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Kurzfassung

In Modellen mit latenten Variablen, in denen die Dimension der nicht-beobachtbaren Da-
ten als niedriger angenommen wird als die Dimension der beobachtbaren, wird erstere oft
per Faustregel festgelegt. In der Hauptkomponentenanalyse handelt es sich hierbei um die
Anzahl der zu behaltenden Komponenten.

In dieser Arbeit wurde ein neuartiger Bootstrap-Test für die niedrigeren Dimensionen von
latenten Tensoren in einem fehlerbehafteten Tensor Modell entwickelt. Dabei handelt es sich
um eine Verallgemeinerung einer Vektor-Bootstrap Methode, die eine sphärische Verteilung
für den Fehlervektor annimmt. Der Test kann pro Tensorstufe angewandt werden und seine
Test-Statistik basiert auf Eigenwerten einer tensoriellen Version der Kovarianz, die sich
ebenfalls für jede Stufe errechnen lässt. Damit ist er stark verknüpft mit der tensoriellen
Hauptkomponentenanalyse.

Der Test wurde auf simulierten Daten angewandt, wo sich mittels eines Teile-und-herrsche-
Verfahrens die korrekten Dimensionen der Tensoren bestimmen ließen, wenn die Varianz
der Fehlerkomponenten nicht ein Vielfaches der Varianz der latenten Tensorkomponenten
war. Außerdem wurde der Test auf einem Datensatz aus Graustufen-Bildern angewandt
und damit die niedrigeren Dimensionen einer Komponentenmatrix errechnet.



Abstract

In latent variable models, where the unobserved data is assumed to be of lower dimension
than the observed, the low rank dimension is often determined by a rule of thumb. In
principal component analysis (PCA), this number corresponds to the number of retained
principal components.

In this thesis, a new bootstrap test for the low rank dimension of latent tensorial data
in a noisy tensor model is developed, which can be applied mode-wise. This test is a
generalization of a vector bootstrap method, which assumes a spherical distribution for
the random error vector. Its test statistic is based upon the eigenvalues of the tensor
mode-covariances and is therefore related to tensorial PCA.

For simulated data, it was demonstrated, that a divide and conquer approach based on
the bootstrap test can compute the correct low rank dimension, when the variance of the
error tensor components is below the variance of the data components. The test was also
applied on a dataset of greyscale pictures to compute the lower dimensions of a component
matrix.
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1 Introduction

The origins of data dimension reduction date back to the beginning of the twentieth century,
when Pearson developed best fit methods for lines and planes in a system of points in a
three dimensional space [?]. This work was continued by [?] in the 30s, which later resulted
in the principal component analysis (PCA), one of todays most commonly used tools for
reducing large datasets of vectors xi ∈ Rp, i = 1, . . . , n in dimension [?].

Mathematically, PCA makes use of a principal axis transformation, so that the com-
ponents of the resulting vectors are uncorrelated and the variance held by their first
components is maximized. Removing the last components then results in a dataset of
vectors yi ∈ Rq, i = 1, . . . , n with q < p. If the original data is arranged in a matrix
X = (x1, . . . ,xn) of dimension p× n, PCA reduced the dimension to a q × n matrix.

PCA is often applied in a model free setting, i.e. without any assumptions on the data.
In factor analysis (FA), the observed data is assumed to be the sum of a linear combination
of unobserved factors and an additional error. While this is a slightly different philosophical
approach, PCA is also often used in FA as a first step to retrieve the unknown factors [?].
Their number, however, is hereby often determined by a rule-of-thumb. We assume the
dimension of the unobserved vectors in the following as lower than the dimension of the
observed vectors and refer to it as low rank dimension. Probabilistic principal component
analysis [?] adds additionally stochastic assumptions on the random error vector, under
which an estimator of the low rank dimension can be given [?]. With the assumption of the
error vector being spherically distributed, a bootstrap low rank dimension test has been
developed [?], which builds the foundation for this thesis.

The wide-scale use of PCA and FA in different sciences including electrical engineering,
image analysis, chemistry, psychometrics and many more was enabled by the increase
of computational power in the 70s [?]. Around the same time, the problem of reducing
datasets of matrices and higher order tensors in dimension without large loss of information
attracted attention.

We use the common definition of (data) tensors in data science as elements of Rp1×p2×...,pk ,
we call k the order of the tensor and pi the dimension of the i-th mode. This definition is
closely tied to the definition of tensors in multilinear algebra [?], which are used to describe
multilinear functions. For multilinear functions from finite dimensional vector spaces over
R, the corresponding tensors can be identified by data tensors in our sense.

A primitive approach to tensor dimension reduction is the transformation of the higher
order data into vector form in order to use PCA or another dimension reduction method for
vectors [?]. For matrices this is achieved by vectorization, while higher order tensors can
be reduced mode-wise in several iterations. Because the dimensions of the original array

1



1 Introduction

are lost under such transformation, and with it, which elements were only an index apart,
the dimension reduction method loses valuable information.

Considering grey-scale pictures, which are matrices or second order tensors by our defi-
nition, pixels, which are connected horizontally would in the resulting vectors be apart by
the number of the vertical dimension of the picture.

To take the structural information of tensors into account, several more sophisticated
approaches to tensor dimension reduction have been developed. A model-free generalization
to PCA is given with the tensor decomposition method Tucker3 [?] and under additional
assumptions, the higher order singular value decomposition [?]. More statistical approaches
include the multilinear principal component analysis [?] and tensorial PCA [?].

Methods for dimension reductions or estimations in vector models will be explored in
Section ??, an introduction to tensor definitions and operations as well as their application
to tensor dimension reductions in Section ??. The main part of this thesis is Chapter
??, where we develop a new bootstrap test for the low rank dimension in a tensor model,
which is a generalization of the aforementioned vector bootstrap test [?] and can be applied
mode-wise. For this, we use a generalized concept of sphericity applicable to random tensors
and assume the random error tensor in our model to be tensor spherically distributed. A
comparison to an asymptotic tensor dimension test in terms of performance will take place
in Chapter ??, for which data was simulated according to the model assumptions in several
scenarios. The bootstrap test is then applied on a real dataset in order to evaluate the
possible dimension reduction.

In the following work, vectors and matrices are denoted as lower (a, b,ω) and upper
case bold letters (X,Y ,Λ). This notation accounts for elements from real number spaces
and random vectors and matrices alike. Random tensors and elements from Rp1×···×pk are
denoted in calligraphic fonts (e.g. X ,Y,Z).

We denote column and row vectors as mi and m(j), so that M = (m1, . . . ,mq) =�
mT

(1), . . . ,m
T
(p)

�T
for M ∈ Rp×q. The vectorization of a matrix M is a stacked vector

vec(M) :=
�
mT

1 , . . . ,m
T
q

�T ∈ Rpq consisting of all column vectors. We sometimes denote

parts of matrices asM :,c:d := (mc, . . . ,md) orMa:b,: :=
�
mT

(a), . . . ,m
T
(b)

�T
. The operation

diag builds for a finite number of square matrices A1, . . . ,Ak the block diagonal matrix

diag (A1,A2, . . . ,Ak) :=

����
A1 0 . . . 0

0 A2
. . .

...
...

. . .
. . . 0

0 . . . 0 Ak

����
or a simple diagonal matrix for elements from R.

For a sample of vector valued data X = (x1, ... . . . ,xn), the sample covariance matrix is
denoted as

SX :=
1

n− 1

n$
i=1

(xi − x̄) (xi − x̄)T ,
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1 Introduction

with the mean vector x̄ := 1
n

%n
i=1 xi. The sample variance of n (random) variables

x1, . . . , xn is denoted as

s2(x1, . . . , xn) :=
1

n− 1

n$
i=1

(xi − x̄)2 ,

with x̄ := 1
n

%n
i=1 xi.

When matrices are decomposed into eigenvalue and singular value decompositions, we
usually denote the diagonal matrices containing the eigen- or singular values as Λ and
Γ. The element λi(M) is the i-th eigenvalue of M , or the i-th diagonal value of Λ in
the eigendecomposition M = UΛUT . λ(M) is the mean value of all eigenvalues of M .
We always assume that real eigenvalues are ordered, so that λ1 ≥ · · · ≥ λk. Additional
notations for tensor operations will be introduced in Section ??.
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2 State of the art

This chapter lays the theoretical foundation, necessary for the method development in this
thesis. First, the meaning of dimension reduction in the context of multivariate data is
explained, for which the principal component analysis is shown from a deterministic point
of view. Then, PCA is generalized to stochastic and multilinear models. Tensor notations
and theory of random tensors are introduced in the process.

2.1 Dimension estimation for random vector models

2.1.1 Model-free principal component analysis

Principal component analysis (PCA, [?]) is an unsupervised learning method, which, given
a centered set of data points xi, i = 1, . . . , n, in the Euclidean vector space Rp, finds
an orthonormal basis W = (w1, . . . ,wp) that maximizes the sample variance of the new
coordinate representations of the data in each component starting from the first one. As a
result, the transformed data has also uncorrelated components.

One method for finding the desired basis elements, which are called the principal compo-
nent vectors, is an iterative search for linear transformation vectors with i−1 orthogonality
constraints for the i-th vector. In the first step, where no constraint needs to be considered,
the problem amounts to

w1 = argmax
∥w∥=1

�$
i

(xi ·w)2
�
,

where the objective function is proportional to the sample variance of the first components.
In matrix notation, we arrange xi as row vectors of the matrix X = (x1, . . . ,xn)

T ∈ Rn×p,
leading to the equivalent formulation

w1 = argmax
∥w∥=1

�
∥Xw∥2

�
= argmax

∥w∥=1

�
wTXTXw

�
.

