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Kurzfassung

Das Ziel der vorliegenden Arbeit ist die Verbesserung der numerischen Modellierung

im Bereich der Faserverbundwerkstoffe. Dazu wird der freie Randeffekt in Faserver-

bundwerkstoffen im Detail untersucht. Bis heute sind exakte analytische Lösungen nur

für vereinfachte Modelle für diesen Effekt verfügbar. Numerische Methoden wie die

Finite-Elemente-Methode (FEM) können verwendet werden, um Näherungslösungen

zu erhalten, sind aber aufgrund des hohen Rechenaufwands für vernünftige Ergebnisse

auf einfache Geometrien und Randbedingungen beschränkt.

Daher wird in dieser Diplomarbeit der Stacked-Shell-Ansatz angewendet, um zu unter-

suchen, ob er zur Erfassung des triaxialen Spannungszustands an den freien Rändern

von Verbundlaminaten verwendet werden kann. Im Vergleich zu Kontinuumsmodellen

würde dieser Ansatz Rechenressourcen einsparen und die Lösung komplexerer Modelle

ermöglichen. Beim Stacked-Shell-Ansatz wird jede einzelne Composite-Lage durch

eine Schicht von Schalenelementen diskretisiert. Die Interfaces zwischen den einzelnen

Lagen werden mit Kohäsiv-Elementen diskretisiert und mit einem Kohäsivzonenmo-

dellansatz kombiniert. Die Schalen- und Kohäsiv-Elemente sind durch das Teilen von

Knoten miteinander verbunden.

Die zum Verständnis des Stacked-Shell-Ansatzes notwendigen theoretischen Grundla-

gen werden erläutert. Dazu gehören die klassische Laminattheorie sowie die Mindlin-

Reissner-Schalentheorie und die Grundlagen der Kohäsivzonenmodellierung mit Kohä-

sivelementen.
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Es wird erläutert, wie der Stacked-Shell-Ansatz in eine kommerzielle FEM-Software,

wie Abaqus, implementiert werden kann. Anhand zweier Modelle wird die Eignung

des Stacked-Shell-Ansatzes für die Simulation von freien Randeffekten untersucht.

Das erste Modell, ein kurzer Biegebalken, wird verwendet, um die Fähigkeit des

Stacked-Shell-Ansatzes zu zeigen, die transersalen Schubspannungen genau zu erfassen

und den Einfluss der kohäsiven Interfaceeigenschaften zu zeigen. Das zweite Modell

ist eine Faserverbundschale mit freien Rändern, die mit Verschiebungen belastet wird.

Die Ergebnisse dieses Modells werden verwendet, um die erforderliche Netzgröße

und die Gesamtqualität der Ergebnisse im Bereich der freien Ränder zu bewerten.

Daher werden die Ergebnisse der Modelle mit Referenzmodellen unter Verwendung

von Kontinuumselementen verglichen und interpretiert.

Diese Arbeit zeigt, dass der Stacked-Shell-Ansatz in der Lage ist, die interlaminaren

Spannungen am freien Rand von geschichteten Faserverbundlaminaten mit guter Über-

einstimmung im Vergleich zu rechenaufwändigeren Kontinuumsmodellen zu erfassen.



Abstract

The aim of the present work is to improve the numerical modeling in the field of layered

composites. For this purpose, the free edge effect in layered composites is investigated

in detail. Until today, exact analytical solution are only available for simplified models

for this effect. Numerical methods like the Finite Element Method (FEM) can be used

to obtain approximate solutions, but are limited to simple geometries and boundary

conditions, due to high computational demands for reasonable results.

Therefore, in this master thesis, the Stacked Shell Approach is applied to investigate

whether it can be used to capture the triaxial stress state at composite laminates’

free edges. Compared to continuum models, this approach would save computational

resources, allowing for more complex models to be solved. The Stacked Shell Approach

discretizes every individual composite ply with a layer of shell elements. The interfaces

between the single layers are discretized using a cohesive zone model approach in

combination with cohesive elements. The shell and cohesive elements are connected

by sharing nodes.

The theoretical foundations necessary to understand the Stacked Shell Approach are

explained. These include the classical laminate plate theory, as well as the Mindlin-

Reissner shell theory and the basics of cohesive zone modeling with cohesive elements.

Details how the Stacked Shell Approach can be implemented in a commercial FEM

software, like Abaqus are given. Two models are used to evaluate the suitability

of the Stacked Shell Approach for simulating free edge effects. The first model, a
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short bending beam, is used to show the capability of the Stacked Shell Approach to

capture the transverse shear stresses accurately and assess the influence of the cohesive

interface properties. The second model is a composite shell with free edges, loaded

with displacements. The results of this model are used to evaluate the necessary mesh

size, and the overall quality of the results in the free edge region. Therefore, the

results of the models are compared to reference models using continuum elements and

interpreted.

This work shows that the Stacked Shell Approach is able to capture the interlaminar

stresses at the free edge of layered composites with good agreement compared to

computationally more expensive continuum models.
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Chapter 1

Introduction

1.1 Background

Lightweight design and the associated potential to reduce weight have played a key

role in technology for decades, especially in the aerospace industry. As climate

change is progressing, the use of lightweight design is still increasing in the sectors

of transportation and mobility, as well as (renewable) energy, as the efficient use

of materials, in addition to cost and weight savings, is expected to have immense

potential for reducing CO2 emissions in these sectors. Composite laminates made of

fiber reinforced plastics (FRP) are often used for these applications and are therefore

becoming increasingly important.

The individual layers or plies of FRP laminates consist of a combination of two or

more different types of materials, whose components have clearly identifiable interfaces.

These materials can be divided into a reinforcement phase, in the case of FRP the fibers

(e.g., carbon, glass, aramid, etc.), and the matrix phase (e.g., plastic, ceramic, metal,

etc.) in which the fibers are embedded. This key aspect of these materials allows the

material properties to be designed as required, within certain limits, by the material

combination, leading to usually far better properties compared to the respective
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1 Introduction

individual materials. This is one of the main reasons why FRP’s have established

themselves as an important class of structural materials, especially in lightweight

design. Due to their outstanding characteristic values in specific strength and specific

stiffness, compared to conventional materials, like aluminum or titanium, and their

great flexibility in terms of design possibilities and manufacturing methods, lightweight

structures are now one of the primary areas of application for fiber composites.

This is particularly evident in the aerospace sector. Here, increased reliance has

been placed on these materials within the last decades. Fifty years ago, the use of

modern composite materials was limited to special fighter aircraft, today all aircraft

and spacecraft benefit from them. For example, the Airbus A380 (first delivery in

2007) was already made of 28% carbon fiber reinforced plastics (CFRP). For the A350

XWB (first delivery in 2015), the CFRP share was already at 53%, as shown in Figure

1.1. The A350 XWB along with the Boeing 787, were one of the first aircraft with

the entire fuselage made from CFRP, demonstrating the immense potential of these

materials [2]. It can be assumed that this development will continue in the coming

years and that new generations of aircraft will have an even higher carbon content.

Airbus, for example, wants to be able to offer the first hydrogen-powered aircraft

by 2035 under the motto “Zero Emissions”. The pressure vessels required for this

will likely be made largely of CFRP. Mainly because weight savings can be achieved

compared to metals, but additionally the corrosion resistance is superior.

Likewise in the field of renewable energy sources, the percentage of FRPs used contin-

ues to rise. In particular, the development and expansion of wind turbines in recent

years would not have been possible without their use. To make wind turbines more

powerful and efficient, their diameters are constantly increased, as this makes trans-

port, installation and maintenance of the wind turbines more efficient. The increasing

diameters and heights of new wind turbines additionally make it possible to take

advantage of stronger air currents at higher altitudes, leading to higher power outputs.

2



1 Introduction

Fig. 1.1: Airbus A350 XWB material shares by weight [2]

This development becomes clear when comparing the average turbine diameter of all

wind farms operating in the USA, which is approximately 50 meters, with that of a

standard offshore turbine today. These reach a diameter of 220 meters and a total

height of up to 260 meters. These new types of turbines are predominantly built from

FRP, with mainly carbon and fiberglass as reinforcement materials [30].

