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Kurzfassung

Die probabilistische Programmierung erleichtert die Entwicklung und Analyse von sta-
tistischen Modellen erheblich. Lediglich mithilfe einer Beschreibung des statistischen
Prozesses können algorithmische Ansätze oft vollautomatisch tiefgehende Einblicke in
den modellierten Vorgang geben und ermöglichen es somit dem Benutzer Inferenzen
durchzuführen, d. h. Schlussfolgerungen aus beobachteten Daten zu ziehen. Allerdings
ist exakte Programmanalyse in der Gegenwart von Schleifen schon bei herkömmlichen
deterministischen Programmen eine notorisch schwierige Aufgabe. Um dennoch rigorose
Analyseergebnisse zu gewährleisten, ist es notwendig, maßgeschneiderte Ansätze für
strukturell eingeschränkte Programme und Schleifen zu entwickeln. In dieser Arbeit
entwickeln wir mehrere Techniken, für die automatischen Analyse von probabilistischen
Schleifen.

Um Inferenz in probabilistischen Programmen durchzuführen, ist es notwendig, Informa-
tionen über die Wahrscheinlichkeitsverteilung, die durch das Programm spezifiziert wird,
zu extrahieren. Um die modellierte Verteilung zu berechnen, stellen wir eine korrekte und
vollständige Methode für Programme und Schleifen über endlichen Zustandsräumen vor
und ermöglichen eine vollständige Automatisierung in unserem neuen Tool Blizzard. Für
probabilistische Programme über unendlichen Zustandsräumen stellen wir eine Methode
vor, mit der eine beschränkte Klasse von Programmen durch äquivalente, schleifenfreie
Programme ersetzt werden kann. Darüber hinaus stellen wir maßgeschneiderte Techniken
vor, die auf erzeugenden Funktionen basieren, und zeigen, dass Typsysteme geeignet sind,
um die Verteilungen von Variablen in probabilistischen Schleifen zu identifizieren.

Dennoch sind einige Probleme bei der Analyse probabilistischer Programme nachweislich
nicht entscheidbar. In dieser Arbeit untersuchen wir die Grenze der Entscheidbarkeit,
indem wir das Problem der Invarianten-Synthese für probabilistische Programme unter-
suchen. Wir stellen bestehende, nicht-probabilistische Ergebnisse vor und geben korre-
spondierende Beweise für probabilistische Programme. Unter anderem präsentieren wir
eine bisher unbekannte Beziehung zwischen dem Problem der Invarianten-Synthese und
dem Skolem-Problem, einem schwierigen ungelösten Problem der Zahlentheorie.

Mit den vorgestellten Techniken bringen wir den Stand der Technik in der probabilistischen
Schleifenanalyse voran und ermöglichen exakte Analyse und Inferenz für eine neue Klasse
von probabilistischen Programmen und Schleifen.
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Abstract

Probabilistic programming greatly facilitates the development and analysis of statistical
models. By providing merely a description of the process, algorithmic approaches can
often fully automatically derive deep insights into the modelled process and allow the
user to perform inference, that is, to draw conclusions from observed data. However,
performing exact program analysis in the presence of loops is a notoriously hard task,
already for traditional deterministic programs. To still provide rigorous analysis results, it
is necessary to provide tailored approaches for structurally restricted programs and loops.
In this thesis, we develop several techniques that tackle the problem of automatically
inferring properties of probabilistic loops.

To perform inference on probabilistic programs, it is necessary to obtain information about
the probability distribution that is specified by the program. To extract the modelled
distribution, we present a sound and complete method for programs and loops over a finite
state-space and provide full automation in our new tool Blizzard. For infinite-state
probabilistic programs, we present an approach that is able to replace a restricted class of
programs with equivalent, loop-free programs. Moreover, we present tailored techniques
based on generating functions and show that type systems are well-suited to identify the
distributions of variables in probabilistic loops.

Nevertheless, some problems in the analysis of probabilistic programs provably cannot
be answered. In this thesis, we investigate the boundary of decidability by studying
the problem of invariant synthesis for probabilistic programs. We present existing, non-
probabilistic results and give corresponding proofs for probabilistic programs. Among
others, we present a hitherto unknown relation between the problem of invariant synthesis
and the Skolem problem, a difficult open problem in number theory.

With the presented techniques, we advance the state-of-the-art in probabilistic loop
analysis and enable exact analysis and inference for new classes of probabilistic programs
and loops.
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CHAPTER 1
Introduction

1.1 Motivation
Due to the probabilistic and uncertain nature of numerous real-world processes such as
financial markets, robotic environments and randomized algorithms, it is often necessary
to reason in the presence of uncertainty and infer properties of the system from observed
data. To achieve this, statistical modeling and machine learning are two widely applied
tools. A statistical model can be used twofold: (a) to describe the data generation
process and evaluate the probability of possible outcomes, and (b) to perform (Bayesian)
inference on the model using observed output data and automatically learn/adapt the
model parameters.

Traditionally, such models have been created manually and evaluated by tailored math-
ematical approaches based on e.g., statistics, logic and algebra, which are tedious and
require significant mathematical expertise. To overcome these limitations, Probabilistic
Programming Languages allow the user to specify the probabilistic model in a designated
programming language and provide means to run fully-automated inference procedures,
significantly facilitating the deployment of such models [GHNR14, vdMPYW18]. More-
over, probabilistic programming can be viewed as an attempt to provide machine learning
procedures with domain knowledge by giving insight to how data is generated.

Example 1. To illustrate a first use-case (a), consider the biased, one-dimensional
random walk shown in Figure 1.1a. Estimating the distribution modelled by the program
is non-trivial, especially since the step width is not symmetrical and the direction is
chosen with some bias. A possible query to an inference system would be “How is the
probability distributed over possible values of x?”.

A machine-learning view of probabilistic programming (b) can be illustrated by the
problem of estimating the average life expectancy in a country based on a number of

1



1. Introduction

x ← 0
for i in 1 . . . 10 do

direction ← Bernoulli(0.35)
if direction = 0 then

x ← x + Uniform(1; 5)
else

x ← x − Uniform(2; 7)
end if

end for
(a) A biased random walk

▷ lt: Expected Lifetime
▷ pSmokers: smoking prevalence
▷ pDisease: prevalence of severe diseases
lt ← Normal(M ; V )
if developed_country then

lt ← lt + D
end if
lt ← lt − pSmokers · S
lt ← lt − pDisease · I

(b) A life-expectancy model

Figure 1.1: Two probabilistic programs

factors and some given training data1. One could simply train some standard model
such as a neural network, but this hardly allows the user to include domain knowledge.
In contrast, in Figure 1.1b, we show how one may model the problem in a probabilistic
programming language. By presenting evidence, the inference engine can perform
Bayesian inference on the parameters M, V, D, S and I and update the belief on what
the ’real’ values are. After performing inference, the task of average life expectancy
estimation (even in the presence of incomplete data) can be reduced to evaluating the
program on some input data, e.g., “What is the average life expectancy in a developed
country where 20 percent of the population are smokers?”.

Note that the preceding programs are not necessarily executed to answer these questions,
a probabilistic program is a merely a way to formulate the model. In this
manner, probabilistic programming ties together several research areas, since it is used to
build statistical models in a programming language, uses program analysis techniques to
infer the distribution and can be used to perform machine learning. As such, probabilistic
programming (PP) lies at the intersection of statistics, machine learning, program analysis
and programming language theory, as illustrated below.

Program Analysis Programming Languages

Statistics Machine Learning

PP

1https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who
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1.2. Problem Statement

1.2 Problem Statement
It is evident that full-featured probabilistic programming languages are strictly more
powerful than traditional programming languages, and thus it does not come as a surprise
that certain properties are undecidable (such as termination [KKM19]) or very hard
to answer (such as inference [HVM20, DL93, CDM14]). Therefore, most probabilistic
programming languages have been carefully designed to syntactically only allow programs
that actually can be evaluated within the chosen model (e.g., to only allow discrete
variables, restriction to linear arithmetic or restrictions on distributions). Unsurprisingly,
non-statically bounded loops are notoriously hard, as these cannot be unrolled to create
a loop-free program and are thus absent in virtually all probabilistic programming
languages.

To perform (Bayesian) inference on probabilistic programs, it is invaluable to have
complete knowledge of the distribution described by the probabilistic model, as this
allows to us to directly perform inference. In this thesis, we will explore methods and
programming models that allow an exact analysis of distributions modelled by probabilistic
programs with a special focus on probabilistic loops.

1.3 Contributions
The results presented in this thesis are manifold and range from advanced contributions,
such as the hardness proofs in Chapter 6, to concrete, immediately applicable research
outputs, such as the program analysis tool Blizzard presented in Chapter 3.

Before listing our contributions to the state-of-the-art, we stress again the hardness of
probabilistic program analysis, especially in the presence of loops. It is well-known, that
even reasoning about traditional programs in the presence of loops is an undecidable
problem, and probabilistic programs are a strict generalization [KKM19, HOPW19].
Therefore, it is apparent that the problem is undecidable in full generality.

This is why virtually all existing exact methods are restricted to statically bounded loops,
i.e., loops that can be unrolled to obtain a loop-free program. This is impossible in
general, as some loops may be executed until a stopping criterion is met or the number
of loop iterations may be unbounded. To address those problems, the main contributions
of this thesis are summarized as follows:

1. For finite-state programs, and especially finite-state loops, we present a translation
from probabilistic programs to Markov chains. The resulting Markov chain admits
powerful analysis techniques by utilizing probabilistic model checkers. In our new
tool Blizzard, we provide fully automated analysis and distribution computation
of finite-state probabilistic programs, even in the presence of loops (Chapter 3).

2. For infinite-state programs, we identify a class of probabilistic loops that can be
replaced by a loop-free fragment, eliminating one major obstacle to automated

3



1. Introduction

program analysis. The identified class contains classes of loops previously considered
in literature [Kov08, GGH19]. Additionally, this thesis presents a type system that
is able to identify the distribution of program variables, based on the properties of
probability distributions (Chapters 4-5).

3. It has already been stated that probabilistic program analysis and inference are
hard problems. To formally prove the hardness and to pinpoint the border of
undecidability, we investigate the problem of invariant synthesis. Invariant tech-
niques have been successfully used to characterize and analyze traditional loops
[Kov08, RK07, HOPW19, VK23], and we investigate corresponding techniques in
the probabilistic setting. Additionally, this thesis relates an open problem in in-
variant synthesis to a famous problem in mathematics, proving a hitherto unknown
hardness result for invariant synthesis (Chapter 6).

1.4 Structure of the Thesis
This thesis first familiarizes the reader with concepts of probability theory, necessary to
present our programming model and the formal semantics in Chapter 2.

We present the fully automated analysis of finite-state probabilistic programs in Chapter 3.

After providing treatment of finite-state programs, we turn our attention to programs with
potentially infinite state-space. In Chapter 4, we provide an elegant formulation to recover
distributions from moments over program variables with finite support. Subsequently, in
Chapter 5, we identify a class of probabilistic loops that can be replaced by a loop-free
fragment and provide a type system for distribution identification.

Invariant techniques are introduced in Chapter 6, first for deterministic and nonde-
terministic programs, followed by corresponding definitions for the probabilistic case.
Additionally, we provide a novel proof that established hardness for a problem in invariant
synthesis.

We survey existing methods to analyze probabilistic programs in Chapter 7. Finally,
Chapter 8 recalls the individual results, concludes and examines possible future work.

4



CHAPTER 2
Preliminaries

In order to provide formal treatment of probabilistic programs and especially probabilistic
loops, it is necessary to first introduce our programming model and provide its semantics.
As the operational semantics of probabilistic programming languages can be based on
Markov chains and their nondeterministic variants [Koz79, MSBK22, CS13, GKM14],
it will be necessary to first introduce fundamental concepts from probability theory.
Afterward, we will introduce our programming model and provide probabilistic program
semantics in terms of Markov chains.

2.1 Notation and Probability Theory
Throughout the thesis, we write N for the natural numbers, Q for the rationals, R for
the reals and Q for the algebraic numbers. The notation K[x1, . . . , xm] denotes the
polynomial ring over m variables with coefficients in some field K. Further, we will use
the symbol P for probability measures and E for the expected value operator, as defined
in the following.

As we will later see, the operational semantics of a probabilistic program can be in general
given by an uncountable, infinite-state Markov chain. To formally introduce Markov
chains, we provide some foundations from probability theory, following [MSBK22, Dur10].

Definition 1 (σ-Algebra). Let S be some set and 2S its power set, then a σ-algebra
S over S is a non-empty subset of 2S that is closed under complementation, countable
union and countable intersection. The smallest σ-algebra containing some specific set A
is called the σ-algebra generated by A and is well-defined.

One notable instance of a generated σ-algebra is the Borel σ-algebra, which is generated
by the open sets of R.

5



2. Preliminaries

Definition 2 (Measurable Space). Let S be some set and S ⊆ 2S a σ-algebra over S,
then the pair (S, S) is called a measurable space.

Typically, S represents the sample (test data) space and S represents all possible events.
Now, to assign probabilities to events, we additionally require a probability measure P.

Definition 3 (Probability Measure & Probability Space). Let (S, S) be a measurable
space, then a probability measure P is a countably additive function S → [0, 1] where
additionally P(S) = 1.

Together, the measurable space and the probability measure form a probability space
(S, S,P).

Given a probability space (S, S,P), a random variable X is a measurable function
X : S → R ∪ {∞, −∞}. A function is measurable, if its preimage is measurable for every
subset of the target space, in symbols if for any open set B ⊆ R∪ {∞, −∞} it holds that
X−1(B) = {ω : X(ω) ∈ B} ∈ S. We denote indicator random variables for events ω ∈ S
as I(ω), that is, I(ω) = 1 if ω occurs and 0 otherwise.

Definition 4 (Expected Value). The expected value E[X] of a non-negative random
variable X on a probability space (S, S,P) is defined in terms of the Lebesgue integral,
in symbols

E[X] =
S

XdP.

If the image of the random variable is countable or even finite, the Lebesgue integral
simplifies to the following and shows its intuitive meaning as a weighted average

E[X] =
x∈X(S)

xP(X = x).

This construction is generalized to signed random variables by using the positive part
X+ := max(0, X) and the negative part X− := max(0, −X) and defining E[X] =
E[X+] − E[X−]. We say that the expected value of X exists if not both E[X+] and
E[X−] are infinite. The kth moment of a random variable X is defined as E[Xk].

To model the evolution of a random variable throughout discrete time, we introduce the
notion of a stochastic process.

Definition 5 (Stochastic Process). A stochastic process ⟨Xi⟩i∈N is a collection of random
variables over the same probability space. For a given stochastic process, the random
variable Xn represents the possible values in the nth step of the process.

This gives us the final piece to formally define Markov chains as a stochastic process that
is only dependent on its predecessor in time.

6



2.1. Notation and Probability Theory

Definition 6 (Measurable Markov Chain). Given a probability space (S, S,P), the
stochastic process ⟨Xi⟩i∈N is a Markov chain, if there exists a Markov kernel1 p : S × S →
[0, 1] such that for all n ∈ N and B ∈ S

P(Xn+1 ∈ B | X0 = x0, X1 = x1, . . . , Xn = xn) = p(Xn, B)

If the set of possible states S is countable, or even finite, then the preceding definition
may be reformulated, as follows.

Definition 7 (Countable Markov Chain). Given a probability space (S, S,P), with
countable sample space S, the stochastic process ⟨Xi⟩i∈N is a countable Markov chain, if
for all n ∈ N

P(Xn+1 = xn+1 | X0 = x0, X1 = x1, . . . , Xn = xn) = P(Xn+1 = xn+1 | Xn = xn)

The essential property of a Markov chain is, that the next “state”, i.e., the random
variable Xn+1 conditionally depends exclusively on the previous state Xn. Further, given
a concrete state, the probability of transitioning between two states remains the same
for the infinite duration of the stochastic process. Therefore, if the state space of the
Markov chain is not only countable, but even finite, then it is possible to represent the
process as a set of states and transitions. By this observation, we present the following,
further specialization of the concept of a Markov chain.

Definition 8 (Finite Markov Chain). A finite Markov chain is a three-tuple (Σ, σI , T ),
where Σ is the set of states, σI ∈ Σ is a designated initial state and T : Σ × Σ → R≥0 is
the transition relation that assigns each pair of states a non-negative probability such
that the outgoing transition probabilities for each state sum up to 1.

Remark. The restriction to a single initial state is without loss of generality, as any
initial distribution may be encoded by adding a fresh initial state and adding outgoing
transitions according to the required initial distribution.

Finally, we briefly introduce the concept of Bayesian statistics, to the extent necessary
for this thesis and following [CL08].

In Bayesian statistics, probabilities are considered as a belief about some event, where
the key concepts are the prior P(X), the posterior P(X | Y ) and the likelihood P(Y | X).

Here, the prior P(X) describes the initial belief about some event X. Then, new evidence
in the form of an event Y is observed, leading the observer to adapt the belief about X,
i.e., under the evidence Y , the observer adapts its initial belief P(X) about the event X
and arrives at the new belief, the posterior P(X | Y ). The actual update of the belief is
done according to the following result of probability theory, known as Bayes’ law, that
states that the posterior distribution is proportional to the product of the prior and the
likelihood of the observation.

1A Markov kernel generalizes the concept of a transition matrix for uncountable state spaces. For a
formal definition, we refer to [Dur10]

7



2. Preliminaries

Theorem 2.1 (Bayes’ Theorem). Let X and Y be two events, further let P(Y ) ̸= 0, then
the following relation holds

P(X | Y ) = P(Y | X) P(X)
P(Y )

2.2 Probabilistic Programs
As mentioned in the introduction, probabilistic programs extend traditional programming
languages with the ability to sample from probability distributions and to condition on
observed events. We present our programming model here in full generality, and will
restrict it during the thesis whenever necessary. The probabilistic programs in this thesis
are based on a simple iterative programming language without functions and are purely
probabilistic, i.e., there is no construct modelling demonic or angelic nondeterminism.

However, the language allows symbolic constants, i.e., arbitrary real constants and
unrestricted real arithmetic. It allows the most common control-flow statements in
the form of conditional branching and usual looping constructs. A detailed grammar
describing the structure of a program is given in Figure 2.1, however the following points
deserve special consideration as they may be new to the reader and at the heart of
probabilistic programming.

Probabilistic Choice The language allows statements of the form

x ← x1 [p1] x2 [p2] . . . xm [pm],

where i pi = 1 and where all xi are real numbers. The intended semantic of these
statements is that after the instruction, it holds that P(x = xi) = pi; that is, x is updated
by xi with probability pi. As syntactic sugar, the language allows omitting the last
probability, as it is fixed anyway.

Observe Statement The language allows conditioning on certain events, which intu-
itively means that all executions that do not conform to the observation are rejected. This
corresponds to pruning the tree of possible executions. We illustrate our programming
model with the next example.

