
Reproducible Query Processing
in Relational Databases with
Evolving Database Schemas

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

066 645 Data Science

eingereicht von

Moritz Staudinger, BSc
Matrikelnummer 11777768

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Mitwirkung: Dr.techn. Mag. Tomasz Miksa

Wien, 4. Mai 2023
Moritz Staudinger Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Reproducible Query Processing
in Relational Databases with
Evolving Database Schemas

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

066 645 Data Science

by

Moritz Staudinger, BSc
Registration Number 11777768

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Assistance: Dr.techn. Mag. Tomasz Miksa

Vienna, 4th May, 2023
Moritz Staudinger Andreas Rauber

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Moritz Staudinger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. Mai 2023
Moritz Staudinger

v

Danksagung

Wie bei meiner Bachelorarbeit, möchte ich mich bei den vielen helfenden Händen, die
mir in so vielen verschiedenen Belangen geholfen haben, bedanken. Egal ob diese Hilfe
von meinen Studien- oder Arbeitskollegen, meinen Betreuern, dem ISMN Team oder von
Freunden oder Verwandten gekommen ist, sie war immer willkommen, egal in welcher
Form.

Allen voran möchte ich mich bei meinen beiden Betreuern Dr. Andreas Rauber und Dr.
Tomasz Miksa bedanken. Ihr wart immer für mich da, egal wann ich eure Hilfe gebraucht
habe, und über welche Herausforderungen ich während meiner Arbeit gestolpert bin.

Desweiteren will ich mich bei dem Team des International Soil Moisture Networks der TU
Wien bedanken, welche mir ihre Datenbank als Real-World Use Case und zum Evaluieren
meiner Lösung zur Verfügung gestellt haben und mir auch bei Fragen immer hilfreich
zur Seite gestanden sind.

Auch möchte ich mich bei meiner Freundin und meiner Familie bedanken, danke dass ihr
mich immer wieder motiviert habt und auch wenn notwendig abgelenkt habt, damit ich
weiter nach der besten Lösung für meine Probleme suche und nicht an der ganzen Arbeit
verzweifle.

vii

Acknowledgements

As with my bachelor’s thesis, I would like to thank the many helping hands that have
helped me in so many different ways. Whether this help has come from my study or work
colleagues, my supervisors, the ISMN team, or from friends or relatives, it has always
been appreciated, no matter which form it took.

First and foremost, I would like to thank my two supervisors, Dr. Andreas Rauber and
Dr. Tomasz Miksa. You were always there for me no matter when I needed your help
and what challenges I stumbled upon during my work.

Furthermore, I want to thank the team of the International Soil Moisture Network of the
Vienna University of Technology, who provided me with their database as a real-world
use case and to evaluate my solution on, and also always helped me with questions.

I would also like to thank my girlfriend and my family, thank you for always motivating
me and distracting me when necessary, so that I continue to search for the best solution
to my problems and do not despair of all the work.

ix

Kurzfassung

Heutzutage ändern und entwickeln sich Daten ständig, egal ob es sich nun um Texte,
Websites, Tweets oder Sensormesswerte handelt. All diese verschiedenen Arten von Daten
müssen in irgendeiner Form gespeichert werden, sei es in einer dateibasierten Struktur,
einer relationalen Datenbank, einer Graphdatenbank oder einer anderen Form.

Wenn Sie von Ihnen verwendeten Daten referenzieren oder sie sogar zitieren wollen,
beginnen die Probleme. Die zugrundeliegenden Daten sind umgezogen, die Daten haben
sich geändert, oder die Struktur der Daten hat sich geändert und ist nicht mehr verfügbar.
In der Forschung helfen diese Daten, wissenschaftliche Entdeckungen zu beschleunigen
und Ergebnisse zu verifizieren, wenn die Daten verfügbar sind. In den letzten Jahren
hat es in diesem Bereich große Fortschritte gegeben, da die Zitierung von Daten immer
wichtiger geworden ist und viele Konferenzen von den Autoren verlangen, dass sie ihre
verwendeten und generierten Daten zur Verfügung stellen. Wenn die generierten Daten
statisch sind, kann dies durch Hochladen des Datensatzes geschehen, aber für sich
dynamisch entwickelnde Datensätze wäre dies ineffektiv. Daher ist es wichtig bestehende
Ansätze für die dynamische Datenzitierbarkeit weiterzuentwickeln.

In dieser Masterarbeit präsentieren wir ein Framework für dynamische Datenzitierbarkeit
in PostgreSQL. Unsere Arbeit besteht darin, drei verschiedene Ansätze zur Datenversio-
nierung für PostgreSQL zu implementieren und zu untersuchen wie diese sich in einem
realen Szenario verhalten. Wir haben die RDA Dynamic Data Citation Guidelines auf das
International Soil Moisture Network angewendet und die Auswirkungen auf die Leistung
gemessen. Außerdem haben wir eine Architektur zur Speicherung von Abfragen vorge-
stellt, die es ermöglicht, ein Set von Abfragen zu zitieren und gleichzeitig die Korrektheit
der Reproduzierbarkeit jeder einzelnen Abfrage zu überprüfen. Da Schemaänderungen
in Forschungsdatenbanken relevant sind, haben wir untersucht, wie Schemaänderungen
automatisch implementiert werden können, um die Reproduzierbarkeit zuvor ausgeführter
Abfragen zu gewährleisten.

Unsere Implementierung ist verfügbar unter MIT license online1.

1https://github.com/MoritzStaudinger/sql-data-versioner

xi

https://github.com/MoritzStaudinger/sql-data-versioner

Abstract

In today’s world, data is constantly changing and evolving, whether it is text, websites,
tweets or sensor readings. All these different types of data need to be stored in some form,
whether it is in a file-based structure, a relational database, a graph database or some
other form. If you want to reference or even cite the data you are using, the problems
start. The underlying data has moved, the data has changed, or the structure of the data
has changed and is no longer available. In research, this data helps to speed up scientific
discovery and to verify results when the data is available. There has been much progress
in this area in recent years, as data citation has become increasingly important and
many conferences now require authors to provide their used and generated data. If the
generated data is static, this can be done by uploading the dataset, but for dynamically
evolving datasets this would be ineffective. Therefore, it is necessary to extent existing
solutions for dynamic data citation.

In this master thesis we proposed and evaluated a framework for dynamic data citation
in PostgreSQL. Our work consists of implementing and evaluating three different data
versioning approaches and then adapt our framework to fit the need of a real-world
scenario and evaluate it on this scenario. We applied the RDA Dynamic Data Citation
Guidelines to the International Soil Moisture Network and measured the impact on
performance. We also presented a query storage architecture that allows sets of queries
to be cited at once, while verifying the correctness of the reproducibility of each query.
As schema changes are common in research databases, we also evaluated how schema
changes can be automatically implemented to ensure the reproducibility of previously
executed queries.

Our implementation is available under MIT license online2.

2https://github.com/MoritzStaudinger/sql-data-versioner

xiii

https://github.com/MoritzStaudinger/sql-data-versioner

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Aim and Contributions . 2
1.3 Thesis Structure . 3

2 Related Work 5
2.1 Data Citation . 5
2.2 FAIRness . 6
2.3 Precise identification of arbitrary subsets of dynamic data 9
2.4 Schema Evolution in Databases . 13

3 International Soil Moisture Network 15
3.1 Database . 15
3.2 Data Integration Workflow . 18
3.3 Download Workflow . 19

4 Conceptual Design 25
4.1 Data Versioning . 25
4.2 Persistent Identification of Subsets . 36
4.3 Resolving and Sharing Subsets . 39
4.4 Modification of Infrastructure . 40

5 Implementation 45
5.1 Versioning . 45
5.2 Query Store . 52
5.3 Query Rewriting . 53
5.4 Schema Changes . 56
5.5 Adaptions to the Backend . 62

xv

5.6 Data Cite Standard . 65

6 Evaluation 67
6.1 Accordance to RDA Dynamic Data Citation 67
6.2 Trend Analysis . 77
6.3 International Soil Moisture Network . 81

7 Conclusion 89
7.1 Future Work . 90

List of Figures 91

List of Tables 93

List of Listings 96

Bibliography 97

CHAPTER 1
Introduction

1.1 Motivation
A desirable characteristic of research is to allow the reproduction of experiments. Starting
with a hypothesis, researchers collect and analyze data, as a foundation of their scientific
experiments. These experiments are essential for expanding the global knowledge and
the state of scientific research. As research is increasingly shifting to data-intensive
approaches, it becomes more and more important to cite datasets, which have been
used, as well. By citing these datasets, researchers receive proper credit for their data
contributions and data can be reused and reproduced by other researchers.

The FAIR principles[22] have been established by the scientific community to promote the
sharing and reuse of digital resources, and lead to more effective and impactful scientific
research. These principles aim to make research data findable, accessible, interoperable
and reusable. This is done by promoting the use of standardized metadata and ontologies
to describe digital resources and encourage open standards and formats for data and
metadata.

A current solution for datasets, which are not subject to change and thus are static, is to
provide them in a file-based data repository as InvenioRDM1. This is not suitable for all
situations, as data is changing and data formats are changing. Data Providers of evolving
datasets, such as databases, are now facing the issue of providing different versions of
their dataset so that all researchers can work on the latest data, while also ensuring the
scientific integrity of their dataset to allow verifying results of other researchers. Trivial
solutions for such use cases, range from storing all extracted subsets to only providing
weekly or monthly freezes of the database to researchers. All of these approaches would
heavily impact the necessary storage load, as huge parts of the database would be saved
redundantly. Other more advanced settings as tracking the difference between two

1https://inveniosoftware.org/products/rdm/

1

https://inveniosoftware.org/products/rdm/

1. Introduction

database versions via file-based solutions such as git is another valid approach, which
leads to long computation times, to extract the correct version of the database. Up to
now, the most promising approach for databases is tuple- or record-based versioning,
which tracks changes in a database for each tuple, to allow the re-execution of already
issued queries, by retrieving the tuples present in the database at the time of original
execution.

To assist with the implementation of custom approaches for persistent identification of
arbitrary subsets of evolving datasets, the Working Group on Data Citation (WGDC) of
the Research Data Alliance published 14 recommendations for Data Citation in dynamic
environments [16]. These recommendations discuss the necessary steps to allow the
precise and persistent identification of subsets, by applying versioning to the dataset, and
storing executed queries with an execution timestamp and other associated metadata.

Over the last few years, pilot adopters have implemented systems, which are following
these guidelines, to show the feasibility and the benefits of such systems.

All of these systems see schema representations as rather static, and require manual
adaptions and query rewriting in the case of schema modifications. Other systems, which
are supporting schema evolutions, are not supporting the WGDC Guidelines and are
therefore not able to reproduce the same results as in the original query. According to a
study conducted in 2013 [5], schema evolutions are common in research databases, with
over 51 different versions of the CERN-DQ2 database over 1.3 years.

As an increasing amount of conferences and journals2,3 require researchers to provide
their used datasets alongside their published articles, data hosting facilities need to
accommodate this necessity. The International Soil Moisture Network wants to support
the publication of research data from their platform, and implement these guidelines as
the most commonly used in-situ soil moisture database worldwide.

1.2 Aim and Contributions

The aim of this master thesis is to build a novel framework for Dynamic Data Citation
in PostgreSQL and adapt this framework to support the needs of the International
Soil Moisture Network database [7], and to evaluate performance issues caused by data
versioning and reproducible querying to enhance the FAIRness of the underlying data.
Furthermore, this framework should include a novel schema versioning approach, which
provides automatic schema adaptions and query rewriting for the most common DDL
commands.

2https://www.springernature.com/gp/authors/research-data-policy/
data-availability-statements

3https://journals.plos.org/plosone/s/data-availability

2

https://www.springernature.com/gp/authors/research-data-policy/data-availability-statements
https://www.springernature.com/gp/authors/research-data-policy/data-availability-statements
https://journals.plos.org/plosone/s/data-availability

1.3. Thesis Structure

Our work makes the following scientific contributions:

1. A prototypical framework for Dynamic Data Citation for PostgreSQL, supporting
different versioning approaches and schema evolution’s

2. An adaption of the framework to support the specific use-case of the International
Soil Moisture team

3. Automatic schema adaptions and query rewritings for the most common database
DDL commands

4. Alternative solutions, to prevent race conditions without locking full tables in the
database, by using timestamp information or a correction algorithm to obtain the
correct results on re-execution

1.3 Thesis Structure
The remainder of this thesis is structured as follows. In Chapter 2 we give an overview
of relevant literature to this thesis. We will discuss the FAIR principles [22] the Dynamic
Data Citation Guidelines [16] with corresponding prototype implementations and how
schema modifications are fitting into these guidelines. In Chapter 3 we describe the
International Soil Moisture Network and the current workflows for data integration and
retrieval. In Chapter 4 we discuss, which requirements our designed framework has to
fulfill and which different design choices are available. In Chapter 5 we further discuss how
the framework is implemented, to minimize the integration overhead into existing systems.
In Chapter 6 we evaluate our framework qualitatively on the Dynamic Data Citation
Guidelines and quantitatively on two different databases. Chapter 7 then summarizes
the findings of this thesis and provides an outlook about future research in this area.

3

CHAPTER 2
Related Work

In this chapter, we will discuss first in Section 2.1 Data Citation and the importance of
publishing data. Then we will discuss in Section 2.2 why the FAIRness of research data
and code is vital, to speed up scientific discovery and how researchers can ensure that
their artifacts are FAIR. We then discuss in Section 2.3 what the RDA Data Citation
Guidelines are and how these guidelines should help to make dynamically evolving data
sets FAIR, by allowing the reproduction and extraction of subsets of an evolving data set.
Next, we will talk in Section 2.3.1 about available reference implementations, which are
following the FAIR guidelines, and how they are implementing them in their respective
fields. In Section 2.4, we will discuss how different schema changes are handled in
databases.

2.1 Data Citation
Data Citation is the general idea of citing static and non-static datasets, by issuing a
persistent identifier for them. The importance of data was discussed numerous times
over the last decade, as it is an ongoing problem where different solutions have been
created. In 2008, Heidorn [10] discussed the importance of data being made available for
scientists, as otherwise, it will remain underutilized and eventually lost. Here we will
provide a brief history of relevant events in data citation.

In 2009 Costello [4] highlighted the motivation behind publishing data online. He
mentioned concerns of researchers, for sharing their data exist and that data citation
mechanisms need to be created to allow researchers to officially publish their data. These
publications would benefit researchers, by allowing them to reuse data, reanalyze it and
verify reached conclusions.

Mons et al. [11] discussed the value of data in 2011 and how to connect datasets with
traditional publications best. The authors further mentioned that without a scientific

5

2. Related Work

reward system for curating and providing datasets, it is not beneficial for researchers to
publish their data. They present a new way of adding nanopublications of data to their
respective articles by using the DOI system to verify the validity of claims.

In 2013 a study by Piwowar and Vision [12] found a significant increase in the likelihood
of citations, if the published article includes data sources. They further stated that of
100 datasets used in PubMed publications and published alongside the articles, over the
course of five years, 150 reuses have been documented.

In 2016, a year after Rauber et al. published the WGDC Dynamic Data Citation
Guidelines [16], Buneman et al. [3] discussed the problems behind Data Citation in
the area of databases and further extended these problems in 2020 [2]. The opinions
and approaches are looking from a different perspectives on the topic of data citation.
Buneman et al. see the problems in reproducing the same subset, as persistent identifiers
do not ensure that the query recreates the same subset, as the data is subject to change,
and fixity information is necessary to be saved accordingly to verify the correctness.
Although this fixity information is saved, it is computationally expensive to provide the
data for a query, as the citation would need to link to both the query and the database.
Furthermore, they state that it is impracticable and unlikely that data providers can link
a citation with the arbitrary complex query [3].

In 2020 [2], Buneman et al.’s work focused mostly on the automation of data citations,
which we will not discuss here in detail, but more on their claim on why data citation is
not working. Buneman et al. claim that data citation is not working, as many citation
analyzers are not able to cite databases, as these are extracting information from textual
documents rather than from databases, and that it is necessary to create database
summaries that contain information about the database, which will serve as documents.
These database summaries seem to follow the same purpose as the guideline R12 of the
WGDC Dynamic Data Citation guidelines, by providing users with a machine actionable
landing page, which can be mined by citation analyzers.

To solve these problems, there have been made several advancements in research, such
as the FAIR principles, which are discussed in the next section, and the creation of the
WGDC guidelines for dynamic data citation in Section 2.3.

2.2 FAIRness
The FAIR Principles by Wilkinson et al. [22] have been established to account for the
need of reusing scholarly data and code. The principles should guide researchers to make
their data findable, accessible, interoperable, and reusable. Therefore it is necessary to
discuss the focus of each of these principles properly.

2.2.1 Findability
Findability targets that data is easily discoverable and identifiable, with descriptive
and standardized metadata. Each dataset has to be clearly identifiable by a persistent

6

2.2. FAIRness

identifier and described, so that it can be searched for by a retrieval system.
Therefore the data needs to be enriched with the following, according to the FAIR
principles[22]:

F1 (meta)data are assigned a globally unique and persistent identifier

F2 data are described with rich metadata

F3 metadata clearly and explicitly include the identifier of the data it describes

F4 (meta)data are registered or indexed in a searchable resource

By applying a persistent identifier, as a DOI1 or a Handle2 to each dataset, it can be
clearly identifiable globally. Data should be described using metadata that is rich enough
to enable users to discover and evaluate its relevance and quality. The metadata should
include a data description and relevant keywords. Furthermore, data and metadata
should be indexed and registered in a searchable source, as a metadata catalog or a data
repository using community-based standards.

2.2.2 Accessibility
Accessibility aims to precisely document how to access data and metadata, by providing
a clearly structured protocol, with all relevant limitations. Therefore data needs to fulfill
the following requirements, according to the FAIR principles[22]:

A1 (meta)data are retrievable by their identifier using a standardized communications
protocol

A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where

necessary

A2 metadata are accessible, even when the data are no longer available

By allowing data and metadata to be retrievable by standardized open protocols, it
is ensured that everyone can access the data. These protocols can restrict access by
verifying the user identity, and allow users to only access limited subsets of the data or
only the metadata. If data is no longer available, due to technology migration, expiration,
copyright claims, or other reasons, it only keeps the metadata available. Nevertheless,
data should be kept available as long as possible. When looking at the ISMN portal,
requires user authentication, and the retrieval of data is currently only available after
the authentication, while the associated metadata is available without. Furthermore, the
platform restricts access to the precise coordinates of the measurement stations to not
endanger to vandalism or theft.

1https://www.doi.org/
2https://www.handle.net/

7

https://www.doi.org/
https://www.handle.net/

2. Related Work

2.2.3 Interoperability

Interoperability aims to define the proper use and re-use of data after it was retrieved.
Retrieved data and metadata need to be in a broadly applicable and usable format and
have a clear and unambiguous documentation and metadata.

Therefore, data needs to fulfill the following requirements, according to the FAIR
principles[22]:

I1 (meta)data use a formal, accessible, shared, and broadly applicable language for
knowledge representation

I2 (meta)data use vocabularies that follow FAIR principles

I3 (meta)data include qualified references to other (meta)data

Provided data needs to be made available in an appropriate format, with a specific
documentation, that uses standardized vocabulary. These vocabularies should be part of
ontologies to enable the exchange of meanings between different systems and domains.
Overall we can say that interoperability enables the sharing and integration of data across
different platforms and domains and promotes the advancement of scientific knowledge.

2.2.4 Reusability

Reusability combines and extends the previous three principles, to allow the data to be
reused in the future. All the previous requirements are relevant, and additionally also
the following ones, according to the FAIR principles[22]:

R1 meta(data) are richly described with a plurality of accurate and relevant attributes

R1.1 (meta)data are released with a clear and accessible data usage license

R1.2 (meta)data are associated with detailed provenance

R1.3 (meta)data meet domain-relevant community standards

Reusability requires that digital resources as data are shared in a standardized, machine-
actionable format with defined terms and conditions and an appropriate license.

With all of these guidelines and recommendations to enhance the FAIRness of data.
These guidelines go hand in hand with the Dynamic Data Citation Recommendations,
which are described in Section 2.3 and look into this problem from the perspective of
constantly evolving datasets and how to track these changes best.

8

2.3. Precise identification of arbitrary subsets of dynamic data

2.3 Precise identification of arbitrary subsets of dynamic
data

Rauber et al.[16] published 14 guidelines for dynamic data citation, which aim to help
researchers and data providers make their evolving datasets reproducible. They provide
them with recommendations to allow the recreation of subsets of an evolving dataset,
without creating a snapshot for each change in the dataset. These guidelines are presented
in Table 2.1.

Category Recommendation

Preparing the Data and Query Store
R1 - Data Versioning
R2 - Timestamping
R3 - Query Store Facilities

Persistently Identifying Specific Datasets

R4 - Query Uniqueness
R5 - Stable Sorting
R6 - Result Set Verification
R7 - Query Timestamping
R8 - Query PID
R9 - Store Query
R10 - Automated Citation Texts

Resolving PIDs and Retrieving Data R11 - Landing Page
R12 - Machine Actionability

Modifications to the Data Infrastructure R13 - Technology Migration
R14 - Migration Verification

Table 2.1: The RDA Dynamic Data Citation Guidelines

Each of these recommendations fulfills a different purpose, to allow Data Citation in the
long run. In the following, we discuss all the guidelines in detail.

R1 - Data Versioning

"Apply versioning to ensure earlier states of data sets can be retrieved"

Data Versioning aims to version the underlying data, to allow retrieval of all different
versions of a dataset. This can be done in databases by adding a validity period for each
tuple, also called system-versioned tables 3,4, or by using git[13].

