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Kurzfassung

Der Ausbau der Windenergie auf globaler Ebene erfordert zuverlässige und aussagekräfti-
ge geografische Informationen über die Standorte von Windkraftanlagen. Studien haben
gezeigt, dass man mithilfe von OpenStreetMap umfangreiche globale Daten über die
Windinfrastruktur generieren kann, jedoch wurde bisher wenig Aufwand in die Darstel-
lung und Analyse dieser Daten mittels visueller Werkzeuge gesteckt. Um eine präzise
visuelle Untersuchung durchzuführen, ist es von großer Bedeutung, die passenden Pa-
rameter zur Charakterisierung von Windparks zu kennen und die geeigneten visuellen
Kodierungen für die globale und lokale Analyse zu nutzen. Aus diesem Grund haben wir
eine Designstudie durchgeführt, die zur Erstellung eines Datensatzes namens Enriched
Data of Wind Farms (EDWin) sowie eines Prototyps für dessen interaktive Visualisie-
rung führte. In einer Nutzer:innenstudie haben wir die Leistung des Prototyps bei der
Überprüfung unbestätigter Behauptungen über Windparks aus der Literatur sowie bei
der Identifizierung spezifischer Merkmale von Windparks durch vereinfachte visuelle
Kodierungen evaluiert. Der Prototyp ermöglichte es den Nutzer:innen, die Aufgaben
erfolgreich zu absolvieren, jedoch benötigten manche von ihnen Unterstützung durch
die Befragende Person aufgrund des Bedarfs an einer verbesserten Funktionalität zur
dynamischen Gruppierung. Darüber hinaus zeigten Interviews mit Expert:innen aus
der Windenergiebranche, welche Merkmale für die Community von Bedeutung sind, um
Windparks zu charakterisieren. Diese lassen sich in technische, zeitliche, Gelände- und
Wettermerkmale unterteilen. Aufgrund der erfassten Merkmale konnten mehrere Er-
kenntnisse gewonnen werden, darunter die Feststellung, dass die weltweit vorherrschende
Landbedeckung für die Installation von Windkraftanlagen landwirtschaftliche Flächen
sind und dass die vorherrschende Landform flaches Gelände ist.
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Abstract

The global expansion of wind energy requires robust and meaningful geographic in-
formation about its locations. Studies have shown how enriched global data on wind
infrastructure can be generated using OpenStreetMap but have neglected to represent
and make it analyzable using visual tools. For an accurate visual investigation, knowing
which parameters can be used to characterize wind farms and which visual encodings are
suitable for global and local analysis are essential. With this aim in mind, we conducted a
design study that produced a dataset called the Enriched Data of Wind Farms (EDWin)
and a prototype for its interactive visualization. Through a user study, we evaluated
the tool’s appropriateness for exploring unproven claims about wind farms from the
literature and identifying specific wind farms characteristics through simplified visual
encoding. The prototype enabled users to complete the tasks, but many needed help
from the interviewer due to the need for an improved dynamic grouping functionality.
Furthermore, interviews with wind energy experts revealed which features are relevant
for the community to describe wind farms. They can be divided into technical, temporal,
terrain, and weather characteristics. From those we have covered, several insights were
generated, including that the worldwide predominant land cover for the installation of
wind infrastructure is agricultural land and that the predominant landform is flat terrain.
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CHAPTER 1
Introduction

1.1 Motivation & Problem Statement
Climate change is becoming increasingly noticeable and continues to progress, posing
far-reaching risks to natural and human systems [1]. With the Paris Agreement, enacted
in 2016, 196 parties of the international community have set a goal to counter the
progression of global warming and limit it to below 2 degrees [2].

The energy sector is responsible for three-quarters of global greenhouse gas emissions,
making it the largest polluter compared to other sectors [3]. Moreover, in 2022, there
was a growth of 3% in energy demand, similar to the average growth of the last ten
years, which suggests that energy demand in the future will still grow strongly [3]. At
the same time, we are facing the first global energy crisis, which the International Energy
Agency (IEA) calls a reminder of the fragile and unsustainable current energy systems [4].
Therefore, changes are urgently needed, and an acceleration of the growth of renewable
energy infrastructure is essential to get on track towards fulfilling the goals and create a
"more secure, sustainable and affordable energy system" [4].

On the global market, changes are becoming more noticeable in recent years. According
to the "Renewables 2021: Analysis and forecast to 2026" report from the IEA, 2020 was
the first year renewable energies generated more electricity than fossil fuels in the EU
[5]. By 2026, renewable energies are expected to generate 37% of the world’s electricity,
becoming its largest contributor. The share of non-hydro energy sources is expected to
double, reaching 18%, and will be led by wind and solar energy expansion [6] [7].

Among these, offshore wind farms will see the largest growth over the next five years by
tripling their total capacity and thus generating 1.5% of energy from renewable sources
in 2026. Onshore wind additions will also grow and be almost 25% higher on average in
2021-2026 than in 2015-2020 [6].
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1. Introduction

The increasing demand for renewable energy has led to the growth of wind energy as
a significant power source. As a result, wind farms play a vital role in reducing global
emissions and mitigating the effects of climate change. Understanding the distribution
and characteristics of wind farms is important for researchers, policymakers, and the
general public. However, information on a global scale is only available in summarized
form, with installed wind infrastructure measured in terms of energy capacity, typically
expressed in megawatts (MW) or gigawatts (GW). No information is included on where
wind farms are distributed worldwide, nor their exact location, what they look like or
what their characteristics are. Even in one of the most important sources about the
situation and the progress of wind energy, the annual Global Wind Report of the Global
Wind Energy Council (GWEC), such figures are hard to find [5].

The lack of information limits the land analysis on a global scale and the research potential
for many application fields, such as estimates of capacity factors, power density, wake
effects, and land requirements for wind energy; assessments of climate and health benefits
of wind energy; the impact of wind turbines on local climate and surface temperature;
analyses of public acceptance, noise pollution and land use preferences. Many more
are elaborated in [8, p. 2]. Usually, studies that investigate these application fields are
made on selected sample data, which leads to problems with its representativeness. For
example, the study in [9] encountered this very problem when it sought to investigate
the differences between onshore and offshore wind farms, where it concluded that wider
spacing between the turbines and larger entities of installations characterizes offshore
wind farms. However, the results were based on a dataset of 44 wind farms, which, the
authors state, posed dangers to the validity of the statistical evidence [9]. The literature
presents further claims about global wind infrastructure for which there is currently no
possibility to prove them truthful. These claims are discussed in Chapter 2 and will be
investigated within the thesis.

To analyze these aspects in the future, there is an urgent need for data and a tool
that presents robust and meaningful geographical information on installed wind energy
infrastructure globally. It may prove essential for future research and allow potential
trade-offs for expanding the global energy grid in an effort to curb negative impacts,
such as damaging biodiversity [7]. However, collecting and visualizing data on wind
infrastructure can be challenging. With this thesis, we want to address the knowledge gaps
in the domain and contribute with the help of visual analytics. We aimed to fill both gaps
and have created a dataset we named the Enriched Data of Wind Infrastructure (EDWin)
[10] and a tool for the exploratory visualization of it. The data contains the location of
wind farms and turbines worldwide and has been augmented with characteristics obtained
from the location.

1.2 Research Questions
The title of the thesis summarizes the problem we want to address, namely, what global
wind farms look like. Obviously, there is no single answer to this question, as there are
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thousands of wind farms, all of which are unique and look different from each other. The
question "What do wind farms look like?" is a provocation on the current openness of the
issue and our attempt to solve it through visual means. Thus, we conduct a design study
to develop an interactive visualization that allows users to explore for themselves what
wind farms look like, where they are and what their characteristics are. The resulting
tool will enable experts to own the data and gather the insights they are interested in.

We have structured the problem into three research questions.
RQ1 What features can be used to characterize wind farms worldwide, and what local
patterns do they present?

RQ2 What visualization technique is appropriate to explore the claims about wind farms
found in the literature using the EDWin?

RQ3 What visual encoding can accurately capture the main visual features of a wind
farm (size, spacing, terrain, nearby infrastructure) and represent them for a [quick] clear
visual comparison?

1.3 Structure of the Work & Main Contributions
Collecting and visualizing data on wind infrastructure is a challenging task. In this
thesis, we present a study on designing and evaluating a prototype for the explorative
visualization of global wind farm data, intending to improve our understanding of the
potential for wind energy.

We begin by reviewing the current state of the art in wind farm data collection and
visualization and describe the approach we take to design and evaluate a prototype for
the explorative visualization of global wind farm data. Herefore, we distinguish between
the visualization of individual wind turbines and the visualization of their grouping into
wind farms.

One key aspect of our approach is using OpenStreetMap (OSM) as a source of location
data for our prototype. We introduce our developed dataset, called EDWin (Enriched
Data of Wind Farms) [10], based on OSM data and enriched with additional variables
obtained from various databases. The decision for the enriching variables is based on the
literature research and claims about wind farms, which we found in the literature but
still need to be validated by representative data. The research questions will address the
verification of these claims, with the aim of answering them using the developed tool.

We describe the process of cleaning and enriching the data and the unsupervised clustering
and preliminary analysis we conducted to determine the appropriate parameterization
to obtain wind farms. For this purpose, we develop a dedicated visualization tool that
compares different clustering parameters on global hotspots of wind turbines. The tool is
presented in Section 6.2.

3



1. Introduction

The methodology of the design study combines the Nine-stages framework with two
approaches for developing information visualization systems designs: the Nested Model
and the Design Triangle [11] [12].

We then describe the resulting prototype, which allows users to filter wind farms and wind
turbines according to various variables, visualize them on a map, view their frequency
distribution over self-selected variables, and explore individual wind farms. We also
present a specific visual encoding for wind farms that provides an intuitive understanding
of their characteristics.

We evaluate the prototype through a user study with experts in wind energy, as well as
with visualization and geography experts. Our evaluation finds that the prototype is
useful for generating insights about the global wind infrastructure and fulfilling various
assignments. However, we also identify limitations and potential areas for future work,
including methods for estimating global turbine rotor sizes and power outputs, ideas for
building a consistent database of wind infrastructure, and plans to make the prototype
available to the public.

Finally, we analyze the results of our study and answer the research questions. We
find that technical, temporal, terrain, and weather characteristics are all essential for
describing wind farms. Insights we gained include that the predominant land cover for
wind farm installation is agricultural land, and the predominant landform is flat terrain.
We conclude by discussing the implications of these findings and our prototype’s potential
impact on wind energy research and policy.

The major achievements that the study has acquired are listed below:

• Analysis of wind farms and wind turbines visualizations in the literature and
description of their advantages and disadvantages.

• A literature search for relevant characteristics for describing wind farms.

• A literature search for definitions of wind farms.

• The development of the EDWin dataset [10].

• A visualization tool for optimizing the parameterization to cluster wind turbines
into wind farms using the DBSCAN algorithm based on random global hotspots of
wind turbines.

• A detailed description of the methodology for conducting a design study that
combines multiple approaches for designing interactive visualizations.

• A developed prototype that can be downloaded and used.

• The description of a user study to evaluate the prototype that combines qualitative
and quantitative methods.
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• A summary of important aspects gained through discussions with wind energy,
visualization, and geography experts.

• A detailed description of the limitations and ideas for the continuation of this
project.

• Through answering the research questions, a verification of the competence of the
developed tool and the detection of important characteristics that describe wind
farms in a general sense.
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CHAPTER 2
Claims about wind farms

In recent years, the global demand for clean and sustainable energy has led to an increase
in the construction of wind farms. While wind energy has been hailed as a promising
alternative to fossil fuels, it is important to ensure that the information used in research
about wind infrastructures is accurate and reliable. Unfortunately, many claims related
to wind farms lack substantial evidence and may be based on intuition rather than
empirical data.
To address this issue, we conducted a literature review and identified three claims related
to land use, size, and spacing of wind farms that require further investigation. These
claims have been discussed in previous studies but have not been sufficiently validated
with representative data. To address this gap, Research Question 2 aims to explore these
claims using an exploratory visual analytics approach that can assist in assessing the
validity of the claims based on available data. Our goal is to provide evidence-based
insights that contribute to a more comprehensive understanding of wind infrastructures
and help researchers and stakeholders make informed decisions about their development.

Claim 1: "Wind farms are often built on land that has already been impacted
by land clearing and they coexist easily with other land uses (e.g., grazing,
crops)." [13, p. 184-222]

Claim 2: "Wind farms comprise more than one turbine. In the United States
and China there are some wind farms of several hundred turbines, but in
Western Europe most wind farms comprise between 10 and 50 turbines." [14,
p. 504]

Claim 3: "Offshore wind farms are characterized by turbines that are more
widely spaced and they are much larger entities – generating far more power
in aggregate than onshore counterparts." [9, p. 50]
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CHAPTER 3
State of the Art

This chapter will look at the current literature on wind farms. We want to find out for
which areas of the domain the acquisition of global data would be significant. Finally, we
will explore related work regarding dataset creation and wind farm visualizations. The
most used search engines for literature research were the CatalogPlus from the TU Wien
[15], ScienceDirect [16] and Google Scholar [17].

3.1 Wind Energy in the Literature
There has been a surge of literature on wind farms, with a focus on examining land
suitability and construction opportunities for wind energy infrastructure, as in [18], [19],
and [20]. These studies are applied locally and primarily concerned with the climate
characteristics of the land area but neglect, due to limited capabilities, the assessment
of already installed infrastructures in the place or similar regions. This limits the land
analysis and disregards suitability on different aspects than the purely climatic one, like
the socio-economic level, the impact on biodiversity in the region and on a global scale,
and many other application fields [8, p. 2]:

• impact of wind turbines on local climate and surface temperature

• estimates of capacity factors, power density, wake effects, and land requirements
for wind energy

• assessments of environmental and health benefits of wind energy

• analyses of public acceptance, noise pollution, land use preferences, and changes in
property values associated with wind turbines

• estimates of the quality of wind resources in wind fleet

9



3. State of the Art

• mitigation of radar interference from wind turbines

• analyses of power grid impacts and requirements associated with high penetration
of renewable energy

• geospatial analyses of the technical potential of renewable energy

To address these aspects, we need robust, up-to-date geographic information on the
installed wind energy infrastructure worldwide. Acknowledging such information may
prove essential for future research and enable potential trade-offs for maximizing the
expansion of the global energy grid with an effort to limit negative impacts [7].