Example 2. The following program models a simple random walk that starts at the
origin and in each iteration randomly chooses a direction with probability p and 1 − p,
until it leaves the interval (−10, 10). We refer to the update x ← x + 1 with probability
p as the “left” direction; similarly, by the “right” direction, we mean the update by x − 2
with probability 1 − p. Note that the step size is not symmetrical and the probability p
is unknown. However, assuming we observed that in a concrete run, the random walk
terminated after reaching 10, then this is possibly encoded using an observe-statement.

x ← 0
while −10 < x and x < 10 do

8



2.2. Probabilistic Programs

x ← x + 1 [p] x − 2
end while
observe(x = 10)

The intuition behind the observe-statements is, that even though p is unknown, our
observation provides us with some information that will cause us to update our prior
belief in a Bayesian manner. For example, if we repeat the experiment and continue to
observe that the random walk tends to the right, then we will infer that p > 0.5 with
high probability, when assuming a reasonably chosen prior.

⟨program⟩ ::= ⟨stmts⟩ ⟨stmts⟩ ::= ⟨stmt⟩+

⟨stmt⟩ ::= skip | ⟨assign⟩ | ⟨ifstmt⟩ | ⟨for-loop⟩ | ⟨while-loop⟩ | ⟨observe⟩
⟨assign⟩ ::= ⟨var⟩ ← ⟨aexpr⟩ | ⟨var⟩,⟨assign⟩,⟨aexpr⟩
⟨ifstmt⟩ ::= if ⟨bexpr⟩ then ⟨stmts⟩ (else if ⟨bexpr⟩ then ⟨stmts⟩)∗ [else ⟨stmts⟩] end if

⟨for-loop⟩ ::= for ⟨var⟩ in ⟨const⟩...⟨const⟩ do ⟨stmts⟩ end for

⟨while-loop⟩ ::= while ⟨bexpr⟩ do ⟨stmts⟩ end while

⟨observe⟩ ::= observe( ⟨bexpr⟩ )
⟨aexpr⟩ ::= ⟨arith⟩ | ⟨dist⟩ | ⟨choice⟩
⟨arith⟩ ::= ⟨const⟩ | ⟨var⟩ | ⟨arith⟩ (+ | - | * | /) ⟨arith⟩ | ⟨arith⟩**⟨arith⟩
⟨dist⟩ ::= ( Bernoulli | Normal | . . . ) ( ⟨aexpr⟩+ )

⟨categorical⟩ ::= ⟨aexpr⟩ ([⟨const⟩] ⟨aexpr⟩)* [[⟨const⟩]]

⟨bexpr⟩ ::= true (⋆) | false | ⟨aexpr⟩ ⟨cop⟩ ⟨aexpr⟩ | not ⟨bexpr⟩ | ⟨bexpr⟩ (and | or) ⟨bexpr⟩
⟨const⟩ ::= r ∈ R | ⟨sym⟩ | ⟨const⟩ ( + | - | * | / ) ⟨const⟩
⟨sym⟩ ::= a | b | . . . ⟨var⟩ ::= x | y | . . . ⟨cop⟩ ::= = | ̸= | < | > | ≤ | ≥

Figure 2.1: Context-free grammar, describing the syntax of our imperative probabilistic
programming language.

It is apparent that the execution of a probabilistic program describes a stochastic
process, i.e., the state of the program variables after n steps is a random vector. We
will now formalize this intuition and give the semantics of the probabilistic programs,
following [MSBK22]. To do so, we first construct the state space of the program and then
construct the measure spaces necessary to describe the stochastic process modelled by
the program. Finally, we will show how to construct a probability measure that describes
the distribution of program variables after a fixed number of steps.

Let us first define the set of reachable states, necessary to construct a measurable space.

Definition 9 (State Space). Let P be a probabilistic program with m variables, and
let P̂ be the nondeterministic program where every instance of probabilistic branching

9
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C is replaced by nondeterministic choice over the possible values of C. Then the state
set S of P is the set of states reachable in P̂ from any initial state. By taking the Borel
σ-algebra S over S we obtain the measurable space (S, S), which will be denoted as the
state space.

To capture the evolution of the program in time, we will need to define a measurable
space not only for the possible program states, but also for all possible sequences of
program states. This is known as the sequence space and constructed as follows.

Definition 10 (Cylinder Set). Let π be a finite sequence of states, then the cylinder set
Cyl[π] is the set of infinite continuations of π, in symbols

Cyl[π] := {πρ | ρ ∈ Ωω}, where π ∈ Ω+.

Definition 11 (Sequence Space). Let (Ω, Σ) be a measurable space, then the corre-
sponding sequence space is the measurable space (Ωω, Σω), where Ωω is the set of infinite
sequences {s1s2s3 . . . | ∀i ≥ 1 : si ∈ Ω} and Σω is the σ-algebra generated by the cylinder
sets Cyl[π] for all finite prefixes π ∈ Ω+.

Now we are able to define the set of runs through the probabilistic programs:

Definition 12 (Run Space). Let P be a probabilistic program with m variables, and let
(S, S), be the corresponding state space. Then the run space (R, R) of P is the sequence
space (Sω, Sω) of the state space.

This allows us to define the stochastic process related to the execution of the probabilistic
program.

Definition 13 (Run Process). Let P be a probabilistic program with m variables, then
the run process ⟨Φn⟩n∈N is a stochastic process in the run space. It maps a particular run
ρ ∈ R to the corresponding state after n steps, that is Φn(ρ) = ρn. In accordance, every
arithmetic expression e over the program variables, induces some stochastic process ⟨en⟩
that evaluates to the expression where every variable x is replaced by the value of the
variable in Φn.

After defining the measurable space for our probabilistic programs, we now aim to
construct a probability measure P to form a measurable space that provides the semantics
of our programming model. Clearly, the next state in a program only depends on the
current state and the instruction to be executed, hence we can define a Markov kernel so
that our stochastic process actually is a measurable Markov chain. Doing so is rather
technical, but it is straightforward to see how to construct these transition rules based
on the expected semantics of the program statements.

After defining an initial distribution over program states µ, Kolmogorov’s extension
theorem guarantees the existence of a unique probability measure P on the run space

10
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(R, R) such that the run process ⟨Φn⟩ is a Markov chain [Dur10]. By these means, it is
possible to construct the canonical probability space (R, R,P) that provides semantics for
our class of probabilistic programs. During the remainder of this thesis, all constructions
are to be understood with respect to this canonical probability space.
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CHAPTER 3
Automated Analysis of

Finite-State Probabilistic
Programs

In the introductory chapter, we already highlighted the omnipresent lurking of undecid-
ability when doing program analysis. Therefore, to extract the distribution described by
a probabilistic model, it is unconditionally necessary to specialize the class of programs
that can be analyzed. In this chapter, we will show that for programs that have only a
finite number of possible states, a full characterization of the program distribution is
efficiently computable and can be done fully automated.

In Chapter 2, we showed that it is possible to define the semantics of our probabilistic
programs in terms of uncountable Markov chains. In this chapter, the main idea is to
transform the finite-state probabilistic program into an equivalent finite-state Markov
chain that can be analyzed using established techniques, such as computer algebra
systems or dedicated probabilistic model checkers. Similar ideas have been used to
analyze Bayesian networks [SK20] and dynamic Bayesian networks [DDM16], however, to
the best of our knowledge, there does not exist a treatment of a full-featured probabilistic
programming language. Interestingly, the “inverse” direction has been investigated, where
Holtzen et al. [HJV+21] reduced the model-checking problem to probabilistic inference,
showing that inference and model checking can complement each other.

By specializing the class of programs to those over a finite state space, we are able to
support the whole programming model presented in the preliminaries, including symbolic
parameters, assignments featuring arbitrary arithmetical expressions and observations.
Additionally, when analyzing probabilistic programs, it is often unavoidable to have
nonterminating paths through the program. While this may represent a problem for
approaches that are simulation-based or perform path exploration, in the presence of a
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finite state-space, this does not hinder a complete treatment of program analysis and
inference in our case.

In the following, we will present a translation of finite-state probabilistic programs into
finite-state Markov chains and provide full automation of this process with our new tool
Blizzard. However, before formally considering the translation rules, let us motivate
the idea by an example.

Example 3 (Bounded Random Walk.). Consider the following bounded random walk:

x ← 4
while 0 < x < 10 do

f ← Bernoulli(p) ▷ symbolic parameter p
if f = 1 then

x ← x + DiscreteUniform(1, 3)
else

x ← x − 2
end if

end while

By standard techniques such as abstract interpretation [CC77], we can determine that
the domain of x is dom(x) = {−1, . . . 12}. This allows us to construct the finite-state
Markov chain shown in Figure 3.1 with state set Σ = {⟨−1⟩, . . . , ⟨12⟩}, initial state ⟨4⟩
and absorbing states {⟨−1⟩, ⟨0⟩, ⟨10⟩, ⟨11⟩, ⟨12⟩}.

4 5 6 7 · · ·3210-1

11

1 − p 1 − p 1 − p 1 − p

p/3

Figure 3.1: The Markov chain corresponding to the program in Example 3.

Typically, one would be interested in the distribution of x after program termination.
For the corresponding Markov chain, this is equivalent to the reachability probability
of all the reachable states that violate the loop guard. By the means presented in the
remainder of this chapter, we can analyze the Markov chain of Figure 3.1 and obtain the
results presented in Figure 3.2.

In Section 3.1, we provide full details on how to translate finite-state probabilistic programs
into finite-state Markov chains. Following, in Section 3.2, we provide mathematical
foundations from Markov chain theory that allow us to formally capture the distribution
of a Markov chain (Section 3.2.1) and present probabilistic model checkers, specialized
tools that can be used to analyze Markov chains (Section 3.2.2).
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-1 0 10 11 12
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v

P(x = v | p = 0.4)

Figure 3.2: The probability distribution of x after termination in the previous example,
assuming p = 0.4.

To enable fully automated analysis of probabilistic programs, we present our new tool
Blizzard in Section 3.3. We compare our approach to existing approaches on benchmarks
from literature, and highlight our strengths and investigate weaknesses (Sections 3.3.1-
3.3.2). Finally, we show that our approach is not only useful on its own, but can also be
utilized complementary with other tools (Section 3.3.3), followed by a brief conclusion in
Section 3.4.

3.1 Translating Probabilistic Programs to Markov Chains
In this section, we formalize the intuition given in Example 3 and present a translation
system from probabilistic programs to equivalent Markov chains. We consider a program
to be a mapping from program counters to statements, more formally, let PC be the
set of valid program counters and let Stmt be the set of program statements. Then a
probabilistic program P is a function P : PC → Stmt and, for ease of presentation, we
assume that the last program statement is a skip-statement with special program counter
⟲, i.e., PC = {0, 1, . . . , m,⟲}.

The set Stmt comprises the statements presented in the programming model of Chapter 2,
where we briefly recall the most important ones:

• Deterministic assignments of the form x ← e, where x ∈ Vars(P) and e is an
expression over program variables.

• Probabilistic assignments of the form x ← D(e1, . . . , ej), where x ∈ Vars(P),
and D is a probability distribution with finite support and j parameters, e.g.,
x ← DiscreteUniform(1, 5).

• Conditional branching by statements of the form if e then s1 else s2 end, where
e is a boolean expression and s1, s2 are (lists of) statements.
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• While-loops by statements of the form while e do s end , where e is a boolean
expression and s is a list of sequential statements. Here, we encode for-loops as
while-loops with a fresh loop counter variable.

• Observe statements of the form observe(e), where e is a boolean expression.

For a finite-state probabilistic program P , let Vars(P) = (v1, . . . , vn) denote the (ordered)
set of variables and note that by the finite-state property, every variable vi in Vars(P)
must have finite domain dom(vi). Without loss of generality, we assume that each variable
has a symbol ⋆ that is only used to represent uninitialized values.

The preliminary chapter presented a general way of encoding the semantics of probabilistic
programs in terms of an uncountably large Markov chain. As claimed above, for finite-
state programs, we can explicitly construct this Markov chain and this chain directly
encodes the semantic of the probabilistic program. We now present the translation
MC(P), which maps a probabilistic program P to a Markov chain (Σ, σI , T ). The set of
states is given by the variable valuations and the current program counter. In addition,
we introduce a special state ⟨ ⟩, that is entered only in case of an observation-violation.
Hence, Σ = {dom(vi) × . . . × dom(vn) × PC} ∪ {⟨ ⟩} and σI = (⋆, . . . , ⋆, 0).

Remark. To keep the presentation as simple as possible, we associate with each control-
flow statement special program counters that can be used when presenting the translation
rules. More specifically, for if-then-else-statements we assume pcif , pcelse and pcend repre-
senting the first statement of the if-branch, the else-branch and the subsequent statement,
respectively. For while-statements, we assume pchead , pcbody and pcend , representing again
the loop condition, the first statement of the loop body and the subsequent statement,
respectively.

To describe the transition relation T , we use the expression pc′ to denote the successor
instruction of a statement. This is defined as:

pc′ =




pcend if P(pc) is the last statement of an if/else-branch
pchead if P(pc) is the last statement in the body of a loop
pc + 1 otherwise

We further define σ →p σ′ as shorthand for (σ, σ′, p) ∈ T , and given an expression e and
a state σ, σ(e) denotes the evaluation of e in σ. If e contains variables that have state ⋆
in σ, σ(e) = ⋆ as well.

Now we define the transition relation by rules in Figure 3.3, where e is a deterministic
expression and D is some discrete distribution over finite support.

By using these relations of T , we can translate a program P into a corresponding Markov
chain. The correctness of the translation follows from the definition of probabilistic
programs, since the underlying Markov chain constructed here defines the semantic of
the program.
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Ass
P(pc) = vi ← e σ(e) = x

σ = (d1, . . . , dn, pc) →1 (d1, . . . , di−1, x, di+1, . . . , dn, pc′)

Dist
P(pc) = vi ← D(e1, . . . ej) P(D(σ(e1), . . . , σ(ej)) = x) = p

σ = (d1, . . . , dn, pc) →p (d1, . . . , di−1, x, di+1, . . . , dn, pc′)

If-⊤ P(pc) = if e then s1 else s2 end σ(e) ̸= 0
σ = (d1, . . . , dn, pc) →1 (d1, . . . , dn, pcif )

If-⊥ P(pc) = if e then s1 else s2 end σ(e) = 0
σ = (d1, . . . , dn, pc) →1 (d1, . . . , dn, pcelse)

While-⊤ P(pc) = while e do s end σ(e) ̸= 0
σ = (d1, . . . , dn, pc) →1 (d1, . . . , dn, pcbody)

While-⊥ P(pc) = while e do s end σ(e) = 0
σ = (d1, . . . , dn, pc) →1 (d1, . . . , dn, pcend)

Observe-⊤ P(pc) = observe(e) σ(e) ̸= 0
σ = (d1, . . . , dn, pc) →1 (d1, . . . , dn, pc′)

Observe-⊥ P(pc) = observe(e) σ(e) = 0
σ = (d1, . . . , dn, pc) →1 ⟨ ⟩

Terminal-State
σ = (d1, . . . , dn,⟲) →1 σ

Violation-State ⟨ ⟩ →1 ⟨ ⟩

Figure 3.3: Transition relation T of a finite-state probabilistic program P , with statements
as in Figure 2.1.
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3.2 Analyzing Markov Chains
Figure 3.3 presented a translation from probabilistic programs to Markov chains, it is
now of immediate interest to extract the distribution of a finite-state Markov chain. In
this section, we first provide the necessary foundations from Markov chain theory and
then examine practical approaches to analyze the distribution that is implicitly encoded
by a Markov chain.

3.2.1 Mathematical Characterization
As presented in the preliminary section, Definition 8, a finite-state Markov chain (Σ, σI , T )
represents a set of states and probabilistic transitions between them. We consider discrete-
time Markov chains, where time is quantized into discrete steps and in each time step
exactly one transition happens. It is convenient to view the set of states as a vector s
and the transition relation as a matrix P. To relate this with the previous notion, we
require that the matrix reflects the transition relation, i.e., that for all i, j ∈ Σ

T (si, sj) = Pij

Then, the fundamental Markov chain theory guarantees that the probability distribution
over all states after n steps is given by σI · Pn. To analyze probabilistic programs, we
are interested in the distribution over the set of states after program termination. This is
closely related to the steady-state distribution limn→∞ Pn, if it exists.

Some state σ of the Markov chain is said to be absorbing, if it has a self-loop with
probability one, i.e., T (σ, σ) = 1. It can be shown, that if every state of the Markov
chain can reach some absorbing state with positive probability and in a finite number of
steps, then the rows of Pn converge as n goes towards infinite [GS06].

For the finite-state Markov chains constructed by the relation from Figure 3.3, all terminal
states with program counter ⟲ and the violation state ⟨ ⟩ are absorbing. However, there
remains the possibility that some execution may reach a state in Figure 3.3 that does not
terminate at all, i.e., no terminal state is reachable. To handle this scenario, we merge
all the states in the Markov chain that cannot reach a terminal state into the violation
state ⟨ ⟩. This does not change the properties of terminating runs, since no terminating
run can reach such a state by definition, as these do not have a path to a terminating
state by assumption. By this construction, all states in the chain can reach an absorbing
state and hence P∞ := limn→∞ Pn is well-defined. Moreover, the probability that the
program halts in some configuration is exactly σI · P∞, since the terminal states are
absorbing and will never be left.

To compute the distribution over the final states, it is necessary to compute P∞. We do so
by partitioning the set of states into two sets, absorbing states r and the remaining states,
the transient states t. By the definition of absorbing states, these have self-loops, hence
there cannot be any transitions from an absorbing state to some other state. Therefore,
the transition matrix has the structure of (3.1), where Q and R describe the transitions
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within the transient (resp. absorbing) states and E is the unit matrix:

t
r

n+1
= Q R

0 E
P

· t
r

n

(3.1)

Given this formulation, the stationary distribution can be computed as P∞ = (E − Q)−1 ·
R, as shown in [GS06]. Given these results from Markov chain theory, we conclude that we
can efficiently compute the distribution over all states after termination by straightforward
linear algebra over Figure 3.3. The following example continues Example 3 and illustrates
the concepts presented in this section.

Example 4. We recall that the bounded random walk from Example 3 has the semantics
given by the Markov chain, in Figure 3.1. Note that every state can reach some terminal
state within a finite number of steps, hence no state is merged into ⟨ ⟩. As presented
above, we partition the set of states into transient and recurrent states to define the state
vector

t

r
= ⟨1⟩ · · · ⟨9⟩ ⟨10⟩ ⟨11⟩ ⟨12⟩ ⟨0⟩ ⟨−1⟩ T

We then extract the nontrivial part of the transition matrix, where we use q = 1 − p
for brevity. Note that the bottom half of the matrix scheme presented in (3.1) has been
omitted for reasons of space.

