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Kurzfassung

In dieser Arbeit werden Implementierungstechniken für schnelle Befehlsauswahl im Kon-
text von stapelbasierten Sprachen untersucht. Ausgehend von Tree-Parsing und der
Implementierung von iburg wird untersucht, wie die Flaschenhälse des Tree-Parsing-
Ansatzes von iburg gelöst werden können: Die Notwendigkeit, Ausdrucksbäume zu
konstruieren und die Notwendigkeit eines Algorithmus mit zwei Durchläufen. Als eine
mögliche Lösung wird ein Generator implementiert, der aus den Tree-Parsing-Regeln und
den zugehörigen Aktionen einen endlichen Automaten erzeugt, der nur einen einzigen
Durchlauf und keine Baum-Konstruktion benötigt. Die Leistungsfähigkeit eines hange-
schriebenen Codegenerators, des Tree-Parsings von iburg und eines automatenbasierten
Ansatzes wird gemessen und verglichen. Der generierte Automat liefert ähnlich gute
Ergebnisse, wie ein handgeschriebener Codegenerator.
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Abstract

This work investigates implementation techniques for fast instruction selection in the
context of stack-based languages. Using tree-parsing and the iburg implementation
thereof as a starting point, this work is looking into solving the bottle-necks of iburg’s
tree-parsing approach: The need to construct expression trees and the need for a two-
pass algorithm. This work implements a generator that produces a finite-state machine
from tree-parsing rules and associated actions, which only requires a single pass and no
tree-construction. The performance of a manually written code generator, iburg’s tree
parsing and an automaton-based approach is measured and compared. The generated
automaton produces results of similar quality as a hand-written code generator.
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CHAPTER 1
Introduction

In software development compilers play an important role by making it possible to use
high-level languages, which are easily understood by humans, instead of having to encode
algorithms directly in binary hardware instructions. Another advantage is that programs
can be implemented once and then be compiled for multiple target platforms.
Compilers are programs that take an input program in a given input language and
compile it to a given output language, which can then be executed by a computer. In
addition to compilers, there are also interpreters, which can directly execute programs in
a given language. Compilation usually happens ahead-of-time (AOT) and the generated
machine-code can be directly executed on a compatible target platform, while interpreters
need to be distributed alongside the program to the target computer for the program to
be executed.
Interpreters have the advantage, that they can be implemented with lower effort than a
compiler, but the execution of the program is slower. Compilers are harder to implement,
but can perform many optimizations and utilize machine-code directly, which leads to
faster execution of the program.
Compilers can be divided into two categories:

• Ahead-Of-Time Compilation (AOT): Programs in a high-level language are trans-
lated to the target machine-code as a whole and then executed. This allows for a
variety of optimizations to be applied, such as dead-code elimination, inlining and
the use of target-specific special-purpose instructions. The advantage is that the
machine-code is very fast and also time-to-execution is very short. A downside is
that the program may require recompilation, if some parts of the target computer
(software or hardware) change.

• Just-In-Time Compilation (JIT): Programs in a high-level language are first trans-
lated to an intermediate representation (AOT) and then translated to the target
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1. Introduction

machine-code by the JIT-compiler at run-time before execution. This is a hybrid
approach combining the advantages of both interpretation and AOT-compilation.
It allows for optimizations to be applied prior to execution, but also avoids having
to recompile the program for other architectures, as long as there is a JIT-compiler
for the new target architecture. However, because the compilation is now hap-
pening right before execution, the time-to-execution increases and the challenge
is to produce fast and small code, while also not increasing time-to-execution too
much. The JIT-compiler may also use its “run-time knowledge” to perform so-called
profile-guided optimizations (PGOs), which optimize parts of a program that are
most used, based on statistics collected at run-time. This is typically done in two
stages: At the first stage the code is compiled as quickly as possible without special
optimizations. If the code turns out to be executed multiple times, the code is
recompiled (stage 2) and optimizations are applied.

In order to produce efficient code (efficiently), compilers and interpreters have to solve
a number of problems, one of which is instruction selection. Its main purpose is to
transform instructions from a high-level intermediate representation (IR) into a low-level
representation or target machine-code. The goal is to select the best code sequence “in
terms of speed, size or some other metric, so we have an optimization problem [...]”[4, pg.
viii] After (optimal) machine-code instructions have been selected, other steps such as
instruction scheduling and register allocation may be performed.

The topic has received broad attention from the scientific community over the last 60
years. In 2013 G. Blindell [4] compiled an extensive summary of known approaches and
literature. It lists four general approaches to instruction selection: Macro expansion, tree
covering, DAG covering and other graph-based approaches. This work will focus on tree
covering as implemented by the burg instruction selector generator family in the context
of stack-based languages.

1.1 Motivation and aim
Instruction selection using tree-parsing is solvable in linear time, however, as code
generators should produce code as fast as possible, looking for a faster solution is
important. The instruction selectors generated by burg (automaton-based) and iburg
(dynamic-programming-based) consist of two parts: the labeller and reducer and both
need to traverse the tree, which is expensive. The automaton-based approach is faster
than the approach based on dynamic-programming, but the generated automata are
quite big (depending on the input tree grammar).

This work seeks to answer the following question: Can a faster instruction selector be
generated from tree grammars for stack-based intermediate languages? How much code
quality must be sacrificed to gain this benefit?

The aim of this work is to implement and compare handwritten (naïve) expansion (as
base-line) and different implementation strategies for tree covering instruction selectors:
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iburg’s (dynamic-programming-based) tree pattern-matching, (finite-state) automata
and pushdown automata. The latter two will be implemented as part of this work. The
criteria for comparison are compilation and execution time and generated machine-code
size of chosen benchmarks.

The main contributions of this work are:

• We present a way to generate one-pass finite-state automata for stack-based (inter-
mediate) languages from tree-parsing grammars.

• We present measurements and a comparison of a hand-written instruction selector,
burg’s tree pattern-matching, our finite-state automata and pushdown automata.

1.2 The CACAO JVM
In order to allow for realistic evaluation and comparisons, the approaches will be imple-
mented as part of the CACAO JVM,1 an open-source Java virtual machine implementa-
tion developed at TU Wien. Development started in 1996 and the primary goal was to
implement the fastest Just-In-Time compiler at the time for the Alpha architecture.

In the following years support for further target architectures was added:

• ARM

• MIPS (32 and 64 bit)

• PowerPC (32 and 64 bit)

• System/390

• SPARC 64

• x86

• AMD64

In this work the AMD64 architecture is used for all measurements.

1http://www.cacaojvm.org/
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CHAPTER 2
Related Work

2.1 Code generation
Code generation for register-based machines was proven to be NP-complete by Bruno
and Sethi [6] in 1976. Optimal translation from (expression) trees into code for register
machines is discussed by Aho and Johnson [1]. They discuss optimality of expression-
tree-to-register translation and present an algorithm based on dynamic programming,
which is able to produce optimal code.
In 1989 [2] Aho et al. introduce Twig, a tree-pattern-matching code-generator generator
based on dynamic programming, which generates code in two passes. The first pass finds
minimum-cost patterns and the second pass executes semantic actions associated with
the states, i.e., emits an optimal instruction sequence.
Emmelmann et al., [9] present BEG which also relies on tree-pattern-matching.

2.2 Tree-parsing and the burg family
Balachandran et al. [3] propose a system for optimal instruction selection using tree-
pattern-matching for expression trees. A subset of it is used by Fraser et al. [13] to create
burg, which is similar Twig but less expressive and faster. A predecessor of burg was
published by David R. Chase [8], which only supports one non-terminal symbol. After
the introduction of burg, there have been many different implementations named after
burg, although they often only bear a similar name:

• iburg is introduced by Fraser et al.[12], which is a simplified version of burg
which uses dynamic programming instead of an automaton.

• lcc is a retargetable C compiler[11], which uses lburg a variant of iburg that
allows for dynamic costs.
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• mburg by Gough [15] is an implementation of iburg using Modula-2, which
performs consistency checks on the tree-grammar and allows adding YACC-style
declarative actions directly in the grammar specification.

• Frazer and Proebsting [14] create gburg where they apply the burg “system” to
stack-based interpreters/JIT compilers. It takes advantage of a stack-based system
and does not operate on trees directly, but a linearized postfix notation, i.e., “stack
code” of them. The one-pass code generator uses a greedy algorithm, which is
not guaranteed to be optimal. The approach presented in this work is similar to
gburg, but does not require a separate “construction grammar”. A comparison of
this work with gburg is presented in section 4.3.5.

• wburg is another improvement to burg presented by Proebsting, et al. [21], which
allows to generate a generator that just requires a single pass.

Ertl et al., [10] present a combination of tree-parsing automata and dynamic-programming
instruction selectors, which generates a tree-parsing automaton on demand at JIT
compilation time.
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CHAPTER 3
Background

3.1 Stack-based languages and Virtual Machines
Stack-based languages are languages with one (or more) programmer-visible stacks used
for passing operands/arguments to operations and procedures/methods and for returning
results.

