottom are activated if an instance of their class is visible within
the current image. Furthermore, interactivity during the running progress is integrated.
Detection scores and traic sign ground truth within the street is visible when switching
them on. The detection threshold is adaptable for each class during run-time by the user.
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A slider is available for each class and set default to 50% detection score. The user is
able to activate or deactivate main parts of the pipeline to show the efects and impacts
of each stage. As a result, a street map with ground truth and predictions of geotagged
objects are visualized as well as a bus to object distance diagram is shown.

Figure 3.13: Visualization framework to load, estimate and visualize improved detections.
On the left side the current image is shown. Predicted objects are marked with colored
bounding boxes and the labels on the bottom are Ąlled if an object of the label is predicted
within the current image. The street map on the right side shows the estimated location
of predicted static objects as well as the current bus location.

3.6 Implementation Details

The framework is split into backend and frontend. While the data processing is done in the
backend, the visualizations are handled in the frontend. For the backend the programming
language Python version 3.7 [VRDJ95] is used. To handle the data aggregation and
the further learning approaches like object detection, object classiĄcation and optical
Ćow estimation, the machine learning library PyTorch 1.8.1 [PGC+17] is used. The User
Interface (UI) is created with React.js6. React-konva7 is a JavaScript drawing library
and is used for the graphical animations like drawing the detections within the loaded
images. It combines the HTML5 canvas library with React.js. To reserve all web requests
between frontend and backend a Flask8 server is implemented which uses internally the

6https://reactjs.org/
7https://github.com/konvajs/react-konva
8https://www.flaskapi.org/
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Jinja template. It is a light-weight method to combine the data processing of Python
and the interactive visualization ability of React.js. For the street map rendering, React
LeaĆet9 is used which is derived from LeaĆet.

3.7 Summary

Object detection and classiĄcation networks are selected, and the training strategies
are discussed. The trained models are not faultless and to increase the robustness of
the Ąnal object localization, reĄnement steps by optical Ćow and object categorizations
are introduced. Using temporal propagation in combination with categorization helps
to avoid lost detections and decreases FPs. After adjusting the predictions, the object
localization is calculated by using the Haversine formula [DSGL07] and triangulation over
time. Finally, the visualization strategy and the implementation details are discussed.

9https://react-leaflet.js.org/
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CHAPTER 4
Datasets

Object detection is used to Ąnd the objects car, bus/truck, bicycle, pedestrian, traffic
sign and traffic light within the image space. To further integrate a Ąne-grained label
granularity for traic lights and traic signs, object classiĄcation is performed on the
previous predicted static objects as aforementioned in Section 3.2. Within this chapter,
the used open-source datasets and the applied aggregation steps are described to train
the selected CNNs. This contains the label deĄnitions and selections as well as the Ąnal
conĄgurations for the target datasets.

As mentioned in Section 3.1 the scope of this thesis is set to objects on or near by the
driving areas especially from regions similar to that one in Seestadt Aspern. Therefore,
image datasets captured in Europe are preferred for object detection as well as for object
classiĄcation learning tasks due to the variety of diferent traic sign appearances with the
same meaning. As an example Figure 4.1 shows the variety of the traic sign pedestrian
crossing from seven speciĄc countries all over the world. This demonstrates the diversity
of signs which can have a completely diferent appearance depending on the country of
origin. While the sign in Austria and Laos are quite similar except of the pedestrian
icon which is male in Austria and female in Laos, the sign of Australia looks completely
diferent which varies in shape, color and the drawings on the sign. Due to the fact
that the appearance of such navigation priors can strongly vary around the world, it is
essential to select datasets which contain objects with similar appearance to the Ąnal use
cases.

In this section the investigated datasets for object detection 4.1 and classiĄcation 4.2
are described. Following, the data aggregation concept is presented in Section 4.3. The
chapter closes with a description of the test data in Section 4.4.

1https://www.frontsigns.com/blog/the-difference-of-world-traffic-signs/
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Figure 4.1: Diferent appearance of traic sign pedestrian crossing from 7 speciĄc countries.
The image is taken and adapted from 1.

4.1 Datasets for Urban Object Detection

The datasets for the object detection tasks of the developed approach must contain
dynamic objects which are used for reĄnement purposes as well as static objects which are
needed for the resulting geo-localization. The target dataset classes for object detection
are car, bus/truck, bicycle, pedestrian, traffic sign and traffic light.

To select usable datasets for the current learning approach, two rules are deĄned. These
rules are:

• Completeness: All selected labels have to be annotated in the images of the dataset.

• Balance: Select datasets with high object variety and appearance. Further, reduce
over-represented labels by removing images containing mainly these labels.

Completeness is essential to decrease the risk of missing annotations. If datasets are
aggregated with missing object annotations, the model gets wrong FPs because these
objects are still not annotated in the training dataset. By following this rule, datasets
like Pascal VOC 2012 [EVGW+10] and MS COCO [LMB+14] are discarded due to
the fact that both datasets do not contain all labels which are car, bus/truck, bicycle,
pedestrian, traffic sign and traffic light. Balance is required to avoid overĄtting during
model training. For example, if 90% of the annotations are cars and the other 10% are
annotations of the other 5 labels, it is assumed that the trained model is able to detect
cars but fails by detecting objects of the other underrepresented classes. By following
these rules, the Cityscapes[COR+16] and the Berkley Deep Drive 100.000 (BDD100k)
[YCW+20] datasets are chosen.

Cityscapes dataset consists of 5.000 images mainly captured in cities in Germany
with semantic masks on instance level divided into 35 diferent classes. The dataset was
published in 2015. Its focus is on German cities which are comparable to Austrian cities.
The similar appearance of objects and their surrounding makes this dataset valuable for
the used approach. Furthermore, it contains GPS meta data and vehicle speed. The
image size within the dataset is 2048x1024px. This dataset is commonly used for pixel-
and instance-level learning tasks to achieve a semantic understanding[COR+16]. To make
it usable for training and evaluation of a detection model, the pixel-wise ground truth
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is converted into bounding boxes. As a disadvantage, the dataset is small compared to
BDD100k with a scope of 5.000 images. The images were only captured on sunny days
which leads to a low variability due to a lack of varying weather and lighting conditions.
Another problem is bayer demosaicing artefacts. The dataset contains images where
even humans have problems to select the correct color state of a traic light. Due to the
pixel-level annotations of this dataset, the annotations are converted into bounding boxes
to make them usable for object detection learning tasks which is used in this thesis. This
results in partly inaccurate bounding boxes due to diferent interpretations of an object
instance. For example, as seen in Figure 4.2 there are traic light annotations which
are too far away from the borders of the annotated object instances. This is a result
of interpreting two traic light objects as a single instance deĄned by the pixel-level
annotation policy of the source dataset. This can lead to detection miss-matches if the
overlap between ground truth and prediction is insuicient.

Figure 4.2: Two images of the Cityscapes dataset with their semantic masks of the traic
light objects and polyline annotations of the dataset are visualized as green lines which
are used to create the bounding boxes of the object instances in the upper row showing
inaccurate bounding box annotations which are created for this thesis. On the left side
an image crop from Frankfurt is shown while the right image crop shows an image from
Munster. The blue boxes are the derived ground truth annotations whereby the red and
green box show annotations closer to the detectable object. The green box symbolizes
that the IoU lies over 50% while the red box has an IoU lower than 50% compared with
the ground truth bounding box.

Figure 4.3 shows that even a popular dataset like Cityscapes dataset is not faultless. It
shows the semantic segmentation of the traic lights and their associated polylines for
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each object instance on the top and on the bottom the RGB image. An orange arrow
is pointing on the missing object. Nevertheless, the images and objects are similar in
appearance to the test area and the small errors are negligible.

Figure 4.3: Example for missing annotation. The Ąrst image shows the semantic masks
of the traic light objects and the objects polyline annotations of the dataset which are
visualized as colored lines. The second image shows the RGB image. The missing traic
light annotation is marked with an orange arrow which point on the object which is
missing.

BDD100k dataset contains images with a wide variety in geographic, environmental
and weather diversity which is partly shown in Figure 4.4. The image size within the
dataset is 1280x720px. As the dataset name suggests, it contains 100.000 keyframe
images with 41 diferent classes and provides annotations for diferent learning tasks like
semantic segmentation, pose estimation or object detection. An exceptional feature of the
dataset is that it includes additionally to the other labels two diferent labels for traic
sign objects: the labels traffic sign as well as traffic sign frame[YCW+20]. However, the
second label does not Ąt in the aggregated traffic sign class. The source dataset contains
the labels car, bus, bike, motorcycle, traffic light, traffic sign, train, truck, person and
rider which are mapped and merged into the six categories for the object detection task.
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Figure 4.4: Example images of the BDD100k dataset. The Ągure is a revised illustration
from the paper of the dataset [YCW+20] showing recordings from diferent cities and at
diferent daytimes with visualized annotations.

4.2 Traffic Sign and Traffic Light Classification

The resulting object detections of traic signs and traic lights are taken as input for
the object classiĄcation task to generate Ąne-grained subcategories of the detected static
objects which are needed for the Ąnal localization approach. Derived from the detection
labels, the object classiĄcation learning task consists of two independent models: one for
traic sign and one for traic light classiĄcation. The model for traic lights distinguish
between TL green, TL yellow, TL red and TL off. While the Ąrst three are derived from
the current traic light conditions, the last one is set if the current traic light status
is not visible like traic lights which are captured from backface or traic lights which
are switched of. The traic sign model must cope with diferent traic sign types which
are commonly found in the test area of this thesis. Furthermore, it must handle other
signs and traic signs captured from backface. As seen in Figure 4.5, the deĄned labels
for traic sign classiĄcation are listed. The chosen signs are similar in shape, color, and
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appearance. The label unknown is added as negative class to avoid wrong predictions
within other labels. It contains diferent street signs which are uncommon or not included
within the other 20 classes.

Figure 4.5: Illustration of the labels for object classiĄcation. 19 speciĄc traic signs are
selected as well as a label for unknown signs and one for traic signs captured from the
backface which includes circular, rectangular and square-shaped signs from the back.