Q R =



0 p
3

p
3

p
3 0 0 0 0 0 0 0 0 0 q

0 0 p
3

p
3

p
3 0 0 0 0 0 0 0 q 0

q 0 0 p
3

p
3

p
3 0 0 0 0 0 0 0 0

0 q 0 0 p
3

p
3

p
3 0 0 0 0 0 0 0

0 0 q 0 0 p
3

p
3

p
3 0 0 0 0 0 0

0 0 0 q 0 0 p
3

p
3

p
3 0 0 0 0 0

0 0 0 0 q 0 0 p
3

p
3

p
3 0 0 0 0

0 0 0 0 0 q 0 0 p
3

p
3

p
3 0 0 0

0 0 0 0 0 0 q 0 0 p
3

p
3

p
3 0 0


By [GS06], we are able to compute P∞ as (E − Q)−1 ·R using standard computer algebra
systems (CASs). As initial state, we had ⟨4⟩ and therefore use the corresponding initial
distribution vector s over the initial states. This gives us the following result, completely
characterizing the terminal states of the probabilistic program from Example 3:

s · (E − Q)−1 · R =



− p2 (13 p7−73 p6−282 p5+1701 p4−2511 p3+1863 p2+1944 p+729)
9 (5 p9−57 p8+51 p7+643 p6−2883 p5+4536 p4−3510 p3−486 p2+1701 p−729)

− p3 (16 p6−106 p5+9 p4+684 p3−1026 p2+810 p+1701)
9 (5 p9−57 p8+51 p7+643 p6−2883 p5+4536 p4−3510 p3−486 p2+1701 p−729)

− p3 (7 p6−37 p5−24 p4+495 p3−891 p2+1053 p+486)
9 (5 p9−57 p8+51 p7+643 p6−2883 p5+4536 p4−3510 p3−486 p2+1701 p−729)

− 9 (p−1) (p8−12 p7+63 p6−118 p5+99 p4+93 p3−261 p2+216 p−81)
5 p9−57 p8+51 p7+643 p6−2883 p5+4536 p4−3510 p3−486 p2+1701 p−729

9 p (p−1)2 (2 p6−18 p5+39 p4+22 p3−153 p2+216 p−108)
5 p9−57 p8+51 p7+643 p6−2883 p5+4536 p4−3510 p3−486 p2+1701 p−729
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These symbolic results can be evaluated for arbitrary valuations of p to characterize the
behavior of the probabilistic program.

In this section, we showed that Markov chains can be described by standard linear algebra
and hence can be analyzed by standard CAS tools. However, due to the prevalence of
Markov chains in various engineering disciplines, there has been the need to model and
verify large-scale Markov chains. This originated the need for specialized implementations,
beyond the capabilities of standard CAS tools. Such probabilistic model checkers offer
the functionality to analyze Markov chains and after a brief introduction, we show how
to utilize these tools to analyze probabilistic programs.

3.2.2 Probabilistic Model Checkers
We start by providing some intuition about the approaches taken by contemporary
probabilistic model checkers and how these tools internally represent the model, i.e., the
Markov chain.

The two most widely used probabilistic model checkers are Storm [HJK+20] and PRISM
[KNP11], each of them offering various functionalities, such as the analysis of (parame-
terized) discrete-time and continuous-time Markov chains or nondeterministic versions
thereof (Markov decision process). For our purposes, we will utilize these tools to analyze
discrete-time, finite-state Markov chains, potentially featuring symbolic parameters.

Like in traditional model checking, the state-space explosion represents the main obstacle
when verifying non-trivial models. This necessitates an efficient encoding of the internal
model, while allowing efficient computations at the same time. Since the structure
of the model itself has a major impact on the size of an encoding, most available
probabilistic model checkers allow the user to choose from multiple encoding strategies
[Par03, HJK+20]. We will briefly present three common strategies supported by both
PRISM and Storm.

Explicit Encoding. When performing an explicit encoding, the Markov chain is explic-
itly instantiated, represented by vectors and matrices, which allows fast computations at
the price of increased memory requirements. Since typically many entries in the resulting
matrices are zero, model checkers utilize specialized representations for sparse matrices
that reduce memory pressure.

Symbolic Encoding. Due to symmetry within the model itself, symbolic encodings
may be used to provide a compact representation of the model in memory, similar
to symbolic encodings in traditional model checking. When using such an encoding, a
generalization of binary decision diagrams (BDDs) is used to store the matrices during the
computation. This representation allows substructure-sharing and efficient representation
of sparse matrices. The immediate drawback of these encodings is that not all necessary
operations, e.g., random element access, can be performed efficiently on them.
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Hybrid Encoding. To avoid the limitations mentioned for the previous approaches,
the hybrid encoding (tries to) combine the best of both worlds. Here the model is stored
using a symbolic encoding, but when needed, relevant fragments are converted into an
explicit representation to facilitate efficient computations.

As briefly hinted before, both Storm and PRISM allow the user to utilize symbolic
transition probabilities. Here, a transition probability in the Markov chain is replaced by
a symbolic parameter and the result of the computation is in dependence of the symbolic
parameter. Depending on the model checker used, the usage of symbolic parameters may
influence the encoding strategy. This is due to the fact that parametric analysis is mostly
done by state elimination and therefore most easily performed in explicit encodings.

To pass a Markov chain model to a tool, it needs to be appropriately encoded. There exist
several file formats that are supported by various model checkers, where one especially
widely supported modeling language is the PRISM language. Here, the model is encoded
by defining variables and guarded transitions between states, where each transition is
assigned a probability. When encoding the Markov chain from Example 3, one may
model it as follows:
dtmc //discrete-time markov chain

const double p; // symbolic parameter

module walk
x : [-1..12] init 4; // range constraint and initial value
[] 0 < x & x < 10 -> p/3: (x’ = x+1) +

p/3: (x’ = x+2) +
p/3: (x’ = x+3) +
(1-p): (x’ = x-2);

[] x <= 0 | x >= 10 -> true; // self-loop
endmodule

To query about properties of a model, the PCTL query language is widely supported.
Using the query language, we can, e.g., query the reachability probability of the possible
final states:
P=? [ F x = -1 ]; // probability that finally variable x is equal -1
P=? [ F x = 0 ];
P=? [ F x = 10 ];
P=? [ F x = 11 ];
P=? [ F x = 12 ];

Finally, the model and the queries can be jointly passed to a model checker, which
dutifully computes the results and outputs them. Depending on the way the queries
are formulated, the model checker may not be able to re-use the result of previous
computations. However, for non-parametric models, both Storm and PRISM offer the
possibility to compute all reachability probabilities at once, which is especially useful in
our use-case.

21



3. Automated Analysis of Finite-State Probabilistic Programs

3.3 Automated Probabilistic Program Analysis
In the previous sections, we introduced probabilistic model checkers (Section 3.2) and
a translation of finite-state probabilistic programs into equivalent Markov chains (Sec-
tion 3.1). To follow up, this section will show the feasibility of automated probabilistic
program analysis by a translation to Markov chains and a subsequent analysis using prob-
abilistic model checkers. We have implemented the approach in our new tool Blizzard
which is freely available at https://github.com/julian-muellner/blizzard.
To guarantee an easy setup, we also provide a Docker container that has Storm, PRISM
and Blizzard pre-installed at https://hub.docker.com/repository/docker/
jmuellner/blizzard.

The main steps of Blizzard are:

1. Convert a finite-state probabilistic program into an equivalent Markov chain,
represented in PRISM format.

2. End-to-end analyze a finite-state probabilistic program using a configurable proba-
bilistic model checkers as back-end, e.g., Storm or PRISM

3. Compute (joint) probability distributions that are modelled by a (parameterized)
probabilistic program.

Steps 1. and 3. are the main contributions of our work, and complement probabilistic
model checkers with novel features to compute distributions of finite-state probabilistic
programs. Blizzard also allows the user to customize the used tool-chain, allowing for a
comparison of the probabilistic model checkers used in the back-end. We now present
two examples that illustrate the feasibility of the Blizzard approach.

Example 5. The following program represents a slight variation of the random walk
in Example 3, where, as a non-trivial modification, it is observed that the random walk
never visited a state where x = 8.

x ← 4
while 0 < x < 10 do

f ← Bernoulli(p)
if f = 1 then

x ← x + DiscreteUniform(1, 3)
else

x ← x − 2
end if
observe (x ̸= 8)

end while

The program can be passed directly to Blizzard to obtain the probability of the
various outcomes, including the probability of a violated assertion. Within seconds,

22

https://github.com/julian-muellner/blizzard
https://hub.docker.com/repository/docker/jmuellner/blizzard
https://hub.docker.com/repository/docker/jmuellner/blizzard


3.3. Automated Probabilistic Program Analysis

Blizzard outputs a fully symbolic characterization of the probability distribution of x
after termination. As an example, it holds that the (unnormalized) probability that after
termination x = 12, without ever violating the observation, with respect to the symbolic
constant p is

P(x = 12) = p2(5p6 + 144p3 − 120p4 + 16p5 − 135p2 − 162p)
9(8p8 − 48p7 + 159p6 − 476p5 + 762p4 − 675p3 − 216p2 + 486p − 243)

Example 6. To illustrate the use-case of probabilistic program analysis for verification,
consider the following program from [CRN+13]. It models sampling from a uniform
distribution that ranges over [0, N), given only access to one fair random bit, i.e., a
Bernoulli distribution with p = 0.5.

g ← N
while g ≥ N do

g, n ← 0, 1
while n < N do

n ← 2n
if Bernoulli(0.5) then

g ← 2g
else

g ← 2g + 1
end if

end while
end while

To verify that the program for N = 100 indeed satisfies its specification, we invoke
Blizzard on the program:
> python3 blizzard.py benchmarks/uniform.pp --analyze g
Resulting program has 742 states
Storm: Time for model input parsing: 0.107s.
Storm: Time for model construction: 0.135s.
Storm: Time for model checking: 0.000s.

(g: 99): 0.00999999999999999
/* snip */
(g: 2): 0.00999999999999999
(g: 3): 0.00999999999999999
(g: 1): 0.00999999999999999
(g: 0): 0.00999999999999999
Elapsed time: 0.5021121501922607 s

We conclude, that the distribution over g is indeed uniform, even though there are some
numerical inaccuracies within the model checker1 Note that even though the resulting

1These can be resolved by using the --exact switch, at the price of increased runtime.
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Markov chain has 742 states and Blizzard is a proof-of-concept implemented in the
interpreted language python, the end-to-end runtime is only half a second, showing the
practical potential of our approach.

3.3.1 Comparison to Other Tools
Considering the complexity and variety of the probabilistic programming landscape,
there cannot be a one-size-fits-all approach that is suited best for every use-case and
program class. In this section, we will present existing tools for probabilistic program
analysis and compare them to our approach and our tool Blizzard, both qualitatively
and quantitatively.

PSI. As one of the first tools to provide exact inference over probabilistic programs, PSI
is a tool widely used in benchmarking comparisons [GMV16]. The main line of thought
here is to step over the program line-by-line and maintain a probability distribution over
each variable, while discharging symbolic computations via a configurable CAS back-end,
such as Maple or Mathematica. It supports complex arithmetic and infinite state-spaces,
but is restricted to statically bounded loops without symbolic constants, which is not the
case in Blizzard. Another drawback is that PSI is heavily dependent on the back-end
CAS and may have to report unevaluated integrals that could not be solved.

Polar. The Polar tool is able to compute moments of variable monomials in certain
probabilistic loops [MSBK22]. The key idea here is to build a system of recurrences over
expected values, instead of tracing the whole distribution. The resulting recurrences can
then be discharged, where for the class of supported programs, these recurrences can
always be solved fully automatically, i.e., the technique is complete for its programming
model. Polar supports infinite state-spaces, polynomial arithmetic and potentially
unbounded runs through the program. Compared to the other tools, including Blizzard,
the main limitations of Polar are the lack of observe-statements and the restriction of
branching conditions to use only variables over a finite domain. One additional restriction
is that any variable may not be self-dependent, except linearly, i.e., the assignment
x ← 3x + 2y is fine (assuming y does not depend on x), while the assignment x ← x2 is
not.

DICE. As one of the more recent tools in the field, DICE is aimed at discrete, finite-
state programs [HVM20]. It is able to provide fast inference by utilizing a symbolic
approach based on BDDs. However, this comes at the price of quite heavy restrictions,
such as the restrictions of variables to single bits (with integers as syntactic sugar)
and coin flips as the only source of randomness. The tool does not support symbolic
parameters and handles loops by unrolling, i.e., the loop must be statically bounded,
which is not the case in Blizzard.

To conclude the preceding comparison, Table 3.1 provides a brief visual comparison
between the tools. In comparison to other tools, Table 3.1 shows that the greatest
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strength of our approach in Blizzard is flexibility over finite state-spaces, since we
can handle arbitrary discrete programs. The tool which is most closely related with
respect to our envisaged use-case is DICE. Here, the biggest advantage of our approach
in Blizzard is the ability to handle potentially unbounded loops that feature symbolic
parameters, a class of programs outside the reach of DICE. However, this comes at the
price of increased complexity when performing inference.

Feature Blizzard Polar DICE PSI
Finite-State Programs ✓ ✓ ✓ ✓
Infinite-State Programs ✗ ✓ ✗ ✓
Symbolic Parameters ✓2 ✓ ✗ ✗

Unbounded Loops ✓ ✓ ✗ ✗

Statically Bounded Loops ✓ ✓ ✓ ✓
Observe-Statements ✓ ✗ ✓ ✓
Continuous Distributions ✗ ✓ ✗ ✓

Table 3.1: Qualitative Comparison of Blizzard, Polar, Dice and PSI.

Quantitative comparison. To provide also a quantitative comparison, we ran the
previously mentioned tools (except Polar) on a set of benchmark instances. The
benchmarks are from literature on probabilistic programming and Bayesian networks
[MM05, CRN+13, GMV16, MSBK22, BGHS17] in addition to the bounded random walk
from Example 3. The benchmarking results were obtained on a machine with 8GB of
RAM, and an Intel Core i5-8250U CPU, using the hyperfine benchmarking utility,
running each benchmarking instance 20 times. We used the most recent PSI version at
commit f31dc38, DICE version 1.0 available via Docker and ran Blizzard via the
provided Docker container with Storm as backend. We also tested the version of PSI
specialized for discrete programs, deploying dynamic programming for program analysis
(DP).

The tool Polar is omitted from the comparison, since it actually characterizes moments over
program variables, does not support observes and in general cannot recover distributions.
To allow a fair comparison between the respective ideas, we note that both DICE and
PSI are written in compiled languages (OCAML and D respectively), while Blizzard is
a proof-of-concept implementation written in Python (even though the back-end tools
are written in compiled languages). Nevertheless, Blizzard is able to compete with
aforementioned tools, as shown in Table 3.2.

Table 3.2 shows, that our approach can compete with PSI on the loop-free benchmarking
instances, where DICE outperforms both tools. When moving to programs that feature
unbounded probabilistic loops, for the vast majority of benchmarks, only Blizzard can
provide complete results. When truncating the execution of the program and hence
accepting results that are only correct when neglecting longer runs, then the results show

2distributions only
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Class Benchmark Blizzard DICE PSI PSI (DP)

Bayesian
Networks

Burglar Alarm 214 18 212 141
Evidence 1 252 18 137 134
Evidence 2 260 18 147 138
Grass 285 18 212 146
Murder Mystery 264 19 153 142
Noisy-Or 702 18 664 198

Prob.
Loops

Bounded Random Walk 299 268† 11.531† 1.648†

Bounded Random Walk Param. 4.923 ⋆ ⋆ ⋆
Duelling Cowboys 267 22† 928† 226†

Duelling Cowboys Param. 271 ⋆ ⋆ ⋆
Kruskal Card Trick 23.221 ⋆ ⋆ 52.211
Loopy 1 255 20† 1.065† 328†

Loopy 2 250 19† 758† 225†

Uniform (N = 20) 309 ⋆ ⋆ 3.361†

Uniform (N = 100) 548 ⋆ ⋆ 15.701†

Uniform (N = 500) 2.507 ⋆ ⋆ Timeout

Table 3.2: Quantitative Comparison of Blizzard, PSI and DICE, all results in millisec-
onds, timeout one minute. Entries with ⋆ and † indicate that the program cannot be
statically bounded and hence PSI/DICE are not powerful enough to analyze those directly.
Runtimes annotated with † indicate that all unbounded loops have been bounded to at
most 100 iterations, yielding incomplete, best-effort treatment.

that Blizzard outperforms PSI, while DICE is faster than both of them. However, we
stress again that Blizzard provides safe and exact results, for runs of arbitrary length.

3.3.2 Limitations of Our Approach
In the previous comparison, we noticed the advantage that the symbolic nature of our
analysis allows us to re-use states that have been encountered before. As an example,
re-consider the random walk from Example 3. This program has infinite traces, which
may present a problem for simulation-based approaches and which cannot be directly
encoded in PSI and DICE. Nevertheless, our presented here can solve the problem very
efficiently, since when constructing the Markov chain only the number of reachable states
are relevant, not the exponentially many paths through the program.

However, whenever loop counters are used (either as for-loop or explicitly), this will
prohibit state re-use across loop iterations and force an exploration of all the paths in
the program, as in the following program:

x ← 0
for i in 1 . . . 100 do

x ← x + DiscreteUniform(1, 3)
end for
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When translating this program into a Markov chain, we arrive at a chain with 60.204
states. The probabilistic model checker Storm takes roughly 15 minutes to analyze
the model. This worst-case example shows where the presented approach performs
unfavorably. We hence conclude that our approach, and Blizzard, is best suited for
programs over a finite-state space, where the same state may be entered multiple times,
i.e., while-loops that may have runs of unbounded length.

3.3.3 Complementing Other Inferences Engines

By design, Blizzard is specialized to finite state-spaces, while some use-cases inherently
are over an infinite state-space. Even though Blizzard is not designed to analyze infinite
state programs, it provides highly performant inference for a restricted subclass, where
existing, more general tools, may perform significantly worse. In this section, we show
how Blizzard can be used to perform inference in combination with other inference
engines, which may have different strengths.

As briefly mentioned in Section 7.3 and Section 3.3.1, existing tools mostly support two
classes of loops: statically bounded for-loops and non-statically bounded, terminating while-
loops. The latter class does not require a static bound on the number of loop iterations,
but existing tools fail in case there are infinitely long runs through a program. As an
example, the bounded random walk in Example 3 did admit infinite runs, prohibiting an
analysis with existing tools. As such, Blizzard offers itself as a powerful primitive for
finite-state fragments that existing approaches cannot analyze.

To further illustrate the power of our approach in this context, consider the following
variant of the stochastic turtle-hare game [CS14] in Figure 3.4. The program models the
race of a turtle and a hare, as in Aesop’s fable, where the hare is moving whimsically
with some probability p, but if it does, it moves forward a distance uniformly chosen
between 1 and 3. The turtle, in contrast, has a head-start of 2 units and constantly
moves one unit each time-step. If the turtle can outrun the hare by a margin of 5 units,
it wins, but loses if the hare eventually catches up. After performing the race five times,
we observe that the hare did win four out of those five races and while initially believing
that all values for p are equally likely, we would like to update our belief of p, according
to this observation.

The program of Figure 3.4 can neither be analyzed by existing tools like PSI [GMV16],
nor by Blizzard. The unbounded loop in the procedure race, prohibits analysis by
existing tools and the continuous prior on p impedes the methodology employed by
Blizzard. However, it is possible to transform the procedure Race into an equivalent,
finite-state loop and employ Blizzard to extract the resulting distribution with respect
to the symbolic parameter p. To do so, we introduce a new variable ∆ := turtle − hare
and arrive in the equivalent finite-state program of Figure 3.5.

