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Preface

In this thesis we study solutions of the Abstract Cauchy Problem

{u’(t) = Au(t) + f(t), t>0,
u(0) = xo,

with u : [0, +00) — X for some Banach space X, where A is a linear operator mapping
X to itself. It is basic knowledge that, if A is bounded, the solution has the form

t
u(t) = eag —|—/ e =941 (s) ds
0

for reasonably smooth inhomogeneities f. If A is unbounded, it is natural to expect
solutions of similar form, especially if A is the infinitesimal generator of a strongly
continuous semigroup.

The question arises, what kind of operators A admit unique solutions of the Abstract
Cauchy Problem and what kind of properties regarding smoothness can one expect of
this solutions. In the best case, the functions u, v’ and Au have the same regularity
properties as the inhomogeneity f. We want to characterise operators A, such that for
every f there is a unique solution such that v’ and Au are ’as regular’ as f. In this case,
we say that A is maximally regular.

In this thesis we study the maximal regularity problem for inhomogeneities

fe Lp((O, +00); X), p € (1,+00). In the twentieth century, many advances were made,
for example by Dore, [7], or de Simon, [5]. In recent years, maximal regularity has been
tackled from different angles, namely closedness of sums of operators, [8], Fourier
transforms, [16] and the theory of singular integrals, [2].

However, the exact definition of maximal regularity is rather ambiguous in the
literature. De Simon ([5]) required «’ and Au to be of same regularity as f, while Dore
([7]) additionally required u to have the same regularity properties as f. In this thesis
we will work with De Simon’s definition of maximal regularity while introducing the
notion of strict maximal regularity, which, additionally to u’ and Awu, requires u to be as
regular as f. We will study relations between these two notions of maximal regularity.
We will see that it is necessary for A to generate an analytic semigroup and, if the
underlying space happens to be a Hilbert space, this condition is also sufficient.
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Chapter 1 is concerned with basic results regarding differential calculus and unbounded
operators, for which we mainly rely on [17] and [19].

In Chapter 2 we introduce the Bochner Integral, the Banach space-valued analogue to
the Lebesgue Integral for complex-valued functions, and Banach space-valued versions
of Lebesgue- and Sobolev spaces, where we use the notations as in [10] and [3]. We will
state results, which are well-known for complex-valued functions, such as the Dominated
Convergence Theorem for Banach Space-valued functions and the Fundamental
Theorem of Calculus. Furthermore, we introduce the Riemann Integral and complex
Path Integrals for Banach space-valued functions and build connections between the
Bochner- and the Riemann Integral as in the complex-valued case; see [10] and [17].

Chapter 3 is concerned with basic observations about strongly continuous semigroups as
shown for example in [19]. Moreover, we will introduce analytic semigroups, i.e. strongly
continuous semigroups which are analytically extendable to an open subset of the right
complex half-plane. We will prove that this is equivalent to A being sectorial and the
semigroup being differentiable with respect to the operator norm; see [1].

In Chapter 4 we will study existence and uniqueness of solutions of the Abstract
Cauchy Problem. We will start by examining the homogeneous problem, i.e. f =0, and
show that for existence and uniqueness it is necessary and sufficient for A to generate a
strongly continuous semigroup, as seen in [1]. For the inhomogeneous problem, many
different notions of weak solutions were introduced in the literature, for example by Ball
([4]) and de Simon ([5]), while many others simply worked with functions that solve the
problem almost everywhere; see for example [6]. In order to avoid this ambiguity we
define weak solutions in the sense of weak differentiability and prove uniqueness in the
case that A is the infinitesimal generator of a differentiable semigroup.

Finally, Chapter 5 is concerned with maximal regularity of the Abstract Cauchy
Problem and its implications. Often the abstract Cauchy problem in connection with
maximal regularity was only considered on (0, 4+00). Because of that, we will introduce
maximal regularity on bounded as well as on unbounded intervals and prove that the
latter implies the former, as shown by Dore [7]. In the last two sections we will show
that maximal LP-regularity is independent of p and that in Hilbert spaces maximal
regularity is equivalent to A being the infinitesimal generator of an analytic semigroup;
see [7] and [5]. While many authors diligently dealt with the estimate

[Aull o + 1wl e < C NNl s

where u denotes the mild solution of the Cauchy Problem, i.e.
u(t) = / T(t— 5)f(s) ds
(0,%)

(T'(t) being the semigroup generated by A), the requirement that the Cauchy Problem
has a unique weak solution was left out. We will tackle this gap by carefully dealing
with existence and uniqueness of weak solutions.
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Notations

We will list symbols and notations that will be frequently used throughout this thesis.

By C we will denote the set of all complex numbers, by R the set of all real
numbers and N := {1,2,...} will be the set of all positive integers.

1,4 will denote the characteristic function of some set A defined in some
underlying set €2, i.e. 14 : Q — {0,1},

1, weA,
I[A(w) = {() w%A

We write [|-|| i for the norm of some normed space X. If the underlying space X is
obvious from the context, we will simply write |[|-||.

Given a metric space (M,d), e > 0 and x € M, we write
UM(z):={ye M :d(z,y) <e} and KM(z) :={y € M : d(x,y) < e}. If the
underlying space M is clear from the context we will often write U.(z) := UM (x)

and K, (z) :== KM(z).

Given two Banach spaces X and Y, L,(X,Y) stands for the set of all bounded
linear operators 7" : X — Y provided with the operatornorm ||‘||Lb(X7Y)' ftX=Y,
we simply write Ly(X) := Ly(X, X).

We write X’ for the topological dual space of some normed space X, i.e.
X' = Ly(X,C).

Given two Banach spaces X and Y as well as T' € L,(X,Y’), we write
T" € Ly(Y', X') for the adjoint of T" defined by T"(¢)x := ¢(Tx) for all ¢ € Y’ and
all x € X.
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Chapter 1

Basic Principles and Initial Remarks

In order to properly state and study the abstract Cauchy Problem, we will gather
information regarding differentiation in Banach spaces and (unbounded) linear
operators.

1.1 Differentiation and Analyticity in Banach
Spaces

In this section we introduce the notion of differentiability as well as analyticity in
Banach spaces and state useful, well-known results. Throughout this section, X denotes
a Banach space.

1.1.1 Definition. Let —0o < a < b < +oc and f: (a,b) — X a function. f is called
differentiable in ty € (a,b), if the limit

lim (£ + ) — £(1))

h—0

exists in X. If —oo < a <b< +4ooand f: (a,b] = X, we call f differentiable at b, if the
one sided limit

1m1%(ﬂb+h)—f@»

h—0—

exists in X. For functions defined on intervals of the form [a, b) or [a,b] we define
differentiability accordingly. If f : I — X is differentiable at t for every ¢t € I, where
I C R is an interval (note that I can have the form (a,b), (a,b|, [a,b) or [a,b] for
—o0 < a<b<400), we say that f is differentiable on I and define the derivative
f':I — X by

1
S A= 70 = m (74 ) - £(1),
where we take one sided limits if ¢t € {a,b}. If [’ is continuous, we call f continuously
differentiable. For k € N and f() := f’. we inductively say that f is k times
continuously differentiable, if £~V is continuously differentiable.

Moreover, we introduce the following spaces.

6
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C(; X):={f:I— X: f continuous},

CHI; X):={f:1— X : fis k times continuously differentiable} for k € N,

C>(I;X):= () C*(I;X) and
keN
Co(; X) :={f € C*(; X) : supp(f) is compact in I}, where
supp(f) :={t € I : f(t) # 0} (closure within I) is called the support of a function
f

We state some properties regarding to differentiation in Banach spaces. Their proofs
can be found in [17], Fakta 9.3.13.

1.1.2 Proposition. Let I C R be an interval and Y, Z additional Banach spaces. The
following assertions hold true.

a) Given functions f,g: 1 — X and A € C, if f and ¢ are differentiable at ¢ty € I, so
is > £(£) + Ag(t) and (f + Ag)/(to) = F'(to) + Ad'(to).

b) If f: 1 — X is differentiable at ¢y € I, it is continuous at t.

c) IfS: T — Ly(X,Y)and T : I — Ly(Y, Z) are differentiable at tq € I, then
t — T(t)S(t) also is differentiable at to and (7'S)(to) = T"(to)S(to) + T'(t0) S’ (to).

d) If S: I — Ly(X,Y) is differentiable at ¢ty € I, also t — S(t)z is differentiable
satisfying (S(-)x)/(to) = S'(to)x for every x € X.

e) Given A € Ly(X,Y) and f: I — X, which is differentiable at tq € I, t — Af(t)
also is differentiable at ¢ satisfying (Af(-))/(to) = Af'(to).

f) Let J C R be an additional interval and ¢ : J — I a function that is differentiable
at to € J. If f: I — X is differentiable at ¢(ty), then f o ¢ is differentiable at ¢,

and (f o ¢)'(to) = ¢'(to) f'(¢(to))-

Furthermore, we state a generalized version of the product rule in Banach spaces, see
Lemma 5.2.11 in [19].

1.1.3 Lemma. Let X,Y be Banach spaces and [a,b] C R an interval. Given functions
f:la,bl = X and T': [a,b] — Ly(X,Y) with the properties

e there is a constant C' > 0 such that ||T(¢)|| < C for all ¢ € [a, b],
e [ is differentiable at to € [a, b],

o t— T(t)f'(to) is continuous at to and

o t— T(t)f(ty) is differentiable at ¢,

g :la,b] =Y, defined by ¢(t) := T(t)f(t), is differentiable at ¢y, and satisfies

q'(to) = (T(‘)f(to))/(to) + T'(to) f'(to)-
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Similar to differentiation in real intervals, we introduce the notion of complex
differentiability and analytic functions with values in a Banach space.

1.1.4 Definition. Let X be a Banach space, G C C an open set and f: G — X a
function. f is called complex differentiable at zy € G if the limit

F(z0) = lim —

z=20 2 — 20

(f(2) = f(20))

exists in X. If f is complex differentiable at z for all z € G, f is called analytic in G.

Analogous results as in Proposition 1.1.2 also hold for complex differentiable functions,
as shown in [17], Section 11.6. Moreover, we have the following lemma. Its proof can be
found for example in [17], Corollary 11.6.17.

1.1.5 Lemma. Let w € C, (a,)nen a sequence in X and R > 0 the radius of
convergence of the power series

o0

Z 2"a,,.

n=0

Then, the function

[ee]
Z Z(z —w)"ay,
n=0

is analytic in Ugr(w).

Lastly, we state the Identity Theorem for analytic, Banach space-valued functions. It
follows easily from the complex-valued case.

1.1.6 Proposition. If two analytic functions f,g: G — X coincide on a set D C G,
which has an accumulation point in G, then f(z) = g(2) for all z € G.

Proof. Given an analytic function f: G — X and ¢ € X', the function
f:=vo f:G — Cis analytic since for z, zg € G

TOZTE) _ oL (12) ~ 1)) 22 o(F (o).
zZ— 20 zZ— 20

Let f,g: G — X be analytic functions which coincide on a set D C G, which has an

accumulation point in G and ¢ € X’. Then the analytic functions ¢ o f and pog

coincide on D. According to the Identity Theorem for complex-valued functions, [9],

Theorem V.3.13, ¢(f(2)) = ¢(g(z)) for all z € G. Since ¢ € X' was arbitrarily chosen

and X’ acts point separating on X, as shown for example in [12], Corollary 5.2.7,

f(z) =g(z) for all z € G.
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1.2 Linear Operators

In the present section we gather well-known results about unbounded operators and
their resolvents. By X and Y we denote two Banach spaces.

1.2.1 Definition. Let D C X be a linear subspace.

e A linear map A: D — Y defined on D is called an (unbounded) linear operator
and denoted by A: D C X — Y. We call D(A) := D the domain of A.

o A is called densely defined if D is dense in X.

o Ais called closed if the graph {(z, Az) : © € D} is closed in X x Y with respect to
the product topology.

o If B: EC X — Y is another operator, we call B an extension of A, D C E and
Ax = Bux for all x € D, which is equivalent to the inclusion A C B.

For two unbounded operators A: D C X — Y, B: EC X — Y and A € C we define
e D(A+B):=DnNE and (A+ B)x := Az + Bx for v € D(A+ B),
e D(AA) :=D and (A)x := MNAx for x € D and,

o if A: D —Y isinjective, D(A™!) := ran(A) and A~'z := Cz, where C is the
inverse of A: D — ran(A).

Lastly, if Z is an additional Banach space and C' : I C Y — Z, then we define
D(CA):={xeD: Az e F}
and (CA)x := C(Azx) for x € D(CA).

1.2.2 Proposition. Let Z be an additional Banach space, A: D(A) C X — Y,
B e Ly(Z,X) and A € C\ {0}. Then the following assertions hold true.

a) If A is densely defined, also AA is densely defined.
b) If A is closed, also A\A is closed.

c) If A is closed, also AB is closed. If in addition ran(B) C D(A), then AB is a
bounded operator.

d) (ul — A)(D(A™)) = D(A"!) for all n € N and every p € p(A).

Proof. a): D(A) = D(AA) implies X = D(A) = D(\A).

b): Given A # 0, let (z,,)nen be a sequence in D(A) satisfying hIJP (Tp, ANAxy,) = (z,y).
n—-—+0oo

We obtain lirf Ax, = %y and by the closedness of A in turn Ax = %y, meaning
n—-+00

(x,y) = (x,\Az) € graph(A\A).
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¢): Let (z,)nen be a sequence in D(AB) satisfying hIJP (xn, ABx,,) = (z,y).
n—-+0o0o
B € Ly(Z, X) yields lim Bz, = Bz. Hence, lim (Bz,, A(Bz,)) = (Bz,y). Because
n—+400 n—+oo

of the closedness of A, Bx € D(A) and ABx = A(Bx) = y. Therefore, AB is closed. If
in addition ran(B) C D(A), then D(AB) = X. Since AB is closed, we can employ the
Closed Graph Theorem, Theorem 4.4.2 in [12], and obtain AB € L,(Z, X).

d): Clearly, (ul — A)(D(A™)) € D(A™"'). In order to show the converse inclusion, let
y € D(A™1) and set x := R(u, A)y. Because of A" 'z = R(u, A)A" 'y € D(A), we
obtain x € D(A") and, in turn, y = (ul — A)z € (ul — A)(D(A™)).

1.2.3 Definition. Let A: D C X — X be an unbounded operator. We define the
resolvent set p(A) as the set of all A € C such that there exists a bounded operator
R(\, A) € Ly(X), called the resolvent, satisfying (A — A)R(A\, A) = I and

RN A)(M —A)CI.

The following proposition gathers well-known results about resolvents. Its proofs can be
found for example in [19], Section 4.2.

1.2.4 Proposition. Let A: D C X — X be an operator. The following assertions hold
true.

a) For A € p(A) and p € C with |p — A < m we have p € p(A) and

o0

R, A) = S (A= p)"ROL A,

n=0
In particular, p(A) is an open subset of C.
b) R(-,A): p(A) = Ly(X) is analytic and

ddWR()\,A) = (=1)"n!R(\, A"t

for any n € N.

c) For A\, i € p(A) we have

d) If p(A) is non-empty, A is closed.

e) If A is bounded, p(A) 2 (K”A”(O))c.

10
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Lastly, we introduce the graph norm and show that the domain of a closed operator
equipped with this norm forms a Banach space.

1.2.5 Lemma. If A: D(A) C X — Y is a closed linear operator, then the space
Z := (D(A),||ls) is a Banach space and A € L(Z, X). Here ||| is the graph norm on
D(A) satistying [zl := [[o]lx + | Ay

Proof. It is well-known, that ||(z,y)[|; := ||z||x + [|y||y defines a norm on X x Y, such
that with (X, ||-|y) and (Y, ]-]ly-) also (X x Y, ||-]|;) is a Banach space. Since the graph
of A is by assumption a closed subspace of X x Y, (graph(A), ||-[|; [grapn(a)) is a Banach
space; see [17], Lemma 9.1.6. As ||z||, = ||(x, Az)||;, also Y is a Banach space.

[Az| < [lz]] + [|Az]| = ll=[l¢

for every x € X shows that A € Ly(Z, X).

11
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Chapter 2

Integration in Banach Spaces

To build up the theory of analytic semigroups, we state some results concerning
Integration Theory on Banach spaces that will be used throughout this thesis.

2.1 The Riemann Integral

In the present section we define the Riemann integral for Banach space-valued functions
and examine its relation to differentiation.

2.1.1 Definition. Given a compact interval [a,b] C R with —oo < a < b < 400, we call
R:= ((t )](}S), (aj )?(}f)) a Riemann partition of the interval [a,b], if
a=ty<---<tymr =band a; € [t;_q,t;] forall j € {1,... ,n(R)}. We call

|R| :=max{t; —t;—1:j=1,...,n(R)}

the fineness of R and introduce the relation R; < Ry < |Ry| > |Rs|. By R we denote
the set of all Riemann partitions of [a, b] and note that (R, <) forms a directed set.
Let f: [a,b] — X a bounded function. If the net of Riemann sums

n(R)

(>t —t0fen),

=0
converges in X, we call f Riemann integrable over |a,b] and define
n(R)
/ f(t) dt = lim » (&; —t;1)f(a;).

ReR
7=0

Let [a,b) C R with —0co < a < b < +00. We call a (possibly unbounded) function
f i la,b) — X improperly Riemann integrable over [a,b) if f is Riemann integrable over
la, B] for any /5 € [a,b) and the limit

B
Jim / () dt

12
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exists in X. In this case we define
b B
/ f(s) ds:= lim / f(s) ds.
a p—=b= J,

We often omit the term ’improper’ and simply call f Riemann integrable. Furthermore,
we call f absolutely improperly Riemann integrable, or simply absolutely integrable, if
t — || f(t)]| is improperly Riemann integrable, in particular

b
/ | (&) dt < +o0.

For f: (a,b] - X we define the integral accordingly.

We say that a function f : (a,b) — X is improperly Riemann integrable, if f is
improperly Riemann integrable over (a, c| and [c,b) for some ¢ € (a,b) and define

/abf(t) it = /acf(t) dt + /be(t) dt.

By Fakta 9.3.17 in [17] this definition is independent of the choice of ¢ € (a,b) and we
have

b B
/ f(t) de = lim [ f(t) dt.

B—sb= "¢
The proof of the following result can be found in [17], Section 9.3.

2.1.2 Proposition. Let [a,b) C R be an interval with —co < a < b < +o00 and
f:]a,b) = X be a function. If f is absolutely integrable over [a,b) and Riemann
integrable over [a, ] for any 5 € [a,b), then f is improperly Riemann integrable. In this

case, : )
’/ () dtHg/ LF(®)]] dt < +oo.

In particular, if there is an absolutely integrable function g : [a, b) — [0, +00), which
satisfies || f(t)]| < g(t) for every t € [c,b) for some ¢ € [a,b) and ¢ — || f(¢)|| is Riemann
integrable over [a, 5] for any 8 € [a,b), then f is absolutely integrable. Analogous
statements hold true for functions defined on intervals of the form (a, b] or (a,b).

The properties of the Banach space-valued Riemann integral are mostly the same as in
the real-valued case. Proofs of the following results can be found for example in [17],
Section 9.3.

2.1.3 Proposition. Given an interval I C R of the form [a, b], (a, b], [a,b) or (a,b) for
—00 < a < b < 400, the following assertions hold true.

a) For Riemann integrable f,g: I — X and «, 5 € C also af 4+ ¢ is Riemann
integrable over [ satisfying

/ (auf (t) + By(t)) dt—a/ f(t) dt+5/ g(t) dt.

13
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b) Let —oo < a <b< 400, f:[a,b] - X and t — || f(¢)|| be Riemann integrable. If
we define its supremum norm by || f{|__ := sup{||f(¢)]| : t € [a,b]}, then

c) Let Y be an additional Banach space and T" € L,(X,Y). If f: I — X is Riemann
integrable, also ¢t — T f(t) is Riemann integrable and

/abe(t) it — T(/abf(t) ).

d) For —oo < a < b < 400 every continuous f : [a,b] — X is Riemann integrable
over [a, b].

nal< “WFON dt < [ Fll (b= a).

e) If f: 1 — X is integrable over I and J C [ is a real interval, then f is Riemann
integrable over J. Furthermore, for 5 € I we have

/abf(t) dt:/ff(t) dt+/5bf(t) dt

f) Given a Riemann integrable f : I — X, the function F': I — X defined by

:/:f(s) ds

is continuous. If f is continuous at ty € I, then F is differentiable at ¢ty with
F'(to) = f(to).

g) Let —oo < a < b < 400 and f F :]a,b] - X be continuous. If, in addition, F is
continuously differentiable on (a, b) with F'(t) = f(t) for t € (a,b), then

/ f(t) dt = F(b) - F(a).

2.2 Complex Analysis on Banach spaces

In order to study complex, Banach space-valued functions, we need to introduce Banach
space-valued path integrals. Throughout the present section X will denote a Banach
space and GG a domain, i.e. an open, non-empty and connected set contained in C.

2.2.1 Definition. Given an interval I C R, a :=inf I, b := sup [ with

—00 < a < b< 400 (note that I can have the forms (a,b), [a,b), (a,b], [a,b]) and a
continuously differentiable path v : I — G we call a function f : G — X integrable along
v, if t = ' ()(f oy)(t) is (improperly) Riemann integrable over I. In this case we define

b
[ 1@ dz= [ Foon a

Furthermore, two paths 71,7 : [¢, d] — C satisfying 71 (c) = 72(c), 71(d) = 72(d) are
called homotopic, if there is a continuous map h : [0, 1] x [¢,d] — C with the properties

14



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

a) h(0,t) =~ (t) for all ¢t € [a,b],

b) h(1,t) = yo(t) for all ¢ € [a, b],

¢) h(s,a) = n(a) = 72(a) for all s € [0,1] and
d) h(s,b) = 71 (b) = (b) for all s € [0, 1].

Lastly we define the composition of two paths v; : [a,b] — C, 73 : [¢,d] — C with
71(B) = (c) as
M2 [0,1] = C, (m2)(t) == n(2(b - a)t +a)

for ¢ € [0, 1] and

(11792) () == 72(2(d — c)t + 2¢ — d)
for ¢ € [3,1] and the inverse of a path 7 : [a,b] — X as

v i a, ] = X, vy () =y(a+b—1t).

2.2.2 Remark. From Proposition 1.6.8, a), in [11] we know that being homotopic in G
is an equivalence relation.

From Theorem 2.1.2 we conclude that if for a continuously differentiable path

v (a,b) = G with —oo < a < b < +00 the function f : G — X is integrable along
V.5 for any a < o < B < band (a,b) >t — +'(t)(f ov)(t) is absolutely integrable,
then f is integrable along ~.

We can expand the definition of the path integral to continuous and piecewise
continuously differentiable paths v : [a,b] — C with —o0 < a < b < 400. Let

a =ty <ty <---<t,=0be such that v|y,_, 4, is continuously differentiable for any
7 =1,...,n. We say that a function f : G — X is integrable along ~, if f is integrable
along ~ for all j =1,...,n and define

/Wf(z) i ::i/ F(2) de.

j=1 ’Y\(zj,l,tj)

[ti—1.t)]

Since every path 7 : [a,b] — C can be reparametrized via an affine bijection

¢ :[0,1] = [a,b] into a path § := o :[0,1] — C defined on [0, 1], we can say that two
paths 7 : [a,b] = C, s : [¢,d] — C satisfying v1(a) = 12(c) and v, (b) = 12(d) are
homotopic, if their reparametrizations defined on [0, 1] are homotopic.

2.2.3 Proposition. Let 71,79 : [0, 1] — G be two continuous and piecewise
continuously differentiable paths satisfying v1(0) = 71(1) = 72(0) = 12(1) =: zo. If G is
star-shaped, i.e. there is wy € G such that swy + (1 — s)z € G for every ¢ € [0, 1] and
z € (G, then ~; and 7, are homotopic in G.

15



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Proof. The function hy : [0, 1] x [0,1] — G defined by

20 for t € [0, 5],
hi(s,t) = 'yl(?f’t_gi) fort € [£,1— 2],
20 fort € [1 —3,1],

is continuous and satisfies ran(h;) = ran(y;) C G. Therefore, hy is a homotopy between
v and 73 : [0, 1] — G defined by

20 for ¢ € [0, %]’
Y3(t) =< BBt —1) forte [}, 2],
20 for [2,1].

Since G is star-shaped, we find wy € G such that swy + (1 — s)z € G for any s € [0, 1]
and z € G. Define hy : [0,1] x [0,1] — G by

(1—5)z0 + s((1 — 3t)z + 3two) for ¢ € [0, 5],
ha(s,t) == ¢ (1 — s)v3(t) + swo for t € [3, 2],
(1—8)z0+s(3(1 — t)wo + (3t — 2)z9)  for t € [2,1].

G being star-shaped together with ran(vy3;) C G implies ran(hs) C G. Since hy is
continuous, it is a homotopy between 73 and ~4 : [0,1] — G, were

(1 — 3t)zo + 3twy for t € 0,
74(t) = < wy for ¢ € [3,

3(1 —t)ywy + (3t —2)z9  for [2,1].

]
I

Wl Wl

Lastly, we define hs(s,t) := (1 — s)y4(t) + sz, which only consists of lines connecting 2
and wg. Therefore, ran(hz) C G and, since hg is continuous, hg is a homotopy between
~4 and the constant path zy. Since being homotopic in G is an equivalence relation, v; is
homotopic to the constant path zy. Repeating the argument with v, we see that v, and
~9 are homotopic to the constant path z; and hence homotopic to each other.

t

The proofs of the subsequent results can be found in [17], Fakta 11.2.3, Proposition
11.6.8 and Corollary 11.8.14.

2.2.4 Proposition. The following assertions hold true.

a) Let vy : [a,b] = C, s : [¢,d] — C be two continuous and piecewise continuously
differentiable paths with 71(b) = 72(c). If f: G — X is integrable along v, and s,
then f is integrable along ;7. and

m2f(z) dz = /71 f(z) dz—i—[mf(z) dz.
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b) Given a continuous and piecewise continuously differentiable path v : [a,b] — X
and a function f : G — X, which is integrable along v, f is also integrable along

v~ and
A;ﬂ@dy:—[j@)m.

The following two theorems will be heavily used throughout this thesis. Their proofs
can be found in [17], Corollaries 11.6.10 and 11.6.12.

2.2.5 Theorem (Cauchy’s Integral Theorem). Let f : G — X be analytic,

—00 < a<b<+oo as well as —0o0 < ¢ < d < +00, and 7y : [a,b] = G, : [¢,d] — G be
continuous and piecewise continuously differentiable paths satisfying v1(a) = va2(c) as
well as y1(b) = y2(d). If v1 and 7y, are homotopic, then

Aﬂ@m:éﬂ@w

In particular, if a closed curve 7y : a,b] — G, that is y(a) = v(b) =: 29, is homotopic to
the constant path t — 2y, then
/f(z) dz=0.
N

2.2.6 Theorem (Cauchy’s Integral Formula). Given an analytic function f: G — X,
20 € G and r > 0 such that K,(zy) C G, it holds that

£ w) = = / up LACIE

27 ), (2 — w)nt!

for alln € NU{0} and any w € U,(20), where 7 : [0,27] = G, v(t) = 20 + 1€, or v is a
path which is homotopic to zo + re™ in G\ {z0}. In particular, analytic functions are
infinitely often complex differentiable.

2.3 The Bochner Integral

In this section we define the Bochner integral for Banach space-valued functions on a
measure space and state some of its properties and study its relation to the Riemann
Integral. Throughout the present section X denotes a Banach space and (2, .4, ) will
be a o-finite complete measure space, meaning a set €2 together with a o-algebra A on
) and a measure p : A — [0, +0c| with the properties that

e there are countably many sets (A, )neny with A, € A and p(A4,) < +oo for all
n € N, such that
Q={]JA.

neN
o if AC N with N e Aand pu(N) =0, A e A

We are going to employ the following notions.

17
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e We say that a statement S(w) holds for almost every w € , if there exists a null
set N CQ, ie. N € Awith pu(N) =0, such that S(w) holds true for all w € Q\ N.

e A function f:Q — X is called simple, if f(Q) is finite, f~'({z}) € A for any
z € X and p(f~H(X\{0})) < +o0.

e We say that a function f: Q — X is measurable, if there is a sequence (f,)nen of
simple functions with lim f,(w) = f(w) for almost every w € €.
n—o0

We state basic properties of measurable functions. Their proofs can be found in [10],
Section X.1.

2.3.1 Proposition. The following assertions hold true.

a) If f,g:Q — X are simple and z € C, f + zg is also simple. The same is true for
measurable functions.

b) Every simple function f: Q — X has a unique representation
flw) = 1a,(w)z
j=1

with n € N, pairwise disjoint sets A; € A, j =1,...,n and pairwise distinct
elements z; € X, j = 1,...,n. This representation is called the normal form of f.
In particular, also w — || f(w)]| is a simple, real-valued function with

(@)l = Z La,; (@) [l -

c¢) A function f:Q — X is measurable if and only if f~1(U) € A for any open subset
U C X and there is a null set N € A such that f(Q2\ N) is separable, which
means the existence of a countable set D C f(2\ N), which is dense in f(Q\ N).

d) Given a sequence (f,,)nen of measurable functions f, : 2 — X, n € N, which
converges almost everywhere to a function f: ) — X, f is also measurable.

e) If f:Q — X is measurable, so is w — || f(w)]l-

2.3.2 Example. Let n € N, QQ = U an open subset of R", denote by B"|y the Borel
o-algebra generated by the collection of all open subsets of U and by
X'y 2 By — [0, +00] the n-dimensional Lebesgue measure on U. We define

A :={A CU : there are sets N, B € B"|y with BC AC BUN and \"|y(V) =0}

and u: A — [0,400] by u(A) = \"|y(B) for Ac A, N,BeB|},, BCACBUN and
Ay (N) = 0. Then, (Q, A, p) is a o-finite, complete measure space. We want to employ
Proposition 2.3.1, ¢), to prove that a continuous function f : U — X is measurable. To
that end, we note that since f is continuous, f~!(O) is open in U and therefore belongs
to By for any open set O C X. Let 2 € f(U), t € U such that f(¢) =z and £ > 0.

18
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Since [ is continuous, there is a constant § > 0 such that || f(¢) — f(s)|| < € whenever
s € U with ||t — s||, < 0. Since Q" N U is dense in U, there exists a ¢ € Q" NU
satisfying ||t — ¢|| < 0 and in turn

1F(t) = flg)ll <e.

f(@Q*NU) being countable yields the separability of f(U) and, in consequence, the
measurability of f.

2.3.3 Definition. Given a simple function f : 2 — X represented in its unique normal
form

flw) = Z 1a; (w)x;

as in Proposition 2.3.1, a), we define
[ 7@ dute) == 3 Ay
j=1

Since every measurable function f is the limit of a sequence (f,,)nen of simple functions,
it is natural to define the integral of f as the limit of the sequence

( / fulw) du())

if it exists and does not depend on the concrete sequence (f,)nen-

The next result makes sure the integral is well-defined for special class of measurable
functions. Its proof can be found in [10], Corollary X.2.7.

2.3.4 Proposition. Given a measurable function f : 2 — X and two sequences
(fi.n)nen, (fon)nen of simple functions with lim f;,(w) = f(w) for almost every w €
n—oo

and j = 1,2 as well as the property that for every € > 0 there is N € N such that

/Q 1in(@) = Frm @) | dpw) <

whenever n,m > N for j = 1,2, the sequences

( / fial) dp())
and

([ fente) dute))

converge in X to the same limit.

The previous proposition justifies the following definition.
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2.3.5 Definition. Let f: ) — X be measurable. We call f integrable, if there exists a
sequence (f,,)nen of simple functions with lim f,(w) = f(w) for almost every w € () as
n—oo

well as the property that for every ¢ > 0 there is NV € N such that

/Ilfn — fonlw) dplw) <

whenever n,m > N. In this case we define

/Q ) dp(e) = lim | f,() dufe)

Obviously, if an integrable function happens to be simple, the integral coincides with
the definition of the integral of simple functions, Definition 2.3.3.

The properties of the Banach space-valued integral are mostly the same as in the
real-valued case. The proofs of the following statements can be found in [10], Theorem
X.2.11, Lemma X.2.13, Corollary X.2.16 and Theorem X.3.14.

2.3.6 Proposition. The following assertions hold true.

a) For integrable f,g: Q) — X and a, 8 € C also af + (g is integrable satisfying

[ (@) + 89t dut) = [ 1) duw) + 5 [ g(0) dute

b) A measurable function f : {2 — X is integrable if and only if

[ 1@ dne) < +oc.
Q

)| < [ 1l dute

c) Let Y be an additional Banach space and T' € Ly(X,Y). If f: Q — X is
integrable, then w — T f(w) is also integrable and

/Tf( /f e

d) Given an integrable function f: Q — X and A € A, 14f is integrable.

In this case

w) dp(w

e) If a function f : Q — X vanishes almost everywhere, f is integrable and

/Q F(w) dp(w) =

f) Given a measurable function f : ) — X satisfying || f(w)|| < g(w) for almost every
w € € and some integrable ¢ : 2 — R, f is integrable and

/Q 1) dn(w) < / 9(w) dpu(w).
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The most versatile result will be the following Banach space version of the Dominated
Convergence Theorem, see [10], Theorem X.3.12.

2.3.7 Theorem (Dominated Convergence Theorem). Given a sequence of measurable

functions (fn)nen defined on Q with values in X, which converges almost everywhere to
a function f:Q — X, meaning f,(w) UmaiaN f(w) for almost every w € Q and an
integrable function g : Q — R satisfying || fn(w)|| < g(w) for almost every w € Q and

everyn € N, then f and f,, n € N are integrable and

lim/fn e /f d(w
n—-+o0o

lim /Ilfn — f()] dplw) = 0.

as well as

n—+00

Using the Dominated Convergence Theorem, one can prove results regarding parameter
integrals. The proof of the following results can be found in [10], Theorems X.3.17 and
X.3.18.