In Table 4.1 the selected datasets for the classiĄcation training are shown. In total nine
open-source datasets are selected for the data aggregation stage. The Ąve datasets in
the upper rows contain traic signs while the four datasets in the lower ones are used
for traic lights classiĄcation. In the Ąrst column the dataset names are listed, the
following two columns list the whole amount of object instances and available labels
for each dataset and the last two columns show the selected and used annotations
and labels for the data aggregation stage to create the target datasets for the training.
The datasets GTSRB[SSSI12], Mapillary[NORBK17] and DTLD[FMKD18] are large
and overrepresented compared to the other selected datasets. Nevertheless, the other
datasets are valuable too. They are used to increase label variability and to cover object
types which are not included or underrepresented within the others. The UdacitySDC
dataset[Gon16] contains bounding box annotations of recorded image data during driving.
Due to the fact that this dataset contains images with unlabeled traic signs, it is excluded
from the object detection part. Nevertheless, the annotated traic lights are cropped
and used for the traic light classiĄcation task. The Mapillary dataset is challenging too
when including it into a Ąnal target dataset for object detection. It contains semantic
masks without any instance segmentation. The annotations provide pixel-wise labeling
of the images. As an advantage the dataset contains annotations for the label traffic sign
back which is only included in this dataset. By using the data of the Mapillary dataset,
backfaces of traic sign detections can be classiĄed correctly. To extract the wanted
objects from the Mapillary dataset, the traffic sign back segmentations are converted
into bounding boxes to make them usable for the object classiĄcation task. This has
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been implemented by extracting the object instances based on their instance IDs which
results in 53.617 extracted image crops of traic signs captured from backface. The traic
signs from frontface are skipped because traic signs which are belonging to at least two
Ąne-grained classiĄcation labels are included within the traic sign frontface class.

Table 4.1: Overview of open-source datasets used for object classiĄcation data aggregation.
The dataset name (Dataset), the amount of annotated objects (Annotations) and their
number of deĄned labels (Lbls) with the selected annotations (Sel.Annotations) and
the amount of selected labels (Sel.Lbls) from the whole dataset labels to aggregate the
resulting dataset are listed. The Ąrst 5 datasets are containing annotations for traic
sign classiĄcation and the last 4 datasets are used to create a target dataset for traic
light classiĄcation.

Dataset Annotations Lbls Sel.Annotations Sel.Lbls
BelgiumTS [MTBVG13] 7.125 62 6.218 56
GTSRB [SSSI12] 39.209 43 38.789 42
MAPILLARY [NORBK17] - - 53.617 1
MASTIF [ŠBK+10] 3.213 66 2.774 57
SwedishTS [LF11] 6.651 20 3.669 7
BSTL [BNB17] 24.242 15 24.241 13
LISA [JPM+16] 51.826 7 37.810 6
UdacitySDC [Gon16] 93.086 11 14.693 6
DTLD [FMKD18] 292.245 620 117.674 7

There are signs which are found in Vienna and do not appear in open-source dataset
which containing recordings of other European cities. In Figure 4.6 a small extract of
various signs captured in the investigated area of Seestadt Aspern are shown which are
common signs for Vienna.

To further increase the intraclass variety of the label unkown, signs which are speciĄc for
Vienna with the restriction that they are not captured in the area of Seestadt Aspern
are added manually. The restriction is needed in order not to distort the evaluation on
the test data which are recorded in Seestadt Aspern. By adding new samples like street
signs and bus signs of Vienna which are not contained in any open-source dataset the
negative class variety is increased. The images are harvested from the internet and are
added to the Ąnal dataset. Due to the manual efort, a manageable amount of 315 images
are selected and processed for image classiĄcation which is a contribution of less than
0.3% of new unseen objects. Nevertheless, adding this small subset has an inĆuence on
the results which is examined within the evaluation.

4.3 Data Aggregation

After Ąnishing the data selection process, the target datasets are created. The aggregation
of diferent datasets is used to increase dataset variety and to decrease the bias of
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Figure 4.6: Example of area speciĄc traic signs and other uncommon signs from Seestadt
Aspern.

single datasets. As mentioned in the previous sections, the object appearance and the
environmental conditions are varying between the datasets. As seen in Figure 4.7 diferent
heterogeneous datasets are combined and aggregated to a new target dataset. At Ąrst
the open-source datasets which are created for another learning task are converted into
the annotation type format of the resulting target dataset in order to ensure a uniform
annotation format in the aggregated target dataset. Afterwards, the convert data are
merged into a uniĄed target dataset.

Figure 4.7: Aggregating diferent datasets by adapting their annotations to the needed
learning task and reorganize the label settings to an unique target dataset.

To avoid loss of quality during the aggregation stage, the merging and reductions of
diferent datasets have to be well-designed. This is supported by descriptive dataset
statistics like label distribution, number of annotations per class and bounding box
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appearances like width to height ratios of the annotated bounding boxes for each label.
They are used as indicators to get a quick overview of the data and to examine the dataset
during the creation. This is helpful for further adaptations and aggregations which leads
to an increased degree of generalization. For example, by avoiding class imbalance within
a generated dataset. By performing dataset aggregation based on dataset analyzes, it
is able to increase the quality and quantity of the target dataset. Following, two used
techniques which are used in this thesis are described:

• keep underrepresented labels: All images containing underrepresented labels are
collected and taken for the new aggregated dataset.

• reduce overrepresented labels: Remove images containing only overrepresented
labels if they are over a deĄned threshold.

By applying the aggregation steps leads to a balanced dataset. This means that the
instances are uniform distributed over all classes so that there does not exist any
underrepresented label anymore. This subsequently results in an improved precision for
each label when performing the learning task. In Table 4.2 the imbalance between under-
and overrepresented classes are examined. Therefore, the datasets Berkley Deep Drive
(BDD) and CityScapes (CS) are compared with the resulting dataset which is called
keepUR. The new dataset has a reduced class imbalance from ratio 1:48 to a ratio of 1:20.
This is reached by discarding over 50% of the source datasets. In detail, the class car
is highly overrepresented in the dataset BDD which is decreased to create the keepUR
dataset.

The aggregation of the discussed open-source datasets for classiĄcation results in two
main datasets which are called Traffic Lights Merged (TLM) and Traffic Signs Merged
(TSM). As implied by the name, TLM is used for traic light classiĄcation and TSM for
traic sign classiĄcation.

Table 4.2: Dataset aggregation for object detection: It compares the selected datasets
BDD and CS with the aggregated and optimized dataset keepUR which is based on the
others. This leads to a maximum label ratio of 1:20 which means that each class has at
least 5% of object instances if the current class is merged with the class with the most
instances. The last four columns show the instances of the smallest and the largest class
of each dataset and the ratio in % between their own classes per label. The unbalance of
the dataset decreases while the under-sampling of the frequent labels is performed in a
reasonable scope which is approved by the experiments in Section 5.

Dataset Images Labels min Instances ratio(%) max Instances ratio(%)
BDD 79.847 1.442.297 16.813 2 801.655 98
CS 2.974 83.711 1.182 4 27.155 96
keepUR 30.438 653.575 15.874 5 309.794 95
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A detailed overview of the label distribution for object detection datasets is shown in
Table 4.3. The label instances are categorized into small, medium and large. This
subdivision is deĄned by the authors of the MS COCO dataset. The bounding box area
for the 3 categories are deĄned as follow:

• Small: 0x0 up to 32x32 results in an area up to 1.024px

• Medium: 32x32 up to 96x96 results in an area from 1.025px up to 9.216px

• Large: greater than 96x96 results in an area greater than 9.216px

While dynamic objects are increased in the medium size visible, static objects tend to
appear small within the images. Therefore, a detector is needed which can cope with
small objects. Finally, the aggregated datasets are divided into training set and validation
set with a ratio of 9:1.

Table 4.3: Overview of the label distribution within each dataset divided into small(s),
medium(m) and large(l) on the basis of their bounding box areas, respectively 32x32px,
96x96px and greater than 96x96px. For each category the values are shown for object
instances and percentage of the whole class.

Label Dataset s s(%) m m(%) l l(%) sum
traic Light CS 6.218 60% 3.731 36% 288 2% 10.237

BDD 156.775 86% 23.993 13% 121 0% 180.889
keepUR 75.420 73% 13.859 25% 280 1% 89559

traic Sign CS 13.037 62% 6.997 33% 834 3% 20.868
BDD 173.236 73% 59.688 25% 4.125 1% 237.049

keepUR 85.493 68% 30.185 29% 2.115 3% 117.793
person CS 5.293 29% 9.150 50% 3.551 19% 17.994

BDD 41.598 45% 43.805 48% 5.516 6% 90.919
keepUR 31.663 38% 35.023 49% 5.963 12% 72.649

car CS 4.278 15% 13.083 48% 9.794 36% 27.155
BDD 299.279 42% 276.653 38% 135.716 19% 711.648

keepUR 127.710 29% 121.092 43% 60.992 26% 309.794
truck CS 75 6% 445 37% 662 56% 1.182

BDD 6.560 15% 17.953 43% 17.229 41% 41.742
keepUR 6.635 11% 18.394 40% 17.882 48% 42.911

biker CS 1.113 17% 3.428 54% 1.734 27% 6.275
BDD 4.032 27% 8.100 55% 2.563 17% 14.695

keepUR 5.139 22% 11.474 55% 4.256 22% 20.869
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4.4 Test Data

The developed pipeline of this thesis copes with diferent computer vision topics. The
generated framework containing the whole pipeline consists of diferent stages whereby
each stage needs its own metric to evaluate the performance and accuracy of the developed
approach. While in Section 4.1 and in Section 4.2 the training and validation data are
described to train and validate the learning model, this section describes the process
of creating custom test datasets for each stage within the pipeline. To guarantee
evaluation over the whole framework and of each stage, test data for each speciĄc task is
developed. These tasks are object detection and the impact of data aggregation as well
as object localization. For object detection evaluation the CS validation set is used. The
dataset contains 500 images and their semantic masks are transformed into bounding
box annotations which results in 15.970 annotated objects within 497 images. To further
evaluate the trained models and the impact of data aggregation, a custom test dataset
for object detection is created. The custom datasets are independent from the training
data to guarantee no data bias from the source datasets during the Ąnal evaluation of
the developed approach. The images for the test dataset are taken in Seestadt Aspern
by AIT. Sequences are extracted of the auto.Bus project recordings. The self-captured
images are manually annotated and classiĄed. For object localization evaluation only
self-captured images with their GPS data are taken due to high accuracy reasons of
the captured signals. In the following subsections, the self-captured images and signal
properties are described. Furthermore, to enable a seamless evaluation the diferent test
data compositions of the whole framework are discussed in detail.

4.4.1 Self-Captured Images

The recordings for the auto.Bus project are captured with 2 diferent vehicles: a car
and a self-driving bus. On both vehicles a monocular RGB camera is mounted on the
windshield on top of the vehicle to capture the whole scene in driving direction. In the
early stage of the project, a car is used for generating the Ąrst test data. During the work
of this master thesis, an autonomous bus in Seestadt Aspern started its test operation
and collects test data too. A comparison of the two setups is shown in Table 4.4. While
the car recordings have a higher resolution and an increased vehicle velocity, the bus
recording has an accurate GPS signal but contains stopping scenes within the bus drive
which are discarded. Compared with the bus sequences, the images captured by the
car provide an increased driving velocity and an increased driving area. This results
in a higher motion blur due to higher car velocity and driving vibrations. The GPS
signal of the camera mounted on the car has an accuracy of up to 10m and the signal
is temporally lost or wrong if the car drives through an underpass or nearby high-rise
buildings. So, the car recordings are used to proof hypotheses belonging to the object
detection and classiĄcation stage due to the fact that the driving area contains the route
of the autonomous bus containing all relevant traic signs while the bus recordings are
used to validate the GPS position estimations.
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Table 4.4: Comparison of the recordings from Seestadt Aspern.