To fully exploit the potential of these materials, one of the most important engineering

tasks in lightweight design is to precisely calculate the behavior of lightweight struc-

tures. Since fiber-reinforced plastics show anisotropic material behavior and weak

interfaces due to their layered structure, this task is made quite difficult. Therefore,

in recent decades, the finite element method (FEM), supported by Computer Aided

Engineering (CAE) programs, has been increasingly used to analyze the complex

structural behavior of lightweight structures. This allows simplified models to be

used to analyze the complex behavior and failure modes that occur in composites.
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1 Introduction

The failure modes of laminated composites can be divided into ply failures, so-called

intralaminar failure and delamination, so-called interlaminar failure.

Delamination can be further subdivided according to the areas in which it occurs. On

the one hand, it can occur at the inner regions of the composite, due to impacts or

manufacturing defects (e.g., inclusions, voids), and on the other hand, it can occur

due to the high interlaminar stresses at structural discontinuities (ply drops, cut outs)

and free edges.

The interlaminar stresses at the free edge are caused primarily by the mismatch of

the elastic properties of two adjacent layers [13]. In this thesis a novel simulation

approach will be used to try capture these stress concentrations at the free edges of

composites, often referred to as “free edge effect (FEE)”.

1.2 Motivation

Although numerous papers have been published since about 1970 on the subject of

free edge effects in FRPs, there is still a need for more precise and efficient simulation

models and solutions. As will be explained in chapter 2, analytical solutions for the

free edge effect are usually limited to simple geometries and restricted by necessary

assumptions. In comparison, numerical approaches are often limited to models with

symmetric laminates and only a few layers due to low computational efficiency. Neither

one is useful for potential application areas, such as complex aerospace components.

Therefore, this work utilizes an FEM modeling approach, which allows to calculate

the triaxial stress state present at free edges in layered laminates. For this purpose,

the so-called Stacked Shell Approach (SSA), a layer wise modeling approach, is used

in combination with cohesive elements, special purpose finite elements. The individual

laminate layers are each discretized by a layer of shell elements with cohesive elements

in between, to represent the layer interfaces. This leads to a saving in computational
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1 Introduction

Fig. 1.2: Schematic visualization of the Stacked Shell Approach [23]

resources compared to continuum models and less limitations compared to analytical

solutions. A schematic visualization of the SSA can be seen in Figure 1.2.

The goal of this work is to further investigate the applicability and limitations of

this approach, which was already pursued in the work of Mayrhofer-Huber [12]. The

quality with which the SSA can capture the stress state in the free edge region will

be investigated by comparing the results with a reference solution using continuum

elements. Furthermore, the necessary mesh size in the free edge region will be

investigated and potential problems and limitations of the approach will be pointed

out. The results obtained can serve as a basis for further investigations about free

edge effects in layered laminates.
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Chapter 2

Literature Review

In the past decades, numerous papers have been published about free edge effects in

layered structures, attempting to describe the underlying effects either analytically or

by numerical modeling. Often these approaches have been supported by experimental

results. In this section, some of these studies and the included approaches related to

the present work will be briefly reviewed. In addition, work from recent years on the

SSA will be presented.

From 1970 to 1974 Pipes and Pagano [21], [17], [16], [20] released most of their

pioneering work on free edge effects in composites, which is still referred to by many

authors today. In [20] they presented an analytical approach with an approximate

elasticity solution for finite-width, angle-ply laminates under uniform uniaxial tension.

Although the equilibrium equations are violated in two directions, the solution shows

excellent agreement with numerical solutions of that time. To the author’s best know-

ledge, they were also the first ones to connect the influence of the stacking sequence

of laminates to the free edge stresses and gave laminate layups with reduced risk of

interlaminar failure in [17]. Their numerical solution of the exact analytical equations,

using a finite-difference solution in [21], explains the shear transfer mechanism within

symmetric laminates, shows the width of the free edge region (approximately equal
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2 Literature Review

to the laminate thickness), and provides excellent results for the displacements and

stresses in this area.

Opposed to the displacement-based layer wise approach used in the numerical so-

lutions mentioned above, Pagano [15] used a single-layer approach to calculate the

interlaminar normal stress in the mid-plane of a symmetric laminate loaded with

uniaxial tension. Compared to his work with Pipes, this approach allows one to

consider the influence of the geometric and material parameters of the laminate on

the shape of the stress distribution. However, this comes at the cost of the quality of

stress approximation through the thickness.

Kassapoglou and Lagace [8], [9] developed a very efficient way to calculate free edge

stresses in symmetric laminates under uniaxial tension with the so-called force-balance

method. It can be classified as a layer wise stress-based theory. The authors assume

stress expressions based on exponential shapes, that the interlaminar stresses must

take in order to meet the force and moment equilibrium. By minimizing the laminate

complementary energy, the exponential terms of the stress expressions are found.

Although there are other stress-based methods, the force-balance method has proven

itself highly efficient allowing analysis of thick laminates with up to 100 plies with

computational ease. Due to this high efficiency this method has been further refined

by several authors. For example, Rose and Herakovich [24] added stress functions,

which allow the method to be used in unsymmetrical laminates.

FEEs in composite laminates are mathematically characterized as singularities at the

free edge between two dissimilar layers. Therefore, an analytical and a finite element

method, dealing with singularities are presented in the next two paragraphs. It shall

be noted that this is not a complete overview, as this would not fit the scope of this

work. An analytical solution concerning stress singularities in a two-material wedge,

was introduced by Hein and Erdogan [7]. The approach uses a Mellin-transformation

and the theory of residues. Their solution allows for plane strain or plain stress

7
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problems, to obtain the stresses at the interface and show the dependence on the

materials and geometry.

To investigate stress singularities in the vicinity of singular points in structures with

geometric discontinuities and anisotropic materials Pageau and Biggers [18] used a

two-dimensional finite element formulation. Dividing the region into sectorial elements

around the singular point allowed a computationally very efficient formulation of the

quadratic shape functions, while showing rapid convergence with several available

exact solutions.

Since it is relatively difficult to find an analytical solution, and that these must be

constrained by various assumptions, it is not surprising that many researchers have

used numerical approaches, like the FEM. Stiftinger [29] for example, used a special

purpose finite element to predict the stresses close to free edges in fiber reinforced

laminates. The developed four noded shell element is based on an analytical approach

and uses modified transverse shear strains to overcome shear locking. A layer wise

linear elastic material model is used. The results presented are satisfactory for most

configurations, only the interlaminar stress distribution through the thickness could

be improved.

A computationally more expensive way is to use three-dimensional elements. Norwood

[14] used 32-noded brick elements in his three-dimensional model to calculate the

stress fields in symmetric as well as unsymmetric laminates subject to pure mechanical

and pure thermal loading. Using a global-local strategy, he calculated the interlaminar

stresses at the interfaces within a refined (local) model, which used the displacements

calculated by a global model. The interface stresses had to be interpolated and

averaged at the Gauss integration points. The results presented by Norwood showed

good agreement with other works and will be used as reference in this work.

It can be summarized that analytical approaches are limited to basic geometries and

need limiting assumptions, such as symmetric layup or kinematic constraints, whereas
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2 Literature Review

finite element simulations either lack in detail, especially for thick laminates, or are

computationally very expensive when three-dimensional models are utilized.

This led to the development of the SSA, a finite element modeling technique for

analyzing the behavior of composite structures. The approach was first mentioned by

Ladevèze et al. [10] in 1998, when proposing a mesomodel for simulating complete

fracture phenomena in composites under complex loading conditions. The model

is based on the idea that the laminate can be divided into a sequence of stacked

homogeneous shell layers throughout the thickness, each representing a single ply, and

interlaminar interfaces. These interfaces connect neighboring layers, ensuring stress

and displacement transfer between the plies. The mesomodel is capable of predicting

the onset and evolution of damage in the laminate, including delamination and matrix

cracking, by using a three-dimensional continuum damage mechanics approach. The

effectiveness of the mesomodel is demonstrated through comparison with experimental

data and other numerical models, including dynamic loading.

The basic idea of this work was also used in [26] to simulate the intermediate velocity

impact behavior of woven composite laminates, by using progressive damage models

for plies and interfaces. With the used energy-based continuum damage mechanics

approach in combination with the SSA, the model is able to cover tensile and compres-

sive ply damage as well as shear damage and plastic deformations. The simulations

conducted by Schwab et al. [26] were validated by comparing the results with ex-

perimental data of a drop test. The study concludes that the SSA with progressive

damage model provides a useful tool for designing and optimizing composite structures

for improved impact resistance, and that further research is needed to improve the

accuracy and efficiency of the model.