In the following iterations, the remaining axes can be found by subtraction of the already
computed projections

X(k) = X −
k−1$
s=1

Xwsw
T
s

and application of the same optimization problem to the newly created data

w(k) = argmax
∥w∥=1

�&&&X(k)w
&&&2� .
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2 State of the art

It can be shown, that the resulting matrix W = (w1, . . . ,wp) can be obtained from the
eigendecomposition

(n− 1)SX = XTX = WΛW T ,

where SX is the sample covariance of X. Because we assumed orthonormality, the eigen-
vector basis (w1, . . . ,wp) is unique up to orthogonal transformations under which the
eigenspaces are invariant. Another way of obtaining W is the singular value decomposi-
tion of X = UΓW T , which follows from the fact, that the squared singular values in

XTX = WΓTUTUΓW T = WΓTΓW T ,

resulting from the diagonal matrix ΓTΓ are equal to the eigenvaluesΛ. After the coordinate
transformation Y = XW , we see by inspection of its empirical covariance matrix

(n− 1)SY = Y TY = W TXTXW = W TWΛW TW = Λ,

that the new variables are uncorrelated and the empirical variances of the principal com-
ponents yi are proportional to the eigenvalues λj for j = 1, . . . , p.

A common use of PCA is dimension reduction of high dimensional data. Since compo-
nents with small variance are assumed not to contain much information of the data, the
reduction can be achieved by truncation of the transformation matrices, i.e. by removal of
the eigenvectors corresponding to small eigenvalues as in

Y :,1:q = XW :,1:q.

The importance of a single principal component is given by its variance in proportion to
the total variance

πj =
λj%p
i=1 λi

.

Often a percentage π is set, which defines how much of the total variance should be con-
tained in the remaining components. The smallest q with

%q
i=1 πi ≥ π is the number of

retained components and therefore the low rank dimension. After the dimension reduction,

X̂ = Y :,1:qW
T
:,1:q

is a low rank approximation to the original data.

2.1.2 Probabilistic PCA

Note, that the earlier description of PCA was given in a model-free setting. An approach
for a stochastic model that includes an additional error term was presented by Tipping and
Bishop [?]. In the probabilistic principal component analysis (PPCA), the distribution of
the observed p-dimensional random vector t is given by

t = Ax+ µ+ ϵ, (2.1)
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2 State of the art

for a q-dimensional random vector x ∼ N (0, Iq) with q ≤ p, the mean vector µ ∈ Rp,
A ∈ Rp×q and an error term ϵ ∼ N (0, σ2Ip) which is independent of x. Under these
assumptions, t is distributed as

t ∼ N (µ,C)

with a covariance matrix C = AAT + σ2Ip. Given a sample T = (t1, . . . , tn) from model
(??), [?] gave the ML estimators

AML = U q

�
Λq − σ2Iq

�1/2
R, (2.2)

σ2
ML =

1

p− q

p$
j=q+1

λj(ST ),

where U q is the matrix consisting of the first q eigenvectors of the sample covariance
matrix ST , Λq the diagonal matrix of the corresponding eigenvalues and R an arbitrary
q × q rotation matrix. In practice, first σ2

ML is estimated and then plugged into equation
(??) to compute AML. Note that the low rank dimension q needs to be known for the ML
estimators.

An approach for dimension selection was given by Minka [?], who used Bayesian model
selection, in which the probability of data D, given a set of parameters M can be computed
by

p (D|M) =

�
Φ
p(D|θ)p (θ|M) dθ,

where Φ is the space of unknown parameters and p(θ|M) the a-priori density given M . In
order to find an estimator q̂ in the PPCA model, they approximated the resulting integral
after careful selection of a-priori densities for U q,L,R from (??) with M set to the possible
subspace dimensions k. This resulted in the posteriori distribution

p(D|k) ≈ p(U q)

 k�
j=1

λj(ST )

−n/2

v̂−n(p−k)/2 (2π)(m+k)/2 |M |−1/2 n−k/2

with m = pk − k(k + 1)/2, v̂ =

%p
j=k+1 λj(ST )

p− k
,

p(U q) = 2−k
k�

i=1

Γ ((p− i+ 1) /2)π−(p−i+1)/2,

|M | =
k�

i=1

p�
j=i+1

�
λ̂−1
j − λ̂−1

i

�
(λi(ST )− λj(ST ))n,

where λ̂i are

λ̂i =

�
λi(ST ) for i = 1, . . . , k

v̂ for i = k + 1, . . . , p
.

The k, which maximizes p(D|k) is then selected as the low rank dimension estimator q̂.
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2 State of the art

2.1.3 Asymptotic and bootstrap tests for subspace dimension

In the following, we go through statistical tests for dimension selection that are based on
asymptotic distributions under more general assumptions. The main focus of this thesis is
the extension of the bootstrap methods of [?], which are shown at the end of this section,
to random matrices and tensors of higher order.

Asymptotic dimension tests were developed by Nordhausen et. al [?] for the model

t = Ax+ µ, (2.3)

where x is a centered p-dimensional spherically distributed random vector, µ ∈ Rp and
A ∈ Rp×p is non-singular.

A spherically distributed k-dimensional random vector z is invariant to orthogonal trans-
formations, i.e. Oz ∼ z for each matrix O of the Stiefel manifold

Ok :=
�
O ∈ Rk×k : OTO = Ik

�
.

The covariance matrix of a spherical random vector is a multiple of the identity, since

Σ = Cov [z] = Cov [Oz] = OΣOT ∀O ∈ Ok

holds. Eigendecomposition of the matrix A = OΛOT from model (??) and sphericity leads
to

t = OΛx+ µ. (2.4)

If the last p − k eigenvalues λk+1(A), . . . , λp(A) are equal, then the subvector consisting
of the last p− k components of Λx is also spherically distributed. In this case, t is called
subspherically distributed.

Based on (??), the null hypothesis of the low rank dimension test can be formulated as

H0q̂ : λ1(A) ≥ λ2(A) ≥ · · · ≥ λq̂(A) > λq̂+1(A) = λq̂+2(A) = · · · = λp(A). (2.5)

Given an iid sample T = (t1, . . . , tn) of model (??), the covariance matrix ST is now
partitioned into

ST =

�
S11 S12

S21 S22

�
=

�
Û1 Û2

�
Λ

�
Û

T
1

Û
T
2

�
so that Û1 and Û2 are the eigenvector matrices corresponding to the first q̂ and last p− q̂
eigenvalues respectively. Using the test statistic

Tq̂ = s2(λq̂+1(ST ), . . . , λp(ST )),

[?] derived the asymptotic distribution under the null hypothesis H0q̂

n (p− q̂)Tq̂

2d2σ1
→ χ2

1
2
(p−q̂−1)(p−q̂+2)

,

7



2 State of the art

where d, the average of the last p− q̂ eigenvalues and σ1 can be consistently estimated by

d̂ =
1

p− q̂

p$
i=q̂+1

λi(ST ),

σ̂1 =
1

(p− q̂)(p− q̂ + 2)

1

n

n$
i=1

	�
ϵ2(i) − ϵ̄2

�T
S−1

22

�
ϵ2(i) − ϵ̄2

��
.

with ϵ2(i) = Û
T
2 x(i) and ϵ̄2 = 1

n

%n
i=1 ϵ2(i). Under the assumption of normally distributed

noise, the value σ̂1 = 1 can be used instead.

Virta and Nordhausen [?] extended the ideas of [?] to the model

t = µ+Ax+ ϵ (2.6)

where µ ∈ Rp, A ∈ Rp×q has full rank, x is a centered q-dimensional random vector with
the covariance matrix Σ and ϵ is a p-dimensional spherical random noise vector, that has
finite fourth moments and is independent of x.

Similar to PPCA, the covariance matrix of t is

Cov [t] = Cov [Ax+ ϵ] = AΣAT + σ2Ip,

so that the projection matrix U for the PCA components can be computed from the
eigendecomposition of AΣAT . Since the last p− q eigenvalues of this low rank matrix are
zero, the eigenvalues of the covariance matrix Cov [t] are

�
λ2
1 + σ2, . . . , λ2

q + σ2, σ2, . . . , σ2
�
,

which allows the test from (??) to be applied. Due to this structure, multiplication by the
matrix consisting of the last p − q eigenvectors U2 of Cov [t] leads to components, solely
consisting of the noise elements ϵ2 = UT

2 t.

Under this model, [?] further developed a bootstrap test, for which the distribution of
the data under the hypothesis H0q̂ needed to be forced on the bootstrap samples. First,
for a given sample t1, . . . , tn from model (??), the principal components are computed and
arranged in Z. From this, bootstrap samples Z(j)∗ for j = 1, . . . ,m are then drawn, which
do not necessary have a spherical distribution in their last components as the noise elements
ϵ2 in the model have. This problem can be solved by either replacing these elements
with new values drawn from a spherical normal distribution, which is called parametric
bootstrapping or by multiplication with random orthogonal matrices. They additionally
suggested the use of permutation matrices as third strategy, since they are a subgroup of
the orthogonal group. The original projection matrix is used to backtransform the adapted
bootstrap samples of the principal components, allowing the bootstrap statistics to be
computed.