Another research confirming the need is the study "Do onshore and offshore wind farm
development patterns differ" by Peter Enevoldsen and Scott Victor Valentine [9]. Among
other questions, the researchers investigate whether there are differences in the shape and
size of offshore and onshore wind farms and whether this results in differences in energy
production. The study shows that offshore wind farms are characterized by the wider
spacing between the turbines and larger entities of installations, resulting in much higher
energy production than onshore parks. However, the authors performed the analysis on
a relatively small dataset of 44 wind farms, which, they state, "posed dangers to the
validity of the statistical evidence". Their results confirm the gap in the possibility of
obtaining large-scale datasets.

A relevant domain for analyzing wind infrastructure is also spatial planning and designing
policies for cultivating wind farms in a region. The Dissertation analysis "wind power
deployment in urbanized regions" by Pia Nabielek [21] at the Technical University of
Vienna provided exciting insights into the evaluation of the effectiveness of spatial
planning concepts for the use of wind energy. She analyzed planning approaches for wind
energy in three European urbanized regions: South Holland (Netherlands), Lower Austria
(Austria), and East Flanders (Belgium). Each region set wind energy targets as part of its
spatial planning and included zones for wind installations in its agenda a long time ago,
which were considered appropriate at that time. However, since then, regions have failed
to reflect on and evaluate the consequences of these decisions in light of technological
and economic innovation and changing societal attitudes. Accordingly, policymakers may
overlook new approaches that better fit the changing context to manage renewable energy
deployment targets over time. The author mentions that as renewable energy continues
to grow post-2020, innovations in planning practices along the way will be necessary to
facilitate better exchanges between planning and implementation.

3.2 Data Models
In this section, we will examine relevant research related to our project. We will evaluate
the current state of the art in obtaining global wind farm data, with a focus on using
OpenStreetMap as a source.

10



3.2. Data Models

3.2.1 Data
Recent studies have emphasized the importance of collecting granular data on the spatial
distribution of wind infrastructure. One such study, "Spatial Distribution of Wind
Turbines, Photovoltaic Field Systems, Bio-energy, and River Hydro Power Plants in
Germany" [22], published in 2019, discusses how the expansion of renewable energy
has led to conflicts with the goals of nature conservation and the acceptance of local
communities. These conflicts include the reduction of agricultural land, plant degradation,
visual impacts of land use, and other issues. The authors highlight the importance of
researching the effects of renewable energy sources, such as wind and solar energy, on
humans and the environment. Research can be conducted through case studies or close
monitoring, but accurate location data is essential. To address this need, the authors
compiled a publicly available dataset on renewable energy plants in Germany, including
their spatial information and parameters such as capacity, total size, and commissioning
year for wind turbines. This dataset was provided by the German authorities of the
federal states and was collected and partially augmented by the authors. The dataset
is useful for researchers and policymakers in Germany concerned with optimal spatial
planning for allocating and expanding renewable energy infrastructures in compliance
with societal and environmental requirements. However, such an undertaking is more
difficult on a global scale as only a few countries provide accurate and publicly available
national data.

The authors of the paper "Harmonized global datasets of wind and solar farm locations
and power" [7], Dunnett et al., also recognized the issue of a lack of publicly available,
global, and harmonized spatial data for wind and solar farms. Their publication was the
main inspiration for our study’s approach to generating and processing data.
They used the publicly available OpenStreetMap database to obtain spatial data on the
location of infrastructures the wind energy. Through an analysis of key/value pairs, they
identify the query that returns the most complete data, comparing a dataset containing
50 random wind turbines with known locations. They result with the combination of
the tags generator:source = wind and plant:source = wind and get 305,306
wind point data and 1,899 wind polygons. In data processing, they classify according
to the location, whether in the ocean or an urban area. Moreover, the authors perform
the clustering algorithm DBSCAN to group the individual turbines into "wind farms"
based on spatial proximity. The scale for spatial clustering is determined in advance
using Ripley’s Key function, which describes spatial characteristics of point patterns and
indicates whether the turbines are clustered, dispersed, or single random points in space.
With this project, the paper’s authors are on a new path because for the term "wind
farm", a definition in terms of spatial distances arises.

Furthermore, the authors estimated wind farm power capacity for part of the data solely
from the number of turbines contained and the installation area. They used regression
equations derived from three other independent datasets to get estimates based on the
turbine density. According to the authors, these are the best possible estimates of wind
capacity on a global scale at that time. Nevertheless, they mention that the reader should
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3. State of the Art

take the estimates with caution: the datasets used for the regression equations come
from very developed wind energy countries - USA, UK, and Germany - and thus, the
wind farms are more likely to yield high power [7]. Hence, the importance of the location,
number, and density of wind turbines in farms to estimate their capacities is evident.
The farm layout and the average wind conditions at the installation site would also be
factors worth considering for estimation models. An inappropriate layout design can be
affected by wake loss, i.e. when turbines are located in the wind shadow of other turbines,
and thus less wind is captured, and energy is lost [23]. To avoid related problems, there
are many scientific articles dealing the optimization of wind farm layouts, coupled with
the number of turbines and their density, making this a recognized problem in the wind
energy community i.e. [24], [25].

3.3 Wind Farm Visualizations
We will investigate various techniques for visualizing wind data, including both individual
wind farms and the distribution of multiple wind farms. We found it necessary to
distinguish between those visualizing multiple wind farms and their distribution and
those depicting individual wind farms and their layout, as we are interested in both.

Individual wind farms

The visualization of individual wind farms is common in publications dealing with wind
farm layouts. They often show the wind farms in scatter plots, where the axes of the
plots represent meters, e.g., Figure 3.1. Characteristics about the area of installation
were found as shown in Figure 3.2, in which a heat plot indicates the elevation level
of the terrain. The heat map can also be replaced by other characteristics, including
climatic ones such as average wind speed.

Figure 3.1: Wind farm layout in meters. Source: [26]
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3.3. Wind Farm Visualizations

Figure 3.2: Wind farms layout visualization with heat map for elevation level. Source:
[27]

Case studies on the analysis of already built wind farms use more site-specific visual-
izations, such as [28], where the authors determine important soil parameters for the
foundation design of an offshore wind farm in Zhuanghe. They visualize the wind farm
as Figure 3.3 shows.

Figure 3.3: Wind farm visualization that combines location and layout. Source: [28]

This example is relevant to our study as the location of the wind farms plays a central
role in our work.

Overall wind farm distribution

The findings were limited regarding visualizations of overall wind farms and turbine
distribution, for example, in countries, regions, or even globally. We found some publicly
available websites that visualized country-based wind turbines, such as the USGS, which
shows wind turbines in the USA. At further distances, the turbines are shown in a heat
map; at closer zoom, the individual turbines are visible, where turbines belonging to the
same farm have the same color. One can hover over the turbines to get information about
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the year of construction, the capacity, the rotor diameter, the height and manufacturer
and more. There is a screenshot in Figure 3.4 and, in the caption, the corresponding link.

Figure 3.4: U.S. Wind Turbine Database Viewer. Source: [29]

This interactive visualization serves as a reference for our visualization since a map
representation is also necessary to show the distribution of wind farms around the world.
However, the given information about the turbines is very specific and would only be
available for some parts of the world. Moreover, this visualization lacks information about
other characteristics of the wind farms, for example on what kind of ground conditions
or elevation they are located.

Another reference for geographical wind energy presentation, though again limited to
data from the USA, is shown in Figure 3.5. It refers to all energy sources and aims to
demonstrate their comparative deployment in the USA. However, wind infrastructure is
not explicitly included in the visualization, instead aggregated capacities are shown in a
bubble map.

Figure 3.5: Mapped: How the US generates electricity. Source: [30]
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3.3. Wind Farm Visualizations

To achieve the goals of the project, it was important to create visualizations with the
exact location of each turbine and the characteristics associated with its location. While
such visualizations were available for individual wind farms, we did not find corresponding
visualizations for large-scale data, i.e., on a regional or global scale. In this respect, this
project is a pioneer project.
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CHAPTER 4
Methodology

This chapter presents the methods that we used to answer the research questions. It
details how we followed the steps of the applied design study methodology and what
additional methods we used to design and validate the visualizations. After defining
a data-user-task model, specific requirements are established that will guide the data
enrichment in Section 5.4 and the design decisions in Section 6.1.

4.1 Design Study Framework
We followed the nine-stages framework for conducting design studies by Sedlmair et
al. [11]. To design and validate the visualizations we combined the Nested Model by
Tamara Munzner [31] and the Design Triangle by Miksch and Aigner [12]. To gain access
to expert knowledge and understand the domain problems, we collaborated intensely
with an expert in the field, Dr Johannes Schreiber. He has a mechanical engineering
background and specialized in wind energy, for which he held a chair at the Technical
University of Munich (TUM). Now he has founded a startup and gives consultations on
wind farm control, wake loss and energy production analysis.

We will first briefly introduce the frameworks for the design study and the visualizations.
Then our use of them to develop graphic designs is described.

Sedlmair, Munzner, and Meyer developed the nine-stage framework as a basic methodology
for conducting design studies. An overview of the framework is given in Figure 4.1. It
consists of nine phases, divided into three categories: the precondition phase describes
the requirements for conducting a design study; the core phase describes the steps of
the actual design study, and the analysis phase the steps for interpreting the results
retrospectively.
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Figure 4.1: Nine-stages framework

The individual stages are carried out linearly but may overlap, and jumping back to
already passed stages to edit them is often necessary. Validation occurs in every stage
and is category-dependent. In the precondition phase, the validation is personal; in
the core phase, it is inward-facing, i.e. evaluation of the outcomes together with the
domain experts. In the analysis phase, it is outward-facing, i.e. justification of the
results to the outside world. For each category, we will use Munzner’s Nested Model,
which gives appropriate methods for validation.

Nested Model

Munzner introduced the Nested Model [31] for the development and validation of visual-
ization designs. It consists of 4 layers:

• Characterization of tasks and data in the vocabulary of the domain problem.

• Mapping of those into abstract operations and datatypes.

• Designing visual encodings and interaction techniques.

• Creation of algorithms to efficiently execute visualization designs.

As Figure 4.3 shows, the layers are nested; Errors are propagated from the outer to the
inner layers through the nesting of the system. To encounter this, validation methods
are provided in each layer.

Figure 4.2: Nested Model
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Design Triangle

The Design Triangle is a framework for designing effective visual analytics solutions. It
suggests that the design of a visual analytics system should consider three main aspects:
the characteristics of the data, the user, and the tasks to be completed by the user. These
three aspects form the three corners of the triangle.

Figure 4.3: Design triangle

The characteristics of the data refer to the type, size, complexity, and structure of the
data that will be visualized. Different data types and structures may require different
visual encodings and analytical methods to convey the information they contain effectively.
The user refers to the stakeholders using the visual analytics system. The design should
consider the needs and capabilities of the user in order to support their tasks and decision-
making processes effectively. The tasks refer to the specific goals and activities that the
user will be performing with the visual analytics system. These may include exploration,
analysis, comparison, or decision-making tasks.
Considering these three aspects together, the Design Triangle helps choose appropriate
visual representations, analytical methods, and interaction techniques for the specific
data, user, and tasks. This helps ensure that the visual analytics system is effective and
efficient in helping the user to understand and gain insights from the data [12].

4.2 Design Process
In this section, we explain how we applied the methodology frameworks to our research.

4.2.1 Precondition phase
The first phase of the nine-stages framework consists of the learn, winnow and cast stages.
We explored Literature on existing visualizations of wind energy data and described it in
more detail in Section 3.3.
The Winnow phase for assigning the project’s collaboration roles was predetermined as
we had already collaborated with the domain expert for the interdisciplinary project. He
provided interesting problems for visualizations for further projects and consequently
originated this one as well.
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The role of the domain expert was that of the front-line analyst, who analyses the data
using the new visualization. The role of the gatekeeper was taken by the supervisor and
co-supervisor, who were responsible for its authorization.

Three people were most involved in the project, the author of this thesis, taking the role
of the visualization researcher, the domain expert and the co-supervisor. We decided to
have regular meetings from the beginning, usually with all three people participating.
Depending on the requirements, only the visualization researcher and the co-supervisor
were involved, for example, when there were only bureaucratic Everyone agreed to invest
time over the next few months. After clarifying roles and time frames, the project was
ready for the main phase of the project.

4.2.2 Core phase
The core phase consists of the discover, design, implement and deploy stages. The first
three stages overlap with the Nested Model and will be explained in that context. All
critical decisions for the design and creation of the visualizations were made here.

Problem characterization

The characterization of the domain problem followed from conversations with the domain
expert and the statements found in the literature about wind farms, which are covered
in Section 3.3. We have divided them into three types of domain problems we will refer
to as P1, P2, and P2 corresponding to the research questions RQ1, RQ2, and RQ3.

P1 is about the detection of global and local characteristics that can be used to describe
wind farms. We address this issue with RQ1. It results from the discussions with domain
experts and the insights they gain through using the developed solution.

P2 is about making global wind farms’ distribution, characteristics, and their relationships
analyzable to explore the claims from Section 3.3. Thus, P2 corresponds to solving RQ2.

P3 aims to develop farm-specific visual encodings to represent these characteristics and
the appearance of P2 in a simplified and effective way. It should facilitate a comparison
between a few wind farms by quickly looking at them in a visual sense to evaluate
their size, spacing, terrain condition and nearby infrastructure. The solution to this
corresponds to RQ3.

To fully characterize the scope of the application for which we are performing a design
study, we sample a space of possible data, users, and tasks, thus coinciding with the
Design Triangle framework, according to our problem characterization, the expectations
of the domain expert, and our vision. This allows us understand requirements and
instantiate prototypes over a design space.

Data. P2 and P3 build on the same data, yet in a different vocabulary. It is information
about worldwide turbines and wind farms’ location and characteristics. The relevant
characteristics were derived from the statements about wind farms listed in the Research
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Questions Section 1.2. For P2, the data is factual wind farm information about the
country, continent, land cover, landform, elevation, shape and turbine spacing. For P3,
it is the same information (with the addition of infrastructure near the wind farm) yet
in the form of visual encoding in order for it to be legible from an image/map without
explicit semantics.

Users. The following persons took the role of potential users of the visualization:

• A wind energy researcher who wants to enhance a publication with large-scale data

• An investor who wants to study wind farms in a particular area and evaluate
construction possibilities

• A policy maker trying to create guidelines for better exchange of planning and
implementation of wind farms

• A non-expert in the field who has seen a wind farm and wants to know its extent

• A student researching wind energy who needs information about the global wind
resource infrastructure

Tasks. For P2 and P3, explicit tasks were defined, whose answers led the design of the
visualizations. P2 tasks, take into consideration multiple wind farms:

1. Compare wind farms between countries and continents

2. Analyze how wind farms and turbines are distributed across land characteristics

3. Examine the distribution of spacing between turbines in wind farms

4. Find global hot-spots and cold-spots of wind farms and turbines

5. Discover different types of wind farm shapes

P3 tasks, take into consideration one or few wind farms. The tasks should be solved by
mere observation.