The concept of the stacked shell approach is also followed by Lampeas and Fotopoulos

[11]. It is the first work using the SSA and focusing on interlaminar stresses in

9



2 Literature Review

composites. The effectiveness of the proposed technique in calculating interlaminar

stresses of composite structures has been demonstrated through its application to

laminated plates subjected to sinusoidally distributed transverse loading, laminated

strips under three-point bending, and laminated cylindrical shells under cylindrical

bending. The analysis of displacement and both in-plane and out-of-plane stresses

indicate that the methodology is highly accurate and efficient.
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Chapter 3

Theoretical Principles

In this section the theoretical background necessary to understand and build the

used FEM models will be given. First, a compact overview of failure mechanisms

in composites is given to show the need for the SSA. To understand the principle

of this approach, it is necessary to know how stress calculations are performed in

layered materials. Therefore, the commonly used Classical Laminate Plate Theory

(CLPT) will be briefly summarized. Since this work uses a layer wise approach with

the SSA, in which homogeneous shells are stacked, shell theories, as well as the basic

formulation of shell and cohesive elements, are presented.

3.1 Failure Mechanisms in Composites

As mentioned in the introduction, composite materials are widely used in various

engineering applications due to their high strength-to-weight ratio and specific prop-

erties. However, anisotropy of the material, as well as the complex microstructure of

composites, leads to various failure mechanisms, which need to be considered for the

design and optimization of composite structures.

The failure criteria of composites can be divided into global and internal failure.
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Fig. 3.1: Internal failure mechanisms of composites [10]

Global failure refers to large deformations or global instabilities typical for thin-walled

structures (e.g., buckling). These mechanisms will not be discussed in this thesis,

more in-depth literature can be found in, e.g., [31]. Internal failures of composites are

different types of material failures, which can be further subdivided into intralaminar

and interlaminar failure, some of them are illustrated in Figure 3.1. It is important

to note that composite materials often have a complex failure behavior and multiple

failure mechanisms can occur simultaneously, depending on the specific application,

loading, and material behavior. Therefore, the design and analysis of composite

structures requires an understanding of all the different failure mechanisms and their

interactions.

Intralaminar failure, or ply failure, refers to the failure of the fibers or the matrix

within a single ply of a composite structure. It can lead to a significant reduction in

strength and stiffness of the structure. There are several types of intralaminar failure

in composites, including:

• Fiber rupture: When fibers are loaded in tension and the breakage stress is

exceeded.

• Fiber pull-out: Often occurs in combination with fiber breakage in unidirec-

tional (UD)-laminates under tensile load.

12



3 Theoretical Principles

• Fiber buckling: Under compressive load, individual fibers or regions of parallel

fibers can buckle.

• Matrix cracking: Matrix cracking is the failure of the matrix within a single

layer of a composite structure. If this happens during loading normal to fiber

direction, it is often called transverse cracking.

• Fiber/matrix debonding: This is the separation of the fibers from the matrix

within a single ply. It can be caused by a variety of factors, but often occurs,

when the layer is loaded normal to the fiber direction.

In order to take these failure mechanisms into account in the evaluation of composite

structures, various failure criteria have been developed. The maximum stress criterion

predicts failure, when one of the stress components in the principal material direction

reaches the ultimate strength. A distinction is made between compression and tensile

stresses, but the interaction of stresses is not taken into account. The maximum

strain criterion is similar, however, by considering the transverse contractions when

calculating the distortions, an interaction of the stress components is considered.

Probably the best-known criteria are the Tsai-Wu and Tsai-Hill criteria. These are

quadratic failure criteria that also take stress interaction into account. If one looks

at the failure envelopes of these two criteria, a similarity to the v. Mises yield cri-

terion can be seen. More details on failure mechanisms and criteria can be found in [28].

Interlaminar failure, also called delamination, refers to the separation of individual

layers from each other in laminated structures. A distinction can be made as to

whether the delamination occurs internally or at a free edge. Internal delamination

can be caused by impacts (during manufacturing, maintenance, bird strikes, etc.),

in which case the damage might not be visible on the top surface of the laminate,

because the delamination occurs between deeper layers and is therefore hard to detect
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visually. Other causes are manufacturing defects, such as impurities or gas formation

during the curing process, as well as structural discontinuities, occurring with ply

drop-offs or bonded or laminated connections. Moisture and temperature can also

cause interlaminar stresses that lead to delamination. Fatigue stress is another cause

which, due to mechanical or thermal fatigue stresses, can cause matrix cracks to grow

up to the interfaces, where they turn into delamination and, in the further course, can

grow together with other defects. Both forms of delamination (internal and free edge)

can lead to a significant reduction in strength and stiffness and result in failure of

the structure. However, this work focuses solely on the interlaminar stresses resulting

from the free edge effect, and the capabilities of the SSA to capture these. Therefore,

the free edge effect will be discussed in more detail in the next section.

3.1.1 Free Edge Effect

At free edges, which include holes and recesses, of multi-directional laminates a tri-

axial stress state occurs, also known as the free edge effect. In these areas the CLPT

is not valid (see section 3.9). The interlaminar stresses present in the free edge region

can become critical and lead to free edge delamination. It is important to understand

that this effect does not emerge due to manufacturing defects but is also present in

defect-free components.

Interlaminar normal stresses occur in cross-ply laminates due to the differences in

Poisson’s ratio, and interlaminar shear stresses occur in angle-ply laminates due to

the differences in shear behavior. The magnitude of the occurring stresses depends

on how large the differences are in Poisson’s ratio and shear behavior, as well as

Young’s moduli and shear moduli, of adjacent plies. In addition, the laminate layup,

thickness, the loads, and the boundary conditions influence the development of the

FEE [17]. The effect decreases with increasing distance from the free edge until the
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stress values converge to the calculations using CLPT (approximately in distance

of laminate thickness). In addition to accurately calculating the free edge effect by

simulation, design, and material engineering measures should be considered to prevent

the effect in the first place. Among other things, shear-toughened resin, the use of

high-strength adhesives in the free edge area, or the application of overlaps can reduce

or prevent the occurrence of the free edge effect.

As described in section 2, there are several approaches to determine the interlaminar

stresses at the free edge, which can lead to delamination. However, to the author’s

knowledge, there is no analytical solution that can accurately describe the stress

state at the free edge. Various possibilities to approximate the triaxial stress state

are summarized in [13]. Among them some analytical approaches can be found,

which come to a satisfying solution by means of simplifications and assumptions for

simple geometries, as well as various numerical models, which often require a lot of

computational effort. A relatively old approach from Pipes and Pagano [21], which

has also proven itself in experiments, using a finite difference solution to solve the

exact elasticity equations for a symmetric angle-ply laminate, is shown graphically in

Figure 3.2.

3.1.2 Onset and growth of delamination

To assess whether there is onset or growth of delamination either fracture mechanics,

or cohesive zone modeling (CZM) can be used. Although in this work, the onset

and growth of delamination are not considered in the simulation, the possibilities

of evaluating the delamination behavior of composites using CZM, shall be briefly

discussed. This would allow the SSA to be expanded in a future work.
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Fig. 3.2: Interlaminar stress at layer interface of angle-ply laminate [21]

With the computed stresses a quadratic stress criterion can be used to assess whether

delamination onset occurs. An often used stress criterion is

( σtt

σttu
)2 + ( τlt

τltu
)2 + ( τqt

τqtu
)2 ≥ 1 , (3.1)

with σtt being the interlaminar normal stress, τlt and τqt the interlaminar shear

stresses. The coefficients σttu, τltu and τqtu are the tensile ultimate stress and out-

of-plane ultimate shear stresses, respectively. Delamination onset occurs when the

inequality in Eqn.(3.1) is satisfied.

It should be noted that the results are significantly affected by the accuracy of the

numerical/analytical calculation of the interlaminar stresses. Therefore, the stress
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Fig. 3.3: Linear damage evolution [27] Fig. 3.4: Exponential damage evolu-
tion [27]

values in the edge region are often calculated at discrete points, or averaged within

the free edge region with

σavg
ij = 1

Xavg

Xavg�
0

σij · dx , (3.2)

where Xavg denotes the averaging width, which depends on the decay behavior of

the interlaminar stresses in the free edge region and is influenced by the layup, ply

material and design details [28].