The pseudo code of the bootstrap method is shown in Algorithm ??. More general
algorithms will be developed in Sections ?? and ??.
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2 State of the art

Data: The data T = (t1, . . . , tn)
T consisting of n elements with p components,

m = the number of bootstrap samples
strat = the name of the bootstrap strategy
q̂ = the low rank dimension of the null hypothesis

Result: The p-value of the test
1 begin
2 Estimate the sample mean t̄ and covariance ST from T ;

3 Compute the eigendecomposition of the sample covariance ST = UΛUT ;
4 Compute the test statistic Tq̂ = s2(λq̂+1(ST ), . . . , λp(ST ));

5 Compute the principal components zi = UT (ti − t̄) ;
6 for j = 1, . . . ,m do

7 Take a bootstrap sample (z
(j)
1 , . . . , z

(j)
n ) from (z1, . . . , zn) ;

8 for i ∈ {1, . . . , n} do
9 if strat == “orthogonal” then

10 z
(j)
i ← diag (I q̂,Oi) z

(j)
i where Oi is a random (p− q̂)× (p− q̂)

orthogonal matrix;

11 end
12 if strat == “permutation” then

13 z
(j)
i ← diag (I q̂,P i) z

(j)
i where P i is a random (p− q̂)× (p− q̂)

permutation matrix;

14 end
15 if strat == “parametric” then
16 Compute σ̂2 = 1

p−q̂

%p
i=q̂+1 λi(ST ) ;

17 Replace the last p− q̂ values of z
(j)
i with values from N(0, σ̂2Ip−q̂) ;

18 end

19 Compute the backtransformation t
(j)
i = Uz

(j)
i + t̄;

20 end

21 Compute the bootstrap test statistic t̂j from T (j) =
�
t
(j)
1 , . . . , t

(j)
n

�T
;

22 end

23 return the p-value
#{t̂j :t̂j>Tq̂}+1

m+1 ;

24 end

Algorithm 1: The bootstrap algorithm for signal dimension estimation by [?].
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2 State of the art

2.2 Generalization of PCA to higher order tensors

2.2.1 PCA for matrix valued data

In 2DPCA [?] a p1×p2-dimensional random matrix X is transformed into a p1-dimensional
random vector y by multiplication with a projection vector

y = Xv.

Its goal is the discovery of several projections, which together contain most information of
the data. As in PCA, this is measured by the variance the projections have. The covariance
matrix of y is

Cov [y] = E
	
((X − E [X])v) ((X − E [X])v)T

�
,

where E [X] is the componentwise expected value (E [X])ij := E [xij ] . The trace of Cov [y]
is therefore

tr (Cov [y]) = vTE


(X − E [X])T (X − E [X])



v

and can be used in the optimization problem

argmax
∥v∥=1

(tr(Cov [y]))

for the maximization of the sum of the variances of the components of y. A set of maximiz-
ing vectors with orthogonal restrictions as in PCA is given by the eigenvectors of the scatter
matrix Σ2 := E



(X − E [X])T (X − E [X])



. The transformation matrix V ∈ Rp2×q2 is

again obtained by the selection of the first q2 eigenvectors, i.e. the eigenvectors corre-
sponding to the q2 largest eigenvalues of Σ2. Multiplication Y = XV leads to the desired
reduction of the number of columns.

To reduce the dimension p1, the same method can be applied to the transposed random
matrix XT , which independently results in a second projection matrix U ∈ Rp1×q1 . In
(2D)2PCA [?], both projection matrices are computed and used to obtain the so-called
feature matrix

Z = UTXV ,

which now amounts to a dimension reduction in both dimensions.

For a sample of iid random matrices (Xi, i = 1, . . . , n), the two scatter matrices are
estimated by S1 = 1

n

%n
i=1(Xi − X̄)(Xi − X̄)T and S2 = 1

n

%n
i=1(Xi − X̄)T (Xi − X̄)

with the matrix mean X̄ := 1
n

%n
i=1Xi. The projections are computed by

Zi = Û
T
XiV̂

with Û and V̂ consisting of the first eigenvectors from S1 and S2 respectively. An approx-
imation of the original data is obtained with

X̂i = ÛZiV̂
T
.

We will see a direct generalization of this method in the following sections.
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2 State of the art

2.2.2 Tensor definitions and operations

In this section, the tensor definitions and operations necessary for the following work will
be defined. We thereby follow the widely established notations from Kolda and Bader [?].

A tensor of dimension p1 × · · · × pk is called tensor of order k or a tensor with k modes.
Vectors and matrices are therefore tensors of order one and two respectively. A fiber is a
vector resulting from a tensor, when indices for each mode except one are fixed. A slice is
the resulting matrix, when one index of a tensor with three modes is fixed. Slices can be
horizontal (Xi1::), lateral (X :i2:) or frontal (X ::i3).

For tensors of higher order, we use the notation Xin=α when we fix the index corre-
sponding to the n-th mode to α. A sample of tensor valued data (X1,X2, . . . ,Xn) with
Xi ∈ Rp1×···×pk for i = 1, . . . , n, can be arranged in a tensor X ∈ Rp1×···×pk×n of order
k + 1, so that Xik+1=i = Xi.

The inner product of two tensors X ,Y ∈ Rp1×p2×···×pk is defined as

⟨X ,Y⟩ =
p1$

i1=1

p2$
i2=1

· · ·
pk$

ik=1

xi1i2...ik yi1i2...ik .

The induced tensor norm, which generalizes both Euclidean and Frobenius norm is

∥X∥ =
 
⟨X ,X⟩ =

"##! p1$
i1=1

p2$
i2=1

· · ·
pk$

ik=1

x2i1i2...ik .

The m-mode product of a p1×p2 · · ·×pk-dimensional tensor X and a qm×pm-dimensional
matrix U results in the p1 × p2 × · · · × pm−1 × qm × pm+1 × pm+2 × · · · × pk tensor

(X ×m U)i1i2...im−1jmim+1...ik
:=

pm$
im=1

xi1i2...im−1imim+1...ikujmim .

This product represents the multiplication of the matrix U with each m-mode fiber of
X . The 1-mode and 2-mode product for a tensor of order three is schematically shown in
Figure ??.

The mode-m unfolding X(m) reorders the elements of a tensor X in the pm× (
�

j ̸=m pj)-
dimensional matrix

(X(m))i,j := xi1i2...im−1,i,im+1...ik

with j = 1+
%k

h=1
h ̸=m

(ih − 1)
�h−1

l=1
l ̸=m

pl. The mode-1 and mode-2 unfoldings for a third order

tensor are represented in Figure ??.

The outer product of two tensors X ∈ Rp1×p2×···×pk ,Y ∈ Rq1×q2×···×qh is the p1 × p2 ×
· · · × pk × q1 × q2 × · · · × qh-dimensional tensor

(X ◦ Y)i1i2...ikj1j2...jh = xi1i2...ikyj1j2...jh .

11



2 State of the art

×1 p1

p2
p3

p1

q1

=

q1

p2
p3

×2p1

p2
p3

p2

q2

= p1

q2
p3

Figure 2.1: Schematic representation of the m-mode product of a third order tensor and
matrices on mode m = 1, 2

M1

vec(M1)
M2 vec(M2)

Figure 2.2: Unfolding of a third order tensor in mode m = 1, 2

A p1 × p2 × · · · × pk tensor X of rank-1 is the outer product of k vectors v(i) ∈ Rpi

X = v(1) ◦ v(2) ◦ . . . ◦ v(k)

xi1i2...ik = v
(1)
i1

v
(2)
i2

. . . v
(k)
ik

.

We say a tensor is of rank-n, if it can be written as a sum of not fewer than n rank-
1 tensors. The complexity of finding the tensor rank is shown to be NP-hard [?]. The
canonical decomposition (CANDECOMP, [?]) and parallel factors model (PARAFAC, [?])
focussed on finding rank-1 decompositions of tensors.

The Kronecker product of two matrices A ∈ Rp1×q1 and B ∈ Rp2×q2 is

A⊗B :=

���
a11B a12B . . . a1q1B
a21B a22B . . . a2q1B
...

...
. . .

...
ap11B ap12B . . . ap1q1B

��� ∈ Rp1p2×q1q2 (2.7)

and can be helpful in the description of tensor unfoldings.

2.2.3 Tucker- and higher order singular value decompositions

We will now use the shown tensor notations and operations to introduce tensor decompo-
sitions, which will then be used in a tensorial version of PCA. In 1966, Tucker [?] used a
decomposition of third order tensors X ∈ Rp1×p2×p3 in the form of

X = Z ×1 A
(1) ×2 A

(2) ×3 A
(3)

12
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with square matrices A(1) ∈ Rp1×p1 A(2) ∈ Rp2×p2 A(3) ∈ Rp3×p3 and the so-called core
tensor Z ∈ Rp1×p2×p3 for development of a generalization of SVD.

Since this decomposition can naturally be generalized to tensors of higher order and
might be helpful for dimension reduction, the Tucker decomposition in today’s literature
is often seen as

X = Z ×1 A
(1) ×2 A

(2) × · · · ×k A
(k), (2.8)

with a core tensor Z ∈ Rq1×q2×···×qk and matrices A(i) ∈ Rpi×qi and qi ≤ pi for i = 1, . . . , k.
Note that each tensor has a trivial Tucker decomposition X = X ×1 Ip1 × · · · ×k Ipk and
can be brought into a different form by linear transformations, as for (??),

X = Z ×1 A
(1) × . . .×m−1 A

(m−1) ×m A(m)MM−1 ×m+1 A
(m+1) × . . .×k A

(k)

= Ẑ ×1 A
(1) × . . .×m−1 A

(m−1) ×m Â
(m) ×m+1 A

(m+1) × . . .×k A
(k)

holds for any full rank matrix M ∈ Rqm×qm with Â
(m)

= A(m)M and Ẑ = Z ×m M−1.