Examine/compare the following visual information about the windfarm/s: (1) size, (2)
distance between the turbines, (3) nearby infrastructure, (4) characteristics of the terrain

Design requirements

The variables for enriching the dataset were selected depending on the selected claims in
Chapter 2 and through consultation with the domain expert. We also weighed which
variables would be feasible to obtain and which would probably be too complex for this
research, resulting in the following variables:
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• Country

• Continent

• Land Cover

• Landform

• Shape

• Elevation

• Turbine Spacing

• Number of turbines (in wind farm)

To facilitate decision-making in the design process of the prototype, we formulated the
following requirements based on the problem characterizations.

P2 specific:

R1 The user should have the ability to view the distribution of global wind farms and
turbines in the world, highlighting where there are global/regional hot spots and
cold spots

R2 It should be possible for the user to access detailed information about individual
wind farms by clicking on them on the map.

R3 The user should be able to view frequency distributions of wind farms and turbines
over the selected variables

R4 The user should be able to apply filters to the visualizations, such as displaying
only a subset of installations or displaying only a subset of installations on the map,
for all variables.

P3 specific:

R5 Using the filter settings, the user should be able to generate a customizable grid
display of a random sample of wind farms.

R6 The user should have the ability to easily identify individual wind farms and their
layout.

R7 The user should be able to view the geographical characteristics of the land on
which the wind farms are located.

R8 The user should be able to see a representation of the spacing within the wind
farms using a scale.
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4.2. Design Process

In the following Table 4.1, you can see a simplified representation of the methodologies
we will use to answer the research questions, including the problem domains and the
usage scenarios for Research Questions 2 and 3. The graph does not include all individual
steps, but rather the most important ones with all the key points being represented.

Table 4.1: Simplified Methodology

Evaluation Method

The concluding deployment stage concerns releasing a prototype and receiving feedback,
in our context, the visualization evaluation, for which we will discuss the explicit structure
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and results in the corresponding Chapter 4.2.2.

The main objective of the evaluation is to find out whether our solution supports users
to solve tasks they were unable to solve before. For this purpose, we will conducted a
case study, a common validation method of design studies. In this context, we will ask
domain experts, visualization experts, and experts in other fields to solve tasks with real
data for specific usage scenarios [11].

We followed the proposed methods of three publications to design an evaluation framework.
The paper "Characterizing Exploratory Visual Analysis: A Literature Review and
Evaluation of Analytic Provenance in Tableau" by Leilani Battle and Jeffrey Heer was
used as a basis to formulate and organize tasks for specific usage scenarios, which are
closely linked to our data, users, and tasks. This paper is particularly useful because
exploratory analysis is open-ended and can be challenging to be quantitatively evaluated
[32]. To obtain a quantitative metric for the visualization quality, we followed the
guidelines proposed in the publication "A Heuristic Approach to Value-Driven Evaluation
of Visualizations" by Emiliy Wall et al. [33]. In addition, we also considered the criteria for
rigor in visualization design study outlined in the paper "Criteria for rigor in visualization
design study" by C. Plaisant, et al. These criteria are intended to help researchers
evaluate the quality of visualization design studies and ensure that the design and results
of these studies are transparent, valid, and generalizable [34].

4.2.3 Analysis Phase
The analysis phase includes the reflecting and writing phases and is done retrospectively.
Thus, it is the process of writing this Master’s thesis and reporting the conclusions.
However, it already started at the beginning of the study by writing down notes, reflections,
and procedures, which are now being elaborated.
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CHAPTER 5
Data Collection

The following chapter first describes where the data originates from, how the individual
turbine data was obtained and processed. It then describes how we defined wind farms
in this work and how the wind farm data were acquired. We explain how the data was
enriched with the variables decided with domain experts in Chapter 4. Finally, the
chapter is concluded with a section on the quality of the data.

The resulting dataset called EDWin (Enriched data of Wind farms) is registered under
the DOI https://doi.org/10.5281/zenodo.7558885 [10]. The project under
which the data collection and cleaning for EDWin was performed is available un-
der the following GitHub repository: https://github.com/marhal-beep/viz-
windfarms-data-collection/. This repository contains all the code used for col-
lecting, cleaning, and processing the data to generate the final datasets.

5.1 Wind Turbines
The data for all wind turbines was extracted from OpenStreetMap (OSM) [35] with
the help of the Overpass API [36]. The Overpass API is a read-only API that provides
selected subsets of OSM map data. It works like a database over the Internet in that a
client queries an API, and the API returns the dataset that answers the query request.

More information about OSM data and its structure will be given in the next subsection.

Open Street Map

OpenStreetMap (OSM) is a free global, collaborative, open-source project for creating
world maps and collecting worldwide geographical data. Users can upload vector data to
the project’s databases and edit it with the provided editors. Anyone that is registered
can contribute by enriching or correcting the data [37].
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The geographic data in OSM is distributed under a free license, called the Open Database
License, and can be freely used for any purpose, including commercial purposes, as long
as OSM and the contributors are cited as source [38].

A basic data element in OSM is either a node, a line or a relation. All elements can
be assigned tags, which always consist of key-value pairs. Some attributes are not set
directly by the users, but are entered and managed by the OSM system, including an ID
that identifies the element. More information about the data structure can be found in
the OSM Wiki [39].

Wind turbines in OSM

Wind turbines in OSM [40] are linked to nodes and are extracted with the tag generator:
source = wind. According to the official OSM wiki entry, the tag is obligatory, as is the
tag power=generator, which is, however, implied by the first tag since OSM data is or-
ganized hierarchically. OSM wiki also specifies generator:output:electricity=*
as obligatory, but we omitted it due to a radical reduction of resulting data points, likely
caused by the inconsistency of OSM data tagging.
In [7], the authors also dropped the tag after performing a preliminary analysis to deter-
mine the most effective key-value pairs for extracting wind turbine data from OSM. They
analyzed the tagging of 50 randomly selected wind installations with known locations
and concluded that the tag generator:source = wind as a keyword would detect
most of the target elements.

The data was extracted in Python with the package request [41] to send a query to the
Overpass API. The explicit query is depicted below:

[out:json];
(node["generator:source"="wind"]);
out;

Applying the query to the entire globe resulted in the final raw dataset consisting of
362.325 data points.
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Figure 5.1: Number of OSM nodes per country

In addition to the locations in longitude and latitude, the key values id were extracted
and used as identifiers throughout the project. According to the OSM wiki, we also
downloaded other tags used in combination with wind turbines: power, hub height,
manufacturer, and rotor size. Power refers to the capacity of wind energy production
measured in different units, usually MW or GW. Height is the hub height of the rotor
from ground level. Rotor size refers to the rotor’s diameter, and manufacturer to the
turbine supplier’s name.

Figure 5.2: OSM data completeness

In Figure 5.2, the completeness of the data across the entire dataset is shown. The
essential data about the location and the ID is complete. The additional tag variable with
the fewest missing values is power capacity, and even that only achieves a completeness
of 34.2%. The variables Hub height and rotor size have a totality of less than 20% and
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manufacturer at about 25%. If one compares the data completeness further by country,
one sees that this tag information is somewhat incomplete in most countries, especially
China and India. However, as shown in Figure 5.1, these countries have the most data
points. Given the high level of incompleteness, we decided not to include this information
as a means of analysis and visualization.

Figure 5.3: OSM power tag completeness by country

Figure 5.4: OSM hub height tag completeness by country
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Figure 5.5: OSM rotor diameter tag completeness by country

Figure 5.6: OSM manufacturer tag completeness by country

5.2 Processing
Initial visualization and examination of the data using satellite imagery revealed that
some data was inaccurate. Occasionally, there were markings where we could see no
turbines on satellite images. Closer examination and research made us notice these were
turbines

• not yet visible on the satellite images, but already built
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• under construction

• planned but not yet built

• that had been dismantled

Since it would be difficult to check and correct the data in this regard automatically, we
decided to leave the turbines in the dataset.

Further, we observed that some turbines were unrealistically close to others, sometimes
less than a meter away. We assumed that the values were either entered twice and were
incorrect or that one of the two points was a replacement turbine from an old turbine,
and the outdated OSM point was still present. Examples can be seen in Figure 5.7.

Figure 5.7: Erroneous records for wind turbines

In order to analyze the situation in more detail, we decided to calculate the distance
to the nearest neighbor for the turbines with closer neighbors. It was unnecessary to
analyze all turbine spacings, as we were only interested in very close ones. Therefore,
we used a density-based spatial clustering of applications with noise (DBSCAN) [42]
algorithm to cluster the turbines into groups with a radius of 500 meters. This way, we
would only have to consider turbines included in a group, and the distances would only
have to be calculated between turbines within the same group. DBSCAN is described in
more detail in the next section.
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5.2.1 DBSCAN
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a clustering
algorithm that is used in our approach both for filtering erroneous data and, more
importantly, to determine how to group wind turbines into wind farms (Section 5.3.1).
The basic idea is that it clusters high-density points into the same groups and separates
them from other groups through low-density areas. It requires two parameters:

ϵ : The range that specifies the neighborhoods. Two points are consid-
ered neighbors if the distance between them is less than or equal
to ϵ.

minPts : Minimum number of points to form a cluster.

The algorithm works as follows: Data points with minPts neighbors and distance less
than ϵ each represent core points used to form a cluster center. Data points that are
not core points but are near a center are added to the cluster. Data points that do not
belong to a cluster are considered noise points. More details on the algorithm can be
found in [42].

5.2.2 Calculation of nearest Neighbour
We did the nearest neighbor calculation with the projected data to Eckert IV equal-area
at 1 m resolution. Eckert IV was also used by Dunnett in [7] for clustering turbines in
wind farms, so we adopted this projection.

To avoid turbines with no neighbors and to determine small groups of close turbines to
make the computation less complex, we clustered them with a radius of ϵ = 500 meters
using DBSCAN algorithm, available in Python’s Python [43]. In each group, we then
determined the nearest neighbor and the spacing for each turbine using the Nearest
Neighbors [44] algorithm, available in Python as well. We used a KDtree, a balanced
tree-based data structure, to store and organize the individual data points in order to
minimize the distance calculations required [45].

5.2.3 Elimination of duplicates
As can be seen in the histogram of turbine spacings (Figure 5.8), there is a peak with
more than 300 turbines at very small spacings of 0-1 meter. These were assumed to be
duplicates. During a consultation with the domain expert, we discussed that the turbine
spacings should generally be normally distributed, i.e., a few turbines with a small or big
spacing, while most of them with a spacing between 200 and 400 meters.
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Figure 5.8: Turbine spacings for each turbine with neighbouring turbine

Consequently, we decided that up to the lowering of the first peak, we would include
only one turbine for each neighboring turbine pair. The drop and rise after the first peak
is marked with a green line at 10 meters. In other words, for all turbines less than 10
meters from the nearest turbine, one turbine was removed. The data was reduced by
2,378 turbines, resulting in a new dataset of 359,947.

5.3 Wind Farms
Obtaining wind farms from the turbine dataset required conducting a literature search
on the definition of a wind farm. According to "Introduction to Wind Energy", a wind
farm is defined as a group of wind turbines at the same location used to generate energy
[46]. The "Dictionary of Energy" published in 2015, defines a wind farm as "An array or
system of multiple wind turbines at a given site, used to capture wind energy for the
production of bulk electricity for a grid. [So called because of the sense of "harvesting"
wind as if it were a farm crop]" [47]. However, the question of what constitutes "the same
location or site" and how many turbines form a "group" remains open.

The definitions show that the criteria used to define a wind farm are very open are often
unclear. Factors such as property ownership, political, or geographical borders, turbine
manufacturer, connection to the same energy grid, and operator/developer can all play a
role in determining whether an accumulation of turbines constitutes a wind farm. For
example, turbines may be considered part of a wind farm if they are all owned by the
same entity, regardless of their location, or if they are located on the same property or
land, regardless of who owns them. Similarly, a group of turbines located within the
same municipality or county may be considered a wind farm, regardless of whether they
are connected to the same energy grid. Additionally, the distance between turbines can
also be a source of confusion, as some wind farms may have turbines located far apart
but still connected to the same energy grid. All these factors can lead to confusion; thus,
it is a subjective interpretation of different sources and usage contexts.

The question of "what do wind farms look like" should be preceded by the question of
"what is a wind farm", as the lack of a clear answer to the latter question motivates the
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approach taken in this work. Our thesis title, "what do wind farms look like", implies that
we are attempting to understand and analyze the physical characteristics of wind farms.
The lack of a clear definition motivates us to take an approach that aims to provide an
evidential basis for specialists to formulate a proper definition.
Despite the confusion surrounding the definition of a wind farm, it was necessary to
establish specific criteria to classify the turbines into wind farms for analysis. To
accomplish this, we focused on a definition in terms of the parameters most relevant
to DBSCAN clustering, namely spatial distances between turbines and the number of
turbines within a farm.

Definition

Our definition of wind farm is that a group of multiple wind turbines, with a minimum
of two (i.e. minPts = 2), located within a certain proximity of one another, constitutes
a wind farm. The proximity is determined by the threshold distance, ϵ, which we
determined through analysis in the following section. We have disregarded factors such
as the turbines being connected as a single electricity-producing power station and other
factors, as we are primarily concerned with the spatial relationship between the turbines.

5.3.1 Clustering
For clustering, all data points were first projected onto Eckert IV equal-area at 1 m
resolution and then clustered using the algorithm DBSCAN already presented in Section
5.2.1. Two parameters are necessary for DBSCAN, minPts, the minimum number of
points forming a cluster, and ϵ, the radius for spatial clustering. The parameter for
minPts was derived from the definition since "multiple wind turbines" implies more
than one, i.e., at least two neighboring turbines are needed to form a wind farm; hence
minPts = 2. Finding ϵ will be discussed in more detail.

Finding the right radius for spatial clustering

The task of finding the ϵ with which wind farms can spatially be identified was already
addressed in [7]. As mentioned in Section 3.2, the authors performed an analysis to
find the optimal neighbourhood radius for spatial clustering. They analysed the spatial
characteristics of a known wind farm dataset, the United States Geological Survey (USGS)
Wind Turbine Dataset (USWTD) [48], [49] to see if the wind farms are significantly
clustered in space.
It resulted in an optimal value of ϵ = 800 meters. However, the dataset on which the
analysis is based is from the USA, whereas the data on which the clustering was applied
is global. We repeated the clustering from the paper using the same parameters, but the
results were not very good. The problems we encountered are listed below. It suggests
that the variety of types of wind farms were not taken into account using sole US wind
farm data. In the example images, the red dots represent turbines, and the overlying
blue polygon represents the clustered wind farm.
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• The analysis does not include offshore wind farms, as there were hardly any offshore
wind farms in the USA at the time [50]. Most offshore wind farms, however, are
characterized by the fact that the turbines have a larger rotor diameter, and thus
the distances between the turbines are larger. Figure 5.9 shows how the larger
spacing led to the effect that either only certain sections of offshore wind farms
were clustered (left image) or how far apart offshore turbines were not recognised
as wind farm at all (right image).