Additionally to delamination onset, delamination growth can be computed, by defining

a damage evolution law. In Figures 3.3/3.4 a linear/exponential damage evolution

law is shown schematically. Briefly summarized, it can be said that no change in

stiffness occurs until damage initiation at δ0
m and then decreases according to the

damage evolution law defined until complete failure at δf
m. As damage initiation and

evolution will not be modeled within this work, please refer to [27] for more details on

this topic.
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Fig. 3.5: Laminate with n-layers
(adopted from [28])

Fig. 3.6: Local and global reference
coordinate systems

3.2 Classical Laminate Plate Theory for Layered

Materials

The CLPT is one of the most used calculation methods for thin layered composite

components. It allows to determine the deformation behavior of thin-walled shell

structures under load, as well as the average layer stresses per single ply at any point in

the component, as long as the necessary assumptions apply. Using failure criteria, the

determined layer stresses (or layer strains) per individual ply are then compared with

the corresponding critical material parameters to determine the failure behavior of

the fiber composite. In order to make the equations of the CLPT solvable, simplifying

assumptions are necessary. Thus, a constant plane stress state is assumed over a single

layer thickness (which does not apply at the free edge), and Kirchhoff’s-Law is

applied. The material properties are assumed to be macroscopic homogeneous and

orthotropic for single layers and that plies have linear elastic material behavior. Also,

all plies are perfectly bonded between each other.

Formulating Hook’s law for layer k of a laminate with n layers (see Figure 3.5) in

the reference coordinate system (l, q, t) and transformation to the global reference

coordinate system (x, y, z) (see Figure 3.6) leads to
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������������
σxx

σyy

τxy

������������
= (T −1)(E)L(T −1)T

������������
εxx

εyy

γxy

������������
, (3.3)

and can be written in vector form as

σ(k) = E(k)ε(k) . (3.4)

E(k) is the plane stress elasticity matrix for layer k, which is constant for each layer.

T is the transformation matrix and depends on the fiber angle α. Assuming the

validity of Kirchhoff’s law, the strains εxx, εyy, γxy in the laminate can be written as

������������
εxx

εyy

γxy

������������
=

������������

∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x

������������
, (3.5)

with the displacements u, v, w of a point P in the laminate. The out-of-plane strains

εzz are neglected, because of the assumptions made beforehand. If the displacements

are related to a reference plane (laminate mid plane), Eqn.(3.5) becomes

������������
εxx

εyy

γxy

������������
=

������������

∂u0
∂x

∂v0
∂y

∂u0
∂y

+ ∂v0
∂x

������������
− z

������������

∂2w0
∂x2

∂2v
∂y2

2∂2w0
∂x∂y

������������
, (3.6)
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with z being the distance of Point P to the reference plane. All variables with index 0

relate to the reference plane. Inserting equation Eqn.(3.6) into Hook’s law Eqn.(3.4)

leads to

σ(k) = E(k)ε0 − zE(k)κ , (3.7)

with ε0 being the strains and κ the curvatures of the reference plane.

It is necessary to introduce resulting laminate forces and moments because the stresses

within the laminate vary from ply to ply. These stress resultants form a statically

equivalent system of forces and moments. The system of three force resultants (Nx, Ny,

Nxy) and three moment resultants (Mx, My, Mxy) acting in the midplane is statically

equivalent to the current stress distribution across the thickness of the laminate. By

integrating the stress components over the thickness of the laminate, these internal

forces per length can be calculated. The integral over the total laminate thickness

can be replaced by a summation over each single plies thickness. For the moments,

the stress components must be multiplied by the distance to the reference plane.

The dimension of these stress resultants is force per length. Inserting Hook’s law

Eqn.(3.7), already considering the defined strains, consisting of the midplane strains

of the plate εij and γxy and the plate curvatures κij , which are independent of z, and

that E(k) is constant for each layer, the stress resultants can be written as

������������
Nx

Ny

Nxy

������������
=

n	
k=1

{
zk�

zk−1

(E)k

������������
ε0

xx

ε0
yy

γ0
xy

������������
dz +

zk�
zk−1

(E)k

������������
κxx

κyy

κxy

������������
zdz} (3.8a)

������������
Mx

My

Mxy

������������
=

n	
k=1

{
zk�

zk−1

(E)k

������������
ε0

xx

ε0
yy

γ0
xy

������������
zdz +

zk�
zk−1

(E)k

������������
κxx

κyy

κxy

������������
z2dz} . (3.8b)
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With the assumption of constant strains and curvature changes per ply, as is permissible

for thin layers, these terms can be written in front of the integral. Introducing the

matrices A, B and D, the formulas (3.8a) and (3.8b) can be combined to from the

simplified CLPT

����
N

M

���� =

����
A B

B D

����
����

ε0

κ

���� . (3.9)

These stiffness matrices depend on the material properties of the individual plies

and the laminate layup. The extensional stiffness matrix A links normal stresses

and strains, as well as shear strains to normal stresses and vice-versa. The bending

stiffness matrix D relates the bending moments with the plate curvature. The coupling

stiffness matrix B couples normal stress resultants with curvature changes and vice-

versa, as well as shear strains to bending stress resultants and twisting strains to

normal stress resultants. These coupling effects are new compared to homogeneous

isotropic plates, e.g., forces acting in the shell midplane, not only cause distortions

(strain/inplane thrust), but also lead to bending deformations or twisting. Likewise,

bending and torsional moments cause strains in the reference surface. These and other

coupling effects can also affect the stress state and temperature behavior of composite

components. Coupling effects can be avoided by selecting a suitable laminate layup.

For symmetrical, quasi-orthotropic and quasi-isotropic laminates, all terms of the

coupling matrix result to zero, and therefore, no coupling effects are present.

The results of the CLPT provide the global distortions of the laminate related to the

global reference coordinate system, or the stresses and strains in each laminate layer

k with respect to a local material coordinate system of the single ply. In combination

with the failure criteria mentioned before, these results can be used to determine the
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deformation and failure behavior of composite structures. A more detailed derivation

of the CLPT can be found, e.g., in [28] and [22].

3.3 Stacked Shell Approach

After a brief introduction to the fundamental theories of composites, the Stacked

Shell Approach will be explained in detail. The SSA is a finite element modeling

approach for analyzing the behavior of laminated composites at the meso level. The

composite laminate is divided into a sequence of stacked homogeneous shell layers

throughout the thickness, where each shell layer represents a single ply. These shell

layers are connected via an interface entity which ensures stress and displacement

transfers between adjacent plies. This interlaminar connection can be interpreted as a

ply of matrix, whose thickness is negligible compared to the in-plane dimension, and

will be referred to as interface.

While the midplane of each ply is discretized by an individual layer of 4-node shell

elements, in this work the interfaces between the plies are represented by hexahedral

elements with a CZM. Such a cohesive element (CE) shares the nodes of the adjacent

shell layers located at the corresponding reference planes. The CEs model the

mechanical behavior of the laminate interfaces using a traction-separation based

constitutive law. The CEs have a finite geometrical thickness in the used FEM model,

equal to the layer thickness tp, since they share nodes with the adjacent shell elements.

The interlaminar stresses are captured by the relative displacements of the top and

bottom surfaces of the cohesive elements. The in-plane stresses are covered by the

shell elements.

Compared to equivalent models discretized by three-dimensional continuum elements,

the SSA offers much higher computational efficiency, while still capturing the complex

stress state in layered materials. Linearly interpolated continuum elements typically
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require small element dimensions and aspect ratios close to one to alleviate the effect

of shear locking during bending deformations. In the context of free edge effects, each

ply should also be discretized by two or more continuum elements in the thickness

direction to describe the possibly nonlinear stress distribution across the ply thickness.

Therefore, the number of degrees of freedom (DOF) can be drastically reduced by

using shell elements. In addition to this, it should also be possible to increase the

element size, but this must first be checked in connection with FEEs.

In the next section, the main components of the SSA, shell and cohesive elements,

and related theories are described in detail.