The relationship between the mode-m unfolding of tensor X and Z of a Tucker decom-
position can be described with the Kronecker product from (??) as

X(m) = A(m)Z(m)

�
A(k) ⊗ . . .⊗A(m+1) ⊗A(m−1) ⊗ . . .⊗A(1)

�T
. (2.9)

A special Tucker decomposition, which is a multi-mode analogue of SVD, gained pop-
ularity under the name of higher order singular value decomposition (HOSVD) with the
work of De Lathauwer et. al [?], who presented a complex version of the following theorem:

Theorem 1. Every tensor X ∈ Rp1×p2×···×pk can be written as the product

X = S ×1 U
(1) ×2 U

(2) × · · · ×k U
(k),

in which

1. U (i) is an orthogonal matrix for all i = 1, . . . , k

2. S is a (p1 × p2 × · · · × pk)-dimensional real tensor of which the subtensors Sin=α have
the properties of

a) all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all possible
values of n, α and β subject to α ̸= β

⟨Sin=α, Sin=β⟩ = 0.

b) ordering:
∥Sin=1∥ ≥ ∥Sin=2∥ ≥ · · · ≥ ∥Sin=pn∥ ≥ 0

for all possible values of n.

It was shown by [?], that the matrices U (i) of the decomposition can be obtained from
the singular value decompositions of the tensor unfoldings

X(i) = U (i)Γ(i)V (i)T .

13
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As explained in Section ??, the eigendecompositions

X(i)X
T
(i) = U (i)Λ(i)U (i)T

offer another way of obtaining U (i). The core tensor is then computed by

S = X ×1 U
(1) ×2 U

(2) × · · · ×k U
(k).

2.2.4 Random tensors

We define a p1 × · · · × pk-dimensional random tensor as array of random variables xi1i2...ik .
Since all tensor operations from Section ?? can be broken down to rearrangements or
primitive variable manipulations which can be also applied to random variables, they are
equally valid for random tensors.

As in the vector and matrix case, the expected value of a p1 × · · · × pk random tensor X
is defined componentwise as

(E [X ])i1,i2,...ik := E [xi1,i2,...,ik ] .

The covariances between all elements of X can be expressed in

(Cov [X ])i1i2,...,ik,j1,j2,...,jk := Cov (xi1i2...ik , xj1j2...jk) ,

a tensor of order 2k. For a random tensor Z with uncorrelated elements of zero mean and
a variance of one, [?] stated the following theorem:

Theorem 2. Let A(i) ∈ Rpi×pi, Σi := A(i)A(i)T for i = 1, . . . , k and

X = Z ×1 A
(1) × · · · ×A(k).

Then

1. Cov [X ] = Σ1 ◦Σ2 ◦ . . . ◦Σk

2. Cov [vec(X )] = Σk ⊗Σk−1 ⊗ · · · ⊗Σ1

3. E
	
X(m)X

T
(m)

�
= Σm ×�

j:j ̸=m tr(Σj)

The third part of the theorem gives information about the covariance structure of a given
mode. Consequently, for an uncentered tensor, we define the m-mode covariance

Covm [X ] = ρ−1
m E

	�
X(m) − E



X(m)


� �
X(m) − E



X(m)


�T �
(2.10)

with a normalization constant ρm =
�k

i ̸=m pi.
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2.2.5 Tensor PCA and multilinear principal component analysis

The tensor PCA (tPCA) from [?] provides a natural way to extend the mathematical meth-
ods used in PCA and (2D)2PCA to tensors of higher order. There, a random p1 × p2 × · · · × pk-
dimensional tensor X is transformed by

Y = X ×1 (U
(1))T ×2 (U

(2))T ×3 · · · ×k (U
(k))T

with matrices U (i) from the Stiefel manifold Oqi,pi =
�
O ∈ Rpi×qi : OTO = Iqi

�
for i =

1, . . . , k, which consist of the first qi eigenvectors of the i-mode covariances Covi [X ].

The HOSVD method shown in Section ?? is closely related to tPCA for centered tensors
(i.e. E [X ] = 0). In HOSVD, the same operations are applied on a single real-valued tensor,
while in tPCA the expected value in (??) is needed due to its stochastic nature.

Given a sample of iid distributed random tensors (X1, . . . ,Xn) of dimension p1 × p2 ×
· · · × pk, the m-mode covariances are estimated by the matrices

Sm :=
1

n

n$
i=1

�
Xi(m) − X̄(m)

� �
Xi(m) − X̄(m)

�T
(2.11)

and decomposed to Sm = Û
(m)

Λ̂
(m)

(Û
(m)

)T for m = 1, . . . , k, to find a single transforma-
tion for all samples.

A different non-stochastic approach for tensor dimension reduction is given with MPCA
[?] that shows, how similar transformations can be obtained by formulation and solving of a
numerical optimization problem. Given a set of higher order data tensors {X1,X2,X3, . . .Xn}
from a tensor space Rp1×p2×···×pk , its goal is the dimension reduction of the tensors in each
mode with a multilinear transformation in the form of

Yi = Xi ×1 (U
(1))T ×2 (U

(2))T ×3 · · · ×k (U
(k))T

with matrices U (i) ∈ Rpi×qi . MPCA was formulated by the problem�
Ũ

(i)
, i = 1, . . . , k

�
= argmax

U (1),...,U (k)

ΦY ,

where we denote by

ΦY =
n$

i=1

&&Yi − Ȳ&&2
the tensor scatter of the projected samples Yi. To approach a solution, [?] gave the following
theorem:

Theorem 3. Let
�
Ũ

(i)
, i = 1, . . . , k

�
be the solution. Then, given all the other projection

matrices Ũ
(1)

, Ũ
(2)

, . . . , Ũ
(m−1)

, Ũ
(m+1)

Ũ
(m+2)

, . . . , Ũ
(k)

the matrix Ũ
(m)

consists of the
eigenvectors corresponding to the largest qm eigenvalues of the matrix

Φ(m) =
1

n

n$
i=1

�
Xi(m) − X̄(m)

�
ŨΦ(m)Ũ

T
Φ(m)

�
Xi(m) − X̄(m)

�T
(2.12)
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with
ŨΦ(m) := U (m+1) ⊗U (m+2) ⊗ · · · ⊗U (k) ⊗U (1) ⊗U (2) ⊗ · · · ⊗U (m−1).

Because the computation of each Ũ
(m)

is dependent on all other Ũ
(i)

for i ̸= m, this
theorem does not provide a closed-form solution to the optimization problem, except in the
case, where no dimension reduction is desired. Then the orthogonality of ŨΦ(m) leads to
the so-called full projection and (??) reduces to the sample m-mode covariance (??) from
the tPCA case.

To gradually reduce dimension in different modes, [?] used an iterative approach, in

which the matrices Ũ
(i)

are initialized by the full projection and then truncated stepwise.
A single truncation leads to a change of Φ(m), with eigenvalues decreasing in all other
modes. Hence, they suggested the recomputation of the eigendecompositions of Φ(m) in
each iteration with consideration of the interdependencies.

The transformation matrices we get from tPCA are used in the following work, which is
equal to the full projection results when the iterative approach is discarded.

2.2.6 Spherical tensor distributions

Since the focus of this thesis is a generalization of the model (??) in [?], a multi-mode
analogue of the concept of spherical distributions is necessary. Some theory was layed out
for the matrix case.

A left spherical p × q random matrix has the property O1X ∼ X ∀O1 ∈ Op. Conse-
quently right spherical distributions can be defined through XO2 ∼ X ∀O2 ∈ Oq. We
call a random matrix spherical, iff it is left and right spherical. The following examples of
spherical distributions are given in [?]:

• The matrix-variate normal distribution X ∼ Np,q (0, Ip, Iq) has the density

p(X) =
1

(2π)pq/2
exp

�−(1/2) tr
�
XXT

��
• The matrix-variate t-distribution: X ∼ Tp,q (v,0, Ip, Iq) has the density

p(X) =
Γp

	
v+q+p−1

2

�
(2π)qp/2 Γp

	
v+p−1

2

� · ''Ip +XXT
''−(v+q+p−1)/2

where Γp denotes the multivariate Gamma function and v the degree of freedom.

• The uniform distribution on the Stiefel Manifold Oq,p =
�
O ∈ Rp×q : OTO = Iq

�
is

given by a probability measure with density

p(X) =


vol(Oq,p)

−1


= Γq (p/2)

πpq/2

2q

with respect to the Haar measure.
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We say a random tensor X has spherical distribution, if

X ×m O ∼ X ∀O ∈ Opm

holds for each mode m. This also means, that all possible fibers of the random tensor
must be spherically distributed in the vector sense, due to the property of the m-mode
multiplication shown in Section ??. An example of a spherical random tensor can be given
by one that consists of iid normal distributed variables.
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3.1 Low rank dimension tests for second-order tensors

The following random matrix model will be a generalization of (??). For testing the low
rank dimension, we will present a bootstrap test similar to [?] and additionally show an
asymptotic test provided by Virta in personal communication, which works under similar
assumptions. The performance of both tests will compared in the next chapter.

3.1.1 Noisy second order model

The p1×p2 random matrix T obeys the noisy second-order (NS) model, if it can be written
as

T = M +O(1)X(O(2))T +E (3.1)

where M ∈ Rp1×p2 is the mean value, O(1) ∈ Oq1,p1 , O
(2) ∈ Oq2,p2 , X is a random q1 × q2-

dimensional, zero-mean core matrix with q1 ≤ p1, q2 ≤ p2 and the p1×p2-dimensional error

E is also random and independent of X. We additionally assume, that both E
	
∥X∥2

�
and

E
	
∥E∥2

�
are finite, E [E] = 0 and E has spherical matrix-variate distribution.