This finite-state program Race can be analyzed by our approach, and we obtain the
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procedure Race(p)
hare, turtle ← 0, 2
while hare < turtle ∧ turtle < hare + 5 do

turtle ← turtle + 1
if Bernoulli(p) then

hare ← hare + DiscreteUniform(1, 3)
end if

end while
return hare ≥ turtle

end procedure

procedure Main
p ← Uniform(0, 1)
hareWins ← 0
for i in 1 . . . 5 do

if Race(p) then
hareWins ← hareWins + 1

end if
end for
observe(hareWins = 4)

end procedure

Figure 3.4: A Probabilistic Variant of the Turtle-Hare Race [CS14].

procedure Race(p)
∆ ← 2
while ∆ > 0 ∧ ∆ < 5 do

∆ ← ∆ + 1
if Bernoulli(p) then

∆ ← ∆ − DiscreteUniform(1, 3)
end if

end while
return ∆ ≤ 0

end procedure

Figure 3.5: A finite-state equivalent of the Race procedure in Figure 3.4 .

symbolic, closed-form solution for ph := P(race(p) = ⊤) which is

ph = 10p4 − 21p3 + 27p

37p4 − 183p3 + 324p2 − 243p + 81

With the goal of performing inference, we can replace the subprocedure call to Race
by a simple coin-flip with probability ph. The resulting program fits the programming
model of existing tools, as the only loop is statically bounded and hence the program can
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procedure main
p ← Uniform(0, 1)
ph ← P(race(p) = ⊤) ▷ Obtained with Blizzard
hareWins ← 0
for i in 1 . . . 5 do

if Bernoulli(ph) then
hareWins ← hareWins + 1

end if
end for
observe(hareWins = 4)

end procedure

be analyzed using such approaches. This extensive example shows the envisaged use-case
for Blizzard, besides being used as a stand-alone exact inference tool for probabilistic
programs over finite state-spaces.

3.4 Conclusion
In this chapter, we investigated the fully-automated translation of finite-state probabilistic
programs to Markov chains and the applicability of probabilistic model checkers to analyze
the resulting Markov chains. Finally, we compared our approach to existing tools and
benchmarked the performance.

We have shown that for finite-state probabilistic programs, especially while-loops, the
presented methodology is a promising approach and extends the class of probabilistic
programs that can be (efficiently) analyzed.
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CHAPTER 4
Recovering Probability

Distributions from Moments

In Chapter 3, we investigated the automated analysis of finite-state loops by means of a
translation to Markov chains and applied probabilistic model checkers to analyze those.
This approach is very well suited for certain classes of programs, while suffering from
limitations due to the state-space explosion for other classes of programs. However, it
may be asked what can be done for programs where the approach presented in Chapter 3
performs unfavorably or in programs with infinite state-spaces. To perform inference,
knowledge of the distribution modelled by the program is still of great importance.

Previous work in this area investigated the characterization of moments of program
variables, i.e., expected values of the form E[xk] for program variable x and k ∈ N
[BKS19, MSBK22]. For a restricted class of infinite-state loops, this approach is sound
and complete, that is, it is able to compute arbitrary moments of program variables. The
main limitations here are the restriction to programs that can be described by linear
recurrences over their moments and the lack of observe-statements. Additionally, this
technique does not attempt to recover the distribution of the program variables from the
information encoded in the moments.

The problem of recovering distributions from given moments, known as the moment
problem, is of surprising mathematical difficulty and has been under investigation for over
a hundred years [Sch17]. More specifically, assuming all moments exist, that is XkdP
exists for each k ∈ N, under which conditions does the infinite sequence of moments
uniquely specify a distribution?

The answer is very subtle, as witnessed by the various variations of the moment problem
[Dur10]. It can be shown, that if the distribution is allowed to have positive measure
on the whole real line (Hamburger moment problem) or on the interval [0, ∞) (Stieltjes
moment problem), then the answer to the aforementioned question is negative, that
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is, there are either no solutions or infinitely many distributions with these moments.
Only under stronger conditions on the limit of the moment sequence, such as Carleman’s
condition, the uniqueness of the distribution can be asserted. This inherent complexity
is the reason why existing work often resorts to approximate solutions that try to find
some distribution that fits the given moments as closely as possible [KMS+22]. However,
on bounded intervals of the real line (Hausdorff moment problem), the answer is positive
and if the support1 of the random variable is finite, then even finitely many moments are
sufficient to uniquely characterize the distribution [Dur10, Sch17].

In this chapter, we will investigate how to extend the approaches of [BKS19, MSBK22]
to allow the recovery of distribution for program variables with finite support. Note that
the programs we consider in this chapter do not necessarily have finitely many states as
in Chapter 3, as the programs under consideration may have an infinitely large state
space. It is only necessary that the result, i.e., some random variable of interest, has finite
support. Thus, the methodology presented here allows us to extract the distribution and
perform inference over a different class of probabilistic programs than in Chapter 3.

In the following sections, we will first examine the univariate case (Section 4.1), followed
by an elegant generalization to the multivariate case (Section 4.2), allowing us also to
recover joint probability distributions over multiple random variables. But first, to provide
the reader with an intuition, let us illustrate the key idea with a simple example.

Example 7. Consider the following program, where the program variables X and Y are
clearly not stochastically independent and have finite support {0, 1}.

X, Y, Z ← 0, 0, 1
while Z = 1 do

Z ← Bernoulli(0.5)
X ← Bernoulli(p)
Y ← 1 − X

end while

For now, assume the moments over program variables and monomials are given, in this
case as E[X] = p, E[Y ] = 1 − p and E[XY ] = 0. Note, that due to the stochastic
dependence of X and Y , it does not hold that E[XY ] = E[X]E[Y ].

In combination with the defining equations of the expected value operator, we can write

1The support of a discrete random variable X is the set of values that may be assumed with positive
probability, i.e., {x | P (X = x) > 0}
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down the following system of equations:

1 =
x,y

P(X = x, Y = y)

p = E[X] =
x

xP(X = x) = P(X = 1) = P(X = 1, Y = 0) + P(X = 1, Y = 1)

1 − p = E[Y ] =
y

yP(Y = y) = P(Y = 1) = P(X = 0, Y = 1) + P(X = 1, Y = 1)

0 = E[XY ] =
x,y

xyP(X = x, Y = y) = P(X = 1, Y = 1)

Note that the previous system consists of four linearly independent equations in four
unknowns, namely the four combinations of X and Y to define P(X, Y ). Therefore, the
system defines a unique probability distribution, which in this case is given by

P(0, 0) = 0 P(0, 1) = 1 − p P(1, 0) = p P(1, 1) = 0

4.1 Reconstruction of Univariate Probability Distributions
It has been shown in [MSBK22], that for a discrete random variable with finite support,
finitely many moments uniquely define the distribution of the random variable. In this
section, we will show how to extract the distribution information from the moments using
linear algebra.

More formally, let X be a random variable with distribution µ and finite support
S = {x1, x2, . . . , xm}. Then, µ can be recovered from the first m−1 moments, since these
specify m−1 linearly independent equations E Xk = m

i=1 xk
i P(X = xi) over P(X),

where 1 ≤ k < m. In combination with the second axiom of probability theory, that is
m
i=1 P(X = xi) = 1, this results in m linearly independent equations that completely

specify P(X) over all points in S.

When writing E X0 = 1 in the last equation, we obtain a common formulation for all
equations of the form

E Xk =
m

i=1
xk

i P(X = xi), where 0 ≤ k < m.

Since the support of X is finite by assumption, we can write out the previous equation
as a vector multiplication of the form

E Xk = P(X = x1) P(X = x2) . . . P(X = xm)


xk

1
xk

2
...

xk
m
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Now note, that the vector of probabilities is the same for all moments and equations.
Therefore, we can write the entire defining system of m equations as follows, where M is
the moment vector, P the probability vector and A is the support matrix.

E X0 . . . E Xm−1

M

= P(X = x1) . . . P(X = xm)

P


1 x1 x2

1 . . . xm−1
1

1 x2 x2
2 . . . xm−1

2
... . . . ...
1 xm x2

m . . . xm−1
m


A

(4.1)
By utilizing the formulation (4.1), it is easy to see that the distribution µ of X is
completely characterized by the vector P. Hence, the problem of obtaining µ is equivalent
to solving the matrix equation M = P · A for P.

Now, note that the matrix A has a special shape, and this type of matrix is known as a
Vandermonde matrix. It is well known, that a Vandermonde matrix is invertible if and
only if all entries xi of the second column are pairwise different. Since the support of our
distribution is a set, this certainly holds and hence we conclude that (a) the m equations
are indeed linearly independent and (b) the equation M = P · A for P can always be
solved by inversion of A.

We summarize this section by the following lemma and illustrate it with a brief example.

Lemma 4.1. Let X be a random variable with finite support set S, where |S| = m. Then
the distribution of X is uniquely defined by the first m−1 moments and can be computed
as

P = M · A−1

with P, M and A as in (4.1).

Example 8. Let X be a random variable with support S = {−2, −1, 0} and that the
first two moments are given as E[X] = −0.9 and E X2 = 1.1. Then we can write the
defining equation as in (4.1) as

E X0 E X1 E X2 = P(X = −2) P(X = −1) P(X = 0)

1 −2 (−2)2

1 −1 (−1)2

1 0 0


Using elementary linear algebra, we compute the inverse of A as

A−1 =

1 −2 (−2)2

1 −1 (−1)2

1 0 0


−1

=

 0 0 1
0.5 −2 1.5
0.5 −1 0.5


Now it is an easy task to specify the distribution of X by computing P:

P = M · A−1 = 1 −0.9 1.1

 0 0 1
0.5 −2 1.5
0.5 −1 0.5

 = 0.1 0.7 0.2
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4.2 Reconstruction of Joint Probability Distributions

Encouraged by the previous section, we now seek to generalize Lemma 4.1 to multivariate
distributions over multiple random variables. We recall the ultimate goal to reconstruct
the stochastic dependence between random variables that allows us to compute the joint
probability distribution and perform inference over probabilistic programs, even if we
are only given access to a finite number of moments, e.g., obtained by the approach in
[MSBK22].

In the following, we show that the joint distribution over multiple variables is uniquely
characterized by the mixed moments. Further, in an elegant generalization of Lemma 4.1,
we show that the support matrix A in the multivariate case can be computed by the
Kronecker product of the univariate support matrices (Theorem 4.2). To get there, we
first consider the bivariate case, as it will show that this is the crucial generalization
sufficient for generalizing to an arbitrary number of variables.

Assume two random variables X and Y with finite support SX = {x1, . . . , xm} and
SY = {y1, . . . , yn} that are jointly distributed with a distribution µ that is characterized
by the probability measure P(X, Y ). In a natural generalization, we now assume that we
are given access to an oracle providing us with the first n × m mixed moments E XkY ℓ ,
where 0 ≤ k < m and 0 ≤ ℓ < n.

It will be convenient to write the vectors M and P both as lexicographically ordered
with X < Y . For ease of presentation, we introduce the subvectors MXk of the moment
vector.

MXk := E XkY 0 E XkY 1 . . . E XkY n−1

M := MX0 MX1 . . . MXm−1

P := P(X = x1, Y = y1) P(X = x1, Y = y2) . . . P(X = xm, Y = yn)

When considering the defining equation for the mixed moments

E XkY ℓ =
x y

xkyℓP(X = x, Y = y),

we observe that we can unpack this computation into a matrix multiplication by using
a coefficient matrix that contains all combinations of xk and yl. Using this insight, we
write the defining equation for the subvector MXk in matrix form, similar to (4.1) in the
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univariate case.

MXk = P ·



xk
1y0

1 xk
1y1

1 xk
1y2

1 . . . xk
1yn−1

1
xk

1y0
2 xk

1y1
2 xk

1y2
2 . . . xk

1yn−1
2

... . . . ...
xk

1y0
n xk

1y1
n xk

1y2
n . . . xk

1yn−1
n

xk
2y0

1 xk
2y1

1 xk
2y2

1 . . . xk
2yn−1

1
xk

2y0
2 xk

2y1
2 xk

2y2
2 . . . xk

2yn−1
2

... . . . ...
xk

2y0
n xk

2y1
n xk

2y2
n . . . xk

2yn−1
n

... . . . ...
xk

my0
1 xk

my1
1 xk

my2
1 . . . xk

myn−1
1

xk
my0

2 xk
my1

2 xk
my2

2 . . . xk
myn−1

2
... . . . ...

xk
my0

n xk
my1

n xk
my2

n . . . xk
myn−1

n



(4.2)

Now note, that each block of the support matrix in (4.2) is of the form xk
i · AY, where

AY is the univariate support matrix of Y . Therefore, we obtain

MXk = P ·


xk

1AY
xk

2AY
...

xk
mAY

 (4.3)

By replacing the subvectors in the moment vector M using (4.3), we write M as

M = P ·


x0

1AY x1
1AY . . . xm−1

1 AY
x0

2AY x1
2AY . . . xm−1

2 AY
...

x0
mAY x1

mAY . . . xm−1
m AY

 (4.4)

The support matrix of (4.4) looks surprisingly similar to the Vandermonde matrix of the
univariate case (4.1), only that each entry of the matrix is matrix-valued and multiplied
by AY. This special combination of two matrices is known in literature as the Kronecker
product and is usually denoted as ⊗. Using this notation, we can concisely express the
generalization to two variables as

M = P · (AX ⊗ AY)
A

(4.5)

It is left to show that equation (4.5) has a unique solution. To prove this, we note that
the inverse (A ⊗ B)−1 exists if, and only if, both A−1 and B−1 exist. Then the inverse
satisfies the relation

(A ⊗ B)−1 = A−1 ⊗ B−1.
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As already observed in the previous section, the matrices AX and AY are Vandermonde
matrices and therefore invertible. From this we conclude that the inverse A−1 exists and
uniquely specifies the joint distribution of X and Y , which can be computed as

P = M · A−1 = M · AX
−1 ⊗ AY

−1 .

Multivariate Distributions. Generalizing these observations to the multivariate case
can be done by induction, where the base case corresponds to the univariate case in
Lemma 4.1 and the induction step is analogous to the bivariate case. By those means,
we arrive at the concluding theorem of this section.

Theorem 4.2. Let X1, X2, . . . , Xn be a collection of random variables, where the support
of each Xi is given by some finite set. Then the joint distribution of those random
variables is uniquely defined by their mixed moments and can be computed as

P = M · A−1 = M · AX1
−1 ⊗ AX2

−1 ⊗ . . . ⊗ AXn
−1

with AXi as in (4.1) and the vectors P and M lexicographically ordered with X1 < X2 <
. . . < Xn.

By Theorem 4.2, we conclude that we can always and fully automatically extract the
joint probability distribution of multiple random variables with finite support, when
given the mixed moments. As stated before, one possible approach to obtain these
moments is presented in [BKS19, MSBK22]. By the method presented in this chapter,
we hence enable the extraction of the joint probability distribution for all programs in
the programming model of [MSBK22], as long as the variables of interest are over finite
support. We implemented the methodology presented here in the tool Polar and the so
obtained distribution can then be used to perform inference on this loop class, which
complements the class of loops presented in Chapter 3.
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CHAPTER 5
Analysis of Infinite-State Loops

After analyzing the behavior of programs with finite state-spaces in Chapter 3, we
turn our attention to infinite-state programs, i.e., programs that cannot be represented
by a finite-state Markov chain as in Definition 8. The possibly simplest infinite-state
probabilistic program is an unbounded, symmetric, one-dimensional random walk, similar
to Example 2 and as shown in the following program:

x ← 0
while ⋆ do

x ← x − 1 [1/2] x + 1
end while

Despite its seeming simplicity, even this program cannot be represented using finitely
many states, which renders the task of program analysis much more challenging, as one
need to analyze potentially (un)countable Markov chains as in Definitions 6-7. The vast
majority of existing approaches is restricted to statically bounded loops, that is, loops
where the number of loop iterations can be bounded a priori, see e.g., [GMV16, HVM20,
SCG13, CDM14, SRM21]. However, in general there is no upper bound on the number
of loop iterations, such as in the preceding illustrating example, where the number of
loop iterations is an unbounded random variable. We will investigate the properties of
such potentially unbounded loops in the following sections.

Here we will write fX(t) to denote both the probability mass and density function of some
random variable X and, to avoid distinguishing the discrete and continuous case, refer to
both as (probability) density function. The probability distribution of the random variable
will be denoted as FX(t). In Chapter 2 we noted that the execution of a probabilistic
program can be represented by a stochastic process ⟨Φn⟩ in the run space. Therefore, the
value of some program variable x after a specific number of n steps is a random variable
and will be denoted as xn.
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It is well known, that for two independent random variables X and Y , the density of
their sum can be characterized by the convolution of their densities, in symbols

fX+Y (t) = (fX ∗ fY )(t)

In case of two discrete random variables X and Y , convolution is defined as

(fX ∗ fY )(t) :=
∞

m=−∞
fX(m)fY (t − m)

Similarly, for continuous random variables, the operator is defined as

(fX ∗ fY )(t) :=
∞

−∞
fX(τ)fY (t − τ)dτ

In case of repeated convolution, we introduce the following shorthand notation.
k∗

i=0
fi (t) := (f0 ∗ · · · ∗ fk)(t)

When we refer to a random variable with Categorical(p1, . . . , pm) distribution, where
pi = 1, then we mean a distribution that is characterized by P(X = i) = pi for all

1 ≤ i ≤ m.

The outline of this section is briefly summarized as follows. We first restrict ourselves
to potentially unbounded for-loops (Section 5.1) and show under which conditions the
probability density functions of such loops can be characterized (Lemma 5.1). Based on
this result, we translate for-loops into equivalent, loop-free programs. We study special
classes of such loops, improving the state-of-the-art in what is computable for unbounded
loops (Sections 5.1.1-5.1.2). In particular, we show that solvable loops [Kov08] and
constant update loops [GGH19] can be translated into equivalent loop-free fragments for
the purpose of distribution recovery.

We next relax the setting of Section 5.1 and in Section 5.2, instead of fully recovering
distributions, we provide a method to compute moments of program variables (Lemma 5.2).
Finally, in Section 5.3, we introduce a type system (Figure 5.1) for probabilistic programs
which is based on closure properties of probability distributions and is able to identify
the distribution of random variables in unbounded while-loops.

5.1 Analysis of Potentially Unbounded For-Loops
In this section, we focus on potentially unbounded for-loops. These are loops that
increment a loop counter by one, starting from some lower bound, most commonly zero
or one, until it reaches the value held by some random variable d.

We recall that our ultimate goal is to enable inference for probabilistic programs, which
requires evaluating the likelihood of the observed evidence and hence the probability
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density of the outcome. However, as probabilistic programs are strictly more general
than deterministic programs, any hope of a full characterization is futile, due to the
undecidability of the Halting problem. Therefore, it will be necessary to restrict our
initially presented programming model from Figure 2.1 to a tractable fragment, which
must be powerful enough to model useful programs and remain manageable at the same
time.

In the programming model for this section, the loop body may contain probabilistic and
deterministic variable updates and a single variable that accumulates values over all
iterations. The increments in each iteration may follow an arbitrary distribution and are
left unrestricted for now. A generic template for such a program is shown in Figure 5.1.

for i in 1 . . . d do
u1, u2, . . . , um ← ℓ1, ℓ2, . . . , ℓm ▷ Here, all ℓi are random values
inc ← u1 [p1] u2 [p2] . . . [pm−1] um [pm]
s ← s + inc

end for
Figure 5.1: A for-loop with probabilistic updates.

In this general form, each iteration of the loop first generates values for the variables
u1, . . . , um, then probabilistically picks one of them and assigns it to the random variable
inc. Finally, the accumulator variable s is incremented by the value in inc. Clearly, the
result of the computation s after termination is solely dependent on d and the increments
ui. Hence, knowledge of the probability densities of ui completely characterizes the
distribution of s. In the remainder of this section, we will formalize this idea and examine
the conditions under which we can efficiently compute the resulting density of s.