Figure 5.9: Offshore wind farms with only certain sections clustered (left) and wind farms
not recognised as such at all (right) when using ϵ = 800 m

• There were also problems with clustering wind farms in other countries, e.g., China
and India, which have farms with larger spacings than US farms. For example,
Figure 5.10 and Figure 5.11 show farms where only parts are clustered, and others
are not identified at all.

Figure 5.10: Erroneous clustering of wind farm in China with ϵ = 800 m
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Figure 5.11: Erroneous clustering of wind farm in India with ϵ = 800 m

We decided not to adopt the ϵ of 800 m but to determine a more accurate value.

Different parameters were tried, and the results were constantly visualised and assessed
qualitatively. This gave some insights into the problem:

• Offshore and onshore wind farms have very different distances between turbines,
making it challenging to capture them all with the same parameter.

• There are often significant differences in how countries build wind farms. In the
US, for example, there are numerous wind farms with small distances between the
turbines, i.e., small turbines, whereas such farms are hard to find in China.

• Similarly, there are differences in the construction of wind farms depending on the
soil characteristics. Besides ocean-based wind farms that are very far apart, we
found differences between farms located in urban areas or forests. This was also
confirmed in the research [9].

The search for a suitable ϵ proved to be a challenge that took much effort to solve in its
entirety. After consultations with experts in the run-up and follow-up discussions, we
found that the solution to this problem probably deserved its own research.

For this reason, we determined the clustering radius in a simplified way by mixing
qualitative and quantitative assessments. We developed an interactive visualization tool,
as shown in Figure 5.12, that allows users to explore different clustering levels of wind
farms on random wind farm locations. Its primary purpose in this study was to aid in
determining an adequate level for clustering, but it has the potential to be useful for a
wide range of applications. It could help experts to visually explore and understand the
effects of different clustering levels on wind farm data, and support future research by
providing a previously unsupported capability.
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Figure 5.12: Tool to find spatial radius for clustering

The method used to determine ϵ was by evaluating the clustering performance on a set of
one hundred randomly selected global wind turbine sites, which are displayed individually
in (A) and can be selected through (B). The locations of the turbines were projected
using the Mollweide projection, which is an equal-area, pseudocylindrical map projection
with a resolution of 1 m to their respective centers. This projection ensures that the
actual areas and distances of the farms are accurately displayed in the scatter plots. The
random sites were each clustered using ϵ values ranging from 600 meters to 2 km at
intervals of 100 meters. Three clustering levels are displayed at once, and the ϵ level can
be changed under (C) for each display individually. The naming of the clustering levels
is interpreted as follows WFid_0.8 points to the clustering results for ϵ = 800 meters,
WFid_1 means ϵ = 1, 000 meters, and so on. In total, 15 clustering results are compared
and evaluated with the help of domain experts. The best performing ϵ was found to be
1.3 kilometres. Thus, all turbines that are less than 1.3 kilometres apart and have at
least one neighbouring turbine within this distance are clustered as a wind farm. The
result was 20.607 wind farms, with 353.782 turbines contained therein. 6.165 turbines
were too far away from any other turbine and count as stand-alone turbines.

However, it should be noted that this value may not be considered "ideal" to define wind
farms and the choice of ϵ will depend on the specific goals of the analysis. It’s important
to remember that the purpose of this analysis is to find a working value of ϵ for our
specific research purpose, not to find the ideal value.

5.4 Data Enrichment
We enriched the data with the previously determined relevant variables defined in Section
4.2.2. These included the categorical variables:

• Country

• Continent
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• Land Cover

• Landform

• Shape

and the numerical variables:

• Elevation

• Turbine Spacing i.e. Distance to the nearest next turbine

• Number of turbines i.e. wind farm size

The data for Country, Continent, Land Cover, Landform, Elevation and Turbine spacing
were collected turbine specific and later added to the wind farm dataset in aggregated
form. For the categorical variables, we took the modulus of the respective turbine values
and, for the numerical variables, the average. For example, the land cover of a wind farm
is the most common land cover value for the turbines located in it, and the elevation of
a wind farm is the average elevation of its turbines.

The two variables, number of turbines (i.e. wind farm size) and wind farm shape (i.e. a
rough shape of the wind farm), were obtained from the wind farms data and added to
the turbine dataset. The collection of the individual variables will be discussed in more
detail in the next sub-chapters.

A general structure of the data and their source is presented in Figure 5.13.

Figure 5.13: Data structure and source overview

Country & Continent

The country was determined using the Python package reverse_geocoder [51], which
returns the official country name for latitude/longitude values. Then, with the help of
pyCountry [52], an ISO database for the standards, the country name was translated into
the continent.
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Land Cover, Landform & Elevation

This information was collected using Google Earth Engine [53], a visualizer of
imagery data containing geo-information that features access to many geospatial datasets
available through the Earth Engine Data Catalog [54].
The data was downloaded through the Earth Engine Code Editor [55], a web-based
development environment for the Earth Engine JavaScript API. The code editor allows
a user to analyze satellite imagery from the data catalog and download the values of
datasets at specific locations. A different dataset was used for each of the required
variables, giving a total of three datasets.

Land Cover was extracted from the 2020 "Copernicus Global Land Cover Layers-
Collection 2" dataset [56], a global discrete land cover map at 100 m resolution. Table
5.1 shows the adapted naming of the discrete classes with their official meaning. Closed
forests and open forests were combined for all leaf species.

Label Description
Unknown Unknown. No or not enough satellite data available.

Shrubs
Shrubs. Woody perennial plants with persistent and woody stems
and without any defined main stem being less than 5 m tall. The
shrub foliage can be either evergreen or deciduous.

Herbaceous vegeta-
tion

Herbaceous vegetation. Plants without persistent stem or shoots
above round and lacking definite firm structure. Tree and shrub
cover is less than 10 %.

Agriculture

Cultivated and managed vegetation / agriculture. Lands covered
with temporary crops followed by harvest and a bare soil period
(e.g., single and multiple cropping systems). Note that perennial
woody crops will be classified as the appropriate forest or shrub
land cover type.

Urban Urban / built up. Land covered by buildings and other man-made
structures.

Sparse vegetation
Bare / sparse vegetation. Lands with exposed soil, sand, or rocks
and never has more than 10 % vegetated cover during any time of
the year.

Snow and ice Snow and ice. Lands under snow or ice cover throughout the year.
Permanent water
bodies

Permanent water bodies. Lakes, reservoirs, and rivers. Can be
either fresh or salt-water bodies.

Herbaceous wetland
Herbaceous wetland. Lands with a permanent mixture of water and
herbaceous or woody vegetation. The vegetation can be present in
either salt, brackish, or fresh water.

Moss and lichen Moss and lichen.
Closed forest Closed forest, Tree canopy >70 %

Open forest Open forest. Top layer- trees 15-70 % and second layer- mixed of
shrubs and grassland

Oceans and seas Oceans, seas. Can be either fresh or salt-water bodies.

Table 5.1: Discrete Land Cover naming convention, Source: [57]
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Landform was extracted from the 2015 dataset "Ecologically-Relevant Maps of Landforms
and Physiographic Diversity for Climate Adaptation Planning" [58]. The dataset includes
a comprehensive classification of landforms based on hillslope position and dominant
physical processes at 30m resolution, shown in Table 5.2. More detailed information on
how the dataset was obtained is described in the paper. The levels for classifying the
data correspond to the standard conventions for naming.

Table 5.2: Discrete Landform naming convention, Source: [58]

For this dataset, data points on water were not classified, resulting in missing values
in our turbines’ data. To avoid the missing data, we created a new landform category,
"waterbody". The points that were on "Oceans and seas" or "Permanent water bodies" in
the land cover variable and were missing in the landform dataset were classified into the
new variable "waterbody".

Elevation data were primarily extracted from the dataset "USGS EROS Archive - Digital
Elevation - Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010)" [59]
from 2010, which includes global elevation data from several sources. Since the data
was incomplete, the missing values were supplemented with elevation data from the
Open-Elevation API, which can be found at the following website [60]. It is a free and
open-source alternative to Google Elevation API. The documentation can be found at
the following GitHub repository [61].

Turbine Spacing

The turbine spacing was calculated as described in Section 5.2.2 for each turbine of the
cleaned data. The data points were first clustered into groups with an ϵ of 20 km, since
with this radius no stand-alone turbine was obtained and missing values could be avoided.
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For each of these groups, the turbine spacings were calculated using Nearest Neighbour
[44].

Number of turbines

The number of turbines variable is a wind farm specific variable and results from the
count of turbines that are part of the wind farm based on the clustering results.

Shape

The shape of the wind farms is another farm-specific variable, and it was the most
challenging one to determine since it results from an unsupervised attempt to cluster the
topology of the farms into groups of similar shapes through their image representation.
Due to unsatisfactory results, we used only wind farms with more than five turbines for
the clustering. Since there are no underlying group labels and it is not sure if ground
truth labels exist, it took much effort to build and evaluate such a model. Despite the
difficulties encountered, such as unsatisfactory results and the lack of similar attempts
in the literature, we persisted in this effort as it is important to determine their overall
appearance in order to understand "what windfarms look like". Further, the shape is a key
aspect of our research, as it relates to the third research question and the encodings used
to represent the wind farms. These decisions were taken to ensure that the representation
of the wind farms is as clear and accurate as possible to achieve a good understanding of
the overall appearance of wind farms.

The dataset to be clustered was derived from scatter plot images produced for each wind
farm as shown in Figure 5.14. All wind farms were projected onto their respective centers
using the Mollweide projection, a pseudo-cylindrical map projection that is true to the
surface [62].
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Figure 5.14: A glimpse into the "shapes" of wind farms
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The methodology for unsupervised clustering was adapted from the study "Unsupervised
Machine Learning Via Transfer Learning and k-Means Clustering to Classify Materials
Image Data" by Ryan Cohn and Elizabeth Holm [63]. The authors explain how an
unsupervised machine learning system for clustering images is built, used, and evaluated
to classify unlabeled data. They use VGG16 [64] convolutional neural network pre-trained
on the ImageNet dataset [65] to extract feature representation of the images. Afterwards,
they apply principal component analysis to reduce the dimensions of the features while
preserving relevant information and apply k-means to group the unlabeled data.

Methodologically, we performed the same steps as the authors:

1. Preprocessing: preparing the data for the VGG16 neural network.

2. Feature extraction: using VGG16 to create numerical representations of each image

3. Clustering: Labelling of data based on groups of similar information representations.

We implemented the clustering in Python. The images were created with Plotly
[66], and the wind farm images were preprocessed with Keras [67] to prepare them for
VGG16. We also used Keras to access the neural network. The obtained features were
further processed with Python [43], and we determined its main components through
PCA analysis. Fifty principal components accounted for 95% of the variance.

Figure 5.15: Explained variance by number of components
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For finding similar groups, k-means clustering was used [68]. The algorithm works as
follows:

1. Selection of k-points as initial centres of computation

2. Allocation of the data points to the different clusters based on the distance to the
centres

3. Recalculation of the cluster centres

4. Repeat starting from step 2 - until the position of the centres does not change
anymore

The selection of the components and the number of groups k was rather complex since
there were no ground truth values, and we did not know the number of groups, so we
could not optimize the model on the results for precision and recall.

Therefore, our selection was made using visualizations and qualitative assessments in
combination with the Silhouette Score [69], a metric for the quality of clustering with
unknown labels. The score’s functionality is available in Python as well. It is computed
by the average intra-cluster distance a and the average nearest-cluster distance b for each
data point with (b − a)/max(a, b). The overall Silhouette Score is the average score for
all data points. The quality can be assessed with a score in the following ranges:

• Near 1: The data is well clustered

• Near 0: Many data points could belong to a different cluster

• Near -1: The data points are wrongly clustered

We calculated the Silhouette Score for different values of K and numbers of principal
components but obtained worse results than we had expected. Most of the scores were
very close to zero. The best score we got was 0.439 when we used 3 groups and 2
components. But when we looked at the groups visually, they seemed random. So we
ended up focusing more on looking at the groups and deciding if they made sense, and
we found that using more groups and components gave us better results.

We used K = 11 and Components = 50, which achieved the visually strongest results.
Several groups contained exclusively similar wind farms, such as line-shaped ones. Yet,
other groups showed no similar types of wind farms. After consulting with the expert,
we took those good groups and rated the others as unclustered. As a result, we obtained
the following levels of wind farm shapes:

• Farms with less than 5 turbines (were not used for clustering)
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• Lines

• Irregular lines

• Polygons

• Unclustered

5.5 Final Data
The resulting datasets are two, one for the global turbines and one for the wind farms we
identified. The structure of the first and last three entries with missing values ratio per
column can be seen in Figure 5.3 for the turbine dataset and Figure 5.4 for the wind farm
dataset. The turbine dataset consists of 359,947 entries distributed among the 20,608
farms of the aggregated wind farm dataset.

Table 5.3: Final wind turbines example data structure with ratio of missing data

Table 5.4: Final wind farms example data structure with ratio of missing data

The few missing values of three categorical values were filled with the value "Unknown",
and the corresponding categorization was added to the variable.

5.5.1 Data Quality
Note that the data is not a one-to-one representation of the real values of the global
wind infrastructure. In [7], the authors analyzed the issue of representing the real-world
data with OSM data by regressing the raw numbers of wind features from OSM for each
country to explain their respective reported wind capacities. They concluded: "the odds
ratios for the national capacities suggest that the observed pattern is largely reflective
of the true distribution of renewable infrastructure." [7, p. 9]. Hence, to the best of our
knowledge, this is currently the most complete and accurate representation of the global
wind infrastructure available.
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CHAPTER 6
Prototype Design and

Implementation

The prototype was designed and implemented according to the requirements and tasks
specified in Section 4.2. The interactive visualization is available through the GitHub
repository: https://github.com/marhal-beep/viz-windfarms-dash. This
chapter presents the layout and explains the implementation of the single components.