Car Bus
recording date 30.07.2019 10.10.2019
vehicle speed up to 40km/h up to 15km/h
FPS 30 15
GPS deviation over 5m up to 10cm
total number of frames 1.620 18.500
number of selected frames 336 5.958
total number of labels 3.292 14.638

Relevant frames and sequences are annotated and the GPS positions of static objects
within the driving area are manually measured by using diferent online sources containing
satellite images and GPS data which is the same annotation approach as already done
by Zhang et. al [ZFL21]. The custom datasets are challenging due to light changes and
various dynamic road users as well as over- and underexposure which is present in the
captured data too. Figure 4.8 shows two images of the test data containing overexposure,
underexposure, windshield efects and low resolution. Furthermore, the image resolution
of the bus recording is decreased compared with the images of the open-source datasets
used for training.

Figure 4.8: Two images of the test data. On the left image underexposure and windshield
artefacts are visible, while the right image shows overexposure and low image resolution.

To manually annotate the selected sequences, 2 free available annotation tools are explored
and used to add the bounding boxes to the custom data:

• Scalabel2

• Computer Vision Annotation Tool (CVAT)3

Both frameworks have a clear UI, an extensive documentation and are still maintained
by the authors. Scalabel is used for single image frame annotations which are mainly

2https://github.com/scalabel/scalabel
3https://github.com/opencv/cvat
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used for object detection and classiĄcation purposes. The tool was developed by BDD
research group [YXC+18] and supports a comprehensive range of functionalities to
produce annotations for computer vision models. CVAT is needed to annotate whole
video sequences or subsequences. While Scalabel gets performance problems and other
errors during the annotation progress when annotating image sequences, CVAT handles
the task without any problems.

4.4.2 Data used for Object Detection Evaluation

To guarantee a correct and unbiased evaluation, the test data has to be independent
from the training data. While the trained models are based on the open-source datasets
BDD and CS, diferent subsets are used for performance measurements. Taking test data
from various sources helps to increase the complexity of the test data. For example, the
data contains varying driving environments and object appearances as well as diferent
capturing conditions. Evaluating models on diferent test data shows the robustness of
the trained models based on objects from the test area compared with other open-source
datasets. The three resulting test datasets consist of 833 images for object detection
evaluation:

• CS validation set consists of 497 images with 15.970 annotated objects [COR+16]

• Seestadt1 is the smallest subset with focus on challenging scenes from the testing
areas. Therefore, 20 diferent recordings are explored and 54 images are extracted
and bounding box annotations are manually created.

• Seestadt2 consists of an annotated image sequence. One FPS is extracted which
results in 282 extracted and manually annotated images.

The images for the custom test subsets Seestadt1 and Seestadt2 are collected within a
speciĄc region in Seestadt Aspern and subsequently annotated. Figure 4.9 describes the
selected regions. Area (a) contains an increased appearance of signiĄcant traic signs
and other dynamic objects and area (c) concentrates on traic lights for diferent road
users like drivers and pedestrians. Area (b) places an emphasis on dynamic objects. This
area includes a bus station which tends to a higher number of pedestrians waiting for
the next bus within this region. To further increase the degree of diiculty the selected
regions contain unseen traic signs and unexpected vehicles.

While area (a) is visualized in Figure 4.10, in Figure 4.11 area (c) is shown in detail.
Both pictures are satellite images from Google Maps4. The static objects are drawn
into the satellite images to show their distribution and to visualize the scene complexity.
Figure 4.10 indicates an increased local accumulation of direction signs and signs for
pedestrian crossing. These signs are close to each other which is challenging for object
detection as well as for object tracking in the case of sign overlapping or occlusion.

4https://www.google.at/maps/@48.2260153,16.5057103,16.96z?hl=de
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Figure 4.9: Evaluation areas in Seestadt Aspern. The zoomed-out map shows the oicial
driving route of the bus. The displayed detail of the map Ągures essential evaluation
areas. Each area is focused on a speciĄc scenario: a) roundabout with 14 traic signs, b)
bus station with number of dynamic obstacles and c) traic lights with diferent states.

In Figure 4.11 traic signs and traic lights are visualized. This scene is complex due to
the high number of detectable objects. There are up to six diferent traic lights on a
single GPS location due to diferent driving and walking directions and diferent traic
light types for diferent road users.

In Table 4.5 the label distributions are listed in detail. The CS subset is the biggest one.
It is well distributed with an annotation ratio less than 1:3 between the classes except the
label truck which is underrepresented with 235 annotated instances. During the creation
process of Seestadt1 and Seestadt2 care has been taken to create test datasets with a
high variance in object appearance within the images and over the whole subset by taking
images with suicient time delay like one FPS or selecting frames manually by avoiding
selecting multiple images which contain the same physical object in it. Furthermore, the
custom subsets contain diverse traic signs of diferent types. As a disadvantage, bikers
are underrepresented due to a lack of captured biker during recording time. Figure 4.12
shows this circumstance too. In Seestadt2 traic signs are highly present as well as in
Seestadt1.
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Figure 4.10: Visualized street map of evaluation area (a). The signs are shown on the
left side whereby the locations are marked in the map by colored numbers.

Table 4.5: Overview of size and label distribution for each dataset.

CS Seestadt1 Seestadt2
biker 1.880 9 22
car 4.667 300 245
person 3.419 71 368
truck 235 56 271
traic light 1.661 281 150
traic sign 4.108 425 1.094
sum of labels 15.970 1.142 2.150
images 497 54 282

4.4.3 Data used for Localization Evaluation

The GPS coordinates of the traic signs as well as the GPS signal of the bus during the
bus ride are taken as ground truth to evaluate the calculated locations of traic signs
and the bus itself based on the previous estimations. To decrease inference time the data
captured by the bus is cropped from resolution 1280x1056px to 1280x760px by assuming
that on the lower area of the images are no traic signs visible. As seen in Figure 4.13
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Figure 4.11: Visualized street map of evaluation area (c). The signs are shown on the
left side whereby the locations are signed in the map by colored numbers.

not relevant image regions are removed which containing mainly road segments.

During the drive 1.219 GPS signals are captured and logged for the whole sequence which
contains 18.500 frames in total. The maximum distance between two consecutive GPS
locations of the bus is four meters and the average distance is 1.8 meters. For the sake
of completeness, the minimum distance is zero meter in the case when the bus stops.
This results in a maximum speed of 14.4 km/h which is slow compared to other common
motorized road users which are allowed to drive up to 50 km/h in the current driving area.
To increase the amount of data usable for evaluation, each frame gets its own current
bus position. Therefore, the latitude and longitude values are interpolated between two
consecutive GPS signals. For each synchronized frame which was recorded within the
time delay of the two GPS signals, an interpolated GPS position is calculated and set.
Figure 4.14 shows the capturing route of the bus. The blue line is the interpolated GPS
signals over the whole driving distance which Ąt the drivable area. Start and end point
are on the right upper corner. The bus stations are labeled with blue circles and are
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Figure 4.12: Label distribution of the Ąnal evaluation datasets for object detection.

Figure 4.13: Example of an image recorded by the bus. On the left side the raw image is
shown with the planned image cut and on the right side the cropped image is visualized.

visited by the bus from both road directions except for the station on the left bottom
corner. Furthermore, the bus stops for up to one minute at these positions. There are 30
red and purple dots beside the driving road. These marks show the GPS positions of all
predeĄned static objects within the evaluation space. The red dots present a single sign
whereby the purple dots show two signs at the same position. This results in 33 traic
sign instances captured from diferent driving sides along the streets. The GPS positions
of the signs are identiĄed and collected manually. This is done by manually extracting
the sign positions from Google Maps satellite images.

Due to comparison purposes and to show strengths and weaknesses in diferent driving
scenes of the developed approach, the recorded sequence is divided into subsequences.
Therefore, regions are selected containing speciĄc traic signs combined with other
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Figure 4.14: Seestadt Aspern GPS evaluation area. The blue circles indicate areas of bus
stops whereby the red and purple dots are traic sign locations. The red point indicates
one and the pink two traic signs on the same position.

challenging situations. In Figure 4.15 the identiĄed subsequences are visualized. In
total there are 19 scenes deĄned and extracted from the bus trail. Diferent scenarios
are captured like traic intersections, curvy roads or a high volume of diferent traic
signs. The subsequences which are drawn and connected in a grey box indicate that
they are captured on the same road area but from diferent street sides. The sequences
are coming closer to the essential traic sign position from diferent viewpoints and the
signs are captured from frontface and backface. The red and purple circles show the
traic sign positions. Whereby red icons contain one traic sign at a speciĄc position
and purple icons mean that there are two traic signs at the same position. The red lines
are the interpolated latitude and longitude coordinates from the selected subsequence. A
sequence contains one traic sign as seen in SEQ02 up to 8 traic signs which is shown in
SEQ09. Further challenges are that the signs are occluded like in SEQ03 or the driving
area is curvy like in SEQ02 or SEQ08.
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Figure 4.15: Sequences visualized with traic sign position and bus locations. The
diferent grey boxes represent sequences in the same street map area with the same traic
signs but captured from diferent driving directions on the road.

In Table 4.6 the extracted subsequences are listed and analyzed in detail. Whereby the
longest sequence SEQ12 contains 839 images and the shortest one SEQ17 74 images.
The subsequences have up to 3.004 annotated traic signs and a maximum bus driving
distance of approximately 106 meters. This is essential to make assumptions of bus to
sign distances for the Ąnal evaluation.

4.5 Summary

In the scope of this thesis, multiple open-source datasets are aggregated to construct cus-
tom target datasets for training object detection and classiĄcation models. Furthermore,
test datasets are deĄned to evaluate the developed approach. One part of the test subsets
is focused on the evaluation of the object detection parts by using open-source data and
custom datasets. The other test subsets are used for evaluating the localization parts.
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Table 4.6: Extracted subsequences of the bus trail recordings. Each sequence has a
unique name and the contained images and visible object instances (Signs) are listed.
Furthermore, the bounding box annotations (Annotations) for object detection evaluation
is shown. Essential metrics for object localization are the whole driving distance (Driving
Dist.(m)) and the camera to object distance (Sign Dist.(m)).