2.3.8 Proposition. Let (M, d) a metric space. Given a function f : 2 x M — X and
mgo € M with the properties that

a) w > f(w,m) is integrable for all m € M,
b) m + f(w,m) is continuous at mg for almost every w € €2 and

c) there exists a constant ¢ > 0 and a real-valued, non-negative, integrable function
g : Q2 — Rsuch that || f(w,m)|| < g(w) for all m € U.(mg) and almost every w € €2,

the function

F:M— X, m»—>/ﬂf(w,m) dp(w)

is continuous at my.

2.3.9 Proposition. Let I C R be an interval, ty € I and f: Q x I — X a function
with the properties

a) w— f(w,t) is integrable for all ¢ € I,
b) t — f(w,t) is differentiable in ¢, for almost every w € € and

c) there exists a constant ¢ > 0 and a real-valued, non-negative, integrable function
g : 2 — R such that m | f(w,t) — flw, to)|| < g(w) for every
te ((to—eto+e)NI)\ {to} and almost every w € €.

Then the function
F:I— X, F(t / flw,t) du(w

is differentiable in ty with

0
Fito) = [ FHorto) du(o).
Q
The properties b) and ¢) are fulfilled if
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b*) there exists a constant ¢ > 0 and a real-valued, non-negative, integrable function
g : Q — R such that ¢t — f(w,t) is differentiable on (ty — ,ty 4+ €) N I for almost
every w € {2 and the derviative satisfies H%(w, | < g(w) for all t € (tg— ¢, to +¢)
and any w € () for which the derivative exists.

2.3.10 Proposition. Let (2, A, 1) be a o-finite, complete measure space. Given a
function f : 2 x G — X with the properties that

a) w— f(w,z) is integrable for all z € G,
b) z — f(w,z) is analytic for almost every w € € and

c) given a compact subset K C G, there is a real-valued, non-negative integrable
function gx : Q — R such that || f(w, 2)|| < gk (w) for all z € K and almost every
w € €,

the function
F:G—= X, F(z /f w, z) du(w

is analytic and w (w, 2) is integrable for all n € N and all z € GG satisfying

dz”

/Q L (w2) du(w) = F(z).

Proof. Let zp € G and r > 0 be such that Ky.(z9) C G. Defining v : [0, 27] — G,
v(8) := 2z + 2re®, there is a null set N; such that we can represent f in the form

flw,2)

2m y ZW

flw,w) = dz

for every w € Q\ Ny and w € Us, (), see Theorem 2.2.6. Fix w € U,(z) and for
v € Ur(20) \ {w} define h, : Q2 — X as

o) = ) = )= s ([ £ e [

w—v y

B 1 wf(w,z) —vf(w,2) L 1 f(w, 2) ;
27m'(w—v)/7 (z —w)(z —v) d ZWZL(z—w)(z—v)d'

for w € @\ Ny and h,(w) = 0 for w € N;. According to property c), there is a function
g : 2 — R and a null set Ny such that || f(w,v)|| < g(w) for all v € Ky,.(z) and every
w € Q\ Ny. It follows that the function h, satisfies the estimate

2T i
B flw, zo + 2re*)
@l =5 | | e e

Sy A OELL
~ 2 |(z0 — w + 2re®) (20 — v + 2re’s)|

- i/% 9w) .o 9w)

- 27 o2

1

72 r
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for all w € Q\ (N7 U Ny). Since

lim Ay () = lim —— (f(w,w) — f(@,0))= = f(w,w)

vow vow W — U dz

for all w € Q\ Ny, Ny U Ns is again a null set and the function w — 9w) g integrable,

r2
we can use Theorem 2.3.7 to conclude that also 2 f(w, w) is integrable and

lim ——(F(w) = F() = lim | ——(fe.w) = fe) dee)
= lim [ ) du) = [ Few) duo),

which implies that F'is complex differentiable in w and
, d
Flu)= [ 4 fw,w) dpfe).
q az

Since w was arbitrary, F is analytic in U,(zo). Finally, since zy was arbitrary, we
conclude that F'is analytic in G. Let n € N, K C G compact and suppose that
w > L f(w, 2) is integrable as well as

F(")(z):/—f(w,z) dz

QO dzm

for all z € G. For every z € K there is r, > 0 such that Ky, _(z) C G. We obtain

Kc | JU.(2),

zeK

which by the compactness of K implies the existence of 2y, ..., z,, € K such that
K C|JU., ().
j=1

By assumption c¢), there exist null sets Ny, ..., N,, C Q and integrable functions
gj : 2 = R such that || f(w, 2)|| < g;(w) for all z € Ko, (zj) and every w € Q\ N; for
j=1,...,m. We define r := min{r,, : j = 1,...,m} and gk : @ — R by

which is integrable by Corollary IV.3.5 in [13]. Let Ny C Q be a null set such that
2+ f(w, z) is analytic on G for every w € Q \ Ny and define

NZ:N()UGN]',

J=1
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which is again a null set. Let w € K, j € {1,...,m} such that w € U,_(z), w € Q\ N
and define v : [0,27] = G, ¥(t) := z; + 2r,,e". By Theorem 2.2.6 we have

flw, 2) _n!
/7 (z — w)ntt dZH o
| 2 | 2
< 2rzjn./ ||f(w,’y(t))H 5t < 2rzjn./ gj(w) it
0

. it __ n+1 — n+1
|zj + 27, et — w| 27 e

n!

/27r 2, i€’ f (w, y(t) "
o

zj + 21, et — w)ntl

dn
H ﬁf(wv w)

< Zo0i(w) < i)

Applying the already proven to the function jz—nn f, we see that w +— (i—nn flw,2) is
integrable and, by assumption,

dn—H d dr d
/Q o+l flw, 2) du(w) = iz /Q @f(wa z) dp(w) = aF(")(z) = FOt (),
U

Another important result is the Theorem of Fubini-Tonelli, which allows us to exchange
the order of integration. In order to state this Theorem we introduce the notion of
product measures, see Theorem V.1.5 in [13].

2.3.11 Proposition. If (U, B,v) is an additional o-finite complete measure space, we
define A ® B as the o-algebra generated by

{AxB:Aec A BeB}.
There is a unique measure @ v : A® B — [0, +00] satisfying

4 © (A x B) = u(Aw(B)
forall Ae A, B € B.

2.3.12 Theorem (Fubini-Tonelli). Let (¥, B,v) be an additional o-finite complete
measure space and define

C:={ACQxV: there are sets N,B € ARB with BC AC BUN and p®v(N) = 0}.

We extend p® v to C by setting p @ v(A) =pv(B), if ACQx V¥, BNe A B
with p@v(N)=0and BC ACBUN. If f:QxV — X is measurable with respect to
(QxV,C,p®v) and

[ ([ 1ot an) < oo

or
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the functions f,

o / f(w, ) dv(p)

defined almost everywhere on € as well as

b /Q f(w, ) du(w)

defined almost everywhere on ¥ are integrable and
o) de@v)0) = [ ([ o) o)) dute

:Xp</ﬂ Flw, ¥) du(w))de)-

Its proof can be found for example in [3], 2.9.

Qx W

Lastly, we state and prove a theorem regarding Bochner integrals and closed operators.

2.3.13 Proposition. Let Y be an additional Banach space and A: D(A) C X — Y be
a closed operator. Given an integrable function f : Q2 — X, such that f(w) € D(A) for
almost every w € ) and such that Af : 2 — Y is integrable, we have

/ﬂ /() du(w) € D(A)

and

A( / F(@) dufes)) = / Af(w) du(w).

Proof. The function
F) = {f(wL J() € D(A)
0,  flw)¢ D(A)

satisfies f (©2) € D(A) and f(w) = f(w) for almost every w € Q. Hence, by Proposition
2.3.6, e), f and w — Af(w) are integrable. It is well-known, that (X X Y, ||| x.y )
where ||(z,9)] x.y = max{||z||y,||ylly}, constitutes a Banach space; see [17], Example

9.1.9. We want to prove that g : Q@ — X x Y defined by g(w) = (f(w), Af(w)) is
measurable. To that end, let ¢ : 2 — X and ¢ : 2 — Y be simple functions represented
in their normal form

p(w) =) La,(w)a

and

bw) = 3 1s, W)y
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Q= X x Y defined by t(w) := (¢(w),¥(w)) satisfies

w) :ZﬂAk( (k, 0 +21Bk )0, Yi),
k=1

and, hence, constitutes also a simple function.

Let Ny, Ny C € be null sets and (¢, )nen, (¥n)nn be sequences of simple functions

n—-+00 n—-+00

satisfying ¢, (w) == f(w) for all w € Q\ Ny as well as ¢, (w) = Af(w) for all
w € Q\ Ny. As just shown, ¢, : Q@ — X X Y defined by ¢,(w) := ( n(W), Uy (w ))
constitute simple functions such that

() = 9(6) Ly = mac{ | - Afw), } ===,

for w € Q\ (N; UNs). In consequence, g is measurable as a function from €2 into X x Y.
We want to prove that g is also measurable as a function from €2 to graph(A). Since
graph(A) is closed in X x Y, it is a Banach space when equipped with

||'||graph(A) = ||'||X><Y}gra,ph(z4);

see [17], Lemma 9.1.6. Since g : Q — graph(A) is measurable in X x Y, g(Q) is
separable in X x Y and therefore also in graph(A) by 2.3.1, ¢). Any relatively open
O C graph(A) can be written as O = U N graph(A) for some open U C X X Y; see [17],
Example 12.6.3. From

g (0)=g(U) e A

we conclude that also g : 2 — graph(A) is measurable. As

15 gy o) = [ ma{ |7 a7, } dute
< [ [fe]] dutr+ [ afe)]| dut) <+,

g is integrable in graph(A) according to Proposition 2.3.6, b). The projections
m X XY = X, m(z,y) :=xand m: X XY = Y, my(x,y) := y are bounded linear
operators, which implies

mi ([ o) dutw)) = [ mlo@) dut) = [ F) duw) = [ 1) dute
m( [ i) - / Af(w) du(w).

Because ¢ is integrable as a function from €2 to graph(A) we obtain

(f ) dute, [ are ) i) 7 [ o) du))

/g w) € graph(A)
and in turn

/Af dp(w

and

D

/f dp(w
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2.4 The Bochner Integral on Borel Sets

We are going to examine properties of the Bochner Integral if the underlying set €2 is a
subset of R. Throughout the present section X will denote a Banach space.

2.4.1 Remark. Let B be the Borel sets in R, i.e. the g-algebra generated by the
collection of all open subsets of R and A : B — [0, +00] be the Lebesgue measure. Given
Q € B, recall that (Q,A, )\|Q), where

A= {A C Q: there are sets N, B € B|g with BC AC BUN and AM(N) =0},

AMa(A) == XB) for Ac A, N,B € Blap), BCACBUN and A(N) =0, is a o-finite
complete measure space; see Example 2.3.2. If f: Q — X is integrable with respect to
A, we will write

s axe = [ 50 aog)

We start with two theorems that build a relation between Bochner- and Riemann
integrability. Proofs of the following theorems can be found in [10], Theorems X.5.6.,
X.5.3 and Remark X.5.5.

2.4.2 Theorem. Given —o0 < a < b < 400 and f : [a,b] — X bounded, f is Riemann
integrable if and only if f is almost everywhere continuous. In this case, f is integrable
and

b
/ fyde= | F) ).
a (a,b)

2.4.3 Theorem. Given an interval (a,b) C R with —oo < a < b < 400 and a function
f:(a,b) = X which is Riemann integrable over [a, 5] for any a < a < < b, [ is
absolutely integrable if and only if it is integrable. In this case

b
[ rwrae=[ g ae
a (a,b)
In particular, if f is continuous, it is integrable if and only if

b
/ 1) dt < +oo.

The following result can be seen as the Fundamental Theorem of Calculus for Banach
space-valued functions.

2.4.4 Lemma. Let —oo < a < b < +oo and f : [a,b] — X differentiable. If f’ is
integrable over (a, b), then
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Proof. Let ¢ € X’ and define g : [a,b] — R, g(t) := Re((¢ o f)(¢)). Since Re : C — R
and ¢ are bounded linear maps, f is differentiable in [a, b] satisfying

g'(t) =Re((¢o f)(t))

for every t € |a, b], see Proposition 1.1.2, ¢). Moreover,

g O < Je(FO) < llel IF Ol t € [a,b],

implying the integrability of ¢’, see Proposition 2.3.6, f). Hence, from Theorem 7.21 in
[21], we obtain

Re((1(8) - 1(@)) = 9(6) ~ g(a) = |

g(t) dA(t) = Reo(
(a,b)

£1(8) dA() ).
)

(a7b

Analogous arguments lead to

(/) = f(@)) =tmep( [ f(2) dt),

(a,b)
which implies

P10 - @) = (| 1) ).

Since ¢ € X' was arbitrary and X’ acts point-separating on X (see Theorem 5.2.3 in
[12]), we obtain
f() = fla) = f1(t) dA(t).

(a,b)

2.4.5 Proposition. Let —oo < a <b < 400, f:]a,b] = X and ¢ : [a,b] — C be
continuous and piecewise differentiable, i.e. there are partitions a =tg < --- <t, =10
and @ = s9 < --- < 8, = b such that f|y,_, ) and ¢|(,_, s,) are differentiable for any
k=1,...,nand j =1,...,m. If the almost everywhere defined functions ¢’ and f’ are
integrable over (a,b), then

/ ¢'(1) f(t) dA(t) = @ (b) f(b) — ¢(a) f(a) —/ P(t)f'(t) dA(R).
(a,b) (a,b)
Proof. Suppose first that f and ¢ are differentiable on (a, b). By Proposition 1.1.2, ¢),
we have
(0f)(t) = 'O f ) +o(t) f(t)
and

/)OI < 1 O flloo + llelle 17 @I ¢ € (a,b).

Hence, (¢f)’ is integrable over (a,b). For any n € N with 1(b — a) > 1 we employ

n

Lemma 2.4.4 and obtain that (¢f)" is integrable over (a + <,b— 1) and

n

/<+1 ,,_;)("”f)’(’f) dAt) = p(b— 1) f(b— L) —pla+ L) f(b—1).
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Defining g, : [a,b] = X by ga(t) :== L1, 1,(8)(pf) (1), we have g,(t) 22 (of ) (1)
for every t € (a,b) and [|ga(t)[| < [|(0f) ()| < (o)., for every ¢ € (a,b). Theorem
2.3.7 implies

lim (f)() dMt) = Tim [ ga(t) dA(t) = /( (10 D).

=00 Jiar L p-1) =00 J(ab)

Since ¢ and f are continuous, we obtain

/( RCIORIOR /( KRR IRORORA0

(a,b)
= tm [ @O0 - [ e (1) )
(a+L1p-1) (a,b)
= Tim (pf)b— 1)~ (pNla+ 1) - /( #0510 )

= ¢(b)f(b) — ¢(a)f(a) —/ p(t)f'(t) dA(L).

(a,b)

If p and f are piecewise differentiable, we can assume that there is a partition
a=ty<---<t, = bsuch that p|y, ) and f| (tr_1,tp) are differentiable for every
k=1,...,n. From the first part of the proof we obtain

/@ | AOH0) D0 = 6010 ~ et ) ~ /( o(B)f'() dA(E)

k*lvtk)

for every k =1,...,n. Consequently,

/(b)sw(t)f(t) d)\(t):Z/ S 1(t) dA(D)

=1 Y (tk—1,tr)

k—1 k—1) — "(t) dX\
kz (i) (i) /( L Anrm i
— o(tn)(t) — (to) f (ko) — /( P0@) )

— o) F(b) — p(a)f(a) — /( L POFE) D)

g

The proof of an even more general version of the following result can be found in [10],
Theorem X.8.14.

2.4.6 Theorem (Transformation Theorem). Let (a,b), (c,d) C R be two intervals with
—0<a<b<+oo and —oo <c<d< +oo, f:(c,d) — X measurable and

¢ : (a,b) = (¢, d) a diffeomorphism, which means that ¢ is bijective and both ¢ and p~*
are continuously differentiable. Then, f is integrable if and only if the function

t [0 ()] f(p(t)) defined on (a,b) is integrable. In this case

£(t) dA(t) = /( 017 (#(0) )

(c,d)
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2.5 Spaces of Integrable Functions

We introduce Bochner spaces, the Banach space-valued analogue of Lebesgue spaces.

Throughout this section (€2, .4, i) will be a o-finite complete measure space and X a
Banach space.

2.5.1 Definition. Let p € [1,4+00). By LP(Q; u; X') we denote the space
{f: Q2 — X measurable : / | f(@)]|P dp(w) < 400}
Q

Furthermore we define L>(2; u; X) as the space of all measurable functions f: Q — X,
such that there exists a constant C' > 0 with || f(w)|| < C for almost every w € Q.
Defining

o= ([ 1A )’

for p € [1,400) and

11l oo (upey := If{C > 01 [[f(w)]| < C for almost every w € Q}
the space (LP(; p; X), 1l 2o (0 x ) constitutes a Banach space if we identify functions,
that differ only on a null set; see flO], Theorem X.4.10. If the spaces €2 and X are clear

from the context, we will simply write ||| ., = [|'[| 1o (g, x) for p € [1,+00]. If @ C R is
a Borel set, i.e. ) € B, then we write LP(; X) instead of LP(Q; A|q; X).

Furthermore, given —oo < a < b < +o0, we define L{_((a,b); X) as the space of all

measurable functions f : (a,b) — X that are integrable with respect to the Lebesgue

measure )\\ a,b) OVer every compact subset of (a,b). By Proposition 2.12 in [3], we have
LP((a,b); X) C Li,.((a,b); X) for every p € [1, +00].

We gather properties and basic observations regarding Bochner spaces. Proofs can be
found for example in [3], Propositions 2.13, 2.15, Theorem 2.16 and Corollary 2.23 as
well as Lemma 1.1.1 in [14].

2.5.2 Proposition. Let p € [1,+o0] and —o0 < a < b < +00.

a) Given f € LP(€; u; X) and a sequence (f,)nen in LP(; u; X)) satisfying
| fro = fll o 22199 0, there exists a subsequence (f,,, Jren which converges to f
almost everywhere.

b) If p € [1,+00), then Cg5((a, b); X) is densely contained in L?((a,b); X).
) If f € L. ((a,b); X) satisfies

/( P D) =

for all ¢ € Cg5((a,b); C), then f(t) =0 for almost every ¢ € (a,b). If f is
additionally continuous on (a,b), then f(¢) =0 for all ¢ € (a,b).
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d) If f € L ((a,b); X), then

1 1 B
lim /W)ﬂ ) dA(s) = lim /( PROLCEN

for almost every t € (a,b).

e) Let p € [1,400) and ¢ € (1, +0o0] such that Il) + % = 1. The mapping
O LU pu; X') — LP(Q; p; X)' defined by

= (9 [ )ofe) du))

is linear, bounded and isometric. If X is reflexive, then ® is also bijective.
f) If p € (1,400) and X is reflexive, also L?((a,b); X) is reflexive.

Next, we state important inequalities of integrable functions, see [10], Theorem X.4.2,
Theorem X.7.3 and X.6.21.

2.5.3 Proposition. Let —oo < a < b < 400 and —o0o < ¢ < d < +o0.

a) (Holder’s inequality) Given p, g € [1, +o0] such that ]lj + % =1, where %o =0,

and functions f € LP(Q; u; C), g € LI(Q; u; C), we have fg € L'(Q;C) and
£l < 1A, llgll, -

b) (Young’s inequality) Given p € [1,00] and functions f € LP(R;C) as well as
g € Li(R;C), s+— f(t — s)g(s) is integrable for almost every ¢ € R and

Htr—>/ft—s (s)p

c¢) (Generalized Minkowski inequality) Given p € [1,4+00) and a measurable function
f:(a,b) x (¢,d) — X satisfying

(s = f(t,s)) € L' ((c,d); X)

< A1, gl -

for almost every ¢ € (a,b) and

Lo ooy o < e

the function
5 f(t,s) dA(t)
(a,b)

is contained in LP((c,d); X) and satisfies

</( " des))’l’ < /( ) (/(Cd) £, s)llpd)\(s)>;d)\(t)

31
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We introduce weak derivatives, a generalization of the notion of classical differentiation.

2.5.4 Definition. Given —oco < a < b < +o00, we call a function f € L{ ((a, b); X)

loc

weakly differentiable, if there exists a function g € L ((a, b); X) such that

/ (1) F () dA(t) = — / o(D)g(t) dA(D)
(a,b) (a,b)

for any ¢ € ng((a, b); (C). In that case, we call f':= f(1) := g the weak derivative of f.
Inductively, if f*~1 is weakly differentiable, we say that f is k times weakly
differentiable and define f®*) := (f*=D) for k € N. Furthermore, by W"*?((a,b); X) we
denote the space of all k times weakly differentiable functions f € Lp((a, b); X ), which
satisfy f(™ € L?((a,b); X) for all m € {1,...,k}.

We state some properties of weakly differentiable functions. Proofs for these statements
can be found in [3], Sections 3.1 and 3.2.

2.5.5 Proposition. Given —oco < a < b < 400, the following assertions hold true.
a) The weak derivative is unique up to a null set.

b) If f,g € L} ((a, b); X) are weakly differentiable and A\ € C, f + Ag is weakly

loc

differentiable satisfying (f + Ag)’ = f'+ Ag'.

c) If f:(a,b) — X is differentiable, then f is weakly differentiable and the (classical)
derivative coincides with the weak derivative.

d) If f € Li;.((a,b); X) is weakly differentiable and f’(¢) = 0 for almost every

loc

t € (a,b), then there exists an x € X such that f(t) = x for almost every ¢ € (a, b).

e) Let p € [1,+oc]. For every f € Wl’p((a, b); X) there exists a unique bounded,
continuous function ¢ : (a,b) — X satistying f(t) = g(t) for almost every t € (a,b).

2.5.6 Definition. Let 400 < a < b < +00. We say that a function is absolutely
continuous, if for every € > 0 there exists 6 > 0 such that for

a<r; <y << <, <y, <b

satisfying > (yx — x) < § we have
k=1

SO ) = Flaw) < e

The proof of the next result can be found in [3], Propositions 3.7 and 3.8.

2.5.7 Theorem. Let —o00 < a <b< 400, p€[l,4+00] and f € L”((a,b);X). The
following statements are equivalent.

a) fe W ((a,b); X).
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b) There exists a function g € LP((a,b); X) such that
fO - 1) = [ gr) dr)
(s:t)

for every a < s <t <b.

c) f is absolutely continuous on every compact subinterval of (a,b), f is
differentiable almost everywhere on (a,b) satisfying f' € L?((a,b); X).

If f satisfies one (and therefore all) of the statements above, the weak derivative
coincides with ' and g almost everywhere.

With this knowledge we can prove the Fundamental Theorem of Calculus for weakly
differentiable functions.

2.5.8 Corollary. If —co < a <b< +oo and f € Wl’p((a, b);X) is continuously
extendable to [a, b], then

f) = fla) = - f'(t) dA().

Proof. Let n € N with 1 < ¢ and define g, : [a,b] = X by g,(t) := Lt o1y f'(2)-

Clearly, g, (t) =% f’( ) for all t € (a,b) and ||g,(¢)]] < ||f'(¢)]]. By Theorem 2.3.7 and
Theorem 2.5.7

F/(t) dA(t) = lim gu(t) dX(t) = lim F(t) dA(t)
(a,b) n—-+o0o (a,b) n—-+00o (a+%,b—%)
= lim f(b— 2) = fla+3) = f(b) = f(b)

2.5.9 Corollary. If —co < a < b < 400, ¢ € C*([a,b];C) and feW?((a,b); X) is
continuously extendable to [a,b], then pf € Wl’p( a,b); ) an

/( PO O = o)~ #(0) @) - /( P F@) )

Proof. For ¢ € Cg5((a, b); C) also v¢|s) € CG5((a,b); C). By the classical product rule
for differentiation

(E)p()f (1) dA(t)Z/( b)(wsa)’(t)f( ) dA(t) — ¢() () f(t) dA(t)

. /<a,b>‘”W< / BB F(1) dA)

- /( b)@b(t)(w(t)f’(t)ﬂo( (1)) dA(®),

(a,b)
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implying that ¢ f is weakly differentiable and (¢ f) = @ f' + ¢’ f. Since ¢ € C’oo([a bl;
and f, f' € L ((a,b); X), also o f, (¢f) € L?((a,b); X). Hence, of € W((a,b); X).
Corollary 2.5.8 yields

/ (1) () dA(t) = / (of)(t) dt — / () 1'(8) A1)
(a,b) (a,b) (a,b)
— o) f(b) — p(a) f(a) — / (0 F'(8) dA(1).

(a,b)
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Chapter 3

Operator Semigroups

One of the most important tools to study abstract Cauchy problems (for short ACP)
are operator semigroups. If the operator appearing in the equation happens to be an
infinitesimal generator of a strongly continuous semigroup, we will see that the ACP has
a unique solution.

3.1 Strongly continuous Semigroups

3.1.1 Definition. Let X be a Banach space and (7'(t))
linear operators mapping X to itself. (T(t))

be a family of bounded

>0

>0 1s called a semigroup, if

o T(0)=1.
o I'(t+s)=T(t)T(s) for all t,s > 0.
Furthermore we define D(A) := {z € X : lim TW"=% exists} and A: D(A) € X — X
¢

—0t t

by Az = lim+ m This (in general unbounded) linear operator is called the
t—0

infinitesimal generator of the semigroup (T'(t))
A semigroup is called

>0

e bounded, if there exists a constant M > 0 such that ||T'(¢)|| < M for all £ > 0,

o strongly continuous, if liqur T(t)x =z for all z € X and
t—0

e uniformly continuous, if lim ||T(t) — I|| = 0.
t—0t

Obviously, every uniformly continuous semigroup is strongly continuous.

We start by listing simple properties of semigroups and its generators without proofs,
which can be found for example in [19], Section 5.2.

3.1.2 Proposition. For a strongly continuous semigroup (7'(t)) 1~ With the
infinitesimal generator A the following assertions hold true. -
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a) There exist M > 0,w € R, such that |T'(¢)|| < Me“* for all ¢t > 0.
b) The mapping T'(-)x : [0,00) = X, t — T'(t)x, is continuous for any = € X.

c) Forz e X

t+h

1
}lllil[l) ) T(s)x ds="T(t)x.

d) A is closed and densely defined.

e) For x € X and t > 0, fot T'(s)x ds is contained in the domain of A and
t
A(/ T(s)x ds) =T(t)x — .
0

f) If x € D(A), T'(t)z is also included in D(A) for all t > 0 and

d
Ttz = AT(t)x = T(t) Ar.

g) For any X € C, (eMT(1)),
generator A + AI.

-0 18 a strongly continuous semigroup with infinitesimal

h) For M > 0 and w € R as in a) we have {{ € C: Re(§) > w} C p(A) and for
Re(€) > w the resolvent satisfies

R(E, A)e = (6] — A) 'z = / ST (#)a dA() = /0 T a (31)

(0,400)
for all x € X. In particular,

M

i) For every t > 0 and ¢ € p(A) we have
T)R(E, A) = R(E, A)T(1).

j) If A € Ly(X), the semigroup has the form

o)

tn
T(t) == A

n=0

k) If (S(t)) 1~ 18 an additional strongly continuous semigroup generated by B, then
B C Aor AC B already implies S(t) = T(t) for every t > 0 and A = B.
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3.1.3 Corollary. Given a strongly continuous semigroup (T(t)) >0 and its infinitesimal
generator A, B

1
(n—1)!

dn—l
dé‘nfl

R(&A)'x = E:—)T)l <

for any x € X and ¢ € C with Re(§) > w for w € R as in Proposition 3.1.2, a).

R, A):r) - /(0 ) )t”—le—ﬁtT(t)m dA(t)

Proof. Let K C {£ € C: Re(\) > w} be a compact set. The continuous mapping
Re: K — (w, 00) attains its minimum at a point z € K and clearly satisfies
Re(§) > Re(z) =7 >wforall ¢ € K. For £ € K, t € [0,00) and z € X we have

le T (t)a]| < MO ||| < M |lal] =: gic(8).

Since
(w—T)t

~_ Mlall _

0 T W

e e
/0 gk ()] dt = M |z

w—T
and since £ — e ¢'T'(t)x is analytic, we can use Theorem 2.4.3 and Proposition 2.3.10 as
well as Proposition 3.1.2; g), to conclude that £ — R(£, A)x is analytic in
{£ € C:Re(§) > w} for any z € X and

dn

TRl Ay = /(O#OO) j—;eftT(t)x A(t) = (—1)" /(O#OO) P STz d\E) (3.2)

for any n € N. By Proposition 1.2.4, b), we have

d"” n n+l
SER(EA) = (1)l R(E, A (53

(3.2) and (3.3) together imply

3.1.4 Proposition. If A is the infinitesimal generator of a strongly continuous

semigroup (T(t))t>0, then [ D(A™) is dense in X.
- n=1

Proof. Let f € C55((0,400),C). Since t — T'(t)x is continuous and f vanishes outside a
compact interval, according to Theorem 2.4.2, the function ¢t — f(¢)7'(¢)z is integrable
and bounded for any x € X. We set

v = /(W) FOT @) ax)
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for z € X and f € C§5((0,+00),C). We want to show that x; € D(A). To that end,
note that since the support of f is compact in (0, c0), there exists a constant § > 0 such
that f|o,s = 0. For h € (0,0) we have

RO =Dy =3 [ (e e
1 1

=7 /(O,M) FOT(h+t)z dA(?) - 5 /( - FOT )z dA(2).

Since the integrand of the first integral is continuous, we can use Theorem 2.4.6 and
substitute s =t 4+ h. Extending f to a function on R by f(¢) = 0 for ¢ < 0 we obtain

%(T(h) Dy = % /(O#OO) FOT(h+ t)z dA(t) — % /moo) FIOT()z dA()
1 1

- /(MOO) f(s = h)T(s)x dA(s) — /( - FOT () dA(t)

1
=5 /(0 . fls = )T (s)z dA(s) =+ /( - FOT )z dA(t)

:/(H )1( (t—h) — F(&)T()e d\(1)

=

_ /( L U= = SO) T o),

>=

where supp(f) C [a,b] C (0,+00). By Proposition 2.1.3, b) and g), we have

1 1 / _.
HfE=h)—fB) <5 < max [f(s)] = €' < +o0

f'(s) ds

t—h

and for M, w as in Proposition 3.1.2, a)

H%(f(t —h) — ()T ()| < CMe o]l =: g(t).

As a continuous function g is Riemann integrable over [a, b+ ¢] and therefore integrable;
see Theorem 2.4.3. Since

o1

lim —(f(t—h) = f(t)) = —f'(t),

h—0+ h
Theorem 2.3.7 yields
1 1 h—07T /
E(T(h) — Dy = / —(f(t —h)— f(t))T(t)x d\(t) —— — /(mb%) T (t)z dA(t)

(a,b+9) h

= — /(0+ )f’(t)T(t)z d\(t) = —xp,

from which z; € D(A) and Azy = —xzp follows. Since f™ € Cg5((0, +00), C) for any
n € N, by induction we conclude zy € (| D(A™) and
1

n=

A”:I;f = (—1)"atf<n) .
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Suppose Y := span({z; : # € X, f € C§5((0,+00),C)}) is not dense in X. According to
the Hahn-Banach theorem (see [12], Theorem 5.2.3) there exists ¢ € X"\ {0} such that
o(y) =0 for all y € Y. According to Proposition 2.3.6, ¢), we obtain

—+00 “+oo

FOTWz dA®) = [ fOe(T(0)) dA®)

0:s0(96f):s0( i

0

for all z € X and f € C§5((0,+00),C). Since ¢ — ¢(T'(t)x) is continuous, we can
employ Proposition 2.5.2, ¢), to conclude gp(T(t)x) =0forany t >0, z € X and
¢ € X'. By Proposition 3.1.2, b)

0= p(T(0)z) = ¢()
for all z € X contradicting ¢ € X"\ {0}. Finally,

ﬁ D(A") DY = X,

n=1

g

The probably most important result in the theory of strongly continuous semigroups is
the Hille-Yosida Theorem, which states that every closed, densely defined operator on
X satisfying certain properties is an infinitesimal generator for a unique strongly
continuous semigroup. Its proof can be found in [19], Theorem 5.3.2.

3.1.5 Theorem. Let A be an unbounded operator on X. This operator is the
infinitesimal generator of a unique strongly continuous semigroup if and only if the
following assertions hold true.

e A is closed and densely defined.

e There exist M >0 and w € R such that (w,+00) C p(A) and

M

IRE AV < =

(3.4)

for all &€ > w and n € N.

If A is the infinitesimal generator of a semigroup (T(t)) (3.4) holds true for M > 0

and w € R if and only if [|T(t)|| < Me“" for all t > 0.

>0’

3.2 The Laplace Transform

In Proposition 3.1.2 we stated that the resolvent R(\, A) of the infinitesimal generator
can be computed by integrating e ~¢'T'(t). To study semigroups as solutions of Cauchy
Problems, we are interested in an integral representation of the semigroup itself inolving
its generator. Note that (3.1) means that the Laplace Transform of ¢ — T'(t)x equals
R(&, A)x. We want to prove that we can apply the Inverse Laplace Transform to the
resolvent and get the desired result.
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3.2.1 Definition. Let (T(t))t>0 a strongly continuous semigroup, M, w as in

Proposition 3.1.2, a), and A its generator. For u > max{w, 0} the linear operator
Ay = pAR(p, A),
defined on {z € X : R(u, A)x € D(A)} = X is called Yosida approximation.
3.2.2 Remark. For z € X we have
Az = pAR(u, A)r = pAR(u, A)z — p* R(p, A)z + (1> R(p, A)x
= (A — pul)R(p, A)z + p* R(p, A)x = p* R(p, A)a — p,
which implies A, = p?R(u, A) — pl € Ly(X) follows. Additionally,

i e = 0] =0

for all z € X and any 0 < a < b. The proof of the latter can be found in [19], Theorem
5.3.2.