6.1 Design Decisions
The visualization was designed in cooperation with the domain expert and the co-
supervisor. It was based on the requirements elaborated from the data-user-task model
in Section 4.2.2. Different visualization methods were discussed and validated using the
Nested Model validation scheme [31] to keep the most successful ones ultimately. R1
would quite obviously contain a map view in which all farms and turbines are displayed.

To satisfy R1 we decided to create a map view displaying all wind farms and turbines.
With over 20,000 points for the wind farms and 300,000 for the turbines, a simple scatter
plot on a map would be unfeasible. From previous projects in which many points/polygons
were to be mapped, we experienced that one of the most efficient ways to do this was by
clustering the points.

To get the wind farm layouts and information about the turbines for R2 we thought of
two strategies: make the markers clickable and then display the wind farm as a popup or
a similar way. Alternatively, to enable the user to change the clustering of the markers to
represent either wind farms or turbines. This way, users could zoom in on a wind farm
and then switch the view to wind turbines, at which point the individual turbines of the
wind farm would be displayed. Additionally, details on demand about wind farms and
turbines should be displayed via hover information or popup.
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6. Prototype Design and Implementation

R3 would be best represented by a simple histogram showing the number of wind
farms/turbines on one axis and the selected variable on the other axis. With this
simple representation and additional data filtering, all pending tasks could already be
accomplished. The filtering of R4 was, therefore, essential. It should control the results
of both the map and frequency views. For example, users can display only wind farms on
the map or the distribution of turbine spacing of wind farms on flat ground. The filter
should also be responsible for the output of the visualization that satisfies requirements
R5-R8, for which an explicit visual encoding was developed. A first rough draft can
be seen in Figure 6.1. It consists of a scatter plot of the individual turbines, each
represented by a clear point. The scales should be reflected by a grid placed over the
wind farm. The grid should reproduce distances consistently, and the axes should be
movable. The characteristics of land area, nearby infrastructure, rivers, mountains, and
elevation should be represented by a specific map layer. Contour lines should depict
elevations and mountains.

The inspiration for the matrix-like format to visualize multiple wind farms came from
Figure 5.14, which made us learn early on that comparison between wind farms would
be made easier this way.

Figure 6.1: Draft of visual encoding for individual wind farm typology

This resulted in three different visualizations, all of which could be controlled by the same
filter properties. They were ultimately designed into a common visualization consisting
of three views.
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6.2 Prototype presentation
The design and usage are presented with screenshots and descriptions of the user interface
components. When the prototype is opened, it is displayed as in Figure 6.2.

Figure 6.2: Initial interface of the prototype

It has four primary functionalities: The filter and three data views. The filter can be
opened via the button (A), and the views of the data are accessible through the tabs
(B, C, D). When starting the application, the user interface looks like this: the filter is
not visible, and the Map View is displayed automatically. At the top left corner (E), the
visualization title is displayed, and in the upper margin (F), the number of farms and
turbines resulting from the filter. This number always corresponds to the wind farms
and turbines used to create the views. The functionalities will now be described in more
detail.
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Filter

Figure 6.3: Upper section of interface with opened filter options

The filter (Figure 6.3) is a central component of the visualization, as it determines the
results of the views. Only the data that fit the filter will be considered and displayed
for the visualizations. It can be opened and closed via the button (A). It is applied to
the data when the "Apply Filter" (B) button is pressed. Thus, the user can select all
filters in advance, which are applied only once a final selection is made. If the data were
filtered directly each time the filter was changed, overloading would occur quickly, and
the application might crash. When the filter is opened, all wind farm characteristics
are displayed as filterable variables. For categorical variables (C), a dropdown multi-
selector menu (E) is available. These can be opened by clicking on "Select" with the
variable’s name, and then the corresponding variable’s categories are displayed. There is
a slider (D) for the numerical variables, where the upper and lower limits can be selected.
The maximum and minimum values refer to the respective maxima and minima of the
variables.

Filtering works differently for farms and turbines. For farms, the aggregated values are
filtered; for turbines, the individual turbine characteristics are filtered. (F) shows how
many turbines and farms apply to the filters. In Figure 6.4, only wind farms located
on the land cover "Oceans and Seas" are displayed. The total number of wind farms
and turbines shows that only 554 farms and 10.335 turbines are now being used for the
visualizations. Likewise, only these are displayed in the initial map view.
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6.2. Prototype presentation

Figure 6.4: Interface with activated filter only showing wind farms on oceans and closed
filter options

Map view

Figure 6.5: Map view interface: initial view

The map in Figure 6.5 is the default view when opening the tool. It gives an overview of
where wind farms are distributed in the world (A) and allows to view the topology of
individual wind farms (B). Under (C), one can select whether farms or individual turbines
should be displayed on the map. Then the clustered markers (D) represent one of the
datasets. The markers are clustered with a radius of 100 pixels and are recognizable by
the colored cluster nodes (E). The cluster nodes indicate how many markers belong to
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the cluster. The color of the cluster markers changes accordingly and has the following
color encoding:

marker count color
< 100 markers green

100 - 1000 markers yellow
> 1000 markers red

Table 6.1: Color encoding for marker cluster on map view

Clicking on the cluster node will zoom into it. At higher zoom levels, more and more
individual markers are displayed. If the markers are selected to be wind farms, the plot
on the right side is displayed by clicking on the individual markers. The currently clicked
marker is indicated by a popup (F). At (G), different layers for the map can be selected;
the choices are the standard maps from Mapbox in Light, Dark, Satellite, and Outdoors.
Zoom buttons are located at (H); one can either click on them or use ctrl+scrolling on
the map for zooming. Below is a measuring instrument (J), which allows the user to
measure distances and areas on the map. The map scale is displayed in the lower left
corner (K). The plot of individual wind farms in (B) will be discussed in more detail in
View 3, as they use the same encoding.

Frequency distribution view

Figure 6.6: Frequency distribution view interface: Bar charts for categorical y-axis

The second is the frequency distribution view, intended to show how the frequencies
of farms and turbines vary over a specific variable that can be selected via (A). The
available options here correspond to the selected characteristics that describe the data
and are also used for filtering. The view works differently depending on whether the
selected variable (A) is categorical or numerical.
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The categorical case is shown in Figure 6.6. It results in a bar chart for the individual
turbines (B) and the wind farms (C). Table (D) gives a more detailed understanding
of the wind farms’ size in the respective variable categories. For each category, there
is a summary statistics distribution of the wind farm size (number of turbines). The
summary statistics include the number of wind farms in the category, the average, the
standard deviation, minimum, maximum, and quantile distribution of the wind farm
sizes.

Figure 6.7: Frequency distribution view interface: Histogram for numerical y-axis

The case where the variable (A) is numerical is shown in Figure 6.7. Here, a histogram is
displayed instead of a bar chart for (B) and (C). Then, table (D) contains the summary
statistics about the variable (A) itself. Here the summary statistics represent the number
of wind farms, the mean value of the variable (A), and its standard deviation minimum,
maximum, and quantile distribution.
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Random wind farms view

Figure 6.8: Random wind farms view interface

The third view shown in Figure 6.8 is meant to show random wind farms and give an
idea about their installation area and layout. The wind farms are randomly selected from
a pool of farms that match certain filters, and then plotted in a grid format similar to a
poster (A). Each individual plot within the poster represents a single wind farm, where
the single red dots (B) represent turbines included in the windfarm, the total cluster of
red dots (C) represent the whole wind farm, and the orange dots (D) represent nearby
turbines that are not part of the wind farm. When a user hovers over a dot, they will see
tooltip information (E) specific to that turbine.

The number of wind farms shown can be adjusted by changing the number of rows and
columns (F) of the poster. The user also has the option to change the seed (G), which
will generate a new random sample of wind farms to display. The seed has the additional
purpose of making the posters reproducible, meaning that with the same seed and filter
settings, it will always be the same wind farm sample.

The wind farms can be sorted by a characteristic (H), for which the options again
correspond to the filter features. In the Figure, for example, the wind farms are filtered
by "number of turbines"; thus, the wind farms are shown in ascending order of size. The
individual wind farm plots have a specific visual encoding composed of a map layer (I)
and a grid (J). The custom map layer is designed to make it easier for users to see what
land cover and landforms the farms are on, what infrastructure is nearby, and at what
elevation they are located.
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We used the following color encodings to illustrate these elements on the map:

Map element Color
Oceans and seas, Permanent water bodies
Herbaceous vegetation, Herbaceous wetland, Moss and lichen, Shrubs
Closed forest, Open forest
Agriculture
Sparse vegetation
Snow and ice
Urban, Buildings
Highways
Elevation contour line

Table 6.2: Color encoding of map elements used for individual wind farm encoding on
"Random wind farms view"

In the overlaying grids, each line of a small square has a length of one kilometre. Its
purpose is to make it easier and faster for the user to see the extent of the wind farm
and the distances between the turbines. The visual encoding used were chosen based on
the design requirements set set for P3 in Section 4.2.2. These design requirements likely
outline the specific information and functionality that the visual representation needs,
and the visual encoding is chosen to best convey that information in a clear and effective
manner.

The visual in Figure 6.8 provides a clear representations of wind farms, including nearby
infrastructure and the terrain on which the turbines are installed. The map layer allows
to see roads or highways near the farms, as well as the type of terrain, whether they
are on a mountain, in the ocean or on agricultural land. By comparing different wind
farms, the user can easily identify the key differences between them, such as the size of
the farm, its proximity to a highway, or the type of terrain it is located on. The user can
also see the density of turbines on the farm. Overall, the goal of the visual encoding is to
provide a clear and intuitive representation of the wind farm, allowing to quickly and
easily understand key characteristics and differences at a glance.

6.3 Implementation
This section explains the technical details for implementing the developed designs.

6.3.1 Technologies
The prototype was written mainly in Python [70] and JavaScript [71], and interface
aesthetics were done in CSS3 [72]. It was deployed online with Heroku [73] to give
users easy and quick access during the evaluation phase. The website was accessible at
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https://viz-windfarms.herokuapp.com/, but unfortunately, it has been taken down due to
the removal of Heroku’s free product plans.

The prototype was primarily built using the following libraries, which will be discussed
in more detail in the following paragraphs.

• Dash

• Plotly

• Leaflet

• Mapbox

• Turf

Dash

The prototype framework was implemented using the open-source library Plotly Dash
[74], one of Python’s leading user interface libraries. It allows the development of
reactive and web-based analytical applications. The web applications run on Flask
and communicate with JSON packages through HTTP requests. The front end of Dash
renders the components in react.js [75].

Dash delivers a framework for integrating plotly visualizations into the dashboard.
The applications are made reactive through the provision of so-called "callbacks functions",
decorators consisting of the callback (the input and output variables) and a function that
takes the input of the callback and returns any desired output, e.g., a visualization, data,
and text. The outputs are bound to the Dash components, which are translated HTML
components that build the application. The input elements are also passed through Dash
components, e.g., a dropdown selector or a slider. Callbacks are executed every time an
input variable changes [75].

Plotly

Plotly [66] is a graphing library for Python that creates browser-based visualizations
and is ideal for integrating graphs into HTML files or Dash applications. The visualizations
are interactive, and over 30 plot methods produce different graphs [75].

Mapbox

Mapbox [76] is a provider of interactive online maps for websites and applications.
Mapbox provides the Mapbox Studio web application, a tool to design map layers, enrich
them with data and retrieve them in different operating systems. Plotly has built-in
functions for Mapbox and allows the easy utilization of previously designed Mapbox
layers. The built-in functions include scatter, line, choropleth, or density plots. For this
project, we mainly used the function scattermapbox, which plots points on a Mapbox
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layer. It was used for the visualizations that required a specific visual encoding of the
wind farms, relevant for RQ3 [77].

Dash Leaflet

Dash Leaflet is based on the open-source library leaflet.js and is a wrapper for
Dash applications. It provides interactive online maps and various mapping functionalities.
We mainly used it to create the initial map view. The large number of data points made
it appropriate to use the leaflet mapping function supercluster, which allows efficient
spatial point clustering within a given radius [78].

Turf

Turf.js is an open-source JavaScript library that enables spatial analysis with
modular operations. It can be executed in any browser and used with mapping libraries
such as Mapbox or Leaflet [79].

6.3.2 Architecture
For the implementation of the prototype, a typical client-server architecture was used.
Most of the functionalities are loaded on the server and rendered in the browser. However,
due to problems with the time required to filter the data, we decided to move the data
filtering to the client using Dash’s clientside-callbacks. They run directly in the
browser and do not need to send a request to Dash. They are helpful when a large
amount of data needs to be sent back and forth, when callbacks are called often, or when
the callback is part of a chain that requires multiple round-trips [80]. The filtering met
these requirements since the data was relatively large at about 43 MB. The function of
the clientside callback is written in JavaScript in the assets folder.

The input and output modality remains the same, the input values must be passed to the
JavaScript function, and the outputs are returned as components. The filter callback
is called when the "apply filter" button is clicked. The complete data and the current
filter’s state are then the callback’s input. In order to use data as input, Dash requires
that it is also stored in the browser. This is done using the dcc.Store function of Dash
core components. The whole data is loaded into the browser at the beginning and is
filtered by the clientside-callback. The output is the indexes of the filtered data,
which are loaded into a dcc.Store and, from there, called by the server-side callbacks
to create the visualizations. The transfer between Dash and the browser is the size of
the indexes, i.e. the key variables of the respective wind farm and wind turbines dataset,
which is about 4MB for the complete data.

Another functionality that moved client-side was the opening and closing of the filter.
The other components and callbacks were left on the server side. A simplified architecture
can be seen in Figure 6.9.

55



6. Prototype Design and Implementation

Figure 6.9: Simplified prototype architecture

The switch to clientside-callbacks reduced the time for filtering from an average
of about 55 seconds to about 3 seconds. However, the initial loading of the data in the
browser caused a delay, as all 43 MB had to be uploaded. However, the longer time for
the initial loading was taken into account to provide a better user experience later.

A more detailed overview of the Dash application structure is shown in Figure 6.10. The
round components of the graphic are Dash components with their id in the middle. The
square elements are the callback functions, with their response time in the middle. The
circles surrounding the elements outlined in red refer to clientside elements, and the green
ones are on the server side.

Figure 6.10: Detailed prototype architecture
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6.3.3 Views Implementation
Each view has its server-side callback function, which inputs the filtered data indexes
from the dcc.Store. Depending on the view, they have additional input variables.

Map View

The map for the overview was created using the Dash Leaflet library. The marker
clustering was done using the library supercluster, a fast geospatial point clustering library
[81]. The map callback function takes only the filtered data indexes as input, selects
the correct records from the dataset and returns the variables WFid, long, and lat in a
Geobuf data structure. Geobuf is a compact binary encoding for GeoJSON data and
saves much memory. The Geobuf data is passed directly to the GeoJSON dash leaflet
component in the output, which is embedded in the map.