3https://learn.microsoft.com/en-us/sql/relational-databases/tables/
temporal-tables?view=sql-server-ver16

4https://mariadb.com/kb/en/system-versioned-tables/

9

https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables?view=sql-server-ver16
https://mariadb.com/kb/en/system-versioned-tables/

2. Related Work

R2 - Timestamping

"Ensure that operations on data are timestamped, i.e. any additions, deletions are marked
with a timestamp"

This recommendation goes hand-in-hand with data versioning when using tuple-based
versioning approaches. As all operations are timestamped on all affected tuples, to be
able to retrieve the correct version. Different approaches for tuple-based versioning have
been discussed by Pröll et al. [14].

R3 - Query Store Facilities

"Provide means for storing queries and the associated metadata in order to re-execute
them in the future"

To be able to re-execute queries, these queries need to be saved with associated metadata,
so it is possible to verify the correctness of the retrieved data, a description of the query
and information, and when and by whom the query was executed.

R4 - Query Uniqueness

"Re-write the query to a normalised form so that identical queries can be detected.
Compute a checksum of the normalized query to efficiently detect identical queries"

To determine multiple identical queries, these queries need to be transformed into a
standardised format, to be able to compare them. This is important to ensure that
queries that are semantically identical return the same subset and are also assigned the
same PID.

R5 - Stable Sorting

"Ensure that the sorting of the records in the data set is unambiguous and reproducible"

If subsequent processing steps depend on the sequence that data is presented in, it is
important to provide the same unambiguous ordering of records, as different orderings
can influence the results of analysis and also affect R6 - Result Set Verification.

R6 - Result Set Verification

"Compute fixity information (checksum) of the query result set to enable verification of
the correctness of a result upon reexecution"

By computing and storing a checksum of the obtained results, it is possible to verify the
correctness of the results. This is most commonly done by using a hashing algorithm
and storing this alongside the number of returned records in the query store.

10

2.3. Precise identification of arbitrary subsets of dynamic data

R7 - Query Timestamping

"Assign a timestamp to the query based on the last update to the entire database (or the
last update to the selection of data affected by the query or the query execution time).
This allows retrieving the data as it existed at the time a user issued a query"

By adding a timestamp to each executed query it is possible to obtain the same subset
as before. For tuple-based versioning/timeseries data, this can be done by filtering for
active tuples at the original transaction time of the query [14].

R8 - Query PID

"Assign a new PID to the query if either the query is new or if the result set returned
from an earlier identical query is different due to changes in the data. Otherwise, return
the existing PID"

By assigning a PID, each query is persistently identifiable and can be referenced. In
databases, a trivial persistent identifier can be the primary key of the query store, to
which a global persistent identifier (e.g. DOI, handle) can be added upon publication.

R9 - Store Query

"Store query and metadata (e.g. PID, original and normalized query, query & result set
checksum, timestamp, superset PID, data set description, and other) in the query store"

This recommendation is closely related to the recommendations R3 to R8, as it combines
and stores the query execution information in the query store.

R10 - Automated Citation Texts

"Generate citation texts in the format prevalent in the designated community for lowering
the barrier for citing the data. Include the PID into the citation text snippet"

To minimize the barrier of citing data, citation texts should be generated from all the
associated metadata. This information can be then enriched with a global persistent
identifier (e.g. DOI) to include a link to the data.

R11 - Landing Page

"Make the PIDs resolve to a human readable landing page that provides the data (via
query re-execution) and metadata, including a link to the superset (PID of the data
source) and citation text snippet"

To allow researchers to find and view the metadata, a landing page has to be created,
with all associated metadata, with a link to the subset and the superset, as well as a
citation text, so that it can be cited.

11

2. Related Work

R12 - Machine Actionability

"Provide an API / machine actionable landing page to access metadata and data via
query re-execution."

As more and more metadata and data are automatically indexed by information retrieval
systems or stored in (meta)data repositories, it is important to provide a machine
actionable interface, to allow the retrieval of metadata or data.

R13 - Technology Migration

"When data is migrated to a new representation (e.g. new database system, a new
schema or a completely different technology), migrate also the queries and associated
fixity information"

When migrating data to a new schema, a new database system, or a different architec-
ture, it is necessary to also migrate all associated queries and metadata, to allow the
reproducibility of all previously executed queries.

R14 - Migration Verification

"Verify successful data and query migration, ensuring that queries can be reexecuted
correctly"

By using the same stored checksum as for R6, it is possible to verify the correctness of
results, even when the underlying data is changed. The process of hashing is immutable
for an already executed query, and it needs to be ensured that all data is migrated to the
same format.

2.3.1 Reference Implementations and Frameworks
Over the last few years, the WGDC Dynamic Data Citations have been implemented, and
there now exist various different proof-of-concepts solutions and reference implementations.
We will give a short overview of some of the different systems available and on the
development of the first proof-of-concepts.

In 2013 Pröll and Rauber presented a first analysis on how to approach dynamic data
citation in databases [14] and provided a starting point for the Dynamic Data citation
guidelines. In their work, they presented three different versioning strategies for timeseries
data, called integrated, separated, and hybrid, which are described in detail in Section
4.1 and introduced the concept of a query store, which stores all executed queries.
They then further tested their system on a hydroelectric power generation database
system. In 2014 Pröll and Rauber applied their presented approach to CSV files for
Music Classification [15] and published the recommendations discussed in the previous
section, in 2015 [16]. We will evaluate all presented versioning strategies from [14] on the
International Soil Moisture Network and pick the best strategy for the use case.

12

2.4. Schema Evolution in Databases

After the publication of these recommendations, several pilot adopters implemented them
to their needs and documented their approaches.

The Virtual Atomic and Molecular Data Centre (VAMDC) [8][1] implemented [25][24]
the RDA Guidelines for their 38 different database systems, that they are combining in
their research portal from 2016 onwards. For versioning, they are using two different
mechanisms, which first is a coarse versioning, which tracks which queries could lead
to different results, and a fine-grained versioning with a versioning element in their
VAMDC-XSAMS standard. The second versioning element indicates which information
has changed between two different versions.

The Center for Biomedical Informatics (CBMI) at the Informatics Institute in St. Louis
implemented the guidelines in their database, which hosts over 6 million patient records
back in 2017 [9]. They used the temporal_tables extension of PostgreSQL 9.5 for their
versioning (no longer actively developed and was not updated since the end of 2017),
which is a row-based/tuple-based versioning approach, similar to timeseries versioning or
temporal versioning. We used this as a starting point for possible implementations of
the SQL:2011 standard5 in PostgreSQL and found that a merge request enabling native
system-versioned tables was rejected in 20216 with major revisions. To our knowledge,
only one extension7 is currently integrating system-versioned-tables in PostgreSQL to
some extent on the latest PostgreSQL versions, but does not allow schema modifications
without removing all timestamp information.

In 2021 these adopters and a few more, have been analyzed in a meta-analysis by Rauber
et al. [17]. In their work, they describe the different available implementations for
the RDA Dynamic Data Citation guidelines. They describe the different versioning
approaches for databases, introduced by Pröll and Rauber [14] and file-based solutions.
Then they focus on already available implementations, such as the implementations of
the VAMDC and the CBMI. For each of the different implementations, they discussed
the implemented guidelines and gave a brief overview of the system.

2.4 Schema Evolution in Databases
Schema evolution in databases is a necessity, as requirements, processes or scientific
protocols are subject to change and therefore the structure of a database needs to be
adapted to fit the new needs. The schema evolution process consists first of a schema
modification operation(SMO) through a data definition language (DDL) 8 command.
This SMO changes the structure of the database and then a query rewriting operation
migrates all queries to the new schema. As manual adaptions of complex database
structures are complex and human errors can lead to long migration processes, this
process has tried to be automated numerous times. To our knowledge, there exists no

5https://www.iso.org/standard/53681.html
6https://commitfest.postgresql.org/35/2316/
7https://github.com/xocolatl/periods/
8https://www.postgresql.org/docs/current/ddl.html

13

https://www.iso.org/standard/53681.html
https://commitfest.postgresql.org/35/2316/
https://github.com/xocolatl/periods/
https://www.postgresql.org/docs/current/ddl.html

2. Related Work

framework for PostgreSQL that supports the automated migration of stored queries of a
PostgreSQL database to allow reproducibility according to the WGDC Dynamic Data
Citation Guidelines [16].

In 1995, Roddick [18] discussed the terms schema versioning and schema evolution and
their effects on timeseries data and issues when applying it to a database. Schema
evolution is the modification of a database schema without the loss of information, while
schema versioning is when a database system allows the access of all data retrospectively
and prospectively through interfaces. Therefore, the main difference between these two
terms is, that schema versioning has the possibility for users to identify stable points
and to query past schema definitions. In his work, he mentions that the combination of
timeseries data and schema versioning led to three different timelines, with valid-time
(real-world time), transaction-time (time data was introduced in the database), and
schema-time (time the schema was introduced in the database). He further mentions that
it is necessary to query data in all three timelines, to have the maximum expressiveness.
This expressiveness is vital for reproducibility, as the results of re-executed queries need
to return the exact same subset as originally obtained.

Curino et al. created the PRISM [6] framework, and extended it to the PRISM++
framework [5] to automate the migration of databases, by rewriting queries and updates.
Their updated framework supports rewriting of structural schema changes and integrity
constraint evolution. This is done by complementing each SMO with a set of integrity
constraints, constraining the use of SMOs, and rewriting the affected queries. They
further evaluated schema changes on different databases and wikis. The scientific CERN-
DQ2 database had over the course of 1.3 years, 51 schema changes, while the Ensembl
database had 412 changes over 9.8 years. We are picking up the idea of automatically
rewriting queries to allow the adaption of the database schema, and combining this with
the WGDC Dynamic Data Citation Guidelines [16].

In 2020 Schuler and Kesselman [19] presented their CHiSEL framework to simplify
database evolutions. According to them, these are the most complicated part of database
management. They created a Python library, which is closely following relational algebra
methodics to minimize the necessary schema modification operations. Based on their
evaluation of different genom databases, their framework uses a quarter of the necessary
SQL operations, by minimizing complex schema beforehand with relational algebra.

In 2018 Säuerl [20] discussed how schema modifications can be implemented on databases
that are following the WGDC guidelines on dynamic data citation, and discussed the
importance of integration as database schemas are regularly evolving. We are building
upon the discussed schema modification strategies, and are using them in PostgreSQL to
allow schema modifications, while ensuring reproducibility.

In 2022 Xin et al. [23] presented a solution to track and query over timeseries data
with schema evolutions in Apache IoTDB, with a more data-centric approach. Due to
language barriers, it was impossible to analyze the paper in detail.

14

CHAPTER 3
International Soil Moisture

Network

The International Soil Moisture Network (ISMN) [7], is a community based research
portal, funded by the European Space Agency to provide researchers and data providers
with a centralised data hosting facility. Its main focus is to gather heterogeneous soil
moisture data from different networks, distributed all over the world, and harmonize
them into a centralized database. A network refers to a data provider that operates
stations with different in-situ soil moisture sensors.

They gather data, which runs through various processes, such as harmonizing measurement
units and sampling rates, while also applying quality control flags to each tuple in the
database. Over the years they have grown to the most commonly used in-situ soil moisture
reference database worldwide, with over 1600 active users, over 1000 publications, and a
daily growing and evolving database with over 1 billion tuples.

3.1 Database
The database is the heart of the ISMN portal, where all data and metadata are stored in
a community agreed standardized format.

The ISMN tables are structured in different categories, based on the information they
store:

• Network/Station related metadata

• Data related metadata

• Dynamic and static data

15

3. International Soil Moisture Network

dataset

dataset_id bigserial

timeseries_id int4

dataset_utc timestamp

dataset_qflag int4[]

dataset_origflag int4[]

dataset_value float4

timeseries

timeseries_id serial

station_id int4

sensor_id int4

depth_id int4

variable_id int4

quantitative_source_id int4

quantity_source

quantity_source_id serial

quantity_source_name varchar(20)

quantity_source_description text

quantity_source_url varchar(90)

quantity_source_provider text

quantity_source_version text

quantity_source_resolution text

quantity_source_timerange text

sensor

sensor_id serial

sensor_name varchar(80)

sensor_description text

sensor_ref_doc text

sensor_producer varchar(100)

sensor_type varchar(100) variable

variable_id serial

unit_id varchar(20)

variable_abbr varchar(4)

variable_type varchar(30)

variable_name varchar(60)

depth

depth_id serial

depth_from numeric(12,6)

depth_to numeric(12,6)

station

station_id serial

station_abbr varchar(50)

station_name varchar(200)

station_flag bpchar(1)

station_comment text

network_abbr varchar(20)

station_ext_metadata varchar(300)

station_o_id int4

station_location geometry(POINT,
4326)

station_o_location geometry(POINT)

created_on date

orig_flag

orig_flag_id serial

orig_flag_name text

orig_flag_description text

network_abbr varchar(20)

flag

flag_id serial

flag_name bpchar(4)

flag_description text

1

n

1

n

n

m

n

m

n 1

n

1

n

1

n

1

Figure 3.1: Subset of the ISMN database schema, which is most relevant for data
exploration and the download of arbitrary subsets of the database

The network and station related metadata remains mainly static and only changes when
new organisations, networks, or quality information are added or updated. This data
consists of information about the different networks, as the country in which the sensor-
network operates in, the encoding and language of the data, quality information that is
sent with all measurements, and means of contact if problems arise.

The data related metadata stores information about stations and their locations, used
sensor with their depths, measurement units, and quantitative source information. These
data changes whenever a new sensor is added, a sensor is replaced with a different sensor
or other information about the stations and sensors change.

The data is then stored in the dataset table, with two ancillary tables, which are keeping
additional information. This data is updated daily by near-realtime networks (NRT),
which are directly connected to the ISMN system via an API and manually when not
connected networks provide datasets or quality information.

In Figure 3.1 we see the part of the ISMN schema, which is most important for data
exploration and downloads. In the top left we see the station table, which stores
information about all stations for each network. The two tables in the top right sensor

16

3.1. Database

and depth keep information about the used sensor and in which depths it is measuring.

The variable and quantity_source tables are storing information about the measurements
which are conducted, as the units of measurement or the type of measurement which is
conducted.

In the timeseries table all this information are intersecting and is then linked to mea-
surements in the dataset table so that each measurement has all associated metadata
information assigned to it. The dataset table also contains two arrays of quality flags,
which can be resolved by joining them with the corresponding flag tables. The flag table
has quality information, which are the same for all different stations and networks, as they
are following the central ISMN standard, while the orig_flag table contains information
for all the different flags assigned by data providers.

The table sizes of the data namespace are heavily skewed, with the displayed tables
taking over the majority of storage needs, while other tables only take a fraction of the
storage. Based on the analysis of a dump from March 2022, of the 28 tables only the
dataset is the largest, with 123 GB in data storage and 65 GB in keys, and 8.5 GB
in indices, totaling over 196.5 GB of total storage for this one table alone. The other
27 tables accumulate roughly 30 MB of storage, and PostgreSQL internal tables and
different namespaces account for the remaining 70 GB of storage.

Historic storage consumptions are only sparsely available, as the historic storage con-
sumption was measured after each project phase concluded, with the exact means of
measurement unknown and also if the data was compressed before. At the end of 2012,
the storage consumption was measured at 4 GB and increased to 51 GB in 2016 and via
various cleanups to 318 GB in December 2022. These increases are heavily affected by
the number and the size of the added networks, and were approximately 15 GB for the
year 2022, delivered by 76 different networks1.

3.1.1 Schema Adaptions
After the creation of the initial database schema between 2010 and 2012, the ISMN made
several changes to their database schema over time and plans additional changes in the
near future to adapt it to their new requirements after the portation of the platform to
the BfG2.

During the SMOS CCN3 project, which ran from June 2014 to March 2016 the Inter-
national Soil Moisture network performed several schema modifications, to enrich the
functionality and design of the ISMN portal.

The table network_publications was added, which keeps information about publications
of the different data providers, to allow the acknowledgement and referencing of the data
providers.

1https://ismn.earth/en/networks/
2https://www.bafg.de/DE/Home/homepage_node.html

17

https://ismn.earth/en/networks/
https://www.bafg.de/DE/Home/homepage_node.html

3. International Soil Moisture Network

There also have been three columns added to the image table to allow the storage of
thumbnails with their associated metadata (height and width) for organisations and
stations. The thumbnail itself is stored in the database as a base64 encoded byte array,
while the other two columns are integers.

Additionally, two columns were dropped from the variable table, which modified the
graphical dataviewer, by providing minimum and maximum values for each station.

Furthermore, as the ISMN moved to the Bundesamt für Gewässerkunde in January 2023,
further changes were discussed to reduce maintenance overhead and querying times,
while also adding new functionalities. These changes include the restructuring of several
metadata tables, to reduce the necessary amount of joins to extract relevant metadata
and the addition of new quality information for each timeseries.

3.2 Data Integration Workflow
As the data providers are using different measurement units and do not deliver the data
over the same protocols or in the same format, it is necessary to preprocess and harmonize
the data before storing them in the ISMN database.

Figure 3.2: Harmonization process of the International Soil Moisture Network
Source: https://ismn.earth/en/data/harmonization/

18

https://ismn.earth/en/data/harmonization/

3.3. Download Workflow

In Figure 3.2 we can see the harmonization process to transform data from a provider
format to the ISMN standard format. Therefore, the format must be transformed for
each different provider to the ISMN format in hourly format. Afterwards, all missing
values are handled and the timestamps are changed to UTC+0, so that only one timezone
is used. Then the different soil moisture definitions (e.g. volumetric, water depth, mass,
Soil Moisture Index) are transformed to fractional volumetric soil moisture, to have them
comparable to each other. In the last step, this data is then inserted in the database3.

After this process is concluded, quality control flags are updated twice, during separate
update routines. The first process is detecting dubious soil moisture observations by
geophysical dynamic range verification and marks the data with the corresponding
quality flags4. In the second process, which runs when the associated Global Land
Data Assimilation System data (GLDAS)5 data is available, geophysical consistency
methods and spectrum-based methods are used to detect conditions in the soil moisture
observations.

Therefore, each tuple in the dataset table is with the adapted quality information twice.
One of the updates occurs right after the tuples have been inserted, and the second
update can happen several months after the data was inserted.

3.3 Download Workflow

The data is then available for exploration in the dataviewer6, where data and metadata
can be displayed. After a successful login, each user can download data by specifying the
wanted area/continent, type of landcover, climate zone, and the type of sensors with the
wanted depth to be downloaded.

In Figure 3.3 we see the dataviewer of the International Soil Moisture Network. On the
map on the right, we can see that we selected an area in central Illinois, which includes
the measurement station Champaign_9_SW. For this station the metadata can be seen,
including the network this sensor belongs to, data availability, and information about the
available sensors and variables measured. On the left, we can see the filter parameters
for the download request, which we customized to include all data available which was
selected in temperate climate on crop land. When clicking the download button, a REST
request is sent to the backend which includes all selected parameters.

3https://ismn.earth/en/data/harmonization/
4https://ismn.earth/en/data/flag-overview/
5https://ldas.gsfc.nasa.gov/gldas
6https://ismn.earth/en/dataviewer/

19

https://ismn.earth/en/data/harmonization/
https://ismn.earth/en/data/flag-overview/
https://ldas.gsfc.nasa.gov/gldas
https://ismn.earth/en/dataviewer/

3. International Soil Moisture Network

Figure 3.3: Webviewer of the International Soil Moisture Network
Source: https://ismn.earth/en/dataviewer/

1 https://ismn.earth/en/dataviewer/download_selection/
2 ?start=2022/04/19&end=2023/04/19
3 &variables=Soil Moisture, Soil Temperature, Air Temperature,

Precipitation, Snow Depth, Snow Water Equivalent,
Surface Temperature, Soil Suction

�→
�→

4 &climates=Temperate
5 &landcovers=Crop land
6 &depth_from=0&depth_to=255
7 &fill_nan=0&g_flag_only=0
8 &swlat=39.436192999314095&swlng=-88.89038085937501
9 &nelat=40.455307212131494&nelng=-87.56103515625

Listing 1: REST download request, which is sent to the backend
20

https://ismn.earth/en/dataviewer/

3.3. Download Workflow

In Listing 1 we can see the download request created by the screenshot seen in Figure
3.3. From line 2 to 7 we see the selected parameters for the download. In lines 8 and 9
we see the south-west and north-east coordinates of the drawn rectangle. In the body of
the request there is further information, which includes all networks as filter criteria.

This request is then processed in the backend and transformed into SQL queries, in the
following order:

1. Query stations per network

2. Query metadata per station

3. Query data per timeseries

For the first and third querytype, there exist two different variations, dependent if
coordinates are used or data gaps should be filled by null values respectively.

1 SELECT station_id,
2 station_name,
3 network_abbr,
4 Round(Cast(St_x(station_location) AS NUMERIC),5),
5 Round(Cast(St_x(station_location) AS NUMERIC),5),
6 St_z(station_location)
7 FROM station
8 WHERE network_abbr IN {}
9 AND st_y(station_location) >= {}

10 AND st_y(station_location) <= {}
11 AND st_x(station_location) >= {}
12 AND st_x(station_location) <= {}

Listing 2: SELECT query to obtain all different stations in the boundaries of the drawn
rectangular

In Listing 2 we can see the SQL query to obtain all different stations, which are in the
defined boundary box. From line 1 to 6 the id, name, network and the location are
selected, for all networks, which are passed as arguments in line 8 and the coordinates
are handed over in the lines 9 to 12. This query is executed up to 76 times, as currently
there exist 76 networks in the ISMN database.

