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Kurzfassung

Pandas ist ein unter Datenwissenschaftlern sehr beliebtes Werkzeug zur Datenanalyse und
-manipulation. Datenwissenschaftler müssen häufig Rohdaten aus potenziell heterogenen
Datenquellen kombinieren. Derzeit verbringen sie bis zu 90 % ihrer Zeit mit dem
Bereinigen, Integrieren und Transformieren von Daten. Pandas bietet zwar bestimmte
Funktionalitäten eines Datenbanksystems, z.B. unterstützt es mit seiner DataFrame-
Abstraktion eine tabellarische Datendarstellung und einige gängige Operationen darauf,
aber die wichtigste Datenbankoperation – die Ausführung von Joins – wird derzeit nur
sehr rudimentär unterstützt. Es werden nur zweiseitige Joins unterstützt, wobei der
Benutzer die Join-Reihenfolge angeben muss, wenn mehr als zwei Relationen kombiniert
werden sollen. Je nach Join-Reihenfolge kann die Ausführungszeit jedoch drastisch
variieren.

Herkömmliche Datenbanksysteme verwenden Abfrageoptimierer, um eine bessere Ver-
knüpfungsreihenfolge zu finden. Diese Optimierer berücksichtigen jedoch nicht die
strukturellen Eigenschaften einer Abfrage und verlassen sich stattdessen auf Kardinali-
tätsschätzungen der an einer Abfrage beteiligten Relationen. Im Laufe der Jahre haben
Forscher der Datenbanktheorie dekompositionsbasierte Methoden für die Abfrageauswer-
tung vorgeschlagen. Während die Auswertung konjunktiver Abfragen im Allgemeinen
NP-vollständig ist, wurde gezeigt, dass es Algorithmen gibt, die die Unterklasse der azy-
klischen Abfragen und eine Verallgemeinerung davon in polynomieller Zeit beantworten
können. Darüber hinaus wurden für das Problem der exponentiellen Zwischenergebnisgrö-
ßen bei Join-Abfragen sogenannte "worst-case optimal join" Algorithmen vorgeschlagen.
Sie können dadurch kategorisiert werden, dass ihre Zeitkomplexität immer innerhalb der
größtmöglichen Ausgabengröße liegt.

Wir erweitern Pandas um eine Funktion, die eine Liste von DataFrame-Objekten ak-
zeptiert und einen natürlichen Join durch Anwendung verschiedener Optimierungen
aus der Datenbanktheorie durchführt, abhängig von der Art der Join-Abfrage. Wir
konzentrieren uns auf azyklische Abfragen und die "Dreiecks"-Abfrage als einfachste Form
einer zyklischen Abfrage, die beide in der Praxis sehr häufig vorkommen, wobei letztere
hauptsächlich in Graphdatenbanken zu finden ist. Unsere empirische Evaluierung hat
gezeigt, dass wir die meisten azyklischen Abfragen mit dem sogenannten Yannakakis-
Algorithmus deutlich besser ausführen können als mit einer Basislösung. Allerdings
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konnten wir die Ausführungszeit nur für eine von drei Dreiecksabfragen mit einem auf
Partitionierung basierenden "worst-case optimal join" Algorithmus verbessern.



Abstract

Pandas is a very popular tool among data scientists for data analysis and manipulation.
Data scientists often need to combine raw data from potentially heterogeneous data
sources. Currently, they spend up to 90 % of their time cleaning, integrating and
transforming data. While Pandas provides certain functionalities of a database system,
e.g. it supports a tabular data representation with its DataFrame abstraction and some
common operations on it, the most important database operation, namely the execution
of joins, is currently only supported in a very rudimentary way. Only two-way joins are
supported, with the user having to specify the join order if more than two relations are
to be combined. However, depending on the join order, the execution time can diverge
drastically.

Traditional database systems use query optimizers to find a better join order. However,
these optimizers do not take the structural properties of a query into account, instead
relying on cardinality estimates of the relations involved in a query. Over the years,
database theory researchers have proposed decomposition-based methods for query
evaluation. While conjunctive query evaluation is in general NP-complete, it has been
shown that there are algorithms that can answer the subclass of acyclic queries and
a generalization thereof in polynomial time. Furthermore, worst-case optimal join
algorithms have been proposed for the problem of exponential intermediate result sizes
in join queries. They can be categorized by the fact that their time complexity is always
within the largest possible output size.