For a bounded operator the inversion of the laplace transform is quickly computed.

3.2.3 Lemma. Let A € Ly(X) and 7 > ||A]|. For ¢t > 0 we have

a1 £t
= 5 | R A) de,

where v : R — C, v(s) := 7 + is and the integral converges uniformly for ¢ in compact
intervals, i.e.

1
lim sup |l — — e R(E,A) dE|| =0
5 1o t€lasb] 270 oo

for any 0 < a < b.

Proof. For f = —a = 27 and £ € Ujj4)(0) we have
=7l <[ +7 <Al +7 <2

Hence,
Uja(0) S Ui (1) = Us_a (7 +i%57).

Givend < a < =27, 3> 3>27 and € € Up—a a(7—+71a+l8) we have

?1
[o})

€ =7 — 15 < -7 - i+ iR - iegf] < e g Bl g ege =

w‘

and in turn
Us.a (7 +1%9) D Una (7 +1%47).

Since Re(§) <[] < 7 for every & € Uju(0),
U||A||(0) C{¢e U/B—Ta (T—i—ia—;ﬁ) : Re(§) < 1}

For f > 27 and o < —27 we define the paths v 45 : [, B] = C, y144(t) =T +is, and
V2,08 1 5 32“] — C, y2.08(s) =7+ z# + ’B_Tae“, as well as Va5 = V1.0.872.0.5-
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]

1 Yjay©

71,a,8

From the first part of the proof we obtain || > [|A|| for any & € ran(v, ), as soon as
£ > 27 and a < —27. Moreover,

oo

Z —A (3.5)

:O

converges uniformly with respect to the operator norm for £ € ran(v,.5); see [12],
Lemma 6.3.10. Since C is star-shaped and 7, g describes closed curve which is
homotopic to the path describing a circle with radius 5— centered at 7+ Za_+6 in C, we
can use Cauchy’s Integral Formula, Theorem 2.2.6, apphed to & > €&, Wthh is analytic
in C, and obtain

tn

1 & 1 dr
4 =2
=0 n!

omi ), e % e
Given N € N, for s € [a, 5] we have

egt

N s)t
e'Yl,a,,B( ) f}/l Ocﬁ

n=0 ’Vl,a,ﬁ( )n+1

T 'LS T N
A = (ALY
|7+ is| S\ |7 + i

Z’ (1 +is)ntt

ert > HA” n ert
< — - = —
-7 Z( T ) T — A’

n=0

and for s € %, 27]

Oé+,6 B;Oéeis)t

(741 +

_Ze 6
Z T+ZQ+5 + B [eF zs)n+1

N
672,04,5( ) ,}/2 Oé,ﬁ

0 V2,0,8(8 )n+1

1Al

n=

€(T+62

cos(s))t N ||A|| n
" B 2 o+ B

f-a ”
€(T+ 5 cos(s))t ”AH )n
|

< ' ( .
- |T+i°‘T+6+ B%ae’ﬂ nZ:O |7'+z'a—J2rﬁ+5_T"‘eZS

6(7’—}—’3_70 cos(s))t

C ity St — 4l
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From cos(s) < 0 for s € [Z, 25] we derive

B_
N ezasling | o(s) (T cos(s))t en
= Mzas(s)™t T = Y R e gy =y T
Because of 5 ) : ) )
e’ b —a)e”
— —ds=—— < +00
/a T — || Al T —[|Al
and
37“ eTt 7T67-t
ds = < 400,
/; Ir+i%8| - 52 — A Ir+i98 — 52 — A

we can use the Dominated Convergence Theorem, 2.3.7, Proposition 2.1.3, ¢), and
Theorem 2.4.3 and obtain

Z AT SN est
tA _ 4
<= Z nl ;(Qﬂ'i f”“ d€>

n=0
L OO </’ﬁ ewlaﬁ(s)tﬁylaﬁ( )An d8+/ 2 eWQO”B(S)tPYQa/B( )An ds)
n+1 n+1
2mi =\ Jo  Y1a,8(8) = 72,0,8(5)
1 e e'Yl,a,ﬂ(S)t /a S 6’72,04,B(3)t Ia S
= — ( / 71’nf1( L4 dns) + / 72’nf1( Lgr d)\(s))
2m =0 V(a.B) V1,0,8(8) T3 V2,0,6(5)
_ L T 06(8) gy L / Pl XECJRE
270 Jiap) 5= Va,8(8)" ! 2mi Jiz 32y 5= Yoa,8(8)" !

1 B emaslS)tyl O ezas(s)t N
= — Tasl®) g g, L / Z 72 205) g,
2mi * n=0 rylvaw8(8>n+ 2m ry27 7/8 n+
L eﬁtiiAn dfzi/ eétR(g A) d¢
2mi Sy, ., = gntl 2mi ), , ’ '

Let t € [a,b] C (0, +00). Because of (3.5) we have ||R(&, A)|| <
with 2.2.4, a), implies

m, which together

3T
2 5. jatB | o isyy 4 . —a i
BajelrHima P el R + j2i8 4 Boaeis A) ds

/ e R(E,A) de
72,a,8

I
wm\

B

B;—O‘e” /E7 ez teos(s) HR(T + z%ﬁ + B%aeis,A)H ds

<
3 B—a
< 6_aeft/ ? ez e ds
- 2 T |T+Z'a_+5+5—_aeis|_||A”
_e’yt 327T B—a
S 5 OH—IB / ethos(s) ds
= = Ir it = A
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<
S Sa-r- A

eTt /2 f—or
< B cos(s)t ds
’T—HAH :

_ —a 75> cos(s)t d)\( )
€ S).
T—-Wﬂ\ ’

El
22

For I < ¢ < 2% acos(yp) is negative and therefore

lim B_ F-acos(s) _ 0
a——co 2
B——+o0
almost everywhere on |7, 37“] Choosing 3, —« large enough we can assume ﬂ_Ta > %
Since x — 2e%*°() is decreasing for > — aCOS(S) > ~ we have
|ﬁ— ’82 a cos s)| < 1 cos(s) < 1
2 ¢ =
a
Hence, we can employ Theorem 2.3.7, and obtain
Tt
: &t —a _B=2 cos(s)t
lim e'R(E,A) dEl| < lim H%e dA(s)
a——o00 a——0o T — HA“ (z,3m)
B—too ||V 72,0.8 B—>—+00 (3%
e'rb 5o
1 B—a Z5*acos(s)
] im o) 5e dA(s)
B——+o0 72
=0.

Note that the last term does not depend on ¢. According to Proposition 2.2.4, a), we
have

1 1 1
o | e d= o [ EReMa- o[ SR de
e V2,08 m Yo, m Y1,a,8
—ean L[ R a) ag,
271 Toag
from which we derive
tA 1 £t 1 &t p—+o0
sup |l — — e R(E,A) df| = sup ||=— e R(E,A) dEl| —— 0.
tefa 278 o s telab] || 278 g0 oo
Consequently, the integral
1 oEt : 1 ¢t
R(&,A)de = tim —— [ eR(¢, A) de
2mi a—r—o00 27T
B—~+o00 T1,a,8
exists and equals e*4
43



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

For unbounded A we first need to gather properties of the induced Yosida
approximation A,,.

3.2.4 Lemma. Let (T(t)) +~o & strongly continuous semigroup, M,w as in Proposition
3.1.2, a), and denote by A its generator. For ;1 > max{w,0} consider the Yosida
approximation A,. If £ € C satisfies Re(&) > “—“’ then £ € p(A,) and

R(f? Aﬂ) /H‘f (/‘LI A)R(éfu A)

as well as
M
|R(E, A < Re(®) = (3.6)
Proof. Let £ = a+ib € C with a > lf_—“’w > —u. We have
wlp +a)® +wb® = (u+ a)(w(p + a) — pa) + pa(p + a) + (w — p)b* + pb?
= (p+a)(w—p)(a— L) + pa(p + a) + (w — p)b* + pb?
< pa(p+ a) + pb?
which implies
pé N\ Re(€)(u+Re(§)) + Im(E)?
Re(qug) — (3.7)

(1 +Re(€))” + Im(€)?

and therefore ;L_Jff € p(A). Given x € D(A), because of ran R(p, A) = D(A) and
AR(p, A)x = R(p, A) Az we have

ey — Av = (0] — A)w— e Ar = Sl — A)(Ex — pR(p, A) Ax)
= el — A)(Ex — pAR(p, A)x) = e(ul — A)(Ex — A,),

7223

which implies

(€1 = Ay = (n+ R(p, A)(fer — Av) = (n+ &) (] — A)R(n, A)z. (3.8)

We can apply the operator = (,u] A)R(L vl A), which is well-defined and bounded by

Proposition 1.2.2, ¢), since ran R( ‘fg,A) = D(A), to (3.8) and obtain

L (ul — AYR(L, A)(E — A, = . (3.9)

By the density of D(A) (3.9) holds true for any = € X; see Lemma 12.3.7 in [17]. For
y € D(A) we have

e (nl — A)R(LE Ay = 2R, A)(ul — Ay € D(A).

ptg’ XY
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Substituting « = ﬁ(,u] — A)R( ‘fg, A)y into (3.8) we obtain

(51 o A#)(u+g (:LLI A)R(u/fgv A)) =Y.

Since y € D(A) was arbitrary and since - (p[ A)R(ulff’ A)(&1 — A,) is bounded, the

equation above holds true for any y € X smce D(A) is dense in X. In conclusion,
§ € p(A,) and

1 9
u—l—f(#l A)R(€+M,A).
For (3.6) note first that A, is the infinitesimal generator of the semigroup (e'),>¢; see
Proposition 3.1.2, 7). Because of Remark 3.2.2, Theorem 3.1.5 and the fact that
eBTC = eBeC for commuting B, C € Ly(X), as shown in Example 5.2.15 in [19], we have

R(f, Au) =

> tm " B > £ 2n .
e = |32 = (1 Rw, A) = p)"|| < e > L | R(u A
n=0 n=0
tn 2n .2 t
<e_MtMZn' _Mexp< (——u)) :Mexp(ﬂfiww). (3.10)

Applying the norm estimate of the Hille-Yosida Theorem 3.1.5 to the semigroup
(e!),50 we obtain

M
RE AN < o
|| < /'L)H Re(S) o #,u,_w
O
3.2.5 Corollary. Let A be the generator of a strongly continuous semigroup (T(t)) >0

and M, w as in Proposition 3.1.2, a). Given p > max{w, 0} and 7 > 2=, we have

1
tAu . _ &t
e = o /ye R(¢,A,)x dE

for any € D(A), where v : R — C, y(t) := 7 + it. Furthermore, this limit is uniform
for t > 0 in compact intervals, i.e.

lim sup |l —/ e R(E, AT dE
oa—r—00
B—+00 te[avb] 7|[o¢ 8]

for any 0 < a < b < +o0.

Proof. If 7 > ||A,||, we simply apply Lemma 3.2.3. If this is not the case, choose
d>||A,l| > 7, a,f € R with < 0 <  and define the paths

Thap - [Oé,ﬁ] - C, 71,0(,6(5) =T +1s,
Yo,0,8 [T, 0] = C, Y20,8(8) :=s+1if3,
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V3,08 - [_67 —O[] — C7 73704,6(5) =0 — i87
Vaap [0, —7] = C, Yyas(s) = —s —ia

as well as
7&,,8 = ry17a7ﬂfy27a)57370"ﬁ74)a7ﬁ'

N V3,2,8
+

5
Fep— ——

.
Ulag|©® ~~__

Note that 7, s describes a closed curve with Re(§) > 7 > u’i—‘”w for any £ € ran(vy,.).

According to Proposition 1.2.4, a), and Lemma 3.2.4, £ — €% R(£, A,) is analytic in the
star-shaped set

{£¢ € C:Re(§) > =} D ran(yas)-

Hence, 7,3, as a closed curve, is homotopic to the constant path 7 + i in
{£ € C:Re(§) > ;’%}, see Proposition 2.2.3. By Cauchy’s Integral Theorem 2.2.5

/ e R(E, A)x dE = 0.
Ya,B
Let 0 < a < b < +o0. In order to show that for z € D(A)

lim STR(E, AT dE = lim TR(E, Az dE =0,
p—rtoo Y2,a,8 > Y4,a,8

we derive from Lemma 3.2.4 and (3.7)

n(s+ik)
< ||A[L’—IUI’H/ ’M+3+Zk’ H ,u+s+zk’A H

5
/ iee™ R(s +1iB, A,)x ds

/ R(E A dE
Y2,a,8

< A pua] / N ds
\/ + 5)2 + (32 Re(w;fﬁ)
M Az —
Az — g (7,
B(Iu_w) T
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M || Az — px|| (e — e™)
B Bt(p — w)

By the continuity of ¢ — @ on R there exists C' > 0 such that

for t € [a, b]. We obtain

CM ||Ax — oo
sup / TR(E AT dE| < |4z = pz]| v > 0 (3.11)
telad] ||[/120 Alp—w)
R
An analogous computation yields
lim sup / R(E, A dE = 0.
ar—oo tE[a,b] Y4,a,8
By Lemma 3.2.3
1
lim sup —/ TR(E, Az dE + el =0, (3.12)
97730 tefa) 210 Sy s
which implies
/ T R(E, A dE = ' R(E, AT dE — ' R(E A dE
T1,a,8 Yo, V2,a,873,a,8V4,a,8
=— / ' R(E, AT dE — e R(E, A dE
Y2,0,874,00,8 V3,8
m omiet g,
a—r—00

By (3.11) and (3.12) this limit is uniform in ¢ € [a,b]. Consequently, the integral

1 1
— [ R(6, Az dé = lim — TR(E, A dE
271 . a——o0 27 [,

B—+o00 Lo,

exists and equals et x.

3.2.6 Theorem. Let (T(t))t>0 a strongly continuous semigroup, M,w as in Proposition
3.1.2, a), and denote by A its infinitesimal generator. Given p > max{w,0} and £ € C
with Re(§) > -5

lim R(§,Ay)r = R(E A

H—r—+00
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for any x € X. Furthermore this limit is uniform for fired Re(§) and Im(&) in compact
intervals, meaning that for any a > —“’ and [a, 5] C R satisfying —oo < o < f < 400

we have -
lim  sup ||R(§ A))r —R(E A)x|| =0

P10 Re(€)=a
Im(€)€fa,B]

for any x € X.
Proof. Because of L’% > w, we have £ € p(A) N p(A,). We want to show the equality

R(&, Az — R(E, A)x = 1z A*R( 5

e

< AVR(E, Az
for any x € D(A?) and p > max{w,0}. To that end, observe that

are (il — AR(EE A (€L — A)(ul — A) R(u, AYR(E, Az = i (ul — AR(E, A,

(il — ARGES, A) (1 + &) (KT — A)R(p, A)R(E, A)w = R(E, A)x

and
(€1 = A)(pl — Az — (n+&)(H51 — A) = A%
By gathering the three equations above, employing Lemma 3.2.4 and noting that A and

R(£, A) commute on D(A) we obtain

R(E, A)e — R(E Az = 2 (ul — AR(LE, A)x — R(E, A)a
= e(ul — AR(EE, A)AR(u, AR(E, A

IRRS putg?
142 13
Given p > max{w, 0} and ¢ € C with a := Re(£) > -7 and b := Im(¢) € [a, 5] for fixed
—00 < o < B < 400 we set g, —a——>0and0bta1n
M M M
IRE A € —— < —— = —
a—w T a— gy

for all ;1 > max{w, 0} by Proposition 3.1.2, g). In order to show a similar estimate for

R(£, A), by

pé N alpta) +0?
Re<u+£> VRN

we estimate

pw pe—wa—pw  pa—w(p+a)  pa(p+a) —w(p+a)?

€, =a— = —
! = w = w ft—w (1 —w)(p+a)
< palp+a) —w(p+a)® + (p = w)b?
B (1 —w)(p+a)

_ (N+a)2—|—b2 ,/‘a<ﬂ+a)+/i52_w(u+a)2+wb2
(p—w)(p+a) (p+a)?+0>  (p—w)(p+a)
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(Re(u”—fg) — w)
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This expression tends to zero for g — +oo independently from b € [« 5]. Lastly, let

>0,z € X and y € D(A?) be such that ||z — y|| < ¢; see Proposition 3.1.4. Employing
Lemma 3.2.4, we obtain
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- eM eM
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Putting these inequalities together yields
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Since € > 0 was arbitrary, the desired result holds true.

3.2.7 Theorem. Let (T(t))t>0
M,w as on Proposition 3.1.2, a). For u > max{w,0}, 7 > max{-25,0} and z € D(A)

be a strongly continuous semigroup, A its generator and

t 1 &t
/ My ds = — e—R(é’,Au)x dg,
0

271 ~

where v : R — C, y(s) = 7 +is. Furthermore, for any 0 < a < b < +00,

1 &t !
lim sup —/ e—R(f,Au)x df—/ g ds|| = 0.
g:;;’gte[a,b] 2mi Ve8] § 0

Proof. For s > 0 and z € D(A) the function n + e R(r +in, A,)x is continuous on
R and, according to Lemma 3.2.4,

||e(7+”7)5R(7' +in, Ay)z|| < < 00, (3.13)

which implies n — e R(1 + in, A,)x is integrable over any bounded interval [, 3];
see Theorem 2.4.3. We define

1 .
Fop(s) == o /( B) e THYR(T i, Ay ) dA(n).

For t > 0 and s € (0,t) by (3.13) we have

Tt
e+ -+ in 4,12 < L1
n—w

and

< +00.

[l g, MG ) e

Therefore, because of the continuity of s + e R(r + in, A,)x, we can employ
Corollary 2.3.8 to see that F,, s : [0,¢] = X is continuous. Together with

t t
SRl ds< oo ([ (e Rir s in A dxw) ds
0 21 Jo \(ap)

1 t M Tt
- ( e—ﬂfu d>\(77)> ds
21 Jo Np) T s

_ Mte'(B—a) |z

_ pw
2m(T — =5)

< +00
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we conclude that F}, 5 is integrable. According to Theorem 2.3.12 we exchange the order
of integration and obtain

! 1 .
/ Fop(s) ds = —— ( / eTHMIR(T 4 in, A,z d)\(n)> d\(s)
0 21 Jio.) M ap)
1 |
S ( / e(T+ims dA(s))R(T +in, Az dA(n)
270 Jiap) M0
1 elrtmt _ 1

N - R(r4in, Az d\
o S T (7 +in, Ay)w dX(n)

1 et 1 1
= — —R(E.A d¢ — — —R(E. A d .
FR(E A ds = 5 / e A de (310

271 iors] 271

We want to prove that the second integral tends to zero for &« — —o0, f — +00, i.e.

B

lim y
a——o0
azoo Jo Y+

R(y+1n, A,)x dn = 0. (3.15)

To that end for —oo < a < 8 < +00 we define the paths

Yt o, Bl = C, y(n) =71 +1n,

T T Of—}—ﬁ ﬁ—a/_i
72,a,53[_57§]—>ca y(n) =T+ 5 + 5 e~

and Ya,5 = 71,0,672,0.8-

RESE:}

Y2,a,8

/

pw
p—w

Since 7,5 is a closed curve in the star-shaped set {{ € C: Re(§) > w} and
& %R(f, A,)z is analytic in {{ € C: Re(&) > w},

LR, A de =0

Ya,B8 5

by Proposition 2.2.3 and Theorem 2.2.5. According to Lemma 3.2.4 we have

|- Z5eie)

fyé,a,/o’(,r/) _
|7+ 398 4 B emin)

72,a,8 (77)

| R(T + §ot8 4 Boaein, Az

Rt 4,)0]
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b —«
<o g+ e

[R(7 + %52 + 5527, Al

(8- a)M IISCII _
=9 B—a o\ ga,ﬁ(n)
(7 + 5% cos(n)) (T + ba 5 cos(n) — E)
if we assume a@ < —7 < 7 < 3. Note that g, g is continuous,
agmoo Ja,5(n) =0
B—+o0
for any n € (=7, %) and, since cos(n) > 0,
Gos() = (6 — a)M [ < Ml
’ 2(7 + [%Ta cos(n)) (7 + B%a cos(n) — ,ft—_ww) T (=)
Because of .
2 Ml 0 7M ||z
T n= o < 00
gT(T—m) T(T—E)

we can employ Theorem 2.3.7, obtaining

1 2 Vaa,(1)
—R(& A xd{z/ : R(v2,0,8(n), Au)x dn
[ e H 5 ) 2 A
B ’Yéaﬁ(n)
< — R(v2.0.8(n), Au)x| dn
[ |z st 40
%
B [e%S)
S/Wga,ﬁ(n) dn =50,

and in turn

v , 1 1
| e A an= [ LR A
1 1 1 1
i gReAdeae— [ e A as
1 B—r—+00
Z-/’yz’aﬁé- (5 )x § a—r—00 0

In our next step, we want to show that £ — %&R(f ,A,)x is integrable along
v(s) = 7 +is for any t > 0 and

Et

lim § R(§,A))x d§ = /§ (&, A,)x dE.

t—0+
To that end assume t € (0, C] and observe

IER(E, Ap)zl < R, Au)(El — Ayl + [|R(E, Ap) Ay
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MI||A,x
= |lz|| + [[R(&, Ap) Az || < x| + | Azl

Re(6) — 22
We obtain
ew(n)t,y/(n) jeTtritn ot
——R(v(n), A)z| = —R(T +1in, Ay)z|| = — ||R(T +in, A,)z||
v(n) ! T+ ! |7+ in] !
- M|A,z eT M||A,z
(el + 2551) e (o + 251 )
p—w p—w
|7+ in|? - |7+ in|?
As

oo € (Il + 1421 .
o M||A < 1
/ p—w ds :eTc(”xH + H MI“)/ ds

- |7+ in|? —J‘—ww T2 4 52
TC(H H + Mllt“u??ll)
= Y <400 (3.16)
-

we can employ Theorem 2.3.7, to conclude that £ — %R(& ,A,)x is integrable along ~y
and
eft +oo ev(mity!

lim R(¢,A,)x d§ = lim

t—0+ g t—0t

(n)
N WR(V(’O), Ay)x dn

= /+OO 7/@))3(7(77)’ Az dn

/f Al de.

By (3.15) the last integral vanishes. Hence, given € > 0 we find § € (0,¢) such that

We fix 0 < a < b < +oo with § < b and employ Corollary 3.2.5 to see that

1 655

lim sup ||Fa5 — eSA”x” =0,
oa—r— OO
B—r4o00 ® [5,

which implies

¢ ¢
/ F,p5(s) ds —/ ey ds
5 5

sup
tela,b]
t>6

< sup/ | Fus(s) — eoa]| dt

te[a b|

< sup ((6=0) sup |[Fos(s) =

t€la,b] s€[6,t]
t>6
SA B—+o00
<bsup ||Fa5 —e ”x”—)()
5b] a——00
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Together with

4
< / Al gg < gedldul < coellAul
0

b
‘/ Sy ds
0

and
I /6F (5) ds| = 1 |o— “ (e A de = gRE A i
im np(s) ds|| = lim ||=— —R(§, Ay dE — — —R(§, A,z
Btoo 10 mened| LU ' 270 S & '
L e 4 d
_’2—7” 7? (&, A)x dE|| <e

we conclude

< geclAnll 4 ¢

¢ ¢
/ Fop(s) ds —/ ey ds
0 0

Since € > 0 was arbitrary, we obtain

lim sup

a——oo
B to0 t€(a,b]

t t
lim sup /Faﬁ(s) ds—/ ey ds|| = 0.
Bt oo telab] 1o 0
Furthermore, from
1 egtR A p 1 Be(rJrin)tR - p
! O+ i, A dA

together with (3.14) we infer

i 1 ett 1 ,
/o Fop(s) ds — 5 —R(§, Ay)r dE = o /(a R(T +in, A,)x d\(n)

Y1,a,8 g 7ﬁ) T + ZT’

17
o), THin

R(T +1in,A,)x dn.

Note that the last term does not depend on ¢ and converges to zero for a — —o0,
8 — +o00. Combining the previous two estimates yield

t 1 e{t
lim sup /eSA“ac ds — — —R(&, A, )z dE|| = 0.
gjjrgte[a,b] 0 2mi yl,aﬁﬁ
U
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3.2.8 Corollary. Let (T(t)) .o be a strongly continuous semigroup, A its generator
and M, w as on Proposition 3.1.2, a). For 7 > max{w,0} and x € D(A)

/OtT( )xds—%/g (€ Az de,

where v : R — C, v(n) = 7 + in. Furthermore, for any 0 < a < b < 400

1 ¢
lim  sup —/ “R(E, A)a dE — / s)z ds|| = 0.
g reled || 270 Loy €

Proof. Let € > 0, t € [a,b], 0 <a < b < +o0, and py > 7, such that 7 > ;% for every
> o and x € D(A). For « < —7 and § > 7 we define the path 7,5 : [, 8] = C,
Ya5(n) = T +in. By Lemma 3.2.4 and Theorem 3.1.5 for £ := 7 +in, n € R, we have

IER(E, Ap)all < (€1 = Ap) R(E, Azl + [| A R(E, A
< [lzll + (1R, Al 1Azl

M
< ll2ll + ln AR, A)zl] —
p—w

uM|Ac|  M|Aa]
S -0 -2y (1-9)(r— =)

for any p > po. As
I M || Az|| M || Az
im

u—>+oo(1—f)(7’—l%)_ T—w

there is a constant C' > 0, which neither depends on x nor on &, such that

1 M ||Az|| - C

|R(E, Ap)z]l < — " o <
€ =9 (r—£2) = I
We derive
v'(n) i C
R(v(n), AN = R VA, :
' v(n) (), 4,) T+ in (r+im 4,) |7+ in|?
where N c N c
[ =0 =T <

H—>—+00

By Theorem 3.2.6 we have R(\, A,)r —— R(\, A)z. Therefore, the requirements of
Theorem 2.3.7 are fulfilled and we obtain

. 1 : oo .
HEIJPOO : XR()\’ Az d\ = #Erfoo T inR(T +1in,A,)z dn
- MEIEoo P R(T 411, A,)x d\(n)

1
— R(t +1in, A)x d\
/R T+in (7 +1n, A)x dX(n)
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+00 1
= in, A)x d
/Oo r+mR(T+“7’ )& dn

—/%R({,A}x d¢

as well as

/ (e ) - R ) de| = | [T (i), 4 - Rt )

<e™ /R 77,((:;]; (R(y(n), Au) = R(y(n), A))z|| dA(n)
< [ |28 (R0 40 - R ). )]

We conclude

lim sup
K100 te(a,b)

/;( (€, 4,) - <5,A>>:vd§H=o.

Since s +— T'(s)z is continuous in [0, ¢], it is Riemann integrable; see Proposition 3.1.2,
b). Furthermore, according to Remark 3.2.2

t t
/ e Mg ds — / T(s)x ds
0 0

< sup/ ||eSA“3: T(s)z| ds

sup
t€la,b] t€la,b]
< sup <t sup He —T(s)xH)
tela,b] N s€l0,t]
= b sup He ry —T H EnasaN
s€[0,b]
If e > 0 and p; > po are such that
/+oo 6(T+i7’])t( ( 4 ) ( A)) y c
sup — (R(7 + 1in, — R(7 4+, x|ldn < =
tefab] J oo || TN : 3
and
t t
sup / e Mg ds — / T(s)x ds|| < =
tela,b] 0 0

for any p > g, then

B et

v(n)

R(v(n). A,) — R(v(n), A)) dnH

/g( (6.4 - ris. o a | = | [

I
< / ) o

dn

(R(y(n), Ay) — R(v(n), A))x
)
7(77)

al77<E

R(v(n), Ay) — R((n), A))x .
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for any « < —7 and 8 > 7. Let pt > py. By Theorem 3.2.7 there are constants oy < —7
and [y > 7 such that

£
< —

up
tela,b] 3

L / egtR(gA) de /t Aug d
— — , x d§ — e rr ds
21 7'[0,5] g K 0

for any oo < ap and 5 > fy. Combining the previous inequalities we obtain for o < a

and 8 > [
1 st
—/ —R(&, A)x d§ — / s)x ds
211 ’Y|[a,[3] §

sup < €.

tela,b]

We can prove the final result of this section.

3.2.9 Corollary. Let (T(t))t>0
M, w as in Proposition 3.1.2, a). For 7 > max{w, 0} and z € D(A?)

a strongly continuous semigroup, A its generator and

1

T(t)x = 5

’5tR(§ A)x dE,
where v : R — C, v(n) = 7 + in and

lim sup

gjjrgg te(a,b]

T(t)x — / | e R(E, Az dE
Ve, 8]

for any 0 < a < b < +o0.

Proof. First, consider the bounded operator B := 0. Clearly, p(B) = C\ {0},
R(¢, B) = %I for € # 0 and || B|| = 0 < 7. Therefore, employing Theorem 3.2.3, we
obtain

as well as

r— — —ux d€

=0. 3.17
21 ( )

lim sup
%:;_T_g te(a,b]

The mappings s +— T'(s)z and s — AT(t)x = T(t) Az are continuous in [0, t]. Therefore,
by Corollary 2.3.13, 3.1.2, f), 2.1.3, g), and Corollary 3.2.8

t 1 &t
T(t)a -z = / T(s)Az ds = — | S-R(¢, A) Az d. (3.18)
0 2m
Furthermore,
= e R(E, A — e—&x dé = ! / e (R(&, A)x — 1) dE
270 s £ i e £

o7
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_ b SR(E, A)(w — (€1 — A)ka) de

2 Va8

L  pie. AV A d 1
=5 ww]? (£, A)Ax dE. (3.19)

Since Az € D(A), we can employ Corollary 3.2.8 to obtain the integrability of
£ eSTR(E, A) along v and

1 et
' R(E, A)r dE = AAz dé+ — [ —=x d
s [ R A e = o [ CRe s ac e o [ o
L[ e a)an d
= o J, R(§, A)Ax d§ +
Corollary 3.2.8 also yields
¢ 1 est
lim sup /T(S)Ax ds — — —R(&,A)Ax d¢
gjjrgte[a,b} 2mi Ve 5] §

which by (3.17), (3.18), (3.19) implies

1
lim sup [|T(t)z — — S R(E, A de
9T telo) 270 ) s

3.3 Analytic Semigroups

Recall the fact that for any z € C\ {0} there is a unique pair (r,¢) € (0,400) X [—m,7)
such that z = re®?. We call arg(z) := ¢ the argument of z. The argument can be
computed by

(arctan(?) for a > 0,
arctan(2) + 7 for a < 0,b >0,
, arctan(2) — 7 fora < 0,b <0,
arg(a +ib) = ¢ a (3.20)
) fora=0,b> 0,
-5 fora=0,b <0,
—T fora < 0,b=0.

\
Throughout this section X denotes a Banach space.

3.3.1 Definition. Let ¢, > 0 and (T(t)>t>0 a strongly continuous semigroup. (7(¢))
is called differentiable for t > tq if t v T'(t)z is differentiable on (¢, +-00) for any

x e X. If to =0 we call (T(t))t>0 a differentiable semigroup.

Furthermore, for o € (0, 7) we call

o ={z€C\{0}: |argz| < ¢}

a sector in the complex plane and set X, := ¥, U {0}. For ¢ € (0, %) we call a family of
bounded operators (T(z)) sexy O X an analytzc semigroup of angle v, if

t>0

o8
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o T(z+w)="T(2)T(w) for all z,w € Y,
e z — T(z) is analytic in X,

o ligl T(z)x = for all z € X.
s

An analytic semigroup is called bounded, if

sup ||T(z)]] < 400
z2E€Xy

for all 6 < .

Clearly, for an analytic semigroup (T(z)) o, the semigroup (T (t)) is a differentiable
2CZp

>0
as the generator of (T'(t))

%

semigroup. We define the generator of (T(z )

z€¥, t>0"

We want to characterize generators of analytic semigroups and, in the course of that,
what kind of properties a strongly continuous semigroup has to have, in order to be
extentable to an analytic semigroup. To that end, we introduce the class of sectorial
operators.

3.3.2 Definition. An operator A: D C X — X is called sectorial of angle § € (0,%), if
A is densely defined,
Yri5 Cp(A)

and
sup [[ER(E, A)|] < +o0

562%-&-"

for all n € (0,9).

Note that, given a sectorial operator A, p(A) # () causes A to be closed; see Proposition
1.2.4, d).

3.3.3 Theorem. If A is a sectorial operator of angle 6 with the additional property that
0€p(A) and § <0 < 5 +0, then A is the infinitesimal generator of a bounded and

strongly continuous semigroup (T(t))t>0 satisfying

271 .