3.1.2 Bootstrap tests for second-order tensors

In the following, ideas from the bootstrap tests shown in Section ?? are combined with the
two-dimensional PCA from Section ??. For that, we first analyze the scatter covariance
matrix of model (??). From the zero mean assumption, the independence of E to X and
the orthogonality of O(2), we get the representation

Cov [T ] = E
��

O(1)X(O(2))T +E
��

O(1)X(O(2))T +E
�T

�
= O(1)Cov [X] (O(1))T +Cov [E] . (3.2)

For matrix spherically distributed E, it can be seen by

Cov [E] = Cov [OE] = OCov [E]OT ∀O ∈ Op1 ,

that the matrix covariance has a similar property as in the vector case and we can conclude,
that it is also a multiple of the unit matrix eIp1 with e ∈ R. The matrix covariance Cov [X]
is of dimension q1× q1, so we can diagonalize O(1)Cov [X] (O(1))T = UΛ1U

T with at least
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p1−q1 eigenvalues that are zero. Using the covariance representation (??) and the sphericity
of E, we obtain the diagonalization

Cov


UTT



= UTO(1)Cov [X] (O(1))TU +Cov [E]

=

�
diag (λ1, . . . , λq1) 0

0 0

�
+ eIp1 (3.3)

=

�
diag (λ1 + e, . . . , λq1 + e) 0

0 eIp1−q1

�
. (3.4)

It follows, that the sample variance of the last p1 − q1 eigenvalues of Cov [T ] is zero, on
which the following low rank dimension bootstrap test will be based on.

Given an iid sample (T 1, . . . ,T n) from model (??), we first compute scatter covariance
matrices

S1 =
1

n

n$
i=1

�
T i − T̄

� �
T i − T̄

�T
S2 =

1

n

n$
i=1

�
T i − T̄

�T �
T i − T̄

�
as in the two-dimensional PCA cases. In order to create a test for the null hypothesis

H0q̂1 : q1 = q̂1, (3.5)

we compute the sample variance of the last eigenvalues of S1 using the test statistic

t2q̂1 :=
1

d̂
s2 (λq̂1+1(S1), . . . , λp1(S1)) ,

where d̂ = 1
p1−q̂1

%p1
i=q̂1+1 λi(S1) is an estimator of the last eigenvalues and used for nor-

malization. Under the null and by (??), this value should now be approximately zero.
To obtain bootstrap samples with spherical error in the given mode, three strategies sim-
ilar to the ones explained in Section ?? are implemented. From the eigendecompositions

S1 = ÛΛ̂1Û
T

and S2 = V̂ Λ̂2V̂
T
, we use Û and V̂ to obtain the matrix version of

the principal components Zi = Û
T �

T i − T̄
�
V̂ for i = 1, . . . , n. The bootstrap samples

(Z
(j)
1 ,Z

(j)
2 , . . . ,Z

(j)
n ) for j = 1, . . . ,m, are then drawn from the results. By (??), the subma-

trices (Z
(j)
1 )q̂1+1:p1,:, . . . , (Z

(j)
n )q̂1+1:p1,:, now approximately only contain bootstrapped error

under the null-hypothesis, which needs to be transformed, so that it fulfills the sphericity
assumption of the model. The orthogonal bootstrap strategy is the multiplication of these
submatrices by randomly drawn orthogonal matrices

Z
∗(j)
i = diag (I q̂1 ,Oi)

T Z
(j)
i Oi ∈ Op1−q̂1 . (3.6)

As in ??, the second strategy is multiplication with random (p1− q̂1)×(p1− q̂1) dimensional
permutation matrices P i instead of Oi in (??), since they build a subgroup of the Stiefel
manifold. Finally, the parametric bootstrap method is the complete replacement of the

submatrices (Z
(j)
1 )q̂1+1:p1,:, . . . , (Z

(j)
n )q̂1+1:p1,: by iid normally distributed values, which are
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by Section ?? spherical. The resulting data
�
Z

∗(j)
1 , . . . ,Z

∗(j)
n

�
gets transformed back in all

strategies, resulting in the bootstrap samples

T
(j)
i = ÛZ

∗(j)
i V̂

T
+ T̄

from which now the test statistics t
(j)
q̂1

can be computed.

The same reasoning can be applied on the transposed data, for which we analogously to
(??) get the matrix covariance

Cov


T T



= O(2)Cov



XT



(O(2))T +Cov



ET



.

Here, the left term of (??) contains at least p2−q2 zero eigenvalues. A test for the hypothesis

H0q̂2 : q2 = q̂2

can therefore be established in the same way.

3.1.3 Asymptotic tests for second-order tensors

The following results for asymptotic tests for low rank dimension in model (??) were com-
municated in personal communication by J. Virta. Given a sample of p1 × p2-dimensional
matrices (T 1, . . . ,T n), a limiting distribution was found for a test statistic based on t2q̂1(S1)
shown in the last section.

The following notations need to be introduced to give the asymptotic test statistic.
The matrix Û2 consists of the last p1 − q̂1 eigenvectors of S1, ϵ̂i := (Û2)

T
�
T i − T̄

�
are

therefore the last rows of the error matrices and Sϵ := 1
n

%n
i=1 ϵ̂iϵ̂

T
i is their estimated

matrix covariance.

The limiting distribution of the asympotic test statistic under the null hypothesis H0q̂1

from (??) is then given by

n(p1 − q̂1)t
2
q̂1
(S1)

2θ2ψ
→ χ2

1
2
(p1−q̂1−1)(p1−q̂1+2)

where θ2 is the value of the last eigenvalues of Σ1, estimated by θ̂2 := 1
p1−q̂1

%p1
i=q̂1+1 λi (S1)

and ψ is the asymptotic variance of any off-diagonal value of S1, which can be estimated
by

ψ̂ =
1

(p1 − q̂1 − 1) (p1 − q̂1 + 2)

1

n

n$
i=1

�
tr

��
ϵ̂TS−1

ϵ ϵ̂i

�2
�
− 1

p1 − q̂1

�
tr
	
ϵ̂Ti S

−1
ϵ ϵ̂i

��2
�

For normally distributed noise, the value ψ = p−1
2 can be used instead. The test can also

be applied on the transposed data to test for the low rank dimension H0q̂2 : q2 = q̂2.
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3.2 Generalization to higher-order tensors

3.2.1 Tensor model

For the random q1 × q2 × · · · × qk-dimensional core tensor X with E [X ] = 0, a set of
orthogonal matrices O(i) ∈ Oqi,pi with qi ≤ pi for i = 1, . . . , k, a spherical random tensor
E of dimension p1 × p2 × · · · × pk, which is independent of X and the mean value tensor
M ∈ Rp1×p2×···×pk , we define the noisy tensor model

T = M+ X ×1 O
(1) × · · · ×k O

(k) + E , (3.7)

a tensorial version of (??). The m-mode covariance Σm := Covm [E ] of the error tensor
fulfills

Covm [E ] =Covm [E ×m O]

= E

 �

(E ×m O)(m) − E


(E ×m O)(m)


��
(E ×m O)(m) − E



(E ×m O)(m)


�T 

= O E



(Em − E [E ]m)(Em − E [E ]m)T



OT ∀O ∈ Opm

for each mode m, where the third equation follows from property (??). Therefore each Σm

of the spherical tensor E is a multiple of a pm-dimensional unit matrix emIpm with em ∈ R.
By the same property, the second equation in

Covm

	
X ×1 O

(1) × · · · ×k O
(k)

�
= E

��
X ×1 O

(1) × · · · ×k O
(k)

�
(m)

�
X ×1 O

(1) × · · · ×k O
(k)

�T

(m)

�
= O(m)E

�
X(m)

�
O(k) ⊗ . . .⊗O(m+1) ⊗O(m−1) ⊗ . . .⊗O(1)

�
·�

O(k) ⊗ . . .⊗O(m+1) ⊗O(m−1) ⊗ . . .⊗O(1)
�T

XT
(m)

�
(O(m))T

follows, and we get, that this matrix is of rank qm, so that last pm − qm eigenvalues are
zero. It follows from the independence of E to X , that

Covm [T ] = Covm

	
X ×1 O

(1) × · · · ×k O
(k)

�
+Covm [E ] .

Since Covm [E ] commutes, the eigenvalues of Covm [T ] are the sum of the eigenvalues of
both summands and has the same form as (??). We can therefore use the variance of the
last eigenvalues of each tensor covariance matrix to implement a low rank bootstrap test.

3.2.2 Bootstrap test for higher order tensors

In the following, we create a test for model (??) for the hypothesis H0q̂m : qm = q̂m or

H0q̂m :λ1(Σm) ≥ λ2(Σm) ≥ · · · ≥ λq̂m(Σm)

≥ λq̂m+1(Σm) = λq̂m+2(Σm) = · · · = λpm(Σm),
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Given a sample of tensors (X1, . . . ,Xn), we first compute the sample m-mode covariance
Sm and choose the variance of its last eigenvalues as the bootstrap statistic

Tq̂m =
1

d̂
s2(λq̂m+1(Sm), ... . . . , λpm(Sm))

where d̂ = 1
pm−q̂m

%pm
i=q̂m+1 λi(Sm) is again used for normalization.