A stack is a data structure that allows storage of multiple items, similar to a list, however,
it is only possible to insert or remove items at the top (often referred to as TOS = “top
of stack”), similar to a stack of dishes in a kitchen. The operation of inserting an item
is called push and removing an item from the stack is called pop. See figure 3.1 for an
illustration.

push(42) push(7)

42

push(15)

42
7

pop()

42
7
15

42
7

Figure 3.1: Diagram of a stack, showing push and pop operations. Each step shows the
stack before the operation, above the next operation.

The concept was first introduced to the field of computer science by Alan M. Turing in
1945 [23, pg. 11/12], where he used it to model subroutine calls and returns. He used
the terms “bury” and “unbury” for the push and pop operations, respectively.

In the 1960s Reverse Polish1 notation (RPN) was first used to describe stack-based
expression evaluation, as the order of notation matches the order of evaluation, because

1Named after Jan Łukasiewicz, a Polish logician and philosopher.
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3. Background

each operator directly works with the results of the preceding operations. For example,
x + 1 is written in post-fix notation as x 1 +. An expression such as (x + 1) * 5,
requiring parentheses, is written as x 1 + 5 *. RPN was used in handheld calculators2

and by stack-based programming languages, most notably by Forth and Postscript.

The term “stack-effect” describes the effect of operations on the stack. In this work, a
notation similar to the Forth stack-effect notation3 is used: count of items removed
from the stack - count of items added to the stack. For example, the
stack-effect of integer addition would be written as 2 - 1, because addition consumes
two integers from the evaluation stack and adds/pushes the sum of them back onto the
stack.

While not seeing wide-spread adoption in programming languages for humans, stack-based
programming paradigms are extensively used in process virtual machines, also called
“abstract machines”, “programming language VMs” or Managed Runtime Environments
(MREs).

3.1.1 Process virtual machines or Programming language virtual
machine

“A process VM is a virtual platform created for an individual process and destroyed once
the process terminates. Virtually all operating systems provide a process VM for each
one of the applications running, but the more interesting process VMs are those which
support binaries compiled on a different instruction set.”[19, 10.2, p. 367]

Many such VMs use a stack-based execution model and intermediate language (examples
include the Java VM, CLR and the Python VM), which is then interpreted directly or
JIT-compiled for the target - often register-based - hardware architecture. As this work
focuses on Java, a detailed description of the Java VM will be given in the next section.

However, there are also VMs that use register-based intermediate languages, such as the
Dalvik virtual machine for Android, which compiles JVM byte-code to register-based
byte-code called “Dalvik VM byte-code”, and the Lua 5.0 virtual machine. Ierusalimschy
et al. [17] and D. Gregg et al. [16] argue that register-based VMs are superior to stack-
based machines, because they avoid the overhead that comes with the necessary stack
management. Another advantage is that register-based machines need fewer instructions
to achieve the same result, which can be seen in the following example, which compares
Java source code, JVM byte-code and Dalvik VM byte-code:

Java
source code:

int b = a + 5; Java VM
byte-code (stack-based):

2An advantage of reverse polish notation (post-fix notation) over traditional infix notation is that
parentheses are not required, which leads to a reduction of keystrokes.

3https://www.complang.tuwien.ac.at/forth/gforth/Docs-html/Stack_
002dEffect-Comments-Tutorial.html retrieved December 2022.
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3.2. The Java VM and its Byte-code

ILOAD_0
ICONST_5
IADD
ISTORE_1

Dalvik VM
byte-code (register-based):
add-int/lit16 v1, v0, #+5

Explanation of the instructions:

• ILOAD_0 loads the value stored in the first 32-bit integer variable slot onto the
evaluation stack. (Stack-effect: 0 - 1)

• ICONST_5 loads the integer constant 5 onto the evaluation stack. (Stack-effect: 0
- 1)

• IADD: pops two 32-bit values off the evaluation stack and pushes their sum onto
the evaluation stack. (Stack-effect: 2 - 1)

• ISTORE_1: pops a 32-bit value off the evaluation stack and stores it in the second
32-bit integer variable slot. (Stack-effect: 1 - 0)

• add-int/lit16 reg_dest, reg_src, imm16: Loads a value from reg_src,
adds the 16-bit immediate value to it and stores the result in reg_dest.

As can be seen, the JVM byte-code consists mostly of simple single-byte instructions,
without any operands - the operands are stored on the implicit evaluation stack. A
stack-based VM makes fewer assumptions about the hardware architecture. The stack
can be easily implemented in memory. In contrast, register-based machines “must decode
their operands from the instruction. Such decoding adds overhead to the interpreter.” [17]
Also, the Dalvik VM supports 256 registers (up to 65536 registers in some instructions),
but common hardware architectures use up to 16 registers (for example, AMD64 or
ARM), so the issue of register allocation remains even for register-based byte-code.

3.2 The Java VM and its Byte-code
“To implement the Java Virtual Machine correctly, you need only be able to read the
class file format and correctly perform the operations specified therein. Implementation
details that are not part of the Java Virtual Machine’s specification would unnecessarily
constrain the creativity of implementors. For example, the memory layout of run-time
data areas, the garbage-collection algorithm used, and any internal optimization of the
Java Virtual Machine instructions (for example, translating them into machine code) are
left to the discretion of the implementor.” 4

4https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html, retrieved December 2022
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3. Background

Java source code

class Foo {
/* ... */

}

JVM byte code

...
iload_1
iload_2
iadd
istore_1
...

Java VM
Interpreter / JIT Compiler

Byte Code Verifier

Class Loader
Memory Manager

Java APIs
Operating System

javac

Figure 3.2: A simplified overview of the JVM architecture. It also shows that Java is
compiled first into JVM byte-code using the Java compiler javac.

The Java Virtual Machine in general consists of the following components (see also figure
3.2):

• A class loader : Its responsibility is to read the contents of class file and then set
up an in-memory representation for use by the other parts of the virtual machine.
These files are, for example, produced by the Java compiler javac from Java
source code.

• A memory manager (garbage collector), which handles allocation and deallocation
of memory consumed by the program.

• A byte-code interpreter or JIT-compiler, that translates the machine-independent
instructions into native machine-code at run-time.

• A byte-code verifier (optional), which ensures that the loaded byte-code adheres to
the rules specified in the JVM byte-code specification.

• Because many base functions are implemented directly in JVM byte-code, the Java
API is vital for the JVMs functioning and the execution of programs written in
Java.

3.2.1 The byte-code interpreter/compiler
The Java byte-code may be executed using one or more of the following techniques:

• Interpreter,

• Just-In-Time compiler,

10



3.2. The Java VM and its Byte-code

• Ahead-Of-Time compiler,

• Mixed compiler, combining one or more of the above.

The byte-code interpreter/compiler’s job is to translate the byte-code to machine-specific
native instructions. The Java Virtual Machine Specification does not specify how
the instructions are translated, only their semantics are defined. The JVM defines
the following signed integral data types: byte (8-bit), short (16-bit), int (32-bit) and
long (64-bit); and the following floating-point types: float (32-bit) and double (64-bit).
Additionally it supports the boolean data type, which is encoded as byte, where 0 means
false and 1 true, and a char data type, an unsigned 16-bit integer representing Unicode
code points. However, because the JVM is not expected to perform any type-checking
and the evaluation stack is generally untyped, the compiler producing the JVM byte-code
is expected to make sure, that appropriate byte-code instructions are used.

3.2.2 The JVM byte-code instructions
The JVM supports around 200 instructions, which can be grouped into the following
categories: control-flow, loading and storing values, operations (arithmetic, bitwise,
logical and method calls), type checking and conversion, stack manipulation, prefixes
and internal instructions.

Many of the instructions are typed, which means there are separate instructions for the
different integral, floating point types and the boolean type. The mnemonics for these
instructions have prefixes, which describe the type they are operating on: a for addresses
(or arrays in some cases), b for byte or boolean values, c for char(acter)s, d for doubles,
f for floats, i for integers, l for longs and s for shorts.

The following list provides a short description of all instructions:

• 20 instructions for loading constant values onto the evaluation stack (stack-effect:
0 – 1).

• 33 load instructions for loading values from local variables and arrays. These
instructions push a value on the evaluation stack (stack-effect: 0 – 1). The array-
specific variants consume an array reference and an index from the evaluation stack
(stack-effect: 2 – 1).

• 33 store instructions for storing values to local variables and arrays. The array-
specific variants consume an array reference, an index and a value from the evalua-
tion stack (stack-effect: 3 – 0), while the other variants only consume one single
value (stack-effect: 1 – 0).

• 4 instructions for working with object constructors and arrays: new for creating
a new object of a given type and invoke its constructor (stack-effect: 0 – 1),
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3. Background

newarray for creating arrays of primitive types (stack-effect: 1 – 1), anewarray
for creating arrays of reference types (stack-effect: 1 – 1) and multianewarray
for creating multidimensional arrays (stack-effect: 1 – 1). For all array creation
instructions the length of the array is consumed from the evaluation stack.

• arraylength for retrieving the length of an array reference (stack-effect: 1 – 1).

• getfield for loading a value from an instance field onto the evaluation stack
(stack-effect: 1 – 1).

• getstatic for loading a value from a static field onto the evaluation stack (stack-
effect: 0 – 1).

• putfield for storing a value in an instance field (stack-effect: 2 – 0).

• putstatic for storing a value in a static field (stack-effect: 1 – 0).