T(t) = - / EUR(E,A) de,

where v : R — C is defined by v(s) := —se™ for s € (—00,0] and v(s) := se® for
s € (0,400). Furthermore, for any e > 0

1
lim sup |T(t) — —/ e R(E,A) de|| = 0.
G e 2mi Va1
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Proof. Because A is sectorial,

My
IR A <
[
for some Mjy and all £ € ¥y. Hence, for s € (—oo, —1]
S —se~ 0 4 —1 —Scos —1
Heﬂ )t”y’(s)R(”y(s),A)H = H—e te"®R(—se G,A)H =e ) HR(—S@ e,A)H
—scos(0)t
< Mpe ©) < Mee—scos(e)t‘

5]

0 € (5, ) implies cos(f) < 0 and, in turn,

2
M, o) s " oS cos(0)t | —1 A\ ecos(@)
—S COs — < .
/ ‘ “cos(0)t 1-o "I cos(0)]t oo
By the continuity of s +— e?®)y/(s)R(v(s), A) on [—1,0], it is Riemann integrable.
Therefore, by Proposition 2.1.2 £ — e’ R(¢, A) is integrable along (oo 0. An

analogous computation yields the integrability of £ — ¢S R(€, A) along Y10,400)- We
define S : [0, +00) — Ly(X) by

S(t) .= —

21

/ STR(E, A) de

for t > 0 and S(0) := I as well as the paths v, : (—00,a] = C, v,(s) := —se™",
Y5 [B,+00) = C, y5(s) := se® for a < 0 < B. Given ¢ > 0 and t > ¢,

5tR5 A) dg“ H/ e e\ R(—se ", A) ds

_/ e—scos HR _ZG,A)” ds

a —scos(0)t a
< MG/ 6— ds < % efscos(O)t ds

—s ol

—00 —0o0

B Mye @ cos(0)t Mye—= cos(0) oo

lcos@ff = e[ cos(0), 0
We obtain
lim sup / e R(E,A) dg‘:o
a—r—00 tZE Yo
and analogously
lim sup /eﬁtR(g,A) déll = 0.
B—+00 ¢>¢ vs
From
1 1
S(H) = 5 IR(E,A) d = 2—( / ETR(E,A) dE + / I R(E, A) dg)
Tt IV (o] Tt NSy V8
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we conclude

lim sup = 0.
a—r—00 t>¢

B—+o0

1 et
S0 57 [ e

It remains to show that (S(t)),.

generated by A. For fixed ¢t > 0 we define the paths 7y, : [—1,0] = C, by
Y1a(8) = —se™, 73, : [0, 1] = C by 72,(s) := se” and 73, : [-0,0] — C by

is a bounded and strongly continuous semigroup

1 _—is
Y34(8) = 17
arg(6) =5+ %
RN V3,
N Y2,t
-7 1t
arg(§) = —6 — T

Since € — e R(€, A) is analytic on p(A) D Yz ,5 UU,(0) for sufficiently small n > 0 and
V1,672,473, 18 a closed curve in the star-shaped set ¥z 5 U U,(0), we can employ
Proposition 2.2.3 and Theorem 2.2.5 and obtain

/ e R(E,A) dE = 0.
Y1,t7Y2,t7Y3,t

Defining v, := 7| and s we derive

(—o0,—1] M 1o0)

T Y 27” Y1,t72,t

S(t) = 2i / UR(EA) dE = —— / LR(E, A) dg+2im_ / UR(E A) de
Y4,t7Y5,t

= [ R A) de— o / CUR(E, A) dE, = - / SUR(E, A) de,
Yt

2mi Ya,£75, ¥3,t 2m

where v, 1= Y4173 75.¢-
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5.t

arg(€§) =5+ %

V4.t

We want to show that there is a constant C' > 0 such that [|S(t)|| < C for all ¢ > 0. To
that end we estimate

Note that the last term does not depend on ¢t. An analogous computation yields the
same estimate for the integral along 7s,. Finally,

1
t

*% efscos(é)t -
< My / — ds < Mt / e300 g

S

/ e R(E,A) d

Y4,t e} e ¢}
6%‘ cos(0)|t ecos(@)
=Myt — = My < to0.

cos(0)t . | cos(0)]

1 ’ cos(6 1 is
g—/ O |[R(e™, )| ds
tJ g

o
o .1 gs Leist 1 is
= H/ez;e et "R(;e”, A) ds

/ e R(E,A) de
-

3t

1 0
< - / tMpe®®) ds < 20M, < +00.
-0

We define C' := max{—M"ecos(G) 5 1} > 0 and obtain

2mcos(0) ' w

S <C
for all ¢ > 0.

In order to show that (S (t)) >0 1s a strongly continuous semigroup generated by A, we
want to employ Theorem 3.1.5. To that end we first prove

“+oo
R(p, A) = / e MS(t) dt
0
for all 4 > 0. By [[e "S(t)]] < Ce ™ and

“+o00 e—ut
/ Ce ™ dt = —C—
0 2

400 C
= — < 400,
o p
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t — e #S(t) is Riemann integrable and by the definition S

—+o0
/ e S (1) / / E-WiR(E, A) dedt.
0 " 2mi

for > 0. In order to change the order of integration, we set
f(t,s) = e (s cos(O) =)t HR(sew,A)” , s,t€[0,400),
and note that

|7 () R(~(s), A)|| =

e(se = (i) R(se? A)H = f(t,5).
For t > 0 and s > 0 we have
F(t,5) < M p(scoso)-rt
s
As
+oo 1 M, +o00 (scos(0)—u)t 1
/ / O plscos(@)-mt gy gs — M@/ ¢ ds
A L S(scos(B) =)o
+o0 6scos(@) 1
S
0/1 s(scos(@) —pu)  s(scos(0) — p) °
L +o0 1 6scos(e) o y
N 0/1 (s(u —scos(d)  s(u— 3005(9))> °
+oo 1
< M, d
- / s —scos(0)

B Moy ln( S ) “+oo
o p— scos(f)

=—1In(1-— —“—COS(Q)) < 400,

1

we can apply Theorems 2.3.12 and 2.4.3 and obtain

/1+OO (/01 (M (5)R(v(s), A) dt> ds = /01 (/1+OO =Mt/ () R(y(s), A) ds) .

By continuity there exists a constant C' > 0 such that
f(t.s)<C, stefo 1]

Consequently,

/01 (/01 6(7(8)_“)7:’7,(3)}%(7(8),14) dt> ds = /01 (/01 6(7(8)_“)757,(8)1{{(7(3),14) ds) di.

For t, s > 1 we conclude from

f(f;’ 3) < %Q(SCOS(O)_M)t < Moe(scos(e)—u)t
S
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that

+o00o
dt

400 o0 400 es cos(0)t
/ Moe* =1 ds dt = M, / e M
1 1 1 s cos(f)

v +o00 e(cos(@)—,u)t g
= — dt
’ /1 — cos(6)

o (cos(0)—p)t

1

+00

= Mo cos(0)(p — cos(0))

Maecos(e)—u
~ cos(6)(cos(0) — p) = e

1

Again by Theorem 2.3.12

/1 +OO( /1 - T (5) R(7(s), A) dt) ds = /1 +O° ( /1 o 010 () R(~(5), A) d5> i@

Lastly, for ¢ > 1 and s € [0, 1], by continuity, there is a constant K > 0 satisfying
| R(se”, A)|| < K for any s € [0, 1]. Hence,

f(t,s) < KelscosO-mt < [ge=nt,

From

—+o00 1 “+00 _
Ke™#
/ / Ke M ds dt = K/ e M dt = c < +00
1 0 1 2

we derive

/01 </1+0° V=M (SYR(~(s), A) dt) ds = /1+OO (/01 e0O=1t () R(~(s), A) ds) dt

Altogether we obtain

/0+oo ( /O+°° 01 (5) R(4(s), A) dt) ds = /0 +o0 ( /0+°° G- (5) R(~(5), A) ds) i@t

By analogous computations for s < 0 we obtain

/0 ( /O+°° =i/ ($)R(7(s), A) dt> ds — /0 oo ( /0 &=t (§)R(7y(s), A) ds) dt.

—0 —o0

Hence,

eCTMIR(E, A) dE dt

!
. /O - / - U=t (SYR(v(s), A) ds dt
[

+oo
/ e MS(t) dt
0

e(w(s)’“)ty’(s)R(’y(s)7 A) dt ds
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- 7(/0%0 e dr) R(E, 4) de

1
=5 mR(ﬁ ,A) dg

Let £ > 24 and define

Yig 1 [0,k] = C, yiu(s) = se ™,
Yot [—0,0] = C, yo(s) := ke™

and '
Yot [k, 0] = C, v34(s) := —se”

as well as the closed curve v 1= 71 xV2,173,k-

arg(§) =0+ 5

h(r,s) :== (1 — r)yu(s) + r(u + pe™2~Y) constitutes a homotopy bewtween 7, and
s+ g+ pe™27D s € 0,1], in p(A) \ {u}. Since € — R(€, A) is analytic in p(A) D
ran(), we can employ Theorem 2.2.6 and obtain

0, A 2m/%—R&A de.

Furthermore, since A is sectorial,

o:(5) H ‘ ike's . H k
7 R A - L R k 18714 - R S,A
‘ 72,14:(5) — ('72,k(5) ) kezs — 1 ( € ) |k?6’5 — ,Ul H )”
= MW ”_kk 1)’

and

/9 kMg J 20kMpy  k—syoo
k(k —p) k(k —p)
from which we conclude

lim %R(g, A) de = 0.
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Taking the limit k& — 400 in

1 1 1
% 73,1@711@5_'“ <€A)d£__% 72k§ R(gA df—’__[/k RgA 6
1
=5 . ?R(ﬁ ,A) d€+ R(p, A)
we obtain
tee 1 1 B 1 1
1 1
= R(u, A) — lim —— R(, A) dé = R(u,A>

e HS(t) is absolutely integrable and therefore integrable for any p > 0; see Theorem
2.4.3. Furthermore, —( THS(t) = —te M S(1),

d
Hdue ns(e )H s 1o
and

+oo C
/ tCe M dt = — < +o0.
0 1%

Hence, by Proposition 2.3.9

d d [+t~ . oo .
—Ru,A:—/ e“Stdt:—/ te M S(t) dt.
R =2 (v 0 (v

Repeating this argument for t"e#*S(t) yields

dm +o0o
—R(u, A —1"/ t"e M S(t) dt.
R = (1

for any n € N. By Proposition 1.2.4, b), we have

d?‘L
G R 4) = (1) m R, A
for n € N. Hence,
1 foo
R A" = 5 /O lehtS(4) dt,

and in turn

1 too C e
IRGe AP < g [ e ISl < = [ e ar

C (n—=1)! C

(=1 p» pr
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By Theorem 3.1.5, A generates a strongly continuous semigroup (T (t)) >0 satisfying
|T(t)|| < C for any t > 0. It remains to show S(t) = T(t) for ¢ > 0. To that end let
r € D(A%) and t € [a,b], 0 < a < b < +00. By Theorem 3.2.9 we can write T'(¢)x as

T(t)r = QL’]TZ : S R(E, Az dE,

where 7 : R — C, 4(s) := 7 + is for some 7 > 0. For k > 7 we define

Mk [k, 0] = C, ya(s) == —se™,

Yo : [0, k] = C, Yor(s) := se,

Yar : [0,1] = C, y3x(s) == ke + S(T — kcos(@)),
Yar i [—ksin(f), ksin(f)] = C, v4x(s) :=7 —is

and
Yok o [0,1] = C, y5x(s) :=7 — tksin(0) + s(k cos(d) — 7)

as well as v, = Y16 V2,6V3.6 Y4k V5 k-

arg(6) =6+ F

~ o 3,k
<
SO Y2,k
\\
<
~ o Y4,k
<
<
<
N
<
P
-
-
P
P
-
-7 T,k
P
// <
-7 5,k
arg(§) = —6 —

Since £ — ¢*' R(§)z is analytic in the star-shaped set Y5,z U U, (0) € p(A) we can
employ Proposition 2.2.3 and Theorem 2.2.5, so that

/}#mgmxﬁzu

We want to prove

lim ' R(E,A) dE = lim e R(E, A) dE = 0.
k—+o00 Va.h k—+o0 Ys.k

To that end, note that cos(f) < 0, sin(#) > 0 and consider

€47 (5)Rlaa(5) )] = e+ O (7 cos(6) Ras) A
< e(kcos(@)Jrs(TkaOS(@)))t (7- —k COS(&)) ||R73,k(5>7 A) H
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Myetkeos@+sG—keosONt (7 _ [ cos(6))

- [73,£(5)]
MpetkeosO+s(—keosONt (7 _  cos(8))
<
= ke + s(7 — kcos(0))]
3 Mee(kcos(eHs(T—kc?s(f’mt (7 — K cos(6))
= k sin(0)
as well as 1 (r—k cos(6))t
T—k cos —1
/ ps(rheos@)t o _ © .
o (7 — kcos(0))t
We obtain
1 Mee(kcos(@)—l—s(ﬂ-—kcos(e)))t (7_ —k COS(9)> Moy (eTt — ek 008(9)t> b 400
/ ‘ ds = . > 0
i Jsin(6) k sin(0)t

and, in consequence,
1
| e 9RO, 4) ds
0

< [ IR, )

/1 M, e(kcos(@)-i—S(T kcos(0)))t ( — kcos(ﬁ)) d k—0F
=/ k sin(6) ’

/ SUR(EA) de
Y3,k

In a similar fashion it can be shown that

. &t
Jim || [ et dg
5,k
Consequently,
1
S(t)r = S R(E, A)x dE = 57 Jim M R(E, Az dE
27TZ 71'2 k—+oo Y1,672,k
1
= lim —( / S R(E, A)x dE — e R(E, A)x dE — / e R(E A dg)
ko0 27\ /., V3, k75,k Va,k
1 1
=—— lim ' R(E, Az dé = — lim S R(E, A)x de
2m1 k—-+oo Ya,k 271 k=00 A=k sin(8),k sin(8)]
g'fR(f Az d§ =T()x
27T

for any ¢ > 0 and z € D(A?). Because of T'(0) = I = S(0) and D(A?2) = X we finally

have T'= 5.
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The goal of the present section is to find necessary and sufficient conditions under which
a strongly continuous semigroup can be extended to an analytic semigroup; see
Theorem 3.3.5. Before we can prove this result, we state and prove the following lemma
regarding differentiable semigroups.

3.3.4 Lemma. Let (T(t)),.,
T : (0,4+00) — Ly(X) is infinitely many times differentiable and

a differentiable semigroup and A its generator. Then,

T™(t) = A"T(t) = (AT($))" = (T'())" (3.21)

Proof. First we will prove by induction that A"T'(t) € Ly(X) as well as
ran A" 1T(t) C D(A) for every t > 0 and that A" T : (0, 4+00) — Ly(X) is continuous

for all n € N. For n = 1, because (7'(t)) 1~ 18 differentiable,

1
ST (e —T(t)a) = - (T(t+ )z = T(t)z) 220 (T () ().

Hence, T'(t)z € D(A) for all t > 0 and = € X. Therefore, AT (t) is defined on X and,
because A is closed and T'(¢) is bounded, by Proposition 1.2.2, ¢) belongs to Ly(X). Let
x € X and s,t > 0 satisfying s < ¢ as well as |s — t| < 1. Since ¢ — T'(t)x is continuous,
A is closed and T'(t)x € D(A) for every ¢t > 0, we can employ Proposition 3.1.2, e) and

obtain
‘ _ HA(/:T(:;)T(T ) dr) ‘

= are( [ T — s)a dr) < sup [T (- ) [AT(6)] .

rel0,1]

1

IT(H)z — T(s)z]| = HA(/: T(r) dr)

which implies
IT(t) = T(s)[l < sup [ T(r)]| (£ =) [AT(s)]]
rel0,1]
Since by Proposition 3.1.2, a) we have sup [|T(r)] < 400, T : (0, +00) — Ly(X) is
rel0,1]
continuous.

Let n € N and assume that A"T(t) € Ly(X) and ran A" 'T'(t) C D(A) for every t > 0
as well as that ¢ — A" 'T'(t) is continuous. Let 0 < s < ¢, € X, and set y := A"T(s)z.
From

1

E(T(h)A”T(t)x — AT (t)z) = = (T ()T (t — s)A"T(s)x — T(t — s)A"T(s)x)

(T(t— s+ h)y - T(t — s)y) =55 (T()y) (£ - s)

:I»—*DIH

we conclude A"T'(t)x € D(A). Since z € X was arbitrary, ran A"T'(t) C D(A). Again by
Proposition 1.2.2, ¢), the operator A"*'T'(t) = A(A™T(t)) is bounded. Since for
O<s<t<s+1

|A"T(#)z — A"T(s)z|| = ||A™(T( x—T(s)m)H:“A”Jrl(/stT(r)mdr)
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B HAnH(/:T(S)T(T ~s)a dr) ‘

= ‘ AT (s) (/:T(r —s)x d?") ‘
< sup [70) ¢ = 9) 4" T () ]

(0,400) >t A"T(t) € Ly(X) is continuous.

The proof of (3.21) uses induction. Let 0 < s < to. Since t — AT(t) is continuous at t,
the mapping F': [s, +00) — Ly(X), defined by

F(t) = / AT dr 4 T(s),

is differentiable at ¢y and F'(ty) = AT (to); see Proposition 2.1.3, f). From the continuity
of t — T'(t) and t — AT(t) on [s, +00) we conclude that both maps are Riemann
integrable. Hence, we can employ Corollary 2.3.13 and Proposition 3.1.2, e¢) and obtain

T(t)e = A( / T dr) + T(s)r = / AT dr+ T(s)e = F(t)a

for any « € X, which implies F'(t) = T'(t) for every t > 0 and that t — T'(¢) is
differentiable at to satisfying 7"(ty) = F'(to) = AT (ty). Since to > 0 was arbitrary, T is
differentiable on (0,400). Let n € N and assume that (3.21) holds true. Let 0 < s < t,.
Since t +— T'(t) and ¢t — A"T'T(t) are Riemann integrable, see Proposition 2.1.3, d), we
can employ Corollary 2.3.13 and Proposition 3.1.2, e), and obtain

T (¢) = AMT(1) = AP ( / t T(r) dr>+A’“T(s) — / t ALT(r) dr + APT(s).

By Proposition 2.1.3, f), we obtain that t — T (¢) is differentiable at ¢, satisfying
T (t) = (T™) (ty) = A"T(t,). Since to > 0 was arbitrary, we have T+ = AT
Lastly, by noting that A and T'(¢) commute and using the semigroup property of 7', we

see that
AMT() = (AT(L)" = (T'(£)"

t t
n n
Now we are able to prove the central result of the present section.

3.3.5 Theorem. If (T(t))t>0 is a strongly continuous semigroup and A is its generator,
then the following statements are equivalent.

a) There exists an angle @ € (0, %), such that (T(t)),., can be extended to a bounded
analytic semigroup of angle . -

b) (T(t))t>0 is bounded and there exists a constant C' > 0, such that for all ¢ € C
with Re(€) > 0 and Im(£) # 0 the resolvent satisfies

I1R(E, A)|| <

[ Tm(&)|
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c) {£ € C:Re(&) >0} C p(A) and there exists a constant C' > 0 such that for all
¢ € C with Re(§) > 0 the resolvent satisfies

C
R(&, A)|| < —.
IR A = 15

d) A is sectorial.

e) (T<t))tzo is a differentiable semigroup and there exists a constant C' such that

C

AT = + (3.22)

for all t > 0.

Proof. a) = b). Fix 6 € (0,¢) and @ > 0. Let M,w as in Proposition 3.1.2, a). Since
(T(t))t>0 is bounded, we have w = 0 and according to Proposition 3.1.2; h), in turn,

{€ € C:Re(€) >0} C p(A). By Proposition 3.1.2, h)

R(E, A)r = /0 " (e dr

for any x € X and £ € C with Re(§) > 0. Let 0 < o < 8 and define the paths

Vl,a,ﬁ . [O[,/B] — C, ’71,a,ﬂ(8) = Se_ie’

V2,0, [0, Bsin(0)] = C, v2a,5(s) = Be_ie + 18,
Va.as ¢ (=B cos(0), —acos(0)] = C, y3a.5(s) = —s

and

Yawp : [—asin(@),0] = C, vaas(s) = ae™? —is

as well as Va8 '= 71,0,672,0,873,0,8 V4,0, 8-

72,a,8
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Since z + e **T'(z)x is analytic in the star-shaped set X, D ran(v,4), we can apply
Proposition 2.2.3 and Theorem 2.2.5 and obtain

/ e T(2)x dz = 0.
Ya,B8

Since (T(Z))zezo is bounded, we have ||T(2)|| < M, for some My > 0 and all
2 € Yy D ran(Ya). We set a := Re(£)(> 0), b := Im(¢) and assume first that b > 0.

From cos(6), sin(#) > 0 we conclude
o725 @nh  5()T (Ya.a8(5)) 2| = [|ie P HIT(Be ™ +is)a ‘
< e—(a,Bcos(G)-i—b,Bsin(G)—bs) HT(ﬁe_w + ZS)” Hl,H
< Maef(aﬁcos(9)+bﬁsin(9)fbs) HxH

and

Bsin(0) ) ) Bsin(0)
/ Meef(aﬁ cos(0)+bp sin(f)—bs) Hx H ds = Maef(aﬁ cos(0)+bpBsin(0)) ”x H / ebs ds
0 0

bBsin(0) __
_ Meef(aﬁcos(G)erﬁsin(G)) ||xH (6 ) 1)

b
M
_ #(eaﬁcosw) . ef(aﬁcos(H)erﬁcos(H)))
B—+o0 0,
which implies
lim e ¥ T(2)x dz = 0.
'84)4»00 Y2,a,8
From
72 (T (s ()| = || i T (™ — is)a
< e—(aacos(0)+basin(0)+bs) HT(ae—iG _ ZS)” ”'TH
< Mee—(aa cos(0)+basin(6)+bs) ||l'||
we infer

0
/ efng(z) dz S/ Mee—(aacos(O)erasin(9)+bs) HxH ds
Y4,0,8

—asin(6)
0
— Meef(aacos(O)erasin(H)) ”xH efbs ds
—asin(0)
basin(6) __
_ Mee—(aacos(Q)—I—basin(@)) ||£L‘|| (6 1)
b

_ Myl
b

a—0t

0.

(e—aacos(G) . 6—(aacos(9)+bacos(0)))
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Hence,

/ e T (2)r dz = / e T (2)r dz — / e T (2)x dz
T,a,8 Yo, V2,a,873,a,8Y4,a,8

= —/ e T (2)x dz — / e T (2)x dz
V2,a,874,0,8 V3,0,
+oo
LmasN / T (H)x dt = R(€, A)x
0

a—0t

and we conclude that z +— e %*T'(z)x is integrable along v : [0, +00) — C, y(s) := se™ ¥,
so that

R(&, A)x = /e‘ng(z)x dz.

/ eET(2)r d :‘ / e85 T(se~1%) ds
¥ 0

< /OO e—s(acos(e)-‘rbsin(e)) |‘T(86_i6)l‘H ds

-~ Jo

As acos(f) + bsin(d) > 0

IR(&, A)a| = \

< M, HxH/ efs(acos(G)ersin(G)) ds
0

A
acos(f) + bsin(0)

With C' = sm(9) > (0 we obtain from acos(6) > 0

[R(E, A)z|| <

b

acos(6) + bsin(6 ) | Il

C
 [m(9)]

By analogous computation and integrating over the ray se??, s > 0, also in the case
Im(§) = b < 0 we obtain

[R(E, A)z|| < T ][ -

( [Im(€)|
is bounded, also (T'(t)),., is.

t>0

Clearly, if (T(z))zGE
b) = c). Let C' > 0 be as in b) and note that since ||T'(¢)|| < M for some M > 0 and all

t > 0, Theorem 3.1.5 yields
M
R A < ——

for every ¢ € C with Re(§) > 0. Defining K := 2max{C, M} leads to

€] _ Re(§) | [Tm(§)] 1
K=o T oac S||R(§,A)||

for all £ € C with Re(¢) > 0.
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¢) = d). Let C > 0beasinc),qe (0, 1) and define § := arctan(%) € (0, 7). We want
to prove Xz 5 C p(A) and || R(E, A)|| <D ig forall £ € ¥z and some D > O Let

§ =a+1b € Xz 5. Since the right half plane is by assumptlon contained in p(A), we

have ¢ € p(A) and
C

€]
in the case a > 0. For a < 0 we have b # 0 and according to (3.20)

IR A < =

larg(&)| =7 — arctan(ffl“)

which implies

- arctan(l‘—l) < — g

We derive

and l";# < 4. This inequality also holds true if a = 0. For € € (0, %5 bl _Ja]) we define

Wi=¢€+ Zb € p(A). By Proposition 1.2.4, a)

la— ¢l lal qlbl _ galu| q
E—ul=la—z|=b < b < —= < <
€= = la el = W < (g + ) < 6 < & < mRo

implies £ € p(A) and

R(&,A) = (n—&)"R(p, A"
n=0
Consequently,
& C

R€7A S f—ﬂnRﬂ, n+1< Rﬂa q < .

(e AN < 3l =l IR A < | HZ T < T
Since

02|€|2 — C2a2 + O2b2 < q2b2 + 02b2 — (q2 + 02)b2

we have

C _ G+ C?
(I=g)bl ~ (1 =gl

IR(E, A)|| <

which yields the sectoriality of A.

d) = e). Let ¢ > 0 and define S(t) := e 'T'(t). By Proposition 3.1.2, g), (5(t)),., is a
strongly continuous semigroup generated by B := A — e[ and, in turn, B
R(,B) =R({+¢,A) for any £ € p(B) ={pu—¢c:p € p(A)}. We want to show that B
is sectorial. Clearly, D(B) = D(A) = X. For ¥z 5 C p(B) = p(A) — € or equivalently
€+ Yz45 C p(A) it is enough to verify e + Xz, 5 C Xz 5. Let £ :=a +1ib € Yz 5. We
consider three distinct cases.

Case a+¢ < 0:

larg(§é +¢)| =7 — arctan(a‘%ﬂ) — T4 arctan(%)

4
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<7+ arctan(';) |arg(§)] < g + 4.
Case a+ ¢ = 0, which is only possible for b # 0:

T om
= — < —+9.
|arg(§ +¢)| 5 <57t
Case a-+¢e>0:

_ |0] w
|arg(§ + ) —arctan(| +5|) <I 5<% T

Let 0 € (5,5 +9) and § € Xy. Since p +— |arg(p)| is continuous on {u € C: Re(p) < 0}
we have |arg(z)| > § + ¢ for all z € U,(—¢) and some sufficiently small 7 > 0. Because
of £ € ¥y C U,(—¢)¢ we obtain

€ _letelte_, < ¢
E+el = JE+e] Ere = Ty

Since A is sectorial and £ + € € Yy, there exists a constant My > 0, which does not
depend on £ + ¢, such that

My
IR+ e AN < gy
From M € My | Mp(1+2)
R(E Bl = IR A o _ Rl i A S )
|R(&, B)|| = [[R(§ +¢,A)|| < e E+q ¢ < €

we conclude that B is sectorial. Furthermore, € € Xz 45 C p(A) yields

O=e—ce{n—c:peplA)}=pB).

Hence, we can apply Theorem 3.3.3 and obtain

1
() = 5.7 | R B) de
for any ¢t > 0, where y(s) := —se™ for s < 0 and v(s) := se? for s > 0 with some

(
0c(5 5+ 6) Let x € X and define f(t,5s) := "9/ (s)R(7(s), A)x. Because B is
sectorial, there exists a constant My > 0 such that

My
IR Bl < —
N
for any £ € ¥y. For s < —1 we have
1) = [le (e ) R(=se™, B)a| = et || R(—se~, B)a|
—S8 COS M T —S8 COoS
(6)t 16 H “ < Mpe (Ot HxH ’

B ER
where because of cos(f) < 0

Meecos(e)t ”xH

—1 —1
M, —scos(0)t ds = M. / —scos(0)t ds =
[ Mo ds = o [ e s - S

5
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In consequence s — f(t,s) is absolutely Riemann integrable over (—oo, —1), and in turn
integrable; see Theorem 2.4.3. Analogous arguments lead to the integrability of

s+ f(t,s) over (1,+00). Since s — || f(t, s)|| is continuous, it is integrable over [—1, 1].
We conclude that s — f(t, s) is integrable over R for every ¢ > 0. Furthermore,

Lf(t,s) =(s)e? ' (s)R(y(s), B)x. For tg > 0, 0 < & < tg, t € (tg — &,10 + €) and

s < 0 we estimate

H%f(t, s)|| = H(—se_w)e_sefwt(—e_w)R(—se‘ie,B)xH
= [sle™* O || R(=se™, B)| |||
< ‘S|escos(9)t%_M —scos(O)t | 1|
< Mpe™sosOto=2) |||
Note that the last term does not depend on ¢ and
/0 Mye—se0s0)t0=2) || d5:M9||x||/O pmscosO)to—e) g — _ Mollzll
oo oo | cos(0)|(to — €)

We obtain a similar result for s > 0. Hence, by Proposition 2.3.9

1 1 +oo
St = o / S“R(E, B de = o / Y RA(), B ds
1
s Rews)t’Yl(S)R(’Y(S)aB)x dA(s)

is differentiable at ¢y and

(S()2) (to) = —— / A(5)7 9 () R((s), B)x dA(s / ECUR(E, B de.

2me
Consequently, also t — T'(t)z = e'S(t)x is differentiable in ¢, satisfying

(T()x) (to) = e S (to)a + ¢ (S(-)x) (ta)
and (T'(t)),., are differentiable

Since ty > 0 and = € X were arbitrary, (S(t))t>0 =0

semigroups. We employ Lemma 3.3.4 and obtain

/ _ 1 / &t
IS0l = 15 0el = | (000 0)] = | 5 [ e e B ae
1 /
= o | [ e R ), By ds
1 e Y !
<o [ hEEY ) IRGE), B ] ds
Lo My ]
< — 5)e )t/ ()] =2 ds
<o /. [7(s)e™" ()] )]
0 +00
M [* i gy [ g ) = Dolel
2 o 0 | cos(0)|t
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My

7 cos(f)

Setting C' := we conclude

C
IBS@) < =

Note that C' does not depend on . Since B is sectorial, (S(t)) +~0 1s bounded according
to Theorem 3.3.3, i.e. ||S(¢)|| < M for all ¢+ > 0 and some M > 0. In consequence,

C
|AT(t)]] = HeEt(B + 8I)S<t)H < |BS@)|| +ee ||S()| < eEt? +ee'M.
Since € > 0 was arbitrary, we have

C
lAT@) < 5

e) = a). Clearly, in (3.22) we may assume that C' > e¢~!. According to Lemma 3.3.4,
T :(0,+00) = Ly(X) is infinitely often differentiable and satisfies

cm™  C™e™nl
< <
- tm tn

IT™ )| = [[(AT(£)"]] < | (AT(L)[" (3.23)

for any ¢ > 0. Here we used the fact that n™ < e"n! for all n € N. Hence, given z € C,

|7 @) 12 = ¢ - Cme™nl|z —t|" _ (Ce|z—t|)n

n! - trn! t

implying absolute convergence of

(i < ;!t)nT(n) (t)) NeN

n=0

for |z —t| < & . Due to Lemma 1.1.5 for ¢ > 0 the function S : US (t) — Ly(X) defined
Ce
by

Sy(z) = i (2= D" gy

n!

n=0

is analytic. Given ¢t > 0 and p € (0, 1), we want to prove that Sy(s) = T'(s) for any
s €[t t+ g—te] To that end, consider the remainder of the Taylor polynomial and observe

‘ /S (s — T)nT(n—I—l)(r) dTH < /S (s 1—1'7“)” HT(n-‘rl)(r)” dr
t t .

n!

< o0 [ resiar
_ (s —t)" /s Crtlentl(n +1)!

Tn+1

dr

n!

- (s —t)y"C" e (n + 1)! /S 1

tn+1

dr

n!
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(s —t)"HiCmtlenti(n 4 1)
- tn+1

pn+1tn+10n+len+1 (n + 1)
- tn+10n+1en+1

= (n+1)pt 2%,

By Taylor’s Theorem for Banach space-valued functions (see for example Fakta 9.3.17
in [17])

Z () = Si(s), s € [t, &]- (3.24)
n=0
For 0 < t <t satistying G := U(C (t)n (t’) # 0 we have t' — £ < ¢+ L. We want to

show that S;(z) = Sy(z) for z € G For that aim define the sequence (t,)nen recursively
by ty :=1t and

/

¢ 1(t’ Py t”‘l) > 1
ni=—(t' — — _ ., n> 1.
2 Ce Ce

In order to show that (t,),en is monotone and bounded, we observe that ¢ty = ¢t < ¢’ and

1 t t 1
t:—(t’—— t —):— 1— 20 —(1— 2t +2t
1 9 C€+ +C€ 2(( Ce) ( C’e> + )
1
:5(1—é)(t’—t)+t>t:t0.

Assuming ¢, < t' and t,_; < t, we obtain

1/, toN 1y, N,
tn+1=§<t——+tn+—><—<t——+t+—> '

Ce Ce 2 Ce Ce
and
t —1<t’ Lo +t"_1><1<t’ L. t")—t
"9 Ce ™17 Ce 2 Ce ™" Ce) ML
The limit lim ¢, = ¢ satisfies
n—-+oo

E—l(t’ P iy t)
B Ce Ce/’

n—-+o0o

which is possible only for t = . As t,, + bt + é—/e > t' there exists a N € N
such that ¢y 4+ 2 >t and hence ¢’ € Uty (tN). From
Ce

tn —tno1 = 5 (8 — & + o1 + ) — ta
= %(t’ — ot + 252) — (14 Zo)tnar + 252
= %( '~ &) - %(1 + g2 )t + 552
< %W &) - ;(Hé)w e
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1
=S -& -+ &)+ <&
we derive ¢, € Uty (tp—1) N Usn (tn). Let
Ce €
$ € [ty tuot + 252) = [taet, tn1 + 252) N [t £ + &) and choose p € (0, 1) such that
S € [tn-1,tn-1+ I%] N [tn, t, + 22]. According to (3.24) we have

St (8) =T(s) = Sy, (s).

t’gel) clearly has an accumulation point in U+, (t,-1) N U o (tn), we can

Since [ty

Ce
employ Proposition 1.1.6 to see that S;, ,(z) = S;,(2) for every
2 €Uty (tho1) N Uty (tn). By the same argument we derive from [t/, ¢y + &5) # 0 that
Ce €

Sy and Sy coincide on Uty (ty) N U v (#'). Hence, by S¥ (s) := S, (s) for s € Uty (tn),
Ce Ce e
n=0,...N,as well as S!'(s) = Sp(s) for s € Uy (t'), we get a well-defined and analytic
Ce
mapping

St UUM JUU (t) = Ly(X).