1 SELECT timeseries_id,
2 variable.variable_abbr,
3 variable.variable_id,
4 depth.depth_id,
5 Round(depth.depth_from, 2),
6 Round(depth.depth_to,2),

21

3. International Soil Moisture Network

7 sensor.sensor_id,
8 sensor.sensor_name
9 FROM timeseries

10 INNER JOIN variable
11 ON timeseries.variable_id = variable.variable_id
12 INNER JOIN depth
13 ON timeseries.depth_id = depth.depth_id
14 INNER JOIN sensor
15 ON timeseries.sensor_id = sensor.sensor_id
16 WHERE station_id = {}
17 AND variable.variable_type <> 'static'
18 AND quantity_source_id = 0

Listing 3: SELECT query to obtain all metadata per station

Then for each station returned by the first query, the query displayed in Listing 3 is
executed, which can lead up to 3000 executed queries. From line 1 to 8 the metadata for
a specific station is selected, which is specified in line 16. Further filtering is performed
in line 17 and 18.

1 SELECT to_char(dataset.dataset_utc, 'YYYY-MM-DD HH24:MI'),
2 dataset.dataset_value,
3 (SELECT COALESCE(String_agg(flag.flag_name, ','),

'M') AS dataset_qflag�→
4 FROM Unnest(dataset_qflag) dqflag
5 LEFT JOIN flag
6 ON flag.flag_id = dqflag),
7 (SELECT COALESCE(String_agg(orig_flag.orig_flag_name,

','), 'M') AS�→
8 dataset_origflag
9 FROM Unnest(dataset_origflag) dqflag

10 LEFT JOIN orig_flag
11 ON orig_flag.orig_flag_id = dqflag),
12 {} AS depth_from,
13 {} AS depth_to,
14 {} AS sensor_name
15 FROM dataset
16 WHERE timeseries_id = {}
17 AND dataset_utc >= {}
18 AND dataset_utc <= {}
19 ORDER BY dataset.dataset_utc

Listing 4: SELECT query to obtain all data per timeseries

22

3.3. Download Workflow

In Listing 4 we see the final data query, which is executed up to 30,000 times with each
different timeseries_id. The ISMN quality flags are extracted from their array and joined
with the flag table from line 3 to 6 and similar for the provider flags from line 7 to
11. The PostgreSQL unnest function expands an array to a set of rows. In line 12 to
14 parameters, obtained from the second query are passed as columns for this query
and from line 16 to 18 the query is filtered based on the timeseries_id and the time of
measurement dataset_utc.

The results of each of these queries is then written in one of two standardized data
formats7 and then provided to the user in a ZIP file with all other query results.

...

REST Request with Download
Information

SQL Query

Translate Request to
SQL Queries

Result Set

Create Combined
 Result Set

Dataviewer Backend Database

SQL Query

Result Set

Download Link for Results

Figure 3.4: The process of a user triggered download

In Figure 3.4 the whole download process is visualized for each component. The user
starts via the online data viewer and sends a REST request to the backend, containing
all download information. This request is then translated to SQL queries, which are then
sent to the database and the result sets are gathered and combined to a compressed
folder. This folder is then available to the user via a download link.

7https://ismn.earth/en/data/formats/

23

https://ismn.earth/en/data/formats/

CHAPTER 4
Conceptual Design

To design a dynamic data citation framework for PostgreSQL, which is adapted to the
use case of the International Soil Moisture Network [7], and also can be generalized, we
first have to understand and analyze the needs of such a system. We used the Data
Citation Guidelines [16] as a starting point and discussed all necessary features, such a
system should have. In the following, we will present the Data Citation Guidelines and
how they should be implemented in the system and how different approaches can have
different impacts on them.

4.1 Data Versioning
Following the guidelines R1 - Data Versioning and R2 - Timestamping, it is mandatory
to track all changes in a database to allow to re-create the data, which was present in the
database, at the time a query was executed. For databases, the most common type of
versioning is tuple-based versioning, which is preferable over change-logs or data freezes,
as not the whole database needs to be rolled-back to a specific timestamp. This was
introduced in the SQL standard SQL:20111 and has since been implemented in many
different databases2,3, but not yet in PostgreSQL. There are several extensions that
implement parts of the SQL standard4,5, but advancements to include temporal tables in
PostgreSQL natively failed in 20216, as major revisions were necessary.

Tuple-based versioning adds a validity period, consisting of two timestamps to each tuple,
to track in which time period a specific tuple was active in the database.

1https://www.iso.org/standard/53681.html
2https://mariadb.com/kb/en/system-versioned-tables/
3https://learn.microsoft.com/en-us/sql/relational-databases/tables/

temporal-tables
4https://github.com/xocolatl/periods
5https://github.com/arkhipov/temporal_tables
6https://commitfest.postgresql.org/35/2316/

25

https://www.iso.org/standard/53681.html
https://mariadb.com/kb/en/system-versioned-tables/
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://learn.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://github.com/xocolatl/periods
https://github.com/arkhipov/temporal_tables
https://commitfest.postgresql.org/35/2316/

4. Conceptual Design

Tuple-based versioning can be applied in three different ways:

• Integrated Versioning

• Separated Versioning

• Hybrid Versioning

Each of these tuple-based versioning approaches, has its own advantages and disadvan-
tages, which include different storage-overhead, different query-execution and re-execution
times and also a different complexity for query rewriting. Versioning is a main concern for
the International Soil Moisture Network, as versioning and timestamping all operations
in a database creates a large storage- and performance-overhead, as their current setup is
updating each datapoint twice. Based on the measurement on a synthetic database [20]
the minimal overhead for all tuple-based versioning approaches is between 14.8% (In-
tegrated/Hybrid) and 114.7% (Separated). As this certainly differs between different
databases, we will re-evaluate the performance of database operations.

In the following, we will describe the different versioning approaches and compare them,
and talk about methods to ensure concurrency in databases when using these versioning
strategies.

4.1.1 Integrated Versioning
In the integrated versioning approach, two additional timestamp columns are added to the
original table, one column that marks the time the tuple was first introduced (valid_from)
into the table, and one column that marks, when the tuple was removed from the
table(valid_to). When both timestamps are set, the tuple is no longer active, and we call
it a historized tuple. All historized tuples are directly stored in the same table, which
also holds the most recent version. The INSERT command does not need to be altered,
but the UPDATE and DELETE commands need to behave differently. The UPDATE
command needs to deactivate old tuples by setting the valid_to timestamp and inserting
the updated tuples into the table. The DELETE command is not allowed to delete
the tuple, but instead sets the valid_to timestamp and deactivates the tuple. It is also
necessary to adapt the primary key of the original table to also include the valid_from
column in the primary key, as the original primary keys are duplicates in the case of an
update. For constraints, it is also necessary to evaluate, how different constraints affect
the versioning, as uniqueness constraints need to be adapted to include the valid_from
timestamp.

To retrieve any different version of this table, it is necessary that it is always filtered
based on the valid_from and valid_to timestamps, as otherwise multiple versions will
collide and the retrieved data is not actually representing the active data in the table.
For the most recent version, it is sufficient to filter only based on the valid_to column.

26

4.1. Data Versioning

dataset

DELETE FROM dataset
WHERE id = 3 AND
valid_to IS NULL;

UPDATE dataset SET
value = 7 WHERE id=2
AND valid_to IS NULL;

Current Time:
'2023-02-03 00:00:00'

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

4 2023-02-02
01:00:00 -1 2023-02-03

00:00:00 null

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00
2023-02-03

00:00:05

4 2023-02-02
01:00:00

-1 2023-02-03
00:00:00

null

id time_utc value valid from valid_to

1 2023-02-01
09:00:00

5 2023-02-02
00:00:00

null

2 2023-02-01
10:00:00

6 2023-02-02
00:00:00

2023-02-03
00:38:41

3
2023-02-01

11:00:00 8
2023-02-02

00:00:00
2023-02-03

00:00:05

4
2023-02-02

01:00:00 -1
2023-02-03

00:00:00 null

2
2023-02-01

10:00:00 7
2023-02-03

00:38:41 null

INSERT INTO dataset(id, time_utc, value)
VALUES(4,'2023-02-02 01:00:00', -1);

Current Time:
'2023-02-03 00:00:05'

Current Time:
'2023-02-03 00:38:41'

Figure 4.1: Example of Integrated Versioning on the dataset table with all different
CRUD operations, with changes marked in blue

27

4. Conceptual Design

In Figure 4.1 we can see the dataset table of the ISMN network with integrated versioning
applied, it consists of the columns id, time_utc, value valid_from and valid_to. We can
see that in the first table, three tuples are active, as all of them have an unset valid_to
timestamp. After an insert, the valid_from timestamp is set automatically, and the new
table now has four active tuples. After a delete on id = 3, the valid_to value of the
corresponding tuple is updated with the operation time and therefore the tuple is marked
as deleted. After an update on id = 2, we can see that the original tuple is marked as
deleted, as the valid_to timestamp is set and a new row, with the updated value, is
inserted instead.

With this approach, the storage of the table will increase by 32 bytes (16 bytes per
timestamp, according to PostgreSQL documentation 7) per tuple, and the query execution
and re-execution times will increase, as the data always needs to be filtered and all the
data stays in the same table. As this approach keeps the historized versions of the table in
the same table as the actual table, query rewriting is only necessary to enrich the initial
query to include system versioning timestamps and all used columns, to not include the
additionally added columns.

4.1.2 Separated Versioning

In the separated versioning approach, the original table is not altered, but a history
table is created, which holds a copy of the data of the original table, with all historized
data. Therefore the history table consists of all the original columns of the table and
the two timestamp columns. In the case of CRUD operations on the original table, all
operations are similarly performed on the history table, with the behaviour described in
the integrated approach before. As the original table is not altered, constraints do not
need to be adapted. Furthermore, as no data is inserted in the history table via direct
CRUD operations, we also do not need to copy these constraints to the history table, as
they will be enforced via the original table. In comparison to the integrated approach,
the most recent version can be retrieved by simply querying the original table without
any constraints, although for allowing reproducibility, the timestamp of execution needs
to be saved.

In Figure 4.2 we can see the dataset table of the ISMN network with separated versioning
applied, it consists of the original table on the left, and the history table on the right.
We can see that in the first row, both tables contain the same data, but the history table
has a set valid_from column with the timestamp, when the data was included in the
database and a valid_to column, which is set, when the data is deleted. When performing
an insert, as can be seen in the second row of tables, the data is automatically copied to
the history table, and the validity period is started. On a delete operation on id = 3, the
tuple is dropped from the original table, and the corresponding tuple in the history table
is marked as deleted. On an update operation on id = 2, the value is normally updated

7https://www.postgresql.org/docs/current/datatype-datetime.html

28

https://www.postgresql.org/docs/current/datatype-datetime.html

4.1. Data Versioning

INSERT INTO dataset(id, time_utc, value)
VALUES(4,'2023-02-02 01:00:00', -1);

id time_utc value

1 2023-02-01
09:00:00 5

2 2023-02-01
10:00:00 6

3 2023-02-01
11:00:00 8

id time_utc value

1 2023-02-01
09:00:00 5

2 2023-02-01
10:00:00 6

3 2023-02-01
11:00:00 8

4 2023-02-02
01:00:00 -1

id time_utc value

1 2023-02-01
09:00:00 5

2 2023-02-01
11:00:00 8

4 2023-02-02
01:00:00 -1

id time_utc value

1 2023-02-01
09:00:00 5

2 2023-02-01
11:00:00 7

4 2023-02-02
01:00:00 -1

DELETE FROM dataset WHERE id = 3;

UPDATE dataset SET value = 7 WHERE id=2;

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

4 2023-02-02
01:00:00 -1 2023-02-03

00:00:00 null

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3
2023-02-01

11:00:00 8
2023-02-02

00:00:00
2023-02-03

00:00:05

4
2023-02-02

01:00:00 -1
2023-02-03

00:00:00 null

dataset_histdataset

id time_utc value valid from valid_to

1
2023-02-01

09:00:00 5
2023-02-02

00:00:00 null

2
2023-02-01

10:00:00
6

2023-02-02
00:00:00

2023-02-03
00:38:41

3
2023-02-01

11:00:00 8
2023-02-02

00:00:00
2023-02-03

00:00:05

4 2023-02-02
01:00:00

-1 2023-02-03
00:00:00

null

2
2023-02-01

10:00:00 7
2023-02-03

00:38:41 null

Current Time:
'2023-02-03 00:00:00'

Current Time:
'2023-02-03 00:00:05'

Current Time:
'2023-02-03 00:38:41'

Figure 4.2: Example of Separated Versioning on the dataset table with all different
CRUD operations, with changes marked in blue

29

4. Conceptual Design

in the original table, as can be seen in the fourth row of tables, while it is marked as
deleted, and inserted again in the history table.

With this approach, the storage will increase the most, as the whole table needs to be
saved with two additional timestamps (32 bytes per tuple), which leads to an increase of
over 100%. The query execution time will stay the same as the original table remains
unchanged, and the re-execution time will be similar to the integrated approach. Minor
query rewriting is necessary, as all queries executed on the original table need to be
rewritten to be re-executed on the history table.

4.1.3 Hybrid Versioning

In the hybrid versioning approach, only one timestamp is added to the original table,
which traces when a tuple was added to this table and a history table with two timestamps
is additionally created, but no data is copied into this table. Only if a tuple is deleted
it is then copied to the history table, and the valid_to timestamp is set. Constraints
on the original table need to be checked, but should be able to remain unchanged as no
duplicate keys are allowed, as such tuples should be in the history table only.

In Figure 4.3 we can see the dataset table of the ISMN network with hybrid versioning
applied, it consists of the original table on the left, and the history table on the right.
We can see that the original table contains three active tuples at the start. After the
INSERT of a fourth row, the original table contains now four rows, while the history
table remains empty. After a delete on the tuple with id = 3 from the original table,
the row is transferred to the history table and the valid_to timestamp is set. After an
Update on the tuple with id = 2 the tuple in the original table is updated, while the old
tuple is transferred to the history table, similar to a delete and insert.

In comparison to the integrated approach, the most recent version can be retrieved by
simply querying the original table without any constraints. Also, the storage does not
increase as much as in the separated approach, and as the most recent data can be
retrieved, the query execution times should not increase. For saving and re-executing
queries this approach is the one with the most overhead. As each re-executed query
needs to be executed on both the history, and the original table and then needs to
be combined, which results in an overhead when being compared to the other two
approaches. Also does the query need to be rewritten so that it queries both tables
and combines both result sets. Säuerl[20] analyzed all three versioning strategies, and
concluded that the hybrid approach is not well fitted for real-world scenarios due to the
slow re-execution performance. We will consider this approach, as a different schema,
different join strategies and different user behaviours can change the viability of this
strategy.

30

4.1. Data Versioning

id time_utc value valid from valid_toid time_utc value valid_from

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00

id time_utc value valid_from

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00

4 2023-02-02
01:00:00 -1 2023-02-03

00:00:00

id time_utc value valid_from

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00

4 2023-02-02
01:00:00 -1 2023-02-03

00:00:00

id time_utc value valid from valid_to

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00
2023-02-03

00:00:05

id time_utc value valid from valid_to

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00
2023-02-03

00:00:05

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00
2023-02-03

00:38:41

id time_utc value valid_from

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00

2 2023-02-01
10:00:00 7 2023-02-03

00:38:41

4 2023-02-02
01:00:00 -1 2023-02-03

00:00:00

id time_utc value valid from valid_to

INSERT INTO dataset(id, time_utc, value)
VALUES(4,'2023-02-02 01:00:00', -1);

DELETE FROM dataset WHERE id = 3;

UPDATE dataset SET value = 7 WHERE id=2;

dataset_histdataset

Current Time:
'2023-02-03 00:00:00'

Current Time:
'2023-02-03 00:00:05'

Current Time:
'2023-02-03 00:38:41'

Figure 4.3: Example of Hybrid Versioning on the dataset table with all different CRUD
operations, with changes marked in blue

31

4. Conceptual Design

4.1.4 Comparison
All of the versioning approaches are different in their behaviour, therefore it is necessary
to highlight the most important differences between the three versioning approaches on a
theoretical level.
In Table 4.1 we can see the differences between our different approaches. In terms of
versioning, do the integrated and the separated approach, each version one table, while
the hybrid approach versions the original and the history table. As the separated and
the hybrid approach always keep the most recent version in the original table, it is not
necessary that in these two approaches, any filtering is necessary to obtain the most
recent version. On the other hand in the integrated approach, it is necessary to always
filter for the correct version, which needs to specify the correct valid_from and valid_to
timestamp information. This clearly has a performance impact, as each query needs to
filter, if a tuple is active at the current time, which means that the valid_from timestamp
is prior to the query execution timestamp and the valid_to timestamp is null or posterior
to the query execution timestamp.
From a storage point of view, we can see that the hybrid approach needs, in the best
case (no updates or deletes), only one timestamp column (16 bytes), while the integrated
approach always has two timestamp columns (2x 16 byte). As the separated approach
copies all tuples into a separated history table and adds two timestamp columns to
the history table, the overhead is the biggest. When looking at the re-execution of
queries, the integrated approach allows to re-execute the original queries, without any
rewriting, as all timestamp information is already present. For the separated and the
hybrid approach, it is necessary to rewrite the query. For the separated approach, this
is done in the same manner as for the integrated approach, by adding three additional
where clauses per queried table. For the hybrid approach, we need to combine the results
of the original table, with one added timestamp information and the results of the history
table, as the information is divided between these two tables. The most important
metric is the retrieval time of queries, which differs significantly between the different
versioning techniques. The integrated versioning increases the query execution time, as
all different versions of a tuple are obtained and need to be filtered for execution and
re-execution. The separated and hybrid approaches have a similar execution time for
the query-execution as an unversioned database, as they keep the most recent version in
a dedicated table. The query re-execution in the separated versioning is similar to the
query re-execution in the integrated versioning, as all different versions are kept in one
table. For the hybrid versioning re-execution it heavily depends on the type of query,
as the queries can be run parallelized, but for each join it is necessary to join with the
original and the history table, which results in increased re-execution time.
So we can conclude, that the integrated approach is the easiest to implement, as we do not
need additional tables, and the same query can be used for execution and re-execution.
From a performance perspective, this approach is not as efficient in the original retrieval
of data, as timestamp information need to be added to each query. From a storage and
performance perspective, the hybrid approach has benefits, as it does not store every

32

4.1. Data Versioning

Integrated Separated Hybrid
Versioned Table original table history table both tables

Performance Impact 3 extra constraints Query remains unchanged Query remains unchanged
Minimal Storage Increase 32 byte per tuple 32 byte + tuple per tuple 16 byte per tuple

Query Re-Execution Re-Execution
with same query

Re-Execution on history table
with adapted query

Re-Execution on original and
history table with adapted query

Table 4.1: Comparison of the different versioning approaches

tuple twice, but keeps the most recent version for each table. The query re-execution for
this approach is the most complicated, as the results from querying the original and the
history table need to be combined. The separated approach has the same performance as
the hybrid table on standard retrieval, but can retrieve the results from a history table
that keeps all tuples. This approach saves each tuple twice, but separates the execution
and the re-execution tables.

4.1.5 Database Concurrency Control
Database concurrency control is an essential feature in database management systems,
and facilitates the concurrent access of multiple users to the same data. For systems
as the International Soil Moisture Network, which aim to allow the reproducibility of
executed queries, data integrity and consistency are necessary requirements. Therefore, it
is important to ensure that the underlying data is not evolving, while the data is queried,
so that no concurrency defects occur. As the write operations in the ISMN database
are centrally managed and are running sequentially, two concurrent write operations
cannot occur and thus cannot cause issues in the reproducibility, but race conditions
which would lead to inconsistent reads can occur.

TS 1

Write Operation

Read Operation

TS 2 TS 3

Figure 4.4: Illustration of two parallel operations, which can possibly cause race conditions

In Figure 4.4 we see an illustration of a race condition. The write operation starts at
TS 1, but does not conclude before the read operation starts at TS 2, but finishes at
TS 3. The read operation queries the database at TS 2, but as the write operation
only commits data at TS 3 the written data of this operation is not visible for the read
operation. Upon re-execution these problems materialize, as new tuples are included in

33

4. Conceptual Design

the results, which were not included in the original results, or tuples are excluded in the
reproduced results, but not in the original results.

As the International Soil Moisture network has different integration frequencies, which
reach from daily updated networks, over irregular updated networks to historical datasets,
which are only inserted and not reprocessed later on. These updates vary in length, with
most daily updates finished within ten minutes, while other datasets vary based on their
sizes. Several times a year, several sensors and networks are reprocessed with corrected
data or new quality flags. This process can take up to a few days to conclude. All of
these updates only change the dataset table, and there are only further changes, if new
sensors or networks are added.

To avoid race conditions, there are a few different solutions, which we will discuss below.

Solution: Locking

One valid approach to solve race conditions is to use locking. The main problem with an
exclusive lock8 on a database is, that no other operations are allowed in the meantime on a
given table. Frequent updates and long running update queries, can limit the performance
of the database extensively, as write operations are always running exclusively on a given
table. Read operations can run in parallel, but each read needs to complete before a
write operation can occur.

TS 1

Write Operation Read Operation

TS 3TS 2

Figure 4.5: Solution to handle race conditions, by locking the database on write operations

In Figure 4.5 we see an illustration how exclusive locking in a database works. The
write operation first needs to conclude at TS 2 before the read operation is allowed to
start. Read operations are allowed to run parallel to write operations, as long as the read
operation was started first.

We can conclude, that locking the database would prevent race conditions from happening,
and need to be used in update operations which involve more than one table. For the
ISMN locking is a valid strategy, with a daily downtime of around ten minutes and
possible longer downtimes for each other update.