In general, the distribution of the variables need not be the same across all iterations
and to denote this, we index the density of ui, 1 ≤ i ≤ m in iteration n as fi,n. The
increment of variable s in iteration n is specified by the random variable incn. This
variable is constructed as a mixture of the previously generated random variables, and its
distribution is given by a convex combination of the mixture components ui, in symbols,

fincn(x) =
m

i=0
pi · fui,n(x).

Most generally, the increment incn in some iteration n may be stochastically dependent
on the value incn−1 in the previous iteration. This renders an exact analysis of the sum
s prohibitively difficult. Therefore, we focus on programs where the increment in each
iteration is independent of the increment in the previous iteration.

Under this assumption, we can utilize the fact that for two independent random variables,
the density of their sum is given by the convolution of their individual densities. This
allows us to write down an explicit expression for the density of variable s after n loop
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iterations:

fsn(t) = (finc1 ∗ finc2 ∗ . . . ∗ fincn)(t) =
n∗

i=1
finci(t)

As the density incn is a mixture of multiple distributions, we can also write:

fsn(t) =
n∗

i=1

m

j=1
pj · fuj,i(t)

Under the mild preceding assumption, we arrived at this first, general result characterizing
the probability density of the result. The complexity of the resulting computation will
be highly dependent on the number of mixture components and the specific probability
distributions.

To provide more specific and detailed results, we will need to strengthen our assumptions.
One reasonable assumption is that the mixture components ui are not only independent,
but also identically distributed in each loop iteration. Surprisingly, this assumption is
sufficient to replace the loop by an equivalent, loop-free program, which may be analyzed
more efficiently. The following lemma now asserts the previous claim, by showing that we
can “exchange” the summation and convolution of the individual mixture components,
as the order of the summations does not matter. The resulting distribution is then a
(dependent) mixture of convolutions.

Lemma 5.1. If the mixture components are independent and identically distributed, i.e.,
for all 1 ≤ i ≤ m and all iterations n, it holds that fui,n = fui, then it holds that

fsn(t) =
m∗

j=1

hj∗
i=1

fuj (t), where (h1, . . . hm) ∼ Multinomial(n; p1, . . . , pn).

Equivalently, the multinomial distribution can be made implicit as

fsn(t) =
h1+···+hm=n

n

h1, . . . , hm
ph1

1 . . . phm
m ·

m∗
j=1

hj∗
i=1

fuj (t).

Proof. For the proof, we replace the probabilistic choice with a new random variable J ,
that is assigned an index from 1 to m in each iteration. Any potential increment uj,i is
only added to the accumulator variable in case Ji = j and masked out otherwise. This
allows us to exchange the sums and replace the indicator variables, by using the fact that
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the sum over a categorical distribution has a multinomial distribution.

sn =
n

i=1
inci

=
n

i=1

m

j=1
uj,i I(Ji = j) Ji ∼ Categorical(p1, . . . , pn)

=
m

j=1

n

i=1
uj,i I(Ji = j)

=
m

j=1

 hs

i=1
uj

 (h1, . . . hm) ∼ Multinomial(n; p1, . . . , pn)

Lemma 5.1 is quite powerful, as there exist a plethora of relationships among probability
distributions, especially regarding convolution. For example, we have the following closure
properties of probability distributions.

n

i=1
Bernoulli(p) = Binomial(n; p)

n

i=1
Geometric(p) = NegativeBinomial(n; p)

n

i=1
Poisson(λi) = Poisson

n

i=1
λi

Equipped with Lemma 5.1 and the preceding relations, we are ready to eliminate certain
loops from programs and replace them with loop-free program fragments, as illustrated
in the following example.

Example 9. Consider the concrete program in Figure 5.2a that follows the scheme
presented in Figure 5.1. By Lemma 5.1 and the listed closure properties, the program in
Figure 5.2a is equivalent to the loop-free program in Figure 5.2b.

To conclude, this section presented an approach that is capable of replacing a class of
loops by an equivalent, loop-free program, even though the original loop is potentially
unbounded and hence cannot be analyzing by unrolling. In the following two sections,
we will instantiate and further specialize the previous result for more specific classes of
programs known in literature.
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for i in 1 . . . d do
u1, u2, u3 ← Bernoulli(q1), Geometric(q2), Poisson(λ1)
inc ← u1 [p1] u2 [p2] u3[p3]
s ← s + inc

end for
(a) A concrete for-loop with probabilistic updates.

(h1, h2, h3) ← Multinomial(d; p1; p2; p3)
x ← x0 + Binomial(h1; q1) + NegativeBinomial(h2; q2) + Poisson(h3λ1)

(b) An equivalent loop-free program.

Figure 5.2: Two equivalent probabilistic programs.

5.1.1 Special Case: Solvable Loops

If the loop body does not utilize probabilistic choice and hence is purely deterministic,
then for some loop classes, such as single-path programs with affine1 updates, it is possible
to compute a closed-form solution of the values of program variables in terms of the loop
counter [Kov08]. This simplifies the task of program analysis even further, since we can
replace the loop with an assignment of the closed-form solution evaluated at iteration d.

5.1.2 Special Case: Constant Updates

Another notable subclass of the generic loop template in Figure 5.1 is the class of
constant-update loops, where the problem of termination has been studied in existing
work [GGH19]. Here, all mixture components ui are assigned constants ci and hence
distributed according to a Dirac distribution, in symbols fui(t) = δ(t − ci). It can
be shown, that the Dirac distribution is closed under convolution and the resulting
distribution accumulates the displacements, in symbols

k∗
i=1

δ(t − ci) = δ t −
k

i=1
ci . (5.1)

Now, from Lemma 5.1, we conclude that in the constant-update case, the program in
Figure 5.1 can be written as the following, loop-free program.

(h1, . . . , hm) ← Multinomial(d; p1; . . . ; pm)
s ← s0 + h1c1 + . . . + hmcm

To write down the closed-form probability density fsn , we start from Lemma 5.1 and

1An affine expression is a polynomial of degree one.
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repeatedly apply (5.1) as follows:

fsn(t) =
h1+···+hm=n

n

h1, . . . , hm
ph1

1 . . . phm
m ·

m∗
j=1

hj∗
i=1

δ(t − cj)

=
h1+···+hm=n

n

h1, . . . , hm
ph1

1 . . . phm
m ·

m∗
j=1

δ(t − hjcj)

=
h1+···+hm=n

n

h1, . . . , hm
ph1

1 . . . phm
m · δ

t −
m

j=1
hjcj


=

h1+...+hm=n
c1h1+...+cmhm=t

n

h1, . . . , hm
ph1

1 . . . phm
m

For general constants c1, . . . , cm, one needs to consider all possible vectors (h1, . . . , hm) ∈
Nm

0 such that m
i=0 hici = t. This is computationally hard, as it is equivalent to

partitioning t into m fixed integers.

However, the problem is feasible if the increments are all pairwise relative prime, i.e.,
∀i, j : i ̸= j ⇒ gcd(ci, cj) = 1. Then, the prime decomposition of t yields a unique way of
writing t as a linear combination of the increments ci.

In the case that m = 2, the multinomial distribution collapses into a binomial distribution
where h1 ∼ Binomial(d; p1), and h2 = d − h1. Therefore, in this case we get the even
simpler loop-free program

h1 ← Binomial(d; p1)
s ← s0 + h1c1 + (n − h1)c2 ≡ s0 + h1(c1 − c2) + c2d

5.2 Moment-Generating Function Based Loop Analysis
Even though the investigations presented in Section 5.1 may considerably reduce the effort
and computing power necessary to analyze a program, the level of precision provided
may not be needed in all cases. Instead of analyzing the full distribution, it is often
sufficient to compute a finite set of moments to characterize the main properties of the
distribution.

This section provides an elegant method based on generating functions to infer the
moments of potentially unbounded for-loops if the distribution of the loop bound is
known.

Let X be a discrete random variable, then the probability-generating function (PGF)
GX(z) is defined as z-transform of the density function:

GX(z) := E zX =
x

fX(x) · zx
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Similarly, for a real-valued random variable, the moment-generating function (MGF)
MX(t) corresponds to the Laplace transform of the density function:

MX(t) := E etX =
∞

−∞
fX(x) · etxdx

As witnessed by the following lemma, the summation of a random number of independent
and identically distributed random variables is closely related to their generating functions.

Lemma 5.2. Let ⟨Xi⟩i∈N be a sequence of independent and identically distributed random
variables. Further, let N be another random variables over N and let Z be the sum of the
first N terms, in symbols Z = X1 + X2 + . . . + XN . Then the MGF of Z is given as

MZ(t) = GN (MX(t))

Proof. This can be shown by first observing that in case the upper bound N is known, then
E[etZ | N ] = MX(t)N , since summation of independent random variables is equivalent
to the multiplication of their moment-generating functions. Then, by the law of total
expectation, we arrive at the relation

MZ(t) = E etZ = E E etZ | N = E MX(t)N = GN (MX(t)).

Now if we assume again that the increment in the loop body of Figure 5.1 is distributed
independently and identically in each iteration, then the following relation holds by
Lemma 5.2:

Ms(t) = Gd(Minc(t))

Now if both, the PGF of the upper-bound d and the MGFs of the increments ui exists, then
we can use the fact, that for a mixture distribution, the MGF is the convex combination
of the component MGFs to obtain:

Ms(t) = Gd

m

i=1
piMui(t)

Now, by the properties of the moment generating function, we can extract arbitrary
moments of s by the formula

E sk = dkMs(t)
dtk

t=0

We conclude, that if the density of the upper bound d is explicitly known and the
increments are independently distributed, then this method provides a powerful way of
analyzing the moments of a potentially unbounded loop, summarized by the following
lemma
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Lemma 5.3. Let P be a concrete program of the type given in Figure 5.1. Then if both
the PGF of the random upper bound d and the MGFs of the independent increments ui

exist, then it is possible to compute arbitrary moments E sk of the random variable s.

In the following example, we illustrate the power of the approach, by showing that this
methodology may even be used to analyze unbounded while-loops.

Example 10. In Figure 5.3, we have a loop that closely follows the scheme presented
in Figure 5.1, with the notable exception that the loop terminates only when some
parameterized coin-flip shows heads.

s ← 0
while Bernoulli(p) = 0 do

u1, u2, u3 ← Normal(5, 2), Exponential(1/3), 3
inc ← u1[1/4]u2[1/3]u3[5/12]
s ← s + inc

end while
Figure 5.3: A while-loop with probabilistic updates.

It is clear that the increments are identically distributed and additionally, the number
of loop iterations has a Geometric distribution, since the number of summations is
equivalent to the number of times the coin lands tails.

Therefore, the moment-generating function of s is obtained by chaining the probability-
generating function of a geometric distribution with parameter p and the convex com-
bination of the moment-generating functions of the increments. When looking up the
individual transformations in a table and after carrying out the necessary computations,
one arrives at the moment-generating function, symbolic in p:

Ms(t) = (36t − 12)p
36t − 4p − 8 + 15e3t(p − 1)(t − 1/3) + e2t2+5t(3 − 9t + 9pt − 3p)

We stress that the previous equation uniquely identifies the distribution of s. This
can be used to automatically compute arbitrary moments by simple differentiation and
evaluation, e.g., for the first two moments:

E[s] = dMs(t)
dt t=0

= 7 − 7p

2p

E[s2] = d2Ms(t)
dt2

t=0
= 15p2 − 64p + 49

2p2

5.3 A Type System for Distribution Identification
In Section 5.1, we investigated potentially unbounded for-loops, where we utilized closure
properties of distributions to provide a corresponding, loop-free program. This section
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will focus on identification of distributions, with the purpose of finding the distribution of
the mixture components of Section 5.1, if not explicitly given. In addition, the presented
approach is also able to characterize the distribution of some unbounded while-loops,
representing forever lasting stochastic processes. Existing work investigated the extraction
of moments for restricted kinds of such loops [BKS19, MSBK22], but lacks the power to
provide a full characterization of the resulting distribution. One key observation is, that
if the type or shape of the distribution can be inferred by other means, then a finite set
of moments is sufficient to fully characterize the distribution. This is what we aim to do
in this section.

As an illustrating example, consider the following program.
x ← 1
y ← x + Normal(1, 4)
while ⋆ do

y ← y + Normal(5, 2)
end while

By the closure properties of the normal distribution, we can infer that y is normally
distributed during each loop iteration. Given that there are plenty of closure properties
among probability distributions, our aim in this section is to construct a type system
that can infer the distribution of variables in such programs in a purely syntactic way,
paving the way to fully characterize the distribution of variables.

It is important to note, that it is crucial to ensure stochastic independence of added
variables, since otherwise closure properties do not hold. Another noteworthy limitation
is that we only consider single-path loops, i.e., loops without branching statements and
without probabilistic choice. This stems from the restriction that both constructs would
allow the construction of mixture distributions, which result in increased complexity.

To make statement boundaries more visible, we will wrap statements into parenthesis
and separate statements with a simple dot, e.g., (x ← 1).(y ← 5). Further, all programs
are either terminated by an empty statement of the form 0 or an unbounded loop. In
our language, we only have assignment statements and unbounded while-loops, hence we
are ready to introduce the first typing rules for statements:

Empty Γ ⊢ 0 Assign
Γ ⊢ e : T x : T′ in Γ ⇒ T = T′ Γ, x : T ⊢ P

Γ ⊢ (x ← e).P

Loop Γ ⊢ P.0
Γ ⊢ (while ⋆ do P end while)

Table 5.1: Typing rules for program statements of Figure 5.1.

Next, we introduce type checking for deterministic expressions.

Some distributions, such as Normal, admit closure properties among all parameteriza-
tions, hence we can immediately give typing rules that ignore the concrete instantiation
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Num e ∈ R
Γ ⊢ e : Dirac Arith

Γ ⊢ e1 : Dirac Γ ⊢ e1 : Dirac ▷◁ ∈ {+, −, ×, /}
Γ ⊢ e1 ▷◁ e2 : Dirac

Table 5.2: Typing rules for deterministic expressions.

of the distribution. Note that in the rules that perform addition, it is crucial that the
random variable on the right-hand side is fresh, to ensure stochastic independence.

Norm
e = Normal(µ, σ2) µ, σ2 ∈ R

Γ ⊢ e : Normal Norm-Add
Γ ⊢ e1 : Normal µ, σ2 ∈ R,R+

Γ ⊢ e1 + Normal(µ, σ2) : Normal

Poi
e = Poisson(λ) λ ∈ R+

Γ ⊢ e : Poisson Poi-Add
Γ ⊢ e1 : Poisson λ ∈ R+

Γ ⊢ e1 + Poisson(λ) : Poisson

Cau
e = Cauchy(a, γ) a, γ ∈ R

Γ ⊢ e : Cauchy Cau-Add
Γ ⊢ e1 : Cauchy a, γ ∈ R,R+

Γ ⊢ e1 + Cauchy(µ, σ2) : Cauchy

Table 5.3: Typing rules for parameter-agnostic distribution expressions of Figure 5.1.

Other distributions, such as Binomial or NegativeBinomial are only closed under
addition if certain parameters are identical. Therefore, we parameterize the type of the
distribution with the respective parameter as done in the following rules:

Bin

e = Binomial(n, p)
n ∈ N+ 0 < p < 1

Γ ⊢ e : Binomp
Bin-Add

Γ ⊢ e1 : Binomp

n ∈ N+ p = p′

Γ ⊢ e1 + Binomial(n, p′) : Binomp

NegB

e = NegativeBinomial(n, p)
n ∈ N+ 0 < p < 1

Γ ⊢ e : NBinomp
NegB-Add

Γ ⊢ e1 : NBinomp

n ∈ N+ p = p′

Γ ⊢ e1 + NegativeBinomial(n, p′) : NBinomp

Table 5.4: Typing rules for parameter-sensitive distribution expressions of Figure 5.1.

Finally, some distributions allow closed forms for their sums, but the sums are distributed
according to other distributions, e.g., n

i=1 Bernoulli(p) ∼ Binomial(n, p). To handle
this kind of “casting”, we introduce the concept of sub-typing. In the context of the
previous closure property, we would allow the promotion of Bernoullip to Binomialp.

Apart from standard type theoretic constructs, the safety and correctness of the pre-
sented type system follows directly from the closure properties among the probability
distributions, as for example found in [FT13].

Lemma 5.4. The type system presented in Table 5.1 and the subsequent typing rules of
Tables 5.2-5.5 are safe and allow us to reason about probabilistic programs of the form
shown in Figure 5.1.

The type system presented above is a proof-of-concept, but nevertheless presents important
concepts in how to type check probabilistic programs and their closure properties. We
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Refl T ≤ T Trans
T ≤ T′ T′ ≤ T′′

T ≤ T′′

Subsum
Γ ⊢ e : T′ T′ ≤ T

Γ ⊢ e : T

Bern
e = Bernoulli(p) 0 < p < 1

Γ ⊢ e : Bernoullip
Bern-Bin Bernoullip ≤ Binomp

Geo
e = Geometric(p) 0 < p < 1

Γ ⊢ e : Geometricp
Geo-NegB Geometricp ≤ NBinomp

Zero-Variance Dirac ≤ Normal
Table 5.5: Typing rules for sub-typing.

anticipate that it is easily extended for other closure properties, and close the section by
an example that illustrates the use of the type system:

Example 11. Consider the following probabilistic program.
g ← Geometric(0.5)
while ⋆ do

g ← g + Geometric(0.5)
end while

To check if the distributions follow some ’nice’ distribution in each iteration, we try to
type check the program. For brevity, we denote Geometric as Geo.

Assign

(5.3)
∅ ⊢ Geo(0.5) : NBinom0.5

g : T′ not in ∅
g : T′ in ∅ ⇒ T = T ′ Loop

(5.4)
g : NBinom0.5 ⊢ (g ← Geo(0.5)).0
g : NBinom0.5 ⊢ (while ⋆ do . . .)

∅ ⊢ (g ← Geo(0.5)).(while ⋆ do . . .) (5.2)

Subsum
Geo

Geo(0.5) = Geo(0.5) 0 < 0.5 < 1
∅ ⊢ Geo(0.5) : Geometric0.5

Geo-NegB Geometric0.5 ≤ NBinom0.5

∅ ⊢ Geo(0.5) : NBinom0.5
(5.3)

Assign

(5.3)
∅ ⊢ Geo(0.5) : NBinom0.5 g : T′ in g : NBinom0.5 ⇒ NBinom0.5 = T ′ Empty

g : NBinom0.5 ⊢ 0
g : NBinom0.5 ⊢ (g ← Geo(0.5)).0 (5.4)

From the derivation in (5.2), we conclude that g is distributed according to a negative
binomial distribution where p = 0.5. The derivation illustrates the necessity of subtyping
to promote the geometric distribution to a more general negative binomial distribution
that can be used to apply further typing rules.
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CHAPTER 6
Strongest Polynomial Invariant for

Probabilistic Loops

The overall goal of this thesis is to analyze probabilistic loops in order to enable or simplify
inference. Ultimately, loop analysis is intimately tied to the problem of abstracting the
“effect” of a loop, e.g., in the form of loop invariants. Such invariants assert that certain
relationships among program variables will hold during program execution, displaying
the nature of the loop. Unfortunately, finding the right abstraction is an intrinsically
hard and often undecidable problem [MS04b, HOPW19]. In addition, the notion of an
invariant for probabilistic programs is not straightforward to define, due to the underlying
randomness.