Sequence Images Signs Annotations Driving Dist.(m) Sign Dist.(m)
SEQ01 180 1 177 24.43 15.48 - 39.03
SEQ02 76 1 64 9.82 17.81 - 25.13
SEQ03 121 1 115 15.17 17.14 - 31.31
SEQ04 667 6 3.004 106.21 5.72 - 114.53
SEQ05 324 2 598 41.45 8.99 - 49.38
SEQ06 136 2 214 24.43 9.61 - 34.89
SEQ07 562 7 1.790 76.24 3.96 - 85.94
SEQ08 186 2 197 29.46 6.53 - 31.78
SEQ09 479 7 1.237 78.09 4.67 - 62.50
SEQ10 635 3 1.132 90.59 4.67 - 59.68
SEQ11 279 1 273 51.68 6.87 - 57.92
SEQ12 839 5 2.431 92.72 7.32 - 73.27
SEQ13 117 2 221 17.30 11.64 - 28.14
SEQ14 101 2 107 20.06 8.58 - 20.06
SEQ15 238 2 433 18.63 5.58 - 26.85
SEQ16 617 6 2.183 62.36 7.66 - 93.58
SEQ17 74 1 69 14.01 16.09 - 29.64
SEQ18 106 1 106 21.68 12.66 - 33.90
SEQ19 221 2 287 34.72 11.72 - 36.34
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CHAPTER 5
Evaluation

This chapter investigates the performance and accuracy of the developed approach up to
the Ąnal localization. To identify the strengths and weaknesses of individual parts within
the deĄned pipeline, diferent datasets and metrics are used for the evaluation in multiple
experiments. As already mentioned in Section 4 to cope all aspects of the pipeline, the
evaluation data consists of an existing open-source test dataset and a manually annotated
image data which increases the data variety. The accuracy of the developed pipeline is
the result of three major tasks, namely: The detection accuracy of the trained models,
the accuracy after applying reĄnement and optimization approaches on the detections
results, and the accuracy of the Ąnal localization technique used to estimate objects
in world space. The used evaluation metrics are divided into two categories: one to
measure the detection performance and the other one to measure the Ąnal localization
error. At Ąrst in Section 5.1, the evaluation metrics and their properties are introduced.
Afterwards, in the Sections 5.2, 5.3.1 and 5.4 the selected experiments are evaluated and
the results for detection and localization are presented. Finally, in Section 5.6 the results
for the diferent tasks are discussed and limitations are pointed out in Section 5.5.

5.1 Evaluation Metrics

Since the proposed methodology involves multiple steps to produce the Ąnal output, it is
essential to use evaluation metrics that are speciĄc to the use case in each step to analyze
preliminary as well as the Ąnal results of the developed approach. Thus, each part of
the developed framework is evaluated by its own. A special focus is set to the data
aggregation and the Ąnal static object localization in the scope of this thesis. Within this
Section, the metrics are described and restrictions with respect to location measurement,
ground truth completeness and other environmental constraints are discussed and taken
into account which are essential during the evaluation study.
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Accuracy of Detection

To obtain the accuracy of a detection model, a conĄdence score for each prediction
and an associated classiĄcation probability is calculated and combined. The conĄdence
score indicates the probability of a bounding box containing an object or not and the
classiĄcation probability shows the correct label classiĄcation of a bounding box. The
IoU metric is based on the Jaccard index [Jac01]. As shown in Figure 5.1 this metric
indicates the overlap between predicted and ground truth bounding boxes [PNDS20].
The higher the index, the better the areas are matching.

Figure 5.1: Illustration of the IoU metric [PNDS20].

For the evaluation of the object detection parts the standard metrics of the popular
PASCAL VOC benchmark [EEVG+15] are used which are IoU>50% to consider a
correct prediction and the mean Average Precision (mAP) to measure the performance
of an object detector. The mAP is based on the Average Precision (AP) which is the
interpolated average precision by summarizing the shape of the Precision x Recall curve.
As seen in Equation 5.1 a set of equally spaced recall levels r starting from zero up to one
with 0.1 step size which results in eleven recall levels is summed up. To get the average
the sum is divided by eleven:

AP =
1
11

�
r∈[0,0.1,...,1]

pinterp(r) (5.1)

pinterp(r) is the maximum precision of the interpolated recall level r with p(r̃) as the
measured precision at recall r̃:

pinterp(r) = max
r̃:r̃≥r

p(r̃) (5.2)

So the precision is not observed at each point of the curve but approximated by interpo-
lating the precision at eleven recall levels. The mAP in Equation 5.3 averages over all
classes the AP:
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mAP =
1
N

N�
i=1

APi (5.3)

whereby i is the index of the current class and N the total number of classes [PNDS20].
Further essential metrics are precision (Equation 5.4), recall (Equation 5.5) and F1-Score
(Equation 5.6) described by Goutte et al. [GG05]:

Precision(P) =
TP

TP + FP
(5.4)

Recall(R) =
TP

TP + FN
(5.5)

F1-Score = 2 ·

P · R

P + R
(5.6)

While the Precision shows how many of the predictions are correct predicted objects,
the Recall provides how many of the relevant objects are predicted. The F 1 − Score uses
both, Precision and Recall, and is deĄned as the average of precision and recall [GG05].
F1-score, precision, recall and mAP are common metrics to evaluate object detection
models. Within this thesis they are used to measure the quality of the model predictions
ant their further adaptations by comparing the results with the given annotations of the
test datasets.

5.1.1 Accuracy of Localization

The localization accuracy is examined by evaluating the error of the relative distance
between the bus and the tracked object in cm as well as the absolute error of the predicted
location and the real object location. The Ąrst one is the distance error whereby a relative
error regarding the current bus location is elaborated. In detail it is the estimated
distance between camera and located objects in cm. The second one is the longitudinal
distance error or GPS error in longitudinal and lateral position. It is used to calculate
an absolute spatial error which is performed by calculating the distance between the
real object location to the estimated object location in cm. This shows the displacement
between the estimated and the ground truth values which is an established accuracy
metric in mapping science [Chr91].
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5.2 Evaluation of Object Detection

To investigate the eiciency of training from scratch based on data aggregation instead of
using a pretrained model trained on a single dataset the object detection and classiĄcation
results are examined and discussed. At Ąrst the data aggregation itself is explored
by aggregating two speciĄc open-source datasets to test the assumptions that data
aggregation reduces dataset bias and leads to a balanced dataset. Furthermore, advantages
and disadvantages of this technique are established. Afterwards, the detection approach
combined with object classiĄcation models is analyzed and compared to a pretrained
YOLOv3 model. It is expected that the models from scratch result in an increased
accuracy due to increased dataset variability and decreased dataset bias.

5.2.1 Data Aggregation

Data aggregation is used to combine diferent datasets and reduce them to a decreased
target subset with similar variability of the source dataset but containing less images
which have low impact on the resulting prediction accuracy due to object similarities
and over-representations. This hypothesis is tested by aggregating target datasets from
diferent open-source datasets and subsequently compare the results of the models with
each other.

Experiment Setup

The experiments compare the prediction results of models trained on aggregated datasets
to make statements about efectiveness of data aggregation compared with random image
selection. The models are trained on target datasets which are based on BDD_CS dataset
described in Section 4.3. The BDD_CS dataset is a combination of the open-source
datasets BDD and CS which are introduced in Section 4.1. It is expected that if the
data is aggregated by applying speciĄc rules that it results in an increased detection
accuracy compared to randomly reducing a dataset. Furthermore, extending a dataset
by another one increases the dataset variety and consequently results in an improved
detection model trained on the adapted data. Based on these assumptions the following
four target datasets are generated:

• D1rdm: Images are randomly selected.

• D2rdm_bal: Images are randomly selected but with label balancing which means an
increased selection priority for images containing objects from underrepresented
classes.

• D3agg: Images selected by aggregation techniques discussed in the following para-
graph.

• D4agg: The same as D3agg but only containing images from BDD dataset to examine
the impact of the CS dataset.
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The Ąrst two datasets are randomly created whereby the last two datasets are aggregated
with the following aggregation steps:

1. Label balancing: The overrepresented classes are reduced up to 150.000 object
instances. This is produced by removing images where only overrepresented objects
appear. For example, the class car is overrepresented thus all images containing
only annotations of the label car are discarded until the class car has reached
150.000 annotations which are remaining within the dataset.

2. Minimum bounding box width and height: Afterwards, bounding boxes are ignored
which have less than 10px width or height because the focus is set to near or
medium viewing range and tiny objects far away are out of scope.

3. Certain bounding box shape: Due to the fact that the dataset annotations are
partly derived from semantic masks, cropped objects are discarded if less than 20%
of the object is visible. For example, a car moving out of the scene where less than
10% of the car is visible in image space is discarded. Therefore, it is assumed that
the bounding box appearance must follow a maximum width to height ratio of 1:12
to ensure that the object is truncated and less than 20% visible. If this assumption
is true for an annotation, the annotation is removed from the dataset.

To show the impact of the specialization on underrepresented classes by data aggregation
and not by adapting parameters at model training, the datasets are reduced to a small
amount of 3.000 images per subset which is less than 5% of the images from the source
datasets. This demonstrates strength and weaknesses when selecting speciĄc input data
based on aggregation strategies. Subsets which have after the aggregation stage over
3.000 samples are random reduced to the speciĄed amount of 3.000 images. In Table
5.1 the distribution of the bounding box size is shown. For all object sizes D1rdm and
D2rdm_bal as well as D3agg and D4agg are similar distributed. Both random subsets have
a higher amount on annotated bounding boxes compared with the other two subsets.
While D2rdm_bal contains the most annotated objects, D4agg has the lowest amount on
annotated objects.

Table 5.1: Aggregated detection datasets of 3.000 images with varying bounding box
distribution.

Dataset Images Labels Small(%) Medium(%) Large(%)
D1rdm 3.000 65.287 52% 35% 13%
D2rdm_bal 3.000 69.188 50% 36% 14%
D3agg 3.000 61.757 40% 43% 17%
D4agg 3.000 56.684 44% 41% 15%

Figure 5.2 shows the relative label distributions by class for each subset. The number
of static objects is increased within the random datasets whereby the underrepresented
classes truck and biker are increased in D3agg. Cars are highly represented in all four
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subsets with over 40% but compared with the source datasets the annotations of cars
are decreased for all target datasets. While D1rdm has a label ratio of 1:14, the D3agg

subset has a label ratio of 1:7. Thus, the latter one has an increased balance of the label
appearance compared with the other ones.

Figure 5.2: Relative label distribution of the aggregated detection datasets by class. On
the x axis the labels are listed while the y axis shows the label percentage of annotated
objects from label in relation to the total annotations of a dataset. The BDD+CS dataset
is the combination of the source datasets BDD and CS and was added for comparison
purposes.