An additional callback is created to plot the single wind farms located on the map’s right
side. Its callback is when a wind farm marker is clicked on the leaflet map. The callback
input is the WFid of the selected marker, upon which a scattermapbox of the selected
wind farm is created. The scattermapbox plot corresponds to the individual wind
farm plots from the Random wind farms view and uses the same visual encoding.

Frequency distributions

The second view has a simple composition. The histograms are created using the Plotly
function to create histograms. The table is drawn from the summary statistics about
the wind farm sizes and uses the Dash DataTable [82] for rendering. Its callback has
the additional input of the variable according to which the frequencies are displayed.
Unlike the filter functions, the visualizations change every time a change is made to this
variable.

Random Wind Farms

The last view uses multiple sources to create the visualization and takes the most callback
inputs. The inputs are the variable by which the illustrated single wind farms should be
sorted, the seed to draw a random sample and the number of rows and columns of the
raster.

The raster-shaped structure of the plot is provided by the Plotly option to create
subplots with make_subplots. For this, the number of columns and rows is specified
with a default maximum of ten columns and ten rows. The individual wind farm plots are
created equal to those of view 1 using the Plotly function scattermapbox. Random
wind farms are drawn in advance, with the seed from all the wind farms matching the
filter settings. On the scattermapbox plots, the turbines belonging to the selected
wind farms are marked in red, and all remaining surrounding wind turbines with a radius
of 1° latitude and longitude are marked in yellow.
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6. Prototype Design and Implementation

The map layer used was designed using Mapbox Studio [83]. The grid overlaying the
wind farms was created with Turf.js. The grid centre corresponds to the centre of the
wind farm, and the size of the grid covers all the turbines included in the wind farm. The
lines of the small squares in the grid correspond to a constant distance of one kilometre,
so each square of the grid corresponds to one square kilometre of area.
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CHAPTER 7
Evaluation

The evaluation took place as a user study involving ten participants. Users were given
several assignments during one-on-one online interviews, to which they responded by
speaking the answer aloud. While interacting with the tool, they were also encouraged
to think aloud. Different evaluation techniques were employed, both qualitative and
quantitative methods:

1. Quantitative:

• Accuracy in task-solving [84]
• Feedback in form of Questionnaire (ICE-T heuristic) [33]

2. Qualitative:

• Open questions for insights generation and feature detection [85]
• Feedback in verbal form

The feedback Sections were important for assessing the overall performance of the
developed prototype. The task accuracy and open question assignments were necessary
for answering the research questions.

In this chapter, we will present the users we interviewed, the different assignments, the
general structure of the interviews and the outcomes.

7.1 Users
Interviews were conducted with ten participants. Of these, three persons were domain
experts, i.e. in the field of wind energy, six persons were visual analytics experts and one
was an expert in the field of Geography. The assignments to solve were the same for all
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7. Evaluation

participants, except that domain experts got additional feedback questions regarding the
tool’s usability in their work.

Domain Experts

The domain experts were referred by the expert who supervised this project, Dr Johannes
Schreiber. They are all actively working in the field of wind energy and have a related
PhD. They stood as crucial participants in putting our enriched data and visual system
to trial since they have comprehensive knowledge about the domain [33]. Through them,
the used characteristics describing wind farms could be validated, and additional ones
determined. Furthermore, they could also confirm if the end-users are helped with the
solution by doing tasks they could not do before.

Visualization Experts

Dr Victor Schetinger mediated the visualization experts. They were all former or active
researchers in the Centre for Visual Analytics Science and Technology (CVAST) which is
part of the Vienna University of Technology (TU Wien). Tory and Möller [86] found that
visualization experts can provide valuable feedback on visualization designs and methods,
which is why they played an essential role in our evaluation. Their main function was to
evaluate the overall design, functionalities, user interface and latency of the tool.

Geography Expert

Another participant was a researcher in geography and regional research with expertise
in working with geographical data and developing GeoJSON applications. This person
was sought as a participant to provide valuable feedback from a geographic perspective
and to discuss potential enhancements to the mapping and map projections of the tool.

7.2 Interview Structure
The interviews took place as online meetings in MS Teams and lasted about one hour
each. They involved the visualization researcher and one participant per session. The
meetings consisted of the participants solving assignments to which they responded using
the "think-aloud" method. With this method, they are given a task/question and then
instructed to speak aloud the answer and their thoughts on the way there. To capture
spoken dialogue, we recorded the sound and computer monitor while they were sharing
their screen while using the prototype. For this, we asked them if they consented and
explained that we would delete the recordings after the evaluation.

The visualization researcher acted as a guide for the visualization, i.e. if the participant
needed help and explicitly requested it, the visualization researcher assisted in solving
the assignment; otherwise, the researcher’s role was to provide initial explanations about
the data and tool.
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7.2. Interview Structure

The interview structure and the duration of the different steps are listed below.

Step 1: Contact participant and send manual of prototype (before the
interview)

Step 2: Introduction (15 min.)

• General introduction to the topic
• Presentation of prototype and data source
• Demonstration on how to answer three example tasks

Step 3: Free usage of tool (5 min.)

Step 4: Task accuracy assignments (20 min.)

• P2: characteristics and relationships
• P3: comparison of wind farm topology

Step 5: Open questions (10 min.)

• P2: Discover relevant features and insights

Step 6: Open feedback questions (10 min.)

Step 7: ICE-T Questionnaire (after the interview)

The participants were not familiar with the prototype before the interview but were
sent a manual they could study beforehand. The manual describes the data source
and variables, including their categories. In addition, it explains the prototype’s main
functionalities and shows how one can use it to solve three example tasks. The manual is
displayed in Figure ??.

After the participants confirmed that they would participate in an interview, we scheduled
an appointment and sent them the prototype manual via mail. During the interview,
the participants were first given a short introduction and an outline on what to expect.
The prototype and data were presented, and the participants were instructed on how
to answer the assignments. They were also shown how to use the prototype to answer
questions by solving three example tasks similar to the ones they would face later. At
this point, they were also asked for permission to record.

Then the actual key phases for the interview started. The participants were sent the
link to the tool and initially given five minutes to get acquainted with the it, during
which they could already use the visualization to gain insights. The most extended
phase came in the beginning, namely answering the tasks for the problems from P2 and
P3. Two open-ended questions followed to allow the participants more opportunities for
open-ended exploration to gain insights and thus identify characteristics of the problem
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from P1. Finally, the participants entered the feedback phase, for which they no longer
had to use the tool but rather engaged in a conversation with the researcher.

After the interview, the respondents received an online questionnaire by email, which they
were asked to complete. The questionnaire was developed from the ICE-T methodology
and served to obtain a quantitative measure of the quality of visualizations. The
assignments are clarified in the following Section.

7.3 Assignments & Results
As discussed in the introduction of this chapter, the assignments served different purposes.
On the one hand, the aim was to solve the research questions by detecting features,
generating knowledge about wind farms (RQ1), and accurately solving tasks (RQ2, RQ3).
On the other hand, the assignments should evaluate the tool’s performance through
verbal and questionnaire feedback.
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7.3. Assignments & Results

Figure 7.1: Overview of tasks and interview questions in user study evaluation
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7.3.1 Tasks
The tasks were posed to the participants as questions to which they had to find an
answer. They aimed to analyse the data properties and relationships and characterizing
individual wind farm topology with the corresponding problem domains P2 and P3.

How accurately the tasks were solved was measured by how many participants answered
the questions correctly. An answer is considered correct if the participant understands
how to answer the question without help and arrives at a correct solution.

P2: Data characteristics and relationships

The tasks from P2 were designed to test whether the participants could use our visual-
ization system to assess the validity of the claims from the literature in Chapter 2 by
using the EDWin dataset. Therefore, we developed the tasks to match the claims, which
led to four questions.

Q1 Which land cover is predominant for the installation of wind farms on a global
scale?

Q2 How do wind farms in the USA, Germany, and China compare in terms of size and
frequency?

Q3 Where are the highest wind farms in the world located?

Q4 How does the turbine spacing of wind farms in Oceans ans seas compare to wind
farms on Agricultural land cover?

P3: individual wind farm topology

The questions for the domain problem P3 were specific to the Random Wind Farms view
and were based on a sample of nine farms equal for all participants. Identical sampling
was achieved by applying the same filter and using the same seed, as was defined in the
question. The wind farm sample is displayed in Figure 7.2. Based on this grid of farms,
participants were asked to determine the wind farms with the following characteristics:

Q5 Filter the data for wind farms with more than 10 turbines. Go to the tab "Show
me some wind farms!". Set the seed to 0 and the dimensions of the plot grid to
3x3. Which of the wind farms has the smallest spacing between the turbines?

Q6 (Refers to Q5) Which wind farms (if any) are positioned on a summit or ridge?
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7.3. Assignments & Results

Figure 7.2: Random sample of wind farm configurations for Q5 and Q6

Results

Q1 and Q3 were straightforward and answered correctly by all participants without
help. More difficulties were encountered with Q2 and Q4, where comparisons between
several variable factors had to be analyzed. Intuitively, most participants assumed that if
they filter for factors of a variable, the frequency view would group them accordingly for
other variables, but this was not the case. Q5 and Q6 were answered correctly by most
participants, although we received many comments on the interpretability and scaling of
the graphs for these questions. Furthermore, instead of only answering the questions by
visual inspection, some participants used the hover information to help them.

Figure 7.3: Task accuracy results of user responses
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Q2 was only solved by four of the ten participants without help, which was surprising
since the solution could be read directly from the frequency bar chart of the three
countries and the adjacent table. Most participants found the number of wind farm
comparisons but struggled with the size comparison. They intuitively put the variable
"number of turbines" on the y-axis, giving them the joint distribution of the wind farm
sizes of the three countries.
At this point, these six participants asked for help or if they were doing something
wrong. They did not seem to understand the purpose of the table right away. After
being reminded that the table refers to the wind farm sizes of the factors, all participants
understood and could answer the question without any problems.

Q4 presented similar problems, but here we were expecting them more. Five participants
needed help to find the correct solution. The approach of most participants was correct
at first, the frequency table with turbine spacing on the y-axis. However, initially, most
participants looked at the joint distribution of "Agricultural" and "Oceans and Seas" land
cover, expecting them to be grouped automatically. Half of the participants realized they
would have to look at these individually. The rest asked for support at this point.

An interesting observation we found was that one of the participants tried to initially
answer Q2 and Q4 questions with the map view. the person was successful to discover
number of wind farms according to the countries, but had to change his strategy to
compare the wind farm sizes and the turbine spacing.

Q5 was successfully solved by seven of the participants, five of whom found the solution
directly after a quick overview of all wind farms. The rest were initially confused by the
scaling of the plots and found it difficult to solve the tasks by purely visual means.

For Q6, there were a total of 3 wind farms located on a peak/ridge, with six people
finding them all. One person found them only with the help of the interviewer, and the
rest found only some of the wind farms or gave incorrect answers. Four people made use
of the hover information and three people sorted the wind farms according to the land
form.

7.3.2 Open Questions for feature detection and insights generation
The open questions allowed the participants to freely use the tool to generate their insights
and to have domain experts speak about what features can be used to characterize wind
farms, what insights they were able to find and which they would be interested in finding.

Before starting the assignments, the participants were already given 5 minutes to work
freely with the tool. Then, after solving the tasks section, we asked an open-ended
question:

Q7 Is there a question you would like to answer with the tool?
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7.3. Assignments & Results

With this question, the participants could explore all questions of interest to gain more
insights. Domain experts were asked what additional features they would be interested
in and what features they consider important when characterizing wind farms.

Afterwards, we asked them the following questions:

Q8 Have you learned any new insights about the wind industry? If so, which ones?

Q9 Did the visualization confirm or contradict any assumptions you had about the
wind industry before?

Results

The responses from the domain experts and other participants were evaluated separately.
In the case of the non-domain experts, we were interested in what insights could be gained
by people who have little or no knowledge of the present situation of wind installations.
The domain experts’ responses were intended to validate the insights gained and to show
whether they, too, were able to gain new insights despite their substantial knowledge of
the subject. In addition, an in-depth qualitative discussion was held with the domain
experts. They were asked to argue which of the existing, but also which additional
variables they consider relevant to characterize a wind farm and which local and global
patterns they depict according to their knowledge and following the visualization results.

Non-domain Experts: For Q7, participants repeatedly investigated how wind farms
are distributed across specific continents and countries, focusing on the participants’
places of origin or their current residences. Other interests included the distribution
of wind farms across land areas, e.g., oceans and seas, their distribution across specific
countries, and the distribution of stand-alone turbines. One person, for example, was
in South America and was, therefore, more interested in the distribution of wind farms
across countries in South America and over the different land covers.

An interesting question we found was about the location of specific wind farms, which
were often discussed during the election campaign that was taking place in a given country
at the time of the interview. The respondent said they had heard about these wind farms
several times but did not know where or how big they were.

In the discussion that followed about whether insights were discovered for Q8, all non-
domain experts answered yes. They knew little or nothing about the wind industry, so
they felt that any answer to the tasks would yield insights. The comprehensive insights
gained by the non-domain experts are listed below:

• USA and China are leading powers in the number wind installation

• There are far fewer wind installations in the southern hemisphere than the northern
hemisphere

• There are many more wind installations around the world than thought
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• There are large wind farms in the north of Brazil

• Brazil is the leading wind energy producer in South America

• There is a variety of shapes that wind farms can have, not only arrays

Domain Experts: The domain experts had a different and more explicit approach to
answering Q7 and Q8. They had concrete questions they wanted to answer with the
tool since they have more knowledge about the domain, and they saw this as a chance to
answer some of them. The questions they wanted to answer were organized as follows:

• The distribution of wind farms over complex terrain

– particular interest in high elevations, ridges, cliffs, and valleys.
– how many wind turbines are located on complex terrain in which countries

(experiments with many land covers and landforms)

• Where turbines are located on simple flat terrain (particularly in Germany)

– flat terrain wind farms can be used to install wind-liDAR systems (works
better due to more even wind flows)

• Detection of wind farms in places where they were not known to exist

– Antarctica, American Samoa, Vanuatu

• Analysis of wind farms in South Africa:

– where wind farms are located, on the coast or in the country’s interior
– how many are in wind turbines are in farms and how many are stand-alone
– over which land covers they are distributed
– which shapes of wind farms are most represented
– the distribution of the sizes of the wind farms
– where the biggest wind farm is

• Analysis of global hot spots of wind farms:

– search for hot spots in the USA
– search for wind farms in California, which are known to be the largest
– analyzes hot spots and cold spots by different land covers

• Search for trends of land covers in different countries

• How many wind turbines are installed in Germany, and where they are located
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• Search for wind farm projects they were involved in

One can see that the questions asked by the domain experts were much more strategic and
purposeful than those asked by the non-experts. All three experts mentioned that seeing
such extensive data with the chosen variables was unprecedented. There was particular
interest regarding the variables land cover and landform. One of the experts commented:
"yes, that it is possible to quantify the distribution of wind turbines by landform and land
cover is really useful". The fact that they had never seen such information in conjunction
with wind infrastructure data may be responsible for many questions revolving around
them.