8https://www.postgresql.org/docs/current/explicit-locking.html

34

https://www.postgresql.org/docs/current/explicit-locking.html

4.1. Data Versioning

Solution: Backdating Query Timestamp

An easy to implement approach to circumvene race conditions is to not query the most
recent data, but use a negative offset, so that the execution timestamp of the SQL query
is earlier than when the query actually was executed. Therefore, we need to issue the
SQL query timestamp for a time that already passed, so that all write operations for
this timestamp are already concluded.

Write Operation

Read Operation

TS 2TS 2 - X
Read Timestamp

TS3TS1

Figure 4.6: Solution to handle race conditions, by backdating the query execution
timestamp

In Figure 4.6 we can see an illustration of this process. The write operation starts at
TS 1 and concludes at TS 3, while our read operation starts at TS 2. Instead of using
timestamp TS 2 the read operation takes a timestamp which has an offset of X from TS
2 seen on the far left of the figure. With this offset, the query uses only data which has
already been written to the database and circumvenes race conditions therefore.

For this strategy, only the integrated versioning approach can be used, as neither the
hybrid nor the separated approach are using timestamps as conditions for filtering, when
querying the most recent state of the database. It is not possible in the hybrid versioning,
as we cannot determine if an update occurred between TS2−X and TS1 and if a tuple is
no longer present in the original table. Therefore, we cannot use the valid_from column
from the original table as filter criteria and would need to combine it to a re-executable
SQL query using both the valid_from and valid_to timestamps from the history table as
well. Although the separated approach can be theoretically used, as its history table has
all timestamp information and tuples, similar to the original table from the integrated
approach, this would be a workaround, which is not using the original table in any SQL
query anymore.

Solution: Postdating Data Timestamp

Another way of changing the behaviour of timestamps, is instead of backdating SQL
query timestamps to postdate timestamps of the underlying data. Therefore, we need to
issue timestamps, when inserting or updating data so that they are in the future and only

35

4. Conceptual Design

become active after a certain amount of time (e.g. 5 minutes). Therefore, race conditions
will be circumvened as each write operation is only visible after a certain time.

TS 1

Write Operation

Read Operation

TS 2 TS 3 TS 1 + X
Write

Timestamp

Figure 4.7: Solution to handle race conditions, by postdating the data versioning times-
tamps

In Figure 4.6 we can see an illustration of this process. The write operation starts at
TS 1 and concludes at TS 3, while our read operation starts at TS 2. Instead of using
timestamp TS 1 the write operation takes a timestamp which has an offset of X from
TS 1 seen on the right of the figure. With this offset, the inserted data is not active until
all read operations have concluded and avoids race conditions.

Similar to the backdating of the SQL query timestamp, this approach only works with
the integrated approach. For the hybrid approach, it does not work, because it cannot
be ensured that no update or delete operations removed tuples from the original table,
which are then not contained in the result set, but in the re-executed query. This would
again require, that both the history table and the original table are both queried for the
SQL query. For the separated approach this would work similar as before by using the
history table only, and would no longer use the original table.

4.2 Persistent Identification of Subsets
The persistent and precise identification of subsets is vital to ensure that the data can be
reproduced and changes in the retrieved data can be detected. This follows the guidelines
R3 - Query Store Facilities, R5 - Stable Sorting, R6 - Result Set Verification, R7 - Query
Timestamping, R8 - Query PID and R9 - Store Query to allow to re-execute already
executed queries. The guideline R4 - Query Uniqueness is not necessary, as it can be
guaranteed by design, as download requests consist of the same five queries, which cannot
be adapted by the user. Guideline R10 - Automated Citation Texts is also not a part of
this thesis, as these citations are generated in the frontend with retrieved data from the
stored queries and are part of a complementary project.

For query re-execution, the system allows in the best case the re-execution of a given
query (displayed in Listing 1) in the backend, with the state of the source-code and the

36

4.2. Persistent Identification of Subsets

state of the database at the time of execution. As the source is frequently changing,
and further relies on many dependencies from other modules, this requires a rollback
to a given git version, additionally to a versioned database. Due to the source code
architecture, frequent source code adaptions and planned database adaptions, we will
refrain from relying on source code versioning and rollbacks for the query correctness,
and will store all created SQL queries (further called subqueries, to distinguish from
the query which is sent to the backend) to allow the verification of each result set of a
subquery.

Upon a user triggered download operation, the query needs to be stored with an execution
timestamp and assigned to the users account, so that each user can only see their
downloads. It is important that during the execution of a database the state of the
database, on which the query is executed-on remains unchanged. If the state of the
database changes, the re-execution may not produce the same results as the original
execution. Possible database concurrency control strategies are discussed in Section 4.1.5.
It is further necessary to specify all column-names for subqueries explicitly and do not use
asterisks to obtain all columns of tables. If columns added or deleted this would then lead
to problems with the number of columns not matching the expected number of columns,
when processing the results in the backend, while also ensuring that the columns have an
unambiguous ordering. Moreover, must each sub-query specify an explicit ordering of all
tuples, so that the result set is always deterministic and can then be processed similarly
by the backend. To verify the correctness of the re-execution of the query, as well as for
each subquery, the hash of the result set is stored together with the associated query or
subquery. The hash is calculated over the whole result set, including all columns and
rows, so that the authenticitiy of the result set can be guaranteed.

From these requirements, we can derive a query store, which meets the needs of the
ISMN database and supports their download process, by allowing the re-creation of the
original result set, by combining all sub-query results. Therefore, the query store needs
to store the original query, with a hash for verification and three different subqueries
with up to 33,000 different parameter settings, with the corresponding result hashes, and
result numbers. Therefore, the query store needs to consist of two tables, one holding
all information regarding queries and the second one holding all information regarding
subqueries. In the next two sections, we will discuss two different approaches, which can
be used to store the queries efficiently in the database.

4.2.1 Basic Implementation
In the basic implementation, the query store consists of two tables, the query table,
and the subquery table, as can be seen in Figure 4.8. On the left side, you can see
the query table, which holds information about the user who started the download, the
request, the timestamp when it was executed, and other metadata such as a digital object
identifier(DOI)9 and a result hash to verify the correctness of the query. In the subquery

9https://www.doi.org/

37

https://www.doi.org/

4. Conceptual Design

table, the original subquery is saved, together with a rewritten subquery, a result hash,
and a number of retrieved results. The original query is the originally executed query
on the system, while the re-executable query is the query that needs to be executed to
obtain the same results again. Therefore, the re-executable query is a rewritten original
query, enriched with timestamp information and using, if applicable, history tables. Both
tables are interlinked by a foreign key, so that each query can be linked to a download
and when a re-execution is called for a download, all associated queries can be executed.

1

query

id serial

timestamp timestamp

user_id serial

request text

result_hash text

doi text

subquery

id serial

q_id serial

original_subquery text

subquery_hash text

reexecutable_subquery text

result_hash text

result_nr int

n

Figure 4.8: Schema of the query store, with an additional downloads table to track user
downloads

The benefit of a simple approach as this is, as the subqueries are saved without any
further compression to save storage space, all subqueries for a specific query can be
obtained by querying the subquery table and filtering for a specific q_id. On the downside,
we are saving the same 5 subqueries up to 33,000 times, which requires additional storage
space. This impact could be decreased by the use of compression algorithms, as there are
only five different queries, where each query has a different parameter setting. In such a
setting, a compression algorithm could work well. An example of an already out-of-the-
box working compression algorithm is TOAST10. It could be further decreased by using
information from the request column from the query table, but as this information is
processed in the backend and information is passed between queries, rollbacks to specific
code versions are necessary.

4.2.2 Parameters Separated

A more complex implementation could consist of a three table setup, again with a
download and query table, but all the parameters are saved in a different table, and each
query is only saved once. The different parameters are then saved for each query in a
different table, with the corresponding result hash. When we look at Figure 4.9, we can
see that the parameters table contains three different arrays for the datatypes int, text and
timestamp, so that all parameters can be saved accordingly and then used in the query

10https://www.postgresql.org/docs/current/storage-toast.html

38

https://www.postgresql.org/docs/current/storage-toast.html

4.3. Resolving and Sharing Subsets

correctly. The timestamp_parameters column here is used for the sensor measurement
timestamps, which are seen in line 17 and 18 of Listing 4. In the original_query and the
re-executable_query fields in the query table, these values would be needed to be set with
wildcards, so they can be replaced with each different parameter setup. Furthermore, the
result_nr and result_hash are in the parameters table, as we need to know these values
per parameter setting.

1
query

id serial

timestamp timestamp

user_id serial

request text

result_hash text

doi text

subquery

id serial

q_id serial

original_subquery text

subquery_hash text

reexecutable_subquery text

n

parameters

id serial

sq_id serial

result_nr int

result_hash text

integer_parameters int[]

string_parameters text[]

timestamp_parameters timestamp[]

1

n

Figure 4.9: Schema of the query store, with an additional downloads table to track user
downloads and the parameters separated in an additional table

1 SELECT * FROM data.dataset
2 WHERE id = #i1 AND value > #i2 AND
3 dataset_utc >= #t1 AND dataset_utc <= #t2

Listing 5: Possible Rewrite to save storage space for each query

This should, compared to the basic approach, lead to less storage space required, as the
queries are only saved once, but we need to take into account that all queries would need
to be re-written, as they are stored in an optimized form, which can be seen in Listing
5. Instead of saving the whole query string for each query, we are just saving a query
with placeholders. For each different datatype a different placeholder exists, so the #i2
placeholder represents the second element in the integer array, while #t1 refers to the
first timestamp in the timestamp array.

4.3 Resolving and Sharing Subsets
Resolving and sharing a subset via a persistent identifier is vital to speed up scientific
discovery and allow the verification of research results. In the guidelines R11 - Landing
Page and R12 - Machine Actionability are these two recommendations discussed. The
ISMN webportal needs to be adapted to accommodate the needs of retrieving machine
actionable data, have a landing page presenting all necessary metadata and a way to see
and re-execute all previously made downloads. Furthermore, the Landing Page needs to

39

4. Conceptual Design

allow to publish a DOI directly, so that a citation can be generated automatically based
on all gathered data of the database and without onward distributing the data.

This task is separated from this thesis and completed in a complementary project, as it
is out of the scope of this project. The landing page will list the executed downloads per
user and the user can request a DOI for each download. Moreover, a Bibtex citation is
automatically generated, so that the user can easily give credit to all networks, which
have contributed to the downloaded data.

4.4 Modification of Infrastructure

As databases are constantly evolving, we also need to take into account how a change of
the underlying data structure would affect the reproducibility of our system. Therefore it
is necessary to plan for a potential technology migration and a verification of the correct
migration, as discussed in R13 and R14. The verification can be achieved by reusing
the same hashes, used for the verification of the re-execution of the queries, but for the
different transformations a database can do, we need to look into some of the different
possible Data Definition Language commands possible for such a transformation and
what type of rewriting is necessary for these approaches.

We will limit the modification of the infrastructure to CREATE, DROP, and RENAME
operations for tables and columns, as these are the most commonly used ones. Over the
years there have been several schema changes within the ISMN database and further
changes are planned (discussed in Section 3.1.1).

Below we will describe each operation in detail and how the schema needs to be adapted.
These adaptions are similar to the schema adaptions presented by Säuerl[20], but with
the goal of automatically processing them from within the PostgreSQL database. All
the presented figures are shown for the separated approach, but work similarly for the
integrated and the hybrid approach.

4.4.1 Create Table

One of the most common use cases in a database is to create a new table. Therefore,
we need to apply versioning to added tables automatically to ensure the reproducibility
of queries. It is necessary to exclude namespaces and specific naming conventions for
tables, as otherwise recursive function calls can happen (e.g. for each history table,
another history table would be created). In Figure 4.10, we can see on the creation of
the table dataset, the table dataset_hist is automatically created as well, with version-
ing already applied to it. So that whenever a new tuple is introduced to the original
table it is versioned automatically. In temporal tables this can be achieved by adding
WITH SYSTEM VERSIONING to any CREATE TABLE statement, so that automati-
cally system-versioning is applied to the table.

40

4.4. Modification of Infrastructure

CREATE TABLE dataset
id time_utc value valid from valid_to

dataset_hist

id time_utc value

dataset

Figure 4.10: Creation of table dataset, and automatic creation of associated history table

4.4.2 Drop Table
If a drop table event is called, it is important, that no data is lost in the process, as
queries using this table are not reproducible anymore. For the separated approach, this
is not as important, as for the integrated or hybrid approach, as the data is already
stored redundantly and will not be deleted. For the integrated and the hybrid approach,
the data from the original table needs to be renamed or copied, to mark it as a deleted
table. In Figure 4.11 we drop the table dataset and the history table dataset_hist is
automatically archived, by renaming it and possibly moving it to a different namespace.
With renaming the table, we allow to avoid problems in the future, if the same table is
reused. Further, it is necessary to rewrite all queries in the query store to the new table
name, and the table should be immutable, as the table is officially deleted and only used
for re-executing queries.

DROP TABLE dataset;

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

dataset_hist

id time_utc value

1 2023-02-01
09:00:00 5

2 2023-02-01
10:00:00 6

3 2023-02-01
11:00:00 8

dataset

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

dataset_hist_20230226

Figure 4.11: Deletion of table dataset, and automatic renaming and historization of
history table

4.4.3 Rename Table
If a table is renamed, it is necessary to rewrite all queries in the query store and also
rename the history table as well. This is due to the fact, that the history table can cause
problems, if the table with the original name is newly created in the database, as the
history table cannot be created as it already exists. The renaming process would work
similarly for the integrated and hybrid approach, by only renaming the target table and

41

4. Conceptual Design

rewriting all queries to the new table name. Also created database structures, as triggers
and procedures, which are referencing the old table name need to be changed.

4.4.4 Add Column
When a column is added, the column also needs to be added to the history table. The
values will by default be initialized as null and as all query columns need to be fully
specified in any query, there is no need to rewrite any already executed query. This is
because stored queries are not allowed to contain any asterisk, as then the number of
columns and returned ordering of the columns is not specified.

ALTER TABLE dataset
CREATE COLUMN type

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

dataset_hist

id time_utc value

1 2023-02-01
09:00:00 5

2 2023-02-01
10:00:00 6

3 2023-02-01
11:00:00 8

dataset

id time_utc value type valid from valid_to

1 2023-02-01
09:00:00 5 null 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 null 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 null 2023-02-02

00:00:00 null

dataset_hist

id time_utc value type

1 2023-02-01
09:00:00 5 null

2 2023-02-01
10:00:00 6 null

3 2023-02-01
11:00:00 8 null

dataset

Figure 4.12: Addition of a column type to the dataset table, and automatic update of
the history table

In Figure 4.12, we see that the column type is added to the dataset table. This column
is upon insertion automatically transferred to the history table, and is initialized in both
tables with the value null. All versioning on the dataset table, needs to be adapted, so
that it also writes changes that are part of the newly created type column, as in the SQL
procedures these columns are not specified to be included in versioning.

4.4.5 Drop Column
When dropping a column, we do not want to change the history table, as we might delete
vital information, when reprocessing a query. Therefore, any dropped column will be

42

4.4. Modification of Infrastructure

kept in the history table.

ALTER TABLE dataset
DROP COLUMN value

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

dataset_hist

id time_utc value

1 2023-02-01
09:00:00 5

2 2023-02-01
10:00:00 6

3 2023-02-01
11:00:00 8

dataset

id time_utc value valid from valid_to

1 2023-02-01
09:00:00 5 2023-02-02

00:00:00 null

2 2023-02-01
10:00:00 6 2023-02-02

00:00:00 null

3 2023-02-01
11:00:00 8 2023-02-02

00:00:00 null

dataset_hist

id time_utc

1 2023-02-01
09:00:00

2 2023-02-01
10:00:00

3 2023-02-01
11:00:00

dataset

Figure 4.13: Drop of a column of the dataset table, and automatic update of the history
table

In Figure 4.13 this process is illustrated, on a drop column event, the value column is
dropped from the dataset table, but is kept in the dataset_hist table. No rewriting of
columns is necessary during this process, as the data for the re-execution stays the same,
but used triggers and rules may need to be rewritten during this event.

4.4.6 Rename Column
When renaming a column, it is necessary to also rename the column in the history
table, so that columns can easily be mapped between the original and the history table.
Furthermore, it is necessary to rewrite any queries that are using the column, to ensure
that the re-execution of these queries is working correctly. Also, all stored procedures
and views that are referencing this column need to be rewritten, to work correctly, as
they are not automatically updated. All column names are best written in an easily
detectable format, so that all queries containing the column name can be identified
without problems and when rewriting, only the renamed column is changed.

43

CHAPTER 5
Implementation

For the implementation, we used solely SQL and PL/SQL statements in a PostgreSQL
database in version 14.6. This was important, as the workflow of the ISMN project is
complex, and larger changes to the codebase could most likely not be integrated well
into their system. Furthermore, their system is migrated from the Technical University
of Vienna, to the BfG1 in Germany, which is another reason, the integration of the
versioning should be low effort. As it is not possible to control queries or lock tables from
within a PostgreSQL database, these are adaptions, which need to be performed in the
codebase and not in the database itself.

In Section 5.1 we will discuss how we implemented the three different versioning ap-
proaches, and how they needed to be adapted to fit the ISMN database schema and
the corresponding processes. Then we will describe in Section 5.2 how the query store
was implemented. In Section 5.3 we will then discuss how the process of the ISMN
backend needs to be adapted to rewrite all queries to use the versioned database. In
Section 5.4 we elaborate on the use of event triggers, to catch schema changes and how
to adapt the schema in case of different changes. In Section 5.5 we will discuss strategies
to prevent race conditions in our implementation, which must be implemented outside of
the PostgreSQL database.

5.1 Versioning
For the versioning, we used a combination of Rules2 and Triggers, which are customized
for each different table. Rules in general can overwrite or extend commands in SQL.
One major difference between Triggers and Rules is when they are triggered. On COPY
INTO statements, in which a table is populated by a textfile, a rule is not activated, as
no INSERT command is used, but a trigger is, as the table is changed.

1https://www.bafg.de
2https://www.postgresql.org/docs/15/rules-update.html

45

https://www.bafg.de
https://www.postgresql.org/docs/15/rules-update.html

5. Implementation

To add versioning to the database we are following the steps below:

1. Add Versioning columns to target table

2. Adapt the Primary Key

3. Set CRUD behaviour

In the following, we will discuss how we implemented the versioning for the three different
approaches.

5.1.1 Integrated Versioning
As described in depth in Section 4.1, integrated versioning uses the same table for
versioning which is also used for standard retrieval. Therefore, it is necessary to change
the table before or after applying versioning to it, by adapting uniqueness constraints.
This is relevant, as uniqueness constraints are not working unconditionally together with
versioning approaches, as unique values are not necessarily unique after updates anymore.

1 EXECUTE format('ALTER TABLE %s ADD valid_from
Timestamp;', tablename);�→

2 EXECUTE format('ALTER TABLE %s ALTER COLUMN valid_from
SET default now();', tablename);�→

3 EXECUTE format('UPDATE %s SET valid_from = now() WHERE
valid_from is NULL;', tablename);�→

4 EXECUTE format('ALTER TABLE %s ADD valid_to Timestamp;',
tablename);�→

5 EXECUTE format('ALTER TABLE %s ADD CONSTRAINT %s_pkey
primary key(%s,valid_from) ',
tablename,tablename_wo_schema,primary_key);

�→
�→

Listing 6: Integrated: Altering Table to create valid_from and valid_to columns and set
valid_to to now and adapt primary key

In Listing 6, we can see an excerpt of the general approach of adapting a table to support
versioning. For readability, the functions are split into several parts and parameter re-
trievals and constraint adaptions are left out. They are implemented inside of EXECUTE
FORMAT commands, so that the statements are correctly set for the corresponding
table. Versioning is done by adding two additional columns, which are created in Line
1 and 4. In Line 2 a default value for the valid_from column is set, so that all future
inserts are valid upon insertion time. In Line 4 all tuples, which are in the database at
the time of versioning, are updated and the valid_from timestamp is set to the actual
time. Then in Line 5, the primary key, which has been deleted before is added, with the
original primary key columns, and additionally also the valid_from column.

46

5.1. Versioning

1 -- Delete Rule
2 EXECUTE format('CREATE RULE delete_from_%3$s AS ON

DELETE TO %1$s ' ||�→
3 'DO INSTEAD (' ||
4 ' UPDATE %1$s SET valid_to = now()

where %2$s;' ||�→
5 ');', tablename,primary_key_conditions,

tablename_wo_schema);�→
6 -- Update Function
7 EXECUTE format('CREATE OR REPLACE FUNCTION

update_trigger_function_%3$s() ' ||�→
8 'RETURNS TRIGGER ' ||
9 'LANGUAGE PLPGSQL ' ||

10 'AS $update_trigger_function$ ' ||
11 'BEGIN' ||
12 ' IF new.valid_to IS NULL THEN ' ||
13 ' INSERT INTO %5$s%3$s(%1$s)

VALUES(%2$s);' ||�→
14 ' %4$s;' ||
15 ' NEW.valid_to = now();' ||
16 ' END IF;' ||
17 ' RETURN NEW;' ||
18 'END; $update_trigger_function$ ',

columnnames, new_columnnames,
tablename_wo_schema, column_reset,
schema_name);

�→
�→
�→

19 -- Update Trigger
20 EXECUTE format('CREATE TRIGGER update_trigger_%2$s ' ||
21 'BEFORE UPDATE ' ||
22 'ON %1$s ' ||
23 'FOR EACH ROW ' ||
24 ' WHEN (pg_trigger_depth() < 1)' ||
25 ' EXECUTE PROCEDURE

update_trigger_function_%2$s();',
tablename, tablename_wo_schema);

�→
�→

Listing 7: Integrated: Creation of Rules and Triggers to version all changes created by
CRUD operations
In Listing 7, we can see the general approach for CRUD operations. As the versioning is
handled directly in the original table, there is no need for an additional INSERT Rule or
Trigger, as a default value for new inserts is set for each tuple. We can see the DELETE
Rule from Line 1 to 5, where we are defining the behaviour, when a deletion from the

47

5. Implementation

table occurs. Instead of deleting the actual values, the process is changed and instead
(See Line 3), an UPDATE is triggered in Line 4, which deactivates the tuple by setting
the valid_to timestamp. The UPDATE function starts in Line 8 and goes until Line 19
and the Line 8 to 12 and 19 are the function syntax. In Line 13, we are testing if the new
valid_to value is null, and terminate the function if it is not, to adapt for the triggering
by the DELETE rule. In Line 13 we check if the valid_to value is not set. If it is not set,
we insert the new tuple in the database in Line 14 and then reset all column values to
the original ones in Line 15 and set the valid_to timestamp. In the trigger definition
from Line 21 to 26, it is worth mentioning, that we circumvent recursive calls in Line 25,
by specifying the trigger depth as 1, which prevents nested trigger calls.