In this chapter, we review existing concepts for non-probabilistic programs and present
a definition for probabilistic invariants, where we focus on polynomial invariants for
programs that feature polynomial assignments. We will explore the existing literature
to introduce the concept of (strongest) polynomial invariants for deterministic and
nondeterministic programs (Sections 6.1-6.3), define a probabilistic equivalent and discuss
similarities as well as differences between the (non-)deterministic and the probabilistic
case (Section 6.4). Finally, in Section 6.5, we will show the hardness of an open problem in
deterministic invariant synthesis, by relating it to a longstanding problem in mathematics.

6.1 Preliminaries
The general concept of invariants, as presented in this section, dates back to the work of
Karr [Kar76] and an extension by Müller-Olm and Seidl [MS04b] who started to investigate
polynomial invariants for programs with polynomial assignments and restricted subclasses.
Given a program with a finite set of locations Q and variables x1, . . . xk over the rationals
Q, some polynomial equation p(x1, . . . , xk) = 0 is said to be a polynomial invariant with
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respect to some location q ∈ Q, if all reachable configurations in location q satisfy the
given equation.

In accordance, the strongest polynomial invariant is defined to be the (infinite) set of
all polynomial invariants. Interestingly, this typically infinite set does always admit a
finite representation. To see this, note that the set of invariants form a polynomial ideal
I, i.e., the set I is a subset of the polynomial ring Q[x1, . . . , xk] that satisfies the ideal
condition [RK04]. This means that I is (1) closed under addition, and (2) multiplying
an arbitrary ring element with an ideal element yields an ideal element, in symbols
∀p ∈ Q[x1, . . . , xk], ∀i ∈ I : pi ∈ I.

It turns out, that all polynomial ideals can be represented by a finite number of poly-
nomials and even admit a unique finite representation [Buc06]. Let K be a field, e.g.,
Q, and let f1, . . . , fs be polynomials in K[x1, . . . , xk], then we define the set ⟨f1, . . . , fs⟩
generated by the polynomials as

⟨f1, . . . , fs⟩ :=
s

i=1
hifi : h1, . . . , hs ∈ K[x1, . . . , xk] .

It is easy to show that ⟨f1, . . . fs⟩ is always an ideal of K[x1, . . . , xk] [CLO97, Chapter 1,
§4, Lemma 3]. Conversely, Hilbert’s basis theorem, as stated below, guarantees the
existence of a finite representation, a basis for every polynomial ideal, and especially for
the set of polynomial invariants.

Theorem 6.1 (Hilbert’s Basis Theorem). Every ideal I ⊂ K[x1, . . . , xk] over some field
K has a finite generating set. That is, I = ⟨f1, . . . , fs⟩ for some f1, . . . , fs ∈ I.

Therefore, we directly conclude that we can represent the strongest polynomial invariant
by a finite basis. Polynomial ideals exhibit useful properties, such as the decidability of
membership testing, that is, it is decidable whether some polynomial relationship is part
of the ideal, as stated by the following lemma.

Lemma 6.2 (Ideal Membership [Buc06, CLO97, Chapter 8]). Given a polynomial ideal
I, it is decidable whether a given polynomial f lies in I.

There is another, equivalent formulation for the strongest polynomial invariant, preferred
by some authors [HOPW19, VK23]. To present it, let us introduce the concept of an
affine variety, the fundamental objects of study in algorithmic geometry.

Definition 14 (Affine Variety [CLO97, Chapter 1]). Let K be a field and let f1, . . . , fs

be polynomials in K[x1, . . . , xk]. Then the affine variety V(f1, . . . , fs) is defined as the
set of all points in Kk, where all polynomials vanish, in symbols

V(f1, . . . , fs) := (a1, . . . , ak) ∈ Kk : fi(a1, . . . , ak) = 0 for all 1 ≤ i ≤ s
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Now the affine variety V(I) of a polynomial ideal I is defined as the set of common roots of
all polynomials in the ideal and equivalently, if I = ⟨f1, . . . , fs⟩, then V(I) = V(f1, . . . , fs).
At the same time, V(I(S)) is the Zariski closure of the set of reachable configurations S,
that is, the variety of the strongest polynomial ideal as defined above. Some authors,
e.g., [HOPW19, VK23], also refer to the strongest polynomial invariant as the Zariski
closure V(I(S)) of the polynomial invariant ideal.

In Section 6.5, we will show that finding the strongest polynomial invariant for a specific
class of programs, namely single-path polynomial loops, is at least as hard as the Skolem
problem, a long-standing, open problem in mathematics. Let us briefly introduce it.

Let u(n), n ∈ N0 be a sequence over the integers Z. We say that the sequence is C-finite
(of order k), if there are numbers a0, . . . ak−1 ∈ Z with a0 ̸= 0 such that

u(n+k) = ak−1u(n+k−1) + . . . + a1u(n+1) + a0u(n) (n ≥ 0)

The sequence u(n) is uniquely defined by the coefficients a0, . . . , ak−1 and the initial
values u(0), . . . , u(k−1) [KP11]. One long-standing, open problem of surprising simplicity
is related to the zeros of such a sequence:

The Skolem problem [EvdPSW03, Tao08]: Given a C-finite sequence u(n), n ∈ N0,
does there exist some m ∈ N0 such that u(m) = 0?

After this brief introduction to the object of interest, we are ready to give an overview of
the established results and extend them.

6.2 Deterministic Programs
In his foundational paper [Kar76], Karr showed that for affine1 single-path programs, i.e.,
without conditional branching, the problem of finding the strongest affine invariant is
decidable. Later, Müller-Olm and Seidl provided a simpler version of Karr’s algorithm
[MS04b] and Kovács [Kov08] showed that for affine single-path programs, it is possible
to compute the strongest polynomial invariant.

After considering the case for affine single-path programs, we turn to the problem of
computing invariants for polynomial single-path programs. As shown by Müller-Olm
and Seidl [MS04a], it is possible to compute the set of polynomial invariants of bounded
degree in the case of polynomial single-path programs. However, the more general task of
finding the strongest polynomial invariant for single-path programs remains unsolved up
to date.

Nevertheless, in Section 6.5, we provide a novel proof, showing that the problem of finding
the strongest polynomial invariant for single-path polynomial loops is at least as hard as
the Skolem problem. This implies, that decidability of the invariant synthesis problem

1An affine expression is a polynomial of degree one.
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for single-path polynomial loops would solve the Skolem problem, a major unsolved
problem in mathematics.

Note that until now, we solely considered single-path programs. It is easy to show, that
for deterministic multi-path programs, the problem is undecidable, even finding affine
invariants for affine programs, since they can simulate 2-counter-machines. In contrast
to a standard Turing machine, a 2-counter-machine has access to two non-negative,
unbounded registers which it can increment, decrement and compare to zero. Despite
the restrictions, 2-counter-machines and Turing machines are equally expressive [HU69],
which implies that the Halting problem for 2-counter-machines is undecidable.

The transition relation of the 2-counter-machine can be simulated by affine expressions,
since a register may only be incremented or decremented. The zero-testing of the registers
can be simulated either by equality or inequality conditions, since the registers are
assumed to be non-negative. To see why the problem of finding the strongest affine
invariant is undecidable, simulate an arbitrary 2-counter-machine using a deterministic
multi-path program and introduce a new variable t, which is initially zero and set to one
once the machine halts.

Note that the affine relation t = 0 holds if and only if the machine does not halt. Now,
if we could compute the strongest affine invariant (or even test candidates of degree
one), we could test whether t = 0 is part of the strongest affine invariant, since ideal
membership is decidable by Lemma 6.2. By this reasoning, we conclude that the problem
of finding the strongest affine invariant for programs with affine assignments and affine
equality/inequality conditions is undecidable. It is immediately evident that this result
also holds for polynomial invariants and programs.

However, it is possible to over-approximate the set of reachable configurations by treating
conditionals as non-deterministic choice, i.e., by ignoring the condition. This approach
has proven itself to be quite powerful, as shown in the following section.

6.3 Non-Deterministic Programs
When ignoring branching conditions, the resulting set of states is an over-approximation
of the actually reachable states, hence the resulting set of invariants is a subset of the
strongest polynomial invariant. Note that any nondeterministic program is naturally a
multi-path program, hence we will refer to a nondeterministic multi-path program simply
as a nondeterministic program.

It has already been noticed by Karr in his foundational paper [Kar76], that replacing
conditional branching by nondeterminism considerably simplifies the problem of finding
the strongest polynomial invariant. More specifically, the method presented in his work
allows computing the strongest affine invariant for nondeterministic affine programs.

Later, Müller-Olm and Seidl showed that for nondeterministic polynomial programs, the
problem of computing the strongest polynomial invariant of bounded degree is decidable,
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even when admitting disequality guards [MS04a]. Note, that in their publication, the
authors do not allow classical if-then-else statements, but rather guarded transitions,
i.e., some transitions can be blocked, but it is not possible to encode a deterministic
choice. Shortly after, the same authors proved that introducing equality guards (again,
for transitions), renders both the problem of invariant-testing a given polynomial and
finding the strongest polynomial invariant of bounded degree undecidable [MS04b], by
a reduction from Post’s Correspondence Problem, which is undecidable [Pos46]. The
reduction is easily adapted to inequality conditions, by noticing that for integer variables
x, y the equality x = y can be encoded as two inequalities 1 > x − y > −1. These insights
show an interesting discrepancy between (in-)equality and disequality.

The problem of finding unbounded polynomial invariants for affine programs has been
the subject of intense research afterward. Works by Rodríguez-Carbonell & Kapur
[RK07] and Kovács [Kov08] provided solutions for restricted classes of nondeterministic
programs. Only recently, it has been shown that the problem is decidable for all affine
programs, but undecidable for nondeterministic polynomial programs [HOPW19]. The
latter proof does not rely on any guarded transitions like the undecidability proof in
[MS04b]. As it turns out, the proof in [HOPW19] can be adapted to show that the
problem is already undecidable when admitting only quadratic updates [VK23], therefore
the realm of decidability ends in between linear and quadratic updates.

We briefly summarize decidability results for strongest invariants in Table 6.1, both for the
deterministic and the nondeterministic case, including our own results from Section 6.5.

Program Model Str. Affine Inv. Str. Poly. Inv.
Single-Path Deterministic, Affine ✓ [Kar76] ✓ [Kov08]
Single-Path Deterministic, Poly. ✓ [MS04a] Skolem-hard Theorem 6.9
Multi-Path Deterministic, Affine ✗ (Halting Problem)
Non-Deterministic, Affine ✓ [Kar76] ✓ [HOPW19]
Non-Deterministic, Polynomial ✓ [MS04a] ✗ [HOPW19]

Table 6.1: Decidability results for strongest invariants. The symbol ’✓’ denotes decidable
problems, while ’✗’ denotes undecidable problems.

6.4 Probabilistic Programs
After introducing related concepts for non-probabilistic programming models, we will
now give a brief overview of the state-of-the-art in the probabilistic world. The term
“invariant” is vastly overloaded with different meanings in the probabilistic context, and
we start by giving an overview of concepts that can be found in the literature.

Existing Concepts. Since probabilistic reasoning is intrinsically uncertain, it has been
noted very early that for efficient computations it is necessary to reason about expected
values, rather than distributions [Koz83, MM05]. These approaches reason about the
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expected value of fixed expressions, with respect to a given probabilistic program, in
a weakest-precondition style of reasoning. In this context, an invariant may be best
described by an expression for which the expected value does not change during a loop
iteration, i.e., a fixpoint of the loop-characteristic function [GKM13]. However, finding
these fixed points is a hard problem and for verification purposes, it may be sufficient to
bound the result. Such upper/lower bounds are in this context called super/sub-invariants
[KKM19, GKM13].

Another style of reasoning, as in [CNZ17], considers an invariant as an expression that is
violated with a bounded probability, i.e., the invariant may not hold in some traces, but
the probability that a violation occurs does not exceed some bound. Yet other authors
consider invariants as expressions whose expected value remains positive throughout the
execution of the program [CS14] or utilize martingale expressions [BEFH16].

Note that the different meanings presented so far are not suited to define the notion of
the strongest invariant for probabilistic programs, as these invariants do not form ideals
or are relative to some expression, while invariants as presented in the previous sections
form ideals and relate all variables.

Another approach that exists in the literature is to reason about moments of program
variables and compute closed form solutions for the moments of program variables, of
bounded degree [BKS19]. This approach can be combined with the ideas presented
in [Kov08] to compute all polynomial relationships between the moments of program
variables. This line of thought is the one most similar to the one presented in the previous
sections, and will be used to define a probabilistic equivalent of (strongest) invariants in
the following sections.

(Strongest) Probabilistic Polynomial Invariants. As in the preceding sections, all
variables x1, . . . xk are assumed to be over the rationals Q, our base field K. To precisely
define the semantics of the expected value operator as used here, we denote variables
with an additional subscript when necessary, i.e., E[x1,n] denotes the expected value of
x1 at the nth loop iteration.

To add randomness to our programming model while still keeping the language simple,
we additionally allow finite, discrete probabilistic choice when assigning a variable. In
symbols, we allow the (tuple) assignment

(x, y, z, . . .) ← (x1, y1, z1, . . .) [p1] (x2, y2, z2, . . .) [p2] . . . (xm, ym, zm, . . .) [pm],

where i pi = 1 and xi, yi, zi, . . . ∈ Q. The semantic of the previous assignment is that
after the instruction, it holds that P(x = xi ∧ y = yi ∧ z = zi ∧ . . .) = pi.

When reasoning about moments of program variables, typically neither E[xℓ] = E[x]ℓ,
nor E[xy] = E[x]E[y] is true. Therefore, any hope to describe all polynomial relationships
among all moments by polynomials over finitely many variables is futile. A natural
restriction is to consider polynomials over the expected value of finitely many monomials,
i.e., expressions of the form xα1

1 xα2
2 · · · xαk

k .
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Definition 15 (Monomials of Bounded Degree). Let ℓ be a positive integer, then the set
of monomials of order less than or equal ℓ is defined as

E≤ℓ := E xα1
1 xα2

2 · · · xαk
k | α1, . . . , αk ≤ ℓ

Remark. The introduction of a single bound ℓ for all monomial powers is for the sake
of simplicity and the framework would allow for more flexibility here.

This definition allows us to define a probabilistic polynomial invariant for probabilistic
loops. In this section, we will restrict ourselves to unbounded loops that allow sampling
from finite, discrete probability distributions, as well as branching. We explicitly exclude
nondeterminism and hence enforce branching conditions. In this sense, an invariant
of order ℓ is a polynomial p ∈ Q E≤ℓ that vanishes over all possible configurations at
the loop head, i.e., ∀n : p E[x1,n], . . . ,E[xℓ

1,n · · · xℓ
k,n] = 0. Note that for simplicity of

presentation, we restrict the location where the invariant must hold to the loop head, to
enforce that it actually holds at every iteration.

The restriction to unbounded loops is crucial here for the following reason. In the
(non-)deterministic setting, a loop condition may terminate a run through the program,
but the termination of a run does not influence the correctness of an invariant. For
illustration, if at the loop head, x − y = 0 always holds, then the relation will hold both
after the loop and at the beginning of the next iteration. However, in the probabilistic
setting this is not necessarily the case. Consider the following example:

x ← 0
while x < 1 do

x ← −1 [1/2] 1
end while

In this example, whenever the loop head is reached, it holds that E[x] = 0. However, the
loop condition terminates some runs through the program and removes some probability
mass, such that the invariant does not hold afterward. Even worse, the relation E[x] = 0
may hold every time the loop head is reached, but it does not hold after termination,
since then certainly x = 1. This illustrates that in the probabilistic case, handling a
loop condition is non-trivial and can be partially solved by implementing “stuttering”
semantics as in [CS14, MSBK22]. Finding invariants that hold at termination is an
interesting topic for future work and could be based on the foundations laid here.

Decidability. It is an interesting question to ask how results from the (non-)deterministic
case transfer to the probabilistic case. We can interpret deterministic programs as a
subclass of probabilistic programs, where for all program variables x and all iterations n,
it holds that E[xn] = xn. Therefore, the strongest probabilistic invariant of degree one
coincides with the strongest deterministic polynomial invariant, since both consist of all
the polynomials over x (resp. E[x]) that vanish over the reachable configurations. This
directly implies, that solving the problem in the probabilistic setting cannot possibly be
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easier than in the deterministic setting. Therefore, the problem of finding the strongest
probabilistic invariant for single-path polynomial loops is Skolem-hard as well, following
from the observation above and Theorem 6.9.

It has been shown, that for single-path, affine programs, the problem of computing
expected values of monomials in closed form is decidable [BKS19]. Once these are
computed, the approach presented in [Kov08] allows us to compute the strongest poly-
nomial invariant over these monomials, leading us to the conclusion that the problem
can be solved for single-path affine loops. Later, it has been shown that as long as all
branching statements are affine and over variables with finite domain, the respective
branching statements can be eliminated and hence the problem is also decidable for
such multi-path affine programs [MSBK22]. This also implies, that the problem for
polynomial programs with branching over finite variables is equally hard as the problem
for polynomial programs without branching, but including probabilistic choice.

This naturally leads to the question of what can be said about multi-path affine programs
with unbounded branching. In the following, we show that [MS04b] can be transformed
from the nondeterministic to the probabilistic case to show that probabilistic branching in
combination with a single guarded assignment leads to undecidability. Interestingly, the
only modification required is to select a successor configuration probabilistically instead
of nondeterminstically.

Lemma 6.3 (Undecidability of Strongest Probabilistic Polynomial Invariant). The
problem of finding the strongest polynomial invariant is undecidable for the class of
probabilistic multi-path affine programs, if branching over (in)equality conditions involving
a variable with infinite domain is allowed.

Proof. The proof is by reduction from Post’s correspondence problem (PCP) and closely
follows the nondeterministic proof from [MS04b]. An PCP instance then consists of a
finite alphabet Σ and a finite set of tuples {(xi, yi) | 1 ≤ i ≤ N, xi, yi ∈ Σ∗}. A solution
to the instance is a sequence of indices (ik), 1 ≤ k ≤ K where each ik ∈ {1, . . . , N} and
it holds that the concatenation of the substrings indexed by the sequence are identical,
in symbols:

xi1 · xi2 · . . . · xiK = yi1 · yi2 · . . . · yiK

Note that the tuple elements may be of different size, and that any instance of the PCP
over a finite alphabet Σ can be equivalently represented over the alphabet {0, 1} by a
binary encoding. It is well known that the PCP is undecidable [Pos46].

Now, given an instance of the (binary) PCP, construct the following affine, probabilistic
program that encodes the binary strings as integers:

x, y, z, t ← 0, 0, 0, 0
while ⋆ do

(kx, ky, ∆x, ∆y) ← 2|x1|, 2|y1|, x1, y1 [1/N] . . . 2|xN |, 2|yN |, xN , yN [1/N]
x ← kxx + ∆x
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y ← kyy + ∆y
z ← x − y
if z = 0 then ▷ 1 > z > −1

t ← 1
end if

end while

The idea is to randomly pick a pair of integer-encoded strings and append them to the
string built so far, by left-shifting the existing bits of the string and adding the randomly
selected string. This program only performs a single unbounded branch.