• Unary arithmetic negation for each data-type: dneg, fneg, ineg and lneg. The
instruction consumes one value from the evaluation stack and pushes its negated
value back onto the evaluation stack.

• Integer increment iinc: This instruction does not work with the evaluation stack
but instead increments the value of a local variable slot.

• Binary arithmetic operations (addition, subtraction, multiplication, division and
remainder) for each data-type: dadd, dsub, dmul, ddiv, drem, fadd, fsub,
fmul, fdiv, frem, iadd, isub, imul, idiv, irem, ladd, lsub, lmul, ldiv
and lrem. All of them consume two items from the evaluation stack, perform the
operation and push the result back onto the evaluation stack.

• Binary bit-wise operations (and, or, exclusive or, arithmetic left shift, arithmetic
right shift and logical right shift) for integral data-types: iand, ior, ixor, ishl,
ishr, iushr land, lor, lxor, lshl, lshr and lushr. All of them consume
two items from the evaluation stack, perform the operation and push the result
back onto the evaluation stack.

• 5 instructions used to invoke methods: invokestatic, invokevirtual,
invokeinterface, invokespecial and invokedynamic. All of them con-
sume the number of arguments and an object reference (for instance methods)
from the evaluation stack and push the result back onto the evaluation stack (for
non-void methods).

• Stack manipulation instructions:

– dup duplicate the top stack item (stack-effect: a – a a),
– dup2 duplicate one or two top stack items (stack-effect: a b – a b a b),
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3.2. The Java VM and its Byte-code

– dup_x1 duplicate the top stack item and insert it two items down (stack-effect:
a b – b a b),

– dup_x2 duplicate the top stack item and insert it two or three items down
(stack-effect: a b c – c a b c),

– dup2_x1 duplicate one or two top stack item and insert them two or three
items down (stack-effect: a b c d – c d a b c d),

– dup2_x2 duplicate one or two top stack item and insert them two, three or
four items down (stack-effect: a b c d – c d a b c d),

– pop remove the top stack item (stack-effect: a – ),
– pop2 remove one or two stack items from the top (stack-effect: a b – ),
– swap swap the two top stack items (stack-effect: a b – b a).

• Conversion instructions for all possible primitive type conversions: d2f, d2i, d2l,
f2d, f2i, f2l, i2b, i2c, i2d, i2f, i2l, i2s, l2d, l2f and l2i. Note that
some of these are lossy conversions, which means that information may get lost.
This is especially the case with all conversions from larger to smaller types and
from floating point types to integral types.

• checkcast and instanceof for working with reference types. checkcast
tries to cast the value on top of the stack to a given reference type and throws
an exception, if the cast is not possible. Null values do not cause an exception.
instanceof also consumes the value from the evaluation stack and tries to cast
it and pushes either 0 (false) or 1 (true) on to the evaluation stack, depending on
whether the cast would succeed.

• Unconditional branching instructions: goto and goto_w, which unconditionally
move the instruction pointer to the given offset relative to the current instruction.

• jsr, jsr_w and ret: Branching instructions that save/load a return address.

• Return instructions: return, areturn, dreturn, freturn, ireturn and
lreturn, which end the execution of a method and may return a value to the
caller. Only the current value on top of the execution stack is returned, all other
values are discarded and the operand stack of the caller is restored with the returned
value added on top.

• Comparison instructions: dcmpg, dcmpl, fcmpg, fcmpl and lcmp: These in-
structions consume and compare the top two items on the evaluation stack and
push 0, if both values are equal, push -1 if the first value is lower than the second
or 1, if the first value is greater than the second. The instructions dealing with
floating point types have a special-case dealing with NaN values: dcmpg/fcmpg
pushes 1 and dcmpl/fcmpl pushes -1 if at least one input value is NaN.

• The tableswitch instruction implements a jump-table using a contiguous range
of indices.

13



3. Background

• The lookupswitch instruction implements a jump-table based on keys.

• The ifnull/ifnonnull instructions implement a conditional branch, if the value
on the stack is null (or not null).

• The ifeq, ifne, iflt, ifge, ifgt and ifle instructions consume the value
on top of the evaluation stack, perform a comparison with zero and branch to the
target address, if the comparison succeeds.

• The if_acmpeq, if_acmpne, if_acmplt, if_acmpge, if_acmpgt and if_acmple
instructions consume two values from the evaluation stack, perform a comparison
with them and branch to the target address, if the comparison succeeds.

• The if_icmpeq, if_icmpne, if_icmplt, if_icmpge, if_icmpgt and if_icmple
instructions consume two values from the evaluation stack, perform a comparison
with them and branch to the target address, if the comparison succeeds.

• The monitorenter and monitorexit instructions allow accessing the monitor
associated with each object. monitorenter increments the counter of the monitor,
if it is either zero or the current thread is the same as the owner thread of the
monitor. If the counter is greater than 0 and it is owned by a different thread,
the current thread blocks until the counter reaches 0. monitorexit is used to
decrement the counter. If it reaches 0 ownership of the monitor is reset.

• The athrow instruction throws an object of type Throwable from the evaluation
stack.

• The wide prefix is used to enable four-byte indices instead of two-byte indices
on some instructions: iload, fload, aload, lload, dload, istore, fstore,
astore, lstore, dstore, or ret.

• A nop instruction, which has no effect and may be used for padding.

For a detailed description, please refer to https://docs.oracle.com/javase/
specs/jvms/se7/html/jvms-6.html.

3.3 Cacao JVM
The following summarizes the key points of CACAO’s architecture, focusing on the JIT
compiler. The CACAO JVM implements its own class loader, which supports eager and
lazy loading of classes [22]. The garbage collector uses the Boehm GC. CACAO currently
features two JIT compiler implementations: the stage 1 compiler and an optimizing
compiler.

The JIT pipeline comprises the following steps:
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Byte code loading

Byte code parsing

Stack analysis

Type checking

Loop and condition detection

Register allocation

Code generation

Figure 3.3: A summary of the steps performed by CACAO.

1. Loading and parsing the byte-code, which performs the following sub-steps:

• Parses the raw Java byte-code to IR instructions.
• Simplifies instructions: For example, instructions that load constants are

unified: ICONST_N is mapped to ICONST and the immediate value is stored
in the instruction structure. Similarly LDC instructions are decoded
and mapped to their typed equivalent, (i.e., ACONST, DCONST, FCONST,
ICONST and LCONST) and the value from the constant pool is stored in the
IR instruction.

• Detects basic blocks: Each block ends in a control-flow related instruction.

2. Stack-analysis performs the following tasks:

• Checks the IR instructions for operand stack underflow and overflow, matching
stack-depth and types at merging points and other type-checks.

• Replaces specialized stack handling instructions (such as the various forms of
POP and DUP) by COPY and MOVE instructions, which capture the data-flow
and are better suited for register allocation.

• Applies simple optimizations, such as inlining of constants into arithmetic
instructions, such as ICONST and IADD are combined into IADDCONST.

3. Performs type-checking and creates a CFG (control-flow graph) of all basic blocks.

4. Applies some loop and condition optimizations.

5. Simple register allocation

6. Code generation: A simple loop over all basic blocks and instructions, which calls
the architecture-specific emit functions.
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3.4 Tree-parsing, (i)burg and bfe

Tree-parsing is a subset of BURS (bottom-up rewrite system) theory, which was developed
by Pelegri-Llopart et al. [20]. It can be used to solve the problem of translating an
expression tree (or IR term) to the best possible machine code sequence, i. e., instruction
selection. It is described by Aho et al. [2, p. 493] as a set of rules, where each rule
consists of a replacement node, an expression tree, an action that is a code fragment, and
costs that are associated with the execution of the code fragment. Aho et al. call this a
“tree-translation scheme”, however, in this work it will be called tree-parsing grammar.

Before we jump into an example (see section 3.4.3) in detail, we need to introduce some
further concepts: A tree grammar is a context-free grammar, defined as G = (N, T, S, R).
N is the set of non-terminals, T is the set of terminals, S is the starting/root non-terminal
and R is the set of rules, which have the following structure: p : t, where p ∈ N is a
non-terminal and t is a tree-pattern, an (ordered) binary tree, where leaf nodes are either
non-terminal or terminal symbols and interior nodes are terminal symbols.

Tree-pattern matching as described by Aho et al. consists of two passes: The labelling
and the reduction pass. In the labelling pass, the tree is traversed depth-first and the
rules are matched against the sub-trees. At each node the costs associated with the rules
are used to determine the best matching rule, then the sub-tree is replaced with the
replacement symbol. The reduction pass is another depth-first traversal of the tree. At
each node the actions associated with the matched rule (as calculated in the first pass)
are executed.

The trees used in the rules partially match the input IR expression trees and the actions
describe the code that is generated for each rule. The replacement nodes can be viewed
as storage classes[5, p. 433] and represent the result/output of each rule.

3.4.1 burg and iburg

burg and iburg are tools that generate labellers used in tree-pattern matchers from
tree-parsing grammars. Listing 3.1 shows a simple example of a tree-parsing grammar in
(i)burg syntax. It consists of the following parts:

1. At the top, enclosed by %{ and %}, there is a block of user code, that will be
inserted at the top of the output.

2. Definitions of symbols: %start denotes the non-terminal start symbol of every
tree. %term is followed by one or more mappings of terminal symbol (= operator)
names to input symbol numbers. Terminal symbols can either be binary, unary or
nullary; the arity is inferred from the usage in the grammar.