5.1.2 Separated Versioning

As described in depth in Section 4.2, separated versioning uses a copy of the table with
additional valid times for tuples, a so called history table, which is only used for query
re-execution. All queries on the system can be run without a change, but need to be
documented and can then be re-run on the history tables. As all original tables remain
unchanged, we do not need to lift any constraints on the original tables.

1 EXECUTE format('CREATE TABLE hist.%s_hist(like %s);',
tablename_wo_schema, tablename);�→

2 -- Add valid_from column
3 EXECUTE format('ALTER TABLE hist.%s_hist ADD valid_from

Timestamp;', tablename_wo_schema);�→
4 EXECUTE format('ALTER TABLE hist.%s_hist ALTER COLUMN

valid_from SET default now();',
tablename_wo_schema);

�→
�→

5 EXECUTE format('ALTER TABLE hist.%s_hist ADD valid_to
Timestamp;', tablename_wo_schema);�→

6 EXECUTE format('INSERT INTO hist.%s_hist SELECT * FROM
%s;', tablename_wo_schema, tablename);�→

Listing 8: Separated: Altering Table to create history table with valid_from and valid_to
columns and copy all data to history table

In Listing 8, we can see a generalized form for applying the initial separated versioning
to a table. First, we create in Line 1 a history table with the same columns as in the
original table and then create a valid_from column with default value in Line 3 and 4.
In Line 5 we create the valid_to column and then copy all data from the original table
to the history table.

48

5.1. Versioning

1 -- Delete Rule
2 EXECUTE format('CREATE RULE delete_from_%3$s AS ON

DELETE TO %1$s ' ||�→
3 'DO ALSO (' ||
4 ' UPDATE hist.%3$s_hist SET valid_to

= now() where %2$s;' ||�→
5 ');', tablename,primary_key_conditions,

tablename_wo_schema);�→
6 -- Update Function
7 EXECUTE format('CREATE OR REPLACE FUNCTION

update_trigger_function_%3$s() ' ||�→
8 'RETURNS TRIGGER ' ||
9 'LANGUAGE PLPGSQL ' ||

10 'AS $update_trigger_function$ ' ||
11 'BEGIN' ||
12 ' UPDATE hist.%3$s_hist SET valid_to

= now() WHERE %6$s ;' ||�→
13 ' INSERT INTO hist.%3$s_hist(%1$s)

VALUES(%2$s);' ||�→
14 ' %4$s;' ||
15 ' RETURN NEW;' ||
16 'END; $update_trigger_function$ ',

columnnames, new_columnnames,
tablename_wo_schema, column_reset,
schema_name,
primary_key_conditions);

�→
�→
�→
�→

17 -- Insert Function
18 EXECUTE format('CREATE OR REPLACE FUNCTION

insert_trigger_function_%3$s() ' ||�→
19 'RETURNS TRIGGER ' ||
20 'LANGUAGE PLPGSQL ' ||
21 'AS $insert_trigger_function$ ' ||
22 'BEGIN' ||
23 ' INSERT INTO hist.%3$s_hist(%1$s)

VALUES(%2$s);' ||�→
24 ' RETURN NEW;' ||
25 'END; $insert_trigger_function$ ',

columnnames, new_columnnames,
tablename_wo_schema);

�→
�→

Listing 9: Separated with Rules: Creation of Rules to version all changes created by
CRUD operations
In Listing 9 we can see the defined rules and triggers for all CRUD operations. From

49

5. Implementation

Line 2 to 5 is the rule for deleting entries, which additionally (Line 3) updates the history
table and sets the valid_to timestamp to now() in Line 4 and 5. The trigger function for
an update is in Line 7 to 16. In Line 12, the row, which is updated in the original table
is marked as deleted in the history table. In Line 13 the updated tuple is then inserted
in the history table. From Line 18 to 25 we see the insert function. On each insert to the
original table, the result is copied to the history table, as seen in Line 23.

Separated Versioning with Rules

A second, easier readable version for the separated approach was created, which uses
only rules for INSERT, UPDATE, and DELETE in comparison to the before described
approach. This approach has the limitation, that INSERT and UPDATE commands are
not applying versioning, when used in combination with the COPY FROM command3.

1 EXECUTE format('CREATE RULE delete_from_%3$s AS ON DELETE
TO %1$s ' ||�→

2 'DO ALSO (' ||
3 ' UPDATE hist.%3$s_hist SET valid_to =

now() where %2$s;' ||�→
4 ');', tablename,primary_key_conditions,

tablename_wo_schema);�→
5 EXECUTE format('CREATE RULE update_from_%3$s AS ON UPDATE

TO %1$s ' ||�→
6 'DO ALSO (' ||
7 ' UPDATE hist.%3$s_hist SET valid_to =

now() where %2$s;' ||�→
8 ' INSERT INTO hist.%3$s_hist SELECT *

FROM %1$s WHERE %2$s;' ||�→
9 ');', tablename,primary_key_conditions,

tablename_wo_schema);�→
10 EXECUTE format('CREATE RULE insert_from_%3$s AS ON INSERT

TO %1$s ' ||�→
11 'DO ALSO (' ||
12 ' INSERT INTO hist.%3$s_hist SELECT *

FROM %1$s WHERE %2$s ' ||�→
13 ');', tablename, primary_key_conditions_new,

tablename_wo_schema);�→

Listing 10: Separated with Rules: Creation of Rules to version all changes created by
CRUD operations

In Listing 10 we see this approach. From Line 1 to 4, we see the rule for deletion, which
is the same as for the approach with triggers, as deletions cannot be performed by COPY

3https://www.postgresql.org/docs/current/sql-copy.html

50

https://www.postgresql.org/docs/current/sql-copy.html

5.1. Versioning

FROM. In Line 5 to 9 we see the rule for update, which additionally (Line 6) updates
the history table and deactivates the tuple which is updated in Line 7 and inserts the
new updated tuple in Line 8. From Line 10 to 13 we see the insert rule, which copies all
inserted data to the history table in Line 12.

As this approach does not support the COPY FROM command, and corresponding data
is not transferred to the history table, when using this command - this would lead to a
diverging number of tuples and further lead to non-reproducible queries. As the COPY
FROM operation only affects INSERT AND UPDATE operations, it is save to use rules
for DELETE operations, as these cannot be triggered by a COPY FROM statement.

5.1.3 Hybrid Versioning

As described in depth in Section 4.3, hybrid versioning transfers all inactive tuples of the
original table with a set valid_to time to a so called history table, which is only used for
query re-execution. All queries on the system can be run without a change, but need
to be documented and can then be re-run on the history tables. As the original tables
remain unchanged, we do not need to add any additional constraints on the original
query.

1 EXECUTE format('ALTER TABLE %s ADD valid_from Timestamp;',
tablename);�→

2 EXECUTE format('ALTER TABLE %s ALTER COLUMN valid_from SET
default now();', tablename);�→

3 EXECUTE format('UPDATE %s SET valid_from = now() WHERE
valid_from is NULL;', tablename);�→

4 -- CREATE HYBRID
5 EXECUTE format('CREATE TABLE hist.%1$s_hist(like %2$s);',

tablename_wo_schema, tablename);�→
6 EXECUTE format('ALTER TABLE hist.%s_hist ADD valid_to

Timestamp;', tablename_wo_schema);�→

Listing 11: Hybrid: Altering Table to create history table with valid_from and valid_to
columns and add valid_from column to the original table

In Listing 11, we can see a generalized form for applying the initial hybrid versioning to
a table. First, we add the valid_from column in Line 1 to the original table, and set the
current timestamp as default value in Line 2. In Line 3 we update all already present
tuples to the actual time. In Line 4 we then create a history table with the same columns
as in the original table, and add the valid_to column in Line 5.

51

5. Implementation

1 -- Delete Rule
2 EXECUTE format('CREATE RULE delete_from_%3$s AS ON DELETE

TO %1$s ' ||�→
3 'DO ALSO (' ||
4 ' INSERT INTO hist.%3$s_hist SELECT * FROM

%1$s WHERE %2$s;' ||�→
5 ' UPDATE hist.%3$s_hist SET valid_to = now()

where %2$s;' ||�→
6 ');', tablename,primary_key_conditions,

tablename_wo_schema);�→
7 -- Update Function
8 EXECUTE format('CREATE OR REPLACE FUNCTION

update_trigger_function_%3$s() ' ||�→
9 'RETURNS TRIGGER ' ||

10 'LANGUAGE PLPGSQL ' ||
11 'AS $update_trigger_function$ ' ||
12 'BEGIN'
13 ' INSERT INTO hist.%3$s_hist(%1$s, valid_to)

VALUES(%2$s, now());' ||�→
14 ' RETURN NEW;' ||
15 'END; $update_trigger_function$ ', columnnames,

old_columnnames, tablename_wo_schema);�→

Listing 12: Hybrid Versioning: Creation of Rule and Trigger to version all changes created
by CRUD operations
In Listing 12 we can see the two necessary functions to apply versioning to the hybrid
approach. From Line 2 to 6 we see the deletion rule, which copies the tuple in Line
4 to the history table, and sets the valid_to timestamp in Line 5. In Line 8 to 16 we
see the update function, which transfers the updated tuple to the history table, by first
inserting it into the history table in Line 13 and setting the valid_to timestamp to the
current time. As triggers are executed during the same transaction as the update, and
the PostgreSQL transaction system only creates one timestamp per transaction (at the
start), there cannot exist gaps in the timeline where no version of the tuple was active.

5.2 Query Store

The implementation of the query store is straight forward and we follow our presented
simple schema (see Figure 4.8) and add one function and two stored procedure to
improve the insert process. As the tables are linked by a foreign key, the function
save_query assigns a given query to a user and stores the associated metadata (user_id,
download_request) in the query table and returns the pid and the timestamp, which
can then be used to link all associated subqueries to the query and add the execution

52

5.3. Query Rewriting

timestamp to each subquery.

For the subqueries a procedure exists that stores a given pair of SQL queries (once the
original query, and a rewritten query for re-execution) with the hash, the number of
tuples of the result set and the query id and automatically hashes the original query,
with a SHA256 hash, upon insertion.

After all subqueries have concluded, the function save_query_result stores the hash for
a given query, upon calculating the SHA256 hash of the final result set.

This structure has the benefit, that the query store table is not directly accessed by the
backend, and the backend only connects to the query store by functions and procedure
calls. Furthermore, the query store logic can be shifted to the database, and operations
such as the query rewrite process can be performed by the database. This would help, as
the backend only needs to call the save_subquery function with the original query and
the given results and the database could perform the query rewriting.

5.3 Query Rewriting
To be able to re-execute the subqueries to return the same results as in the original table,
it is necessary that the subqueries are rewritten before they are executed or re-executed,
as subqueries without timestamp information are not necessarily using the correct state
of the data. The rewriting is a process, which is necessary, as different SQL queries need
to be executed for the original execution and the re-execution. While in the separated
and the hybrid approach no adaption of the original subquery is necessary, the SQL query
for re-execution needs to be changed so that it uses the corresponding history tables.
For the integrated versioning strategy on the other hand, the original subquery does
not necessarily need to differ, by including all timestamp information already. As the
information is split differently in each versioning approach, the query rewriting differs for
each approach.

5.3.1 Integrated Versioning
As the integrated approach does not use history tables, the rewriting process only needs
to be done for the original query.

The original query needs to be enriched with timestamp information, so that the correct
state of the data is returned, as each table contains multiple different states. As the
subquery is already executed on a versioned table, with all the necessary timestamp
information, it is not necessary to rewrite the subquery for re-execution but we can
use the same query again. It would be further possible to use only the valid_from
column in the database for the original subquery execution, and use both timestamp
information(valid_from,valid_to) only upon re-execution. The query execution times-
tamp is stored together with the query, when the query was started and is then used for
enriching subqueries with timestamp information.

53

5. Implementation

1 SELECT s.station_id
2 FROM data.station
3 WHERE valid_from <= '2023-02-24 15:00:00'
4 AND (valid_to IS NULL
5 OR valid_to > '2023-02-24 15:00:00')
6 AND network_abbr = 'ARM';

Listing 13: Query Rewriting to obtain the correct data by adding a validity period when
querying the data

In Listing 13 we see a SQL query issued on the data.station table in the integrated
approach. The subquery is extended with versioning information in Line 3 to 5 we see
that this versioning information is added. In Line 3 we filter tuples, which have been
inserted before 15:00 on February 24th 2023. In Line 4 and 5 we then further filter, that
the tuple needs to be active (not deleted) or that the deletion of the tuple happened later
than the query execution.

5.3.2 Separated Versioning
For the separated versioning approach, we do not need to rewrite the original query,
as we keep the most recent state of the data in this table. But for any re-execution of
a query, it is necessary to rewrite it, so that it is executed on the history table with
timestamp information.

1 SELECT s.station_id
2 FROM hist.station_hist
3 WHERE valid_from <= '2023-02-24 15:00:00'
4 AND (valid_to IS NULL
5 OR valid_to > '2023-02-24 15:00:00')
6 AND network_abbr = 'ARM';

Listing 14: Query Rewriting to obtain the correct data by using the history table and
adding a validity period when re-execution a query

In Figure 14 we see a rewritten query, which can be used to retrieve results from the
history table hist.station_hist. Similar to the integrated approach, we need to add
the same timestamp conditions from Line 3 to 5. Additionally, we need to change the
tablename to the corresponding history table, which happens in the highlighted Line 2.

5.3.3 Hybrid Versioning
For the re-execution in the hybrid approach, it is necessary to combine the result sets
from the original table and the history table. The original query can be kept the same,

54

5.3. Query Rewriting

as the original table keeps the most recent state of the data, while all inactive tuples are
moved to the history table.

1 SELECT s.station_id
2 FROM data.station
3 WHERE valid_from < '2023-02-24 15:00:00'
4 AND network_abbr = 'ARM'
5 UNION
6 SELECT s.station_id
7 FROM hist.station_hist
8 WHERE valid_from <= '2023-02-24 15:00:00'
9 AND valid_to > '2023-02-24 15:00:00'

10 AND network_abbr = 'ARM';

Listing 15: Query Rewriting to obtain the correct data by using the history table and
the original table and unioning the results

In Listing 15 we see a rewritten query for the hybrid approach. In this approach, it is
necessary to combine the results from the original data.station table with the results
from the history table hist.station_hist with a union (Line 5). In the original table, we
need to filter on the valid_from column, as seen in Line 3, to ensure that we only use
data for the re-execution which was present in the table on execution time. In Line 8
and 9, we see the restrictions for the valid_from and valid_to timestamps to obtain the
correct versioning from the history table. It is worth mentioning here, that as records
are only transferred to the history table upon deletion in the original table, we do not
need a condition to check if valid_to is null.

As at no time, we know if a tuple is present in the original or in the history table it is
always necessary to query both tables to find the correct result. Therefore, it is necessary
to combine the results, for each usage of a history table. This behaviour can be abstracted
by the usage of SQL views to automatically combine these two tables to a single result
set, which is similar to the history table of the separated approach.

1 CREATE VIEW hist.station_combined
2 AS
3 (SELECT s.station_id,
4 s.valid_from,
5 NULL
6 FROM data.station
7 UNION
8 SELECT s.station_id,
9 s.valid_from,

10 s.valid_to
11 FROM hist.station_hist);

55

5. Implementation

Listing 16: Usage of a view, to combine the results from the history and the original
table for the hybrid approach

In Listing 16, we are creating a view that combines the original and the history table. As
the original table, does not contain a valid_to column, as can be seen in Line 5, it is set
to null. The history table provides the valid_to column in Line 10 for all inactive tuples,
so that we have all necessary timestamp information. Therefore, it is possible to use the
same query syntax (with adaptions that the query needs to use the view name) as in the
separated approach, with the downside of longer retrieving times, as two tables need to be
merged and filtered. This overhead can be decreased by using materialized views, to store
the combined results of the original and the history table in the database, but has several
downsides as materialized views are not automatically refreshing and are materialized in
the database for fast retrieval. This would significantly increase the storage consumption,
as each tuple would be stored twice with the corresponding timestamp information.

5.4 Schema Changes

To implement schema changes, we use PostgreSQL event trigger4 to catch any operation
that changes our database schema, according to our defined change operations (see
Section 2.4). These triggers are similar to normal triggers, but can be called before or
after schema modifications. As the final modification is only known after the transaction
has concluded, it is not possible to obtain information about the changes, from the
PostgreSQL event trigger function pg_event_trigger_ddl_commands(), as this function
is only available after a transaction has concluded and data may have already been altered
or deleted. As this is for most operations too late, we used the current_query() function,
which returns the issued command, which started the event. From this command on it is
possible to obtain the tablename and the columnname.

All presented schema changes are shown for the separated approach, but work similarly
for the integrated and hybrid approach, but with additional overhead for transferring
tuples.

5.4.1 Create Table

When creating a table, we want to automatically version the table, by calling our
add_versioning function, presented in Section 5.1. As this command is only introducing
new information to the database and versioning can only be added after the table was
created, this trigger must be called after the transaction was concluded.

4https://www.postgresql.org/docs/current/event-triggers.html

56

https://www.postgresql.org/docs/current/event-triggers.html

5.4. Schema Changes

1 SELECT object_identity INTO name FROM
pg_event_trigger_ddl_commands()�→

2 WHERE object_identity NOT LIKE '%_seq' AND
3 object_identity NOT LIKE '%_pkey' AND
4 object_identity NOT LIKE '%_hist';
5

6 IF name is null then
7 RETURN;
8 end if;
9

10 CALL add_versioning_separated(name);

Listing 17: Procedure to add versioning automatically upon CREATE TABLE event

In Listing 17 we can see the function, which automatically includes versioning. In Line
1 to 4 we obtain the created tablename from the pg_event_trigger_ddl_commands()
function, and exclude tables that are automatically created, as sequences (Line 2), primary
keys (Line 3) or history tables (Line 4).

5.4.2 Drop Table

When dropping a table, we want to archive the table, with all existing states. In the
separated approach, it is sufficient to archive the history table. This is done, by renaming
the table and rewriting all stored subqueries, so that they are executed on the new
renamed table. For the integrated and the hybrid approach it is necessary, to prevent
the table from being dropped, before all necessary information has been retrieved and
stored. For the integrated approach, this can be done by moving/copying the table and
for the hybrid approach we can do this by merging the original and the history table
(e.g issuing a delete statement for every row in the original table and thus moving them
to the history table) or by moving the original table. For all approaches, we need to
rewrite the queries, so that they are using the correct tables, as the history table will be
renamed during this process, to avoid problems if in the future a table with the same
name is created.

57

5. Implementation

1 SELECT current_query() into query;
2 SELECT TO_CHAR(now() :: DATE, 'yyyymmdd') into date;
3 IF LOWER(query) like '%drop table%' then
4 SELECT SPLIT_PART(SPLIT_PART(lower(query),

lower('DROP TABLE '), 2),';',1) into name;�→
5 SELECT SPLIT_PART(name, '.', 2) INTO tablename;
6 IF (tablename not like '%_hist%') THEN
7 execute format('ALTER TABLE hist.%1$s_hist

RENAME TO %1$s_hist_%2$s
;',tablename,date);

�→
�→

8 execute format('UPDATE query_simple SET
re_execute_query = REPLACE(re_execute_query,
''hist.%1$s_hist'',
''hist.%1$s_hist_%2$s'') WHERE
re_execute_query like ''%%hist.%1$s%%'' ',
tablename,date);

�→
�→
�→
�→
�→

9 end if;
10 end if;

Listing 18: Procedure to automatically archive a table, when it is dropped

In Listing 18 we see the drop table process illustrated. First we obtain the called query
in Line 1 and the current date in Line 2. In Line 3 we are then validating if the obtained
command is a drop table command, and then extract the tablename from the query in
Line 4 and 5. In Line 7 we are then renaming the corresponding history table and adding
the date so it has the format <tablename>_hist_<yyyymmdd>, so that the table is
archived and not interfering with the versioning in the future. In Line 8 we are then
rewriting all queries, which are containing the name of the history table, to the new name
of the history table with a string replacement. For the separated approach this function
can be called before or after the transaction is completed, but for the integrated and
hybrid approach it is necessary to call the function before the transaction has started.

5.4.3 Rename Table

When renaming a table, we want to rename the corresponding history table as well,
as otherwise we may run into versioning problems, if a table with the former name is
created. It also helps with the readability as the original and the history table are always
named the same. As no information can get lost in this event, and it is necessary that the
renaming has already completed, the event trigger can only be fired after the transaction.