Now, if the PCP instance does not have a solution, it will hold that ∀n : tn = 0. Hence,
E[t] = 0 is part of the strongest polynomial ideal. In case the PCP instance does have
a solution (ik), 1 ≤ k ≤ K, then after exactly K iterations it holds that P(xK = yK) ≥

1
N

K
, as this is the probability of always “guessing” the right index. As t is an indicator

variable, i.e., t = [x = y], it holds that E[tn] = P (tn = 1) = P (xn = yn) ≥ 1
N

K ≥ 0.
Hence, E[tn] ̸= 0 in iteration n and, we conclude that it is not part of the strongest
polynomial invariant.

From this reduction, we conclude that the PCP instance has a solution, if and only if the
polynomial relation E[t] = 0 is part of the strongest polynomial ideal. As checking the
ideal membership of a polynomial is a decidable problem, see Lemma 6.2, we conclude
that computing the strongest polynomial invariant for the given class of programs is
undecidable.

Note that the proof requires only affine assignments and affine invariants, implying the
undecidability also for polynomial programs and invariants.

The question remains what can be stated about the polynomial case with
restricted branching, and whether the proof for nondeterministic programs from
[HOPW19] can be adapted.

The proof in [HOPW19] reduces the Boundedness problem for Reset Vector Addition
System with States (VASS) to the problem of finding the strongest (deterministic)
polynomial invariant. In a Reset VASS, the system may change between a finite set of
locations and any transition may increment, decrement or reset a vector of unbounded,
non-negative variables. Most importantly, a transition can only be executed if no zero-
valued variable is decremented, which implies that all variables must be non-negative at
all times. The Boundedness Problem for Reset VASS asks whether, given a reset VASS
and a specific location, does it hold that the set of reachable vector valuations is finite.
This problem in known to be undecidable [DFS98].

In the reduction, an arbitrary Reset VASS V over n variables a1, . . . , an is simulated
by a nondeterministic polynomial program P over n + 1 variables b0, . . . bn. Note that
the programming model is purely nondeterministic, i.e., without equality guards, since
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introducing them would render the problem immediately undecidable [MS04b]. To avoid
zero-testing the variables before executing a transition, the crucial point in the reduction
is to map all invalid traces to the all-zero vector and faithfully simulate all valid executions.
By properties of the reduction, it holds that the configuration (b0, . . . , bn) is reachable
in P, if and only if there exists a corresponding configuration 1/b0 · (b1, . . . , bn) in V.
Essential to the reduction is, that even though there may be multiple configurations in P
for each configuration in V , all these configurations are only scaled by the factor b0 and
hence collinear. By collinearity, the variety of the invariant ideal can be covered by a
finite set of lines if and only if the set of reachable VASS configurations is finite. Testing
this property is decidable, and hence finding the invariant ideal must be undecidable.

Motivated by the successful transfer of the proof for unbounded branching from the
nondeterministic to the probabilistic setting in Lemma 6.3, a self-suggesting idea would
be to try to do the same for the proof in [HOPW19] and replace nondeterministic choice
by probabilistic choice. However, transferring this proof to the probabilistic world poses
considerable problems. The main issue is, that in the nondeterministic setting any trace
is independent of all other traces, while this does not hold in the probabilistic setting.
The expected value operator E[xn] aggregates all possible valuations of x in iteration n
across all possible paths through the program. Specifically, the expected value will be a
linear combination of the possible configurations of V, which is not necessarily limited
to a collection of lines but may span a higher-dimensional subspace. This is the point
where a reduction similar in spirit would fail.

At this point, it has to be noted how well-suited the Boundedness Problem for Reset VASS
is for this reduction, since the model is not powerful enough to determine if a variable
is zero, yet the problem is still undecidable. The vast majority of other undecidable
problems that may be used in a reduction are formulated in terms of counter-machines,
Turing machines or other automata that rely on explicitly determining if a given variable
is zero, barring a straight-forward simulation Therefore, it seems that proving decidability
or undecidability of the probabilistic variant requires a new methodology that is outside
the scope of this thesis.

To conclude this section on strongest invariants, we report the current state-of-the-art
for probabilistic invariants in Table 6.2, including our own results (Theorem 6.9 and
Lemma 6.3).

Program Model Str. Invariant
Single-Path Prob., Affine ✓ [BKS19]
Single-Path Prob., Polynomial Skolem-hard Theorem 6.9
Multi-Path Prob., Unbounded ✗ Lemma 6.3
Multi-Path Prob., Bounded, Affine ✓ [MSBK22]

Table 6.2: Decidability results for strongest probabilistic invariants. The symbol ’✓’ de-
notes decidable problems, while ’✗’ denotes undecidable problems and unsolved problems
are marked with ’?’.
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6.5 Skolem-Hardness of Strongest Invariant for
Single-Path Polynomial Loops

As mentioned in Section 6.2, there are no existing results on the decidability of finding
the strongest invariant for single-path polynomial loops. We will refer to this problem as
SPInv:

The SPInv Problem: Given a single-path polynomial loop, compute a basis of its
strongest polynomial ideal.

The main result of this section, presented in Theorem 6.9, is that SPInv it at least
as hard as Skolem, in symbols Skolem ≤ SPInv. This implies, that proving the
computability of SPInv would be equivalent to proving decidability of Skolem, a major
unsolved problem of number theory [EvdPSW03, Tao08].
This result has immediate impact on probabilistic loop analysis, as it formally proves that
characterizing the relationship of variables in probabilistic programs is a hard problem.
Moreover, it shows that inclusion of non-affine arithmetic in the programming model
makes the task of analysis and inference much more difficult.
Given an instance of Skolem, we will say that the instance is positive, if there exists
some index such that the sequence described by the linear recurrence is zero at this index
and negative otherwise.

Outline of the proof. Given an instance of Skolem, we construct an instance of
SPInv that has finitely many configurations if and only if the instance of Skolem
is positive (Corollary 6.7). It turns out, that if a program has only finitely many
configurations, then the variety of the invariant ideal is finite as well (Lemma 6.8). As the
problem of determining whether an affine variety is finite is decidable, using an oracle for
SPInv, we could decide whether an arbitrary instance of Skolem is positive or negative.
Consider an instance of Skolem of order k, i.e., a sequence u(n), n ∈ N0 and coefficients
a0, . . . ak−1 ∈ Z with a0 ̸= 0 such that

u(n+k) = ak−1u(n+k−1) + . . . + a1u(n+1) + a0u(n) =
k−1

i=0
ai · u(n+i) (n ≥ 0)

Together with the initial values u(0), . . . , u(k−1), the coefficients uniquely specify the
sequence u(n).
For the reduction, we construct a loop over 2k variables, namely x0, . . . , xk−1 and
s0, . . . , sk−1, such that the ratio x0(n)

s0(n) equals the sequence values u(n). To initialize these
variables, let us inductively define the constant values x̂i and ŝi, where 0 ≤ i < k and
ŝ0 := 1 and x̂0 := u(0). Further, to define ŝi and x̂i, assume that for all 0 ≤ ℓ < i, ŝℓ and
x̂ℓ have been initialized and set

ŝi :=
i−1

ℓ=0
(2x̂ℓ) x̂i := u(i) · ŝi.
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From the Skolem instance, we construct the single-path polynomial loop shown in
Figure 6.1. Intuitively, the xi variables are a non-linear variant of the sequence u(n)
that, once they reach 0, remain 0 forever. To make sure that the program has finitely
many configurations if and only if the sequence u(n) has a zero, we use the other set of
variables si. As xi, once some variable si reaches zero, it remains zero forever. However,
in case u(n) does not have a zero, then the values of si at least double in each iteration,
ensuring infinitely many configurations.

x0 s0 . . . xk−1 sk−1 ← x̂0 ŝ0 . . . x̂k−1 ŝk−1
while ⋆ do

x0
s0
...

xk−2
sk−2
xk−1
sk−1


←



x1
s1
...

xk−1
sk−1

k−1
i=0 ai · xi · k−1

ℓ=i (2xℓ)
2 · xk−1 · sk−1


end while

Figure 6.1: The program constructed in the reduction from Skolem to SPInv.

We now prove the main property of the reduction.

Lemma 6.4. For the SPInv instance in Figure 6.1, it holds that ∀n ≥ 0 and 0 ≤ i < k:

xi(n) = si(n) · u(n + i) (6.1)

si(n) =
n−1

ℓ=0
(2x0(ℓ)) ·

i−1

ℓ=0
(2xℓ(n)) (6.2)

Proof. We will prove these properties by well-founded induction on the lexicographic
order (n, i), where n ≥ 0 and 0 ≤ i < k. Here, (n, i) ≤ (n′, i′) if and only if n < n′ or
n = n′ ∧ i < i′. The order has the unique least element (0, 0).

Base Case: n = 0. Assume i = 0, then it is easy to see that (6.1) and (6.2) hold, by
definition of ŝ0 := 1 = −1

ℓ=0(2x0(ℓ)) · −1
ℓ=0(2xℓ(0)) and x̂0 := u(0) = s0(0) · u(0).

To see that (6.1) holds for 0 < i < k, note that the initial values satisfy the equation by
definition, as xi(0) = x̂i := u(i) · ŝi = u(i) · si(0).

For (6.2), this follows from the definition as well, since

si(0) = ŝi :=
i−1

ℓ=0
(2x̂ℓ) =

i−1

ℓ=0
(2xℓ(0)).
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Induction Step - Case 1: n > 0 ∧ 0 ≤ i < k − 1. By the lexicographical ordering,
(n, i + 1) < (n + 1, i), hence we may assume that (6.1) and (6.2) hold for (n, i + 1), i.e.,

xi+1(n) = si+1(n) · u(n + i + 1) (6.3)

si+1(n) =
n−1

ℓ=0
(2x0(ℓ)) ·

i

ℓ=0
(2xℓ(n)) (6.4)

To prove (6.1) for n + 1, we are required to show that

xi(n + 1) = si(n + 1) · u(n + i + 1)

From the assignments in the program, we conclude that xi(n+1) = xi+1(n) and si(n+1) =
si+1(n) and hence the desired relation follows directly from (6.3).

To show that (6.2) holds, we need to prove that

si(n + 1) =
n

ℓ=0
(2x0(ℓ)) ·

i−1

ℓ=0
(2xℓ(n + 1))

This is done by instantiating (6.4), then performing index manipulation and using the
relations xi(n+1) = xi+1(n) and si(n+1) = si+1(n):

si(n + 1) = si+1(n) =
n−1

ℓ=0
(2x0(ℓ)) ·

i

ℓ=0
(2xℓ(n))

=
n−1

ℓ=0
(2x0(ℓ)) · 2x0(n) ·

i−1

ℓ=0
(2xℓ+1(n))

=
n

ℓ=0
(2x0(ℓ)) ·

i−1

ℓ=0
(2xℓ(n + 1))

Induction Step - Case 2: (n > 0 and i = k − 1). We will show that (6.1) holds
by directly proving equivalence to the assignment in the program. To do so, we first
write down the desired relation and replace sk−1(n+1) by the assigned value and replace
u(n+k) by the recurrence relation.

xk−1(n+1) = sk−1(n+1) · u(n+k)

= 2 · sk−1(n) · xk−1(n) ·
k−1

i=0
ai · u(n+i)
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Next, we rearrange and apply the induction hypothesis (6.2) for (n, k − 1) and (n, i), to
obtain:

xk−1(n+1) = 2 · xk−1(n) ·
k−1

i=0
ai · u(n+i) · sk−1(n)

= 2 · xk−1(n) ·




k−1

i=0
ai · u(n+i) ·

n−1

ℓ=0
(2x0(ℓ)) ·

k−2

ℓ=0
(2xℓ(n))

sk−1(n) by (6.2)





= 2 · xk−1(n) ·




k−1

i=0
ai · u(n+i) ·

n−1

ℓ=0
(2x0(ℓ)) ·

i−1

ℓ=0
(2xℓ(n))

=si(n) by (6.2)

·
k−2

ℓ=i

(2xℓ(n))




= 2 · xk−1(n) ·

k−1

i=0
ai · u(n+i) · si(n) ·

k−2

ℓ=i

(2xℓ(n))

=
k−1

i=0
ai · u(n+i) · si(n) ·

k−1

ℓ=i

(2xℓ(n))

It is now possible to apply the induction hypothesis (6.1) to replace u(n+i) · si(n) with
xi(n) and arrive at the relation:

xk−1(n+1) =
k−1

i=0
ai · xi(n) ·

k−1

ℓ=i

(2xℓ(n))

This is exactly the assignment in the constructed program, hence we conclude that the
claim holds.

To prove (6.2) is done by using the assignment and the induction hypothesis for (n, k − 1).

sk−1(n + 1) = 2 · sk−1(n) · xk−1(n) = 2 · xk−1(n) ·
n−1

ℓ=0
(2x0(ℓ)) ·

k−2

ℓ=0
(2xℓ(n))

=
n−1

ℓ=0
(2x0(ℓ)) ·

k−1

ℓ=0
(2xℓ(n))

=
n−1

ℓ=0
(2x0(ℓ)) · 2 · x0(n) ·

k−2

ℓ=0
(2xℓ+1(n))

=
n

ℓ=0
(2x0(ℓ)) ·

k−2

ℓ=0
(2xℓ(n + 1))

As we have closed all the cases, this concludes the proof of the lemma.
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From Lemma 6.4, we are now able to derive two crucial properties of the reduction, that
relate the number of program configurations to the Skolem problem.

Lemma 6.5. If the Skolem instance is positive, then the SPInv instance in Figure 6.1
has only finitely many configurations.

Proof. As the instance of Skolem is positive by assumption, the respective sequence has
at least one zero, hence there is some smallest N ∈ N0 such that u(N) = 0. From (6.1)
of Lemma 6.4, we infer

x0(N) = s0(N) · u(N) = 0

By using this equation and (6.2), we see that for n > N , each si contains x0(N) as a
factor and is hence zero.

Therefore, all values of si(n), n > N are zero. Additionally, as xi(n) = si(n) · u(n + i)
by (6.1), we conclude that for all n > N , it holds that xi(n) = si(n) = 0. As N is
finite, there are only finitely many configurations before all program variables remain
zero forever.

Lemma 6.6. If the Skolem instance is negative, then the SPInv instance in Figure 6.1
has infinitely many configurations.

Proof. By assumption, the sequence specified by the Skolem problem does not have a
zero, i.e., for all n ≥ 0, u(n) ̸= 0. As we consider integer sequences u(n) and only perform
integer operations, we have that xi(n) ∈ Z and hence |2xi(n)| > 1. For now assume that
xi(n) does not have a zero, then by the assignment sk−1 ← 2 · sk−1 · xk−1, the absolute
value of sk−1 will strictly increase in each iteration, hence there must be infinitely many
configurations.

It is left to show that xi(n) ̸= 0 and si(n) ̸= 0 for all n. We prove this by induction and
by using Lemma 6.4.

Base Case: n = 0. Then s0(0) = ŝ0 := 1 and x0(0) = x̂0 := u(0), which is non-zero
by assumption. Now assume xℓ(0) > 0 and sℓ(0) > 0 for ℓ < i, then xi(0) > 0 and
si(0) > 0 by the reason following. We have si(0) = ŝi := i−1

ℓ=0(2x̂ℓ) and this is non-zero,
as x̂ℓ = xℓ(0) ̸= 0. Additionally, xi(0) = x̂i := ŝi · u(i), which are both non-zero. Hence,
we conclude that for all 0 ≤ i < k, si(0) ̸= 0 and xi(0) ̸= 0.

Induction Step: n > 0. By the induction hypothesis, xi(n) ̸= 0 and si(n) ̸= 0 for all
0 ≤ i < k. Now if 0 ≤ i < k−1, then si(n+1) = si+1(n) ̸= 0 and xi(n+1) = xi+1(n) ̸= 0,
hence only the case i = k − 1 is left.

By the assignment in the program, sk−1(n + 1) = 2 · xk−1(n) · sk−1(n), and by the
induction hypothesis, both factors are non-zero, hence sk−1(n) ̸= 0. By (6.1), xk−1(n) =
sk−1(n) · u(n + i), and by assumption u(n + i) ̸= 0, hence xk−1(n) ̸= 0.
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6. Strongest Polynomial Invariant for Probabilistic Loops

We combine the previous two lemmas into a corollary:

Corollary 6.7. The SPInv instance from Figure 6.1 has finitely many configurations if
and only if the Skolem instance is positive.

We now proceed to the final intermediate lemma of the proof, which asserts that the
Zariski closure of a finite set is still finite.

Lemma 6.8. Let K be a field and let S ⊂ Kk be a set of points, then the Zariski closure
V(I(S)) of S is finite if and only if S is finite.

Proof. The Zariski closure V(I(S)) is the smallest set that contains S, and is affine, that
is, it can be written as the set of common roots of a polynomial ideal I. Now if the set S
is infinite, then any set containing it is trivially infinite. To show that the closure is finite
in case the set is finite, note that for any point s = (s1, . . . , sk) ∈ S, we can construct
the polynomial ideal Is = ⟨x1 − s1, . . . , xk − sk⟩ over K[x1, . . . , xk] that has V(Is) = {s}.
As the finite union of affine varieties is an affine variety, we conclude that V(I(S)) = S,
which is finite by assumption.

We now see, that the dimension of the Zariski closure of the program configurations
relates to the solution of the Skolem problem. The following theorem puts together the
previous insights:

Theorem 6.9. SPInv is Skolem-hard, that is, under the assumption that SPInv is
computable, the Skolem problem is decidable (Skolem ≤ SPInv).

Proof. Given an instance of the Skolem problem, by Corollary 6.7, we can construct an
instance of SPInv, i.e., a single-path polynomial loop, that has finitely many configura-
tions if and only if the Skolem instance is positive. By Lemma 6.8, we conclude that
this relation does not only hold for the set of configurations, but also its Zariski closure.

Assuming we could solve SPInv, giving us a basis of the strongest polynomial ideal I,
then the variety V(I) is finite if and only if the original instance of Skolem is positive. As
the problem of deciding the finiteness of an affine variety is decidable [CLO97, Chapter 5,
§3, Theorem 6], we close the proof.
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CHAPTER 7
Related Work

At the very heart of probabilistic programming lies the tasks of characterizing the
underlying distribution and performing inference to account for observations. As these
problems are intrinsically hard, there have been various approaches that try to solve
these problems, offering different tradeoffs between performance and approximate results.
The different existing approaches can be roughly partitioned into two sets, one being
exact program analysis-based methods, while the other one consists of approximate,
sampling-based methods. In this chapter, we first provide an overview of existing program
analysis-based methods (Section 7.1), followed by a review of sampling-based methods
(Section 7.2). Finally, we summarize the state-of-the-art in probabilistic program analysis,
with special emphasis on loops (Section 7.3).

7.1 Program Analysis-Based Methods
7.1.1 Foundations and Calculi-Based Methods
The very foundation of probabilistic programming has been laid in the seminal work of
Kozen [Koz79], where he introduced probabilistic programming and presented semantics.
Shortly after, Kozen also presented means to verify probabilistic programs in the style
of Dijkstra’s weakest precondition calculus [Koz83]. Crucially, the framework chosen by
Kozen does not reason about distributions, but over the expected value of measurable
functions. This line of research has been further advanced by McIver and Morgan,
who deepened the relation to Dijkstra’s calculus and introduced nondeterminism in the
probabilistic programming landscape [MM05]. Moreover, the work of [OGJ+18] showed
how to incorporate conditioning into such calculi.