Consequently, S;(z) = S (z) = Sy(z) for any 2z € Ua (1)U (). Since ¢ and ¢ were
€ Ce
arbitrary,
S:{zeC:|z—-1 < %forsomet>0}—>Lb(X)
e

with

o0

5) = iz = 3 E- e

n!
n=0

if ze U (t) for some t > 0, is well defined and analytic. Since S(s) = T'(s) for any

s € [t,t+ 55;) and every t > 0, S(s) = T(s) for every s > 0. Therefore S is an analytic
extension of 7|, 4o0)-

We want to prove X, C {z € C: |z — t| < & for some ¢ > 0} for ¢ := arctan(Z-). In
fact, z := a +ib € X, implies a > 0 and

arctan(—) > |arg(z)| = |arctan(2)| = arctan(' |)

from which we derive %' < % For ¢t := a > 0 we have

alb| t
=t =l ="C < 5=
We set S(0) := I and want to show that (S(Z>)zEEO

©

t,s > 0 such that [z — t| < £ and |w — s| < Z. We obtain

is a semigroup. Let z,w € X, and

t+ s
Ce

and, using the Binomial Theorem, Cauchy’s Product Formula and Lemma 3.3.4,

(2 +w) = (E+5)] < |z =] +[w = 5| <

(e o]

Stz4w) =Y (2+w—(t+9)) T (¢ 4 s)

n!
n=0
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1O Y )47t + 5

_ i i e e S)n_kA’fT(t)A“*’“T(s)

S (n—k)!
N (w—s)""*
2 ( k! Q) Ay (s)
n=0 k=0
(S ) (5 )
—~ = nl
= 5(2)S(w)
In order to show that (S(z)) seso is bounded, let 6 < ¢ = arctan(z-) and choose p < 1
be such that § = arctan(£;). Given z := a + ib € 5y, we obtain a > 0 and
arctan ‘b‘) |arctan(2)] = |arg(z)| < arctan(&:),
which implies
L
a ~ Ce
For t := a we have
ot =< 2= B T
- C Ce Ce
and, in turn

which proves boundedness.
Finally we show strong continuity of S. Let & > 0 and = € X. Since (7'(t))
continuous, we find £y > 0 such that

[S@)x —z| = [[T(t)r — x| <&

£0 is strongly

for any ¢ < t;. On the other hand, because z — S(z + t¢) is analytic in z = 0, there
exists 7 > 0 such that
15(z +1t0) = Sto)l| <€

for |z] <rand z € ¥,. If 2 € X, satisfies |arg(z)| < arctan(£;) for some p € (0,1) and
|z| <7, then
1S()2 — 2ll < 1S() — S(= + to)all + 1S(= + to)e — S(to)z ] + |S(to) — o]
< [ISCNNT o)z — || + & ||zl + &
< (15 + Izl + De.
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3.3.6 Corollary. Let (T (t)) >0 Pe a strongly continuous semigroup, A its generator

and M,w as in Proposition 3.1.2, a). The following statements are equivalent.

a) There exists an angle ¢ € (0, 7), such that (T(t))t>0 can be extended to an
analytic semigroup of angle . -

b) There exists a constant C' > 0, such that for all £ € C with Re(§) > w and
Im(€) # 0 the resolvent satisfies

¢) There exists a constant C' > 0, such that for all £ € C with Re(§) > w the
resolvent satisfies o

A —_
IR <

d) A —wl is sectorial.

e) (T(t)) >0 1s a differentiable semigroup and for every € > 0 there exists a constant

C., such that
CLelwtelt

AT < <
for all £ > 0.

Proof.: Define S(t) := e “'T'(t). Proposition 3.1.2, g), identifies (S(t))
continuous semigroup generated by B := A — wl satisfying

>0 @8 2 strongly

IS@I = e T < Me e = M, t > 0.

a) = b). For 0 < 0 < p and all € X the mapping z — T'(z)x is continuous on the
compact set {z € 3y : Re(z) < 1} implying the existence of a constant K, > 0, such that
|T(2)x|| < K, for all z € 3y with Re(z) < 1. By the Principle of uniform boundedness
(Corollary 4.2.2 in [12]) there exists a constant K > 0, such that ||7'(z)| < K for all

z € g with Re(2) < 1. Let 2 € 3y and n € N be such that Re(z) € [n — 1,n). We obtain

IT(2)| = ||T(n- 2)|| < || TE)]" < K" < K - KR = [ehFORe),

Assuming w > In(K) we have ||S(2)|| = e R ||T(2)|| < K for all z € 3. Hence,
(S (z))z €S is a bounded analytic semigroup. By Theorem 3.3.5 for £ € C satisfying
Re(§) > w and Im(€) # 0 we have

C C
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b) = c). According to Theorem 3.1.5 |R(§, A)|| < Re(g) for every ¢ € C with
Re(§) > w. If C' > 0 is as in b), then we define K := QmaX{C, M} and obtain

€ —w| _ Re(@) —w+ ()] _Re(®) —w | _ 1

K ~ K - 2M 2C° ~ ||R(&, A
for every ¢ € C with Re(¢) > w and Im(¢) # 0. If Im(§) = 0, we have
M M K
R(& A = .
IR AN < pod— = oo < e

c) = d). For £ € C satisfying Re(£) > 0 we obtain

C _C
€ +w—ol Il
Consequently, B = A — w/ is sectorial according to Theorem 3.3.5.

IR(E, B)I| = [IR(§ + w, A)|| <

d) = e). Since B = A — wl is sectorial, we obtain that (S(t)),. is differentiable and

>0
1B <<, t>0

Since (0, +00) 3 t — S(t)x € X is differentiable for z € X, also T'(t)z = e“*S(t)x is
differentiable and satisfies

(T()2)'(t) = we S(t)x + e (S(-)x)'(¢).
(S(t ))t>0 being bounded yields

C+wMt
JAT@)] = [|e'(B + DS < e [BSO] +we [S(0)] < e
Given € > 0, by a standard argument the right hand side is less or equal w for a

sufficiently large C-..

e) = a). Given ¢ > 0, according to Proposition 3.1.2, g), R(t) := e~ “9*T'(t) defines a
strongly continuous semigroup generated by A — (w + ¢)I. Let x € X and ¢ > 0. Since
(T(t)),., is differentiable, also (R(t)),., is differentiable and satisfies

>0
(R()2)'(t) = —(w + e)e” @M T (t)x + e @H(T()z) ()
for every x € X. Moreover, by assumption

[(A= W+ R®)|| < e @ AT + e @ (w + ) T ()]
C.
< - +MeH(w+e) <=
for all t > 0 and a sufficiently large L > 0. By Theorem 3.3.5 (R(t))t>0 can be extended

to a bounded analytic semigroup. Since z + e“+9)* is analytic in C, also
t > T(t) = e“T*R(t) can be extended to an analytic mapping.
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Chapter 4
The Abstract Cauchy Problem

Let X be a Banach space. We will use the theory about semigroups developed in
Chapter 3 to study the Abstract Cauchy Problem: Find u : Jy — X such that

{u’(t) = Au(t) + f(t), teJ,
u(0) = xo,

where either J = (0, o] for some ty > 0 or J = (0, +00), Jo = J U {0},
A:D(A) C X — X is linear, f: J — X and zyp € X. We will use the just employed
notations throughout the present chapter.

At the beginning we will deal with the homogeneous problem f = 0.

4.1 The homogeneous Problem

Given X, xp € X, A: D(A) C X — X as above we consider the homogeneous Cauchy
Problem

{u’(t) = Au(t), teJ (4.1)

4.1.1 Definition. We say that u : Jy — X is a solution of (4.1), if u(t) € D(A) for all
teJ, ueC(Jy; X), uly; € CH(J; X) and u solves (4.1).

We want to show that, if A generates a strongly continuous semigroup (T(t)) >0 and Zg
is contained in D(A), problem (4.1) has a unique solution u which satisfies
u(t) = T(t)xo for t € Jy. Regarding to uniqueness we need two lemmata.

4.1.2 Lemma. If u : [0,¢)] — X is continuous for a fixed ¢, > 0, such that

to
/ e"u(s) ds
0

sup
neN

< +00,

then u(t) = 0 for all ¢ € [0, #y].
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Proof. Let ¢ € X’ be an element of the topological dual space of X and let
f:0,t9] = C be defined by f(t) := ¢(u(t)). By assumption there is a constant C' > 0

such that
to to
/ " f(s) ds|| = ng(/ e™u(s) ds)
0 0

for all n € N. Since u : [0,t9] — X is continuous, we also have ||u(t)|| < K for some
K > 0and all t € [0,t0]. For s € R consider the series

\ <Ol

- (_1) - o S ns —ens
Y Sy
k=1 k=0
For fixed t € [0, () the sequence of functions
- (=D"'
gN(S) = Z Te n(t+sft0)f(8)
k=1 '
satisfies gy (s) 2= (1 — e="""* ") £(s) and
| > 1
S— kn s— en(t+s—tq)
lox(s)ll < 3 et ) < 3 et el fu(s) | < K gl
k=1 1

710 i continuous, it is integrable over [0, t5]. We employ

/Oto gn(s) ds

Since the map s +— K ||¢] e
Theorem 2.3.7 and obtain

to (t4s—tg) to
/ (1= " )p(s) ds / lim gn(s) ds
0 0

N—+oc0

= lim
N—+oc0

N - - t
L (_1)k lekn(t to) 0 s
[ EE [
o0 kn(t—to) to
S € o / eanf(S> ds
k=1 ’ 0

n(t—to)
= Cllell (= 7 1),

which tends to zero as n — +00. Since
_en(t+s—tg)
| = e ps)|| < NP < K Nl

for every n € N and

lim (1—e """ f(s) = f(s)

n—+00

for s > tqg — t as well as
lim (1— e_en(t+57t0))f(s) =0

n—-+00

for s < ty — t, again by Theorem 2.3.7

to to
/ f(s) ds = lim (1— e_en(Hs_tO))f(s) ds = 0.
to—t

n—oo 0
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Defining

— /to f(s) ds, te]0,tg),

we obtain F' = 0. Since f is continuous, we can employ Proposition 2.1.3, f), and see
that F' is differentiable satisfying

f(t)=F(t)=0

for every t € [0, o). By continuity also f(to) = 0. Hence, (u(t)) = 0 for any ¢ € [0, t]
and any ¢ € X’. The Hahn-Banach Theorem, Theorem 5.2.3 in [12], yields u(t) = 0 for
any t € [0, o).

U
4.1.3 Lemma. Let ty > 0, J := (0,%o], A: D(A) C X — X be linear and densely
defined. Given &, € R such that
{EeR:E =6} Cp(4)
and
sup | R(€, A)a] < +oo (42)
§>&o

for any x € D(A), the homogeneous Cauchy Problem (4.1) with arbitrary xy € X has at
most one solution in the sense of Definition 4.1.1.

Proof. If uy and uy are two solutions of (4.1), then u := u; — uy satisfies
u'(t) = Au(t), t e (0,t],
u(0) = 0.

In order to show that u = 0 on [0, ¢y, we assume for the moment that £ = 0 and
consider the mapping v : [0, +00) — X defined by v(§) := R(§, A)u(ty). Employing (4.2)
and the fact that u(t),us(t) € D(A) for all t € (0,ty], there exists a constant C' > 0,
such that

[0l <, = 0.

Clearly, s + e(~*) is integrable over [0, o). Since u € C([0,%]; X) and
ul (0.6 € C*((0,0); X), by Theorem 2.4.2 and Proposition 2.4.5 we have

to
/ el0=9) Ayy(s) ds:/ e~/ (5) d\(s)
o (a,to)
= u(ty) — ello™ —i—/ e~y (s) dA(s)
(Oc to
:u(to)—e(to @) —i—/ e~y (s) ds
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to
a0, u(to) +/ S0~y (s) ds.
0
Hence, s + e$(0=%) Ay(s) is improperly integrable over (0,t,] satisfying
to
/ eS0T — A)u(s) ds = —uf(ty).
0

Consequently, by Proposition 2.1.3, ¢),

0(€) = R(E, AYulto) = —R(E, A) / SO (] — AYu(s) ds

= — /to eg(to_s)R(g,A)(ﬁl — A)u(s) ds = — /to eg(to_s)u(s) ds.
0 0

Employing Theorem 2.4.6 and substituting s — ¢y — s leads to

v(€) =— /(o,to) St~y (s) d(s) = — /(o,to) e“uty — s) dA(s) = — /0 O eu(ty — s) ds

which implies

to
/ Mty — 1) dt|| = [lo(n)]| < C
0

for all n € N. According to the previous lemma, u(tg —t) = 0 for all ¢ € [0,¢,]. This
concludes the proof for £, = 0.

For arbitrary & € R we define B := A — &1, v;(t) := e "u;(¢), j = 1,2, and conclude

{u@) — Bu(t), te(0,t],
U(O) = Xy.

Because of

p(B) ={&—&: &€ p(A)} 2[0,+00)
by the first part of the proof we obtain vy (t) = vy(t) for every t € [0, ¢y] implying
U = Us.

g

4.1.4 Corollary. If A generates a strongly continuous semigroup (7'(t)) then (4.1)

with arbitrary xo € X has at most one solution.

t>0’

Proof. Suppose first that J = (0, ¢] for some ¢y > 0. Let M,w as in Proposition 3.1.2,
a), and set & := w + 1. According to Proposition 3.1.2, h), we have

(6 Ao < T < o]

for every £ > &y and x € X. According to Lemma 4.1.3, (4.1) has at most one solution.
In case J = (0, +00), let uy, us be two solutions of (4.1). Since w4, and us|o ) solve
the homogeneous Cauchy Problem on (0, ¢y] for every ¢y, we obtain u;(t) = us(t), t > 0,
by the first part of the proof.
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4.1.5 Theorem. Letr >0 and A: D(A) C X — X be linear and densely defined with
p(A) # 0. The homogeneous Cauchy Problem (4.1) on J := (0,to] has a unique solution
for all xy € D(A) and ty € (0,r], which is continuously differentiable on [0, 1], if and
only if A generates a strongly continuous semigroup (T(t)) In this case the unique
solution is giwen by u(t) = T(t)xo.

>0

Proof. Suppose first that A generates a strongly continuous semigroup (T(t)) >0 Let
xo € D(A) and define u : Jy — X by u(t) := T(t)xo. By Proposition 3.1.2, f), u is
continuously differentiable on [0, #,] satisfying

d
u'(t) = %T(t)xo = AT (t)xo = Au(t)
as well as u(0) = T(0)zg = [xg = . Together with Corollary 4.1.4 we conclude that u
is the unique solution of (4.1).

For the converse let u,, be the unique solution of (4.1) with initial value z,, which is
continuously differentiable on [0, ¢y]. Because of p(A) # 0 the operator A is closed; see
Proposition 1.2.4, d). By Lemma 1.2.5 Y := (D(A), ||-||) constitutes a Banach space.
According to Example 9.1.9 in [17], C([0,%];Y) is a Banach space when equipped with
the norm

Wl = sup Jo@®)lle = sup ([lv(®)] + [[Av(®)]]).

te[0,to] te[0,to]
Furthermore, we define 7' : Y — C([0,t0],Y) by Tx := u,. Note that for all z € D(A)
the solution u, exists and is unique as well as continuously differentiable as a function
from [0, o] to X, meaning the maps ¢ — u,(t) and ¢t — u(¢) are continuous on [0, .
Since u,(t) = Au,(t) for every t € (0,ty], Au, is continuous on (0, ts]. Because of
lim Auw,(t) = lim ul(t) = u,(0)
t—0+

t—0t

and
lim wu,(t) = u,(0) = x

t—0t

t—ot

the closedness of A implies Au,(t) — u,(0) = Az = Au,(0) verifying the continuity
of Au, on [0,%y]. Hence, u, € C([0,%,];Y) for any € D(A). We split up the remaining
proof into parts.

Step 1: We want to show that T € Ly(Y, C([0,%0),Y))). Given z,y € D(A) and £ € C,
u = uy + §u, satisfies

u'(t) = uy(t) + Euy (t) = Aug + Au, = A(u, + Euy) = Au

as well as u(0) = u,(0) + £u,(0) = x + {y. Since w is continuously differentiable in [0, ¢,
and u(t) € D(A) for any t € [0, to], the uniqueness of solutions implies

T(x 4 &y) = Uprey = u = Uy +Euy = T +ETy.

87



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

In order to verify T’s boundedness, we prove that 7" is closed and employ the Closed

Graph Theorem; see Theorem 4.4.2 in [12]. Let (x,)nen be a sequence in Y satisfying

lim ||z, — 2|, =0 and lim [Tz, —v|| . = 0 for some x € D(A) and v € C([0,%,];Y).
n—oo

n—o0
Since u,, and Au, are continuous in [0,%y], they are Riemann integrable; see

Proposition 2.1.3, d). We employ Proposition 2.1.3, g), Corollary 2.3.13 and derive for
t e [0, to]

(T)() — 2 = s, (£) — 110, (0) = /0 L (s) ds — /0 A, (5) ds = A( /0 e (8) ds).
Hence,

n—-+00

lim A(/Ot U, (5) ds)z v(t) — x.

Furthermore,
t ¢

‘/ Uy, (5) ds—/ v(s) ds
0 0

see Proposition 2.1.3, b). By the closedness of A

< / iz, () — o(s)ll ds < ¢ sup g, (5) — v(s)]

s€[0,¢]

n——+oo
0,

S t() ||Tl'n - UHoo

/Otv(s) ds € D(A)

A(/Otv(s) ds) =v(t) — x.

v e C([0,t0];Y) yields continuity of v and Av. Hence, they are Riemann integrable and

/Ot Av(s) ds = A(/Otv(s) ds) —o(t) — =

see Corollary 2.3.13. Because Av is continuous, we can employ Proposition 2.1.3, g),
and obtain that v is differentiable satisfying

and

V'(t) = Av(t)
for every t € [0,ty]. Together with
V0= Iy v ()= g 2n =0

the assumed uniqueness of solutions implies T'x = u, = v. Hence, the graph of T is
closed.

For t € [0, ty] the linear mapping 7'(t) : Y — Y, defined by T'(t)z = (T'z)(t) = u.(t)
satisfies ||T()||, < ||T']| and therefore belongs to Ly(Y).
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Step 2: We are going to verify the semigroup property for T'(+). Fix s € [0,ty), x € D(A)
and consider the mappings vy, v : [0,t9 — s| = Y defined by

v1(t) =T )T ()T = Uy (5)(t), va2(t) =T (t+ 5)x = uy(t + 5).
Their derivatives satisfy
V(1) = Uy, () (1) = Aty () (t) = Avi(t)

and
Vo (t) = ul(t + s) = Au,(t + s) = Avq(t).

Since solutions are unique,
01(0) =ty (5)(0) = ug(s) = v2(0)

implies T'(t)T(s)x = v1(t) = vo(t) = T'(t + s)x for all ¢ € [0, ¢y — s]. Moreover,
T(0)z = u,(0) = x for all z € D(A). Hence, T'(0) = Iy and T(t +s) = T(t)T(s) on Y
for all ¢, s € [0, ] with ¢ + s < ¢y. In order to show that the operators (T(t>)te[0 1o}

commute with each other, let ¢,s € [0, %] with s < ¢. In the case s +t < t; we have
T(t)T(s) =T(t+s) = T(s)T(t). Otherwise, if n € N is chosen such that s+ £ < t,, then

T()T(s) = T(nb)T(s) = T(L)"T(s) = T(s)T(L)" = T(s)T(0).

n

We extend T'(t) to [0,+00) by
T(t) :=T(t — nto)T (to)"

for t € (nty, (n + 1)to] and n € N. In order to prove the semigroup property on all of

[0, 4+00), let t,5 > 0. For s =0 or t = 0 clearly T'(t + s) = T'(t)T'(s). Otherwise let

n,m € NU{0} be such that ¢t € (nto, (n + 1)to] and s € (mty, (m + 1)to| implying

t+s € ((n+m)ty, (n+m+2)ty]. In the case t +s € ((n+m)to, (n +m+ 1)ty] we obtain

T(t+s) =T((t+s)—(n+m)to)T(to)" ™ = T(t—nto)T (to)" T (s—mto)T (to)™ = T(t)T(s).

For t + s € ((n+m + 1)tg, (n +m + 2)te] choosing p, ¢ € [0,1] with p + ¢ = 1, such that
t > (n+p)ty and s > (m + q)ty, we obtain

T(t+s)=T((t+s) — (n+m+ 1)to)T(to)" "+
=T(t—(n+ p)to)T(pto)T(S — (m +q)to)T(qto)T (to)" T (to)™
T(t —nto)T(to)"T(s — mto)T(to)™ = T(t)T(s).

Step 3: From (Tx)(0) = T(0)z = z, z € Y, we conclude ||T|| > 1. We define w := 2
I = ||T|| and obtain for t € (ntg, (n + 1)t]

I7#)ll = Tt = nto) T(to)"|l < M < Mo = N exp(B00) = ie,
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Step 4: In order to show that T'(t) and A commute on D(A?), let x € D(A?) and define

v(t) =2+ /Ot Uaz(s) ds.

v:]0,t9] = X is well-defined since Ax € D(A) and uy, is continuous and therefore
Riemann integrable over every subinterval of [0, ¢y]; see Proposition 2.1.3, d). By
Proposition 2.1.3, f), v is differentiable and satisfies

V(1) = ua(t).

Noting that u4, and Au,, are continuous and therefore Riemann integrable, we can
employ Corollary 2.3.13, (4.1) and Proposition 2.1.3, g), and obtain

V(1) = ua.(t) = Az + /Ot Auy,(s) ds = A(x + /Ot Uz (S) ds) = Av(t).

By the uniqueness of solutions v(0) = z yields v = u,. Hence,
T(t)Ax = ua.(t) = v'(t) = u,(t) = Au,(t) = AT(t)x.

Step 5: We want to extend T'(t) to the whole space X for every t > 0. Let z € D(A)
and ¢ € p(A). For y := R(¢, A)x we have Ay = {y — x € D(A) implying y € D(A?).
Moreover, by Lemma 1.2.5 the generator A : Y — X is bounded. Hence

(&1 — A)z|| < C||z||; for every z € D(A) and some C > 1. Together with Step 4 we
obtain

T (@)l = | T(E)(ET = Ayl = |(E1 = AT (t)y]|
< CTt)ylle < MCe" |yl
= MCe (||R(&, A)x|| + | R(E, A)Ax]))
= MCe”' (|R(, A)x| + (ER(E, A) — D))
< MCe (|R(E, Al + ] | RE, A)|| + 1) ||| .

Defining M := MC(||R(&, A)|| + |¢] | R(€, A)|| + 1) > 1 by D(A)’s density in X we can
extend 7'(t) to a bounded operator from X to X satisfying

IT@)] < Me*';

see Theorem 1.1.1 in [12]. Given ¢, s > 0, the operators T'(t + s) and T'(¢)T(s) are
continuous and coincide on D(A). Since D(A) is densely contained in X,
T(t+s)=T(t)T(s) on X.

Step 6: In order to prove that (T(t))t>0
to show that t +— T'(t)x is continuous at 0 for all + € X. We already know,

T()x = u, : [0,t)) — X is continuous for x € D(A). In order to show the strong
continuity on the whole space X, let ¢ > 0, x € X and choose y € D(A), such that

is a strongly continuous semigroup, it remains
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|z — y|| < e. Moreover, let h € (0,1) be such that ||T(t)y — y|| < e for all t € (0,h). We
obtain

IT(#) — | < [[T(t)x =Tyl + 1Ty =yl + [y — =]
< Me*' |z =yl + 1Ty —yll + ¢
< (Me¥ + 2)e,

implying tlir(g T(t)xr =z for all x € X.

Step 7: It remains to show that A is the infinitesimal generator of (7'(t)) 1> Let A be
the generator of (7'(t)),. . For z € D(A) we have

t>0°

u(t) = Au,(0) = Az,

implying A C A. For the converse let € D(A?) and € > w. Employing Proposition
3.1.2, h), we see that t — e *'T'(¢) and t — A(e *"T'(t)z) = e T (t) Az are Riemann
integrable over [0, +00). According to Proposition 3.1.2, h), we have

R(&, A)x = / e T () dt
0
which by Corollary 2.3.13 belongs to D(A), and
R(&, A = A(/ e T (t)x dt) = / e ST (t)Ax dt = R(¢, A)Ax
0 0

Since A commutes with its resolvents, we obtain

AR(E, A)x = R(E, A) Az = R(¢, A)Ax = AR(E, A)x.
iy Proposition 1.2.2, d), ({1 — A) ( ) D(A), implying R(§, A) (D(A)) = D(A?).
D(A%) = R(£, A)(D(A)) 2 R(&, A)(D(A)) = R(&, A)(X) = D(A),

D(A?) is dense in X. Let € X and (2,,)nen a sequence contained in D(A?) satisfying
lim , = «. Since ran R(£, A) = D(A) and A is closed, AR(E, A) is a bounded

n—-+o0o
operator; see Proposition 1.2.2; ¢). We conclude

lim AR(¢, Az, = lim AR(E, A)x, = AR(E, A)x

n—-+oo n—-+4oo
as well as

lim R(¢, A)x, = R(E, A)x.

n—-+o0o

A being closed implies R(¢, fl)x € D(A). Since x € X was arbitrary, we obtain

D(A) =ranR(¢, A) C D(A)
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and in turn A = A.

O
4.1.6 Corollary. Let A: D(A) C X — X be linear and densely defined satisfying
p(A) # (. The homogeneous Cauchy Problem
' (t) = Au(t), t € (0,+00), (4.3)
u(0) = xo, '

has a unique solution for all o € D(A), which is continuously differentiable on [0, +00),
if and only if A generates a strongly continuous semigroup (T (t)) In this case the

0"
solution has the form wu(t) = T'(t)xo.

Proof. If xqg € D(A) and A is the infinitesimal generator of a strongly continuous
semigroup (71'(t)) =00 then t = T'(t)xg satisfies T'(0)xg = o and is differentiable with

d
for every ¢t > 0; see Proposition 3.1.2, f). By Corollary 4.1.4 t — T'(t)x¢ is the unique

solution of (4.3).

Conversely, suppose that for every zo € D(A) there is a unique continuously
differentiable solution wu,, : [0,4+00) — X of (4.3). Let ¢, > 0 and zq € D(A). Clearly,
Ugy|[0,t0] 15 @ continuously differentiable solution of (4.1) on (0,,]. Let v : [0,%] — X be
another continuously differentiable solution of (4.1) on (0, to] and define

w: [0,400) — X by
wit) = u(t), t € [0, 1],
uv(to)(t — to), t > .

By assumption v(ty) € D(A). Hence, w is well-defined and continuous. Moreover,
w(t) € D(A) for all t € [0, +00) and w is continuously differentiable on [0, +00) \ {0}
satisfying w'(t) = Aw(t) for all t € (0,+00) \ {to}. In order to show that w is
differentiable at Zy, note that w,,) is differentiable at 0 from the right and v is
differentiable at ¢, from the left, implying

1 1 h—0t /
E(w(to +h) — w(to)) = E(uv(to)(h) - uv(to)(o)) 227 Uv(to)(o)
as well as

h—0t

(’U(to — h) — U(to)) —_— U,(to) = A’U(to).

SRS

(w(tg — h) — ’LU(to)) =

SRS

Since 1y (4, is continuously differentiable at 0, we have w,,)(h) —>}HO+ Un(1)(0) = v(to)
h—0t
and Auy () (h) = ) () e Uy 1) (0). By the closedness of A

lim %(w(to +h) = w(to)) = ) (0) = Av(ty) = lim %(w(to —h) — wite).

h—0t h—0t+
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Consequently, w is differentiable at ¢y satisfying w’'(ty) = Av(ty) = Aw(ty). We conclude
that w is a solution of (4.3), which is continuously differentiable on [0, 4+00). By
assumption w = u,,, in particular v(t) = wu,,(t) for all ¢ € [0, ty]. Hence, we have shown
that for every zo € D(A) there is a unique continuously differentiable solution of (4.1)
on (0,tg]. By Theorem 4.1.5 A is the infinitesimal generator of a strongly continuous
semigroup. Lastly, according to Theorem 4.1.5, 1y, |j0,49) = (T(-)xo) |[07t0] for every tg > 0
implying u,,(t) = T'(t)zo for every t > 0.

g

If A generates a semigroup with stronger properties, existence and uniqueness prevails
for all initial values in X.

4.1.7 Corollary. If A generates a differentiable semigroup (T (t)) the Cauchy

>0
Problem (4.1) has a unique solution for all x5 € X.

Proof. According to Lemma 3.3.4, t — T'(t) is differentiable for ¢ > 0 with

d
ZT(t) = AT(1).

Hence, also (0,400) 3 t +— T'(t)x is differentiable for all g € X with

d

Together with T'(0)zo = ¢ this shows that [0,4+00) > t — T(t)xg is a solution of (4.1).
By Corollary 4.1.4, this solution is unique.

g

Of course, because analytic semigroups are differentiable, the corollary above also holds
true if A generates an analytic semigroup; see Corollary 3.3.6.

4.2 The inhomogeneous Problem

Throughout the present section, we assume that A : D(A) C X — X generates a
strongly continuous semigroup (T(t)) >0+ 11 the previous section we studied the
homogenous problem. Here we consider the inhomogeneous Cauchy Problem

ﬁﬁgfiﬂﬂ+f@,tel‘ 4)

where either J = (0, ] or J = (0, +00). Moreover, as in Section 4.1 we set Jy := JU{0}.

In general we cannot expect a continuously differentiable solution of (4.4). Therefore,
we will introduce notions of solvability, which do not include continuous differentiability.
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4.2.1 Definition. Let u : Jy — X be a function.

a) u is called a classical solution of (4.4), if u € C(Jo; X), u|; € C*(J; X) with
u(t) € D(A) for t € J and u solves (4.4).

b) wu is called a weak solution of (4.4), if u is continuous and weakly differentiable in
the sense of Definition 2.5.4, such that u(t) € D(A) for almost every ¢t € J, and
u(0) = xg as well as v/(t) = Au(t) + f(t) for almost every t € J.

We want to prove that every classical solution has a particular form. To that end, we
need two lemmata.

4.2.2 Lemma. Let t € J and u : Jy — X be a continuous function, which satisfies
u(0) = . Then the function v; : [0,t] — X defined by v(s) = T'(t — s)u(s) is
continuous. Moreover, if u is differentiable at some sy € (0,t], u(sg) € D(A) and
u'(s0) = Au(so) + f(so), then v, is differentiable at so and v;(sg) = T'(t — so) f(S0)-

Proof. Let M,w be as in Proposition 3.1.2, a) and s € [0,t]. Given a sequence ($p,)nen in
0,¢] converging to s, by the continuity of r — T'(t — r)u(s) we obtain

[or(s) = ve(sn) | = 1T (t = s)u(s) = T(t = sn)ulsn)]|
< T = s)uls) = T(t = sn)uls)l| + [IT(t — sn)uls) = T(t = sn)u(sn)]l
<IT(t = s)u(s) = T(t = su)u(s)l| + Me““™) u(s) — u(s,)|
<NT(t = syuls) = T(t = sp)uls)| + Me [Ju(s) = uls,)|| = 0.

Hence, v; is continuous. Given sq € (0,¢] such that w is differentiable at sy,
u(sg) € D(A) and u'(sg) = Au(so) + f(so), w and s — T'(t — s)u(sp) are differentiable at
so since u(sg) € D(A); see Proposition 3.1.2, f). By Proposition 3.1.2, b),
s+ T(t — s)u/(sg) is continuous at sg. As || T(t — s0)|| < Me*=%0) < Me*t we can
employ Lemma 1.1.3 and conclude that v, is differentiable at sg and satisfies
v'(s0) = (T(t = -)u(s0)) (s0) + T(t — s0)u'(s0)
= —AT(t — so)u(so) + T(t — s0) (Au(so) + f(s0)) = T(t — s0) f(s0)-

Here A and T'(t — so) commute in D(A) according to Proposition 3.1.2; f).

4.2.3 Lemma. If f € L'((0,¢); X) for all ¢t € J, then
(s—=T(t—s)f(s) € L'((0,t); X)
for all t € J and

t— T(t—s)f(s) d\(s)

(0,t)
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is continuous in Jj.

Proof. Let t € J be fixed. By Proposition 2.5.2 b), there is a sequence (@, )nen of
functions contained in C§§((0,¢); X) with |[¢, — Tl o.0:x) 22E2 0. We employ
Proposition 2.5.2, a), and find a subsequence (¢, )ken such that ¢, (s) LmasN f(s) for
almost every s € (0,t). By Proposition 3.1.2, b), T'(t — s)@p, (s) fobos, T(t—s)f(s) for
almost every s € (0,t). Since s — T'(t — s)¢y, (s) is continuous for all k € N,

s — T'(t — s) f(s) is measurable; see Proposition 2.3.1, d) and Example 2.3.2. If M, w are

as in Proposition 3.1.2, a), then
/( | IT(t =) f(s)]| dA(s) < ( )Mew“—S) £ ()| dA(s) < Me“" || Fll 1 o) < +00-
0,t 0,t

Hence, s — T'(t — s) f(s) is integrable over (0,t); see Proposition 2.3.6, b). Let ty € Jy

and (t,)nen be a sequence in Jy satisfying t, UmaiaN to. In consequence, there exists a
constant C' € J such that t,, < C for all n € N. Define g, : [0,C] — X by

gn(8) = Lo, ()T (tn — 5) [ (s).
Let s € [0,%p), € > 0 and N € N be such that ¢, > s and
[T (tn = s)f(s) = T(to — s)f(s)l| <&

for all n > N. We obtain ||g,(s) — T'(to — s) f(s)|| < € for every n > N, and in turn

gn(s) 22525 T(tg — ) f(s) for every s € [0,y). For s € (ty,C], let N € N be such that
t, < s for every n > N. We obtain g,(s) = 0 for every n > N. Hence, (g, )nen converges
almost everywhere to the the function ¢ : [0, C] — X defined by

) T(to—s)f(s), s€][0,t0],
g(s) = {07 e 6.0

Furthermore,

190 () < Lo () [T (tn = S IF (I < Vo) ()M (s)]| < M f(s)]]

Since s = Me*“ || f(s)]| is integrable over (0,C'), we can employ Theorem 2.3.7 and
obtain

lim T(t, —s)f(s) dA(s) = lim gn(s) dA(s)

e J(0,6n) =10 J(0,0)

= /(o,c) g(s) ds = /(o,to) T(ty—s)f(s) dX(s)

verifying that

t— o T(t—s)f(s) d\(s)
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is continuous at any ty € Jp.