3.3.1 Shell Elements

Shell elements are a type of finite element used to model thin-walled structures,

such as plates and shells. They are typically used to model structures whose two

dimensions are much larger than the third dimension (thickness), such as thin-walled

plates. A general rule of thumb for thin-walled shells is that the thickness is at least

20 times less than the largest dimension. Their volume is reduced to a reference

plane by using Kirchhoff-Love or Mindlin-Reissner’s theory. This leads to them being

less computationally intensive than solid elements, which makes them suitable for

large-scale simulations and optimizations. Therefore, they are widely used in many

areas of lightweight design, such as aerospace engineering, mechanical engineering,

civil engineering, and marine engineering. They can be used to model structures made

of various materials, including isotropic, orthotropic, and anisotropic materials. Since

curved geometries, as they often occur in lightweight designs, can only be represented

faceted with linear shell elements, there are also quadratic and higher-order shell

elements, although linear ones usually offer a good approximation, depending on the

mesh fineness.
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3.3.1.1 Mindlin-Reissner shell theory

In deriving the CLPT, the Kirchhoff-Love shell theory has already been used for

Eqn.(3.6). This theory is only valid for very thin plates and shells, since no transverse

shear deformation is considered. It can be easily extended to the Mindlin-Reissner

plate theory, also known as the theory of first-order shear deformation, which takes

into account the effects of transverse shear deformations. This is especially important

for thick shells.

By introducing the independent rotation variables ϕ and ψ for the normal vector of

the shell, equation (3.6) changes to

��������������������������������������

εxx

εyy

γxy

γxz
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��������������������������������������

=
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����������������������������������
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−

����������������������������������

z
∂ψ
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z
∂ϕ
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z(∂ψ

∂y
+ ∂ϕ

∂x
)

ψ

ϕ

����������������������������������

. (3.10)

The resultants of the transverse stress components σxz and σyz can be written as

qxz =
+ t

2�
− t

2

σxz · dz, qyz =
+ t

2�
− t

2

σyz · dz . (3.11)

With the equations for transverse shear defined, the equation

q = Aγ (3.12)
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Fig. 3.7: Mindlin-Reissner shear deformation theory [29]

can be added to Eqn.(3.9), with

A =
n	

k=1
κSES(k)(zk − zk−1), γ =

����
γxz

γyz

���� . (3.13)

ES(k) is the 2 x 2 submatrix that relates transverse shear angles to the transverse

shear stress components, and κS is the shear correction factor (5
6 for isotropic and

orthotropic shells).

This so called first-order shear deformation theory allows robust results when sim-

ulating the structural behavior of thin or moderately thick plates, but it cannot

correctly represent the transverse shear stresses. The shear strains are considered to

be constant through the thickness, and the shear stresses are non-continuous through

the thickness of the plate, see Figure 3.7. There are several approaches to improve

the results for transverse shear stresses, whether by using correction factors κS(k), or

higher order shear deformation theories with cubic polynomials. A summary of these,

and references to more detailed literature, can be found in [29].

3.3.2 Cohesive Elements

As mentioned in section 3.1.1, the interlaminar stresses form a stress singularity at

the free edge, quite similar to the stresses at a crack tip. Therefore, it is obvious that
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for the calculation of the behavior and the stresses at the free edge, the models of

fracture mechanics play a significant role. In fracture mechanics, two methods have

been established, the Virtual Crack Closure Technique (VCCT), which is based on

Linear Elastic Fracture Mechanics (LEFM), and the CZM approach. The VCCT

refers to the method developed by Griffith [6] to predict fracture in brittle materials.

The principle of the VCCT as proposed in [25], is that a finite element model of a

solid with pairs of coincident nodes coupled together at the crack is used. When a

critical value is reached during loading, the coupled nodes are released, and the crack

can extend to the next element. The energy released during this crack extension for

element length Δa is assumed to be equal to the energy required to close the crack

again. The drawback of this method is that a very fine mesh is necessary at the crack

tip, and an existing crack must be present in the model [1]. The opening and moving

of the crack front are also computationally very demanding. A different approach has

therefore been developed based on the cohesive zone concept proposed by Dugdale [5]

and Barenblatt [3] with the CZM approach.

3.3.2.1 Cohesive Zone Modeling

Compared to the VCCT the CZM approach allows a more general and physically

representative approach to crack emergence and propagation modelling. CZM also

has considerable advantages in terms of computational effort, since an initial crack

is not required in advance as for VCCT [33]. The idea is that in front of the crack

tip, a very thin layer is present, in which the damage mechanisms leading to fracture

are confined. The behavior of this layer, the cohesive zone, is characterized by a

traction-separation law (TSL), also called cohesive law [1]. There are several TSLs

available that can be used for CZM, an example can be seen in Figure 3.8. To use

the CZM in a finite element analysis, the above mentioned CEs are necessary. These

elements have been developed to model adhesives, crack tips or bonded interfaces, like
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Fig. 3.8: Generic cohesive law for CZM

in composites. Compared to a continuum element, which uses a stress versus strain

relationship to define its material behavior, cohesive elements are interface elements,

which use a stress versus relative (opening and sliding) displacements relationship.

These CZMs can also be used to model the interfaces in laminates and, e.g., predict

the onset and growth of delamination due to impact. A good overview of this is

given in [1]. This method will also be used to model the interfaces in this work and

the kinematics of cohesive elements will therefore be presented in more detail below,

before summarizing the traction separation approach.

3.3.2.2 Cohesive element kinematics

To simulate the interfaces of composites, which are usually resin-rich layers between

the layers of fibers, different cohesive elements can be used. The constitutive equation

of these CEs is defined by the relative displacements of the element’s surfaces and the

tractions across the interface. In [4] the standard formulation for a CE, as used in the

commercially available FEM solver Abaqus/Standard 2023 (Dassault Systèmes/Vélizy-

Villacoublay, FRA),which is used in this work, is given. The basics of this derivation

will be given below.
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Fig. 3.9: Standard 3d 8-node CE
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Fig. 3.10: Parent domain of CE

The geometry of an 8-node three-dimensional CE can be seen in Figure 3.9, with the

elements midplane (dotted lines) and the integration points marked with green crosses.

As with other finite elements, CEs can be defined as isoparametric elements. The

midplane is therefore mapped to a parent domain with the coordinates ξ and η (see

Figure 3.10). The relative displacements in global coordinates Δi of an isoparametric

element can be written as

Δi = u+
i − u−

i = Nku+
ki − Nku−

ki (3.14)

with u+
ki and u−

ki being the displacements of the top and bottom nodes k in direction i.

In its standard version, the top and bottom surface of the CE are initially overlapping

(zero-thickness, see [4]). The shape functions are therefore bilinear in the 2D parent

domain [33], as shown in Figure 2.7 and are written as

N1(ξ, η) = 1
4(1 − ξ)(1 − η) (3.15a)

N2(ξ, η) = 1
4(1 + ξ)(1 − η) (3.15b)

N3(ξ, η) = 1
4(1 + ξ)(1 + η) (3.15c)

N4(ξ, η) = 1
4(1 − ξ)(1 + η) . (3.15d)
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Fig. 3.11: Shape functions Ni of CE

In order to obtain the normal and tangential relative displacements for an element of

general shape, Eqn.(3.14) must be transformed to local coordinates. By differentiating

the global position vector xi, with respect to the local coordinates, the vectors vξ and

vη can be obtained to define the tangential plane at a given point

vξi
= Nk,ξxki and vηi

= Nk,ηxki . (3.16)

With vξ and vη the surface normal can be defined by their vector product. This leads

to the normal and tangential vectors in local coordinates (n, s, t)

vn = (vξ × vη) � vξ × vη �−1 (3.17a)

vs = vξ � vξ �−1 (3.17b)

vt = vn × vs . (3.17c)

With vn, vs, and vt representing the direction cosines of local to global coordinates,

the transformation tensor θsi is defined. This allows to transform Eqn.(3.14) in local

coordinates

δs = θsiΔi = Bsikuki , (3.18)
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where Bsik consists of θsi and Lagrangian shape functions. The cohesive elements

stiffness matrix K can be obtained with the principle of virtual work

K =
�

A
BDBT dA . (3.19)

Here A is the mid surface of the cohesive element and D is the element constitutive

operator used to simulate the mechanical behaviour of the element, including damage

mechanics. More details on this can be found in the work from Camanho and

Dávila [4]. The integral is solved numerically using either the Newton-Cotes or the

Gaussian integration technique. To date, no clear statement can be made about

which integration scheme is best for cohesive elements. Camanho and Dávila [4] write,

that Newton-Cotes is to be preferred, because Gauss quadrature in connection with

cohesive elements can lead to an unwanted oscillation in the traction field, if large

traction gradients are present.