Model Training

After Ąnishing the data preprocessing step, the trained models from scratch based on the
aggregated detection training data are created and evaluated. Therefore, each dataset
(D1rdm, D2rdm_bal, D3agg and D4agg) are split into 90% train set and 10% validation set
for observing the training progress. The used data augmentation techniques are Ąxed to
random horizontal Ćip with p=0.5 and normalization with mean and standard deviation
of the training set. The input image is resized by scaling it to 1024x608px and bicubic
interpolation and batch size of 10. The image is resized to allow real-time performance
and relatively similar to the Ąnal test setup of the bus recordings. Within the RetinaNet
architecture resnet101 is set as backbone which has twice as many parameter than the
default backbone resnet50. This results in an increased accuracy and in an increased
inference time compared with resnet50. The models are trained up to 40 epochs and the
checkpoints are saved after each epoch. After the training the model from the checkpoint
is taken which has the highest mAP on the validation set.
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Results

To compare the trained models and to get essential Ąndings from the underlying ex-
periments the models are applied on the deĄned test sets CS test set, Seestadt1 and
Seestadt2 which are presented in Section 4.4.2. The detection results of the trained
models are shown in Table 5.2 for each deĄned test set. The mAP is for all experiments
low with 25% up to 32%. It can be inferred that this is an efect of the reduced number
of training samples per subset. However, the evaluation results support the assumption
that aggregated datasets have a decreased bias and an increased class balance which
results in increased mAP because the mAP takes the average over all classes. Over all
test sets the class traffic light is hard to predict correctly for all trained models. This
can be due to the complexity of Ąnding small static objects within the scene. Another
reason can be that all datasets have problems with this class because the underlying
source datasets do not cope with the traic light appearance and variability or the object
annotation itself of the test sets.

Table 5.2: Detection results from object detection models which are trained on the
generated datasets. The Ąrst two columns show the test and training dataset while the
following columns present the AP for each label. In the last column the mAP over all
labels is shown. The highest values of each test set (Test Dataset) and each evaluation
metric are highlighted in bold type.

Test Training TL TS person car truck biker mAP
Dataset Dataset

CS D1rdm 12.3 18.7 28.6 56.9 38.2 24.1 29.8
CS D2rdm_bal 12.6 20.4 29.5 59.0 40.8 28.3 31.7
CS D3agg 14.8 21.6 30.7 58.2 40.5 30.2 32.7
CS D4agg 13.0 17.2 26.2 57.6 40.6 28.5 30.5

Seestadt1 D1rdm 15.3 19.9 22.5 50.3 31.7 16.7 26.1
Seestadt1 D2rdm_bal 13.4 16.3 16.9 54.4 40.1 35.8 29.5
Seestadt1 D3agg 13.6 17.5 24.6 49.0 42.5 41.3 31.4
Seestadt1 D4agg 16.5 18.6 19.4 53.1 39.6 28.4 29.3
Seestadt2 D1rdm 6.6 28.8 46.8 46.2 23.8 1.1 25.6
Seestadt2 D2rdm_bal 4.7 25.4 37.7 55.5 42.5 0.7 27.7
Seestadt2 D3agg 7.4 25.8 45.8 60.8 46.0 0.3 31.0
Seestadt2 D4agg 9.6 28.0 44.5 48.7 31.5 4.6 27.8

Figure 5.3 shows the complexity of traic light detection where objects of the same class
are close together as seen by the four object instances within the image crops. While the
bigger two traic lights are clearly distinguishable, errors occur when distinguishing the
two objects on the lower half of the image crop which are smaller with a resolution of
10x25px per instance and close together. Furthermore, the incorrect prediction on the
left side from D3agg shows that the object appearance of small and long bounding boxes
tends to be considered as FP if the bounding box is not overlapping the object with an
IoU less than 50%. It shows that the ground truth of the bounding box in the test set is
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drawn close to the object boundaries whereby the annotations of the source dataset are
not that accurate. This indicates that the annotations from the source datasets have
to be as accurate to pass the evaluation metrics on the test data. In this case accurate
means that the bounding box annotations are set close to the object boundaries.

Figure 5.3: Example of a cropped region containing detection results of the class traffic
light. A result from D3agg on the left side is compared with the result of D4agg on the
right side. The light blue lines show the ground truth. Green bounding boxes are correct
predictions whereby red ones are wrong predictions. The objects have a varying resolution
between 10x25px and 20x40px.

Furthermore, the class biker in the Seestadt2 test set has a low accuracy of under 5% over
all detection results. It can be inferred that the trained model based on D3agg performs
best for all three test sets due to the highest mAP for all three test sets. As in the
experiment, creating a dataset by speciĄc aggregating techniques has a positive impact
on the target dataset quality which results in an increased performance of the resulting
model compared with a dataset based on random selection. The second-best dataset is
D2rdm_bal. It shows that it has an impact if the selection process is Ąne-tuned on selecting
underrepresented classes. The underrepresented class truck has an increased accuracy
when trained with D3agg, D4agg or D2rdm_bal compared with the random selected dataset
D1rdm which has a lower accuracy of 2.6% up to 22.2% compared with the other ones.
The Ąnal assessment is about the impact of using diferent dataset sources to increase
variability. A Ąnding is that the mAP of D3agg is increased compared with D4agg over
all three test sets which supports the assumption of increased dataset quality by adding
annotations from the CS dataset. By investigating the single classes traic light and
traic sign, D4agg has a higher accuracy compared to D3agg for test set Seestadt1 and
Seestadt2 and a lower one for test set CS. This can be due to the number of missing
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annotations of static objects within the CS source dataset so that the model trained
on D3agg gets penalized during training when detecting a not annotated static object
correct.

5.2.2 Pretrained Model vs Adapted Model from Scratch

After showing the eiciency of data aggregation on small subsets and their Ąndings
are discussed, models are trained on enlarged datasets based on data aggregation and
compared with each other. This tests the assumption that the impact still exists when
using a larger target dataset for training. Therefore, the same test sets are used like
in the section before. Furthermore, aggregation steps and parameter optimizations are
evaluated. To point out the importance of understanding all parts of the network as well
as the data and having full control during the training process, the evaluation results are
compared with another popular network, a pretrained YOLOv3 model. The performance
of YOLOv3 is as accurate as RetinaNet [RF18]. The fully convolutional network predicts
the bounding boxes and probabilities for each image region at once. Given the huge
popularity of the network, Redmon et al. [RDGF16] make further improvements to
increase detection accuracy and inference time. Later versions are YOLOv5 published
in 2020 [Joc20] and the newest ones YOLOv6 [LLJ+22] and YOLOv7 [WBL22]. Other
variations followed in 2021 like YOLOX [MLWX22]. An implementation1 is selected
based on the oicial code of YOLOv32. It was trained on MS COCO and allows detections
across diferent input image scales.

Experiment Setup

Four models are trained whereby each one is trained on one of the following datasets:

• MCS : The model is trained on the CS dataset.

• MBDD: The model is trained on the BDD dataset.

• MBDD+CS : The model is trained on both datasets, the BDD and the CS.

• MkeepUR: The model is trained on the CS and BDD datasets aggregated with
the deĄned aggregation techniques which are label balancing, minimum bounding
box with and height and certain bounding box shape discussed in the previous
section. This results in a target dataset that is focused on keeping annotations of
underrepresented classes.

While MCS , MBDD and MBDD+CS take the whole open-source datasets for the training,
MkeepUR is based on an aggregated dataset of both which is smaller than the combining
of the datasets without the data aggregation steps performed. In Figure 5.4 the label

1https://github.com/ayooshkathuria/pytorch-yolo-v3
2https://github.com/pjreddie/darknet
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distribution over all used datasets is shown. Cars are overrepresented in the open-source
BDD dataset. This class is halved in the aggregated dataset keepUR to avoid overĄtting
on a speciĄc class during training.

Figure 5.4: The label distribution of two open-source datasets and their combined datasets
BDD+CS keepUR are compared with each other.

The class composition of each label from the keepUR dataset is shown in Figure 5.5.
Compared with the BDD dataset, the CS dataset is just a small extension for the other
dataset over all classes.

Figure 5.5: Label distribution of MkeepUR which is a combination of the two datasets CS
and BDD.
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Model Training

The training setup for the models MCS , MBDD, MBDD+CS and MkeepUR is the same
as in the previous experiment. The YOLOv3 model (MY OLOv3) has a diferent setup
due to its training conĄgurations. Both architectures, RetinaNet and YOLOv3 need
an input image size which is a multiple of 32 and the trained YOLOv3 model needs a
squared image as input. To make the output of the trained model comparable to the
models from scratch, the input resolution is set to 800x800px which lies midway between
the values 1024px and 608px by downscaling the image width and increasing the height
which results in an output image which looks vertically stretched and corresponds to the
training data. As a disadvantage no pretrained model was found containing both traic
sign and traic light predictions as well as the other selected classes. The selected model
(MY OLOv3) includes all necessary classes except the class traic sign.

Results

It is assumed that aggregating diferent datasets has an impact to the trained model and
leads to an increased accuracy. The CS dataset constitutes only 3.75% of the aggregated
dataset MkeepUR. To test this assumption, the impact of using just the training set of
the CS dataset gets evaluated by comparing the model MkeepUR with the other models.
In Table 5.3 the results of each model for each test set is shown. The last two columns
show the mAPs for the predictions. While the Ąrst one takes the mAP over all classes,
the second one leaves of the traic sign class to calculate the mAP. This is performed
due to the missing traic sign class in the pretrained YOLOv3 model based on the MS
COCO dataset.

It is expected that MCS performs best on the CS test set due to the fact that the data
from train and test are from the same source and have equal recording conditions in
similar environmental and urban areas. Nevertheless, MkeepUR performs best on the CS
test subset. This is a result of the aggregation due to selecting samples for the training
set which Ąt the objects in the test set best compared with the other ones. An essential
Ąnding is that the models MCS and MBDD have a lower mAP than MBDD+CS and
MkeepUR. This shows the positive impact of the CS data combined with the BDD data.
The pretrained MY OLOv3 outperforms all other models when analyzing Seestadt1 (43.4%)
and Seestadt2 (45.5%) shown in column mAP (-TS). Compared with the other models, it
has a high accuracy for the class traffic light which is the main impact on the performance
improvement compared with all the other models. This leads to the result that the
datasets which are used for training from scratch has a lack on traic light annotations.
Taking a closer look at TS accuracy shows that the aggregated dataset MkeepUR performs
best over all three test sets. This efect is based on the aggregation which produces a
balanced dataset so that underrepresented classes result in increased performance. As a
negative efect of the aggregation approach, the performance of the overrepresented class
car is decreased in MkeepUR over all test sets compared with the MBDD+CS model. As
already shown in the previous results, the class biker in the Seestadt2 test set performs
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Table 5.3: Detection results from YOLOv3 model (MY OLOv3) and models from scratch
(MCS , MBDD, MBDD+CS and MkeepUR). The best results are highlighted in bold type.
The values present the AP for each label, the second last column shows the mAP over all
labels and the last column the mAP without the AP of the label traffic sign which is not
available at MY OLOv3.