We then compute the tPCA components (Z1, . . . ,Zn) from Section ?? without dimension
reduction from the centered sample (Ti − T̄ , . . . Tn − T̄ ), from which we draw M tensor

bootstrap samples
�
Z(j)
1 , . . . ,Z(j)

n

�
. To achieve a spherical distribution in the error of the

tested mode, we apply the three strategies from Sections ?? and ?? in a more general form.
In the orthogonal bootstrap strategy, we compute

Z∗(j)
i = Z(j)

i ×m diag (I q̂m ,U i) with U i ∈ Opm−q̂m for i = 1, . . . , n

for each bootstrap sample. In the permutation bootstrap strategy, we use (pm − q̂m) ×
(pm − q̂m)-dimensional permutation matrices P i instead of U i and in the parametric

bootstrap, we replace all elements (Z(j)
i )i1,i2,...,ik with ij = 1, . . . , pj for all j ̸= m and

im = q̂m + 1, . . . , pm by normal distributed values with a variance of d̂, which form a
spherical subtensor. We then apply the backtransformation

T (j)
i = (Z∗(j)

i )×1 U
(1) × · · · ×k U

(k) + T̄

with the matrices U (i) returned from tPCA. The bootstrap test statistic is then computed

from each bootstrap sample (T (j)
1 , . . . , T (j)

n ), j = 1, . . . ,M and compared with Tq̂m from the
original data. Algorithm ?? gives a pseudo code representation of the introduced methods.
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3 Methodology

Data: The data (T1, . . . , Tn) consisting of n elements of dimension
p1 × p2 × · · · × pk,
M = the number of bootstrap samples
m = the tested mode
strat = the name of the bootstrap strategy
q̂m = the low rank dimension of the null hypothesis

Result: The p-value of the test
1 begin
2 Estimate the sample mean tensor T̄
3 and the sample m-mode covariances Sj from T1, . . . , Tn for j = 1, . . . , k ;

4 Compute all eigendecompositions Sj = U (j)Λ(j)(U (j))T for j = 1, . . . , k;

5 Compute the test statistic Tq̂m = 1/d̂ · s2(λq̂m+1(Sm), ... . . . , λpm(Sm)) ;

6 Compute the tensors Zi =
�Ti − T̄ �×1 (U

(1))T × · · · ×k (U
(k))T ;

7 for j = 1, . . . ,M do

8 Take a bootstrap sample (Z(j)
1 , . . . ,Z(j)

n ) from (Z1, . . . ,Zn) ;
9 for i ∈ {1, . . . , n} do

10 if strat == “orthogonal” then

11 Z(j)
i ← Z(j)

i ×m diag (I q̂m ,Oi) with
12 Oi randomly chosen from Opm−q̂m

13 end
14 if strat == “permutation” then

15 Z(j)
i ← Z(j)

i ×m diag (I q̂m ,P i) with P i randomly chosen from the
group of (pm − q̂m)-dimensional permutation matrices.

16 end
17 if strat == “parametric” then
18 Compute σ2 = 1

pm−q̂m

%pm
i=q̂m+1 λi(Sm). ;

19 Replace the values (Z)i1,...,ik with ij = 1, . . . , pj for all j ̸= m and
im = q̂m + 1, . . . , pm with N(0, σ2) distributed elements

20 end

21 Compute the backtransformation T̂ (j)
i = Z(j)

i ×1U
(1)×· · ·×k U

(k)+ T̄ ;

22 end

23 Compute the bootstrap test statistic t̂j from (T̂ (j)
1 , T̂ (j)

2 , . . . , T̂ (j)
n );

24 end

25 return the p-value
#{t̂j :t̂j>Tq̂m}+1

M+1 ;

26 end

Algorithm 2: The bootstrap algorithm for tensorial signal dimension estimation
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4 Numerical analysis

In this chapter we present the results of two simulation studies, in which the asymptotic
and bootstrap tests for matrix valued data from Sections ?? and ?? were compared by their
rejection probabilities and their ability to estimate the correct dimension of low rank data.
The orthogonal, permutation and parametric bootstrap methods and the asymptotic test
with both normality and non-normality assumption will be compared. In the last section,
both asymptotic tests and the orthogonal bootstrap will be applied on a picture dataset.

4.1 Rejection probabilities of simulated data

In the first simulation study, samples of the model (??) with dimensions fixed to q1 = 3,
q2 = 4, p1 = 7, p2 = 8 were simulated to estimate the rejection probabilities of the
mentioned tests.

The matrix normal and the matrix t-distributions with degree of freedom v = 5 were
used for generation of either data or error matrices in all four combinations. Both matrix
distributions were set up, so they have the same variance in all components. In order to
compare different proportions of data and error variances, a normalized variance σ2 = 1
was set for the data generating distributions and varying values of σ2 = 0.5, 1, 1.5, 2 were
set for the error.

Random orthogonal matrices from the Stiefel manifolds Oq1,p1 and Oq2,p2 were generated
from an uniform distribution w.r.t. the Haar measure and then truncated to the required
size. Random permutation matrices were generated by reordering the columns of a unit
matrix by a resampled index set. More implementation details about the model generation
are given in the Appendix ??.

All scenarios were simulated with sample sizes of n = 1000, 2000, 4000. For the generated
data, tests with hypotheses q̂1 = 2, 3, 4 were applied on the first mode with real dimension
q1 = 3 and M = 200 resamples were used in the bootstrap tests. For all parameter
combinations, the simulation was conducted N = 1000 times to achieve accurate results.
No differences in the results were visible, when using either the normal or the t-matrix
distribution as generators of the data matrices Xi. We therefore only distinguish between
the error distributions in the following.

Figure ?? shows the rejection probabilities for all of the mentioned scenarios in the case,
where the error distribution is normal. When the correct dimension is tested, it can be
seen, that the rejection probabilities for all tests except the permutation method are at the
0.05 level, which was chosen as threshold p-value. When setting the hypothesis to a lower
dimension, it was correctly rejected in all cases.
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Figure 4.1: The rejection probabilities of the bootstrap and the asymptotic tests from
Chapter ??. The hypotheses q1 = 2, 3, 4 are tested for simulated data of
Model (??) with dimensions q1 = 3, q2 = 4, p1 = 7, p2 = 8. The er-
ror tensor is matrix-variate normal distributed with variances ranging from
σ2 = 0.5, 1, 1.5, 2 in each component and all tests were conducted with sample
sizes of n = 1000, 2000, 4000.

Figure ?? shows the rejection probabilities, when the matrix-variate t is selected as error
distribution. Expectedly, the parametric bootstrap method, where the error is substituted
with normal distributed values and the asymptotic test, which also relies on normal dis-
tributed data, do not return meaningful results. For the other methods, larger variances
in the error distributions lead to faster decreasing rejection probabilities in comparison to
the normal error setups, when the hypothesis is set to a lower dimension than q1. The
rejection probability, when testing for the correct dimension, is at the correct 0.05 level for
the asymptotic test without normality assumption, and slightly above in the orthogonal
and parametric bootstrap tests.
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Figure 4.2: The rejection probabilities of the bootstrap and the asymptotic tests from Chap-
ter ??. The hypotheses q1 = 2, 3, 4 are tested for simulated data of Model (??)
with dimensions q1 = 3, q2 = 4, p1 = 7, p2 = 8. The error tensor is matrix-
variate t-distributed with variances ranging from σ2 = 0.5, 1, 1.5, 2 in each com-
ponent and all tests were conducted with sample sizes of n = 1000, 2000, 4000.

4.2 Dimension estimation of simulated data

Both dimension tests can iteratively be used for the estimation of the low rank dimension in
a divide and conquer procedure. For a given mode i ∈ {1, 2}, this is realized by first setting
up an upper bound b ← pi and a lower bound a ← 0 and then applying the dimension test
with H0q̂i where q̂i = ⌊(a+ b)/2⌋ with ⌊·⌋ = max {n ∈ N : n ≤ x} . Depending on whether
the null hypothesis is accepted or rejected, either a new upper bound b ← ⌊(a+ b)/2⌋ or a
new lower bound a ← ⌊(a+ b)/2⌋+ 1 is set. With the newly set bounds, this procedure is
repeated until a and b are equal.

Since this method is computationally very expensive, the orthogonal bootstrap with
M = 200 resamples and the asymptotic test with no normality assumption were selected
from the methods compared in the last section, as they have performed well in all scenarios.
In model (??), the dimensions q1 = 4, q2 = 5, p1 = 25, p2 = 30 were fixed with a sample
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4 Numerical analysis

size of n = 4000. The matrix-variate normal and t-distributions were used for data and
error generation as described in the last section, but with error variances ranging from
σ2
1 = 0.2 to σ2

10 = 3.0 in steps of equal size.

The divide and conquer approach was applied on the first mode, with N = 1000 rep-
etitions. The resulting dimension estimates are shown in a percent stacked barchart in
Figure ??. In the case of normal error distribution, the correct low rank dimension could
be reliable retrieved up to a variance of σ2 = 1.13.
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Figure 4.3: The proportions of the estimated low rank dimension of the first mode, com-
puted by the asymptotic test without normality assumptions and the orthog-
onal bootstrap test using a divide and conquer approach. The dimensions of
the simulated data of Model (??) are q1 = 4, q2 = 5 and p1 = 25, p2 = 30.
Matrix-variate normal and t-distributions were both used in the simulation

For matrix t-distributed error, the estimates were only reliable for the bootstrap method
with the lowest error variance. However, the percentage of correctly estimated dimension
was slightly higher in the asymptotic test when the variance is slightly below 1. For
larger error variance, wrong estimates were in almost all cases below the actual dimension,
meaning that the hypothesis was often not rejected during the process.
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4.3 Dimension estimation of a picture dataset

Both asymptotic and the orthogonal dimension tests were applied with the same divide and
conquer approach as shown in Section ?? on the fingers dataset from [?], which contains 128
x 128 grayscale images of left and right hands with 0-5 fingers extended. For each group,
there are 1500 pictures available and the two groups of left hands with no fingers extended
(L0) and right hands with all fingers extended (R5) were chosen for closer analysis.