Using the kinematics defined in this chapter for three-dimensional cohesive elements,

in combination with a TSL, the interlaminar normal stress σzz resulting from the

through thickness behavior and the interlaminar shear stresses σxz and σyz resulting

from the in-plane deformations are defined. The TSL needed for this is explained in

the next section.

3.3.3 Traction-separation Law

The traction-separation law is used to define the stiffness of the cohesive interface. The

traction-separation model initially assumes linear elastic behavior, which corresponds

to the interface’s stiffness, followed by damage initiation and evolution, if defined (see

Figure 3.3).

30



3 Theoretical Principles

The Interfaces elastic behavior is written as

t =

������������
tn

ts

tt

������������
=

������������
Ênn Êns Ênt

Êns Êss Êst

Ênt Êst Êtt

������������

������������
εn

εs

εt

������������
= Êε , (3.20)

where Ê is the elastic constitutive matrix that relates the nominal stresses and

nominal strains across the interface [27]. The matrix Ê allows full coupling between

the traction components. To ensure uncoupled traction, the off-diagonal terms must

be set to zero.

The nominal traction vector t contains the nominal normal traction tn along the local

3-direction and the nominal shear tractions ts and tt along the local 1- and 2-directions.

The nominal strains εi are

εn = δn

t0
, εs = δs

t0
, εt = δt

t0
, (3.21)

with the corresponding separations δi divided by the initial interface thickness t0. The

default value of the initial constitutive thickness t0 is 1.0 in Abaqus, to ensure the

nominal strain is equal to the separations if a traction-separation response is specified.

The constitutive thickness used for traction-separation response is typically different

from the geometric thickness (which is typically close to or equal to zero) [27]. This

must be considered when defining the values for Ê and is explained in section 4.1.
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Chapter 4

Application of the SSA

In this chapter the implementation of the SSA in Abaqus will be explained. This

requires building an FEM model with multiple layers of shell elements stacked upon

each other and connecting them via cohesive elements, as explained before. In the

next sections, the necessary steps to achieve this are described, with the characteristics

specific to Abaqus. It also describes in detail how the stresses used for evaluation

are extracted from Abaqus. After that, two use cases are introduced, where the

SSA is applied to determine its performance, especially in capturing the interlaminar

stresses at the free edge region of layered composites. The results are summarized

and discussed in chapter 5.

4.1 SSA modelling

As described in the previous chapter, using the SSA each single ply is discretized

with shell elements (Type: S4R in Abaqus) and has a thickness of tp. The interfaces

between the single layers are discretized with hexahedral cohesive elements (Type:

COH3D8 in Abaqus) with an assigned cohesive zone approach. In order to connect the
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4 Application of the SSA

Fig. 4.1: SSA assembly of a cohesive element with two shell elements (adapted from
[34])

shell element layers with the cohesive interfaces, matching meshes are used, leading to

shared nodes between shell and cohesive elements. The cohesive elements geometrical

thickness is defined by the distance of two adjacent shell layers. The shell offset is

defined using the option middle surface (MID) in Abaqus, putting the reference surface

of the shell elements in the middle of a composite layer. This leads to a geometrical

thickness of the CEs of exactly one layer thickness tp. Figure 4.1 shows the assembly

of shell and cohesive elements in detail.

Considering equations (3.20) and (3.21), and that the default thickness of cohesive

zones in Abaqus is t0 = 1, it becomes clear that the Young’s moduli used in Ê, to

define the interface’s elasticity, must be adjusted for an interface thickness not equal

to 1. Equation (3.20) is therefore changed to

t = Ẽδ , (4.1)

where Ẽ defines the stiffness of the interface and contains the Young’s moduli from

Ê divided by the interface thickness, which is equal to the ply thickness tp, coupling

the tractions correctly with the CEs separations.
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4.2 Stress evaluation at the free edge

To extract the stresses of the models investigated in this work from Abaqus and

to display them graphically in chapter 5, Abaqus2Matlab (A2M) [19], a Matlab

app in combination with Matlab is used. This section explains how the stresses are

processed depending on the model and element type. In Appendix A the use of A2M

is described in detail. Matlab is used to process the data from Abaqus and to plot it

in a meaningful way so that the results can be interpreted.

Compared to continuum elements, stress analysis with shell and cohesive elements,

as used by the SSA, requires attention to some specific features. For shell elements

it is important to note that even if linear shell elements with reduced integration

(S4R) have only one integration point, they may have several section points, so-called

thickness integration points, depending on the settings in the section properties. In

this work, the default settings in Abaqus for conventional shell sections are used.

A shell element has by default five section points and only the stress values at the

first (bottom) and last (top) section point are written to the output file. Per default

Simpson’s rule is used for thickness integration. Therefore, when displaying the results

for shell elements, care has to be taken to output the stress values from the top

or bottom section point, depending on the interface at which the stress values are

requested. The stress values are extrapolated to the element nodes and averaged at

the global nodes for each layer.

For cohesive elements, Abaqus averages the stress values across multiple interface layers,

when nodal stresses are computed. For example, looking at Figure 4.2, computing

the nodal stress of the node circled in red with Abaqus, will result in the averaged

stress from the CEs integration points from interface 1 (I1) and interface 2 (I2).

Analyzing the interface stresses in this work, this is not desirable. However, since

cohesive elements are interface elements (see Section 3.3.2), and the integration points
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Fig. 4.2: Schematic visualization of stress evaluation for cohesive elements (COH3D8)

are located at the edges of the elements, it is permissible to directly compare the

stresses from the integration points with those from the nodes of the continuum

elements in the reference models. This makes it necessary to extract the stresses at

the cohesive elements integration points, which can be done, e.g., with A2M. The

extracted integration point stresses are only averaged with values from integration

points with the same coordinates, i.e. between adjacent nodes of the same interface,

and then plotted using Matlab.

For the continuum elements used in the reference models, the stresses are extrapolated

from the integration points to the element nodes and averaged at the global nodes.

This can be achieved with Abaqus directly, and the values are extracted and imported

in Matlab via a CSV-file. Only for the interlaminar stresses of the FEE model,

integration point stresses are used. As described by Norwood [14], the values of the

integration points closest above and below the interface surface are taken and averaged.

For this, A2M in combination with Matlab is used.
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Fig. 4.3: Simulation setup for transverse shear model

4.3 Transverse shear model

To show the ability of the SSA to capture the transverse shear stresses accurately,

as well as the influence of the interface properties, a three point bending test will be

conducted numerically, replicating the work from Todt et al. [32].

The beam of the length L = 300 mm is loaded with the load P = 38000 N in z-direction

at x = L/2. The beam is made of isotropic elastic material with a Young’s modulus

E = 70000 N/mm2 and a Poisson’s ratio ν = 0.33. For the SSA models the beam is

divided into n = 40 layers. The rectangular cross section is B = 25 mm wide and

T = 55 mm high. The simulation setup is shown in Figure 4.3. The dimensions,

material properties, and the load P are summarized in table 4.1. The beams deflection

in z-direction along the x-axis, as well as the normal stress, and shear stresses are

evaluated at x = L/4 (Point D) and given in chapter 5.

4.3.1 SSA model

The SSA model is built according to section 4.1. The mid-planes of the layers are

discretized using 4-noded linear shell elements with reduced integration (S4R). The
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4 Application of the SSA

Tab. 4.1: Data for transverse shear model

Value Unit
Length L 300 mm
Width B 25 mm
Height T 55 mm
Young’s modulus E 70000 N/mm2

Poisson’s ratio ν 0.33 [−]
Load P 38000 N
Number of plies n 40 [−]
Ply thickness tp 1.375 mm
Interface stiffness Ẽ 50909 N/mm

shell elements are assigned a homogeneous isotropic shell section with the material

properties of the beam from table 4.1. The interfaces between the shell layers are

discretized with cohesive elements (COH3D8) and are assigned a cohesive section with

a traction-separation response. The initial thickness of the cohesive section is equal to

the layer thickness (tp = 1.375 mm), which results from dividing the beam height H

by the number of layers n. Two different SSA models are created for the transverse

shear model to show the effects of the interface properties. In one, the interfaces

are assumed to be rigid (i.e., the interface stiffness Ẽ is multiplied by factor 10). In

the other, the interface stiffness Ẽ from table 4.1 (which is the Young’s modulus E

normalized to the interface thickness tp) is used with a shear modulus G = E
2(1+ν) in

order to achieve the same stiffness as for the shell element layers.