When asked about insights they had gained, the domain experts answered the question
based on the answers to the questions above. So, for example, they now know there
are wind farms in Vanuatu or how wind farms are distributed on complex terrains in
Germany, which are very concrete examples, so we will not list them all. One domain
expert, described his experience in a nutshell: "I had new insights in the sense that all
the world data is there, and that is quite powerful."

Overall, valuable insights from the domain experts were the following:

• India has many very large wind farms

• Most wind farms are located on agricultural land

• Wind farms in Germany are relatively small, compared to other countries

• Flat terrain is the most represented landform for wind turbines

Many of these insights were familiar to the domain experts, with the tool now allowing
them to confirm them: "I knew instinctively that wind farms in China tended to be
larger than in Germany; I think actually to see numbers about that is really interesting".
However, they also learned things that were not expected: "I knew that a lot of turbines
were on flat terrain, but I didn’t think that so many were identified being on other types
of terrains, that actually quite surprised me. It looks in total less than than half of the
turbines are on flat terrain".

All three found the included variables very informative, but mainly for general purposes.
Any technical information about the farm’s turbines, as well as information about the
wind flows would increase the value of the visualization even further. The following
features emerged from the interviews as additional characteristics of wind farms.
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Figure 7.4: Frequency of important Wind Farm and Turbine characteristics determined
by Domain Experts

It was clear to the experts that it would be challenging to obtain most of these data on a
global scale, and that it would require a considerable investment in time and resources.
Nevertheless, they recommended databases from which some data could be extracted.
Further, one expert mentioned that the databases could be used to estimate some of the
unknown characteristics, such as power capacity. All experts view power capacity as an
essential characteristic of a wind farm, so its estimation could be a challenge to inspire
future studies.

7.3.3 Feedback
Verbal feedback

After completing the tasks and open questions, we asked participants for feedback
regarding the tool’s utility and user interface/functionality. Domain experts were asked
an additional question about the tool’s usefulness for their work.

Q9 Can you give general feedback on the visualization in terms of user interface,
functionalities, etc.?

Q10 (Domain Experts only) If the visualization data was updated regularly, would it be
useful to you in your work?

Results

Participants gave a lot of feedback about the user interface (UI) and functionalities, the
most common points for improvement are shown in Figure 7.1.
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Table 7.1: Frequency of Prototype feedback from users on potential improvements and
additions

Given that many participants had difficulties with Q2 and Q4, and the lack of grouping
by an additional variable in the frequency distribution view triggered this, it was most
often mentioned as a suggested improvement for the prototype. We acknowledge this
as a shortcoming of the prototype since it is not practical to remember previous results
when performing tasks.

Some participants had suggestions for improving the filtering interface. They were
displeased by its size, given that the visualization did not fit on the website when
expanded. Thus, they suggested making it smaller or as an overlay. Also, some people
missed a reset filter button, and others thought that the apply filter button would be
better placed at the end of the filters. Finally, for the numerical sliders and the categorical
selector, the possibility to input the values using the keyboard would be beneficial and
save some time.

The random wind farms view was also often the subject of suggestions for improvement,
primarily related to its interpretability. Thus, the participants suggested either the same
scale or an indication of the scale on the wind farm maps. Further, a legend describing
the visual encoding would be helpful.

On two occasions, participants suggested that the clustering of the map view should be
adapted to the country boundaries, i.e. that country-specific clusters should be created.
Other ideas to extend the visualization which were mentioned only once are the following:

• percentual information for the frequency distribution

• interlinking from map view to google earth or similar websites

• the possibility to give feedback about the data, i.e. report if a turbine is classified
on a wrong land cover

• the integration of the frequency view and the map view to one common view

• enabling the search for specific locations
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• allow the selection of wind farms in the frequency distributions and display them
on the map view

Question Q10 was only addressed to domain experts. They all answered affirmatively;
they could imagine that the visualization could be helpful in their work. They also
mentioned areas in which they thought the visualization could be helpful or mentioned
functionalities that would make it useful for specific areas.

To quote one of the experts’ direct answer: "I could see this being really useful for doing
the introduction to wind energy courses at university, I can see it being really interesting
for people in national wind energy organizations or governments who want a standard
database they can use with relatively easy access, I can see it being really useful for
start-ups, either completely new businesses or people coming in from other businesses,
and also for consultants in wind energy. [...] Everything is going to go digital, and it
is going to save the world, and few people understand what effective access to data may
actually allow them to do; this kind of visualization is actually a really nice example of
that, and it also lets you discover some interesting things about the wind energy industry,
like where are turbines, what are the challenges that people might face."

One domain expert searched very often for wind turbines in google maps or google earth,
and therefore emphasized that it would be helpful for him to link the turbine coordinates
with google earth to view them there directly.

Another domain expert is a lecturer at the university and said that the visualization
would be beneficial as an introduction to the topic for his students and for the students
to be able to do projects with it. In total, two of the experts mentioned that it would be
convenient in a lecturing context.

One of the experts submitted a paper a few weeks before the interview on "wind farming
on complex terrain". He said he would have needed this exact data about the frequency
distribution of turbines over elevation and "cliffs", "valley" and "ridge" land forms in
various countries. He was considering a similar way to obtain such information to include
in the study but realized that it would have taken him at least two weeks of effort, so
he decided against it. However, due to this, he was familiar with the data sources we
used in the study and was very impressed. Furthermore, he liked that the plots could be
downloaded as images and even asked if he could use the visualization for private use.

Nevertheless, the experts also mentioned that the tool is very exploratory with a general
purpose. In order to use it in a way that makes the work more efficient and accessible, it
would have to be conceived in such a way that it serves specific customers or markets to
achieve specific goals. These goals vary greatly depending on the customer’s background,
and their exact questions need to be carefully analyzed and understood. For example,
specific purposes would be policy-making for wind infrastructure in regions or countries
or wind energy developers looking for expansion opportunities or turbines that need to
be replaced.
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Questionnaire

To obtain a value for the utility of our visualization in addition to task accuracy and
insights-generation, we adopted the ICE-T methodology from the paper "A Heuristic
Approach to Value-Driven Evaluation of Visualizations" by Emily Wall et al. [33] to
design a questionnaire. It evaluates a visualization in terms of quality based on four
components: insight, time, essence, and confidence. For each component, core concepts
are defined, which the authors refer to as guidelines and which they further break down
into heuristics. The heuristics are designed to reflect the components. They are ultimately
the underlying questions of the questionnaire. The heuristics are rated on a Likert scale
from 1 to 7, with 1 standing for "strongly disagree" and 7 for "strongly agree".

Results

The questions and results of the questionnaire are shown in Figure 7.3. The responses
of all participants were averaged for each heuristic. We calculated the average of all
heuristics to obtain a total cumulative visualization score. In Figure 7.2, the scores are
aggregated for the guidelines and the components. The authors of the heuristics-based
questionnaire say that good visualizations should have a cumulative average score of 5 or
more. Weak visualizations have a score of 4 or less. Everything in between is considered
neutral. Specific weaknesses are further indicated by the fact that individual heuristics
and guidelines score less than 4.

Our visualization received an overall score of 5.93, which corresponds to the authors’
requirements for a good visualization. The insight and time components received the best
scores, each higher than 6. On the guideline "The visualization provides mechanisms for
quickly seeking specific information", we received an exceptionally high score of 6.15. This
indicates that our visualization is easy to understand and compactly designed to provide
information quickly, which was also one of our goals. The only heuristic that received a
score lower than 4 was that of the guideline "The visualization helps understand data
quality" or the specific heuristic "If there were data issues like unexpected, duplicate,
missing, or invalid data, the visualization would highlight those issues". This indicates
that our visualization had the weakness of not clearly evidencing missing values and data
quality.
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Table 7.2: Guidelines and components scores
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Table 7.3: ICE-T Methodology questionnaire with results
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7.4 Summary & Discussion
One of the most exciting aspects we found was seeing how diverse visualization experts,
domain experts, and geography experts used the tool to gather information and what kind
of feedback they gave on the functionalities. Of course, domain experts had much more
prior knowledge and assumptions about the data, which they could now prove. Therefore,
they went on direct solution finding and answered questions in a very structured way
towards a goal. They knew what to do with the tool right from the start and naturally
suggested fields of application in which the tool could be integrated. The assessment of
the tool’s functionalities was more directed toward what could be added to make it more
beneficial for themselves, i.e. adding interlinking to google earth.

On the other hand, the visualization experts were much more concerned with the user
interface and the visualization design, so their feedback focused on these issues. The
questions and insights they would seek were more generic than those of the domain
experts; in a way, the first thing that came to their mind was that almost everyone
went directly to their home countries to see how wind farms were distributed there. In
addition, they were much more concerned with playing around with the functionalities
to see what was possible rather than getting factual information out of the data.

The geography expert was very interested in the tool. He did not know much about
turbines but found analyzing them in terms of land covers, landforms and elevations
very intriguing. He was particularly interested in how the data was obtained and what
projections were used. After the interview, he even asked to be updated on the project’s
progress.

The diversity of backgrounds made it all the more interesting to involve them all in
answering the questionnaire, as the quality of the tool can bring benefits to be assessed
from multiple perspectives, the absence of which the authors in [33] considered a limitation
in their evaluation.

Overall, the visualization produced satisfactory results in finding solutions to the assign-
ments we gave them. The strength of the visualization is that it shows the relationships
and information at a glance and has an easy-to-use interface. Moreover, the completeness
of the data and the variety of features makes it useful for generating insights and questions
from the data. The main shortcomings we identified were the lack of dynamic grouping
for the frequency view and the lack of legend and scaling in the random wind farms view.
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CHAPTER 8
Limitations & Future Work

Based on limitations we encountered during the project, the thesis has identified several
opportunities for future research.

Data enrichment. Interviews with domain experts have shown that there is still room
for improvement in adding variables to characterize wind farms. In particular,
variables for which global datasets are available, such as historical average wind
speed and current wind speed at the site. Adding these variables to the visualization
as overlays would significantly enhance the insights and decision-making capabilities
for domain experts, as they would provide them with a more comprehensive
understanding of the wind conditions at the site. This information is important for
characterizing wind farms because it can be used to predict the potential energy
output of the farm, optimize the design and placement of wind turbines, and detect
new installation areas.

Data quality. The data obtained by enrichment can be affected by errors. These can
be related to the turbines themselves, i.e., whether they are still up to date, or to
the information about the turbines. In the latter case, turbines are mainly affected
if they are located in border areas between two factors ( e.g., turbines located
on the coast are located at the border between oceans and seas land cover and a
different one). These are misclassified due to the degree of resolution of the dataset
or by changing landscape conditions, e.g., the increase of the sea level changes
the land area. Therefore, feedback on turbine information in the visualization
itself, as proposed by a domain expert, would be highly beneficial. It would enable
a more effective data cleaning and improve the overall quality of the dataset in
all respects: Factual existence of wind turbines, correct clustering in wind farms,
correct classification of land cover , land shape, shape, country, and continent. It
would be an valuable step towards the construction of an official global database
on the global wind infrastructure.
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Estimation of rotor size and power output. During our study, we encountered an
insight that could be used to estimate turbine rotor size and power output. For
the data that have complete information on power output (124,059 turbines) and
rotor size (29,663 turbines), we plotted the variable turbine spacing against each,
as shown in Figure 8.1 and Figure 8.2. The visualizations suggest that there may
be relationships between turbine spacing and rotor size, thus, turbine spacing and
power production. We believe that, along with data on wind speed at the site, this
may allow estimates of energy production for wind farms worldwide.

Figure 8.1: Scatter plot of turbine spacing vs. power output

Figure 8.2: Scatter plot of turbine spacing vs. rotor size

In order to investigate the relationship between power output or rotor size and
turbine spacing, we conduct correlation analyses using Pearson’s product-moment
correlation coefficient. The results of these tests reveal a statistically significant
correlation at a 95% confidence level, as indicated by p-values less than 2.2e-16.
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The correlation coefficient (cor) for the power output and turbine spacing test
is 0.1921765, indicating a weak positive correlation. Similarly, the correlation
coefficient for the rotor size and turbine spacing test is 0.3604944, which suggests
a moderate positive correlation between the two variables. We also performed
a linear model analysis to assess the ability of rotor size and turbine spacing to
predict power output. The results show that both rotor size and turbine spacing
have a strong positive correlation with power output and are statistically significant
in explaining the variation in power output. As rotor size and turbine spacing
increase, power output is likely to increase as well.

OpenStreetMap data. The analyzed tags and other ones, which we did not include in
the analysis, could be adjusted and included in the visualization. Despite significant
incompleteness, we still found relatively complete data in some countries, mainly
where OpenStreetMap is better known. Furthermore, information could be retrieved
from the OSM History Viewer [87]. It stores when and how nodes were changed,
moved, created, or removed, and all tags that were removed or added to elements.
This data could provide insights into the temporal evolution of global wind turbine
infrastructure.

Wind farm clustering. Defining wind farms based on spatial characteristics and to
identify them using clustering algorithms deserves deeper investigation. Dunnett’s
approach in [7] in determining parameters for clustering wind farms is an appropriate
course of action. However, it requires improved data and an acknowledgement
that wind farms can be very different depending on variables such as land cover,
landform, and country. For example, offshore wind farms are very different from
other wind farms because of the large distances between turbines, so different
parameters are needed to cluster them. To this end, spatial analysis on more
representative datasets of known wind farm projects which consider factors related
to land characteristics would be required.

Clustering of shapes. The clustering of shapes did not work as well as we had hoped,
so we left out the results to evaluate the prototype. During the development of the
model, we found that mainly wind farms with similar sizes were grouped, i.e. the
number of wind turbines was more decisive than the actual shape. We obtained
acceptable results only for simple shapes such as lines, although not all line-shaped
wind farms were detected. An unsupervised clustering approach without knowledge
of the type and number of groups is challenging to evaluate and refine. Therefore,
applying a model to data with predefined shapes of wind farms would be more
prudent. That would require working with experts to manually classify and name
a large enough number of wind farms so that the model knows what to look for.