The extraction algorithm encoded the greyscale pixels in values between 0 and 1, which
led to datasets consisting of Xi ∈ [0, 1]128×128, i = 1, . . . , 1500, for both groups. All three
tests computed the same low rank dimensions of 101 × 95 for L0 and 114 × 119 for R5.
It is likely, that some of the differences between the two groups are caused by the smaller
silhouette of the hands when no fingers are extended.

In Figure ?? and ??, five pictures from each of the two groups are plotted respectively
and compared with the pictures resulting from the reduced tensor components. In all
cases, there were no visible differences to the original pictures. Very low rank tensor
reconstructions were shown in the third row, where 20 × 20 components were used for
comparison

A dimension reduction of less than 30 in both modes does not seem large. We attribute
this to the fact, that the sphericity assumption on random matrix error is strong and prob-
ably does not apply very well to the chosen dataset. It is also possible, that methods based
on eigenvalues alone do not have enough information to give a clear low rank dimension.
This is supported by the scree plots based on the mode-covariances of both groups, which
are shown in Figure ??. These plots do not show an “elbow”, which can be usually seen
as an indicator for a low rank dimension.
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Figure 4.4: The first row shows five randomly chosen pictures from L0. In the second and
third row, we see the same pictures after reconstruction from 101x95 and 20x20
components.

Figure 4.5: The first row shows five randomly chosen pictures from R5. In the second
and third row, we see the same pictures after reconstruction from 114x119 and
20x20 components.
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Figure 4.6: The scree plots for the row PCs (left) and column PCs (right) of the groups L0
and R5 from the fingers dataset
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5 Summary and future work

In this thesis, bootstrap tests for the low rank dimensions of latent matrices and tensors
in noisy models were developed, which can be applied per row or column for matrices or
mode-wise for higher order tensors. These tests are based upon a bootstrap method for
a vector model, which assumes the random error vector to have a spherical distribution.
Three versions of bootstrap tests were given, namely the orthogonal, permutation and
parametric bootstrap, which differ only in the bootstrap transformation step. The matrix
versions of these tests were compared by their rejection probabilites with an existing test
based on asymptotic distributions, which works under similar assumptions. For this, data
was simulated according to the model with different error distributions, error variances
and sample sizes. The orthogonal bootstrap and the asymptotic test performed best in all
scenarios and were then also additionally compared by their ability to estimate the true low
rank dimension in a divide and conquer approach. Here the asymptotic test gave slightly
better results, when the error was not normal distributed.

The usefulness of such tests is mainly defined by its possible applications and is therefore
largely dependent on the model and its assumptions. One of the main model assumptions
in this thesis is the sphericity of the random error. This can be already considered strong
in the case of spherical random vectors, since they can be defined by a single positive
random variable. In the tensor model, the usage of a more general version of sphericity was
necessary, which defines a spherical random tensor to have the same distribution as when
multiplied by an orthogonal matrix in any mode. However, such definition was not found
in literature and it is an open question, whether such distributions could play a significant
role in real-world applications.

We saw in Chapter ??, that the asymptotic and bootstrap tests were able to compute the
correct low rank dimension in simulated data conforming to the model assumptions, when
the variance of the error tensor components was below the variance of the data components.
It was not possible to find real-world data, which was clearly fullfilling these assumptions.
Application of the divide and conquer algorithm to the hands dataset in Section ?? resulted
in very large number of components in both modes. This does not seem fitting, since the
pictures of a single group differ only minimally and is probably caused by not fulfilled
assumptions.

Both simulated and real-world data were chosen to be samples of matrices and only the
matrix versions of the bootstrap tests were implemented and applied. The main reason for
this was the computational effort, that the tests already caused when applied to matrix-
valued data, especially when used in a divide and conquer approach. The simulations in
Chapter ??, in which the rejection probabilites and dimension estimates were computed,
took several weeks on 50 CPU cores. The application of the divide and conquer algorithm
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5 Summary and future work

for a single mode in one group of the hands pictures dataset took 6 hours on a single core.

It is likely that there lies optimization potential in the current implementations given
in Appendix ??. Also, the performance can be heavily improved by porting functions
to a lower level programming language such as C or C++. Under such measures, the
generalization of the bootstrap step and therefore the test could give reasonable times for
tensorial data.

In general, the increase of computational power over time allows more and more sophisti-
cated algorithms to be applied on tensor valued data. Many dimension reduction methods
for tensor models are based on numerical and algebraic methods and do not take a proba-
bilistic point of view. While there are probably little applications for tests with the model
assumptions used in this thesis, the further research of different random tensor models has
a lot of potential.
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A Appendix: Implementation detail

In the following, code samples of the most important functions and algorithms developed
for this thesis are presented. The programming language R [?] was used exclusively for all
implementations.

The test methods assume the parameter x to contain the sample of tensors, where single
elements can be selected by the last index of the array as described in Section ??. The
mode parameter sets the mode, on which the test shall be applied and k is the dimension
of the hypothesis.

A.1 Data Simulation

The method used for generating the data in the simulations of Section ?? and ?? is given
in Listing ??. The four cases of data distribution and the error distribution being either
normal or t-distributed can be seen in the if conditions. The method rmatrixt from pack-
age matrixsampling [?] was used for generating matrix-variate t-distributed data and the
method rorth from package ICtest [?] for generation of the orthogonal transformation ma-
trices. The low and high rank dimension are given by the parameters d and p, which both
expect two dimensional vectors and the sample size is given by n.

1 sim_model <- function(d, p, n, data_dist = "norm",

2 err_dist = "norm", err_sd = 1.0) {

3 # data distribution

4 if(data_dist == "norm") {

5 z <- rnorm(prod(d)*n, mean = 0, sd = 1)

6 dim(z) <- c(d, n)

7 } else if(data_dist == "t") {

8 sig2 <- 3

9 UUU <- diag(sig2 , ncol=d[1], nrow=d[1])

10 z <- rmatrixt(n, 5, matrix(0,d[1],d[2]), UUU , diag(d[2]))

11 } else {

12 error("the distribution speficied is not implemented")

13 }

14

15 # error distribution

16 if(err_dist == "norm") {

17 err <- rnorm(prod(p)*n, mean = 0, sd = err_sd)

18 dim(err) <- c(p, n)

19 } else if(err_dist == "t") {

20 sig2 <- 3* err_sd ^2

21 UUU <- diag(sig2 , ncol=p[1], nrow=p[1])

22 err <- rmatrixt(n, 5, matrix(0,p[1],p[2]), UUU , diag(p[2]))

23 } else {
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A Appendix: Implementation detail

24 error("the distribution speficied is not implemented")

25 }

26

27 U1 <- ICtest ::rorth(p[1])[, 1:d[1]]

28 U2 <- ICtest ::rorth(p[2])[, 1:d[2]]

29 x <- tensorBSS :: tensorTransform2(z, list(U1 = U1 , U2 = U2), 1:2)

30

31 # adds the error to the transformed data tensor

32 x <- x + err

33

34 return(list(z = z,

35 x = x,

36 err = err ,

37 U = list(U1 , U2)))

38 }

Listing A.1: Data generation method for simulation study

A.2 Bootstrap test

In Listing ??, ?? and ??, the implementations of the bootstrap test statistic, the bootstrap
transformation and the test itself are given. While the test method and the test statistic
were implemented, so that they could possibly support higher order tensors, the transfor-
mation was only implemented for matrices, therefore rendering the test also only applicable
to second order tensors. Methods of the R package tensorBSS [?] are used for computation
of the m-mode covariances, m-mode multiplication and tensorial PCA.

1 dimension_test_statistic <- function(x, mode , k) {

2 mCov <- tensorBSS :: mModeCovariance(x, mode , center = TRUE)

3 mEig <- eigen(mCov , symmetric = TRUE)

4 D <- mEig$values
5 return(var(D[(k+1):length(D)]) / mean(D[(k+1):length(D)]))

6 }

Listing A.2: Test statistic of the bootstrap test

1 bootstrap_transform <- function(x, mode , k, method = "orth") {

2 x_tpca <- tensorBSS ::tPCA(x = x)

3

4 S <- x_tpca$S
5 S_save <- S

6

7 p <- dim(S)[ -3]

8 n <- dim(S)[3]

9

10

11 if (method == "param") {

12 S[(k + 1):p[1], , ] <-

13 array(data = rnorm(

14 n = (p[1] - k) * p[2] * n,

15 mean = 0,

16 sd = sqrt(mean(x_tpca$D[[1]][(k + 1):p[1]]))
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17 ),

18 dim = c(p[1] - k, p[2], n))

19

20 } else if (method == "orth") {

21 for (i in 1:n) {

22 S[(k + 1):p[1], , i] <-

23 ICtest :: rorth(p[1] - k) %*% S[(k + 1):p[1], , i]

24 }

25 } else if (method == "perm") {

26 for (i in 1:n) {

27 S[(k + 1):p[1], , i] <- S[sample((k + 1):p[1], replace = FALSE), , i]

28 }

29 } else{

30 stop("the specified method is not available")

31 }

32

33 x_new <- tensorBSS :: tensorTransform2(S, x_tpca$U)
34

35 if(mode != 1){

36 x_new <- aperm(x_new , c(2,1,3))

37 }

38 return(x_new)

39 }

Listing A.3: Data transformation step of the bootstrap test for second order tensors

1 bootstrap_test <- function(x, tmode , k, bootstrap_method , m) {

2 tstat <- dimension_test_statistic(x, tmode , k)

3 bootstrap_statistics_1 <- rep(0, m)

4

5 for(i in 1:m) {

6 y <- bootstrap_transform(x, tmode , k, bootstrap_method)

7 bootstrap_statistics_1[i] <- dimension_test_statistic(y, tmode , k)

8 }

9 pval <- sum(bootstrap_statistics_1 > tstat) / m

10 return(pval)

11 }

Listing A.4: The bootstrap test for second order tensors

A.3 Asymptotic test

The function for computing ψ from the asymptotic test in Section ??, which is needed
when normality is not assumed, is given in Listing ??. The implementations for the test
statistic and the general test method with and without normality assumption are given in
Listing ?? and ??. The test statistic is implemented for the first mode of a matrix, which
means, that matrices need to be transposed beforehand depending on the mode given, as
seen in Line 7 to 9 of Listing ??.