The load P is applied via a reference node whose degrees of freedom are coupled to

the nodes at x = L/2 at the top of the beam. As boundary conditions, the degree of

freedom in z-direction is locked for the nodes at the ends of the beam, and the degree

of freedom in the x-direction is locked for the nodes at x = L/2. To obtain a statically

defined problem, at each end of the beam the center node is locked in y-direction.

The selected element size is 5 mm. As results, the displacements of the beam, as

well as the normal, and shear stresses across the beam thickness at the location D

(x = L/4) are presented in chapter 5.
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4.3.2 Reference model

The SSA model is compared to the analytical solutions of the beam theories according

to Euler-Bernoulli and Timoshenko. According to Euler-Bernoulli

EI
∂4w

∂x4 = q(x) , (4.2)

with the displacement w(x) of a beam due to a distributed load q(x) and I being the

second moment of inertia. In comparison, the theory according to Timoshenko

EI
∂4w

∂x4 = q(x) − EI

κAG
· ∂2q

∂x2 , (4.3)

considers the effects of shear deformation with an additional term, where κ is the

Timoshenko shear coefficient, which depends on the beams cross-section, A is the

beams cross section area, and G is the shear modulus.

In addition to the analytical solutions, the SSA models are compared to a refer-

ence model made of continuum elements (C3D8). The same boundary and loading

conditions, and element size are applied as for the SSA models.

4.4 Free edge effect model

To address the key question of this work, namely how well the SSA can capture the

complex stress state at the free edge of layered composites, a model in which the free

edge effect occurs is investigated. For this purpose, the results from Norwood [14]

have been chosen for comparison. The considered layups consist of three angle-ply

laminates and two cross-ply laminates and are given in table 4.2.

The investigated composite laminate is a square plate with a side length of a = 50.8

mm. It is loaded by a constant displacement u = 0.508 mm along the edge parallel to
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Tab. 4.2: Investigated layups for FEE model

Layup Stacking Sequence
A [0/90/90/0]
B [90/0/0/90]
C [0/90]
D [45/-45/-45/45]
E [45/-45]

Fig. 4.4: FEE model setup and location for interlaminar stress results (adapted from
[29])

Tab. 4.3: Geometric data for FEE model

Value Unit
Side length a 50.8 mm
Laminate thickness h 2.032/1.016 mm
Ply thickness tp 0.508 mm
Number of Plies n 4/2 [−]
Displacement u 0.508 mm

the y-axis at x = 50.8 mm (Point B). Depending on the layup, the plate consists of

n = 2, or n = 4 layers with a layer thickness of tp = 0.508 mm each. This results in

a total thickness of h = 1.016 mm, and h = 2.032 mm, respectively. The geometric

data of the model is summarized in Table 4.3. A sketch is shown in Figure 4.4.

The results investigated are the stresses in the free edge region of the FEE model,

starting from point C in y-direction along ζ. The in-plane stresses σxx, σyy, and σxy,

as well as the interlaminar stresses σzz, σxz, and σyz at the interfaces are investigated.
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In chapter 5, the results are presented and interpreted by comparing the results of the

SSA model with those of the reference model. For layup A, additionally the influence

of the element size on the quality of the results is investigated.

4.4.1 SSA model

As with the transverse shear model the SSA model is built according to section 4.1

and the shells are meshed with S4R elements and assigned a conventional shell section.

The material data for the shells corresponds to those in Table 4.4 and are defined in

Abaqus as material model of type lamina. The interfaces between the shell layers

are meshed with cohesive elements (COH3D8) and are assigned a cohesive section

with a traction-separation law, and have an initial thickness equal to the ply thickness

(tp = 0.508 mm). For the cohesive section a material model of type elastic traction is

defined in Abaqus. The material values of the interface are assumed to be equal to

the lamina material properties perpendicular to fiber direction. Therefore, the values

Et and Glq from Table 4.4 are assigned to the cohesive section, after being adjusted

to the interface thickness, by dividing them with the ply thickness tp. These interface

properties are given in Table 4.5.

The displacement u is applied to the nodes at x = a as a boundary condition. These

nodes are also constrained in z-direction. At x = 0 the nodes are constrained in x- and

z-direction. Additionally at both constrained edges, a node at y = 0 is constrained in

y-direction to get a statically defined problem. The selected element size is 0.2 mm,

except for layup A, models with element sizes 1 mm, 0.5 mm, and 0.25 mm are also

investigated.
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Tab. 4.4: Composite material data for FEE model

Value Unit
El 1.81 x105 N/mm2

Eq 1.03 x104 N/mm2

Et 1.03 x104 N/mm2

Glq 7.17 x103 N/mm2

Glt 7.17 x103 N/mm2

Gqt 3.46 x103 N/mm2

νlq 0.28 [−]
νlt 0.488 [−]
νqt 0.488 [−]

Tab. 4.5: Interface material data for FEE model

Value Unit
Ẽnn 2.03 x104 N/mm
Ẽss 1.41 x104 N/mm
Ẽtt 1.41 x104 N/mm

4.4.2 Reference model

The reference model is built according to Norwood [14] with quadratic 20-node brick

elements (C3D20 in Abaqus). The material properties used are taken from Table 4.4.

The continuum elements are assigned a material model of type engineering constants

in Abaqus. The mesh seeding used is 0.2 mm, which leads to three elements through

the thickness per layer. The same boundary and loading conditions are applied as for

the SSA models.
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Chapter 5

Results

In this chapter, the results of the present work are presented and interpreted. First,

the results of the transverse shear model are discussed, before the results of the FEE

model are presented. Especially for layup A of the FEE model the results are discussed

in detail, both the influence of the mesh size and the quality of the results of the SSA

at the free edge. For layups B to E, the results are summarized more concisely, since

there are overlaps.

5.1 Transverse shear model

By applying the SSA approach to a transverse shear beam, the ability to capture the

transverse shear stresses accurately and the effect of the interface properties can be

demonstrated. As it can be seen from the beam’s deflection in Figure 5.1, the SSA

model with rigid interfaces behaves like an Euler-Bernoulli beam, as no deformation

due to shear is captured. The SSA model with deformable interfaces behaves like a

Timoshenko beam, and agrees well with the results of the continuum model.

Looking at the normal stress plotted against the beam thickness in Figure 5.2, one

sees the SSA models can both capture the normal stresses with the same accuracy as

42



5 Results

0 50 100 150

x [mm]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

e
fl
e

c
ti
o

n
 w

 [
m

m
]

Continuum Model

Bernoulli

Timoshenko

SSA-model rigid IF

SSA-model deformable IF

Fig. 5.1: Deflection of transverse shear beam

the continuum model, and the stiffness of the interfaces has no effect. In Figure 5.3,

the transverse shear stress is plotted against the beam thickness. It can be clearly seen

how important the correct interface properties are. While the values of the model with

deformable interfaces agree very well with the continuum model (relative error 0.4%),

the values with rigid interface deviate strongly (relative error 13.0%). The same can

be seen when the shear stresses are plotted against the beam width, see Figure 5.4.

The relative error for the model with deformable interfaces remains constant over the

beam width at 0.4%, thus more or less following the values of the continuum model,

while the relative error for the rigid interface increases from 13.0% to as much as

18.45%, showing the problems of the stiff transverse shear model. The results also

agree well with the investigations of Todt et al. [32]. The differences regarding the

shear stresses can be explained by the fact that plane-strain boundary conditions were

not used in this work opposed to [32].
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5.2 FEE model

In order to evaluate the ability of the SSA to capture the free edge effect in layered

composites, the results of the FEE model using the SSA are compared to the results

of the reference model built according to the work of Norwood [14]. The focus is on

the interlaminar stresses. However, also the in-plane stresses will be compared. The

results will be evaluated at the free edge, starting at Point C along ζ, see Figure 4.4.

The variable ζ is normalized by two times the laminate thickness h. The results are

plotted in the interval ζ ∈ [0, 1]. All five layups given in Table 4.2 are investigated

and discussed below, although the main focus is put on layup A. The results of layup

A are also used to investigate the influence of the mesh size.