We extend Pandas with a function that accepts a list of DataFrame objects and performs
a natural join by applying different optimizations from database theory, depending on the
type of join query. We focus on acyclic queries and the "triangle" query as the simplest
form of a cyclic query, both of which are very common in practice, the latter being found
mainly in graph databases. Our empirical evaluation shows that we can execute most
acyclic queries significantly better with the so-called Yannakakis algorithm, compared
to a baseline. However, we were only able to improve the execution time for one out of
three triangle queries using a partitioning-based worst-case optimal join algorithm.
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CHAPTER 1
Introduction

One of the most important trends in database research in recent years has been to
address challenges faced within the data science field. Data science is about creating
pipelines that leverage raw data from potentially heterogeneous data sources with varying
data quality to gain new insights by using data analytics techniques. Most of the time
is currently spent on data cleansing, integration, and transformation, which together
account for 80-90%. These are problems that the database community has been dealing
with for decades in the context of enterprise data. Consequently, the database community
has much to offer ML users with its expertise in these areas [AAA+22].

1.1 Problem Statement and Motivation
Data scientists use a rich ecosystem of open source libraries to get their work done.
Pandas1 is a very popular tool that allows both data analysis and manipulation. Due to
its flexibility and performance, it is used in a variety of academic and commercial fields,
including finance, statistics and others. Pandas also provides certain functionalities of a
database management system (DBMS). In fact, it supports the tabular representation
of data with its DataFrame abstraction, which provides some operations known from a
DBMS, such as filtering and aggregation.

However, the most important database operation, namely the execution of joins, which
is important for the integration of data, is only supported in a very rudimentary way.
This is because currently only two-way joins are supported, and the user has to manually
specify the join order if more than two relations are to be joined, which is also a common
use case in data science. As a result, the user has to guess, so to speak, which order
is better from a performance point of view, and this is a difficult problem. Traditional
relational DBMS solve this problem by relying on query optimizers that apply a set of

1https://pandas.pydata.org
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1. Introduction

optimizations that are primarily based on cardinality estimates of the relations involved
in a query. In this way, efficient query execution plans can be generated for a wide variety
of queries. A query execution plan is a tree-structured representation of the relations and
concrete operators needed to evaluate a given query. It also defines the order in which
the individual joins are executed. Thus, a serious shortcoming of Pandas is the lack of
such optimizations for the query evaluation process.

1.2 Aim of the Thesis and Expected Results

Motivated by this problem, we would like to improve the current situation in the
framework of this thesis. In this thesis, we will concentrate on two specific forms of
join queries: acyclic queries and so-called “triangle queries” as the most basic form of
cyclic queries. Fischl et al. [FGLP21] have analysed query logs and benchmarks with
thousands of relational queries, and they have found out that most join queries are
acyclic. Similarly, Bonifati et al. [BMT20] have analysed millions of queries from query
logs of public SPARQL endpoints, and they have confirmed that most queries are indeed
acyclic. Beyond that, Aberger et al. [ALOR17, ALT+17] state that, especially in graph
databases, the triangle query - despite its simplicity - constitutes an important case of
cyclic queries.

For both types of queries, there exist structure-based approaches in database theory to
evaluate them, i.e. decomposition-based approaches for acyclic queries and worst-case
optimal join algorithms for the triangle query. Both Pandas and traditional DBMS ignore
the possibilities these approaches offer at this point.

The aim of this thesis is to investigate whether these algorithms that have been shown to
exhibit better runtime behaviour in theory can also be deployed effectively in practice
and, in particular, in the context of Pandas. This will involve extending Pandas with a
function that allows the user to specify a list of DataFrame objects to be joined with a
natural join, i.e. the join is performed based on common column names. A natural join
as such does not represent a restriction of generality compared to an equi-join, which uses
only equality conditions combined with logical conjunction, since it is always possible
to convert an equi-join into a natural join by renaming the attributes and possibly the
relations. Depending on the type of the join query, a different algorithm known from
database research is applied with the intent to improve the execution time. In case of a
cyclic join involving more than three relations – i.e., in particular, not being a “triangle
query” – the join is conducted without optimization as a sequence of two-way joins.

Our enhancement is intended to make Pandas an even stronger tool in the field of data
science. Moreover, we want to empirically validate the benefits of integrating the chosen
algorithms from database theory into Pandas.