3. Separated by %% follows the list of rules: each rule uses the syntax replacement-
symbol ":" tree "=" rule-number "(" cost ")" ";", where the re-
placement symbol is a non-terminal symbol, (expression) trees involve any number
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of terminal and non-terminal symbols, rule-numbers are stored in the labelled tree
for further processing by the reducer. Costs are positive integer values used to
determine the best rules for a given tree.

4. After the second %% separator, the remainder of the file is copied verbatim to the
end of the output.

The labeller can be invoked for a tree by simply using burm_label(tree);.

Listing 3.1: A simple tree-parsing grammar using (i)burg syntax.
%{ /**

* block containing user code

* inserted verbatim at the top of the output file.

**/ %}
%start root /* Start replacement/non-terminal symbol. */
/* Definitions of terminal symbols. */
%term ICONST=1 ILOAD=2
%term INEG=3 IADD=4 ISTORE=5
%% /* Separator */
/* Replacement: tree = rule-number (cost); */
reg: const = 1 (1) ;
const: ICONST = 2 (0) ;
reg: ILOAD = 3 (0) ;
reg: INEG(reg) = 4 (1) ;
reg: IADD(reg, reg) = 5 (1) ;
root: ISTORE(reg) = 6 (1) ;
reg: IADD(const, reg) = 7 (1) ;
reg: IADD(reg, const) = 8 (1) ;
%% /* Separator */
/**
* block containing user code

* appended at the end of the output file.

**/

3.4.2 Rules, normal form and chain rules

As previously noted, trees in rules can consist of any number of terminal and non-
terminal symbols, forming a tree potentially spanning multiple levels. For example, root:
ISTORE(IADD(reg, ICONST)) would be a valid rule tree. A semantically equivalent
tree can be written in normal form (the concept was introduced by Balachandran et
al. [3, p. 131]), if, for any sub-tree containing terminal symbols, a new non-terminal
symbol/rule is introduced and the sub-tree is moved to that rule.
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Listing 3.2 shows the steps of such a “normalization”. In order to avoid possible duplication
of rules, chain rules can be introduced: These rule trees only consist of a single non-
terminal symbol.

Listing 3.2: Transformation of a rule into normal form and introduction of chain rules.
// initial input
reg: IADD(reg, reg)
reg: ICONST
root: ISTORE(IADD(reg, ICONST))

// Add new non-terminal nf0 and extract sub-tree:

reg: IADD(reg, reg)
reg: ICONST
root: ISTORE(nf0)
nf0: IADD(reg, ICONST)

// Recursively repeat for all terminal symbols,
// leading to the following final output:

reg: IADD(reg, reg)
reg: ICONST
root: ISTORE(nf0)
nf0: IADD(reg, nf1)
nf1: ICONST

// Now because there are two equal rules involving
// the symbol ICONST a chain rule can be introduced
// to avoid duplication:
// (Note that the rules involving IADD are not
// duplicates, because they use different non-terminals.)

reg: nf1 /* chain rule */
reg: IADD(reg, reg)
root: ISTORE(nf0)
nf0: IADD(reg, nf1)
nf1: ICONST

The usefulness of normalization and chain rules will become apparent, when we take a
look at the different approaches of implementing the instruction selector in chapter 4.
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3.4.3 Labeller and Reducer Example
In the context of stack-based languages a (binary) tree can be constructed from instruc-
tions (that consume 0, 1 or 2 stack slots and push 0 or 1 stack slot onto the stack as a
result) by creating a node for each instruction and adding the instructions whose results
are consumed as child nodes of the current instruction/node, forming an expression tree.
An expression tree is automatically terminated, if an instruction does not push anything
onto the stack as a result or if the instruction stack is empty. Special instructions like
dup and swap terminate a tree as well (see section 4.1.1 for a detailed description).

For example, the instruction sequence ILOAD ICONST IADD ISTORE can be written
using a parenthesized prefix notation as follows: ISTORE(IADD(ILOAD, ICONST))
and then be turned into an expression tree.

In the following an example labelling and reduction pass will be presented and explained.
Figure 3.4 shows a simple Java statement translated to IR, an expression tree and a
parenthesized notation used in this work. Listing 3.3 shows a grammar that can be used
with our example tree.

Stack-based JVM byte-
code/IR:

ILOAD a
ICONST 5
IADD
ISTORE b

Expression tree:
ISTORE b

IADD

ILOAD a ICONST 5

Parenthesized notation:
ISTORE(IADD(ILOAD, ICONST))
(without immediate
operands)

Figure 3.4: A simple Java statement b = a + 5; in JVM byte-code, IR tree and
parenthesized notation.

The grammar in listing 3.3 uses root as start non-terminal symbol, which is only used
in rule 6. This means that any derivable tree has the ISTORE symbol in its root. Rule
1 is a chain rule, connecting the const non-terminal with the other parts of the tree.
Rules 2, 7 and 8 are specialized rules, which are used to produce better code for trees
involving additions of constants. Rules 3 to 5 are normal rules allowing instructions to
be nested possibly infinitely.

Listing 3.3: An example grammar with an action.
/* no. rule # cost # action */
/* 1 */ reg: const # 1 # print("store const in reg\n");
/* 2 */ const: ICONST # 0 # print("use const\n");
/* 3 */ reg: ILOAD # 0 # print("use reg\n");
/* 4 */ reg: INEG(reg) # 1 # print("negate reg\n");
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/* 5 */ reg: IADD(reg, reg) # 1 # print("add two regs\n");
/* 6 */ root: ISTORE(reg) # 1 # print("store from reg\n");
/* 7 */ reg: IADD(const, reg) # 1 # print("add const and reg\n");
/* 8 */ reg: IADD(reg, const) # 1 # print("add reg and const\n");

The grammar only allows “statements” which assign their value to a slot in the local
variable table of the JVM. “Expressions” that can be assigned are constants, values of
variables, negated expressions and sums of two expressions.

Labelling Pass

As previously described, the labelling pass is a depth-first pass, working bottom-up
and trying to match trees and sub-trees with rules. Tables 3.1 and 3.2 show possible
reductions of the tree using different rules. The red highlight shows the sub-tree currently
being processed. The blue highlight shows the replacement from the previous step. The
“Rule” column shows the matching rule number and costs. In row 3 of 3.1 a chain rule is
applied.

In each step the optimal rule to be used for a non-terminal is stored in the node. If more
than one rule matches a given sub-tree, dynamic programming is used to determine the
minimum cost cover and the rule with smallest costs is applied. The final decision, which
non-terminals to use, is made at the end.

Tree Rule Cumulative costs
ISTORE(IADD(ILOAD, ICONST)) 3 (cost: 0) 0
ISTORE(IADD(reg, ICONST)) 2 (cost: 0) 0
ISTORE(IADD(reg, const)) 1 (cost: 1) 1
ISTORE(IADD(reg, reg)) 5 (cost: 1) 2
ISTORE(reg) 6 (cost: 1) 3
root total 3

Table 3.1: One possible reduction for the example tree, yielding a total cost of 3.

In table 3.2 the labeller takes advantage of rule 8 and thus is able to produce a “cheaper”
reduction.

Tree Rule Cumulative costs
ISTORE(IADD(ILOAD, ICONST)) 3 (cost: 0) 0
ISTORE(IADD(reg, ICONST)) 2 (cost: 0) 0
ISTORE(IADD(reg, const)) 8 (cost: 1) 1
ISTORE(reg) 6 (cost: 1) 2
root total 2

Table 3.2: An alternative reduction for the example tree, yielding a total cost of 2.
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Reduction Pass

In the reduction pass (as implemented in listing 3.7), the tree is again visited depth first
and the actions associated with the previously derived rules are executed top-down.

Interpreting the print statements as given in listing 3.3, the following listings would be
produced for the two reductions presented above:

Listing 3.4: Output of the example reducer for the reduction from table 3.1.
use reg
use const
store const in reg
add two regs
store from reg

Listing 3.5: Output of the example reducer for the reduction from table 3.2.
use reg
use const
add reg and const
store from reg

The second reduction avoids one step, which leads to better code-generation as an add
instruction taking an immediate value may be used.

3.4.4 bfe (burg front-end)
The input of (i)burg is deliberately kept flexible, so the labeller can be used for different
applications. It does not allow the user to specify any actions associated with the rules.
Also, the rule numbers need to be specified by the input. To make creating instruction
selectors easier, the bfe script (see appendix A.1) was created at TU Wien for the
Compiler-Construction Course.

Listing 3.6: A simple tree-parsing grammar using bfe syntax.
%{ /**

* block containing user code

* inserted verbatim at the top of the output file.

**/ %}
%start root /* Start replacement/non-terminal symbol. */
/* Definitions of terminal symbols. */
%term ICONST=1 ILOAD=2
%term INEG=3 IADD=4 ISTORE=5
%% /* Separator */
/* tree # cost # action */
reg: const # 1 # to_reg(node);
const: ICONST # 0 # /* nop */
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reg: ILOAD # 0 # to_reg(node);
reg: INEG(reg) # 1 # ineg(node);
reg: IADD(reg, reg) # 1 # iadd(node);
root: ISTORE(reg) # 1 # istore(node);
reg: IADD(const, reg) # 1 # iadd_const(node);
reg: IADD(reg, const) # 1 # iadd_const(node);
%% /* Separator */
/**
* block containing user code

* appended at the end of the output file.