4.2.4 Remark. Let t € J, p € (1,+o0] and f € LP(J; X). Given ¢ € [1,+00) with

% + % = 1, we employ Hoélder’s inequality, Proposition 2.5.3, a), and obtain

/(0 I D) < 815l < o

which implies f € L'((0,t); X). If f € L*(J; X), clearly f € L*((0,t); X) for all t € J.
By Lemma 4.2.3 we obtain that u : Jy — X defined by

u(t) = /(0 Tl 9)1(5) A

is well-defined and continuous for all f € LP(J; X), p € [1, +o0].

4.2.5 Definition. If f € L?(J; X) for some p € [1, 4+00], we call the function
u: Jog — X defined by

u(t) :=T(t)zo + / T(t—s)f(s) d\(s)

(0,)

the mild solution of the inhomogeneous Cauchy Problem (4.4).

By Lemma 4.2.3 and Remark 4.2.4 the mild solution u in Definition 4.2.5 is well-defined
and continuous. From Proposition 2.5.5, ¢), we know that every classical solution is a
weak solution. As our next step, we want to prove that every classical solution is also a
mild solution.

4.2.6 Proposition. Let p € [1,400] and f € LP(J; X). Every classical solution of (4.4)
coincides with the mild solution of (4.4). In particular, there is at most one classical
solution of (4.4).

Proof. Let t € J, u: Jy — X be a classical solution of (4.4) and define v; : [0,¢] — X by
v(s) = T(t — s)u(s). From Lemma 4.2.2 and 4.2.3 we know that vy(s) = T'(t — s) f(s)
for every s € (0,t] and v, € L*((0,t); X), which implies

wlt) = ve) + /( Tl (5) dA()

for every € > 0, see Lemma 2.4.4. Define f. : [0,t] = X by fo(s) := L 4(s)T(t — 5)f(s).

e—0t

Clearly, f.(s) —— T'(t — s) f(s) for any s € (0,t]. Since || fo(s)|| < ||T'(t — s)f(s)|| for
every s € [0,t], we employ Theorem 2.3.7 and derive

lim T(t—s)f(s) d\(s) = lim fe(s) d\(s) = /(0 ) T(t—s)f(s) dA(s).

e—0t+ (e,t) e—0t (0,t)
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By Lemma 4.2.2, v; is continuous at 0. Therefore,

Tt = 8)7(5) N6)) = w0+ [ T(t=9)f(s) dr(s

(0,¢)

w(t) = lim (vt(s) + /

e—0t (e,t)

and because of v;(0) = T'(t)zo and v (t) = u(t)

u(t) =T(t)zo + / T(t—s)f(s) dA(s).

(0,¢)

If A generates a semigroup with stronger properties, we obtain uniqueness of weak
solutions.

4.2.7 Proposition. Let p € [1,400|, f € LP(J; X). If A generates a differentiable
semigroup (7(t)) 1~o» every weak solution of (4.4) coincides with the mild solution of

(4.4). In particular, there is at most one weak solution of (4.4).

Proof. Let t € J, u be a weak solution of (4.4) and define v; : [0,¢] — X by

v(s) == T(t — s)u(s). Since v/'(s) = Au(s) + f(s) for every s € J\ N with some null set
N C J,vi(s) =T(t—s)f(s) for every s € (0,t] \ N; see Lemma 4.2.2. We show that v;
is absolutely continuous on every compact subinterval of (0,¢). Let M,w be as in
Proposition 3.1.2; a). Since u is continuous, there exists a constant K > 0 such that
lu(s)]| < K for all s € [0,¢]. Given 7, s € (0,t) we have

[o:(r) = vi(s)| = [IT(t = r)u(r) = Tt = s)u(s)|

<T@ = ryulr) =T = rjuls)]| + [T = r)uls) = T = s)u(s)]|
ST =)l lu(r) —w(s)| + T =) =T = s)[ uls)]]

< MU lu(r) = u(s)| + K |T(t —r) = T(t - s)]

< Me“!u(r) —u(s)|| + K || Tt —r) =T —s)|. (4.5)

Let ¢ > 0 and 0 < a < b < t. By Theorem 2.5.7 u is absolutely continuous on [a, b],
which implies that there exists a constant 6 > 0 such that

> " lu(se) — u(re)

for any collection a < 7r; < 81 <719 <89 < --- <1, <5, < b satisfying

Define

5—111111{5~ (t — De }>0
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and let a <r; <51 <ry <s59<--- <1, <5, <bbe a collection satisfying

n

Z(Sk — Tk) < 0.

k=1

By Lemma 3.3.4 T is continuously differentiable on (0, 4+o00] with 7" = AT, which
implies that there exists a constant C' > 0 such that [|[AT(r)|| < C for every

[ ameae|-X
(t—sk t—rK)

r €[t —b,t —al. By Lemma 2.4.4
t—rg
[ ar
k=0 k=0 17—k

<Z/t |AT(€)|| dg<2/t8k C d¢

§Celwtt 5
—CZ C e e TR

n

STt —s0) =Tt —r)| =)

t—rg

Sk

which by (4.5) leads to

D Mea(si) = vl < Mt Z lu(se) = ulrp)ll + K Y IT(t—r4) = T(t = sp)

fwt

MetE K —¢
< e 2M+ 5K

We obtain that v, is absolutely continuous on [a, b]. By Theorem 2.5.7 together with
v, € L'((0,); X) we conclude v; € W((0,¢); X). By Lemma 4.2.2 v, is continuous on
all of [0,t]. Consequently, by Corollary 2.5.8,

v(t) — v (0) = / T(t—r)f(r) dA(r) = vi(t) — v:(0) = u(t) = T(t)xo
(0,t)
and, in turn,

u(t) = vi(t) = ve(0) + /(0 ) T(t —s)f(s) dA(s) = T(t)zo + /(0 ) T(t —5)f(s) dA(s).
U

We will finish the present chapter with conditions which ensure the mild solution to be
a classical solution.

4.2.8 Theorem. Let p € [1,+00]| and xy € D(A). If f € LP(J; X) is continuously
differentiable on Jy, then the mild solution is a classical solution.

Proof. Let v : Jy — X be defined by
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which is well-defined and continuous by Lemma 4.2.3. We want to prove that v is
differentiable. To that end let t € J, where we assume t # ¢, in the case J = (0, to] for
some ty > 0. By Theorem 2.4.6

v(t) = /(0 ) T(s)f(t—s) dA(s).

For h > 0 with ¢t + h € J we have

R0t 1) = v0) = 5 /() T(s)f(t+h —s) dA(s) - /( T =) ()
(4.6)
= %/(o,t) T(s)(f(t+h—s)— f(t—s)) dA\(s) + % /@,Hh) T(s)f(t+h—s) dA(s).

We will deal with both summands separately. Define g, : (0,¢) — X by
1
gn(s) i=T(s) (- (Ft+h =)= f(t=)).

T(s) € Ly(X) yields gn(s) ho0t, T(s)f'(t — s). By Proposition 3.1.2, a), there exist
M, w such that ||T(s)|| < Me**® for all s > 0 and by continuity of f’ on Jy there exists a
constant C' > 0 such that || f'(s)|| < C for all s € (0,¢). By Proposition 2.1.3, b) and g),

t+h—s
/ f'(r) dr|] < CMe*".
t—s

(4.7)

1 M .
s < T 17+ h—5) = £t = 5)] < e

As f(o " CMe“t ds = tCMe*t < +o00, the requirements of Theorem 2.3.7 are fulfilled.
Hence,

1
7 /(o,t) T(s) (f(t+h—s)—f(t_3)) d\(s) = /

(0,)

an(s) dA(s) 222 / T(s)f/(1—s) dA(s).

(0,)

We compute the limit of the second addend on the right hand side of (4.6). Since f is
continuous at 0, given € > 0, there exists hg > 0 such that

ce vt

2M
for all h € (0, hg). By Propositon 3.1.2, b), we find h; > 0, such that

1 (h) = FO)I <

3

1) £(0) = T(s)fO)]] < 5

for all s € (t — hy,t + hy). For h € (0, min{ho, h1}) and s € (¢, + h) we obtain

=T f0)]

=¢&.

IT(s)f(t+h —s) = T(E)FO)| = | T(s) f(t +h — ) = T(5) f(0) + T(s) £ (0
< Me= | f(t+h—s) = fOll+5 < 5+

~—

DO | ™

€
2
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Consequently,

H% /a,tm T(s)f(t 41 = s) dX(s) = T(t>f(0)H

_ H% /() T(s)f(t+h—s) — f(t) d\(s)

1

<3 L OS5 =TSO )

1
< —/ e d\(s) = ¢,
h (t,t+h)

implying

lim * / T()F(t+ D — 5) dA(s) = T(#) £(0). (4.8)
(

By (4.6) we therefore conclude that v is differentiable from the right and

lim %(v(t +h) —v(t)) = / T(s)f'(t —s) d\(s) +T(t)f(0).
(0,)

h—0t

In order to show that v is also differentiable from the left, let t € J, h € (0,t) and
compute

1 1
S0 = vt —n) = 3 ( /((m T(s)f(t = 5) dA(s) = /(o,t_m
1

1
=+ /(o,t_m T(s)(f(t—s)— f(t—h—s)) d\(s) + - /@_W T(s)f(t — s) dA(s).

T(s)f(t—h — s) d)\(s))

We define f, : (0,¢) — X by

Fu(5) = Lo ()T() (3 (70 = ) = £t b~ 5))).

Let s € (0,¢) and h > 0 with £ — h > s. We obtain

1

fuls) = T(s) (5 (F(t =) = (t = h =) ) 5 T()f (¢ = 9)

By similar arguments as in (4.7) we have || f,(s)|| < CMe*t. Again we can employ
Theorem 2.3.7 and obtain
1
lim — T(s)(f(t—s)— f(t—h—s)) d\(s) = / T(s)f'(t — s) d\(s).

h=0t I J(0,4-n) (0.0)
Analogous to (4.8), we obtain

lim ~ T(s)F(t — ) dA(s) = T(#) F(0).

h*)0+ h (t—h,t)
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In consequence, v is differentiable on J satisfying
V) = [ TS ) A +TO0) = [ T(t-9)f(s) dAs) + TOF0)
(0,¢) (0,t)

by Theorem 2.4.6. As f’ is continuous on Jy, it is integrable over (0,t) for every t € J;
see Theorem 2.4.2. By Lemma 4.2.2 and Proposition 3.1.2 b), we obtain that v’ is
continuous.

For ¢t € J, where we assume t # t, in the case J = (0, ¢,] for some ty > 0, and h > 0
such that ¢t + h € J we compute

T(t+h—s)f(s) d\(s) — / T(t—s)f(s) d\(s)

(0,¢)

v(t+h) —o(t) :/

(0,t+h)

:@Wﬂ—ﬁ(&ﬂT@—@ﬂﬁdMQ)+/ T(t+h—s)f(s) d\(s)

(t,t+h)

= (T(h)v(t) —v(t)) + / T(t+h—s)f(s) d\(s)

(t,t+h)

implying

—(T(h)v(t) —v(t)) = %(v(t +h) —v(t)) — / T(t+h—s)f(s) dA\(s). (4.9)

(t,t+h)

Let € > 0 and h € (0,1) be such that || f(t) — f(s)|| < %5 and [|T(s)f(t) — f(t)]| < §
for every s € (t — h,t + h). Given s € (t,t + h), we obtain

IT(t + k= s)f(s) = FON < T+ =) (f(s) = fO)|| + Tt +h =) f(t) = f(B)]

M w(t+h—s) _ i M Wge_w E =
< M 1) — F)] + 5 < M T 5 =

and in turn

Hl /( L T8 £(5) ) - f(t)H < /() IT(t+ = $)f(s) — FO] dA(s)

h
1
< —/ e d\(s) =&,
h Jiten)

which implies
1
mn—/' T(t+h - s)f(s) dA\(s) = f(2).
(t,t+h)

h—0+ I
Consequently, (4.9) yields v(t) € D(A) and
Ault) = /() — (1)
It remains to prove that if J = (0, o] for some ¢, > 0, v(ty) € D(A) and

V'(to) = Av(to) + f(to). Since v is continuous we have v(t) Th, v(tp) and by continuity
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of u' and f also Av(t) =v/'(t) — f(t) —= V'(to) — f(to). A being closed yields
v(ty) € D(A) and Av(ty) = v'(ty) — f(to). By Proposition 3.1.2, f), the function

Fs T(t)ao + /(0 [T 9)F(s) de) = T+ o()

is a classical solution of (4.4).
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Chapter 5

Maximal Regularity

We again study the problem

{Z(((f)) :(,)4@6(75) +f(t), ted (5.1)

where either J = (0, ty] for some ty > 0 or J = (0, +00), f € LP(J; X) for some

p € (1,400) and A is the generator of a strongly continuous semigroup (T (t)) 0"
Furthermore, as before we set Jy := J U {0}. We will use these notations throughout the
present chapter.

We want to find conditions such that u, v and Au have the same regularity properties
as f, ie. u,u, Au € LP(J; X), which leads to the notion of maximal regularity.

We will see that this property is strongly linked to the properties of A and the

semigroup (7'(t)) ;>0 Imore precisely, it is necessary for (T(t)) 1=0 10 be extendable to an

analytic semigroup in order to achieve maximal regularity for the problem (5.1).

Unfortunately, the reverse statement is not true for all Banach spaces, but we will
impose further conditions on X to ensure sufficiency.

5.1 Maximal Regularity and Analytic Semigroups

5.1.1 Definition. Let p € (1,400). We say that A has the mazimal LP-regularity
property on J or A is maximally LP-reqular on J, if there is a constant C' > 0 such that
for every f € LP(J; X) problem (5.1) has a unique weak solution u : Jy — X such that
v and Au are contained in LP(J; X) and

1/ ll o + [ Aull o < C Nl

We say that A has the strict mazimal LP-reqularity property on J or A is strictly
mazimally LP-regular on J, if in addition to v/, Au € LP(J; X) also u € LP(J; X) and
there exists a constant C' > 0, such that

lull o + 1l e + [[Aullp < CHFNlL -
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5.1.2 Remark. We can weaken the requirements on v in the definition above. For a
weak solution u by (5.1) we have

[/l o < N Aull o + 1l 2o
as well as
[Aul| o < 'l o + 1l o -

Hence, in order to prove maximal regularity, it suffices to show || Aul|,, < C| f]|,, for
all f € LP(J;X) and some C > 0.

First we want to prove that every operator with the maximal regularity property
generates an analytic semigroup. To that end we start with a lemma.

5.1.3 Lemma. Let p € (1,400).

a) There exists a function ¢ : [0, +00) — [0, 4+00) satisfying sli}inooa(s) = 0, such that
whenever A has the maximal LP-regularity property on (0, ] for some ¢, > 0 and
¢ € C with Re(§) > %, there exist bounded linear operators Re,, Pe ., € Ly(X),
that commute with A on D(A) and a constant K > 0 satisfying || Re || < éK,
| Pe 1o || < e(Re(€)to) as well as

AR¢ox = Pegox — v+ ERe gy, v € X

b) If (T'(¢)) +~o 18 bounded and A has the strict maximal LP-regularity property on

(0,400), then there exists a constant L > 0 and for every £ € C with Re(¢) > 0 a
bounded linear operator R € Ly(X), which commutes with A on D(A), satisfying
| Re|| < L for every & € C with Re(§) > 0 and

ARex = ERer —x, x € X.
Proof. Let v € X, ty >0 and £ :==a+ib € C with a,b € R and a > % We define
fes(t) = 1[07;]@)6&[[} and observe that f¢, € LP((0,+00); X). In fact,

1

el —1\5
Werll ooy = Ifealliogomony = (=) Nzl

We want to prove that e, : [0,t] — X defined by
e (1) ::/( )T(t — 8) fen(s) dA(s)
0,t

is a weak solution of

ué’x(t) = Auw(t) + f&,x(t)v te (07t0]7 (5 2)
U&x(O) =0. |
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Note that wu¢, is well-defined and continuous by Lemma 4.2.3. Employing Theorem
4.2.8 yields that ug | 1) is a classical solution of

g o (t) = Auga(t) + fea(t), t € (0, 3],
u§7$(0) = 07

implying ug ;| 1) is continuously differentiable and ug . (t) € D(A) for all ¢ € (0, 1].
Moreover, for t € [0, ty — %] by Proposition 2.3.6, ¢), we have

(t)uca() =70

(0,4)

T(} = 9)feals) AS) = [ T4 2= 9)feals) A
0,3)
[ T L= ) eals) dN6) = el + ),
(0,t+1)
implying u§7x|[ L go] is continuously differentiable; see Proposition 3.1.2, f). Furthermore,

given t € [2, ]

d
g (t) = =T = Duea(y) = AT(E = Duea(y) = Auga(t) = Auga(t) + fea(l):

Given ¢ € C55((0,%9); C) and 0 < a < b < to such that supp(y) C [a,b] C (0,0), we
note that ug , is continuous and bounded on any compact subset of (0, Zo] \ {1} and, in
turn, integrable over (a,b); see Theorem 2.4.2. Employing Proposition 2.4.5 yields

/ o (t)uue o (1) dA(E) = / o (t)uue o (1) dA(E)
(0,t0)

(a;b)

= o(Bug(b) — pla)uca(a) - /( | POeL(E) A

__ /(Ot )gp(t)(Au&gc(t) + fea(t)) dA(2).

Together with e ,(0) = 0 and e ,(t) € D(A) for all t € (0,%y] we see that e, is a weak
solution of (5.2). By the same arguments, wu¢, : [0, +00) — X defined by

uea(t) = /( = ) eals) A

is a weak solution of

u'&x(t) = Auﬁw(t) + f{,a:(t), te (0, +OO),
uf@(o) = 07

and satisfies ug .| 1) € C'((0,2]; X) as well as ue |1 o) € C*((£,4+00); X).

ad a): For x € X and ¢y > 0 by ug¢,’s continuity we can define Re,, : X — X by
Reyox = a/ e Sue (1) dA(t).
(Ovto)
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Since x — f¢, is linear and wug, depends linearly on f¢,, also o +— u¢, and Rey, are
linear. Aug, € Lp(((), to]; X ) together with Holder’s inequality, Proposition 2.5.3, a),
yields

[l aneaoaxe = [ e aualax
(0,t0)

(0,t0)
< |t = e, 1 Aug

|LP < +OO,

where % + % = 1. By the same arguments u; , € Lp((O, to]; X ) implies the integrability
of t = e uy (). By Proposition 2.3.13

AR¢yr = G/(Ot )e_gtAuw(t) d\(t) = a/ e‘ﬁt(ué,x(t) — fea(t)) dA(t)

(07t0)

a/(o )e_gtué’m(t) d\(t) — a/ e~ et dA(t)
»to

0.3)

a/ e Ftug (1) dA(t) — .
(O,to)

[ 1 and ug .| 1) being continuously differentiable and Proposition 2.4.5 yield

(07t0)
= aefgtouw(to) + ERe 4o

a/(o )e‘gtu'&x(t) dA(t) = ae "ug . (to) + a& e e . (1) dA(t)
to

and in turn
ARatox = ae_gtouw(to) + ERe jox — .

Since wg , is continuous, it is bounded on [0, #y] and measurable. Consequently,

/(0 )||Us,x(t)||p dA(t) < to( sup [lug.(t)])" < +o0
,to

te[0,to]

and ug , € Wl’p((O, to); X ) Employing Corollary 2.5.8 yields

ue 1 (to) = / ug . (t) dA(t).
(O,to)

We define the linear operator Py, : X — X by P2 := ae *"ug ,(to). Proposition
2.5.3, a), yields

—ato

/ (1) d)\(t)H
(0,t0)

<ac [ fug o] a0 < ae ot o),
0

1Peoll = lae™ [ [lug.o(to)]| = ae

)

1

1 LreP —1\%
< Cae™ ™t | feall,, = Cae™tg (=) " |1a]
ap
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where % + é = 1. If we set

g(s) = CStlze_S(ep — 1>;>

then [Py || < e(ato).
Clearly e(s) sotoo, 0, and, by continuity, ¢ is bounded on [0, 400). As
HU/E,EHLP <C ”ff,w”Lp and

1 — e~atod
/ et = (R0 < oo,
(0,t0) aq

due to Hoélder’s inequality, Proposition 2.5.3, a), and Proposition 2.4.5,

_ ae~Sto _
el = o [ e Fuea(t) ixo)] = |- ueato) + £ [ st x|
(0.t0) £ € Jow
1
|5 [ e are) - P
& Jo.t0) §
1 a —at /
gmnpg,tmu@ & ol )
| —eatory L
,ﬂ 1Pl el + (T) el
Ca /1 — e 4y ¢
P —
,ﬂ | Pesoll 2] + m( o) Il
—eM0d 1 P — 1
= g (1Peall+ Ca(-—) (52)7 )
1 1 —e @04 1 el — 1 1 1 Ce
< —\lelaty) + C e Pz £ — |supe(s) + ) ||z
g (2(at) + (=) (—=)7) lell < 7 (sup=(s) Mq)nn

Hence, Rey, € Ly(X) satisfies || Rey, || < |£‘K It remains to show that A commutes with

Reyy and Pey,. For v € D(A) by Lemma 4.2.3 s — T'(t — s) fe a2(s) is integrable.
Employing Proposition 2.3.13 we have

Ug Az (t) = /(0 ) T(t —s)feac(s) d\(s) = /(o . T(t — 5)e** Az dA(s)
A [T ) feal) dAS) = Auea(t)
(0,t)

and in turn

ReAx = a/ e e 4, (1) dA(t) = aA/ e ue . (t) dA(t) = ARex
(0,%0) (0,t0)
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as well as
P Az = ae‘ftou&m(to) = A<a€_§t0U57z(t0)) = AP;x.

ad b): Suppose that (T (t)) 1> 18 bounded and A has the strict maximal LP-regularity
property on (0, +00). Let ¢ := a +ib € C with a,b € R and a > 0. Since
few € LP((0,400); X ), there exists a unique weak solution u , solving

{ugx(w = Aug,(t) + feu(t), 1€ (0,+00),
u§’$(0) = 0,

and a constant C' > 0, such that

el + gl o + Atealle < Cllfeall-

For g € (1, +00) with i + % =1 we have
+o00 1
/ €7 dA(t) = / e A (t) = — < too.
(0,400) 0 aq

According to Proposition 2.5.3, a), t — efftu&x(t) is integrable and we can define
Rg X = X by
Rex = a/ e~ ue . (1) dA(t).
(0,400)

By the same arguments as in a), Ry is linear. Again by Holder’s inequality, Proposition
2.5.3, a), as well as the strict maximal regularity property

1
x Car || fex
| Rex]| < a/ ) Jue ()] da(e) < Aeelr OO Mselor
(0,400 ((IQ)E qg
1 1 1
Car(e? —1)» Ce? —1)»
< 1 ;_” | = ——"—Izll, z€X, (5.3)
(ap)rq: prqe
and in turn .
C(e? —1)»
prq1

Since uf ., Aug, € LP((0,4+00); X), t = e ¢ Aug o (t) and ¢ — e *u; (t) are integrable
by Hélder’s inequality. By Proposition 2.3.13

ARex = a/(o+ )e_gtAuw(t) dA(t) = a/ e_gt(u'&m(t) — fex(1)) dA(2) (5.4)

(0,400)

—u / e~ () dA() — a / ERNG
(0,400)

0,3
= a/ e ug 4 (t) dA(t) — .
(0,+00)
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Since ((T'(t)),, is bounded, there is a constant M > 0 such that ||T'(¢)|| < M for all
t > 0. Hence, for t > i

(5.5)

(1) = H [, 1= i

/ T(t — s)e**x ds
0,3)

_ M al| (e — 1)

< [ el ds < el [ e s = TEED
0.3 0.3) a

For n € N we define g, : [0, +00) — X by gn(t) := Ljon)(t)e ug (1) as well as
n——+0o0

hy 2 [0, 4+00) = X by hy(t) == L nye *ug o (t). Clearly, g,(t) —— e~ *'ug (t) and

n—+oo _ _ —
ho(t) 22525 ety , (t) as well as ||g,(t)]| < e ug ()] and [[hn ()] < ||e S ueo(2)]]
for all t > 0. By Proposition 2.4.5 and Theorem 2.3.7 we obtain

/m )egtu’m(t) dA\(t) = lim gn(t) dA(t) = lim e tug (1) dA(t)

00 (0,4-00) =00 J(0,n)

= lim e “ug,(n)+ ¢ e e . (1) dA(t)

= lim e "ue,(n) + ¢ hy(t) dA(t)

=¢£ e_ftuw(t) d\(t) = éRgat
(0,400) a

because of (5.5) and Re(§) = a > 0. From (5.4) we conclude
ARex = a/(o . )e‘gtué,w(t) d\(t) — x = ERex — .

Given z € D(A), s — T(t — ) fe 4. 1s integrable by Lemma 4.2.3. Employing
Proposition 2.3.13 yields

e aa(t) = /(Ot) T(t = 8) fena(s) dA(s) = / T(t — 5)e* Az dA(s)

(0,1)
= A/ T(t—s)fex(s) dN(s) = Aug (1)
(0,%)
and in turn

400 +o00
ReAx = a/ e~ ue 4, (t) dA(t) = aA/ e Sue . (t) d\(t) = ARex.
0 0

5.1.4 Theorem. Let p € (1,4+00) and ty > 0. If A has the maximal LP-regularity
property on (0,to], then A generates an analytic semigroup.
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Proof. Let { = a +ib € C with a,b € R and a > -. From Lemma 5.1.3, a), we know

that there exists a function ¢ : [0, +00) — [0, +oo) as well as bounded linear operators

Re¢, P € Ly(X) satistying liin g(s) =0 and ||R¢|| < IE\K | Pe|| < e(aty) for some
S—r+00

constant K > 0. Moreover,
ARex = Pex —x + ERex, o € X,

Let 7 > % such that ||Pe|| < e(aty) < 5 for all £ € C with a > 7. Given a > 7, [ — P is
invertible and ||(I — P¢)~!|| < 2; see Lemma 6.3.9 in [12]. Hence,

(€1 — A)Re(I — Pe) 'z =2, v€X.

Since R¢ and Pr commute with A on D(A), we obtain R(£, A) = Re(I — )~ and
consequently

2K _ 2K
IR(& Al < Tl

g = Tim(e)

for every ¢ € C satisfying Re(§) > 7 and Im(§) # 0. Let M, w be as in Proposition 3.1.2,
a). Assuming w.l.o.g. w > 7, Corollary 3.3.6 yields that A generates an analytic
semigroup.

5.1.5 Theorem. Let p € (1,+00). If A has the mazimal LP-reqularity property on
(0, +00), then it has the maximal LP-reqularity property on (0,to] for all ty > 0.

Proof. Let tg > 0, f € Lp((O,to)];X) and set f = L(o,4)f- Clearly,

|1
LP((0,400);X)
solution u., of

= || f]l Lo((0.40),x)- Since A is maximally LP-regular, there is a unige weak

wl (1) = Aus(t) + f(t), t e (0,+00),
Uso(0) = 0,

satisfying
At 0 oy < C |7

for some C' > 0. The restriction u of us to [0, %] is a weak solution of (5.1) on (0, ¢
satisfying

LP((0,400);X)

lAul o010 < 1At oo oery < €| F]| = ClIf o)

((0,400);X)

It remains to show that u is unique. Let @ : [0, o] — X be another weak solution of
(5.1) on (0, %] and define v := u — 4. v is a weak solution of

{U'(t) = Av(t), te(0,t),
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Let € (0,t0) be such that v(#) € D(A) (see Definition 4.2.1), and define

0 :[0,400) = X by
5(0) = {;@), - tedl
(t —Dw(d), t>1

By Proposition 3.1.2, b), ¥ is continuous. v(¢) € D(A) implies 9(t) € D(A) for almost
every ¢ € (0, 400) by Proposition 3.1.2, f). Let ¢ € Cg5((0,400); C) and

0 < a < b < 400 such that supp(¢) C [a,b] and w.l.o.g. t € [a,b]. Since v is weakly
differentiable on (0, %), we have v, Av € L ((0,%); X) and, in turn,

v € Wh((a,1); X). By Corollary 2.5.9

(a;t)

= o({o(d) — pla)o(a) - / () Au(t) dA(t)

(a,t)

— o(f(d) - /( o(t) Au(t) dA(2).

0,4)

/ G((t) dA(t) = / & (t)u(t) A1)
(0,t)

Proposition 3.1.2; f) and Proposition 2.4.5 yield

/(t~+ )w’(t)T(t—f)v(f) dA(t) = / o' (T (t — Dyo(f) dA(t)

(£b)

= o(O)T(b = Hu(t) — p()v(t) — /({b) P(AT(t — t)o(t) dA(t)

= —p(i)o(d) - /(1E+ AT = B(D) X

(t,400)

/ S (1)3(t) dA(1) = / G((t) dAt) + / (T (t — Dyo(F) dA(t)
(0,4c0) (0,t)

- _ / o(t)(Av(t)) dA(t) — /( ©()AT(t — t)v(t) dtA(t)

Together with ©(0) = v(0) =

Since A is maximally LP-regular on [0, 4+00) and the constant zero function is a weak
solution of the above problem, 0(¢) = 0 for every t € [0, +00) and therefore v(t) = 0 for
every t € [0,7]. Since v(f) € D(A) holds true up to a null set, we conclude that v(t) = 0
for almost every t € (0,tp]. v being continuous yields v(¢) = 0 and in turn u(t) = a(t)

for every t € [0, ).
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Combining the previous two results yields the following corollary.

5.1.6 Corollary. Let p € (1,+00). If A has the maximal LP-regularity property on
(0, +00), then A generates a bounded analytic semigroup.

Proof. By Theorem 5.1.5 A is maximally LP-regular on (0, o] for all ¢y > 0. Let
¢:=a+1be C with a,b € R, a >0 and t; > 0 be such that a > % By Lemma 5.1.3,
a), there is a function ¢ : [0, +00) — [0, +00) as well as bounded linear operators

Re 1, Pey, € Ly(X) satisfying SEIEoog(S) =0,

AR¢ox = Peyox — v+ {Reyor, € X

and || Re || < %K, | Pe.to || < elato) for some constant K > 0. Let ¢ > ¢; be such that

e(aty) < % for all ty > t,. to > to yields the invertibility of I — Py, with
|(I = Peyy) ™t < 2; see Lemma 6.3.9 in [12]. Hence,

(51 - A)Rf,m(] - Pﬁﬂfo)_lx = .

Since Rgy, and Py, commute with A on D(A), we obtain R(£, A) = Re (I — Peyy) ™!

and consequently

2K
R(E,A)| < T
IR(E& A= T

for all £ € C with Re(§) = a > 0. By Theorem 3.3.5 A generates a bounded analytic
semigroup.

5.2 Strict Maximal Regularity

In the present section we study the relation between strict maximal regularity and
maximal regularity.

5.2.1 Proposition. Let p € (1,+00) and ¢y > 0. The generator A of a strongly
continuous semigroup has the maximal LP-regularity property on (0, %] if and only if A
has the strict maximal LP-regularity property on (0, to].

Proof. Clearly, strict maximal regularity implies maximal regularity. Suppose that A is
maximally LP-regular. By Theorem 5.1.4 the operator A is the infinitesimal generator of
an analytic semigroup, which implies the unique weak solution w : [0, 5] — X of (5.1) is
given by

u(t) = /(0 ) T(t—s)f(s) d\(s)
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for every f € Lp((O, tol; X); see Proposition 4.2.7. It suffices to show that
u € LP((0,t9); X) and

HUHLP S C ||fHLP7 f € Lp(<0at0]7X)a
for some C' > 0. By continuity and Theorem 2.4.2, u € LP((0,%]; X ). We will show that
the operator S : Lp((O,tg]; X) — Lp((O,to]; X) defined by
SN0 = [ T=9)06) )
0.t

is bounded. Let (f,)nen be a sequence in Lp((O tol; X) and f,u € Lp((O to];X) with

n—-+00

Wfo = fllp —— 220 0 and S fr — ul|;, — 0. By Proposition 2.5.2, a), there exists a

k—+o0

subsequence (fy, )ren satisfying S f,, (t) ——— u(t) for almost every ¢ € (0, t]. Given
t € (0,to], we define ¢, : LP((0, to]; X) — X by

o) = (Sa)(t) = / T(t - )g(s) dA(s).

(0,%)
ForO<s<t<tygé€e Lp((O,to];X) and M,w as in Proposition 3.1.2, a) we have
IT(t = s)g(s)[| < (|T(t = 9)| llg(s)[| < Me=U=) [lg(s)]| < Me=" [|g(s)]]

and by Proposition 2.5.3, a),

ledo)l < [T = s)g(o)l as) < [ Me lgte)lancs

< ([ e ) ([ gl i)’
(Ot) (Ovt)
1 wto % wto

< e gl < 1 M gl

for }D + % = 1. Consequently,

u(t) = Jim (S0 = lim_ah) = @) = (SHO
for almost every t € (0, to] implying v = Sf in LP((0,to]; X ). By the Closed Graph
Theorem, 4.4.2 in [12], S is bounded, which means ||u|l;, = [|Sf|l;» < IS I/l .»
f e LP((0,t]; X).