58

5.4. Schema Changes

1 SELECT SPLIT_PART(SPLIT_PART(lower(query), lower('ALTER
TABLE '), 2),lower(' RENAME TO'),1) into name;�→

2 SELECT SPLIT_PART(name, '.', 2) INTO orig_name;
3 SELECT SPLIT_PART(name, '.', 1) INTO schemaname;
4 SELECT SPLIT_PART(SPLIT_PART(lower(query), lower('RENAME TO

'), 2),';',1) into new_name;�→
5 IF (orig_name not like '%_hist%') THEN
6 execute format('ALTER TABLE hist.%1$s_hist RENAME TO

%2$s_hist', orig_name, new_name);�→
7 call adapt_triggers(orig_name, schemaname, new_name);
8

9 execute format('UPDATE query_simple SET
re_execute_query = REPLACE(re_execute_query,
''hist.%1$s_hist'', ''hist.%2$s_hist'') WHERE
re_execute_query like ''%%hist.%1$s%%'' ',
orig_name,new_name);

�→
�→
�→
�→

10 end if;

Listing 19: Procedure to automatically rename the corresponding history table, if a table
is renamed

In Listing 19 the renaming process can be seen. The table name, the schemaname and
the new table name are extracted from the given query in Line 2, 3 and 4. These values
are then used to apply the renaming to the history table as well in Line 6 and adapt the
trigger in Line 7. In Line 9 all queries, which are using the history table, are rewritten,
so that they use the renamed history table instead.

5.4.4 Add Column

When adding a column to a table, we want to add the column to the corresponding history
table as well, so that future versions also include versions of this column. Additionally
the versioning triggers need to be adapted, so that the values of the new column are
copied to the history table as well. As information is added, it is necessary that the
transaction has already completed, therefore the event trigger can only be fired after the
transaction. To prevent problems with the re-execution, it is important to lock the table
before the addition of a new column, as otherwise race conditions can occur, while the
new column is added.

59

5. Implementation

1 SELECT SPLIT_PART(SPLIT_PART(lower(query), lower('ALTER
TABLE '), 2),lower(' ADD COLUMN '),1) into name;�→

2 SELECT SPLIT_PART(name, '.', 2) INTO orig_name;
3 SELECT SPLIT_PART(name, '.', 1) INTO schemaname;
4 SELECT SPLIT_PART(SPLIT_PART(lower(query), lower('ADD

COLUMN '), 2),';',1) into columnname;�→
5

6 IF (orig_name not like '%_hist%') THEN
7 execute format('ALTER TABLE hist.%1$s_hist ADD COLUMN

%2$s', orig_name, columnname);�→
8 call adapt_triggers(orig_name, schemaname,orig_name);
9 end if;

Listing 20: Procedure to automatically add a column to the corresponding history table
and adapt the versioning triggers, if a column is added to the original table

In Listing 20 the add column process is illustrated. In Line 2 to 4 we are extracting the
table name, schema name, and column name. In Line 8 we are then adding the additional
column to the history table, and then in Line 9, we adapt the triggers so that they also
include the new column.

5.4.5 Drop Column
When dropping a column, we want to keep the column in the corresponding history table,
so that we can re-execute any query which uses the dropped column. Additionally, the
versioning triggers need to be adapted, so that no errors occur because of a non-existing
column.

1 SELECT SPLIT_PART(SPLIT_PART(lower(query), lower('ALTER
TABLE '), 2),lower(' DROP COLUMN '),1) into name;�→

2 SELECT SPLIT_PART(name, '.', 2) INTO orig_name;
3 IF (orig_name not like '%_hist%') THEN
4 call adapt_triggers(orig_name, 'public',orig_name);
5 -- no rewriting necessary
6 end if;
7 end if;

Listing 21: Procedure to automatically adapt the versioning triggers, if a column is
dropped

In Listing 21 we can see the drop column process illustrated. In Line 1 and 2 we extract
the table name and adapt the triggers in Line 4. As the CRUD operations are performed
by triggers, these triggers are updated to use the now active columns. This is done by

60

5.4. Schema Changes

reinitializing the functions displayed in Listing 9. We are not parsing the corresponding
column, as the column is not necessary for the adaption of the history table.

5.4.6 Rename Column
When renaming a column, we want to rename the column in the corresponding history
table as well, as otherwise, we may run into versioning problems, if a column with the
former name is created. It also helps with the readability as the original and the history
table have the same column names. As information is added, it is necessary that the
transaction has already been completed, therefore the event trigger can only be fired
after the transaction. When renaming columns, this can lead to problems in calculating
the result hashes on re-execution, as the column-names differ. We therefore, did not use
the column names for the hashing, but only all data points.

Another valid strategy is to assign an alias to all given columns of a SQL query and only
replace the column name, and have the alias remain unchanged. This would then lead to
the same hash, as the column names of the result set remain the same.

1 SELECT SPLIT_PART(SPLIT_PART(lower(query), lower('ALTER
TABLE '), 2),lower(' RENAME '),1) into name;�→

2 SELECT SPLIT_PART(name, '.', 2) INTO orig_name;
3 SELECT SPLIT_PART(name, '.', 1) INTO schemaname;
4 SELECT SPLIT_PART(SPLIT_PART(lower(query), lower('RENAME '),

2),';',1) into columnnames;�→
5 SELECT SPLIT_PART(lower(columnnames), lower(' TO'), 1) into

orig_column;�→
6 SELECT SPLIT_PART(lower(columnnames), lower('TO '), 2) into

new_column;�→
7 IF (orig_name not like '%_hist%') THEN
8 execute format('ALTER TABLE hist.%1$s_hist RENAME

%2$s_hist', orig_name, columnnames);�→
9 call adapt_triggers(orig_name, schemaname,orig_name);

10 execute format('UPDATE query_simple SET
re_execute_query = REPLACE(re_execute_query,
''%1$s'', ''%2$s'') WHERE re_execute_query like
''%%%1$s%%'' ', orig_column,new_column);

�→
�→
�→

11 end if;

Listing 22: Procedure to automatically rename the column in the corresponding history
table, if a table column is renamed

In Listing 22 we see the process of renaming a column illustrated. In Line 1-6 we are
parsing table name, schema name, and the two column names. In Line 8 we are then
altering the table and renaming the corresponding column in the history table, and are
then adapting the triggers in Line 9 to include the renamed column.

61

5. Implementation

In Line 10 we then rewrite the query in a limited way, by replacing the old column name
with the new column name.

5.5 Adaptions to the Backend
As not the whole integration of our Dynamic Data Citation framework can run directly
in PostgreSQL, it is necessary to make several adaptions to the backend to use our
framework and combine the previous described parts. So we have to store queries and
subqueries in the query store, enrich queries with timestamp information, as well as use
strategies to prevent race conditions.

Translate Request to SQL Queries,
enrich with Timestamp

Create Combined
 Result Set

REST Request with Download
Information

...

Dataviewer Backend Database

Store Query

Timestamp and Query ID

Download Link for Results

SQL Query

Result Set

Store Subquery

SQL Query

Result Set

Store Subquery

Add Result Hash to Query

Figure 5.1: Illustration of the adapted download process for a user triggered download,
with adaptions marked in red

We adapt the download process (seen in Figure 3.4) as illustrated in Figure 5.1. After
the request is received in the backend, we are storing the request in the backend, and get
timestamp information and a query id provided by the system. With this information we
then rewrite our query to our subqueries and include timestamp information. Then all
subqueries are executed and the result sets are returned. For each returned result set is

62

5.5. Adaptions to the Backend

then a SHA256 hash calculated for all datapoints, but without the columnnames. After
all subqueries are executed, the combined result set is created and the user receives a
download link for the results.

We will describe the adapted parts of the process below.

5.5.1 Storing Queries

For storing queries and subqueries we use the functions save_query and save_subquery
in the database. At the start of the process the query is stored in the database, with
the call displayed in Listing 23, and the execution timestamp and the id of the query is
returned.

1 cur.execute(f"SELECT * FROM
save_download_simple({user_id},'{request}')")�→

Listing 23: Storing a query in the database with a function

Then this information is used to rewrite the queries, by creating one re-executable
subquery and one subquery to execute immediately. After the execution both queries
are then stored in the query store by calling the procedure displayed in 24. The We
before need to escape all single quotes, as SQL encoding is deleting unescaped quotes
and calculate the hash of the result set.

1 cur.execute(f"CALL save_subquery('{original_query}'::text,
'{reexecutable_query}'::text, {results_number},
'{result_hash}'::text, {download_id})")

�→
�→

Listing 24: Storing a subquery in the database with a procedure

After all subqueries have concluded, and the final result set has been created, we calculate
a hash for the result set and store it in the query store.

5.5.2 Hashing Result Sets

As mentioned before, we are using a SHA256 hash as our hashing function for our result
sets as well as for the hashing of the subqueries. We implemented the hashing for the
subqueries directly in SQL by using the built-in SHA256() function. For the result-set
we hashed all returned tuples without headers, with the hashlib.sha256() function of
python. In Listing 25 this process is displayed. We first rename all columns in our pandas
dataframe with the rename function in line 1 to numbers, to prevent changes of hashes if
columns are renamed. In Line 2 we then transform the dataset to a CSV and then hash
the whole CSV file.

63

5. Implementation

1 df.rename(columns={x:y for x,y in zip(df.columns
,range(0,len(df.columns)))})�→

2 hashlib.sha256(df.to_csv(sep=',').encode('utf-8'))
.hexdigest()�→

Listing 25: Hashing the result set of a subquery

5.5.3 Concurrency control
As queries and updates occur simultaneously, it is important to use database concurrency
control strategies, as described in Section 4.1.5, to handle them. We used primarily
locking as strategy of choice, but also implemented the other two strategies as well.

1 LOCK TABLE dataset IN ACCESS EXCLUSIVE MODE;

Listing 26: Acquiring of an ACCESS EXCLUSIVE lock on the dataset table

We implemented locking on write operations with ACCESS EXCLUSIVE locks, as these
operations can lead to inconsistent result sets, and use ACCESS SHARE locks for read
operations in the database. The ACCESS EXCLUSIVE locks ensure that only the
operation that holds this lock for a table, has the right to read or write a given table. In
Listing 26, we can see how this lock can be obtained, after a transaction is started. The
lock is held until the transaction concludes, which is for the ISMN update process after a
batch of inserts is finished.

Regarding query backdating and data postdating, we implemented this behaviour with
an offset of 15 minutes, as the daily updates normally conclude within ten minutes. In
Listing 27 we see the data postdating, which adds 15 minutes to the now() function. This
offset is also added to the valid_to column, which is set in update and delete triggers to
avoid inconsistencies. For the subquery backdating, we adapted the save_query function,
to return a timestamp that lies 15 minutes before the current time, which is then included
in all re-executable, by using it for rewriting.

1 valid_from TIMESTAMP DEFAULT (now() + interval '15
minutes')�→

Listing 27: Postdating the valid_from timestamp

64

5.6. Data Cite Standard

5.6 Data Cite Standard
In a complementary project, the International Soil Moisture Network was extended to
support the DataCite standard 5 and the minting of Digital Object Identifiers, while also
integrating the following WGDC Guidelines[16]:

• R10 - Automated Citation Texts

• R11 - Landing Page

• R12 - Machine Actionability

The DataCite schema is a metadata schema that aims to make data citable, searchable,
and accessible by enriching datasets with metadata. This is done by enriching each
dataset, which the author wants to publish, with the associated metadata.

For the International Soil Moisture Network, this is done for each created subset of the
database, which is created by querying and downloading the data. Each user triggered
query is displayed on an overview page per user, with the time of generation and metadata
about the requested data, as the time period which is downloaded. After the download
is concluded, the user can view the auto-generated metadata on the landing page of a
given query and add further metadata as a name identifier in the form of an ORCID6 or
an ISNI7, the affiliation in form of a ROR8 and a description of the downloaded dataset.
The author can then request a DOI, by sending all metadata to the DOI-Service Austria9,
if the three before mentioned metadata fields are provided. Upon receiving the DOI,
the DOI is stored with the corresponding query, and the Landing Page is made publicly
available, to allow the view of the metadata and the re-creation of the original result set.

Without a user account, only the metadata can be viewed on the corresponding landing
page or retrieved in JSON format, for machine actionability. The re-creation of the result
set of a query on the other hand can only be requested if the user is logged in, to honor
the agreements with the data providers to distribute the data only to registered users.
The landing page further includes a generated citation text in APA format for the subset
with the minted DOI.

5https://datacite.org/
6https://orcid.org/
7https://isni.org/
8https://ror.org/
9https://www.tuwien.at/bibliothek/doi-service-austria-orcid-austria

65

https://datacite.org/
https://orcid.org/
https://isni.org/
https://ror.org/
https://www.tuwien.at/bibliothek/doi-service-austria-orcid-austria

CHAPTER 6
Evaluation

For the evaluation, we are measuring our implementation in different ways. In Section 6.1
we are discussing to which extent our solution aligns with the RDA Recommendations for
Data Citation. Then in Section 6.2 we will evaluate the storage increase trends on a small
controllable database and will then go on and evaluate the storage increase, the execution
time, and the query correctness on the International Soil Moisture Network in Section
6.3. We evaluate the storage consumption on two different databases, as optimizations
performed by PostgreSQL are better controllable in a smaller database, and therefore we
can show the trends of the storage increase better.

6.1 Accordance to RDA Dynamic Data Citation
To verify, that we have fulfilled all necessary recommendations for the International Soil
Moisture Network, we will analyze if each of the recommendations was in scope, and how
we have solved it. We will further provide functional test protocols.

6.1.1 R1 - Data Versioning

"Apply versioning to ensure earlier states of data sets can be retrieved"

This recommendation is fulfilled, as all data is versioned, as discussed in Section 5.1,
by applying one of our versioning approaches (integrated, hybrid, separated) on the
database. By filtering based on the two added timestamps valid_from and valid_to for
each table, it is possible to retrieve earlier states of the database.

This is shown in the Test Cases displayed in Table 6.1, 6.2 and 6.3, with applying
versioning to an initialized table, and verifying that the table is modified correctly and
the corresponding history tables are generated.

67

6. Evaluation

Test name: apply_versioning_integrated
Test case description: Apply integrated versioning to the dataset(id,

time_utc,value) table, which already contains 50,000 rows.
Verify that the dataset table contains afterwards the
valid_from and valid_to columns

Expected result: dataset table contains 50,000 rows with 5 columns (includ-
ing valid_from and valid_to) with all valid_from columns
set to the current time and triggers created to handle up-
date and delete operations

Actual result: dataset table contains 50,000 rows with 5 columns (includ-
ing valid_from and valid_to) with all valid_from columns
set to the current time and triggers created to handle up-
date and delete operations

Test passed: true

Table 6.1: Test for applying integrated versioning to the dataset table

Test name: apply_versioning_separated
Test case description: Apply separated versioning to the dataset(id,

time_utc,value) table, which already contains 50,000 rows.
Verify that the dataset_hist table is created with 50,000
rows and contains the valid_from and valid_to columns

Expected result: Table dataset_hist is created with 50,000 rows and 5
columns (including valid_from and valid_to) with all
valid_from columns set to the current time and triggers
to synchronize dataset and dataset_hist table

Actual result: Table dataset_hist is created with 50,000 rows and 5
columns (including valid_from and valid_to) with all
valid_from columns set to the current time and triggers
to synchronize dataset and dataset_hist table

Test passed: true

Table 6.2: Test for applying separated versioning to the dataset table

6.1.2 R2 - Timestamping

"Ensure that operations on data are timestamped, i.e. any additions, deletions are marked
with a timestamp"

This recommendation is fulfilled, as all insert, update and delete operations are auto-
matically timestamped. To each table in the database, a validity period is added, which
consists of two timestamps. The valid_from timestamp is set on any inserts into the
database, and the valid_to timestamp is only set, when a tuple is deleted. For any
update, a delete and an insert are performed, as described in Section 5.1.

68

6.1. Accordance to RDA Dynamic Data Citation

Test name: apply_versioning_hybrid
Test case description: Apply hybrid versioning to the dataset(id, time_utc,value)

table, which already contains 50,000 rows. Verify that the
dataset table contains afterwards the valid_from column
and a dataset_hist table is created

Expected result: dataset table contains 50,000 rows with 5 columns (in-
cluding valid_from) with all valid_from columns set to
the current time and an empty dataset_hist table with
valid_from and valid_to columns and triggers to handle
update and delete operations

Actual result: dataset table contains 50,000 rows with 5 columns (in-
cluding valid_from) with all valid_from columns set to
the current time and an empty dataset_hist table with
valid_from and valid_to columns and triggers to handle
update and delete operations

Test passed: true

Table 6.3: Test for applying hybrid versioning to the dataset table

This is shown in the Test Cases for the integrated versioning approach displayed in
Table 6.4, 6.5 and 6.6. Each of these tests builds on the test before and starts with an
empty dataset table, and then verifies the functionality of the versioning. First, a tuple
is inserted into the empty dataset table with integrated versioning applied to, then the
tuple is updated with a new value, and in the last test case, it is then deleted. This
process is then repeated for the separated versioning approach (see Table 6.7, 6.8 and
6.9) and for the hybrid versioning approach (see Table 6.10, 6.11 and 6.12).

Test name: add_tuple_integrated
Test case description: Add a tuple to the empty dataset table, which has already

integrated versioning applied to and then query the table.
Expected result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,

valid_from: ’2023-04-29 13:53:59.493528’, valid_to: null
Actual result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,

valid_from: ’2023-04-29 13:53:59.493528’, valid_to: null
Test passed: true

Table 6.4: Test for adding a tuple to a table with already applied integrated versioning

6.1.3 R3 - Query Store Facilities
"Provide means for storing queries and the associated metadata in order to re-execute
them in the future"

This recommendation is fulfilled, as we implemented a query store, which is described in

69

6. Evaluation

Test name: update_tuple_integrated
Test case description: Update the value column to 7 for the tuple with id=1 and

valid_to=null in the dataset table, then count all tuples
with id=1 and verify that the timestamps are set correctly

Expected result: 2
Actual result: 2
Test passed: true

Table 6.5: Test for updating a tuple to a table with already applied integrated versioning

Test name: delete_tuple_integrated
Test case description: Delete the tuple with id=1 and valid_to=null in the

dataset table, then count all tuples with id=1 and
valid_to!=null and verify that the timestamps are set
correctly

Expected result: 2
Actual result: 2
Test passed: true

Table 6.6: Test for deleting a tuple with already applied integrated versioning

Test name: add_tuple_separated
Test case description: Add a tuple to the empty dataset table, which has already

separated versioning applied to and then query the corre-
sponding history table.

Expected result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,
valid_from: ’2023-04-29 13:54:38.482957’, valid_to: null

Actual result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,
valid_from: ’2023-04-29 13:54:38.482957’, valid_to: null

Test passed: true

Table 6.7: Test for adding a tuple to a table with already applied separated versioning

Test name: update_tuple_separated
Test case description: Update the value column to 7 for the tuple with id=1 in

the dataset table, then count all tuples with id=1 in the
dataset_hist table and verify that the timestamps are set
correctly

Expected result: 2
Actual result: 2
Test passed: true

Table 6.8: Test for updating a tuple in a table with already applied separated versioning

70

6.1. Accordance to RDA Dynamic Data Citation

Test name: delete_tuple_separated
Test case description: Delete the tuple with id=1 in the dataset table, then

count all tuples with id=1 and valid_to != null in the
dataset_hist table and verify that the timestamps are set
correctly

Expected result: 2
Actual result: 2
Test passed: true

Table 6.9: Test for deleting a tuple with already applied separated versioning

Test name: add_tuple_hybrid
Test case description: Add a tuple to the empty dataset table, which has already

hybrid versioning applied to and then query the dataset
table.

Expected result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,
valid_from: ’2023-04-29 13:55:23.123554’

Actual result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,
valid_from: ’2023-04-29 13:55:23.123554’

Test passed: true

Table 6.10: Test for adding a tuple to a table with already applied hybrid versioning

Test name: update_tuple_hybrid
Test case description: Update the value column to 7 for the tuple with id=1 in

the dataset table, then count all tuples with id=1 in the
dataset_hist table and verify that the valid_to timestamp
is set correctly

Expected result: 1
Actual result: 1
Test passed: true

Table 6.11: Test for updating a tuple in a table with already applied hybrid versioning

Test name: delete_tuple_hybrid
Test case description: Delete the tuple with id=1 in the dataset table, then count

all tuples with id=1 in the dataset_hist table and verify
that the valid_to timestamp is set correctly

Expected result: 2
Actual result: 2
Test passed: true

Table 6.12: Test for deleting a tuple with already applied hybrid versioning

71

6. Evaluation

detail in Section 5.2. The query store for our use case consists of two tables, one which
holds information about user triggered queries, and one which holds all subqueries with
information on how to re-execute these queries. A single execution timestamp at the
request start is created for the query and all corresponding subqueries.

We verified this recommendation in our functional tests displayed in Table 6.13 for storing
a query and receiving an id and a timestamp and in Table 6.14 for storing a subquery with
the associated metadata. We shortened the queries and hashes for readability purposes.