Test Set Model TL TS person car truck biker mAP -TS
CS MCS 15.6 21.0 32.1 58.8 33.4 29.7 31.8 33.9
CS MBDD 15.1 18.1 31.7 61.6 47.2 27.0 33.5 36.5
CS MBDD+CS 16.0 17.2 34.0 63.7 50.0 30.3 35.2 38.8
CS MkeepUR 18.8 23.1 34.8 61.6 53.5 37.1 38.2 41.2
CS MY OLOv3 19.2 - 34.1 53.4 33.5 22.3 27.1 32.5

Seestadt1 MCS 7.6 14.5 17.2 35.1 17.2 37.0 21.4 22.8
Seestadt1 MBDD 20.5 23.5 23.2 62.8 33.9 15.6 29.9 31.2
Seestadt1 MBDD+CS 19.0 20.0 34.8 69.1 40.3 48.4 38.6 42.30
Seestadt1 MkeepUR 17.4 21.0 37.2 66.2 45.8 38.8 37.7 41.1
Seestadt1 MY OLOv3 29.7 - 47.5 59.3 49.9 30.6 36.3 43.4

Seestadt2 MCS 4.0 16.8 45.4 40.2 26.4 0.8 22.3 23.4
Seestadt2 MBDD 7.4 30.7 48.6 62.5 38.5 0.6 31.4 31.5
Seestadt2 MBDD+CS 10.3 27.9 63.5 72.2 40.0 0.0 35.7 37.2
Seestadt2 MkeepUR 9.6 30.7 73.6 64.0 43.2 2.0 37.2 38.5
Seestadt2 MY OLOv3 22.7 - 77.4 56.2 71.2 0.0 38.0 45.5

quite bad. The performance further decreases with an average precision between 0% up
to 2% over all detection results.

5.3 Evaluation of Refinement

After the object detection part is explored, the temporal factor is taken into account to
validate detections over time and furthermore evaluate the possible improvements of the
reĄnement steps. Due to the highest AP of the class traic signs with improvements
of up to 13.9% compared with the other models, the MkeepUR model is used for the
further experiments. The test data for this step within the pipeline is introduced in
Section 4.4.3 consisting of 19 video sequences and their relevant GPS locations as ground
truth. Furthermore, manual generated ground truth is provided for the relevant traic
signs which consist of bounding box annotations, the object occlusion state as boolean
parameter and their unique GPS localizations for each of the deĄned sequences. To
examine each aspect of the current pipeline stage, this evaluation part is split into three
consecutive experiments which consists of raw traic sign detection over time, reĄnement
by classiĄcation, and optical Ćow optimization. It is expected by analyzing each stage
after the other that the resulting detection accuracy should be increased. The input
images are resized from 1280x760px to 1024x608px for experiments within this section
which is equal to the previous experiments.
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Table 5.4: Detection results generated by the model MkeepUR. Sequence ID, FP, TP,
Ground Truth (GT), precision (Prec), recall and f1-score are listed for each sequence.

Sequence FP TP GT Precision(%) Recall(%) f1-score(%)
SEQ01 66 1 177 1.5 0.6 0.8
SEQ02 7 28 64 80.0 43.8 56.6
SEQ03 385 3 115 0.8 2.6 1.2
SEQ04 1.006 1.220 3.004 54.8 40.6 46.7
SEQ05 695 220 598 24.0 36.8 29.1
SEQ06 289 65 214 18.4 30.4 22.9
SEQ07 695 345 1.790 33.2 19.3 24.4
SEQ08 324 12 197 3.6 6.1 4.5
SEQ09 1.005 159 1.237 13.7 12.9 13.2
SEQ10 683 360 1.132 34.5 31.8 33.1
SEQ11 363 204 273 36.0 74.7 48.6
SEQ12 1.595 740 2.431 31.7 30.4 31.1
SEQ13 282 96 221 25.4 43.4 32.1
SEQ14 185 26 107 12.3 24.3 16.4
SEQ15 815 17 433 2.0 3.9 2.7
SEQ16 1.152 856 2.183 42.6 39.2 40.9
SEQ17 204 0 69 0.0 0.0 0.0
SEQ18 89 57 106 39.0 53.8 45.2
SEQ19 444 224 287 33.5 78.1 46.9
ALL 10.284 4.633 14.638 31.1 31.7 31.4

5.3.1 Experiment for Raw Detection Over Time

During this experiment it is desired to predict True Positive (TP)s of static objects to be
able to perform multi object tracking by combining the object detection results with an
optical Ćow approach. The previous experiments rate the current performance of the
object detectors over time by inspecting the traic sign detections without any reĄnements
or optimizations. Nevertheless, these experiments show that the performance is too
low for further localization calculations with an average precision of 21.0% up to 30.7%
from the best performing model MkeepUR. Thus, reĄnement steps and optimizations are
added and evaluated. At Ąrst the TPs must be increased which is achieved by decreasing
the detection threshold from the commonly used value of 50% [EEVG+15] to 25% for
accepting a predicted bounding box from the detection model. It is expected that FPs
are increased too which must be eliminated in the further stages.

In Table 5.4 the detection results for traic signs of the deĄned sequences are shown
without any reĄnements. The precision is always under 50% excepted for the sequences
SEQ02 and SEQ04. SEQ01, SEQ03 and SEQ17 have less than 5 correct predictions
over the sequence which makes it impossible to localize the objects with the developed
approach. It is necessary to have predictions of an object instance over time for the
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further steps. Therefore, the three sequences are excluded in the following evaluation
sections. In Figure 5.6 the detection problems are analyzed. In SEQ01 the sign is
underexposed and far away from the camera with a minimum object height of 12px up
to 43px which is less than 2% up to 6% in relation to the original image height. The
images of SEQ03 contains underexposure too and the traic sign is mostly occluded by
other static objects like a tree. In SEQ17 as well as SEQ15 the traic signs are captured
sideways when driving along the streets. The objects are small and long which increases
the complexity for the trained model to identify these objects. The sign noVehicle from
SEQ15 has light reĆections which can further decrease the prediction performance. This
means that there are missed signs which are not detected by the model as well as many
FPs.

Figure 5.6: Traic signs which are not detected be the object detection model. Five
traic signs within four subsequences listed with the traic sign class and its height over
the whole subsequence.

5.3.2 Experiment for Refinement by Classification

The experiment in Section 5.3.1 increases the TPs by allowing detections with a low
detection score. Table 5.4 shows that the 10.284 FPs are over twice as many as the
TPs which are 4.633 instances. It is expected that the FPs are decreased by adding a
Ąne-grained classiĄcation model which divides the predictions into relevant and irrelevant
detections. For example, during the detection process, there are objects identiĄed as
traic signs which are no signs or signs which are out of scope. Figure 5.7 shows extracts
from SEQ04 of traic sign predictions which are out of scope for example white arrow
signs and signs of street names. In the third column a special sign of Seestadt Aspern
is pictured which is the bus stop sign of the autonomous bus. The other FP detection
examples are wrongly interpreted regions and other signs which are not used for driving.

It is expected that a Ąne-grained classiĄcation of the detection label traffic sign tends
to decreased FPs by discarding predicted bounding boxes which are belonging to not
relevant object classes. Thus, each detection patch is used as input for the Ąne-grained
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Figure 5.7: Examples of detected traic signs in SEQ04 which are no regular traic signs.

classiĄcation model presented in Section 4.2 to estimate if a prediction of the object
detection model is correct or must be discarded.

To examine the relevance of the classiĄcation reĄnement, classiĄcation models are trained.
The used dataset for the object classiĄcation training contains from 350 up to 3.500
samples per class to ensure that the dataset is balanced which further decreases overĄtting
on individual classes. The model trained on this dataset is called CLS1. During evaluation
the dataset samples of the labels traffic sign back and unknown are reworked manually
so that inappropriate samples are discarded and replaced with other ones. For example,
traffic sign back samples which do not match the appearance of signs from class traffic
sign back like huge traic signs from the back mounted on highways or truncated images
with over 75% occlusion are replaced. Furthermore, samples are moved from traffic sign
back to the class unknown like white signs and other special signs which are not showing
the back side of a sign. The model which is trained on the adapted dataset is called
CLS2. Both models are trained with an input image size of 256x256px. The used data
augmentations are random crop, horizontal Ćip and Gaussian blur to increase the training
variety.

In Table 5.5 the results of both classiĄcation models combined with the detection results
from Section 5.3.1 are shown. While CLS1 has a higher recall, CLS2 mostly has a higher
precision and f1-score. This demonstrates that CLS1 discards less predictions than CLS2
because there are less signs classiĄed as unknown signs. Furthermore, there are over
5.000 FPs at CLS1 and over 8.000 FPs at CLS2 rejected compared to less than 400
rejected TPs.

The summarized results of the current and the previous experiment are compared in Table
5.6. By combining Ąne-grained classiĄcation with object detection reduces FP detections
while TP are hardly ever rejected. When CLS1 is applied, 5.301 wrong predictions
are removed which are over 50% of the FP predictions and less than 100 instances of
correct traic sign estimations are rejected. The CLS2 results show the positive impact
of the adapted split of unknown and traffic sign back labels used for the training. The
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model is able to identify nearly 8.500 FPs while keeping nearly all correct predicted signs
compared to the wrong estimations but less than CLS1. By using this reĄnement step,
FPs are drastically reduced. This has a positive impact on the multi object tracking
approach due to less wrong predictions which can be mixed with other objects.

5.3.3 Experiment for Optimization

After Ąltering out wrong predictions using object classiĄcation shown in Section 5.3.2,
this subsection should increase the detections again. While errors are minimized in the
previous section by removing FPs, the optimization experiment aims to increase the
detection accuracy by adding TPs. Therefore, not detected traic signs on single image
frames within the whole sequence are estimated and added by using optical Ćow combined
with multi object tracking. Therefore, the Ąne-grained detection results are used as
input. To show the impact of FPs the results of CLS1 and CLS2 are taken as input
and the Ąnal results after the optimization are compared for each evaluation sequence.
Figure 5.8 shows the results after performing optical Ćow by pretrained PWCNet [Nik18]
by using the default settings with input image size of 1024x436px for two horizontally
appended images. After the optical Ćow, a simple tracking approach3 is performed.
The orange regions are incorrect predictions and yellow regions are missed predictions.
The green bars show the correct predictions displayed in relative values. In SEQ02
the CLS1 based model has 70% TPs while the CLS2 based model fails. This could
be explained by too sparse object detections over time which makes it impossible to
estimate missing predictions. This can be compensated by adjusting the parameters of
the tracking approach but will further lead to an increased FP rate for other sequences.
This decreases the advantages of the previous reĄnement step. SEQ19 performs best by
having no FN and less than 15% FP.

Figure 5.8: Fine-grained detection results after detection optimization by temporal
adaptations are visualized. For each sequence and each classiĄcation result the FP, FN
and TP for model MkeepUR with CLS1 on the left side compared to MkeepUR with CLS2
on the right side per sequence.