1 calc_psi <- function(x, r1, cov_eigen) {

2 tr <- function(m) {

3 return(sum(diag(m)))
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4 }

5

6 p1 <- dim(x)[1]

7 p2 <- dim(x)[2]

8 n <- dim(x)[3]

9

10 U1 <- cov_eigen$vectors[,(p1 -r1+1):p1]
11 eps <- array(data = 0, dim = c(r1 , p2 , n))

12 sigma_eps <- array(data = 0, dim = c(r1 , r1))

13

14 y <- center_data(x)

15 for(i in 1:n) {

16 eps[,,i] <- crossprod(U1 , y[,,i])

17 sigma_eps <- sigma_eps + tcrossprod(eps[,,i])

18 }

19 sigma_eps <- 1/n * sigma_eps

20

21 sigma_eps_inv <- solve(sigma_eps)

22 psi <- 0

23 for(i in 1:(dim(eps)[3])) {

24 mat <- crossprod(eps[,,i], sigma_eps_inv %*% eps[,,i])

25 psi <- psi + tr(mat %*% mat)

26 psi <- psi - 1/r1 * (tr(mat))^2

27 }

28 psi <- 1/((r1 - 1)*(r1 + 2)) * 1/n * psi

29 return(psi)

30 }

Listing A.5: Method for computing ψ for the asymptotic test without normality assumption

1 analytical_tstat <- function(x, k1 , normal_distributed) {

2 p1 <- dim(x)[1]

3 p2 <- dim(x)[2]

4 n <- dim(x)[3]

5 r1 <- p1 - k1

6 x_cov <- matrix_cov(x)

7 cov_eigen <- eigen(x_cov)

8

9

10 psi <- 0

11 if(normal_distributed) {

12 psi <- 1/p2

13 } else {

14 psi <- calc_psi(x, r1 = r1 , cov_eigen = cov_eigen)

15 }

16

17 theta <- mean(cov_eigen$values[(p1-r1+1):p1])
18 sk1 <- var(cov_eigen$values[(p1 -r1+1):p1])*(r1 - 1)/r1

19

20 test_statistic <- n * r1 * sk1 / (2 * theta ^2 * psi)

21 return(test_statistic)

22 }

Listing A.6: Computation of the analytical test statistic
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1 asymptotic_test <- function(x, k, tmode = 1, normal_distributed = FALSE){

2 if(! tmode %in% c(1,2)){

3 stop("can only transform on first or second mode")

4 }

5 p <- dim(x)[tmode]

6 r <- p - k

7 if(tmode == 2){

8 x <- aperm(x, c(2,1,3))

9 }

10

11 test_statistic <- analytical_tstat(x, k, normal_distributed)

12 pvalue <- pchisq(

13 abs(test_statistic),

14 df = 1 / 2 * (r - 1) * (r + 2),

15 ncp = 0,

16 lower.tail = FALSE

17 )

18 return(pvalue)

19 }

Listing A.7: Asymptotic test by J. Virta

A.4 Divide and Conquer

Listing ?? shows the divide and conquer implementation that makes use of the bootstrap
test. The asymptotic counterpart only differs in line 1 and 10, because it has a boolean
parameter for the normality assumption instead of the method parameter.

1 divide_and_conquer_bootstrap <- function(x, tmode = 1,

2 method = "orth", m = 100) {

3 p <- dim(x)

4 lower <- 0

5 upper <- p[1]

6 it <- 1

7

8 while(lower != upper) {

9 k1 <- floor((lower + upper)/2)

10 pval <- bootstrap_test(x, tmode , k1, method , m)

11

12 if(pval < 0.05) {

13 lower <- k1+1

14 } else {

15 upper <- k1

16 }

17 it <- it + 1

18 if(it == p[1]) {

19 break

20 }

21 }

22 return(list(

23 it = it,

24 p1_est = ifelse(lower == upper , yes = lower , no = 0)
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25 ))

26 }

Listing A.8: Divide and conquer algorithm with bootstrap test

38



List of Figures

39



Listings

40



Bibliography

[CC70] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of Eckart-Young de-
composition. Psychometrika, 35(3):283–319, 1970.

[DLDMV00] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear
singular value decomposition. SIAM Journal on Matrix Analysis and Appli-
cations, 21(4):1253–1278, 2000.

[Har70] Richard A Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multimodal factor analysis. UCLA Working
Papers in Phonetics, 1970.

[Hof11] Peter D Hoff. Separable covariance arrays via the Tucker product, with ap-
plications to multivariate relational data. Bayesian Analysis, 6(2):179–196,
2011.

[Hot33] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, 24(6):417, 1933.

[HWTH12] Hung Hung, Peishien Wu, Iping Tu, and Suyun Huang. On multilinear prin-
cipal component analysis of order-two tensors. Biometrika, 99(3):569–583,
2012.

[JC16] Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review
and recent developments. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 374(2065):20150202, 2016.

[JM92] Ian T Joliffe and Byron JT Morgan. Principal component analysis and ex-
ploratory factor analysis. Statistical Methods in Medical Research, 1(1):69–95,
1992.

[Joh90] Hastad Johan. Tensor rank is NP-complete. Journal of Algorithms, 4(11):644–
654, 1990.

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-
tions. SIAM Review, 51(3):455–500, 2009.

[Kor19] Pavel Koryakin. Fingers dataset. https://www.kaggle.com/koryakinp/

fingers, 2019. [Online; accessed 01-04-2023].

[Lan12] Serge Lang. Algebra, volume 211. Springer Science & Business Media, 2012.

[Lau19] Stéphane Laurent. matrixsampling: Simulations of Matrix Variate Distribu-
tions, 2019. R package version 2.0.0.

[LPV06] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos.

41

https://www.kaggle.com/koryakinp/fingers 
https://www.kaggle.com/koryakinp/fingers 


Bibliography

Multilinear principal component analysis of tensor objects for recognition. In
18th International Conference on Pattern Recognition (ICPR’06), volume 2,
pages 776–779. IEEE, 2006.

[Min00] Thomas P Minka. Automatic choice of dimensionality for PCA. In Advances
in Neural Information Processing Systems, volume 13, pages 598–604, 2000.

[NOT22] Klaus Nordhausen, Hannu Oja, and David E Tyler. Asymptotic and bootstrap
tests for subspace dimension. Journal of Multivariate Analysis, 188:104830,
2022.

[NOTV22] Klaus Nordhausen, Hannu Oja, David E Tyler, and Joni Virta. ICtest: Esti-
mating and Testing the Number of Interesting Components in Linear Dimen-
sion Reduction, 2022. R package version 0.3-5.

[Pea01] Karl Pearson. LIII. On lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572, 1901.

[Phi89] Peter CB Phillips. Spherical matrix distributions and Cauchy quotients.
Statistics & Probability Letters, 8(1):51–53, 1989.

[R C22] R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2022.

[TB99] Michael E Tipping and Christopher M Bishop. Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3):611–622, 1999.

[Tuc66] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[VKL+21] Joni Virta, Christoph L Kösner, Bing Li, Klaus Nordhausen, Hannu Oja,
and Una Radojicic. tensorBSS: Blind Source Separation Methods for Tensor-
Valued Observations, 2021. R package version 0.3.8.

[VN19] Joni Virta and Klaus Nordhausen. Estimating the number of signals using
principal component analysis. Stat, 8(1):e231, 2019.

[VTN16] Joni Virta, Sara Taskinen, and Klaus Nordhausen. Applying fully tensorial
ICA to fMRI data. In 2016 IEEE Signal Processing in Medicine and Biology
Symposium (SPMB), pages 1–6. IEEE, 2016.

[WEG87] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2:37–52, 1987.

[YZFY04] Jian Yang, David Zhang, Alejandro F Frangi, and Jing-yu Yang. Two-
dimensional PCA: A new approach to appearance-based face representation
and recognition. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 26(1):131–137, 2004.

[ZZ05] Daoqiang Zhang and Zhi-Hua Zhou. (2D)2PCA: Two-directional two-
dimensional PCA for efficient face representation and recognition. Neuro-
computing, 69(1-3):224–231, 2005.

42


	Introduction
	State of the art
	Dimension estimation for random vector models
	Model-free principal component analysis
	Probabilistic PCA
	Asymptotic and bootstrap tests for subspace dimension

	Generalization of PCA to higher order tensors
	PCA for matrix valued data
	Tensor definitions and operations
	Tucker- and higher order singular value decompositions
	Random tensors
	Tensor PCA and multilinear principal component analysis
	Spherical tensor distributions


	Methodology
	Low rank dimension tests for second-order tensors
	Noisy second order model
	Bootstrap tests for second-order tensors
	Asymptotic tests for second-order tensors

	Generalization to higher-order tensors
	Tensor model
	Bootstrap test for higher order tensors


	Numerical analysis
	Rejection probabilities of simulated data
	Dimension estimation of simulated data
	Dimension estimation of a picture dataset

	Summary and future work
	Appendix: Implementation detail
	Data Simulation
	Bootstrap test
	Asymptotic test
	Divide and Conquer

	List of Figures
	Listings
	Bibliography