Test name: store_query
Test case description: Store the query in the database by using the store_query

function, and then check if the result is a valid query_id
and the execution timestamp

Expected result: id: 1, timestamp: ’2023-04-30 07:12:58.459381’
Actual result: id: 1, timestamp: ’2023-04-30 07:12:58.459381’
Test passed: true

Table 6.13: Test for storing the initial query in the querystore and obtain id and execution
timestamp

Test name: store_subquery
Test case description: Store a subquery in the database by using the

store_subquery function and verify that all fields are cor-
rectly set, by querying for the subquery

Expected result: id: 1, original_subquery:’SELECT ...’,
reexecutable_subquery:’SELECT ...’,
subquery_hash:’3e73e60b...’, result_hash:’7275de85...’,
result_nr:10000

Actual result: id: 1, original_subquery:’SELECT ...’,
reexecutable_subquery:’SELECT ...’,
subquery_hash:’3e73e60b...’, result_hash:’7275de85...’,
result_nr:10000

Test passed: true

Table 6.14: Test for storing a subquery in the querystore

6.1.4 R4 - Query Uniqueness

"Re-write the query to a normalized form so that identical queries can be detected.
Compute a checksum of the normalized query to efficiently detect identical queries"

This recommendation is not fulfilled, as it is not in the scope of this thesis. Queries
by users of the International Soil Moisture Network are not normalized and compared.
The uniqueness of subqueries on the other hand is guaranteed by design, as the user

72

6.1. Accordance to RDA Dynamic Data Citation

cannot alter the SQL queries, and the same queries, with different parameter settings are
executed.

6.1.5 R5 - Stable Sorting
"Ensure that the sorting of the records in the data set is unambiguous and reproducible"

This recommendation is fulfilled, as the query is ordered in the backend based on all
primary keys. Any new query introduced to the system needs to order by the primary
key, so that an unambiguous ordering is guaranteed. Therefore each executed query,
which is run during the download has a ORDER BY clause.

6.1.6 R6 - Result Set Verification
"Compute fixity information (checksum) of the query result set to enable verification of
the correctness of a result upon re-execution"

The result verification is possible, by comparing the hash of the re-execution result set
with the hash of the original result set. This hash is generated with a pandas dataframe,
by renaming the column headers first and then transforming it to a CSV file and hashing
the whole CSV file with the SHA256 library. Therefore, this recommendation is fulfilled.

We verified this recommendation by re-executing all subqueries for a download request
and calculating the SHA256 hash and comparing it with the stored SHA256 hash. Our
test is displayed in Table 6.15

Test name: verify_correctness
Test case description: Re-execute all stored subqueries for a download request,

compare the hash of the result set with the stored hash,
and print the query and the hash if the hash differs. The
result should be the empty set.

Expected result: {}
Actual result: {}
Test passed: true

Table 6.15: Test for re-executing all subqueries of a query and verifying all hashes

6.1.7 R7 - Query Timestamping
"Assign a timestamp to the query based on the last update to the entire database (or the
last update to the selection of data affected by the query or the query execution time).
This allows retrieving the data as it existed at the time a user issued a query"

Each query gets a timestamp assigned at the time of requesting data. This timestamp
is the time of execution, and is used for query rewriting, so that each query can be
re-executed with the same data, which was present at the time the user executed the
query. Therefore, this recommendation is fulfilled.

73

6. Evaluation

The retrieval of a timestamp for a query is displayed in Table 6.13, which is then used to
rewrite the queries, which is tested in Table 6.16. As this rewrite is done in the backend,
all single quotes are doubled, as the PostgreSQL database escapes them.

Test name: rewrite_query
Test case description: Rewrite a subquery with the query-execution timestamp

of the linked query and verify the syntactical correctness
of the subquery

Expected result: SELECT s.station_id, s.station_name, s.network_abbr,
round(CAST(ST_X(station_location) AS NUMERIC),5),
round(CAST(ST_Y(station_location) AS NUMERIC),5),
ST_Z(station_location) FROM (SELECT s.station_id,
s.station_name, s.network_abbr, station_location FROM
hist.station_hist WHERE valid_from < ”07:12:58.459381”
AND (valid_to IS null OR valid_to > ”07:12:58.459381”))
as s WHERE s.network_abbr = ”ARM” ORDER BY
station_id;

Actual result: SELECT s.station_id, s.station_name, s.network_abbr,
round(CAST(ST_X(station_location) AS NUMERIC),5),
round(CAST(ST_Y(station_location) AS NUMERIC),5),
ST_Z(station_location) FROM (SELECT s.station_id,
s.station_name, s.network_abbr, station_location FROM
hist.station_hist WHERE valid_from < ”07:12:58.459381”
AND (valid_to IS null OR valid_to > ”07:12:58.459381”))
as s WHERE s.network_abbr = ”ARM” ORDER BY
station_id;

Test passed: true

Table 6.16: Test for rewriting a subquery for re-execution

6.1.8 R8 - Assigning Query PID
"Assign a new PID to the query if either the query is new or if the result set returned
from an earlier identical query is different due to changes in the data. Otherwise, return
the existing PID"

This recommendation is not fulfilled as the query is private by design, and each user can
request a PID for all started downloads and afterwards the subset is publicly available.
In the future, queries with the same result set should get the same PID assigned.

6.1.9 R9 - Store the Query
"Store query and metadata (e.g. PID, original and normalized query, query & result set
checksum, timestamp, superset PID, data set description, and other) in the query store"

74

6.1. Accordance to RDA Dynamic Data Citation

The complementary project stores data about the involved networks and information
according to DataCite standard1 and we are storing all necessary data about the subset
in the query store, and can link this information with the DataCite information.

6.1.10 R10 - Automated Citation Text Generation
"Generate citation texts in the format prevalent in the designated community for lowering
the barrier for citing the data. Include the PID into the citation text snippet"

This recommendation is not in the scope of this thesis, but was implemented in a
complementary project and automatically provides the user with a citation in text format,
as this is the standard citation format for the community.

6.1.11 R11 - Landing Pages
"Make the PIDs resolve to a human readable landing page that provides the data (via
query re-execution) and metadata, including a link to the superset (PID of the data
source) and citation text snippet"

This recommendation is not in the scope of this thesis, but was implemented in a
complementary project. All downloads are listed per user, and additionally for all
published subsets. Upon clicking on a not yet published download, the user can add
additional metadata and then mint a DOI for the subset. Upon publication, the landing
page automatically links to all the corresponding metadata and allows registered users to
download the published results.

6.1.12 R12 - Machine Actionability
"Provide an API / machine actionable landing page to access metadata and data via
query re-execution."

This recommendation is not in the scope of this thesis, but was implemented in a
complementary project. All the metadata for a download can be also retrieved in JSON
format, so that it is machine actionable.

6.1.13 R13 - Technology Migration
"When data is migrated to a new representation (e.g. new database system, a new
schema or a completely different technology), migrate also the queries and associated
fixity information"

This recommendation is fulfilled for some common schema changes, but not for the migra-
tion to different database systems. These schema changes are automatically handled by
event triggers and rewriting queries and triggers whenever necessary. Further information
about schema changes can be found in Section 2.4 and Section 5.4.

1https://datacite.org/

75

https://datacite.org/

6. Evaluation

In Table 6.17 and Table 6.18, we can see the test result that columns can be added and
deleted and the versioning is not affected by it.

Test name: add_column_separated
Test case description: Add the column new_value to the dataset table, and then

insert and update the new_value column of the tuple with
id=1 with the value 4. The history table should have 2
queries stored

Expected result: 2
Actual result: 2
Test passed: true

Table 6.17: Test for adding a column to the dataset with separated versioning applied to

Test name: drop_column_separated
Test case description: Drop the column new_value from the dataset table, verify

that the column still exists in the history table with two
different values for id=1

Expected result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,
valid_from: ’2023-05-01 04:53:18.285730’, valid_to: ’2023-
05-01 04:54:24.491915’
id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 4,
valid_from: ’2023-05-01 04:54:24.491915’, valid_to: null

Actual result: id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 6,
valid_from: ’2023-05-01 04:53:18.285730’, valid_to: ’2023-
05-01 04:54:24.491915’
id: 1, time_utc: ’2023-04-29 14:00:00:00’, value: 4,
valid_from: ’2023-05-01 04:54:24.491915’, valid_to: null

Test passed: true

Table 6.18: Test for dropping a column from the dataset table with separated versioning
applied to

6.1.14 R14 - Migration Verification

"Verify successful data and query migration, ensuring that queries can be re-executed
correctly"

The successful migration of the data to a new schema and the re-execution can be verified
by rerunning all rewritten queries in the query store and verifying the obtained results.
Be aware, that the results in the current implementation must be hashed without the
headers, to allow the verification of the results, as otherwise different column or table
names lead to a wrong hash. Otherwise, this recommendation is fulfilled.

76

6.2. Trend Analysis

unversioned integrated hybrid separated
Original size 58.824 66.672 66.672 58.824
history size 0 0 0 66.672
Total 58.824 66.672 66.672 125.495
Percentage 100 113.33 113.33 213.33

Table 6.19: Table sizes after 1,000,000 inserts in MB and relative to the unversioned
approach

6.2 Trend Analysis

To analyze the best storage trends for each of the versioning approaches, we are using
four similar tables, apply the three different versioning approaches to them and keep one
unversioned table as a baseline. The table consists of the three columns id, time_utc,
and value. In this setting, we will not evaluate additional indexes or complex primary key
settings, as we will further evaluate the results on the ISMN database in the next section.
In each of the three storage experiments, 106 tuples will be inserted, updated, or deleted
and after each 50,000 written tuples (the daily update size of one large network), we will
use PostgreSQLs database compression to free up unused storage space and measure the
storage impact of each of the different versioning approaches. This compression is called
by executing VACUUM FULL; and reclaims storage occupied by dead tuples2.

We expect the storage usage to be according to the following formula:

storage(Separated) > storage(Integrated) ≥ storage(Hybrid) > storage(Unversioned)

6.2.1 Insert 1,000,000 tuples

During the insert measurement, we inserted tuples in batches of 50,000 elements and
measured the storage consumption after each batch.

In Table 6.19, we see the sizes after the last iteration. We can see that the hybrid and
the integrated approach need the same amount of storage. This is most likely due to the
optimizations of PostgreSQL, which cuts columns that only consist of Null values, as we
are looking at the minimal storage consumption. Therefore the valid_to column of the
integrated approach does not cause a storage overhead.

The separated approach on the other hand needs more than double the amount of the
unversioned approach. This is because it stores an unversioned table and a table with
integrated versioning. From a storage consumption in percent, this means, that both the
Integrated and Hybrid approach have an overhead of at least 13.33% and the separated
approach has an overhead of 213.33%.

2https://www.postgresql.org/docs/current/sql-vacuum.html

77

https://www.postgresql.org/docs/current/sql-vacuum.html

6. Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

50

100

Number of Inserts in dataset table

St
or

ag
e

in
cr

ea
se

in
M

B

unversioned
integrated
separated

hybrid

Figure 6.1: Storage increase in MB per variant for INSERT

unversioned integrated hybrid separated
Original size 58.824 141.6 66.672 58.824
history size 0 0 74.768 141.6
Total 58.824 141.6 141.44 200.424
Percentage 100 240.72 240.45 340.72

Table 6.20: Table sizes after 1,000,000 Updates in MB and relative to the unversioned
approach

If we look at the storage increase over 20 iterations, displayed in Figure 6.1, we can see a
linear trend for all different versioning approaches and the unversioned table. The results
of the storage trends are similar to our assumption and are increasing constantly.

6.2.2 Update 1,000,000 tuples

During the update measurement, we updated tuples in batches of 50,000 elements, and
measured the storage consumption after each batch. As PostgreSQL does not free storage
occupied by dead tuples, we removed them with using the VACUUM FULL; command.
The Update test took place after the insert test, and therefore there are 1 million tuples
in all tables.

In Table 6.20, we see the sizes after the last update iteration. We can see that the hybrid
and the integrated approach differ by about 160 KB. Based on our results for the inserts,
these values are anticipated, as PostgreSQL is optimizing the null values and both tables
store the same data.

The storage for the unversioned table stays the same overall updates, when comparing it
to the last iteration of INSERTs, as no null values exist in the database. The integrated

78

6.2. Trend Analysis

and hybrid approaches increase when all tuples have been updated once, for around
127%, while the separated approach increases to around 227%.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

50

100

150

200

Number of Updates in dataset table

St
or

ag
e

in
cr

ea
se

in
M

B

unversioned
integrated
separated

hybrid

Figure 6.2: Storage increase in MB per variant for UPDATE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

100

150

200

250

300

350

Number of Updates in dataset table

St
or

ag
e

in
cr

ea
se

in
pe

rc
en

t

unversioned
integrated
separated

hybrid

Figure 6.3: Storage increase in percent per variant for UPDATE

If we look at the storage increase over 20 iterations, displayed in Figure 6.2 in MB and
in Figure 6.3 in percent of the unversioned table, we can see a linear trend for the three
different versioning approaches, while the unversioned table remains the same. We can
see that the storage increases roughly 20% for all 200,000 inserted rows for all three
different versioning approaches. The results of the storage trends are similar to our
assumption.

79

6. Evaluation

unversioned integrated hybrid separated
Original size 0.008 149.536 0.008 0.008
history size 0 0 149.536 149.536
Total 0.08 149.536 149.544 149.544
Percentage 0.01 254.21 254.22 254.22

Table 6.21: Table sizes after 1,000,000 Deletes in MB and relative to the unversioned
approach before deletions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·106

0

50

100

150

200

Number of DELETEs in dataset table

St
or

ag
e

in
cr

ea
se

in
M

B

unversioned
integrated
separated

hybrid

Figure 6.4: Storage increase in MB per variant for DELETE

6.2.3 Delete 1,000,000 tuples

During the delete measurements, we deleted tuples in batches of 50,000 elements, and
measured the storage consumption after each batch. The Delete test took place after all
the tuples had been inserted and updated once, therefore there are 2 million tuples in
the versioned tables and 1 million tuples in the unversioned table.

In Table 6.21 we can see the final sizes after all tuples were deleted, and the relative
size to the unversioned approach before deletions. We can see, that all three versioning
approaches have a similar storage consumption, as all are only keeping the deleted tuples
and no other tuples.

In Figure 6.4 we can see the storage trends of all different approaches. The unversioned
table decreases steadily, to 0 MB, similar to the separated approach, which also deletes it
unversioned table, but adds timestamp information to its history table. The Integrated
and the hybrid approach are both increasing slightly, as timestamp information is added
per iteration.

80

6.3. International Soil Moisture Network

Nr. Name Inserted Files Unique Rows
1 ARM 72.276 1.467.274
2 FMI 4850 442.888
3 KIHS_CMC 672 1.812.856
4 KIHS_SMC 531 1.268.592
5 RSMN 995 318.113
6 SCAN 279.091 6.798.302
7 SNOTEL 468.699 11.081.854
8 TAHMO 249 413.733
9 USCRN 195495 5.068.401
10 WEGENERNET 7972 208.367
11 FMI reprocess 132 172.908

Table 6.22: Different Networks, which were successively inserted into the database

6.3 International Soil Moisture Network
For the evaluation of the ISMN database, we used a server of the GEO department of
TU Wien with 64 CPU cores, 252 GB of RAM, and PostgreSQL 14.6. All our tests are
run against an International Soil Moisture Network dump, with over 1.4 · 109 tuples, and
a size of over 250 GB (varies slightly as the database is not always freeing up unused
storage space). The schema consists of 95 entities, with the largest one being the dataset
table, which alone has 1.3 · 109 tuples and needs 123 GB of storage space, which holds
most of the data of the database.

After restoring the database, we are either applying one of the different versioning
approaches (see Section 4.1 and Section 5.1) or our baseline of no versioning and then
updating the database with the normal inserting and updating procedures of the ISMN
database. During this process, we will insert a total of 29,273,976 tuples and update
615,707 tuples. This data is not fully representative, as it does only include quality
information for the FMI network, but reflects in general three to four months of new
data.

These updates are different in their size and are shown together with their respective
networks, in Table 6.22. The inserts are processed in alphabetical order, and then
an update of the quality information of the FMI network is performed as the last
iteration. The network updates vary between 172,908 processed rows (FMI reprocess),
and 11,081,854 processed rows (SNOTEL) and are first preprocessed in the backend and
then inserted in the database via batch files. The networks vary in size as the period of
time that is updated in a single batch differs, and also the number of measured depth
levels (the level at which a sensor is measuring soil moisture) differs. In Table 6.23 we
can see for which time frame measurements were available, how many stations a network
has, and how many different depth levels they are measuring. We can here see that,
SCAN and SNOTEL measure 25 and 16 different depth levels respectively at 239 and 460

81

6. Evaluation

Nr. Name Startdate Enddate Stations Depth Levels
1 ARM 2022-04-01 2022-05-01 35 14
2 FMI 2022-05-31 2022-11-01 27 7
3 KIHS_CMC 2022-08-30 2022-08-30 18 6
4 KIHS_SMC 2022-08-30 2022-08-31 19 6
5 RSMN 2022-05-05 2022-11-05 20 1
6 SCAN 2022-05-30 2022-11-20 239 25
7 SNOTEL 2022-06-01 2022-11-20 460 16
8 TAHMO 2022-07-12 2022-07-12 70 6
9 USCRN 2022-05-31 2022-11-19 115 5
10 WEGENERNET 2022-05-30 2022-11-24 12 2
11 FMI reprocess 2022-05-31 2022-11-01 27 7

Table 6.23: Different Networks, with the number of stations and the number of depths
measurements per station

different locations, whereas WEGENERNET only measures 2 depth levels at 12 stations.
More in detail description of the different networks used is available online3.

0 1 2 3 4 5 6 7 8 9 10 11

1.3

1.31

1.32

·109

Number of Network Update(Insert/Update) of dataset table

N
um

be
r

of
tu

pl
es

unversioned
versioned

Figure 6.5: Number of tuples per network update of dataset table

In Figure 6.5 and Figure 6.6 we can see the number of active tuples in the dataset table,
and the number of inserted and updated rows per network update. The number of rows
increases from around 1.295 · 109 to around 1.325 · 109 tuples, while only 615,707 rows are
updated. In Figure 6.6 we can see the difference between updated and inserted tuples,

3https://ismn.earth/en/networks/

82

https://ismn.earth/en/networks/

6.3. International Soil Moisture Network

1 2 3 4 5 6 7 8 9 10 11

106

107

Number of Network Update(Insert/Update) of dataset table

N
um

be
r

of
Tu

pl
es

in
lo

ga
rit

hm
ic

sc
al

e

inserted tuples
updated tuples

Figure 6.6: Inserted vs Updated Tuples per Network Update

as the networks 6 (SCAN) and 7 (SNOTEL) have updates of 6.7 million and 11 million
tuples respectively, and the smallest networks only consist of roughly 200,000 rows.

For the evaluation of the different versioning approaches and the query store, we are
following the process below:

1. Restore the database

2. Apply versioning

3. Measure Query Performance

4. For each network

4.1 Measure Update Time
4.2 Measure Size & Tuple Increase
4.3 Measure Query Performance
4.4 Verify Query Correctness

We measured the time for each update, but as the data was not representative, as it
varied heavily based on the usage of the server, we could not obtain reliable update times
for the database and will not report these values. Similarly, we obtained heavily affected
query execution times, which differed up to 4 minutes between updates, and are therefore
only reporting the average results over all runs, to allow the comparison of runtimes
between the different versioning approaches, but will not show a trend analysis for the
ISMN database.

83

6. Evaluation

0 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

Number of Network Update(Insert/Update) of dataset table

St
or

ag
e

in
cr

ea
se

in
G

B
pe

r
va

ria
nt

unversioned
integrated

hybrid
separated

Figure 6.7: Storage increase in GB per variant, relative to starting size of variant

6.3.1 Storage Performance
To measure the storage overhead of versioning for the ISMN, we measured the database
after each network update. After applying the versioning to the database, we removed
storage occupied by dead tuples, by using VACUUM FULL;. This reduced the storage
overhead of the integrated and hybrid versioning approaches by 100% of the storage
consumption, as the tables are copied to a new location on the hard drive, when altered
but the old space is not freed up and counts as used disk space. As the minimization
process takes between one and two hours, depending on server load, and further locks all
tables exclusively it is not feasible for a real-world scenarios. We measured the storage
space once for each table, and once for all database objects in total.

unversioned integrated hybrid separated
database size 273.334 296.665 284.679 473.556
percentage 100 108.53 104.15 173.25

Table 6.24: Database storage comparison of the different versioned databases in GB and
percent

In Table 6.24 we can see the database sizes after the final network update in GB and
relative to the unversioned approach. The results differ from the anticipated results,
as the separated approach does not need 200% of the unversioned database, and the
integrated and separated approach show better values than in the optimized example for
one table. This is most likely to database artifacts, such as indexes and primary keys,
which seem not to be shrunken to the minimal size and are not mirrored in the history
table if not necessary.

In Figure 6.7 we see the cumulative storage increase overall 11 network updates. The

84

6.3. International Soil Moisture Network

unversioned database increases in total by 4.29 GB, while the integrated databases
increase by 5.913 GB, the hybrid for 5.36 GB and the separated for 10.636 GB. These
measurements are all similar to the results we obtained in Section 6.2, but most likely need
more storage for saving additional information, as updated indexes and not optimized
tables.

6.3.2 Runtime Performance
As mentioned before the reported runtimes are gathered over different runs on the ISMN
database server, but are heavily dependent on the server usage and server configuration.
Therefore, we are not reporting the values for each run, but instead are reporting the
minimum, maximum and average runtimes.