**/

It uses a syntax similar to iburg; only the description of rules is simplified and extended.
Each rule consists of a tree, an integer specifying the cost of the rule and an action, one
executed in post-order. All of these items are separated by #, as can be seen in listing
3.6.

When executed bfe produces the following as its output: It translates all the rules to
the syntax used by iburg and also generates a reducer, which consists of the following
skeleton:

Listing 3.7: Skeleton of a reducer as produced by bfe.
void burm_reduce(NODEPTR_TYPE bnode, int goalnt)
{

int ruleNo = burm_rule (STATE_LABEL(bnode), goalnt);
short *nts = burm_nts[ruleNo];
NODEPTR_TYPE kids[100];
int i;
/* skip error handling */
burm_kids (bnode, ruleNo, kids);
for (i = 0; nts[i]; i++)

burm_reduce (kids[i], nts[i]); /* reduce kids */
switch (ruleNo) {

/* GENERATOR: insert a case for each rule and add the
action as its body */

}
}

The reducer can be invoked using the following call burm_reduce(tree, 1);. The
literal 1 for the goalnt parameter refers to the start non-terminal symbol. So, using
the previous call, the whole tree is traversed.
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3.4.5 Output of bfe and iburg combined

bfe + C → burg + C burg + C → C

awk C

Figure 3.5: Tombstone diagrams for bfe (left) and burg (right).

Shown in figure 3.5 is the structure of both tools bfe and iburg. Note that the input
of bfe consists of rules written in bfe syntax and fragments written in C. Similarly, the
input of burg is written in burg syntax augmented with C code. The final result is
plain C code that can be integrated into any compatible environment.
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CHAPTER 4
Approaches under Examination

In the following sections four approaches for code generation and their implementation in
CACAO will be discussed. We started with the “tree-parsing and dynamic programming”
approach used by iburg, because it offers a working implementation of tree-parsing
grammars. The code generation actions were, for the most part, taken from CACAOs
stage 1 JIT compiler. Only some constant folding optimizations were removed from
CACAO’s stack analysis code and added as rules in the grammar to show that such
optimizations can easily be performed during instruction-selection without an extra pass.

For the other approaches, “finite state automaton” and “pushdown automaton”, we
decided to reuse the tree-parsing grammar as understood by bfe (see section 3.4.4),
because it offers a convenient way to add rules and provides all information needed for a
one-pass instruction selector. This allowed us to implement a generator similar to burg,
which produces a state-machine from the grammar.

For the discussion of each approach the following simplified JVM instruction set and
bfe grammar will be used:

• ICONST: pushes a 32-bit constant onto the evaluation stack. Stack-effect: 0 - 1.
• ILOAD: loads the value of a 32-bit variable slot and pushes it onto the evaluation

stack. Stack-effect: 0 - 1.
• INEG: pops a 32-bit value off the evaluation stack and pushes -value back onto the

evaluation stack. Stack-effect: 1 - 1.
• IADD: pops two 32-bit values off the evaluation stack and pushes their sum onto

the evaluation stack. Stack-effect: 2 - 1.
• ISTORE: pops a 32-bit value off the evaluation stack and stores it in a 32-bit

variable slot. Stack-effect: 1 - 0.
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Listing 4.1: A simple tree-parsing grammar used in this chapter.
%start root

reg: const # 1 # print("emit push_const_to_reg\n");
const: ICONST # 0 #
reg: ILOAD # 0 # print("emit iload\n");
reg: INEG(reg) # 1 # print("emit ineg\n");
reg: IADD(reg, reg) # 1 # print("emit iadd\n");
root: ISTORE(reg) # 1 # print("emit istore\n");
reg: IADD(const, reg) # 1 # print("emit iaddconst\n");
reg: IADD(reg, const) # 1 # print("emit iaddconst\n");
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4.1 Tree-parsing Automata using Dynamic Programming

This is the approach used by many code-generator generators such as BEG, Twig and
(i)burg. An in-depth explanation of the labeller produced by iburg and the reducer
produced by bfe can be found in section 3.4.

4.1.1 Constructing expression-trees from stack-based instruction
sequences

Programs compiled to a stack-based intermediate language essentially use RPN. Because
tree-parsing automata work with (expression) trees, it is necessary to convert the program
from RPN into (expression) trees. We use the simple algorithm shown in listing 4.2 to
convert RPN into a (binary) tree structure.

Listing 4.2: Pseudo-code showing the algorithm converting RPN into a tree structure.
1 eval_stack = [];
2 for instruction in code {
3 // detect instruction stack-effect
4 pop_count, push_count = instruction.stack_effect;
5 // create a new node from an instruction
6 current_node = node_from_instruction(instruction);
7 // handle stack-effect
8 switch (pop_count) {
9 case 0:

10 break;
11 case 1:
12 current_node.right = nop;
13 current_node.left = eval_stack.remove_at(0);
14 break;
15 case 2:
16 current_node.right = eval_stack.remove_at(0);
17 current_node.left = eval_stack.remove_at(0);
18 break;
19 }
20 if push_count == 1 {
21 eval_stack.insert_at(0, current_node);
22 } else {
23 // handle termination of a tree
24 }
25 }

Each instruction is first stored in a new node. Depending on the stack-effect of the
instruction, we use 0, 1 or 2 items from the evaluation stack and store them as left and
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right child node of the newly created node. In line 24 of the above algorithm, code would
be added to call iburg.

If we assume, that there exist no instructions that consume more than 2 items and
only either push 0 or 1 item, then the above algorithm is complete. The instruction se-
quence, that executes the statement b = a + 5;, i.e., ILOAD a, ICONST 5, IADD,
ISTORE b would be translated into the following tree:

ILOAD a ILOAD a

ICONST 5

IADD

ILOAD a ICONST 5

ISTORE b

IADD

ILOAD a ICONST 5

ILOAD a ICONST 5

ILOAD a

IADD

ILOAD a
ICONST 5

ISTORE b

IADD

Figure 4.1: Diagram showing the evaluation stack next to the trees that are constructed
by the above algorithm.

The above example also illustrates why trees are terminated once an instruction does
not push any result onto the evaluation stack: When evaluating each instruction, the
stack-effect is executed and instructions that push a result are used as inputs/children of
the next instruction. If no result is pushed there is nothing that connects the instruction
with later instructions. Because burg only supports binary trees, instructions that have
more than two inputs, are emitted separately.

4.1.2 Integrating iburg in CACAO
The integration of iburg in CACAO operates separately on each basic block. Before
calling burm_label and burm_reduce on a tree, the flat list of IR instructions provided
by CACAO needs to be converted into IR expression trees. This is done by allocating
tree nodes for each instruction and then constructing trees by doing symbolic evaluation
of the instructions.

Almost all instructions have a known stack-effect, from which a tree can be constructed,
as described in section 4.1.1. In practice the tree construction happens as follows:

Each basicblock has a known length (number of instructions) and a known incoming
stack-height, i.e., a number of items on the evaluation stack at the start of the basic
block. A stack-height > 0 commonly happens when translating conditional expressions
(such as condition ? oneValue : otherValue) to JVM byte-code.
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• For each incoming stack-item, a pseudo RESULT node is created, which can then
be used in an expression tree.

• Next, the stack-effect of each instruction is calculated. Some instructions have
static stack-effect (such as arithmetic instructions, loading of constants and local
variables), others have dynamic stack-effect, depending on run-time information, in
particular:

– BUILTIN instructions are used to implement functionality not natively sup-
ported by the processor, such as floating point arithmetic, and also internal
functions such as constructor invocations, array creation, type-checking and
other special instructions. For a full list, refer to builtintable.inc in
the CACAO source code. The stack-effect is derived from the target method
descriptor.

– Any of instruction doing a method invocation (i.e., INVOKESTATIC, INVOKESPECIAL,
INVOKEVIRTUAL and INVOKEINTERFACE). The stack-effect is derived from
the target method descriptor.

• If the calculated stack-effect has a pop_count of less or equal to 2 the number of
items is consumed from the evaluation stack and if the push_count is 1, then the
current instruction is pushed onto the evaluation stack.

• If the calculated pop_count is greater than 2 or push_count is 0, then the tree
is terminated and the machine code is generated immediately (see also section
4.1.1).

• Note that sometimes it is necessary to keep multiple partial expression trees on the
evaluation stack, so the evaluation stack is stack of expression trees. In order to
avoid changing the ordering of instructions, each time a tree is emitted, all previous
trees in the evaluation stack are emitted as well and replaced by RESULT nodes,
which can be used again later.

• After the end of the basic block, all trees and instructions remaining on the
evaluation stack are emitted. This can happen if a basic block produces a result,
such as in conditional expressions.

The algorithm described above causes the JIT compiler to consume more memory than
the other approaches and also tree construction and management might cause the code-
generation to be slowed down. This is one of the things, we will take a look at when
evaluating the performance of this approach in chapter 5.
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4.2 Naïve Expansion
The current stage 1 JIT compiler implemented in CACAO uses this approach (see section
3.3 for a more detailed overview). The instructions are emitted one-by-one and in general
naïve expansion has no way of generating specialized code for combinations of instructions,
unless they are pre-processed in a separate pass over the instruction stream (which is
what the current CACAO implementation does).