3https://www.pyimagesearch.com/2018/07/23/simple-object-tracking-with-opencv/
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During the experiment it was observed that sparse detections of correct signs can be
discarded too if it is not possible by the simple tracker to identify an object instance over
time. As a result, objects which are not recognized over consecutive frames are further
unable to perform the localization estimation. In Figure 5.9 examples of ten diferent
traic signs within four evaluation sequences are shown which have too less detections to
track them over time. By inspecting the visual results in detail, it is deduced that the
target datasets have a lack on "yield to cross traic" signs recorded from traic signs back
face due to the fact that the object detection model is not able to detect them frequently.
The Ąrst two image crops of SEQ07 show three traic signs from class traffic sign back.
They are not detected due to underexposure and low image resolution. The other three
image crops from this sequence showing the complexity of traic signs occluded by a
tree which are missed by the detector. The parking signs extracted from SEQ09 are
not detected because they are too far away to detect them precisely over time. When
creating this sequence, the minimum bus to sign distance of the visualized signs are
30.1m up to 59.7m.

Figure 5.9: Missed localization signs due to missing predictions when performing object
detection. The signs are mainly triangular-shaped signs from the back.

The experiment demonstrates that by using PWCNet to perform optical Ćow and combin-
ing it with a simple tracking approach increases the TP detection results. Nevertheless,
negative signs which are not relevant for the localization part and should be rejected are
not always discarded and furthermore detected over multiple frames which increases the
FP rates.

5.3.4 Summary

After the experiments are discussed within each section, a comparison of the results based
on each experiment are established within this section and the Ąndings are summarized.
In Table 5.7 the precision(Pn), the recall(Rn) and the F1-Score(F1-n) are listed whereby
n deĄnes the experiment ID: Raw detection results (1), classiĄcation reĄnement (2) and
optimization by optical Ćow combined with tracking (3). Experiment (1) ofers the lowest
precision and F1-score values. This is an expected result due to the high amount of FP
detections produced by the low detection threshold. The lowest recall over all sequences
is produced by experiment (2) due to decrease of correct predictions. Precision, recall and
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F1-score are increased in experiment (3) in nearly all sequences and model combinations.
While the pure classiĄcation improvement leads to a F1-score of up to 81.8%, the further
improvement increases the score up to 95.8%. As seen in SEQ18 and SEQ11 single
wrong predictions are eiciently discarded while correct predictions are increased within
this optimization stage of experiment (3).

In Figure 5.10 the FPs, FNs and TPs are visualized as line chart over all experiments.
As expected, the FN rate is high in experiment (1) and (2) and decreases in experiment
(3). Furthermore, the FP rate strongly decreases from experiment (1) to experiment (2).
Therefore, insights are acquired that the reĄnement part is working and they are more
than halved in experiment (2) compared with experiment (1). Another Ąnding is that
the adaptations in CLS2 in experiment (2) are working due to the stronger decrease of
FP rate of CLS2 compared with CLS1. Nevertheless, the FN rate is lower and the TP
rate is higher for results based on CLS1 data than based on CLS2. It can be inferred
that the tracking approach is efective in CLS1 by increasing correct annotations and
rejecting wrong predictions.

Figure 5.10: Line chart over all experiments showing the adjustments of the FPs, FNs
and TPs between each experiment. The line starts with the raw detection results
(ONLY DET), followed by the classiĄcation reĄnements (with CLS) and closing with the
optimization stage by optical Ćow combined with tracking (OPT ON CLS).

5.4 Evaluation of Localization

After the detection models and the following reĄnement steps are tested, the last part
of the pipeline is evaluated which is the Ąnal localization calculation. While distance
calculations are performed from a single image frame, the used approach for GPS position
estimation needs multiple frames to get the object position over time. In the Ąrst step the
distance between the current bus GPS position to the detected traic sign localization
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within single frames are examined. Afterwards, the traic sign localizations are evaluated.
Both experiments are based on the latest detection results improved by reĄnement and
optimization.

5.4.1 Experiment for Distance Evaluation

Within this section two aspects are taken into consideration: the time on which the single
traic sign instances are detected the Ąrst time and how accurate the distance can be
calculated. While the Ąrst one shows the maximum bus to object distance for small
objects, the second issue provides insights about the reachable accuracy based on the
produced input data. It is expected that the distances over time of a speciĄc physical
object are getting smaller due to the fact that the driving bus is getting closer to the
objects in driving direction.

Results - Time of Detection

In Figure 5.11 the maximum distance which is the point at which the traic sign is
visible within the image sequence is visualized as green dot while the blue bar shows
the predictions from zero up to the prediction with highest distance of the traic sign.
The signs are detected for the Ąrst time between 8.2m and 54.9m. This results in an
average distance of 28.2m over all examined traic sign instances. Objects which are
further away than 55m from the camera are smaller than 10x10px in image space. In
SEQ04 too small objects are not detected which is a result of the used dataset where tiny
objects are excluded. The distances of the Ąrst object recognition show strong variations
within a test sequence as well as between the sequences. Traic signs captured from
backside are harder to detect than traic signs from front-side. While front-side objects
are recognized at an object size of 12x12px, the backside objects are noticed starting from
a size of 20x20px. In SEQ05 the traic signs are oriented to the crossroad which results
in increased FNs compared to traic signs oriented in the direction of the camera. In
SEQ09 the Ąrst recognition of the traic signs are delayed due to increased occlusion by
other objects like trees or poles. Summarized, the late visual recognitions by the detector
are evoked by too small object size, uncommon traic sign viewpoints and occlusions by
other other obstacles like trees. The signs "yield to cross traic" are early detected with
the exception of SEQ12 where the sign is occluded by a tree.

Results - Camera to Object Distance

The distance error is visualized in Figure 5.12 whereby zero means that there is no
diference between calculated distance and the ground truth distance. An orange bar
shows the range of the distance for a speciĄc sign over the whole time where it appears
within the test sequence. Short bars symbolize that there is a constant distance error over
time which means that the bounding boxes appearance is constant too over time. A long
bar indicates that the bounding boxes belonging to the examined object are inaccurate
and oscillating over time. This leads to wrong distance calculations and subsequently
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Figure 5.11: Distance of traic sign to current bus location when Ąrst time recognized by
the detector (blue bar) in relation with the maximum distance measured from ground
truth annotation (green dot) when the traic sign is Ąrst visible in the recorded sequence.
The dashed vertical lines group traic signs instances by their test sequences. The
distances vary due to street conditions like other objects occluding the traic signs.

increased inaccuracies in the Ąnal localization part. Especially the traic sign back
objects of "yield to cross traic" signs have a higher error rate compared with the other
object instances. All facts imply that the bounding box shapes of this speciĄc object
type are incorrect which leads to the wrong distance results. The traic signs of class No
vehicles allowed have low distance errors of a maximum of nine meters over all instances
and a mean value over all signs of this type of 2.11m.

Figure 5.12: Distance error of traic signs over time (orange bars) in combination with
the median distance error (green circles). The closer the objects, the lower the error
between predicted distance and ground truth. Most of the traic signs have a distance
error lower than Ąve meters. But the model has still problems with traic signs from
back-side resulting in a minimum distance error over Ąve meters.

5.4.2 Experiment for Position Evaluation

The position accuracy compared with the distance error over all sequences is shown in
Figure 5.13. Zero indicates that there is no error between ground truth and estimated
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position. The orange bars show the distance error and the dark blue bars the position
error over time. The green dots are the average errors over time calculated for each
object and error metric. It can be assumed that the errors which are occurred in the
previous sections inĆuence the Ąnal position results. Thus, the same errors which occur
in the previous Subsection 5.4.1 are further appear in the current experiment. The Ągure
shows that the location error for traic sign instance is equal or higher compared with
the camera to object distance error. Furthermore, the minimum position error is higher
than the minimum distance error. This shows that previous errors accumulate at the
end and have a negative inĆuence on the Ąnal result. SEQ02 has a gap of nearly eleven
meter between the median distance error and the median position error. This sequence
is quite short with 77 images where the bus drives along a single curve of the road and
the detections of the sign are not accurate along the object boundaries which results in
an increased position error.

Figure 5.13: Distance error (orange bars) compared with the location error (dark blue
bars) and their avg errors (green dots on top of each bar).

SEQ08 and SEQ09 contain ’no Parking’ signs which have a distance error of under Ąve
meters but show a position error of over 15m. As seen in Figure 5.14 it can be inferred
that the high position error is a result of the speciĄc appearance of this sign. It contains
an additional explanation under the round traic sign which results in a rectangular
sign which is uncommon within the training data and results in detections of the whole
physical sign as well as predictions of the drawn sign over time.

5.5 Limitations

During the work of this thesis limitations have appeared which are discussed within this
section. Firstly, the test data of the bus contains an accurate GPS signal per second
which is used as ground truth for distance and localization experiments. However, as the
sequences are recorded with 15 FPS there is only an accurate signal for each 15th frame.
Subsequently, the signals are interpolated over time which leads to an inaccuracy of up to
50cm from the real bus GPS coordinates. Further critical aspects of the test data are the
image quality as well as the resolution which makes them challenging. Compared to other
related works the knowledge of the individual physical object size of traic signs and the
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Figure 5.14: Example of ’no Parking’ sign from Seestadt Aspern, Vienna.

height of the camera mounted on the bus must be known which is a disadvantage of this
approach. Occlusions of traic signs by other static objects results in corrupted data and
incorrect distance and localization measurements due to an incorrect assumed object
height based on the partly occluded object. This leads to wrong distance estimations
due to wrong assumptions of the original object size. Assuming a wrong object height
makes the bus-to-object distance longer or shorter than it is. Despite these restrictions,
the experiments show presentable results which are summarized and discussed in the
following section.

5.6 Summary

After evaluating diferent aspects within the developed pipeline, the key Ąndings of the
experiments are summarized to Ąnalize this chapter.

The underlying ground truth data for training the detection models are not pixel accurate
and difer between the datasets which leads to inaccuracies. While the open-source
datasets are focused on the object detection part by itself, the performance of the
developed approach beneĄts from pixel-accurate bounding boxes. Nevertheless, the
inaccuracies of the object detection part are compensated by the introduced optimization
steps. While missing detections within an image sequence increase the localization
complexity, optical Ćow decreases detection fails by interpolating missing detections and
handle occlusions by other objects. This results in increased coherent localization results
than depending on results from each pipeline stage.

By performing data aggregation and train a model based on the aggregated dataset can
result in increased mAP than without using data aggregation. Nevertheless, the dataset
quality and its object variety have an increased efect on the model performance shown
when comparing the pretrained model with the models from scratch. The experiments
are pointing out that traic sign captured from backface of the class yield to cross traffic
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tends to be not recognized within the image sequences or too inaccurate predicted. This
implies that this sign type is underrepresented in the training set of the object detection
model. Furthermore, the samples show low image quality and uncommon viewpoints of
the signs to the camera direction. However, the labels no vehicle and no parking are well
represented by the training data which results in an average distance error of 1.3m for the
Ąrst one and 3.9m for the second label. The average localization error 6.5m for the label
no vehicle ant 6.2m for the label no parking. The increased average localization error
results from outliers which are decreasing the average localization error. For example,
the parking sign in SEQ18 has an localization error of 5m with a range between 3.9m
up to 15.2m. In Figure 5.15 three signs (green dots) and their estimated localizations
(orange dots) are visualized. The blue lines are the bus line and the blue circle symbolize
bus stations. The left image shows a no parking sign from backface where most of the
predictions are on the same level but slightly displaced. The images on the middle and
on the right side show predictions of signs belonging to the label no vehicle. While the
localization points in SEQ06 scattered around the sign, the calculated localizations in
SEQ15 are close to the sign over the whole sequence.