In Table 6.25 we can see the runtimes for one query, that consists of 13,670 subqueries,
which represents a query for all available data for the networks displayed in Table 6.23. We
can see that the hybrid versioning approach has a similar performance as the unversioned
database with around 15 minutes per query, while the integrated and the separated
approaches are both slower and are at 17:37 minutes and 17:11 minutes respectively. The
performance impact on the separated query, which executes the same subqueries as the
unversioned and the hybrid database might be due to the increased database size, which
could increase the runtime.

unversioned integrated hybrid separated
average runtime 15:09 min 17:37 min 15:06 min 17:11 min
min runtime 14:31 min 17:05 min 14:32 min 16:41 min
max runtime 15:50 min 18:31 min 15:37 min 17:38 min

Table 6.25: Runtime for query execution with 10 parallel threads with 25 measurements

integrated hybrid separated
average runtime 1:23 min 19:02 min 1:23 min
min runtime 1:22 min 17:29 min 1:26 min
max runtime 1:26 min 22:41 min 1:30 min

Table 6.26: Runtime for query re-execution with 200 parallel threads with 25 measure-
ments

In Table 6.26 we can see the runtime for re-execution queries. These queries run with
200 threads, to decrease the evaluation time. As the subqueries in the execution process
are executed per network, as the query needs to be translated into different subqueries,
the execution process cannot run as parallelized as the re-execution. For the re-execution
no translation of the query to subqueries is necessary, as all are already stored in the
subquery table and they can be executed without constraints. Therefore these values
cannot be compared with each other.

85

6. Evaluation

We can see that the runtimes for the integrated and the separated approach are nearly
equal, with just a few seconds difference between these two. On the other hand is the
enormously long re-execution process for the hybrid approach, which is most likely due to
the computationally heavy combination of results of two distinct tables. This is because
for each table used in the original query, the re-executable query needs to query 2n

tables, with n being the number of tables used in the select query, as the joins need to
be performed for the original table and the history table.

6.3.3 Querystore Size

As the International Soil Moisture Network did not keep track of downloads until recently,
we will assume that each user downloads the full database once a year. This would lead
to 1600 download queries a year, or around 150 queries a month. For each of these queries
30,000 subqueries would be stored as well, with the associated meta information. As the
size of both the original and the re-executed query is around 1 KB each, we estimate
the size for one query with all corresponding subqueries at 60 MB. We then created the
queries for 100 downloads and extrapolated the download size to measure the yearly
impact.

In Table 6.27, we see that the storage per query is in the simple approach at 58.4 MB and
at 10.2 MB for the advanced querystore. Which would lead to respective yearly storage
needs of 93.7 GB and 16.2 GB. Here it is important to note, that the advanced querystore
is computationally expensive, as the queries need to be reconstructed from two tables
with joins and string replacements, whereas the queries for the simple querystore can
just retrieve the queries without processing from the querystore.

simple advanced
max. size per download 58.4 MB 10.2 MB
size per year 93.7 GB 16.2 GB

Table 6.27: Download Size for the simple and advanced query store per query and per
year

We advised the ISMN team to delete all queries without an issued DOI after a year, as
the ISMN would store 48 million subqueries, if each user downloaded the full dataset
once.

6.3.4 Query Correctness

To evaluate the query correctness, we conducted a test, displayed in Table 6.15, in
which each executed download for each iteration was stored in the query store and one
download of a previous network update with 13,670 subqueries was re-executed per
network update. For each query in the download, the hash was generated twice, once
on the execution and once on the re-execution, to allow the comparison between both

86

6.3. International Soil Moisture Network

query-results. Furthermore, to investigate if the results are different, also the number of
results for both queries is returned.

Overall all 11 iterations for all 3 different versioning approaches, not a single query result
has differed from the original result, when calculating the hash with the python library
hashlib overall results without column names.

87

CHAPTER 7
Conclusion

We presented a novel Dynamic Data Citation framework for PostgreSQL according to
the RDA Dynamic Data Citation Recommendations, which supports three different
versioning approaches, storing queries with associated metadata and supporting the
most common schema adaptions automatically. This framework has been adapted for
the International Soil Moisture Network, to support their unique use case of executing
and re-executing large numbers of SQL queries for one download request and has also
been evaluated on their database. In the evaluation, we compared the three different
versioning approaches on a small sample database and on the whole ISMN network with
over 1.4 · 109 tuples.

We especially investigated the impact on the performance and the storage space of a
database, when allowing the precise and persistent identification of arbitrary subsets.
From the results of our evaluation, the execution time for queries executed with applied
integrated versioning in the International Soil Moisture Network increased by around
17%, while it increased by 14% for the separated versioning approach and not at all
for the hybrid versioning approach. The additional storage space increased by 8.6% for
the integrated versioning, 73.25% for the separated versioning and 4.15% for the hybrid
versioning.

The results of this evaluation indicate that hybrid versioning is not fit for real-world
scenarios, as the re-execution of queries takes significantly longer than for the integrated
and separated approach. Both other versioning approaches can be used in real-world
settings, as the evaluation indicates. The implementation of the integrated approach is
simpler and allows to use a wider variety of methods to avoid race conditions than the
separated approach. The separated approach on the other hand has lower querying times
and allows to keep the original tables unchanged.

Based on our analysis of the different versioning approaches and an analysis of their needs,
we recommend using the separated approach to the ISMN team. This is because the

89

7. Conclusion

International Soil Moisture Network is continuously growing with over 100 new stations
worldwide between November 2022 and April 2023 and a separation between the original
and the history table is favorable to reduce the impact on query runtimes. Furthermore,
the intrusiveness of the integrated versioning approach would require many changes to
the backend, which are not connected to the download process. We further provided
a list of necessary adaptions, to embed our framework into their platform, to provide
dynamic data citation.

7.1 Future Work
As our implementation has many more facets, which can be explored, we would love to
see progress in different areas.

For the implementation for the ISMN portal, there are several improvements, which
would be great to evaluate and adapt to decrease the impact of implementing the WGDC
recommendations. First of all, would it be great to evaluate the implementation on a
fully functional test instance, which mirrors all operations occurring in the main system.
This would help to gain a clearer picture of the limitations of our implementation and
necessary adaptions to the system. It is further necessary to adapt the data integration
workflow to not update the data at insertion, to enrich it with the correct quality flags,
but do this in a combined step to decrease the impact of data versioning, by just storing
two versions of the data instead of three versions. Further, it would be interesting to
explore the runtime impact of the advanced querystore with a separated parameters
table, as discussed in Section 4.2.2. We currently only evaluated the storage consumption
of both querystore approaches, and found that the advanced querystore only requires a
sixth of the storage, which is necessary for the simple approach.

Further work in dynamic data citation can include the extension of DBRepo [21] Post-
greSQL containers, to increase the offered databases by the database repository and proof
that multiple different databases can be combined with different underlying versioning
implementations. Furthermore, it would also be interesting to port dynamic data citation
to noSQL databases, which have not yet used it, as for example graph databases and
document stores.

90

List of Figures

3.1 Subset of the ISMN database schema, which is most relevant for data explo-
ration and the download of arbitrary subsets of the database 16

3.2 Harmonization process of the International Soil Moisture Network 18
3.3 Webviewer of the International Soil Moisture Network 20
3.4 The process of a user triggered download 23

4.1 Example of Integrated Versioning on the dataset table with all different CRUD
operations, with changes marked in blue 27

4.2 Example of Separated Versioning on the dataset table with all different CRUD
operations, with changes marked in blue 29

4.3 Example of Hybrid Versioning on the dataset table with all different CRUD
operations, with changes marked in blue . 31

4.4 Illustration of two parallel operations, which can possibly cause race conditions 33
4.5 Solution to handle race conditions, by locking the database on write operations 34
4.6 Solution to handle race conditions, by backdating the query execution times-

tamp . 35
4.7 Solution to handle race conditions, by postdating the data versioning times-

tamps . 36
4.8 Schema of the query store, with an additional downloads table to track user

downloads . 38
4.9 Schema of the query store, with an additional downloads table to track user

downloads and the parameters separated in an additional table 39
4.10 Creation of table dataset, and automatic creation of associated history table 41
4.11 Deletion of table dataset, and automatic renaming and historization of history

table . 41
4.12 Addition of a column type to the dataset table, and automatic update of the

history table . 42
4.13 Drop of a column of the dataset table, and automatic update of the history

table . 43

5.1 Illustration of the adapted download process for a user triggered download,
with adaptions marked in red . 62

6.1 Storage increase in MB per variant for INSERT 78

91

6.2 Storage increase in MB per variant for UPDATE 79
6.3 Storage increase in percent per variant for UPDATE 79
6.4 Storage increase in MB per variant for DELETE 80
6.5 Number of tuples per network update of dataset table 82
6.6 Inserted vs Updated Tuples per Network Update 83
6.7 Storage increase in GB per variant, relative to starting size of variant . . 84

92

List of Tables

2.1 The RDA Dynamic Data Citation Guidelines 9

4.1 Comparison of the different versioning approaches 33

6.1 Test for applying integrated versioning to the dataset table 68
6.2 Test for applying separated versioning to the dataset table 68
6.3 Test for applying hybrid versioning to the dataset table 69
6.4 Test for adding a tuple to a table with already applied integrated versioning 69
6.5 Test for updating a tuple to a table with already applied integrated versioning 70
6.6 Test for deleting a tuple with already applied integrated versioning 70
6.7 Test for adding a tuple to a table with already applied separated versioning 70
6.8 Test for updating a tuple in a table with already applied separated versioning 70
6.9 Test for deleting a tuple with already applied separated versioning 71
6.10 Test for adding a tuple to a table with already applied hybrid versioning . . 71
6.11 Test for updating a tuple in a table with already applied hybrid versioning 71
6.12 Test for deleting a tuple with already applied hybrid versioning 71
6.13 Test for storing the initial query in the querystore and obtain id and execution

timestamp . 72
6.14 Test for storing a subquery in the querystore 72
6.15 Test for re-executing all subqueries of a query and verifying all hashes . . 73
6.16 Test for rewriting a subquery for re-execution 74
6.17 Test for adding a column to the dataset with separated versioning applied to 76
6.18 Test for dropping a column from the dataset table with separated versioning

applied to . 76
6.19 Table sizes after 1,000,000 inserts in MB and relative to the unversioned

approach . 77
6.20 Table sizes after 1,000,000 Updates in MB and relative to the unversioned

approach . 78
6.21 Table sizes after 1,000,000 Deletes in MB and relative to the unversioned

approach before deletions . 80
6.22 Different Networks, which were successively inserted into the database . . . 81
6.23 Different Networks, with the number of stations and the number of depths

measurements per station . 82

93

6.24 Database storage comparison of the different versioned databases in GB and
percent . 84

6.25 Runtime for query execution with 10 parallel threads with 25 measurements 85
6.26 Runtime for query re-execution with 200 parallel threads with 25 measurements 85
6.27 Download Size for the simple and advanced query store per query and per

year . 86

94

List of Listings

1 REST download request, which is sent to the backend 20
2 SELECT query to obtain all different stations in the boundaries of the

drawn rectangular . 21
3 SELECT query to obtain all metadata per station 22
4 SELECT query to obtain all data per timeseries 22
5 Possible Rewrite to save storage space for each query 39
6 Integrated: Altering Table to create valid_from and valid_to columns and

set valid_to to now and adapt primary key 46
7 Integrated: Creation of Rules and Triggers to version all changes created

by CRUD operations . 47
8 Separated: Altering Table to create history table with valid_from and

valid_to columns and copy all data to history table 48
9 Separated with Rules: Creation of Rules to version all changes created by

CRUD operations . 49
10 Separated with Rules: Creation of Rules to version all changes created by

CRUD operations . 50
11 Hybrid: Altering Table to create history table with valid_from and

valid_to columns and add valid_from column to the original table . . 51
12 Hybrid Versioning: Creation of Rule and Trigger to version all changes

created by CRUD operations . 52
13 Query Rewriting to obtain the correct data by adding a validity period

when querying the data . 54
14 Query Rewriting to obtain the correct data by using the history table and

adding a validity period when re-execution a query 54
15 Query Rewriting to obtain the correct data by using the history table and

the original table and unioning the results 55
16 Usage of a view, to combine the results from the history and the original

table for the hybrid approach . 56
17 Procedure to add versioning automatically upon CREATE TABLE event 57
18 Procedure to automatically archive a table, when it is dropped 58
19 Procedure to automatically rename the corresponding history table, if a

table is renamed . 59

95

20 Procedure to automatically add a column to the corresponding history
table and adapt the versioning triggers, if a column is added to the original
table . 60

21 Procedure to automatically adapt the versioning triggers, if a column is
dropped . 60

22 Procedure to automatically rename the column in the corresponding history
table, if a table column is renamed . 61

23 Storing a query in the database with a function 63
24 Storing a subquery in the database with a procedure 63
25 Hashing the result set of a subquery 64
26 Acquiring of an ACCESS EXCLUSIVE lock on the dataset table . . . 64
27 Postdating the valid_from timestamp 64

96

Bibliography

[1] D. Albert, B.K. Antony, Y.A. Ba, Y.L. Babikov, P. Bollard, V. Boudon, F. Dela-
haye, G. Del Zanna, M.S. Dimitrijević, B.J. Drouin, M.-L. Dubernet, F. Duensing,
M. Emoto, C.P. Endres, A.Z. Fazliev, J.-M. Glorian, I.E. Gordon, P. Gratier,
C. Hill, D. Jevremović, C. Joblin, D.-H. Kwon, R.V. Kochanov, E. Krishnaku-
mar, G. Leto, P.A. Loboda, A.A. Lukashevskaya, O.M. Lyulin, B.P. Marinković,
A. Markwick, T. Marquart, N.J. Mason, C. Mendoza, T.J. Millar, N. Moreau,
S.V. Morozov, T. Möller, H.S.P. Müller, G. Mulas, I. Murakami, Y. Pakhomov,
P. Palmeri, J. Penguen, V.I. Perevalov, N. Piskunov, J. Postler, A.I. Privezentsev,
P. Quinet, Y. Ralchenko, Y.-J. Rhee, C. Richard, G. Rixon, L.S. Rothman, E. Roueff,
T. Ryabchikova, S. Sahal-Bréchot, P. Scheier, P. Schilke, S. Schlemmer, K.W. Smith,
B. Schmitt, I.Yu. Skobelev, V.A. Srecković, E. Stempels, S.A. Tashkun, J. Tennyson,
V.G. Tyuterev, C. Vastel, V. Vujčić, V. Wakelam, N.A. Walton, C. Zeippen, and
C.M. Zwölf. A decade with VAMDC: Results and ambitions. Atoms, 8(4):1–45,
2020.

[2] Peter Buneman, Greig Christie, Jamie A Davies, Roza Dimitrellou, Simon D Harding,
Adam J Pawson, Joanna L Sharman, and Yinjun Wu. Why data citation isn’t working,
and what to do about it. Database, 2020:baaa022, January 2020.

[3] Peter Buneman, Susan Davidson, and James Frew. Why data citation is a computa-
tional problem. Communications of the ACM, 59(9):50–57, August 2016.

[4] Mark J. Costello. Motivating Online Publication of Data. BioScience, 59(5):418–427,
May 2009.

[5] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. Automating the
database schema evolution process. The VLDB Journal — The International Journal
on Very Large Data Bases, 22(1):73–98, February 2013.

[6] Carlo Curino, Hyun Jin Moon, and Carlo Zaniolo. Graceful database schema
evolution: The PRISM workbench. Proceedings of the VLDB Endowment, 1(1):761–
772, 2008.

[7] Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Pe-
trakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas

97

Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca,
Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C.
Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kas-
turi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni
Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José
Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise
Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil,
Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel,
Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugden-
hil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun
Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber,
Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto
Sabia. The International Soil Moisture Network: serving Earth system science for
over a decade. Hydrology and Earth System Sciences, 25(11):5749–5804, November
2021. Publisher: Copernicus GmbH.

[8] M. L. Dubernet, V. Boudon, J. L. Culhane, M. S. Dimitrijevic, A. Z. Fazliev,
C. Joblin, F. Kupka, G. Leto, P. Le Sidaner, P. A. Loboda, H. E. Mason, N. J.
Mason, C. Mendoza, G. Mulas, T. J. Millar, L. A. Nuñez, V. I. Perevalov, N. Piskunov,
Y. Ralchenko, G. Rixon, L. S. Rothman, E. Roueff, T. A. Ryabchikova, A. Ryabtsev,
S. Sahal-Bréchot, B. Schmitt, S. Schlemmer, J. Tennyson, V. G. Tyuterev, N. A.
Walton, V. Wakelam, and C. J. Zeippen. Virtual atomic and molecular data centre.
Journal of Quantitative Spectroscopy and Radiative Transfer, 111(15):2151–2159,
October 2010.

[9] Snehil Gupta, Connie Zabarovskaya, Brian Romine, Daniel A. Vianello, Cynthia Hud-
son Vitale, and Leslie D. McIntosh. Incorporating Data Citation in a Biomedical
Repository: An Implementation Use Case. AMIA Summits on Translational Science
Proceedings, 2017:131, 2017. Publisher: American Medical Informatics Association.

[10] Patrick Heidorn. Shedding Light on the Dark Data in the Long Tail of Science.
Library Trends, 57:280–299, September 2008.

[11] Barend Mons, Herman van Haagen, Christine Chichester, Peter-Bram ’t Hoen,
Johan T. den Dunnen, Gertjan van Ommen, Erik van Mulligen, Bharat Singh, Rob
Hooft, Marco Roos, Joel Hammond, Bruce Kiesel, Belinda Giardine, Jan Velterop,
Paul Groth, and Erik Schultes. The value of data. Nature Genetics, 43(4):281–283,
April 2011. Number: 4 Publisher: Nature Publishing Group.

[12] Heather A. Piwowar and Todd J. Vision. Data reuse and the open data citation
advantage. PeerJ, October 2013. Publisher: PeerJ Inc.

[13] Stefan Pröll, Kristof Meixner, and Andreas Rauber. Precise Data Identification
Services for Long Tail Research Data. iPRES, 2016.

98

[14] Stefan Pröll and Andreas Rauber. Scalable data citation in dynamic, large databases:
Model and reference implementation. 2013 IEEE International Conference on Big
Data, pages 307–312, October 2013.

[15] Stefan Pröll and Andreas Rauber. A Scalable Framework for Dynamic Data Citation
of Arbitrary Structured Data. DATA 2014 - Proceedings of 3rd International
Conference on Data Management Technologies and Applications, pages 223–230,
January 2014.

[16] Andreas Rauber, Ari Asmi, Dieter van Uytvanck, and Stefan Pröll.
Data Citation of Evolving Data. Research Data Alliance, 2015.
http://dx.doi.org/10.15497/RDA00016.

[17] Andreas Rauber, Bernhard Gößwein, Carlo Maria Zwölf, Chris Schubert, Florian
Wörister, James Duncan, Katharina Flicker, Koji Zettsu, Kristof Meixner, Leslie D.
McIntosh, Reyna Jenkyns, Stefan Pröll, Tomasz Miksa, and Mark A. Parsons.
Precisely and Persistently Identifying and Citing Arbitrary Subsets of Dynamic
Data. Harvard Data Science Review, 3(4), October 2021.

[18] John F Roddick. A survey of schema versioning issues for database systems. Infor-
mation and Software Technology, 37(7):383–393, January 1995.

[19] Robert Schuler and Carl Kesselman. CHiSEL: a user-oriented framework for sim-
plifing database evolution. Distributed and Parallel Databases, 39(2):483–543, June
2021.

[20] Patrick Säuerl. Datenzitierbarkeit bei Schemaevolution in relationalen Datenbanken.
Thesis, TU Wien, 2018.

[21] Martin Weise, Moritz Staudinger, Cornelia Michlits, Eva Gergely, Kirill Stytsenko,
Raman Ganguly, and Andreas Rauber. DBRepo: a Semantic Digital Repository for
Relational Databases. International Journal of Digital Curation, 17(1):11, 2022.

[22] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Apple-
ton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino
da Silva Santos, Philip E. Bourne, Jildau Bouwman, Anthony J. Brookes, Tim
Clark, Mercè Crosas, Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J. G. Gray, Paul Groth,
Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Peter A. C. ’t Hoen, Rob Hooft,
Tobias Kuhn, Ruben Kok, Joost Kok, Scott J. Lusher, Maryann E. Martone, Albert
Mons, Abel L. Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene
van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sengstag, Ted Slater,
George Strawn, Morris A. Swertz, Mark Thompson, Johan van der Lei, Erik van
Mulligen, Jan Velterop, Andra Waagmeester, Peter Wittenburg, Katherine Wolsten-
croft, Jun Zhao, and Barend Mons. The FAIR Guiding Principles for scientific data
management and stewardship. Scientific Data, 3(1):160018, March 2016.

99

[23] Xin Zhao, Yigge Wan, and Yingbo Liu. Tracking and Querying over Timeseries
Data with Schema Evolution. Jisuanji Yanjiu yu Fazhan/Computer Research and
Development, 59(9):1869–1886, 2022.

[24] Carlo Maria Zwölf, Nicolas Moreau, Yaye-Awa Ba, and Marie-Lise Dubernet. Imple-
menting in the VAMDC the new paradigms for data citation from the research data
alliance. Data Science Journal, 18(1), 2019.

[25] Carlo Maria Zwölf, Nicolas Moreau, and Marie-Lise Dubernet. New model for
datasets citation and extraction reproducibility in VAMDC. Journal of Molecular
Spectroscopy, 327:122–137, September 2016.

100

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim and Contributions
	Thesis Structure

	Related Work
	Data Citation
	FAIRness
	Precise identification of arbitrary subsets of dynamic data
	Schema Evolution in Databases

	International Soil Moisture Network
	Database
	Data Integration Workflow
	Download Workflow

	Conceptual Design
	Data Versioning
	Persistent Identification of Subsets
	Resolving and Sharing Subsets
	Modification of Infrastructure

	Implementation
	Versioning
	Query Store
	Query Rewriting
	Schema Changes
	Adaptions to the Backend
	Data Cite Standard

	Evaluation
	Accordance to RDA Dynamic Data Citation
	Trend Analysis
	International Soil Moisture Network

	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Listings
	Bibliography