5.2.2 Theorem. Let p € (1,+00). The generator A of a strongly continuous semigroup
has the strict maximal LP-regqularity property on (0,400) if and only if A has the
mazximal LP-regqularity property on (0,+00) and 0 € p(A). In this case there exist
constants M, 6 > 0, such that ||T(t)|] < Me™° for all t > 0.
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Proof. Suppose first that A has the strict maximal LP-regularity property. By Lemma
5.1.3, b), there exists a bounded operator Re € Ly(X) such that ARcx = {Rex — x,

x € X, and ||Re|| < L for all £ € C with Re(§) > 0 and some L > 0. Since R, commutes
with A, we conclude that R, = R(§, A) for all { € C with Re(§) > 0. Let € > 0 and

¢, € C with Re(§), Re(p) > 0 and [¢], || < 572 We employ Proposition 1.2.4, b) and
obtain

[R(E, A) — R(p, Al = [[(€ = wR(E A R(p, A)|| < 1€ — pl [|1R(E, A [[ R, Al
< LA(|€] + |p)) < LQ(% + #) <e.

Therefore, (R(§, A))re()>0 is a Cauchy net in Ly(X) for £ — 0. Denoting its limit by
R € Ly(X) we obtain for z € D(A)

R(~Ax) = lim ~ R(¢, A) Az = lim R(&, A)(€] — A)x — ER(E, A)r
=z — %1_{1(1) ER(E, A)x = . (5.6)

For x € X we have R(¢, A)x % Ry and, in turn,

AR(E, A)x = (A — EDR(E, A)z + ER(E, A)z = ER(E, Az — z =% o

By the closedness of A we obtain Rx € D(A) and ARx = —x which together with (5.6)
implies R(0,A) = R € Ly(X), and hence 0 € p(A).

For the converse suppose that A is maximally LP-regular and 0 € p(A). By Corollary
5.1.6 the generator A is the infinitesimal generator of a bounded analytic semigroup.
Since every analytic semigroup is differentiable, given f € LP((0,+00); X), by
Proposition 4.2.7 the unique weak solution u of (5.1) has the form

u(t) = /(0 T 9)1(5) dAGs)

By Theorem 3.3.5 A is sectorial of some angle § € (0, 7). Given ¢ € (7,5 + ), due to
Theorem 3.3.3

T(t) 1 / SR(E,A) dE, t >0,
il

T om

where (s) := —se ™ for s < 0 and v(s) := se? for s > 0. Since p(A) is open and
0 € p(A), there exists € > 0, such that Us.(0) C p(A). We define

v i [—&,0] = C, %(s) == —se 7,
721 [0,6] = C, 72(s) = se”,
V3 1 [—esin(f),esin(f)] — C, y3(s) := ecos(f) — is,
Yy (=00, —g] = C, 4(s) := —se™®

and '
Vs g, +00) = C, 5(s) = se

as well as 7 := 717273 and Y2 := Y473 V5.
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Since & — ¥ R(&, A) is analytic on p(A) D Us.(0) 2 ran(%;), by Theorem 2.2.5
/ STR(E,A) dE=0
"

for every ¢t > 0. Since £ — e R(€, A) is integrable along v, it is integrable along ~y; for
j=1,...5. We have

T(t) = 271m / e R(EA) dE = jm / e R(E,A) d§+% / e R(E,A) de
71

Y2

_ b / CTR(E, A) dE. (5.7)

271 5o

If C' > 0 is such that |R(£, A)]| < Q for every & € 3, then cos(f) < 0 yields

l€]
‘ [ e d&H = < [ e |[Rire, )| ar
Vs €

oo _rtcos(f) o0
< C’/ ¢ dr < g/ erteos®) gy
e r € 3

C et cos(0) C cos(0)et
e t|cos(f)| ~ e|cos(6)]

“+00

te®? eieR(sew, A) dr

for ¢ > 1. A similar approach for 4 leads to

for some K > 0 independent of ¢. Furthermore,

e |

€ 51n(9

/ 6&R(£,A) dé-H < Kecos(Q)st
74

atcos(@)-‘ristR(g COS(G) + i37 A)Z ds

ESln
< / ' et ®) | Ric cos(®) + is, A)| ds
—esin(0)
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esin(0) 1
< Cecos(G)st

_csin(o) |€ cos(0) + is|

2Cesin(0
< Ce SlIl( )ecos(Q)et _ 2cv| tan<9)|€cos(9)st‘
el cos(0)]
We define ) o
M= — ——, K, 2C| tan(¢ 0
27 max{e‘ cos(9)]” [ tan( )‘} ~
as well as 0 := — cos(f)e > 0 and derive from (5.7)

1 ol —&
1T ()] < H2m L R(E, A) dg” < Me™%, t>1.

Since according to Proposition 3.1.2, a), ||T(¢)]| is bounded on [0, 1], we obtain
1) < Me™

for all t > 0 and a sufficiently large M > 0. Lastly, by Proposition 3.3.4,
T :(0,400) = Ly(X) is continuous. Together with

+o0 M
[ monawsu [T em i = < v
(0,+OO) 0 5

we conclude that 7" € L'((0, +00); Ly(X)); see Theorem 2.4.3. Extending 7" and f to
(—00,0) by T'(t) :== 0 and f(t) := 0 we can employ Young’s inequality, Proposition
2.5.3, b), and obtain

[, morans [(f HTt—slHlf()Hds) A
< ([irora) ([ iraran) < 5.

which implies [[ul|,, <2 [/f] ...
]

Under certain conditions we can conclude strict maximal regularity on (0, 400) from
maximal regularity on bounded intervals.

5.2.3 Theorem. Let p € (1,+00) and ty > 0. If there exist constants M,6 > 0 such
that |T(t)|| < Me™ for all t > 0 and A has the mazimal LP-reqularity property on
(0, o], then A has the strict mazimal reqularity property on (0,+00).

Proof. By Theorem 5.1.4 the operator A is the infinitesimal generator of an analytic
semigroup (7(z)) of angle ¢ € (0,%). By Theorem 3.3.6, (T'(t)),. is differentiable

>0
_54+6 .
Cel t+ ! < % for all t > 0. Given

z€X,
and there exists a constant C' > 0 such that ||AT(¢)|| <
t >0 and e € (0,1), according to Proposition 3.3.4 we have

IAT @) < 1Tt = ) |AT ()] < Me™* 9 AT ()]l
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Hence, AT € L((e, +00); Ly(X)) for all e > 0 and ¢ € [1, +oc].

Let f € Lp((O, +oo);X) and denote by w the mild solution of (5.1) on (0, +00), i.e
u(t) == / T(t—s)f(s) d\(s). (5.8)
(0%)

By Lemma 4.2.3 u is well-defined and continuous. We want to prove that u(t) € D(A)
for almost every ¢ > 0. By Proposition 4.2.7, the unique solution of (5.1) on (0, ¢y] has
the form

gy (£) = /( T = 91(5) dAGs). (5.9)

which implies u(t) = wy, (t) € D(A) for almost every t € (0,to]. For ¢ > ¢y, there exists
n € N, such that t € (ntg, (n + 1)to] and by Theorem 2.4.6

u(t):/m,t) T(t—5)f(s) d)\(s):/

(O,Hto)

T(t—s)f(s) d\(s) + / T(t —s)f(s) d\(s)

(nto ,t)

= /(t_ . T(s)f(t—s) d\(s) +/ T(t —ntyg — s)f(s+ nty) dA(s). (5.10)

(0,t—nto)

In order to show that both integrals above are contained in D(A), we note that

¢t~ T'(t) is continuous on (0, +o00) and ||T'(¢)|| < Me~°, implying T" € L?((0, +00); X).
By Proposition 2.5.3, a) s — T'(s)f(t — s) and s — T(t — nty — s)f(s + nty) are
integrable over (¢ — nto,t) and (0,t — nty), respectively. Let ¢ € (1, +00) such that

1—17 + é =1 and € € (0,¢ — nty). Since AT € L((e, +00); Ly(X)), by Holder’s inequality,

Proposition 2.5.3, a)
S TATIEC = d0) S IAT iy L ey < 05
Hence, by Proposition 2.3.13
/ T(s)f(t — 5) d\(s) € D(A).
(t—nto,t)

The function g(s) := f(s + nto), s € (0, to] belongs to LP((0,to]; X). If v denotes the
unique weak (and therefore mild) solution of

V'(s) = Av(s) + g(s), s € (0,1q],
v(0) =0,

then by Proposition 4.2.7

/(Ot t )T(t —ntg— s)f(s+nty) d\(s) = / T(t —nty— s)g(s) dA(s) = v(t — ntp).

(0,t—nto)

Since v(s) € D(A) for almost every s € (0, ], u(t) € D(A) for almost every ¢ > 0; see
(5.10)
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We show that [[ull 150 e0)x) < K 1 f[£o(0,400),x) for some K > 0 independent of f.
Since || T(t)|| < Me™ for all t >0, T € L*((0,+00); Ly(X)). We extend T and f to
(—00,0) by T'(t) = 0, f(t) = 0, apply Young’s Convolution Inequality, Proposition 2.5.3,

b), and get
[ uorae
(0,4-00)

p

T(t—s)f(s) d\(s)|| dA(t)

< ”fHL ((0,400);X) ”THLl( (0,400); Lb(X))

-~

=:KP

We show that there is a constant L > 0 such that [[Aul| 1,0 1)) < LIl Lr(0,400):x)
and start with

Py

(O,to)

| Au(t)||” dA(t) +/ | Au(t)[|” dA(t). (5.11)

(t07+oo)

Since A is maximally regular on (0, %], there exists a constant D > 0, such that
considering (5.9)

/ [Au(®)[P dA(t) = / [ A )" dA(E) = [| Ao || (0,10):)
(07t0) (0 tO)
< Do) < PP N0, 40005 -

From |z + y||” < 2°71(||z||” + |ly]|”) and (5.8) we conclude that

: /
— | Au(t)[|” dt
2r-1 (to,+o0)

is less or equal to

HA( [ re=sss )

=:1; =:12

p p

)iX) i HA</(._,§O’,) T(-—s)f(s) ds>

L2 ((to,+o0); LP((to,+00);X)
_ _

Let g € (1, +00) with i + % =1 and ¢ > ty. We saw in the beginning of the proof that
AT € L9((to, t); Ly(X)). By Proposition 2.5.3, a), applied to 1o 40 [|f(t — -)|| and
]]'(t()vt) ||ATH

/( )HAT(S)f(t—S)H dA(s) < AT Lagro.tyx) 11| o0, 400):) 5
to,t

which implies that s — AT'(s)f(t — s) is integrable over (ty,t) for every t € (to, +00).
Employing Proposition 2.3.13 yields

A( /@ OIS INs)) = / AT(s)f(t — 5) dA(s).

(tO 7t)
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By Theorem 2.4.6, Proposition 2.5.3, ¢), we have

11:/“0#00) HA</@0¢> T(s)f(t — ) d/\(s)> ")
-/ n ATt 5) ) Caa

< [ (] mresa—on ) o
<[ ([ 1arese=sa1 aw) a0
<([ ([ _1arse=sr i) )

p
s(/( AT Loy BE)” = BT s i 1
to,+o0

Defining
p
Ti = / A( / T(t — s)f(s) d)\(s)> dA(t)
(ntQ,(n+1)tQ) (tfto,nto)
and »
Jo e / ‘A( / Tt~ 5)f(s) dA(s)) | dA()
(’nto,(n-‘rl)to) (nto,t)
for n € N we obtain
o0 p
L= Z/ ’A(/ T(t — $)f(s) dX(s)) | dA)
n=1 (nto,(n"rl)to) (t—to,t)
S 2p—1 Z(Jl,n + JQ,n)-
n=1

For t € (0,t9) and n € N by Proposition 2.5.3, a)
/(MO ) AT (¢ + ) f(nto = s)|| dA(s) < NAT pae.t0)ix) 11 2o (0, 400)5) -
Hence, by Proposition 2.3.13
A( / T(t 4 3)f(nto — ) dN(s)) = / AT(t + ) f(nty — s) dA(s).
(0,to—1) (0,to—t)

Substituting s — nto — s and ¢ — t + nty together with the estimate ||AT(t)|| < <,
t > 0, yields

p
Jip = / A / T(t— s)f(s) d/\(s)> dA(t)
(nto,(n+1)t0) (t to TLto)
p
:/ A(/ T(t 45— nt) fntg — ) dA(s)) || dA(H)
(nto,(n+1)t0) (0 (n+1)t0 t)
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p

dA(t)

o
Joolois

/ /Oto ) [AT'(t + ) f(nto — s)|| d)\(s)> dA(t)

/ /Oto t) CHf(tn‘it‘OS_ S)“ d)\<3))pd)\(t)

For fixed t > 0 we substitute s — st and obtain

[ Mool gy [ Lol
(0,t0) (0,40)

/ T(t + 5) f(nty — s) d/\(s)>
(0,t0—t)

AT(t 4 5) f(nto — ) dA(s)|| dr()

IN

t+s , t+s
— / H(O:to)(8t> Hf(nto - St)“ d)\(S)
(0,+00) I+s

By Proposition 2.5.3, ¢) and substituting ¢ — £

Jin = CP /(O’to) </(0,+oo) ﬂ(o,to)(St)lﬂi(Zto — st)| d/\(s)>p dA(t)
, 010 (5t) [|f (ntg — 1) : p
<or( /(Om) ( /(O’to) L0 t31||+(8)tp )] AND)” dA(s))
P 0.t fnto —1)|” » P
<or( /m,m)( /() I )(?ﬂ +<t) ol IND)” dA(s))

1 p
< C? ||f|| (n—1)to,nto);X) (/ 1 d)\(S)) .

(0,400) (14 s)s»

We choose ry := 222 > 1 and ry € (1, +00) such that -+ = 1. By Holder’s
inequality, Pr0p081t10n 2.5.3, a),

—1 —1 = 1 i 2p
1 dX(s < / dX(s / oF T d\(s < —.
/(0’1) (14 s)s» ) < (0.1 (1+s)m ( )> ( (0.1) 5% ( )> p—1

Together with

1 1
[ e aws[ ae-s
(1,+00) (14 s)sP (1400) 871

we obtain J; , < C’p(p2 p)P HfHLp( (n—1)to,nto).x) @0d, in consequence,

Zjln—cp 2p +p ZHfH (n—1)tg,nto); _C'p( +p) HfHLP ((0,400);X) -
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In order to estimate J;,, n € N, we substitute s — s + nty, t — ¢ 4+ nty and derive from
A being maximally LP-regular on (0, ¢o]

/mo s A</Ot . T(t — s —nto) f(s + nto) dA(s)>

/Oto / T(t — s)f(s + nto) dA(s))

< DP ([ f 2ottt 1)t0):x) -

’ dA(t)

"

"

We obtain
Z Jom < K? Z ||f||§p((nt0,(n+1)t0);)() < K? Hf”ip((O#OO);X) )
=1 n=1

Starting with (5.11) the derived estimates imply
1
1Aull < (2P AT IE (1 ooy + (L + 2773 D7+ 227207 (2 + p)P) 7 || £l -

It remains to show that u is a weak solution of (5.1) on (0,+00). To that end, we verify
u € W ((nto, (n + 1)ty); X) for every n € NU{0}. Define v,, : (0,%9) — X by

v (t) == T(t)u(nty) + /(0 ) T(t —s)f(s+ nty) dA(s).

Because A has the maximal LP-regularity property on (0, ] and
s+ f(s+mnty) € LP ((O, to]; X ), according to Proposition 4.2.7 the unique weak solution
u,, of

un (t) = Au,(t) + f(t +nty), t € (0,10,
u,(0) =0

is given by
u,(t) = / T(t—s)f(s+ nty) dA(s).
(0,t)

By Theorem 3.3.6 and Proposition 3.3.4 t — T'(t)u(nty) is differentiable. Employing
Proposition 2.5.5, b) and ¢), yields that v, = T'(-)u(nty) + u, is weakly differentiable
and v/ (t) = Av,(t) + f(t + nto). Moreover,

T(nty — s)f(s) d\(s) = / T(t+nto—s)f(s) d\(s)

(O,Hto)

T(t)u(nty) = T(t) /

(O,Rto)

and substituting s — s — nty yields

un(t) = /M T(t = 5)f (s + nto) dA(s) = /(mo o T 00 = )1(5) XG).
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We obtain
v (t) = / T(t + nty — s)f(s) dA(s) = u(t + ntp)
(0,t+nt0)

and, in turn, the weak differentiability of u on (ntg, (n + 1)) and
u'(t) = vl (t — nto) = Av,(t — nty) + f(t) = Au(t) + f(1).

Au, f € LP((nto, (n+ 1)to); X) yields u’ € LP((nto, (n + 1)ty); X) and, together with
u € LP((0,+00); X), u € WP ((nt, (n + 1)ty); X). For ¢ € Cg5((0,400); C) also
()]t (n+1)10) € WH((nto, (n + 1)to); X) and

/ & (t)ult) dA(t) = (ou)((n + to) — (pu)(nto) — / (D) (8) A1)
(nto,(n+1)to) (nto,(n+1)to)

according to Corollary 2.5.9. Consequently,

/(0+ )sw(t)u(t) d)\(t):Z/ S(byu(t) dA(D)

n=0 (nto,(n+1)to)

> (e + 1) = (oo - [ o0 (1) (1)

n—=0 (nto,(n+1)to)

== [ e (Au) + @) dA)

n—0 (nto,(n+1)to)

_ /(0+ )gp(t)(Au(t)+ (1) dA().

Since ¢ € Cg§ ((0, +00); (C) was arbitrary, we conclude that v is weakly differentiable on
(0, +00) with u/(t) = Au(t) + f(t) for almost every ¢ € (0, +00). Together with the
continuity of v (Lemma 4.2.3) and the fact that u(t) € D(A) for almost every

t € (0,400) we deduce that u is a weak solution of (5.1). Since A is the infinitesimal
generator of an analytic semigroup, according to Proposition 4.2.7 this weak solution is
unique.

5.2.4 Lemma. Let p € (1,400) and t5 > 0. If A has the maximal LP-regularity
property on (0, o], then A 4+ &I has the maximal LP-regularity property on (0, to] for all
¢eC.

Proof. Let g € LP((0,%0); X) and let u be the mild solution of (5.1) for f(t) := e g(t),
ie.

u(t) = /(0 T 9)1(5) dAGs)

By Lemma 4.2.3 u is continuous. According to Theorem 5.1.4 A is the generator of an
analytic and according to Corollary 3.3.6 differentiable semigroup. A being maximally
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regular and Proposition 4.2.7 yield that u a is the unique weak solution of (5.1). It is
easy to see that f € LP((0,o); X) and that v : [0,o] — X defined by v(t) := eu(t) is
continuous as well as v(t) € D(A) for almost every t € (0,%]. Let € Ci5((0,%0); X).
Since u is weakly differentiable,

[ st ao= [ @@ etsmmun an-¢ [ Soiun oo

(07t0)

= [ ewyun axo ¢ [ ottt o

(O,to)

- /< SRt AN =€ | e eltult) ax

(0,t0)
=— /(o )gp(t) (%' (t) + etul(t)) dA().
to
Hence, v is weakly differentiable and
V() = e () + gettult) = e Au(t) + e f (1) + Eu(t) = (A+ EDv(t) + g(1).
Consequently, v is a weak solution of
{v’(t) = (A+EDu(t) +9(), € (0.1,
v(0) = 0.

By Proposition 3.1.2, g), A+ &I is the infinitesimal generator of the strongly continuous
semigroup (eftT(t))t>O. By Theorem 5.1.4 (T(t))t>0 can be extended to an analytic

semigroup. z — €% being analytic on C the same is true for (egtT(t))
Proposition 4.2.7

150" According to

v(t) :/ STt — s)g(s) dA(s), t € [0,tq].
(0,t)
for every t € [0,%,]. By Proposition 5.2.1, there exists a constant C' > 0 such that

||uHLp( (0,t0):X) T HAUHLP( (0,t0):X) = C HfHLP((O,tO);X) :

We set O 1= maxe ] ||, C := maxsepo ) e | and derive

498 gy = [ ITIAUOIP 230) < O 1Ay < T I B

sLo
=cer [ e gl dae) < CICECT gl
(0t0)
as well as
10120 0,t0):) = /(Ot | P Ju(®)NP dAE) < CYCP | F 11T (01010 < CTCECP 11910 (0102
»Lo

Consequently,
[(A+ & HLp( (0,t0); < ||AUHLP( (0,t0); ‘Hf‘ ”UHLP ((0,t0); S C1CC(1+(€]) ||gHLP((O,t0);X) :
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5.2.5 Corollary. Let p € (1,4+00) and ¢y > 0. If A has the maximal LP-regularity
property on (0, t], A has the maximal LP-regularity property on (0, ;] for every ¢; > 0.

Proof. Let M,w as in Proposition 3.1.2, a) and 6 > 0. By Lemma 5.2.4 A — (w + J)[ is
maximally LP-regular and by Proposition 3.1.2, g), A — (w + 0)I generates the

semigroup (e~“HIT(t)),_ . Because of

||e_(w+5)tT(t)H < Me™ t€0,+00)

we conclude from Theorem 5.2.3 that A — (w + )I has the strict maximal LP-regularity
property on (0, +00). By Theorem 5.1.5, A — (w + J)/ has the maximal LP-regularity
property on (0, ¢;] for every t; > 0 and so does A; see Lemma 5.2.4.

5.3 Independence of p

Our next goal is to prove that the maximal LP-regularity property is independent of p.
To that end we need two preliminary lemmata.

5.3.1 Lemma (Calderén-Zygmund decomposition). Let f € L'([0,+00); X), e > 0 and
denote by A the Lebesgue measure on [0, +00). Then there exist a sequence (I,,),en of
closed intervals with |, N I,,,| <1 for n # m and a sequence (hy,)nen in L'([0, +00); X)
as well as g € L*([0, +00); X) satisfying

a) f:g+zhn,

neN

b) [lgll . + ZT;thIILl <3l
ne

c) |lg(t)|| < 2e for almost every ¢t > 0,
d) supp(h,) C I, for all n € N,

e) [ hu(t) d\(t) =0 for all n € N and
(0,+00)

f) Z |In| < Hfﬂm‘

neN

Proof. For f = 0 the statement is obvious by taking g := f, h,, := 0, I, = 0, n € N. For
f e L]0, +00); X) \ {0} we set S; := N and decompose [0, +00) into closed intervals
Jog, k €N, of length X || f||,., such as

Jow = (k= D)2 [1fllp k21 A N ]
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Furthermore, we decompose each of these intervals into two smaller intervals of length
> Il .1, whose intersection contains at most one element, which we denote by Ji,
ke N=35,. If ki CN denotes the set of all k¥ € N with

2e 1

W/J £ dA(t) = m/] IF@)] dA(t) > e

then

IEDIEED Ly MUUCIRECED Yol ECIREURE

ke Ky ke Ky

which implies Ny := N\ K; # (). Assume that for m > 1 we have defined S,,,_1,
Km—lme—l g Sm—l with Km—l U Nm 1= m 1 |Nm 1| - |Sm—1| = 400 and
(Jm—1,6)kesm_y With A(Jm—1%) = gmmrz | fll 12 as well as

2m~lg ]
T /m . 1) dA(t) = m/Jm 1 £(0)]| dA(t) > e

if and only if k € K,,_;. We decompose each of the intervals J,,_1 4, k € Np,_1, into two
closed intervals of length 2%6 || f]l 1, whose intersection contains at most one element.
We call these intervals J,, 1, k € S,,, where S;,, € N is a set of indices with

|Sm| = 2|Ny—1] = 4+00. We obtain

U Jocie = s (5.12)

kEN, 1 k€eSm

By K,, we denote the set of all k € S,, such that

2Me 1
(K™ /Jw IO At = 37— /mek LF @) dA(t) > e. (5.13)
Since
! dA(t 2" P
=2 2 /mk”f i Z“fHLI /Muf@)n (t) =2,

K, has at most 2" — 1 elements and, in consequence, N,, := S, \ K,, is infinite. Hence,
we inductively constructed sequences (Sy,)men, (Km)men, (Nm)men with K, NN, = ()
and K, U N = S, m € N, as well as a sequence of intervals (Jy, k) men kes,, With

A Jms) = g= | fllp2- For n,m € N, k € K, | € K, with (m, k) # (n,1) we have

|=]m,k N Jn,l' S 1 and
1

A ) /J - LF@I dA(E) > e

for all m € N, k € K,,, as well as

1
m[}m If@)] dA(t) <e
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for all m € N, k € N,,. Furthermore, for every m > 2 and k € S,,, there exists [ € N,,_
such that J,, 1 C Jy—1,.

For m € N and k € K, we denote by J;, , the interior of Jx (i-e.
© = Jmx \ {inf Sy x,sup Jp }) and deﬁne

m,k

hm,k = ILJ;;L,k (f - )\(J]-m’k) ok f(t) d)\(t)>

We note that since |Jp 1 N Jpy| < 1for m,n eN, k € K,,,, | € K,, with (m, k) # (n,l),
the sets (J2, ;) menkek,, are pairwise disjoint. Consequently, for any ¢t > 0

m,k
=2 2 hoal®)
meNmeK,
has at most one non-vanishing addend. We define

g:f_z Z hm,k-

meNmeK,

f:g—l—z Z hm,ka

meNmeK,,

Clearly,

Supp(hm,k> - Jm,k and

/[O - hun i (t) dA(t) = /J m‘kf(s) dA(s) — /J ch( X Jlm,k) - ft) d/\(t)) d\(s) =

We want to prove that ||g(¢)|| < 2e for almost every ¢ > 0. To that end, let

0,400\ U U e = (0400 U i)

meN keK,, meN keKm

We want to show by induction that for each m € N there exists a k,, € N,, satisfying
t € Jomk,,- For m =1 we have

€ [0,400) \ (U Jlk)CUJIk
ke K, keN,

Hence, t € Jy, for some ky € Ny. Assume that t € J,,_1,, , for some k,,_; € Ny,_q.
K,NN,, =0, K,,UN,, =5, and (5.12) yield

00 (U ) € U s (0001 (U )

keEKm k€N, kESm
= | sV (o +o0) < g Jm,l,l>>. (5.14)
kEN, LE€ENm —
te Jmfl,km,l yields
te U Jmfl’l
€Ny 1
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and, by (5.14)

te |J Jmn

kENm

Hence, t € J,,,, for some k,,, € N,,,. We define p,, := %(sup Ik, +10f Ty i) and

5. . )sup T — < P,
" ) inf I, — 1t T > D,

m € N. Clearly, |6,,] € [$A(Jm g )s Mg )]. For m € N we obtain in the case t < p,

1 2

Bl Lo O DO S 55 [ el e <2 619
as well as

1 2

Bl S o IFEI 0N < 57 /, I e 2= 619

in the case t > p,,. Since |d,,| € [1 (St )s Nk, )] and A( g, ) = ﬁ £l 1

5 m—s+o0 0 and by Proposition 2.5.2, d) ||g(t)|| = ||f(t)|| is the limit of the sequence
defined by

1
el )
| m| (t,t4+0m)
for m € N with ¢,,, > 0 and
1
5 [F ()]l dA(s),
160l St

else, for almost every t € [0,+00)\ U U Jmk. Together with (5.15) and (5.16) we
meN keKn,

conclude that ||g(t)[| < 2¢ for almost every ¢t € [0,+00)\ U U Jms lft € Jy,, for
meN keK,,

some m € N and k € K,,, there exists [ € N,,,_1, such that t € Jfr’hk C Jy—1,. Because of

1
A(T_U)/JM 1£(s)]| dA(s) <e

and Proposition 2.3.6, b), we have

L 1
X0 /]m,k f(s) dX(s) )\(J N /mek £ (s)]| dA(s)

AlSm-11) 1 / AMJm1d) _ 2mell
) d\ J — L
= Amk) AIm-12) g, Tl = YOS I i P

lg@IF = 1) = hmi(® =

€ = 2¢,

implying ||g(t)|| < 2¢ for almost every t € |J U Jmx since
meN keKom

{supJmr:meN ke K,}U{inf J,,,, :me Nk e K}
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is countable and therefore a null set.

From )
sl <2 [ 176 dX), m e N ke Ky,
Jm,k
we infer . 171
DD SILNESS DS i BN ETROEESE
meN k€K, meN ke Ky, ¥ Jmok
Weset J:= J U Jy,, and obtain
mENkEKm
L, ()
g1l = HOESVOHORS S T f(s) dA(s)|| dA(t)
[0,+00) meN k€ Km (Jnk) S

]]_J’lc‘:L,k(t>
< /[0 ’M)\Jl\f(t)H dA(t) + /[0 7+w)%k§m ) ( [, 5 1£(s)]] dA(s)) (1)

S RLCEECES 3p ol e VAR ROC

meN keK,,
< / ol o+ Y / 17(s)]) dAGs) = (£, -
[0,4-00)\J meN k€K, ¥ Imik
Moreover,

il < [ 1001+ 55— ([ 1@ @) o =2 [ 1ol e

for any m € N and k € K,,. Consequently,

lgllze + > > Wemelln < 311Flp -

meN ke Ky,

Since |J K,, is countable, we can rearrange (Jp, x)men ke, into a sequence (I, )nen. In
meN
the same manner, we rearrange (R, i )men kek,, into (hy)nen. By the previous reasoning

9, (hn)nen and (1) ey fulfill a) - f).
O

5.3.2 Lemma (Marcinkiewicz Interpolation Theorem). Let ¢,r € [1,400) with ¢ < r,
S L1((0,400); X) N L"((0,+00); X) — {f : (0,400) — X | f measurable} be a linear
operator, such that there exists a constant C' > 0 with

M{E >0 Sl > ey < & ngHLq
and ) T
A{t>0:|SFH)] > € < HgJiHLr
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for all f € L9((0,+00); X) N L"((0,+00); X) and & > 0. Then for every p € (g,7) we
can extend S to a bounded linear operator from L?((0, +00); X) into LP((0, +00); X).

Proof. For a measurable function f : (0,400) — X we define m; : [0, +00) — [0, +00)
by mg(&) == A{t > 0: | f(t)| > &}). Let f € Lq((0,+oo);X) N L’"((O, +oo);X) and
p € (g, 7). Because of

[ e aw- [ £ o+ [ £ dxe)
(0,+00) {t>0:| F(B) <1} >0 f(@OI>1}

< O dx(t) + O dA(t

/{t>01f(t)||§1} 171 g /{t>01||f(t)||>1} 17l "

< N ANZe + 112 < 400

f S LP((O, —l—OO);X). Let f > (0 and define ge ‘= ]l[t>0:||f(t)||>5]f, hg = f — ge. Since
ge, he € Lq((O, +oo);X) N LT((O, +oo);X), by assumption

C'|ge||*
msye() < W0l ) <

K

C [lhell

K:T

A

for all K > 0.

{t>0:ISF@O)) > & S{t >0:|ISge()]| + [She(®)] > &}
C{t>0:Sge(t)]l > 5YU{t >0:[She(t)]] > 5},
implies
21C" | ge [ 7.4 L Ze [[72e] [
3 3
By Fubini’s Theorem for non-negative functions, as shown in [13], Theorem V.2.1, and
Lemma 2.4.4 we obtain

I = [ issnr o= [ (f et ovg) oo
- /Om /Om s O dAE) dA()
p/mvm) 5“(/(0#00) Loisrwn(§) dA )) dA(€)

¢pl 1 dA(t)) dA(€
p/<o,+oo> </{t>0:IISf(t)II>£} (5) )

p /(W) £ sy (€) dA(€)

21CeP1 || gel|?, 2P || he |
(0,400) &4 (0,4-00) 3

Again by Fubini’s Theorem for non-negative functions

/m,m) o AO= /(O,m)é ( /(0’+00)1[s>0||f W= (®) IO dA®) dAE)
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— a o170 p=a=1 g\ (£)) d\
/(O#OO) £l (/((HOO) o170 (§)E (f)) (t)

= 1 p=a—1 g\ d\
/(W ol (/(Olmf (©)) dx()
B /( Hf<>Hq||f<t>|| o < U

b= pP—q

An analogous computation leads to

& el o I
/(O e o=

Consequently,

3=

1S5l < (CP(Z= + 207 1]l 0
Since

Cos ((0,+00); X) C LI((0, +00); X) N L"((0, +00); X ) C LP((0, +00); X),

L4((0,400); X) N L"((0,+00); X) is densely contained in L?((0, +00); X); see
Proposition 2.5.2, b). Therefore, we can extend S to Lp((O, +00); X) satisfying

Sl

15 £l < (CplZ + 25)

for every f € LP((0,+00); X); see [12], Theorem 1.1.1.