2



1.3. Structure of the Thesis

1.3 Structure of the Thesis
The thesis is structured as follows. First, we provide some basic definitions in Chapter 2.
Then, we discuss structural-decomposition based approaches for acyclic queries and a
generalization thereof in Chapter 3. Subsequently, we define worst-case optimality for
join algorithms based on the so-called AGM bound and present two algorithms fulfilling
the criterion in Chapter 4. Next, we look at the Python ecosystem of tools for Data
Science with a focus on Pandas as the currently most popular library for data preparation
in Chapter 5. Then, we discuss related work and outline what distinguishes this work in
Chapter 6. After that, we describe the system architecture of our software prototype in
Chapter 7, followed by an empirical evaluation in Chapter 8. Finally, we conclude the
thesis with Chapter 9.
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CHAPTER 2
Basic definitions

In this chapter we will lay the foundation for the topics covered in this thesis by providing
some basic definitions. First, we will introduce hypergraphs, which are a generalization
of graphs that enable the representation of queries. Then we will define conjunctive
queries, one of the most fundamental forms of queries in a database system. Next, we
will briefly discuss traditional query optimization techniques used by relational database
management systems, which aim to find the most efficient execution plan for a given
query. Finally, we will give a short overview of join algorithms supported by common
database systems.

2.1 Hypergraphs
A hypergraph H = (V, E) is composed of a set of vertices V and a set of edges E. In
a hypergraph, an edge e ∈ E consists of a non-empty subset of V , i.e. any number of
nodes may be part of it. This property distinguishes it from a graph in which exactly
two vertices are part of an edge. To emphasize this difference, the edges of a hypergraph
are also referred to as hyperedges in the literature [GGLS16].

Acyclic hypergraphs are useful for many real-world scenarios, such as query evaluation,
while being relatively simple and having many desirable properties that make them easier
to work with than other hypergraphs. There are several notions [Fag83] for hypergraph
acyclicity. In this thesis, we will use α-acyclicity as it is the most general one. Before we
can define it formally, we need to introduce a few more relevant terms. The so-called
primal graph [GGLS16] G(H) = (V, E′) of a hypergraph H can be constructed by reusing
the same vertices V , but using as edges all vertex pairs {u, v} that are contained in at
least one hyperedge. A sequence of distinct vertices v0, v1, . . . , vk is termed a path, if
it holds that vi and vi+1 are adjacent for all 0 ≤ i < k, i.e. {vi, vi+1} ∈ E′. A cycle is
defined as path v0, v1, . . . , vk for some k ≥ 2, where the start and end vertices of the path
are adjacent, i.e. {v0, vk} ∈ E′. A clique C ⊆ V contains pairwise adjacent vertices, i.e.

5



2. Basic definitions

for every i ̸= j it holds that {vi, vj} ∈ E′, if {vi, vj} ⊂ C. A hypergraph H is considered
α-acyclic if it satisfies two conditions. First, the hypergraph H has to be conformal, i.e.
every clique C of G is contained in a hyperedge of H. Second, the graph G has to be
chordal. This condition is satisfied, if there is at least one “chord” edge that connects
two non-consecutive vertices in a cycle for every cycle with four or more vertices [TY84].

2.2 Conjunctive queries
Conjunctive queries only use the logical conjunction operator, i.e. disjunctions and
negations are excluded. According to Gottlob et al. [GGLS16], such a query Q can be
represented as a Datalog rule with the following structure, where r1, . . . , rn are relation
symbols and u, u1, . . . , un are lists of terms, i.e. they can be variables or constants.

out(u) ← r1(u1), . . . , rn(un).

The left-hand side of the rule specifies the list of terms that shall be part of the output
of the query. In case u is empty, Q is referred to as a boolean conjunctive query. The
right-hand side of the rule defines which atoms are part of the query, i.e. atoms(Q) =
{r1(u1), . . . , rn(un)} [GGLS16].

The expressive power of conjunctive queries is equivalent to non-nested SQL queries
with a SELECT-FROM-WHERE structure and the restriction that the WHERE clause only
consists of conjunctions and equality constraints. Chandra and Merlin [CM77] have
proven that the evaluation of a boolean conjunctive query over some database instance is
NP-complete in general. However, as we will see later on, there are subclasses of queries
that can be evaluated efficiently [GLS01a].

Given a query Q, we can construct a corresponding hypergraph H = (V, E) in a very
intuitive way. The vertices V correspond to the variables occurring in the atoms of the
query, i.e. the variables from the lists u1, . . . , un. For every atom of the query that
contains at least one variable, we then add a hyperedge to the set E that contains all
variables of this very atom. There are no other hyperedges present in E [GGLS16].