5.2.1 Cross-Ply Laminates

5.2.1.1 Layup A - [0/90/90/0]

Figure 5.5 shows a comparison of the interlaminar normal stress σzz at the 0/90

interface at point C as obtained by the SSA with different mesh sizes, and the

reference results of [14]. The Figure shows that the results agree better and better

with the reference solution as the mesh becomes finer. With matching element size

of 0.2 mm, good agreement is obtained. But also the results with element size 0.25

mm provide satisfying results. The same behavior is shown in Figure 5.6, where the

interlaminar stress σyz is compared, which shows that with the SSA also a coarser

mesh and thus further savings in computational effort could be possible.

Norwood [14] has only published results of interlaminar stresses at one interface, but

for the sake of completeness, additionally the intralaminar stresses of layers 1 and 2 at

the 0/90 interface are also compared. The in-plane stress σxx at point C is shown for

layers 1 and 2 in Figures 5.7 and 5.8. The results agree well up to an edge distance

of approximately ply thickness tp. From there the SSA is not able to capture the
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effects at the free edge especially for layer 2 the differences are significant (Figure

5.8). Similar results are shown for the in-plane stress σyy in Figure 5.9. However,

when comparing the SSA results for σyy with Stiftinger’s [29] results, they agree well.

It is therefore also conceivable that the results of the reference solution need some

attention, but this is not pursued further in this work. As described above, these are

not part of the evaluation of Norwood [14].

It should be noted that the results in the immediate area of the free edge are not

used to evaluate the performance of the SSA. The reason for this is that linear FEM

models cannot correctly represent stress singularities as they are present at the free

edge. Therefore, in the Figures below, results within a distance of two elements from

the free edge, which corresponds to a value of about 0.1 of ζ/2h, are ignored for

interpretation.
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5.2.1.2 Layup B - [90/0/0/90]

Also for layup B, the SSA gives very good results for the interlaminar stresses σzz

and σyz, compared to the continuum model, as shown in Figure 5.10. It should also

be mentioned that no interlaminar stress σxz is present at the free edge for the SSA,

as it is correct for a layup of this type. The in-plane stresses σxx and σyy for layers

1 and 2, shown in Figures 5.11, 5.12, and 5.13, again show no agreement with the

reference results. However, at least σxx of layer 2 matches in terms of quality. And

also for σyy it should be noted again that the results of this work agree well with the

results in [29].
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5.2.1.3 Layup C - [0/90]

For the asymmetric cross ply layup C, the interlaminar stresses σzz and σyz are

compared with the results of the reference results in Figure 5.14. The results agree

well for this layup. For the in-plane stresses, the behavior is the same as for layups A

and B, therefore no additional Figures are included.
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Fig. 5.14: Layup C - σzz and σyz at Interface 1 (0°/90°) at point C
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5.2.2 Angle-Ply Laminates

5.2.2.1 Layup D - [45/-45/-45/45]

Figure 5.16 shows the interlaminar stresses at the +45/ − 45 interface of layup D at

point C along the coordinate ζ. Compared to the cross ply layups A to C discussed

before, for the angle ply layups, the interlaminar shear stress σxz does not vanish, but

is the largest component of the interlaminar stresses. The results of the SSA model

are in good agreement with the reference results for σxz. For σzz and σyz, shown in

Figure 5.15, the SSA predicts vanishing values, exactly as in [29], and different from

the reference results which show small values.
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Fig. 5.15: Layup D - σzz and σyz at Interface 1 (45°/-45°) at point C
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Fig. 5.16: Layup D - σxz at Interface 1 (45°/-45°) at point C
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5.2.2.2 Layup E - [45/-45]

In Figures 5.18 and 5.17 the results of the interlaminar stresses of the unsymmetric

cross ply layup E are plotted. Similar to layup D, the interlaminar shear stress σxz is

the largest component, whereas σzz and σyz vanish for the SSA model. Again this

agrees well with the results from [29], but not with the reference results, which show

small values.
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Fig. 5.17: Layup E - σzz and σyz at Interface 1 (45°/-45°) at point C
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Fig. 5.18: Layup E - σxz at Interface 1 (45°/-45°) at point C
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Chapter 6

Conclusion

In this thesis, the Stacked Shell Approach is used in an attempt to predict the

interlaminar stresses that arise at the free edge of layered composites. This was

realized by using the Stacked Shell Approach. With this approach, the individual

plies of the laminate are represented by a stacking of shell element layers. Cohesive

elements are used to model the interfaces between these individual shell layers. This

allows the complex stress state at the free edge to be divided. The shell elements

capture the in-plane stresses, while the cohesive elements capture the interlaminar

stresses. The performance of the Stacked Shell Approach in capturing the interlaminar

stresses at the free edge is demonstrated in two examples.

The advantage of the Stacked Shell Approach, compared to models with continuum

elements, is its efficiency in computation. Using the same element size, a Stacked Shell

Approach model with 4-noded linear shell elements and 8-noded cohesive elements

compared to a continuum model with 20-noded hexahedral elements saves around

75% of computational effort (number of variables). Considering the results of this

work, it should be possible to further increase this value, by increasing the mesh size

of the Stacked Shell Approach model slightly compared to the continuum model.

Comparisons with results from calculations of continuum element models show that

58



6 Conclusion

the Stacked Shell Approach is able to predict the interlaminar stresses sufficiently

for the investigated configurations. However, when it comes to the in-plane stresses

there is still room for improvements. This might be achieved by using quadratic

shell elements, or special shell element formulations. However, this would lead to

a mesh incompatibility between the used cohesive elements and the shell elements.

This would be the case for S8(R) shell elements, for example. Since sharing of nodes

would not be possible any longer, one would have to work with ties in Abaqus, in

order to connect the individual shell layers via the interfaces, which could lead to new

problems.

Another option to further extend the Stacked Shell Approach would be to introduce

failure mechanisms in the interfaces. This would allow to predict the onset and growth

of delamination, as is briefly discussed in section 3.1.2.

In summary, the Stacked Shell Approach is able to capture the interlaminar stresses at

the free edge of layered composites with good agreement compared to computationally

more expensive continuum models. Considering the required computational resources

it becomes clear that this is an extremely efficient and promising approach.
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Appendix A

As explained in section 4.2 the outputs for this work are extracted from Abaqus by

the Matlab app Abaqus2Matlab (A2M) from Papazafeiropoulos et al. [19] in order

to import them to Matlab for plotting. To understand the necessary procedure, the

process is explained below for the FEE model.

A2M is a free to use Matlab app that can be downloaded from: https://abaqus2matlab.

wixsite.com/abaqus2matlab. For this work A2M version 3 was used. The down-

loaded matlab extension needs to be installed in order to work properly, an instruction

as well as a video on how to install can be found on the above linked web page along

with a detailed documentation.

The data, which is read into Matlab by A2M, comes from the .fil-file, the result file of

Abaqus. This is not created by default, but must be forced by an extra entry in the

Abaqus input file (.inp). To do this, the output request must be modified as follows

in the .inp-file:

1 ** OUTPUT REQUESTS

2 **

3 *Restart , write , frequency =0

4 **

5 ** FIELD OUTPUT : F-Output -1

6 **
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6 Conclusion

7 *Output , field , variable = PRESELECT

8 **

9 ** HISTORY OUTPUT : H-Output -1

10 *FILE FORMAT , ASCII

11 *NODE FILE

12 U, COORD

13 *EL FILE

14 S

15 ** HISTORY OUTPUT : H-Output -2

16 *EL FILE

17 COORD

18 *End Step

This generates the .fil-file with the requested output. In this case, nodal outputs for

displacements (U), and coordinates (COORD), as well as element outputs, per default

at the elements integration points, for stresses (S) and coordinates (COORD) are

requested. The full list of available outputs can be found in the A2M documentation.

The changes to the input file can be made with the A2M graphical user interface

(GUI) in Matlab, the keyword editor in Abaqus, or by simply editing the input file in

a text editor.

To work properly, the Matlab functions and the Abaqus .fil-file must be located in

the same folder as the Matlab scripts. If you then execute the script, all functions

will be processed automatically and the results will be read at the requested positions.

At the end, the results are plotted and the plots are saved as vector files.

The Matlab scripts used to extract the outputs for the transverse shear and FEE

models will be given to Associate Prof. Dipl.-Ing. Dr.techn. Pettermann along with

the Abaqus files used for this work, allowing the work to be reproduced.
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