In principle, this framework is able to verify all types of probabilistic programs. However,
the main limitation lies in the verification of loops, as it requires a fixpoint computation
[Mor96, OGJ+18]. Computing this fixpoint is undecidable in general, and even worse,
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already finding sufficiently strong bounds for verification purposes is undecidable [KKM19].
Even though there has been some work regarding automated analysis, existing methods
either rely on program templates [GKM13, FZJ+17], or are restricted to specially-shaped
loops [BKS19].

Another recent approach uses generating functions to represent probability distributions
and reason about them using program transformers [KBK+20]. Nevertheless, for loop
analysis their approach also requires manual guidance, akin to loop invariants.

7.1.2 Path-Exploration-Based Methods

In case a probabilistic program only has finitely many possible executions, it is appar-
ent that path enumeration is a feasible strategy to extract the modelled probability
distribution. In [GDV12], the authors consider loop-free programs with linear integer
arithmetic in combination with discrete, uniform distributions. By restricting itself to
linear programs and conditionals, the program actually describes a collection of convex
polyhedra in a higher dimensional space. As only discrete, uniform distributions are
contained in their model, the probability mass is uniformly distributed, hence computing
the probability of an event can be reduced to a simpler model counting problem.

However, in probabilistic program verification, it may be sufficient to assert that a given
propositional formula holds with a certain probability, which can be often be achieved by
considering finitely many paths in which enough probability mass is concentrated. In
[FPV13], the authors thus extend the previous approach by allowing loops, where they
avoid enumerating all paths by considering a finite subset of control paths. Consequently,
they can bound the probability that a certain assertion will hold at termination. The
restriction to discrete, uniform distributions is lifted in [SCG13], at the price of increased
complexity when computing the probability mass inside the polyhedra, which may require
approximate techniques.

Another proposed approach is to directly track the (joint) probability distribution as
it is modified step-by-step by the program. When allowing arbitrary distributions,
the disadvantage here is that the resulting computations may become complex and
no complete treatment can be guaranteed. The techniques employing this technique
therefore may return unevaluated integrals [GMV16] or resort to approximate Markov
chain Monte Carlo (MCMC) techniques [NCR+16], where both tools are restricted to
finitely many paths through the program.

In traditional program verification, symbolic techniques had a major impact, by utilizing
symmetries within the model. Similarly, for discrete programs, it is advantageous to
represent the distribution symbolically, by using a data structure similar to a BDD
[CRN+13]. This work provides complete treatment for loop-free programs, while for loop
analysis, a fixpoint computation may be necessary. As no termination guarantee can be
given, in practice the fixpoint computation is truncated after the distribution does not
significantly change anymore.
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7.1.3 Knowledge Compilation-Based Methods

A commonly used approach to computationally hard problems is given by knowledge com-
pilation [DM02]. By compiling a model into an intermediate representation, subsequent
computations “queries” can be performed more efficiently. Typically, the computational
overhead of intermediate compilation is especially beneficial in case the same model is
queried multiple times. Depending on the nature of possible queries, different represen-
tations have different advantages, as shown in [DM02, KdBR12]. However, note that
different restrictions must be placed on the original program such that it can be compiled
into a fixed representation.

Weighted Model Counting. Already for Bayesian networks, weighted model count-
ing has been successfully utilized [CD08]. This approach has also proved fruitful for
probabilistic programs [FdBT+12]. In particular, a discrete probabilistic model with
finite domain can be compiled into a conjunctive normal form (CNF) formula and a
weight function. Then each model of the formula is assigned a weight that provides
information about the probability of some query. The burden of probabilistic analysis is
hence reduced to the problem of enumerating models of a CNF formula and evaluating
the weight function, which can be done by utilizing today’s powerful SAT solvers or
compiling into more powerful representations such as BDDs. However, this technique is
inherently exclusively applicable to discrete domains.

Recently, it has been proposed to compile a probabilistic program into two BDDs, one
modelling the program, one modelling observations [HVM20]. This allows very efficient
inference, at the price of restricting itself to finite state spaces and the limitation to
statically bounded loops.

Weighted Model Integration. A natural generalization to continuous domains is
not to count discrete models, but to integrate over continuous regions of the probability
space, often called weighted model integration or weighted volume computation. The idea
is to assign each variable a weight function and a set of constraints, which define a region
and a density in the probability space [CDM14, BPdB15, ZdB19, ADDN17, MDR19,
KMS+18]. Commonly, constraints are formulated in linear real arithmetic and such that
the resulting regions in the probability space are convex polyhedra. Explicitly finding
(or approximating) the polyhedra is a model counting problem, and typically left to an
satisfiability modulo theory (SMT) solver. However, integrating the volume of arbitrary
polyhedra is #P-hard and probabilistic inference over the reals is #P-complete already
in loop-free programs [CDM14].

It has also been noted, that sum-product expressions are well suited for efficient inference
[SG12, SRM21]. However, to guarantee that such a representation is always possible,
the programming model includes a limitation to statically bounded loops and requires
branches of a conditional statement to have the same structure, i.e., branches may only
deviate in expressions assigned to variables, but not in control flow.
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7.1.4 Approximate Symbolic Methods
To offer more flexibility, some proposed techniques perform analysis by partitioning the
state-space into finitely many intervals, which then are assigned a discrete probability
[HDM21, BOZ22]. These methods are not exact, but provide convergence guarantees in
the sense that for infinitely many intervals the distribution on intervals converges towards
the exact distribution. Such techniques may provide a further compromise between
sampling-based methods, presented below, and exact methods from program analysis.

7.2 Operational Analysis
Loosely similar to the wave-particle duality in physics, a probabilistic program offers
two perspectives. Probabilistic programs are used to create a model and can be viewed
as such, but at the same time, they are programs in the traditional sense. Therefore, a
probabilistic program can be executed just like a traditional program, where random
number generators are used for draws from probability distributions. Therefore, some
concrete trace is sampled from the full space of possible executions. It has to be stressed,
that in any concrete trace, a variable does here hold some value, while from the model
perspective, a variable always holds a distribution.

Nevertheless, the collection of all concrete traces through the program completely specifies
the distribution of the model, as each possible trace has a certain result and some
probability. By exploring all possible paths through the program, it is thus possible
to compute the exact distribution of the model. However, as the number of paths
through a program is often immense (or even infinite), this becomes quickly impractical
[GS14]. Therefore, all practical sampling-based approaches resort to approximations and
extrapolate from a finite number of samples.

7.2.1 Importance Sampling
A simple and conceptually appealing idea is to run the probabilistic program a fixed
number of times, and then use the resulting samples to characterize the expected value
of some function under the posterior distribution. This can be done by assigning a weight
to each execution, intuitively corresponding to its probability, and then approximating
the expected value as a weighted average [CL08, vdMPYW18]. A natural and commonly
used choice for the weight function is the likelihood function, in which case importance
sampling is also known as likelihood weighting.

However, one crucial issue remains; the problem of taking enough samples to achieve
satisfactory coverage. To provide a useful approximation of the posterior, it may be
that the number of necessary samples is prohibitively high, and that a large fraction of
samples is taken in uninteresting regions of the probability space, as it is hard to tell
where the function of interest has high probability density. To avoid this odyssey in the
probability space, several techniques have been proposed, where the most well-known
one is presented in the following section.
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7.2.2 Markov Chain Monte Carlo

To avoid the unguided wandering of the sampling process in the probability space and
hence reduce the number of necessary samples, it is desirable to specifically sample from
regions with high probability density under the posterior. However, how to take samples
from high probability regions in an unknown distribution is not obvious, to say the least.
Astonishingly, this is nevertheless possible by a powerful approach known as Markov
Chain Monte Carlo [vdMPYW18, CL08, Bet17].

The key idea is to construct a Markov chain that has the posterior distribution as its
stationary distribution, and therefore, by traversing the Markov chain, high probability
regions in the probability space are sampled. The main task left is to construct a Markov
kernel, such that the resulting Markov chain actually has the posterior distribution as its
stationary distribution.

Various approaches have been suggested, such as Gibbs sampling or its generalization
Metropolis-Hastings sampling [vdMPYW18, CL08, Bet17]. These approaches have been
successfully deployed in an impressive amount of real-world software, such as the influential
Bayesian inference using Gibbs sampling (BUGS) family [LSTB09].

Some practical issue are, that it is hard to tell if the Markov chain has traversed sufficient
portions of the state-space and that the Markov chain requires some time to converge
towards the stationary distribution [Bet17]. As probabilistic models have become more
complex, convergence speed has become an issue, especially as it is very hard to tell how
long the Markov chain takes until converging.

One recent improvement is Hamiltonian Monte Carlo (HMC) and especially the No
U-Turn Sampler (NUTS), which are MCMC instantiations that provide improved conver-
gence properties and are at the heart of today’s MCMCs inference systems, such as Stan
[CGH+17] and PyMC [SWF15]. However, these require differentiable models, as they
depend also on the gradient of the posterior, which is especially problematic for discrete
models [Bet17, CL08].

7.2.3 Variational Inference

In contrast to MCMC, which tries to synthesize a distribution solely out of the model,
methods based on variational inference (VI) additionally assume some template, more
specifically a parameterized distribution, and tune the parameters of the distribution to
fit the posterior as well as possible.

In expectation propagation as used by e.g., Infer.NET [MWG+18], the tuning step is done
by iteratively minimizing the Kullback–Leibler (KL)-divergence between the posterior
and the proposal distribution, in the hope that this process converges [Min01]. Simi-
lar VI methods generalize this and allow the proposal distribution to be a product of
multiple distributions, which allows more flexibility at the price of increased complexity
[vdMPYW18, CL08]. One popular approach is to fit the distribution by minimizing
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the gradient of the KL-divergence. To minimize this gradient, automatic differentia-
tion is a powerful tool and automatic differentiation variational inference (ADVI) is a
powerful and recent approach implemented in state-of-the-art tools as an alternative to
MCMC [KTR+16, CGH+17, SWF15]. However, as HMC this requires the model to be
differentiable, which is especially problematic for discrete models.

7.3 The State of Probabilistic Loop Analysis
In general, there is no approach that can handle arbitrary probabilistic loops, since there
is not even an approach that can handle arbitrary deterministic loops.

The work of [SCG13] and [FPV13] in some sense allow approximate inference on loops,
by increasing the number of iterations to analyze, but cannot provide a complete charac-
terization in general. In the work of [CRN+13], a single iteration of the loop is peeled-off
until a fixpoint is (approximately) reached, however no convergence guarantees exist.
Finally, the works of [SG12] and [CMS22] consider recursive programs over finite domains,
which allows them to build finite equation systems over method calls. However, the
resulting equation systems may be very large and are not guaranteed to be efficiently, let
alone exactly, solvable.

One approach that focuses solely on potentially unbounded probabilistic loops is presented
in [MSBK22], where a program is considered as describing a recurrence relation over
the moments of program variables. If these recurrence relations can be solved, i.e., if
the recurrences are linear, then arbitrary moments can be computed. However, severe
restrictions are based on variables influencing the control flow and the programming
model lacks observe-statements.

Calculus-based approaches such as [Koz83, Mor96, MM05, OGJ+18] can theoretically
perform inference on arbitrary probabilistic programs, however they are severely limited
by the necessity to compute fixed points or come up with appropriate loop invariants,
which is unfortunately undecidable [KKM19].

Sampling based approaches can handle loops in principle, but the probability of long-
running executions may be close to zero, hence MCMC or VI techniques may require very
long time to explore these possibilities. Additionally, for MCMC techniques convergence
remains an issue, while for HMC and ADVI the parameter is assumed to be differentiable,
which poses an issue for discrete parameters. We note that these techniques have their
strengths and shortcomings, but are tools that complement each other when estimating
the posterior distribution [BKM17] based on operational inference. However, all of them
are approximate rather than exact.
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CHAPTER 8
Conclusion

The analysis of probabilistic programs is a challenging and complex undertaking, however,
equally rewarding at the same time, as it is a topic of extraordinary elegance and
importance. For, it gives a natural way to model and analyze probabilistic processes and,
at the same time, is able to bring domain knowledge to machine learning.

This thesis investigates the extraction of distributions modelled by probabilistic programs,
with the ultimate goal of enabling (Bayesian) inference. As program verification is a
notoriously hard undertaking, with constantly present undecidability issues, the problem
requires creative approaches. We investigated a variety of techniques suited to the
analysis of probabilistic programs, including a direct analysis based on the Markov chain
semantics, distribution recovery based on moments over program variables, analytic
methods utilizing properties of distributions, a type system and invariant techniques.

More specifically, in Chapter 3, we provided a comprehensive method for finite-state
programs and implemented it in the new tool Blizzard. As the benchmarks show, the
approach is competitive with existing works, e.g., in [GMV16, HVM20].

To allow analysis of another program class, we investigated the recovery of discrete distri-
butions from finitely many moments in Chapter 4. This allows recovery of distributions
for infinite-state programs where the variables of interest have finite support.

In order to analyze specifically infinite-state programs, in Sections 5.1-5.2 we present a
class of programs, where probabilistic loops can be replaced by an equivalent, loop-free
program. This considerably simplifies both analysis and inference, for exact as well
as approximate techniques. Additionally, in Section 5.3, we developed a type system,
utilizing relations among probability distributions, to identify the distribution of variables
by a type-checking approach.

Finally, in Chapter 6, we investigate the hardness of probabilistic program analysis and
what makes it difficult, by studying the problem of invariant synthesis. We present non-
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probabilistic invariant techniques and research the applicability of those techniques in the
probabilistic setting. At the same time, we extended the state-of-the-art for deterministic
programs by proving that the open problem of finding the strongest polynomial invariant
for a single-path polynomial loop is harder than the Skolem problem, a major unsolved
problem in number theory.

The solutions presented in this thesis advance the current state-of-the-art by enabling
exact program analysis for specific classes of probabilistic programs. These insights can
be used to efficiently perform inference for probabilistic programs. We illustrate inference
for probabilistic programs in the following section.

8.1 Performing Inference for Probabilistic Programs
Consider the bounded random walk from Example 3, where the values of x after termi-
nation specify the random variable X. This program can be analyzed fully automati-
cally using Blizzard, as shown in Chapter 3, where we obtain the likelihood function
P(X = x | p) in dependence of the symbolic parameter p. Now assume, that we observed
the following concrete outcomes of the modelled process:

Trial i 1 2 3 4 5 6 7 8 9 10
Outcome x̂i -1 10 0 10 10 0 12 11 11 0

Table 8.1: Observed outcomes of the process modelled in Example 3.

The task of inference is to now use the data in Table 8.1 and conclude probable values
for the parameter p. There are two major paradigms to perform inference, frequentist
and Bayesian, and we will illustrate one method of each paradigm.

Frequentist inference - Maximum likelihood estimator. The maximum likelihood
estimator computes the value of p that maximizes the probability that the observed
values in Table 8.1 are sampled from the stochastic process modelled in Example 3.
The likelihood function L(p) is defined as the probability that the observed values are
produced, and for independent observations, can be computed as the product over the
likelihoods of the individual observations. For the observations in Table 8.1, the likelihood
function is shown in Figure 8.1.

L(p) :=
10

i=1
P(X = x̂i | p)

Then the maximum likelihood estimator is defined as the value p̂, that maximizes the
likelihood function, in symbols

p̂ = arg max
p

L(p)
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Figure 8.1: The likelihood function L(p) for the observations in Table 8.1.

As we obtained closed-form solutions for the likelihood functions P(X = x̂i) in Chapter 3,
we can now compute p̂ by using a CAS. For our observations, we compute p̂ = 0.5856 as
the most likely value of p.

Bayesian inference. In contrast to frequentist statistics, Bayesian statistics model a
belief about the parameter and assign each possible parameter value some probability. In
the presence of observations, the belief is updated using Bayes’ theorem (Theorem 2.1).

For the bounded random walk of Example 3, we assume that all values of p are equally
probable and use a uniform distribution as prior, i.e., f(p) = [0 ≤ p ≤ 1], where [·] is the
Iverson bracket, which is 1 in case · is true, and 0 otherwise.

In the presence of observations x̂, we then update the prior f(p) and obtain the posterior
f(p | x̂) according to Bayes’ theorem:

f(p | x̂) = f(x̂ | p)f(p)
f(x̂)

Here, f(x̂) is the marginal likelihood, where p is marginalized out, in symbols

f(x̂) =
p

f(x̂ | p)f(p) dp.

After observing x̂1 = −1, we therefore update the prior as follows and obtain the posterior
plotted in Figure 8.2. It can be noted, that the belief about p shifts towards the lower end
of the scale, as we observed that the random walk drifted towards the origin, indicating
a small value of p.

f(p | x̂1) = P(X = −1 | p) [0 ≤ p ≤ 1]
p P(X = −1 | p) [0 ≤ p ≤ 1] dp

= 9.54 P(X = −1 | p) [0 ≤ p ≤ 1]

75



8. Conclusion
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Figure 8.2: The prior f(p) and the posterior f(p | x̂1) after application of Bayes’ theorem.

Due to the choice of the uniform prior, the final posterior after repeated application of
Bayes’ theorem is directly proportional to the likelihood function L(p) in Figure 8.1.

Note that both inference paradigms can be performed immediately and without further
obstacles, once the distribution of X is computed, the problem addressed by this thesis.

8.2 Future Work
There are several interesting avenues to extend this thesis. It would be very interesting
to investigate approximate techniques, both in the context of distribution recovery and
in the context of infinite state loops.

More specifically, as mentioned in Chapter 4, there is a plethora of existing work on the
moment problem, e.g., see [Sch17]. It would be interesting to (approximately) recover
distributions that are not necessarily over a finite support given their moments. Moreover,
it would be interesting to investigate which restrictions can be placed on probabilistic
programs such that distribution recovery from moments is feasible.

Also, for infinite state loops, it may be possible to approximate the distribution of
summation variables by the normal distribution, under the assumption that the loop
body is executed sufficiently often. The well known central-limit theorem of probability
theory then guarantees, that under rather mild conditions, the sum of random variables
converges towards a normal distribution. However, the central-limit theorem only refers
to the cumulative density, not the probability density, therefore additional conditions are
necessary to guarantee the convergence [Bry96].

Another promising research area is the relation of martingales and affine invariants of
probabilistic loops. Especially interesting is whether invariant techniques can be used to
synthesize martingales for probabilistic loops. This is particularly interesting, as Doob’s
optional stopping time theorem would then provide some leverage over probabilistic
while-loops with loop guards, i.e., it would allow reasoning about the distribution of
programs that have a complex stopping criterion.
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Acronyms

ADVI automatic differentiation variational inference. 72

BDD binary decision diagram. 20, 24, 68, 69

BUGS Bayesian inference using Gibbs sampling. 71

CAS computer algebra system. 19, 20, 24, 75

CNF conjunctive normal form. 69

HMC Hamiltonian Monte Carlo. 71, 72

KL Kullback–Leibler. 71, 72

MCMC Markov chain Monte Carlo. 68, 71, 72

MGF moment-generating function. 46, 47

NUTS No U-Turn Sampler. 71

PCP Post’s correspondence problem. 58, 59

PGF probability-generating function. 45–47

SMT satisfiability modulo theory. 69

VASS Vector Addition System with States. 59, 60

VI variational inference. 71, 72
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