Selection of implementation environment. After the prototype development, we
would switch to another, more customizable implementation environment since we
encountered some limitations using Dash. Among them is the grid that overlays
the wind farms in the individual wind farm encoding plot. The initial plan was to
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8. Limitations & Future Work

overlay the map with a coordinate system, but Dash’s functionalities did not enable
that. Further, the wind farms in the map view should be clustered as polygons so
that wind farms and turbines could be viewed simultaneously, but Dash’s built-in
functionality also hindered this.

Revision of the visualization and publication for general use. The visualization
still needs modifications in several ways, as described in Section 7.4. One key point
is that the frequency view of our prototype lacks a more flexible grouping behaviour
for the histograms and bar charts. Including such would allow more in-depth analy-
sis and thus should be kept in mind for the further development of the visualization.
In addition, the random wind farms view also requires significant adjustments.
Eventually, the visualization and the data should be made public for general use.
Therefore the data must be published according to the FAIR principles [88] and the
visualization interface needs additional information about data sources, licensing,
contact to the authors, and an embedded manual on how to use the tool.

Improving Wind Farm Visualization Encoding The Random wind farms view de-
scribed in Section 6.2 has effectively displayed wind farms and their installation
area and layout; however, some refinements could be made to display the intended
elements more effectively. Further research would be needed to make these im-
provements. As already mentioned, improvements in the grid encoding would
enhance its functionality. By transforming the grid into a coordinate system, it
would become more flexible and easily understandable for users, allowing them to
quickly access distances and other information. Additionally, more research could
be done to explore other ways of visualizing wind farm data, which could lead to
the development of a widely accepted and adopted standard for displaying it in the
industry.
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CHAPTER 9
Conclusion

9.1 Answers to the Research Questions
We collaborated with a domain expert and a visualization expert to create an enhanced
dataset of wind farms and turbines, as well as an interface for visualizing the data on
both a global and wind farm-specific level. We conducted a user study, testing the
prototype and gathering data through qualitative interviews with wind energy experts
and measuring task-solving accuracy with visualization, geography, and domain expertise
experts. We evaluated the results and found that the solution could effectively perform the
tasks for which it was designed. Through in-depth discussions with domain experts, we
also gained valuable insights into the needs and priorities of the wind energy community
for future global development. This methodology allowed us to gather valuable data to
help us answer our research questions.

RQ1 What features can be used to characterize wind farms across the world, and what
local patterns do they present?

Conversations with domain experts revealed that features characterizing wind farms and
turbines consist of technical, temporal, terrain, and weather data.

technical: Energy output, Manufacturer, Turbine model, Farm layout, Turbine
spacing/density, Rotor size, Hub height, Rotor disc size;

temporal: Year of installation;

terrain: Land cover, Landform, Elevation level, Country/Continent;

weather: Wind speed, Wind direction;
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9. Conclusion

Our data enrichment focused on terrain data; thus, the other areas would be strongly
complementary. Yet, for technical data, in particular, there still needs to be more
possibilities to include them in the data in a more comprehensive way.

Global and local patterns are manifold, and many still need to be discovered. Yet the
participants found and confirmed some patterns based on the included characteristics
that are worth mentioning:

• The US and China are leading powers in the number of wind installations.

• Germany has much smaller wind farms than the US and China.

• In the southern hemisphere, there are much fewer wind installations than in the
northern hemisphere.

• India has many huge wind farms.

• The highest wind farms are located in China.

• Flat terrain is the most common landform for wind installations.

• The predominant land cover for wind installations is agricultural land.

• Wind farms on the ocean have a greater distance between turbines than wind farms
on land.

RQ2 What visualization technique is appropriate to explore the claims about wind farms
found in the literature using the EDWin?

The user study participants successfully solved the tasks to check the validity of the
posed claims about wind farms in Chapter 2, even though some of them needed support
from the interviewer. Therefore, we have shown that the chosen visualization techniques
are appropriate to explore such claims. We found that visualizing the number of turbines
through a histogram, with the option to vary and select a variable on one of the axes, is
particularly important. In addition, a map visualization is beneficial to get an idea of
how the distribution occurs globally. Unfortunately, for two of the tasks Q2 and Q4,
only 40% and 50% of the participants could find the correct answer without help. A more
dynamic grouping would have simplified the solution of these two tasks considerably, and
therefore its addition would further refine the proposed technique.

RQ3 What visual encoding can accurately capture the main visual features of a wind
farm (size, spacing, terrain, nearby infrastructure) and represent them for a [quick] clear
visual comparison?
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9.2. Conclusion

Our developed visual encoding shows the relevant properties and evidences them so that
most participants successfully solved the related tasks. Moreover, the design was very
appealing to some participants, who found this part of the visualization the most exciting.
One thing that needs to be added in the future is a legend and a scale to ensure correct
interpretation.

9.2 Conclusion
The results of this study show that our visualization tool effectively provides valuable
insights and gives the possibility to explore the EDWin dataset. Feedback from a
diverse group of experts, including visualization, domain, and geography experts, helped
identify areas for improvement, such as data enrichment and data quality. Additionally,
suggestions were provided for further enhancing the tool’s capabilities in providing a
more comprehensive understanding of wind farm data, for example, by including wind
conditions at the site.

If we try to answer our main research question, "What do wind farms look like?" we
conclude that the multitude of wind farm designs makes it impossible to arrive at a
singular conclusion. Our visualization tool demonstrates this diversity and complexity,
allowing users to explore wind farms based on numerous features such as country, landform,
land cover, number of turbines and turbine spacing. Those features often determine
the final wind farm design. For example, the terrain conditions of a particular area can
play a significant role in determining the type of wind farm design that is most suitable.
Certain terrains may be more favourable for specific designs, while others may present
unique challenges requiring different design solutions. The country where a wind farm is
located can also significantly impact its design, as different countries may have different
standards and regulations that must be adhered to. In addition, the number and type
of wind turbines used and the distance between the turbines also affect the appearance
of a wind farm. Therefore, the tool serves as the answer itself, providing an interactive
and user-friendly way to explore the world of wind farm designs and the factors that
determine them.
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Source
Global wind turbines location data from Open Street Map [1].

Data Creation

359.947 
wind 

turbines

Enriched 
with  

locational 
features

DBSCAN 
clustering 
into wind 

farms

Enriched 
with wind 

farm 
features

turbine specific features
Country, Continent, Land 
Cover [5], Landform [6], 
Elevation [7], Distance to 

nearest turbine

farm specific features
Number of turbines, Shape

Filter View 2: Frequency Distribution

Usability:
Obtain the frequency distribution of wind farms and turbines over a selected feature
Obtain descriptive statistics on the distribution feature respective wind farm sizes
For categorical variables on the y-​Axis a Bar Chart is returned
For numerical variables on the y-​Axis a Histogram is returned

Usability
Select wind farms that have characteristics of interest to you
Only wind farms and turbines matching the filter will be displayed in the three views

Visualize only wind farms and wind turbines that meet certain characteristics.

WFid

Taken from wind farm data, same 
for all turbines in farm

Key 
value

nearest 
neighbour search
algorithm

Google Earth EnginePyCountry -
Python library

Open Street 
Map

shape
number of 

turbines 
turbine spacingelevationlandformland covercontinentcountrylatlonid

Key 
value 

turbines 
count

labels obtained 
from unsupervised 
clustering 

average value from 
turbines contained in 

farm 

modal value from turbines contained in farmcenter of wind 
farm

shape
number of
 turbines 

turbine 
spacing

elevationlandformland covercontinentcountrylatWFid lon

Dealing with standalone turbines
WFid = -1

Number of turbines = 1
Are only considered for wind 

turbine related plotsWhat is a wind farm?
wind farm [...] an array or system of multiple wind turbines at a given site. [2]
Global average of onshore wind turbines rotor size ~130 meters in 2019. [3]

[The optimal spacing of wind turbines] varies widely but is largely considered to 
be in the range of 3–10 rotor diameters. [4]

DBSCAN Parameters

minPts, the
minimum number of turbines to 

form a cluster
2

ε, neighbourhood radius for 
spatial clustering

1.300 m

View 1: Map Visualization
Switch 

between wind 
farm and wind

turbines 
cluster view.

Usability:
Get an overview on how wind farms and turbines are distributed in the world
Find specific wind farms and investigate their location, extent, size and shape
Explore whether there are wind farms or turbines in a particular location
Analyze single wind farms and the attributes of the contained turbines

Zoom -
can also be done 
by clicking on the 

cluster or ctrl + 
mouse scrolling.

Make real 
world measurements to 
verify distances between 
turbines or to make new 

measurements 
(e.g. the area of a wind 

farm,... ).

Detailed 
windfarm view
when clicking 

on single 
marker.

Scale

View 3: Random Wind Farms
Usability:

Get a feeling on how wind farms that match the filtered features look like
Create poster-​like images that can be downloaded as images from the menu bar
Sort the sequence of wind farms by a feature to get more meaningful posters

Terminology
wind farm size - number of turbines contained in farm
feature - wind farm characteristic e.g. land cover, elevation

Select the 
feature that 
should be 

displayed on 
the y-​axis.

Clicking on 
legend items 
will filter and 
relayout data.

Hover over 
bars to get 

clear  
frequencies.

+ qualita
tiv

e evaluatio
n

Click and drag on 
the graphs to 

zoom or click on 
the zoom buttons 

in the graph's 
menu bar.

Decide how many 
columns and rows 
the poster should 

have, i.e. how many 
wind farms should 

be displayed.

Select a new set 
of random wind 

farms by changin 
seed + make the 

posters 
reproducible.

Hover over 
points to get 
information 
about single 

turbines.

Functionalities

Which land form is predominant for the installation 
of windfarms in Austria?

How do the landforms upper slope and summit 
compare in terms of turbine spacing?

Where do you find the biggest wind farms and how 
do they look like?

Sources
[1] Open street map. https://openstreetmap.org/. [Online] Accessed: 2022-10-02.
[2] Cutler J. Cleveland, Christopher Morris, Dictionary of Energy (Second Edition), Elsevier, 2015, Pages 638-655, ISBN 9780080968117
https://doi.org/10.1016/B978-​0-​08-​096811-​7.50023-​8.
[3] Madhumitha Jaganmohan (2020) Average rotor diameter of onshore wind turbines worldwide from 2000 to 2025 [Infographic]. Statista. 
https://www.statista.com/statistics/1085649/onshore-​wind-​turbines-​average-​rotor-​diameter-​globally/ [Online] Accessed: 2022-10-02.
[4] Dunnett, S., Sorichetta, A., Taylor, G. et al. Harmonised global datasets of wind and solar farm locations and power. Sci Data 7, 130 (2020).
https://doi.org/10.1038/s41597-​020-​0469-​8
[5] Buchhorn, M. ; Lesiv, M. ; Tsendbazar, N. - E. ; Herold, M. ; Bertels, L. ; Smets, B. Copernicus Global Land Cover Layers-​Collection 2. Remote Sensing 2020, 12 Volume 108, 1044. 
doi:10.3390/rs12061044
[6] Theobald, D. M., Harrison-​Atlas, D., Monahan, W. B., & Albano, C. M. (2015). Ecologically-​relevant maps of landforms and physiographic diversity for climate adaptation planning. PloS 
one, 10(12), e0143619
[7] Global Multi-​resolution Terrain Elevation Data 2010 courtesy of the U.S. Geological Survey

Example TasksData

Select the feature 
after which the 
displayed wind 

farms should be 
sorted.

Example wind farms

determines

Toggle button 
to show or 

hide the filter 
options.

Button to 
apply filter 
selections.

The total number 
of wind farms and

turbines that 
match the filter 
are displayed 

here.

Numercial 
features have a 

slider, where the 
upper and lower 
limit can be set.

Categorical 
features have a 

scrollable 
checklist in which 
the values can be 

selected.

Grid that overlays wind 
farms has the goal of 

facilitating the 
estimation of distances 
and areas. Each line of 
a small square is 1.000 

meters long.

de
te

rm
in

es

determ
ines

Visual encoding of 
the map should 

facilitate recognizing
the vegetation, 
landform, and 
surrounding 

infrastructure.

Views can be 
selected as tabs 

here. The selected
view tab has a 

different 
background color.

1. Filter for 
wind farms 
located in 

Austria

2. Go to the Frequency 
Distribution view and show

the distribution over the 
feature "Landform"

3. Analyze the 
frequencies, in 

Austria most wind 
farms, and also 

most turbines, are 
located on flat 

landform.

For categorical 
features it shows 

the statistical 
summary of the 

wind farm sizes in 
each category of the

selected feature

For numerical 
features, the 

statistical summary 
values are returned 
about the feature 

itself.

Min: 1 (standole)
Max: 3.296

Min: -46 meters
Max: 4.684 meters

Min: 10 meters
Max: 13.150 meters

Single turbine
Polygon
Not clustered
Less than 5 turbines
Lines
Irregular lines

Flat
Lower slope
Summit
Upper slope
Valley
Waterbody
unknown

Agriculture
Closed forest
Herbaceous vegetation
Herbaceous wetland
Moss and lichen
Oceans and seas
Open forest
Permanent water bodies
Shrubs
Snow and ice
Sparse vegetation
Urban
unknown

Africa
Antarctica
Asia
Europe
North America
Oceania
South America
unknown

138 countries in the world

Number of turbinesElevationDistance to nearest turbineShapeLandformLand CoverContinentCountry

Cheatsheet feature values

1. Filter by wind farms 
located on upper slope or 

flat terrain. go to the 
Frequency distribution tab 
and view the distribution of
wind farm sizes in the table

by landform.

2. To examine the sizes in 
more detail, first filter for 
upper slope wind farms. 

Display the feature number
of turbines on the y-​axis. In
the histogram you will now 
see the distribution of all 

wind farm sizes.

3. Do the same
for wind farms
that are on a 
flat surface.

4. Compare the results: the average and median of 
wind farms on upper slope is larger, which may 
indicate that these farms are generally larger.

The distribution of wind farm sizes looks similar for 
the two groups, and most wind farms and turbines 

tend to belong to smaller farms.

1. Filter wind 
farms to number 
of turbines over a 
specific threshold 
e.g. 100 turbines

2. Find out wher 
these wind farms 

are distributed 
over the world 

and explore some
wind farms.

4. Look at random
wind farms and 

sort them by 
features to 

discover patterns

3. Explore the 
distribution of 
big wind farms
over country

What do wind farms look like? 
Manual for wind farm visualization prototype

Wind turbine data: 359.947 entries, 12 columns

Wind farm data: 20.608 entries, 11 columns
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