Figure 5.15: Visualization of the resulting GPS positions. The green dot is the ground
truth while the orange dots are the calculated positions over time.

To conclude, the object detection results combined with additional optimization techniques
increases the Ąnal detection performance and allows to perform traic sign localization
calculations. As a disadvantage when calculating the Ąnal results based on a prior object
detection module are incorrect bounding box shapes which lead to increased localization
errors. Nevertheless, the error is compensated and minimized by the used reĄnement
and optimization techniques. Concluding, the Ąnal localization results are comparable
with current state-of-the-art approaches which are listed in Section and have localization
errors from one meter up to 10 meters.
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Table 5.5: Fine-grained classiĄcation reĄnement of detection results. For each sequence
the two classiĄcation models CLS1 and CLS2 are used for evaluation. Furthermore, the
evaluation parameter FP, TP, GT, precision, recall and f1-score are listed.

Sequ Model FP TP GT Prec(%) Recall(%) f1-score(%)
SEQ02 CLS1 6 28 64 82.4 43.8 57.1

CLS2 4 17 64 81.0 26.6 40.0
SEQ04 CLS1 426 1.215 3.004 74.0 40.5 52.3

CLS2 132 1.121 3.004 89.5 37.3 52.7
SEQ05 CLS1 300 218 598 42.1 36.5 39.1

CLS2 28 216 598 88.5 36.1 51.3
SEQ06 CLS1 154 65 214 29.7 30.4 30.0

CLS2 9 60 214 87.0 28.0 42.4
SEQ07 CLS1 559 345 1.790 38.2 19.3 25.6

CLS2 66 293 1.790 81.6 16.4 27.3
SEQ08 CLS1 170 12 197 6.6 6.1 6.3

CLS2 15 12 197 44.4 6.1 10.7
SEQ09 CLS1 544 133 1.237 19.7 10.8 13.9

CLS2 72 116 1.237 61.7 9.4 16.3
SEQ10 CLS1 378 362 1.132 48.9 32.0 38.7

CLS2 121 354 1.132 74.5 31.3 44.1
SEQ11 CLS1 0 189 273 100.0 72.5 81.8

CLS2 1 169 273 99.4 69.2 76.3
SEQ12 CLS1 819 747 2.431 47.7 30.7 37.4

CLS2 358 730 2.431 67.1 30.0 41.5
SEQ13 CLS1 20 95 221 82.6 43.0 56.6

CLS2 19 95 221 83.3 43.0 56.7
SEQ14 CLS1 33 24 107 42.1 22.4 29.3

CLS2 7 23 107 76.7 21.5 33.6
SEQ15 CLS1 128 17 433 11.7 3.9 5.9

CLS2 43 16 433 27.1 3.7 6.5
SEQ16 CLS1 722 841 2.183 53.8 38.5 44.9

CLS2 184 781 2.183 80.9 35.8 49.6
SEQ18 CLS1 1 57 106 98.3 53.8 69.5

CLS2 1 57 106 98.3 53.8 69.5
SEQ19 CLS1 68 223 287 76.6 77.7 77.2

CLS2 76 224 287 74.7 78.1 76.3
ALL CLS1 4.328 4.571 14.277 51.4 32.0 39.4
ALL CLS2 1.136 4.284 14.277 79.0 30.0 43.5
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Table 5.6: Summarized predictions and ground truth over all sequences.

Combination FP TP GT Prec(%) Recall(%) f1-Score(%)
only DET 9.629 4.629 14.277 32.5 32.4 32.4
with CLS1 4.328 4.571 14.277 51.4 32.0 39.4
with CLS2 1.136 4.284 14.277 79.0 30.0 43.5
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Table 5.7: Comparison of detection metrics for all detection evaluation stages expressed
as a percentage. Whereby the columns show Pn stands for precision, Rn for recall and
F1n for F1-Score. The n deĄnes the detection stage. The highest value over the stages is
printed in bold type.

Sequ Data P1 P2 P3 R1 R2 R3 F11 F12 F13

SEQ02 CLS1 80.0 82.4 94.2 43.8 43.8 76.6 56.6 57.1 84.5
CLS2 80.0 81.0 0.0 43.8 26.6 0.0 56.6 40.0 0.0

SEQ04 CLS1 54.8 74.0 72.7 40.6 40.5 42.3 46.7 52.3 53.5
CLS2 54.8 89.5 91.8 40.6 37.3 38.9 46.7 52.7 54.7

SEQ05 CLS1 24.0 42.1 40.8 36.8 36.5 37.5 29.1 39.1 39.1
CLS2 24.0 88.5 95.3 36.8 36.1 40.5 29.1 51.3 56.8

SEQ06 CLS1 18.4 29.7 25.9 30.4 30.4 47.2 22.9 30.0 33.4
CLS2 18.4 87.0 95.7 30.4 28.0 30.8 22.9 42.4 46.6

SEQ07 CLS1 33.2 38.2 56.4 19.3 19.3 47.8 24.4 25.6 51.7
CLS2 33.2 81.6 87.7 19.3 16.4 19.1 24.4 27.3 31.4

SEQ08 CLS1 3.6 6.6 55.1 6.1 6.1 90.9 4.5 6.3 68.6
CLS2 3.6 44.4 100.0 6.1 6.1 18.3 4.5 10.7 30.9

SEQ09 CLS1 13.7 19.7 38.1 12.9 10.8 24.7 13.2 13.9 29.9
CLS2 13.7 61.7 66.8 12.9 9.4 13.7 13.2 16.3 22.7

SEQ10 CLS1 34.5 48.9 52.6 31.8 32.0 48.4 33.1 38.7 50.4
CLS2 34.5 74.5 79.7 31.8 31.3 33.5 33.1 44.1 47.1

SEQ11 CLS1 36.0 100.0 100.0 74.7 72.5 79.9 48.6 81.8 88.8
CLS2 36.0 99.4 100.0 74.7 69.2 68.5 48.6 76.3 81.3

SEQ12 CLS1 31.7 47.7 39.4 30.4 30.7 39.7 31.1 37.4 39.6
CLS2 31.7 67.1 83.2 30.4 30.0 38.5 31.1 41.5 52.6

SEQ13 CLS1 25.4 82.6 76.3 43.4 43.0 48.0 32.1 56.6 58.9
CLS2 25.4 83.3 77.9 43.4 43.0 48.0 32.1 56.6 59.4

SEQ14 CLS1 12.3 42.1 27.6 24.3 22.4 22.4 16.4 29.3 24.7
CLS2 12.3 76.7 100.0 24.3 21.5 23.4 16.4 29.3 37.9

SEQ15 CLS1 2.0 11.7 12.5 3.9 3.9 6.9 2.7 5.9 8.9
CLS2 2.0 27.1 32.6 3.9 3.7 6.5 2.7 6.5 10.8

SEQ16 CLS1 42.6 53.8 58.0 39.2 38.5 49.2 40.9 44.9 53.2
CLS2 42.6 80.9 80.6 39.2 35.8 40.1 40.9 49.6 53.6

SEQ18 CLS1 39.0 98.3 100.0 53.8 53.8 50.9 45.2 69.5 67.5
CLS2 39.0 98.3 100.0 53.8 53.8 55.7 54.2 69.5 71.5

SEQ19 CLS1 33.5 76.6 92.0 78.1 77.7 100.0 46.9 77.2 95.8
CLS2 33.5 74.7 87.5 78.1 78.1 100.0 46.9 76.3 93.3

ALL CLS1 31.1 51.4 53.4 78.0 32.0 44.1 46.9 39.4 48.3
CLS2 31.1 79.0 84.8 31.7 30.0 34.4 31.4 43.5 48.9
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CHAPTER 6
Conclusion

An autonomous vehicle needs to know its position for orientation and navigation purposes.
For the use of autonomous vehicles, the street maps need to be highly detailed and
kept up to date to allow autonomous driving maneuvers. Getting useful street maps on
traditional manner is time consuming and expensive due to manual eforts. Furthermore,
accurate self-localization is essential for the steering and navigation process. Thus,
accurate self-localization as well as keeping track of navigation priors like traic signs
and traic lights on the street is an essential research topic.

This thesis proposes a novel strategy to improve geolocalization by using data aggregation
and further optimizations for robust detection over time which results in object localization
estimations. This is enabled by using object detection and classiĄcation based on data
aggregation. It is an adaptive approach to aggregate multiple data sources which
increases the generalization degree by iteratively applying dataset statistics. This results
in increased label balancing and decreased dataset bias. After the trained model generates
predictions on the input data, multi-object tracking based on optical Ćow estimations is
performed to localize the tracked objects. By using optical Ćow, the robustness of the
previous detection model is increased by adding missing detections and discard wrong
single predictions over time. By deriving features from temporal and spatial knowledge,
the search-range for object detection is narrowed.

Depending on the physical object type, the experiments show a median localization
error between 3.24m and 19.05m. The localization error strongly varies depending on
the traic sign class. The worst signs of type traffic sign back which is shown by the
fact that all errors over nine meter are from type traffic sign back. Signs which have a
uniĄed appearance and are well depicted by the selected training datasets perform best.
For example, signs of type pedestrian crossing and yield to cross traffic have a median
localization error between 3.24m and 5.53m. The sign from label no vehicle in recording
sequence 15 has stable bounding box detections which are close to the object borders
over time. This results in a mean location error of 1.8m and a minimum location error
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of 0.3m. This shows that a precise detection over time generates competitive results
compared to the state of the art.

In a future work the developed approach can be extended by increasing the collected data
to make use of information from multiple drives of the same route. This can improve
the developed approach and decrease the current weaknesses of the trained models by
extending the data variability. This gives the ability to handle objects for the localization
part as well as to cope with diferent weather and light conditions. Another interesting
future topic is to foresee decisions of other road users by extending the current approach
with pose estimation of the predicted objects. Derived from this, assumptions can be
made if speciĄc objects are further relevant for the autonomous vehicle or not. For
example, if traic lights are oriented in relation to the driving direction. Finally, scene
understanding could be another essential extension based on this thesis. By deriving each
scene depending on the appearance of speciĄc objects within the scene like bus stations or
roundabout helps to localize the autonomous vehicle and estimating the traic situation.
Furthermore, the level of traic can be distinguished and chronological knowledge can be
derived like at the end of school the probability is increased that an increased number of
children are waiting at the bus stations.
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