(Al

5.3.3 Lemma. Let X be reflexive, p € (1,4+00) and K : R — Ly(X) be a measurable

function such that K|g 0} € L. (R \ {0}; Ly(X)) as well as
[ K9 - K@) aw <0
R\[-2]s],2|s(]
for all s € R\ {0} and some C' > 0. If S € L, (LP((0, +00); X)) satisfies
SO0 = [ K010 X (5.17)
0,400

for all f € Lp((O, +00); X ) with compact support and almost every

t € R\ [inf supp(f), supsupp(f)], then for any ¢ € (1,+00) the operator

S| L1((0,400):X)NLP((0,400);: X)L ((0,4-00);x) can be extended boundedly to an operator
Sy € Lq((O,—l-oo);X).
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Proof. For a measurable function f : (0,4+00) — X we define my : [0, +00) — [0, +00)
by ms(€) == A{t > 0: [|[f()]| > &}). Given f € LP((0,+00); X) and £ > 0, we have

EPmgp(€) = EPA({t > 0 S|P > €F}) = / Lissorsp(s)P>ery (8)E7 dA(2)

(0,400)

< ISFON dA®) < ISFIIZe < ISI1Ze 11170 -

/{S>0:Sf(8)||p>£”}

which implies
A
- P

msy (&) ¢

for all £ > 0. In order to prove the existence of a constant M > 0, such that

M | fllza
§

for all f € L'((0,400); X) N LP((0,+00); X) and & > 0, let

f e L(0,+00); X) N LP((0,+00); X) and € > 0. We extend f to [0,400) by setting
f(0) := 0. By Lemma 5.3.1 we find closed intervals I,, C [0, 4+00) and functions h,,,

n € N and g, such that a) - f) in Lemma 5.3.1 are fulfilled. From

msy(§) <

1gll7 2/ lg@)” dA(®?) :/ lg@I g™ dAt) < (2e)7 " [|gll, < +o0
(0,4-00) (0,400)

we derive g € L?((0, +00); X ). Consequently, by ¢) in Lemma 5.3.1

28 ||Sze llgllze 227 " 1S gl

mSg(%) < oD P
2SI gl 22 UISIE, Il
£ 5 '
Define
0, te{infl, :neN}U{supl,:n e N},

hlt) = ihn(t), else,

S 1= 3(sup L, +inf 1)), J, := [s, — AM(L,), s, + A(I,)] and

I::UJn.

neN

Note that, since |, N I,,| < 1, the sum

S hal)

contains at most one non-vanishing summand for ¢ ¢ {inf I,, : n € N} U{sup [, : n € N}.
It is easy to see that s, = 3(sup J, +inf J,), I, C J, and A(J,) = 2A(I,,).

{t>0:ISh(t)| > 5} = {t € I : [|Sh(t)]| > £} U{t € (0,400) \ I : |Sh(t)]| > £}
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CIU{t e (0,+00)\I:|Sh(t)] > 5},
yields
msn(5) < AI) +A({t € (0,+00) \ I : ||Sh(t)|| > 5}). (5.18)

By f) in Lemma 5.3.1

S o\ 2([f1l
I < ;)\(Jn) = Q;A(In) < TL

f(t) = g(t) + hy(t) for every t € I, yields h,, € LP(I,,; X). Since supp(h,) C I, by d) in
Lemma 5.3.1 and f = g + h almost everywhere, h,, € Lp((O, +00); X) as well as

h € LP((0,+00); X). Since {inf I,, : n € N} U {sup I, : n € N} is countable and therefore
a null set, we have

N
and
N p
D ha(t)=h®)| <[p@®]", NeN,
n=1

for almost every ¢ € (0, 400). By Theorem 2.3.7

Hence,
S0 = (i S 0) = i 3500 =3 500

Since this is an equality in L?((0, +00); X), the functions S(h) and Z S(h,,) differ only

on a null set. Furthermore, supp(h,,) C I,, and ¢t € (0,400) \ [ 1mphes
t ¢ I, 2 [inf supp(h,,),sup supp(h,)|. Consequently, by our assumption (5.17), by
Fubini’s Theorem for non-negative functions and due to

/In h(s) dA(s) = 0

we have

[ suolae - |
(0,+00)\1 (0,400)\

N Z /(0,+oo)\1

n=1

<
N z; /(0,+oo)\l

n

dA(t <Z/ |Sh,(2)]| dA(t)

(0,400)\1

dA(t)

K(t — s)h,(s) d\(s)

dA(t)

/1 (K(t—s) = K(t— sn))ha(s) dX(s)
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—8) — K(t — s,))hn(8)|| dA(s) dA
<[ = = K= s e i

< Z e (/(0’+oo)\l||K(t—s)—K(t—sn)H AN(1)) dA(s).

For n € N and s € [, substituting ¢t — t + s,, leads to

/ 1Kt — ) — K(t —s2)| d/\(t):/ 15 (t = (s — ) — K(0)]| dA(2)
(0,400)\ ((0,+00)\I)

For t + s, ¢ I D J, we have [t| = [(t + s,) — su| > 2A(Jn) = A(L,,). On the other hand,
from s € I,, we conclude |s — s,| < $A(1,,), which implies [t| > X(I,,) > 2|s — s,,|. By
assumption and b) in Lemma 5.3.1 we obtain

Sh d\ h,(s Kt —3s5)— K(t—s,)| d\ d\(s
Lo sn1ax® <32 [ I (f 1K) = Kol o) ax)
_Z ”h </<<o+ ) [K (= G = s) = KO dw)) dA(s)

hn(s K(t—(s—s,)) — K@) d\#)) d\(s
<> /Inu L= =) - K] o) o)
<03 [ )l axs) <3011,

and, in conclusion,

EA({t € (0,+00) \ I : |Sh(t)] > £}) e dA(1)

/{te(o,+oo)\1:5h(t)||>§}

IN

2 [Sh(®)] dA(?)

/{te(O,+oo)\I:||Sh(t)>%}

<2 / ISh(®)]| dA) < 6C £, -
(0,+00)\I

Consequently, (5.18) gives

(2+6C) 11 s

msy(5) < .

and
{t>0:[SFO >t C{t>0:(Sg®)| > 5HU{t>0:[Sh®)| > 5},

implies
(2*1L +6C +2) || f]|
5 )

Since € > 0 and f € L'((0,+00); X) N LP((0, +o0); X ) were arbitrary and
+00); X) = L'((0,400); X)NLP((0, +00); X),

msp(e) < msg(5) +msn(3) <

L'((0, 400); X)NLI((0, +00); X) NLP((0,

133



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

by Lemma 5.3.2 for every ¢ € (1,p) S|51((0,400):X)NLa((0,400); X)NLP((0,400):X) CaN be
extended boundedly to Lq((O, +00); X).

Let S’ € Lp((O, +00); X), — Lp((O, +00); X), be the conjugate operator of S, i.e.
S'(9)(f) = ¢(Sf) for every ¢ € LP((0,400); X)" and f € LP((0,+00); X), p' € (1, +00)
such that % + 1% = 1. Since X is reflexive, the mapping

®, : L¥ ((0,400); X') — L((0, +oo);X)/ defined by

D,()(f) = /( AO0) A0

is an isometric isomorphism; see Proposition 2.5.2, ). We define
R:=®," 05 0®,: ¥ ((0,+00); X') = L7 ((0, +00); X')

and L: Ry — Ly(X') by L(t) := (K(—t)),. We want to prove that R and L have the
same properties as S and K. By Theorem 6.1.2 in [12], Ly(Y) 5 T +— 1" € Ly(Y”) is
linear and isometric for every Banach space Y. Consequently, substituting ¢ — —t for
s € R\ {0} we have

L(t—s)— L ) —
/IR\[—23,2|5|] H <t ) (t)H (t) /1%\[—2|5|72|8|]
- / 1K (s — 1) — K(—)]| dA(®)
R\[—2]s],2]s]]

(K (s = 1) = K (=)’

dA(t)

-/ o V@) K@ 030 <0

Let z € X and [ € Lp'((O, +00); X’) with compact support and set a := inf supp(f),

b := supsupp(f). Moreover, let 1 € C55((0,a); C) and ¢, € C§5 ((b, +00); C) be
extended to the whole half axis by ¢1(t) = 0 for t € [a, +00) and ps(t) = 0 for ¢ € (0, d].
¢ == 1 + ¢ belongs to Cg5((0, +00); C) € LP((0,+00); C) satistying

supp(y) C (0,400) \ [a, b]. We obtain

[ EDstalr dX6) = DR = (570 B0 = ) (S(e0))
:/(0+ )f(s)((s(sﬂ(')x))(s)) dA(s)
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:/( ) /(0+ )L(t —5)(f(s))e(t)z dA(t) dA(s).

For t € supp(y1) Usupp(y2) and s € [a,b] we have t — s # 0, meaning
{t — s :t € supp(p1) Usupp(y2), s € [a, b} is contained in some compact set K with
0¢ K.

I 2t (abyoieixry = /( Do) [fON dAt) < (b—a+d- C) Il 2o 0,007y < +00

implies

/(b) /(O+ )HL(t—8>(f(s>)sD(t)xH dA(t) dA(s)
’ Lt = )| 1f ()] dA(t) dA(s
<lellell [ =l a o)

< lleplloo I LA 21 aexy 1N 22 ayieyiaeny < Fo00-

By Theorem 2.3.12 we obtain

/(07+oo)(Rf)(S) s)z dA(s /0 . /ab (t—3)(f(s))p(t)x dA(s) dA(t)
= /(Oym) (/(a,b)L(t— s)(f(s)) dA(s))cp(t)x (D).

Subtracting the left side from the right side leads to

/( oo o(t) ( /( - L(t —s)(f(s)) dX(s) — (R f)(t))x dA(t) =

Since

(0, +00) > t > (1) (/ L(t— s)(f(s)) dA(s) — (Rf)(t)) e X'

(0,+00)

is integrable, we can employ Proposition 2.3.6, ¢) and obtain

</(0 +00) 90(’5) </(0 +00) L(t N S) (f(S)) dA(S) B (Rf> (t)> d)\(t))x =0

for any x € X implying
[ eo(]  Le=9() ) - (BAO) axe o e X
(0,+00) (0,+00)
Choosing 9 = 0 we obtain

/(oﬂ) 1(t) </(0,+oo) L(t — s)(f(s)) dA(s) — (Rf)(t)> dA(t) = 0
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for every 1 € Cg5((0,a); C). Proposition 2.5.2, ¢) implies
BN®= [ Lit=9)(f(s)) A
(0,400)
for almost every ¢ € (0,a). An analogous argument shows
BHW = [ 1= (1) )
y o0

for almost every ¢ € (b, +00). Applying the first part of the proof to R, we conclude
that R\Ll((oﬁoo);x,)mq/((07+oo);x,)mLpf((07+Oo);X,) is boundedly extendable to an operator
R, € Lb(Lq ((0, —i—oo);X’)) forall 1 < ¢ <p.

Fix g € (p,+00) and let ¢’ € (1,p') satisfy % + ? =1 and let

D, : L7 ((0,+00); X') = L7((0, +00); X)/ be the isometric isomorphism as in
Proposition 2.5.2, €). By Lemma 6.1.3 in [12] @/ : L((0,+00); X)" — L7 ((0, +00); X")’
also is an isometric isomorphism. Since X is reflexive, so is L9 (0, +00); X ) by
Proposition 2.5.2, f), and the mapping ¢ : Lq((O, +oo);X) — Lq((O, +00); X)” defined

by ¢(f)(¢) :== ¢(f) is an isometric isomorphism. Let
f e L(0,+00); X) N LP((0, +00); X) N L9((0, +00); X ) and define

g:=(""o(®,") 0 R, 0® ou)(f) € LI((0,+00); X),

where R}, € Ly (Lq/ ((O, +00); X/)/) is the conjugate operator of
Ry € Ly(L7((0, +00); X')). For ¢ € L7 ((0,+00); X') we have

@, (e()) (9) = L) (Pa()) = Pe(0)(f) = /(0+ )w(t) (f(1) dx(®),
and, in consequence,

(Ry 0 @0 0)(f)(p) = 4 (u(f)) (Ryep) = / (Rye) () (f(t)) dA().

(0,400)
Moreover,
%)) = [ o) ax,
(0,4-0)
implying
D, (Ry)(f) = /( (Rep) (1) X(0) = /( (090 D) = ,(0)(0)

forallgoELq(O+oo ) For
¢ € L'((0, +oo X)n LY ((0,+00); X') N Lp'((O7 +00); X') we obtain
Ryp = (P, 085 0d,)(p) € L’ ((0 —|—oo) X') and hence
/(0+ )@(t) (9(1)) dA(t) = Po()(9) = Pq(Ryp)(f) = /(0+ )(quSO)(t) (f() dA(t)
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= O, (Ry0)(f) = 5" (2p(0)) (f) = Pp(0)(Sf)
_ /( AO((SHE) A,

For ¢ € Cg5((0, 4+00); C) and 2’ € X’ we have
P(-)a' e Ll(((), +oo);X’) N Lp/((O, +oo);X’). By Holder’s inequality, Proposition 2.5.3,
a), (g — Sf) is integrable and we have

0= [ v (o0 - spw) mo = ([

(0,400)

() (g() = (S1)(1) dAW)).
By Corollary 5.2.7 in [12], X’ acts point separating on X, implying
[, v —snm) axe =o

Since ¢ € Cg5((0,4+00); C) was arbitrary, g(t) = (Sf)(t) fo almost every ¢ € (0, 400);
see Proposition 2.5.2, ¢). We obtain Sf =g € Lq((O, +00); X) and

OR/ O@/

HSfHLq((O,—&-oo) HgHLq ((0,400); H )HL‘I((O,Jroo);X)

- ” (Ry o q)/sr ”Lq ((0,400);X7) = HR/
= ||Ry| ||fHLq((o,+oo);X) ‘

By Theorem 1.1.1 in [12] we can extend S|71((0,400); X)NLP((0,400); X)NLI((0,+00);:x) tO an
operator S, € Ly(L1((0, 4+00); X)).

q)/r © L)<f)HLq'((O,+oo);X’)’

5.3.4 Theorem. If X is reflexive and A has the mazimal LP-reqularity property on
(0,+00) for one p € (1,+00), then A has the maximal LI-regularity property on
(0, +00) for all g € (1,+00).

Proof. Since A is maximally LP-regular, for every f € Lp((O, +00); X ) there exists a
unique weak solution uy : [0, +00) — X of (5.1). According to Definition 4.2.1,

us(t) € D(A) for almost every t € (0,400). Hence, we can define the linear operator S
by

Aup(t), ug(t) € D(A),

0, else.

(Sh)(t) := {

Moreover, A being maximally LP-regular yields

HAufHLp((o,.g.oo);X) <D HfHLP((O,+oo);X) , fe Lp(<0’ +Oo)5X)>

for some D > 0, implying [[Sf|| 100, 100)x) < D 1f | 1o((0,400).x) 20d, consequently,
S e Ly (L”((O, +00); X)) By Corollary 5.1.6, A is the infinitesimal generator of an
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analytic and therefore differentiable semigroup (Proposition 3.3.4) and by Proposition
4.2.7

us(t) = /(Ot) T(t—s)f(s) d\(s), te€[0,+00),

which leads to
SHO=A([ Tt~ 515 \S). 1€ L((0.+50)X)
01)
for every ¢ > 0, such that us(t) € D(A).

By Proposition 3.3.4, the mapping K : R\ {0} = Ly(X), K = 1(400)AT is
well-defined. We are going to verify the assumptions of Lemma 5.3.3. K is continuous
on R\ {0} by Proposition 3.3.4, implying K € L;. (R \ {0}; X) by Theorem 2.4.2. By

Proposition 3.3.4 AT is differentiable with (AT)(t) = A?T(t) for every t > 0. By
Theorem 3.3.5 there is a constant C' > 0 such that

C

JAT@)] < S, > 0.

Employing Lemma 2.4.4 given s € R\ {0}, we obtain

/ 1K (t - s)— K@) dAt)
R\[-2]s],2]s]]

/R\[QISIJIS]

dA(t)

‘/(ts,t) AT (r) d\(r)

< / / AT AT drm)] arc)
RA\[—2ls]2lsl] | J(t—s.0
1
< 40? / / - dA(r)( dA(t)
BA\[-2fs] 21s)) | (t—s.t) T
11
— 402/ - —( dA(t)
R\[-2sl2s]! =5 1
11 11
:402/ = +‘ ——’d)\(t)
(2|s|,+oo) t t—|—8 t—s t
For s > 0 we have
11 11 © 1
/ Lt = / -t
(2s40c) t L +s t—s 9 t—8 t+s
—ln(t—s) —In(t+s)| =1n(3)
2s

and for s < 0

1 1 1 1 < 1 1
/ . d)\(t):/ L
(—2s400)t+s Lt T—s _9st+s t—s

—In(t+s)—In(t—s)| =)

—2s
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Hence,

/R\[—2| 21s] [K (= 5) = K@OI dA) < 4K In(3).

Lastly, let f € Lp((O, +00); X ) have compact support and
t € (0,+00) \ [inf supp(f),supsupp(f)]. By Lemma 4.2.3 s — T'(t — s) f(s) is integrable
over (0,t). If ¢ > supsupp(f), then

/ JAT(t - )£(s)]| dA(s) = / JAT(t — ) f(s)]| dA(s)
(0,t) (inf supp(f),sup supp(f))

K
~ t — supsupp

(f) HfHLl((O,Jroo);X) :

We employ Proposition 2.3.13 and obtain

S0 =Aul) =A([ 7= 1) )

(0,¢)

_ /( AT = 9)1(s) dX(6) = K(t— 5)f(s) dA(s).

(0,400)

For ¢ < infsupp(f) we have
S =A T(t—s)f(s) d\(s)) =0
SO0 =A(f Tt=9106) axs)
= / AT (t — s)f(s) dA(s) = / K(t—s)f(s) d\(s).
(0,¢)

(0,400)

Hence, we can apply Lemma 5.3.3 and obtain that for any ¢ € (1, 4+00) we can

boundedly extend |71 ((0,400); X)NLP((0,400):X)NL((0,+-00);x) O an operator
Sq € Lb(Lq(R+;X)).

We show that for every f € Lq((O, +00); X), q € (1,+400), there is a unique weak
solution of (5.1). By Proposition 4.2.7, it suffices to show that the mild solution

u(t) = /(0 ) T(t—s)f(s) dA(s)

is a weak solution. By Proposition 2.5.2, b) we have ||¢, — f]| 4 221 0 for a sequence

(@n)nen In C’gg(((), —I—oo);X) C Lp((O, +00); X). Since ,, € Lp(((), +00); X), by
assumption there is a unique weak solution w,, satisfying u;, € L?((0,+00); X),

u, (t) = Auy,(t) + @n(t), t € (0,+00),
u,(0) =0,

and
unt = ['(t — s n\S d)\S, .
() /(077:) ( )QD() () t>0
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Let M,w as in Proposition 3.1.2, a), t > 0 and r € (1, +00) such that % + % = 1. By
Proposition 2.5.3, a)

[[un(t) = u(t)]| < /(0 ) IT(t = 5)[Hlon(s) = F(s)Il dA(s)

<M o e lpu(s) = f(s)II dA(s)

< Me*' (1= ™) [lon = flly = 0.
Moreover,

[Aun = Sofll e = [1Sgn = Safll 1o < ISall lon = fll o 0, (5.19)

which by Proposition 2.5.2, a) implies that there is a subsequence (Au,, )nen satisfying

Auy,, (1) kobos, (S, f)(t) for almost every ¢ > 0. Since A is closed, u(t) € D(A) for
almost every ¢ > 0 and Au(t) = (S,f)(t) for every ¢t > 0, for which u(t) € D(A) holds
true. We obtain

[Aull e =[Sl e < 1Sl 11l a -
Given 0 < ¢ < d < 400, we have u,, € Wl’p((c, d); X) and

Un(d) — u,(c) = /( ) Au, (t) + @n(t) dA(2)

by Corollary 2.5.8.

H | ewaw-[ 5w dA(t)H < [ lea= £l axe
(e,d) (c,d) (c,d)

< (d_ C); HSDn - fHLq nHJFOO} 0,
together with (5.19) implies

u(d) —u(c) = lim w,(d) — u,(c)

n—-+o0o

= lim Auy (t) + on(t) dA(t) = Au(t) + f(t) dA(t).
=100 J(c.d) (c,d)

By Theorem 2.5.7 we obtain u € W'4((c,d); X) and v/ = Au + f. Since
0 < ¢ < d < +oo were arbitrarily chosen, u is weakly differentiable and hence a weak
solution of (5.1).

5.3.5 Corollary. Let X be reflexive and p € (1,+00). If A has the strict maximal
LP-regularity property on (0, 400), then A has the strict maximal L?-property on
(0, +00) for all ¢ € (1,+00).
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Proof. By Theorem 5.2.2, A is maximally LP-regular, 0 € p(A) and ||T(t)| < Me™%,
t > 0, for some M, > 0. By Theorem 5.3.4 A is maximally Li-regular for all

q € (1,+00). It remains to show that for every ¢ € (1, +00) there exists a constant
C, > 0, such that the mild solution u : [0,4+00) — X defined by

u(t) == /(0 ) T(t—s)f(s) dA(s)

satisfies ||ul;, < Cy || f|l 4 for every f € LI((0,+00); X). Let f € L7((0,+00); X) and
extend 7" as well as f to the real line by 7'(t) := 0 and f(¢) := 0 for ¢t < 0. We employ
Young’s inequality, Proposition 2.5.3, b), and obtain

= ([ re=ss axes
< ([ ([ e s ixe)” axo)?

M
<t Me™{| 1 Flla = =5 £l

q

dA(t))‘lz

5.3.6 Corollary. Let X be reflexive, p € (1,4+00) and tg > 0. If A is maximally
LP-regular on (0, to], A is maximally L?%regular on (0,ty] for every ¢ € (1, +00).

Proof. Let M,w as in Proposition 3.1.2, a) and § > 0. By Lemma 5.2.4,

B := A — (w+ ) is maximally LP-regular and by Proposition 3.1.2, g), B is the
infinitesimal generator of (e~ “*'T'(t)) _ . Since |e=@tT(t)|| < Me for every

t > 0, we can employ Theorem 5.2.3 and obtain that B has the strict maximal
LP-regularity property on (0, 400). By Corollary 5.3.5, B has the strict maximal
Li-regularity property for all ¢ € (1,+00). By Theorem 5.1.5, B is maximally
Li-regular on (0, to] for every ¢ € (1,+00) and by Lemma 5.2.4 the same holds true for
A=B+ (w+0)I.

g

5.4 Maximal Regularity in Hilbert Spaces

We saw that for A to be maximally regular, it is necessary for A to generate an analytic
semigroup. If the underlying space happens to be a Hilbert space, this condition is also
sufficient. Throughout the present section X denotes a Banach space and H a Hilbert
space.

Our main tool here will be the Fourier Transform for Banach space-valued functions.
We state Plancherel’s Theorem for Hilbert space-valued functions. Its proof can be
found in [15], Proposition 4.1.
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5.4.1 Definition. Let ¢t € R and f € L'(R; X). We call the function F(f) defined by

F()(t) = # / e f(s) dA(s)

the Fourier transform of f and

F)() = e f(s) dA(s)

7 he

the adjoint Fourier transform.

Heﬂts f ( )| = ||f(s)|| implies the integrability of s — e f(s) and the inequalities
IFHOINFOO] < N fllps t € R

5.4.2 Theorem (Plancherel). There ezists a unique linear, isometric and bijective
operator U : L*(R; H) — L*(R; H), which satisfies

Uf =F(f)
for every f € L*(R; H) N L*(R; H). Moreover, U(U(f))(t) = f(—t) for every
[ € L*(R; H) and almost every t € R as well as

[(@n.wa®) axo = [ (10.501) axo

for every f,g € L*(R; H).

Recall the fact that the space D(A) equipped with the graph norm ||z||, := ||z| + || Ax||
forms a Banach space; see Lemma 1.2.5.

5.4.3 Lemma. Let p € [1,400) and —co < a < b < 4o0. If (T(t))t>0 is a differentiable

semigroup, the space Cg5((a, b); D(A)) is densely contained in LP((a, b); X).

Proof. Let [ € ng((a,b);X) and define f, := T( )f, n € N. By Proposition 3.3.4

fa(t) € D(A) for every ¢ € (a,b) and AT(3) € Lb(X) for every k € N. By Proposition
1.1.2, ¢), we have fi™(t) = T(L) f™) () and (Af,)™(t) = AT (1) 0™ (1) for all

t € (a,b) and m € NU{0}. Given h € R such that ¢,t + h € (a,b) and m € N we obtain

1

waw +h) = f[m00) = K@) 0

as well as .
HE (AF D+ ) = A0 () = AR ()] 250,

implying

1 -

|5 = o) - | =,
G
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which means f, € C*((a,b); D(A)). Together with supp(f,) = supp(f) we conclude
that f, € C55((a,b); D(A)) for all n € N. By Proposition 3.1.2, b),

n—-+00o

| fn(t) — f(®)]]F —— 0 for every t € (a,b). For M,w as in Proposition 3.1.2, a) with
w.l.o.g. w > 0 we have

1. (8) — FOI” = || (T 0" < IIT W+ 1) IF@)”
_<en+1> ||f(t)|!” (e + P (I F ()]

We conclude from Theorem 2.3.7

/( 50 = SOOI ) =50

and, in turn, || fo = fll 2o (030 222 0. Since by Proposition 2.5.2 Cos ((a,b); X) is
dense in Lp((a, b); X),

L”((a, b);X) D ng((a,b);D(A)) D ng((a,b);X) = Lp((a,b);X).

5.4.4 Theorem. If A: D(A) C H — H is the infinitesimal generator of a bounded
analytic semigroup, then A has the maximal LP-regqularity property on (0, +00) for all
p € (1,+00).

Proof. Let ¢ € Cg5((0,400); D(A)). By Lemma 4.2.3 v : [0, +00) — H defined by

v(t) :—/0 T(t — s)p(s) dA(s)

is well-defined and continuous. Because Ay is continuous, also
s AT(t — s)p(s) = T(t — s)Ap(s) is integrable. We employ Proposition 2.3.13 and
obtain v(t) € D(A) as well as

Av(t) = AT (t — s)p(s) dN(s) = / T(t — s)Ap(s) dA(s).
(0,t) (0,t)

We want to prove that Av € Lz((O, +00); H). By Theorem 3.3.5 there exists a constant
C > 0 such that

[AT@)] <

C
—, t>0
t

Choosing 0 < a < b < 400 and M, K > 0, such that supp(y) C [a,b], [|[Ap(s)]| < K for
every s > 0 and ||T'(¢)|| < M for all £ > 0, we obtain

/(OM [Av(@)]I” dA(t) < /<o,b+1)< /((m IT(t = ) [ Ap(s)]| dA(s)) dA()
< (b+1)P3K*M? < 400
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and

2
[ e o< [ ([ 1are- ol i) a
(b+1,+00) (b+1,400) (a,b)
1
S — 5 dAH)

(b+1,400) (t — )
= CZ ||S0||il((07+oo)7x) < 400 (520)

We extend Av, T and ¢ to R by Av(t) =0, T'(t) =0 for ¢t < 0 and ¢(s) = 0 for s < 0.
For n € N we define f, : R = R by f,,(t) := 1jp4o) (t)e~w. f, € L*(R;R) together with
(5.20) yields f,Av € Ll(]R‘ H) and

Flfuho)r) = 2= / “itrp (1) Av(t) dA(2)

\/%/ e f (1) /(O,t) AT (t — s)p(s) dA(s) dA(t)
_ \/_27 /R /R e L (OT(t — ) Ap(s) dA(s) (), 7 €R

Because of

/R/R He—itrfn<t>T<t— s)Ago(s)H dA(s) dA(t) < M/(o+ )/Re—ﬁ | Ap(s)|| dA(s) dA(t)

= Mn || Apl| 110 1o0y;m) < 00

we can apply Theorem 2.3.12 and obtain

F(fuh)(r) = = / / it £ (DT (t — 5) Ag(s) dA(t) dA(s)

= — eI £ (4 )T () Ap(s) dA(t) dA(s
m// (14 $)T(0) A(s) dA(1) d(5)
1 / / (L) (t+s)
= — e\ T () Ap(s) dA(s) dA(t
.3 . ()4¢(5) dA(s) ()
AT T () Ap(s) dA(s) dA(t
\/27T/0+oo/0+oo () Ap(s) AL X
= e~ Gt (¢) / “iremn Ap(s) dA(s) ) d(t
/(0,+oo) \/27T 0,-+00) () dX )> (t)
— [ cGITOA(GA ) a0,
(0,4-00)
Employing Proposition 3.1.2, h), leads to

F(fnAv)(r) = / e’(%””)tT(t)}"(angp)(r) dA(t) = R(% +ir, A)F(fuAp)(r).

(0,400)

Since f,¢ and f, Ay are integrable, by Proposition 2.3.13 we obtain F(f,)(r) € D(A)
as well as

FUfade)(r) = [ e 10Ae() N0 = A( [ € Fubo(t) D) = AF (L))
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Let U : L*(R; H) — L*(R; H) be the isometric isomorphism as in Theorem 5.4.2. Since
A is sectorial (Theorem 3.3.5), there exists a constant L > 0 such that

|AR(E +ir, A)|| = || ((X + ir)] — A)R(ir, A) — (2 +ir)R(2 +ir, A)||
<M+ || +inR(E +ir, A)| <1+ L

for all n € N and r € R. We obtain

”.an'UHLQ(]R;H) - ||U(anU)||L2(R;H) - ||f(anv)||L2(]RH ”AR +i, A)F (fnw)Hm(R;H)

< ([ IARG +ir AP WA 030)°
<@+ D( [ 10RO ) = 1+ L I ean

1

=+ D) [l =0+ D[ e F el dx0)’

(0,400)

<1+ D) /( eI aA0)" = 0+ D) el

From || f,(t) Av(t) = Av(t)[[* *=555 0 and || fu (1) Av(t) = Av(®)|[* < 4| Av(t)||* for all

t € R, we infer || f,Av — Av| 12 .y 2219 0. Consequently,

1AV 220 400y < (1A L) 0]l 20 4r00):) - (5.21)

Let f € L*((0,+00); H). By Lemma 5.4.3 there exists a sequence (¢, )nen in

n—-+00

u: [0,4+00) — H defined by

u(t) = T(t—s)f(s) d\(s
() /(O,t) ( ) () ()
and u,, : [0,—|—oo) — H, n € N, defined by
Up(t) := Tt — s)p,(s) d\(s
() /(O,t) ( )S"() ()

are well-defined and continuous. By Hélder’s inequality, Proposition 2.5.3, a), for ¢ > 0

() — wn(0)] = H /( T =) (0) = puls) dAG)
< /() 1T — ) 1£(5) — ouls)]| dA(s)

<], )M 1£(s) = ()]l dA(s) < VEM|If = @l y2(opoontry o 0.
t

Moreover, by (5.21)
| Aup, — AumHLQ((O,+oo);H) <@A+L)[len— SOmHL'Z((o,Jroo);H) ’
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which implies that (Au,)nen is a Cauchy sequence in L*((0, +00); H). Hence,

n—-+o00

[ Atn = gll 120 1o0)ry — 0 for some g € L?((0,+00); H). By Proposition 2.5.2, a),

k—+o0

there exists a subsequence (Au,, )ren such that Au,, (1) —— g(¢) for almost every
t > 0. Since A is closed, we obtain u(t) € D(A) and g(t) = Au(t) for almost every ¢t > 0

. . n—+oo
implying ||Au, — AU||L2((07+OO);H) 0. ||Aun||L2((o,+oo);H) <(1+1L) ||90n||L2((o,+oo);H)
implies || Aul| 120 400y < (14 L) | fll12((0,400):m)- It remains to show that u is a weak

)

solution of (5.1). By Theorem 4.2.8 u,, is a classical solution of

w, (t) = Au,(t) + pn(t), t>0,
un(0) = 0,

implying that u, is continuously differentiable on (0,400). By Lemma 2.4.4

Un(t) — up(s) = /( ) w, (1) dA(r) = - Auy (1) + @n(r) dX(r)

for all 0 < s <t and by Proposition 2.5.3, a)

H /( . Aup(r) — Au(r) dA(r)

< /() | Aun(r) — Au(r)]| dA(r)

Analogous arguments lead to

e Ny

H [ etn=se i

Since u, (£) 2= u(t) for every t > 0, we obtain

u(t) —u(s) = lm wu,(t) —u,(s) = lim Ay (1) + (1) dX(r) = / Au(r) + f(r) dX(r).
n—-+00 n—-+00 (5,t) (s,t)

According to Theorem 2.5.7 we have u € W'2((s,t); H) and v’ = Au + f. Since

0 < s <t < —+oo were arbitrarily chosen, u is a weak solution of (5.1) and, because of

Proposition 4.2.7, the only one. Consequently, A is maximally L2-regular. Since Hilbert

spaces are reflexive (Corollary 1.11.10 in [20]) by Theorem 5.3.4 A is maximally

LP-regular for every p € (1, +00).

5.4.5 Corollary. If A: D(A) C H — H is the infinitesimal generator of a bounded
analytic semigroup with 0 € p(A), then A has the strict maximal LP-regularity property
on (0, +o00) for all p € (1, +00).

Proof. By Theorem 5.4.4 A is maximally LP-regular for all p € (1, +00) and according to
Theorem 5.2.2 also strictly maximally LP-regular for all p € (1, +00).
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5.4.6 Corollary. Let t, > 0. If A: D(A) C H — H is the infinitesimal generator of an
analytic semigroup, then A has the maximal LP-regularity property on (0, ¢o] for all
p € (1, 400).

Proof. Let M,w as in Proposition 3.1.2, a) and § > 0. The operator B := A — (w +0)[
is the infinitesimal generator of the semigroup (S5(t)) ., defined by S(t) := e« T ()
by Proposition 3.1.2, g). We have ||S(t)|| < Me™° and we can extend (S(t))t>0 to an
analytic semigroup. By Corollary 3.3.6 there exists a constant C' > 0 such that

~5+8)t
| BS(t)]| < M = g, t>0.
t t
According to Theorem 3.3.5 (S(t)),.,
5.4.4 B is maximally LP-regular on (0, 4oc) for all p € (1, +00) and therefore for also on
(0,t0]; see Theorem 5.1.5. Finally, according to Lemma 5.2.4 A = B + (w + ¢)I has the
maximal LP-regularity property on (0, ] for all p € (1, +00).

is a bounded analytic semigroup. By Theorem

4
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