For example, the JVM byte-code given below on the left, would be naïvely emitted as
four distinct assembly instructions (see column 2), because each instruction is processed
individually. However, if the byte-code instructions are combined in an expression tree,
it is possible to emit shorter code for this sequence, as can be seen in columns 3 and 4:

1) Java VM byte-
code:

ILOAD_0
ICONST_5
IADD
ISTORE_1

2) Naïve Expansion
(into IA-32 assembly
language):
mov 4(%esp), %ecx
mov $5, %edx
add %ecx, %edx
mov %edx, %eax

3) Inlining con-
stants:

mov 4(%esp), %ecx
add $5, %ecx
mov %ecx, %eax

4) Eliminate extra
mov instructions:

mov 4(%esp), %eax
add $5, %eax

The manual (naïve) expansion implementation of CACAO performs the “inlining con-
stants” step shown above in a separate stack-analysis pass: While scanning all IR
instructions in a basic block, it stops at instructions that push a constant value (such
as ICONST) and performs a look-ahead in the instruction stream and, if the constant
instruction is followed by an arithmetic or store instruction, the instructions are merged
(see figure 4.2).

ILOAD_0
ICONST_5
IADD
ISTORE_1

ILOAD_0
IADDCONST_5
NOP
ISTORE_1

mov 4(%esp), %ecx
add $5, %ecx
mov %ecx, %eax

Figure 4.2: A simple constant folding transformation as done by CACAO.

Note, that in the above example the last mov instruction is usually omitted, if the value
is used right after the calculation and the register is not needed otherwise.
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4.3 Automata

In general, the automaton consumes each byte-code instruction sequentially and greedily
executes code-generation action. This removes the need to build a complex tree structure
– however, as code-generation actions might want to access information on previous
instructions, it is necessary to maintain a stack of “active” instructions, i.e., instructions
that have not been emitted.

4.3.1 Finding a suitable representation of state

The straight-forward way of representing the state of the evaluation stack after each
instruction is to use the instruction op-codes directly. For example, the sequence ILOAD
a, ICONST 5, IADD, INEG, ISTORE b (representing the statement b = -(a + 5)),
produces the following states: iload, iconst_iload, iadd, ineg and <empty> as
can be seen in figure 4.3.

start

<empty> iload iconst_iload iadd ineg

ILOAD ICONST IADD INEG

ISTORE

Figure 4.3: A finite-state machine modeling the sequence ILOAD a, ICONST 5, IADD,
INEG, ISTORE b using instruction op-codes in the states.

Using the approx. 200 op-codes to uniquely identify stack state (e.g. ICONST, ILOAD
to denote the state where a constant integer and a variable integer were previously pushed
onto the stack), would produce �4

i=0 200i ≈ 1.6 ∗ 109 possible states taking stack depths
up to 4 into account. However, generating a state-machine of this size would require a
lot of memory and time, as the generation algorithm depends on the number of rules
and the number of possible states. Each newly generated state causes the list of rules to
be searched again.

Due to these problems, we were looking at other ways of representing the state of the
evaluation stack. We found a possible answer in the iburg grammar: Each rule has
a left-hand side, called root, reg and const in our example, which can also be used
to represent the current stack state. After all, ISTORE does not push anything onto
the stack, therefore it is mapped to root, ICONST pushes a constant (= const) and
all other instructions work with registers (= reg). Note that the const non-terminal
symbol is added to allow expressing constant optimizations in rules. Reusing the example
from above, the following states would be produced: reg, const_reg, reg and root.
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start

root reg const_reg reg

ILOAD ICONST IADD
INEG

ISTORE

Figure 4.4: A finite-state machine modeling the sequence ILOAD a, ICONST 5, IADD,
INEG, ISTORE b using non-terminal symbols in the states.

4.3.2 The Automaton Generator Algorithm
The basic idea is a worklist algorithm that - starting from a single state representing the
empty stack or root - repeatedly applies rules to the current state. Each application
produces a new (stack) state and added to the worklist. If the state is a duplicate of an
existing state, the existing state is reused, and not added to the worklist. As the algorithm
would continue to produce new states infinitely, there is a maximum stack-depth after
which the algorithm stops to generate new states and only produces transitions to existing
states.

Applying a rule to a state is in our case the same as interpreting the rule’s stack-effect.
For example, applying rule 3 (from listing 4.1) to the empty state produces a new state
consisting of a reg stack-item. Applying rule 4 to that new state would not produce
another new state, because INEG has 1 - 1 as its stack-effect.

Chain rules (rule 0 in our example) cannot be directly applied, because they produce no
stack-effect and are used to declare aliases between non-terminal symbols. Looking at
rule 4, when applied to the state const, the rule does not match the input state exactly
because reg != const. If no exact match (as described in the previous paragraph)
can be performed, the algorithm first applies chain rules and then tries again to apply
the other rules.

When generating the state machine, the action is emitted in the transitions. For chain
rules, the actions are emitted before the action of the rule with stack-effect.

See the following pseudo-code for a high-level description of the algorithm:

Listing 4.3: Pseudo-code showing the general idea of the generator algorithm.
def generate(terminals, nonterminals, rules)

chain_rules, rules = SplitChainRules(rules)
s0 = new State()
states = [ s0 ]
edges = []
worklist.Enqueue(s0)
while (worklist.count > 0)

s = worklist.Deque()
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foreach (r in rules)
sn = ApplyExact(r, s)
if (sn is not null)

sn = states.GetOrAdd(sn)
edges.add(MakeEdge(s, sn, r))
if (sn.StackDepth <= MAX_DEPTH)

worklist.Enqueue(sn)
end

end
end

foreach (r in rules)
sn = ApplyWithChains(r, s, chain_rules, out chain)
if (sn is not null)

sn = states.GetOrAdd(sn)
edges.add(MakeEdge(s, sn, r, chain))
if (sn.StackDepth <= MAX_DEPTH)

worklist.Enqueue(sn)
end

end
end

end
end

The interface of the generated state-machine consists of the following functions:

• int next(int current, int symbol); This function returns the next state
for the given current state and a symbol.

• void execute_action(int state, int symbol,
/* implementation-specific data */ ...); Executes the action de-
fined in the grammar. In the prototype, the implementation-specific data is not yet
extracted into a replaceable data-type.

Now, we will look at a short example and the generated automaton:

Listing 4.4: Example rules
1 reg: const # 1 # to_reg(node);
2 const: ICONST # 0 # /* nop */
3 reg: ILOAD # 0 # to_reg(node);
4 reg: INEG(reg) # 1 # ineg(node);
5 reg: IADD(reg, reg) # 1 # iadd(node);
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6 root: ISTORE(reg) # 1 # istore(node);
7 reg: IADD(const, reg) # 1 # iadd_const(node);
8 reg: IADD(reg, const) # 1 # iadd_const(node);

reg

ILOAD (r3)

const

ICONST (r2)

ISTORE (r6)

INEG (r4)

reg
reg

ILOAD (r3) const
reg

ICONST (r2)

*INEG (r1+r4)

reg
const

ILOAD (r3) const
const

ICONST (r2)

IADD (r5) ISTORE (r6)

INEG (r4)

IADD (r7) *ISTORE (r1+r6)

*INEG (r1+r4)

IADD (r8)

ISTORE (r6)

INEG (r4)

*INEG (r1+r4)

Figure 4.5: A finite-state machine as produced by our generator for a maximum stack-
depth of 2. It starts at the empty state at the top. Note the line/rule numbers from
listing 4.4 in parentheses. Also note that some transitions have been omitted for clarity.
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4.3.3 The implementation in CACAO
One core part of this thesis was the implementation of a prototype that allows an
empirical evaluation of each approach. The implementation in CACAO uses the following
specialized function signatures for the state-machine functions:

• int next(int current, int symbol);

• void execute_action(int state, int symbol, struct jitdata *jd,
struct instruction *iptr, struct instruction **stack);

struct jitdata *jd provides access to the global state of the CACAO JIT. struct
instruction *iptr points to the JVM instruction currently being processed and
struct instruction **stack points to the other JVM instructions, whose values
are on the symbolic evaluation stack.

Similar to the iburg-based approach, some stack-management is necessary, because
rules may want to access information of previous instructions. For example, when inlining
an ICONST into IADD, it is necessary for the emitting code to have access to both
instructions and not just the last, which would be IADD.

The state maintained in the implementation consists of the following parts:

• current: The current state of the state-machine.

• stack and tos: List of JVM instructions previously processed but still “active”.

• current_stackheight: The actual stack-height of the evaluation stack. This
might exceed the maximum supported stack-height of the state-machine.

• dump: If set to true, the state-machine code is skipped and each JVM instruction
is emitted directly.

The JVM instructions are processed one-by-one and first, the stack-effect of each JVM
instruction is calculated, as described previously in section 4.1.2. If the stack-effect of
the JVM instruction does not fit into the state-machine, i.e., if pop count is greater 2, or
push count is 0, or the current stack-height exceeds the maximum supported height of the
state-machine, or the JVM instruction has dynamic pop count, then all JVM instructions
on the evaluation stack, that have not been previously emitted, are emitted eagerly
followed by the current JVM instruction. If the evaluation stack-height is not empty
after this, it continues to directly emit (“dump”) further JVM instructions eagerly, until
the evaluation stack is empty and the state-machine is reset. Otherwise the current state
and the current JVM instruction are fed into the state-machine and all associated actions
are executed. If the end of the basic block is reached, all remaining JVM instructions are
emitted eagerly.
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Compared to the iburg-based approach it uses less memory, because there is no need to
allocate a node struct for every JVM instruction. As the generated state-machine has a
maximum stack-height it supports, only that many JVM instructions need to be kept in
memory. Also, because there is no need to construct tree structures, the implementation
can be greatly simplified.

4.3.4 Comparison with the manual approach
Compared with the manual approach, the finite-state machine should be more performant,
because it can avoid multiple passes over the instruction sequence and only needs to
calculate the next state from the current state and the current instruction, which
essentially is one lookup.

Another advantage of using a grammar-based approach over a hand-written code generator
is that optimizations can be derived from the grammar and are more systematic.

4.3.5 Comparison with gburg

One important difference is that the automaton generated by our generator produces
states that resemble actual stack states that are produced during runtime. gburg on
the other hand, implements each non-terminal as a state.

While using the same basic idea of using storage classes/non-terminal symbols of the
tree-parsing grammar to model the different states of the state-machine, the solution
described in this work does not require a separate “constructive grammar” to do its
work. Our generator is intentionally kept simple and primarily relies on the author of
the tree-parsing grammar to make sure to not include any conflicting rules.

Similar to gburg, the generator is unable to properly handle two rules, which use the
same terminal symbol with different left-hand side non-terminals, such as rules 1 and 2
in listing 4.5.

Listing 4.5: Pseudo-Code example for a conflict requiring look-ahead.
reg: IADD(reg, reg)
addr: IADD(reg, const)
reg: LOADADDR(addr)
reg: const
reg: addr

Because const can be promoted to reg both rules 1 and 2 are applicable. This is
solved by our generator by trying to match input non-terminals exactly, only if that fails,
chain rules are considered by the generator. However, using the greedy approach by our
generator (and also by gburg), rules that differ in their replacement symbol cannot be
fully distinguished and our generator would produce only one transition that implements
the rule that matches the inputs exactly, without applying any chain rules.
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4.4 Pushdown Automata
While working on the finite-state machine and tree-parsing approach, it became ap-
parent that the main bottle-neck with these approaches is stack-management and tree-
construction. A pushdown automaton is a finite-state machine with a built-in stack,
which would not provide more flexibility or a way to solve these problems efficiently,
hence this approach was not investigated further.
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CHAPTER 5
Results

In the following chapter, the measurements and comparison result are presented and
discussed.

The following measurements are made:

• Compiler execution time: The benchmarks are executed with CACAO’s -enable-rt-timing
compilation flag set. This flag turns on performance measurement and logging in
CACAO and produces a rt-timing.log file, which contains information about
the time consumed by the different phases of the CACAO JIT compiler.

• Instruction counts and rule hit counts: All class files of the GNU class path 0.99
are compiled and the absolute counts of total instructions and applied rules are
recorded.

• Reset hit counts: The benchmarks are executed with logging turned on and the
number of instructions processed in total and number of instructions causing the
state-machine to be reset are recorded.

• Generated code size: The benchmarks are executed with logging turned on and the
size of the generated code are recorded.

• Total execution time: The benchmarks are executed and the total execution time
is measured using the Linux perf stat command.

5.1 Compiler execution time
We measured the compilation time of three simple Java programs. The source code of
these can be found in appendix A.2. See figure 5.1 for a comparison of the time spent in
the codegen phase. The manual approach was the fastest for all test-cases, the iburg
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approach was around 2x slower in all test-cases and the finite-state machine spent around
1.5x more time in the codegen phase compared to the manual approach.
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Figure 5.1: Bar chart showing the average time (in µs) spent in the codegen phase of
simple test cases.

5.2 Generated code size

The size of the generated code is another possible metric to measure the performance
of a compiler. Our results indicate that the code generated by our implementations is
generally larger as the code generated by the manual approach. For this metric, we again
used all classes of the GNU classpath 0.99. Note that the numbers in figure 5.2 also
contain padding at the start or end of the methods.

40



5.3. Total execution time

classpath
0

1

2

3

4
·109

N
um

be
r

of
cy

cl
es

manual
iburg
fsm

Figure 5.3: Bar chart showing the average number of cycles spent when compiling the
GNU 0.99 classpath.
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Figure 5.2: Bar chart showing the generated code size of the GNU classpath 0.99.

5.3 Total execution time

Finally, we also measured the number of cycles needed to run a few test cases. The first test
case was measuring the execution of cacao -cp path/to/classes -XX:+CompileAll.
As can be seen in figure 5.3, the difference between the manual and iburg approaches is
quite large, while the finite-state machine approach is pretty close, but still not as fast as
the manual approach.
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Next, we again measured the execution of three simple Java programs. The source code
of these can be found in appendix A.2. The results of the measurements can be seen in
figure 5.4. The test cases were repeated 10 times and the values shown below are the
average. Again, the manual approach is the fastest, closely followed by the finite-state
machine approach.
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Figure 5.4: Bar chart showing the average number of cycles spent per run of simple test
cases.

Of course, the relatively small size of the benchmarks makes the results not very repre-
sentative. The numbers presented in chapter 5.2 are probably more meaningful.

5.4 Instruction counts and applied rules
The GNU class path 0.99 as used by CACAO contains 7346 classes and its methods
contain 1,481,849 instructions in total. The numbers shown in figure 5.5 describe the
number of times a constant-inlining optimization was performed in the manual, tree-
parsing and finite-state machine approaches respectively. The first column for each
approach shows total count of rule applications. The next two columns are the number
of rule applications in JVM class initializers and for all other methods.

Note that some instructions have not been included in the diagram: AASTORE, BASTORE,
CASTORE, LASTORE and SASTORE. These instructions consume three inputs from the
evaluation stack and this is something which does not fit as well into the binary tree
structure used by the iburg tree grammar. There are ways to model these instructions in
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binary trees, however, as in our sample the majority of the instructions are only found in
class initializers (where they presumably are used for one-time static array initialization).
See table 5.1 for a comparison.

total clinit only w/o clinit clinit only %
AASTORECONST 410 332 78 80.98%
BASTORECONST 1812 1502 309 82.95%
CASTORECONST 12,694 12,635 59 99.54%
IASTORECONST 5983 5499 484 91.91%
LASTORECONST 1188 1184 4 99.66%
SASTORECONST 3053 3014 39 98.72%

Table 5.1: Constant array store instruction optimizations and their uses.

Looking at the diagram in figure 5.5 it becomes very clear, that compared to the manual
approach, the finite-state-machine is unable to detect as many optimizations as one
would expect. The total number of optimizations applied in the manual and finite-state
machine implementations is 49,301 vs. 7446, which is only about 15%. If class initializers
are excluded, the numbers are 23,585 vs. 7395, which is 31%. The tree-parsing approach
is almost as “good” as the manual approach, which at least validates the implementation.

These results made us wonder why the finite-state machine approach is worse than the
manual and tree-parsing approach. An important difference between these two and the
finite-state machine approach is that for some instructions the state-machine cannot be
used and must be reset. In section 5.5 we take a look at the different reasons for these
“resets”.
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Figure 5.5: Diagram showing the absolute numbers of rule applications for the three
different implementations.
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5.5 Reset hit counts
As previously described, the finite-state machine cannot be used in the following cases:

• The height of the evaluation stack exceeds the height supported by the state-
machine. In our case we generated a state-machine that supports heights up to 4
items.

• The instruction processes more than two items from the evaluation stack or has
a dynamic stack-effect. For example, array-based store instructions or method
invocation instructions.

• Some instructions are special and have no effect on the evaluation stack or are not
fully supported: GOTO, JSR, IINC, COPY and MOVE. The first two instructions are
control-flow instructions, which do not properly operate on the evaluation stack.
GOTO has no stack-effect at all and JSR modifies the stack, but still does not fit
well into the expression-tree concept. Similarly, IINC only operates on a local
variable slot and not on the evaluation stack. COPY and MOVE are instructions
that are used by CACAO to model data-flow of the evaluation stack in register
allocation, when stack-manipulation instructions such as POP and SWAP are used.

• When an instruction that only consumes items from the stack, but does not push a
result, a reset happens as well.

In our tests using the GNU class path 0.99 a reset condition occurred 130,615 times. In
the following, we will take an in-depth look at the different reasons. In figure 5.6 the
column “Other” shows the remaining resets, which we could not assign to a specific group
and we did not look into them further.

5.5.1 Arity mismatch
If we divide the resets resulting from arity mismatches further and take a look how often
a specific arity of an instruction causes a reset, we see that arities up to 3 are responsible
for most of the resets (see figure 5.7).

When looking at the JVM language and our tree grammar, we can see that there are
some instructions accepting an arbitrary number of arguments:

• BUILTIN

• INVOKESPECIAL

• INVOKEINTERFACE

• INVOKESTATIC
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Figure 5.6: Histogram showing the general distribution of causes for resets.
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Figure 5.7: Histogram showing the number of arity mismatches per arity.
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Figure 5.8: Histogram showing the number of special instructions causing a reset.

• INVOKEVIRTUAL

• INVOKEDYNAMIC

• MULTIANEWARRAY

In addition to that, the *ASTORE group of instructions consumes three arguments from
the evaluation stack.
All these instructions are modeled in our grammar as accepting either 0 (for *ASTORE) or
2 arguments for all other special cases. In order to solve this problem (at least for less than
3 arguments) a possible solution is to introduce separate symbols in the grammar such as
BUILTIN_0, BUILTIN1_1 and BUILTIN_2 so that every arity is easily distinguishable
in the state-machines.
We did not implement this in our prototype, because the fix would only reduce the number
of resets, but it would not improve code-quality overall, because no there currently exists
no optimization rule that works with any of the above instructions.

5.5.2 Special instructions
The control-flow instructions GOTO and JSR make up the majority of special instructions
causing a reset (see figure 5.8). Because these instructions do not have a normal stack-
effect but rather cause transfer of control, it is important that all instructions prior to
these are emitted in the current basic block.
The other JVM instruction that does not directly operate on the evaluation stack but
has side-effects is the IINC instruction.
The COPY and MOVE instructions do not have a proper stack-effect as well and therefore
don’t fit in the state-machine concept either.
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Figure 5.9: Histogram showing the stack heights causing a reset.
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Figure 5.10: Histogram showing the stack heights before a reset.

5.5.3 Maximum stack

Figure 5.9 shows the distribution of stack heights that trigger a reset: Because the
generated state-machine only supports stack-heights up to 4 items, it cannot be used if
an instruction operates at that limit.

Increasing the maximum supported stack-height in the state-machine is possible, but
compared to other causes for a state-machine reset, the number is quite small.

5.5.4 Reset heights

Another interesting metric is the stack height of the state-machine right before a reset
happens. As can be seen in figure 5.10 most of the time a reset happens with one item
on the stack.
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5.5.5 Reset run length and state-machine run length
There are two more attributes that can be used to understand the performance and quality
of the state-machine are “reset runs” and “state-machine runs”. A longer state-machine
run means that more instructions have been processed without requiring a reset, whereas
the length of “reset runs” shows how many instructions are needed for the code feeding
the state-machine to return to using the state-machine.

The shortest reset run is one instruction and the longest is 10,466 instructions. The
average reset run is 6.3 instructions. The shortest finite-state machine run is zero
instructions and longest is 329 instructions. The average finite state.machine run is 2.45
instructions.

Comparing these numbers to the median and average length of a basic block, which is 5
and 7.85 instructions, we can deduce that on average a basic block cannot be completely
processed by the finite-state machine.
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CHAPTER 6
Further Work

During the writing of this thesis the following ideas came up, but investigating them was
beyond the scope of this work.

• For simplicity, we injected our code generator in the codegen phase of CACAO.
However, usually instruction selection is performed at an earlier stage in the
compilation pipeline before register allocation takes place. It would be possible
to reduce the number of registers allocated by performing instruction selection in
advance.

• For the iburg approach we have seen that the creation of expression trees is
expensive. Switching the whole compilation pipeline to a tree-based IR, would
improve performance and reduce memory usage, because it would remove the need
for extra allocations.

• It might be possible to reduce the size of the generated automaton by introducing
a separate table of function pointers, which can be addressed much faster than the
generated switch tables.

• When comparing the iburg and fsm implementations further research is necessary
to find out, why exactly there is a difference in the “applied rule counts”. In theory
both approaches should lead to similar results for the grammar used with CACAO,
because there are no complex rules.

• JVM instructions that work with exactly three arguments could be implemented in a
binary tree using an additional node: For example, AASTORE(address, index,
value) could be represented as binary tree as AASTORE(_ADDRESS(address,
index), value).

51



6. Further Work

• The BFE grammar could be extended to support more non-terminal symbols and
other rules.
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CHAPTER 7
Conclusion

This work demonstrates that it is possible to generate an efficient finite-state automata
for stack-based languages from tree-parsing grammars.

The results presented in the previous chapters demonstrate that the use of finite-state
automata as a means of instruction selection/code generation is a more efficient strategy
than using tree-parsing algorithms that require two passes.

The code-size produced by the finite-state automaton is comparable to CACAO’s hand-
written code-generator. One advantage of the finite-state automata approach is that
rules can be written in a declarative fashion and there is no need to manually perform
pattern-matching. Of course, due to the various assumptions made to simplify the
problem, it is not as expressive as the iburg approach.

For projects that want to use a code generator generator to solve the problem of instruction
selection, the finite-state machine approach and generator presented in this work are a
viable alternative to iburg, especially if the problems mentioned in the previous chapters
are solved.
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Appendix

A.1 awk script used to generate the reducer
The following grammar and script was used to produce a reducer for iburg:

1 #!/bin/nawk -f
2
3 # AWK script for generating a reducer for iburg
4 # this is a modified version of the BFE script
5
6 function ltrim(s) { sub(/^[ \t\r\n]+/, "", s); return s }
7 function rtrim(s) { sub(/[ \t\r\n]+$/, "", s); return s }
8 function trim(s) { return rtrim(ltrim(s)); }
9

10 /^%%$/ {
11 part+=1;
12 FS="#";
13 print $0;
14 rule=1;
15 next;
16 }
17 part==0
18 part==1 && NF>0 && /^\s*[^\/]{2}/ {
19 printf "%s = %d",$1,rule;
20 if ($2!="")
21 printf " (%s)",$2;
22 printf ";\n";
23 action[rule]=trim($3);
24 rule++;
25 next;
26 }
27 part==2
28 END {
29 if (part==1)
30 print"%%"
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31 print"void burm_reduce(NODEPTR_TYPE bnode, int goalnt)";
32 print"{";
33 print" int ruleNo = burm_rule (STATE_LABEL(bnode), goalnt)

;";
34 print" short *nts = burm_nts[ruleNo];";
35 print" NODEPTR_TYPE kids[100];";
36 print" int i;";
37 print"";
38 print"#if DEBUG";
39 print" fprintf (stderr, \"%s %d\\n\", burm_opname[bnode->op],

ruleNo); /* display rule */";
40 print" fflush(stderr);";
41 print"#endif";
42 print" if (ruleNo==0) {";
43 print" fprintf(stderr, \"Tree cannot be derived from start

symbol\\n\");";
44 print" exit(1);";
45 print" }";
46 print" burm_kids (bnode, ruleNo, kids);";
47 print" for (i = 0; nts[i]; i++)";
48 print" burm_reduce (kids[i], nts[i]); /* reduce kids

*/";
49 print"";
50 print"";
51 print" switch (ruleNo) {";
52 for (i in action) {
53 if (action[i]!="") {
54 print " case "i":";
55 print " "action[i];
56 print " break;";
57 }
58 }
59 print" }";
60 print"}";
61 }

The generated reducer retrieves the assigned rule number from each node, visits all child
nodes and then executes the semantic action.
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A.2. Source code of custom Java benchmarks

A.2 Source code of custom Java benchmarks
A.2.1 Factorial

The Factorial program implements n! using a recursive algorithm.

1 class Factorial {
2 public static void main(String[] args) {
3 final int n = Integer.parseInt(args[0]);
4 System.out.println(fact(n));
5 }
6
7 static int fact(int n) {
8 if (n < 2)
9 return 1;

10 return n * fact(n - 1);
11 }
12 }

A.2.2 Permutations

The Permutations program implements calculating all permutations of an array of
integers.

1 import java.util.*;
2
3 class Permutations {
4 static List<int[]> permutations(int[] nums) {
5 List<int[]> result = new ArrayList<>();
6 permutationsHelper(nums, 0, result);
7 return result;
8 }
9

10 static void permutationsHelper(int[] nums, int start, List<int[]> result) {
11 if (start == nums.length) {
12 result.add(nums.clone());
13 return;
14 }
15 for (int i = start; i < nums.length; i++) {
16 swap(nums, start, i);
17 permutationsHelper(nums, start + 1, result);
18 swap(nums, start, i);
19 }
20 }
21
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22 static void swap(int[] nums, int i, int j) {
23 int temp = nums[i];
24 nums[i] = nums[j];
25 nums[j] = temp;
26 }
27
28 public static void main(String[] args) {
29 int[] numbers = new int[args.length];
30 for (int i = 0; i < numbers.length; i++) {
31 numbers[i] = Integer.parseInt(args[i]);
32 }
33 for (int[] p : permutations(numbers)) {
34 for (int i = 0; i < p.length; i++)
35 System.out.print(p[i] + " ");
36 System.out.println();
37 }
38 }
39 }

A.2.3 NewtonMethod

The NewtonMethod program implements approximation of
√

n using Newton’s method.

1 class NewtonMethod {
2 public static void main(String[] args) {
3 final double n = Double.parseDouble(args[0]);
4 final int maxSteps = Integer.parseInt(args[1]);
5
6 double q = 1;
7 for (int i = 0; i < maxSteps; i++)
8 q = (q + n / q) / 2;
9

10 System.out.println(q);
11 }
12 }
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