Later we will also refer to join queries. These are a subset of conjunctive queries where
only the join operation is used, while projection and selection operations are excluded.

2.3 Traditional query optimization
A relational DBMS relies on the two key components query execution engine and query
optimizer for the evaluation of SQL queries [Cha98].

A query execution engine supports a number of physical operators. These include relation
access operators, such as sequential scan and index scan, and join operators, that will be
discussed in Section 2.4, among others. Each operator takes as input one or more data

6



2.3. Traditional query optimization

Index Nested Loop
(A.x = C.x)

Merge-Join
(A.x = B.x)

Sort Sort

Table Scan A Table Scan B

Index Scan C

Figure 2.1: Query execution plan (based on [Cha98])

streams and produces an output data stream. Intuitively, physical operators represent
chunks of code that serve as basic building blocks for query execution. Each query
execution can be visualized by a physical operator tree, which is later also referred to as
a query execution plan. The tree consists of the physical operators as vertices and the
edges indicate the data flow between the operators. An example of a query execution
plan is shown in Figure 2.1. Given a query execution plan, the query execution engine
executes the plan and thereby produces a result set for the query [Cha98].

Given a parsed representation of a SQL query, the goal of a query optimizer is to generate
an efficient execution plan for it, which can then be passed to the query execution engine
for execution. The task of finding an efficient execution plan is non-trivial, since the
search space can include a vast number of possible execution plans, and the response
time for executing the plans can vary significantly. The search space depends on (1) the
physical operators supported by the target query execution engine, and (2) the set of
algebraic transformations we can perform for a relational algebraic representation of a
query while preserving the equality of them. The latter factor involves changing the order
of the joins by exploiting the commutative and associative nature of the join operation.
To find an efficient query execution plan, we must use a cost model that assigns an
estimated cost to each partial or complete plan in the search space. Each operator
of a plan is assigned an estimated cost for the required CPU resources, I/O and/or
communication costs incurred during its execution. To this end, the database system
typically maintains statistics on relations and indices, such as the number of unique
values in a column, the number of tuples in a relation, and/or histograms. The search
process is performed in a bottom-up method using a dynamic programming approach.
First, it finds the best plans for 1-table scans, i.e. the physical operators are assigned for
accessing the relations involved in the query. Then, it constructs 2-table joins, 3-table
joins, and so on, until it find the best plans for complete query execution plans [Cha98].

7



2. Basic definitions

A major challenge for a query optimizer is to find a good join order, because it depends
on estimating the output cardinality of each join operation. These estimates serve as
predicted sizes for subsequent operator inputs until the complete query execution plan is
estimated in terms of cost. However, inaccurate estimates, partly caused by attribute
correlation, can often lead to a significant cost error. Sometimes the query optimizer has
to choose between a "conservative" plan, which works quite well in many scenarios, and a
more "aggressive" plan, which works better when estimates are accurate, but can result
in much worse performance when the estimate is slightly off [DIR07].

2.4 Join algorithms
According to Elmasri et al. [EN15], we distinguish four different physical operators for
performing a join. We discuss them in the context of the join R ▷◁R.A=S.B S.

• Nested-loop join: This is the standard algorithm that does not require any
indices. The outer loop retrieves a tuple r ∈ R, and the inner-loop then searches
for a matching tuple s ∈ S such that r[A] = s[B].

• Index-based nested-loop join: If there is an index for any of the two join
attributes, we can iterate over one relation as before, but could then use the index
of the join attribute of the other relation to search directly for matching tuples.

• Sort-merge join: If the tuples in R and S are physically sorted by the values of
their corresponding join attribute, we can perform the join in the most efficient
way. We can then scan both relations simultaneously and find matching tuples.
If the relations are not yet sorted, we could perform an external sorting prior to
performing the join. If the values of at least one of the two join attributes are
unique, only one scan per relation is required.

• Hash-join: In this case, the tuples of the relations R and S are partitioned into
smaller buckets according to their join attribute. To determine the bucket for a
tuple, a hashing function h is applied to the join attribute A of relation R and B
for relation S. As part of the partitioning phase, we would scan over the smaller
relation (e.g., R) and partition it such that all tuples with the same hash value (i.e.
h(A)) are assigned to the same hash bucket. We assume that this relation can be
kept entirely in memory. During the probing phase, we would then scan the other
relation (i.e. S), compute the hash value (i.e. h(B)) for the tuple, and then probe
the tuples assigned to the corresponding bucket of R and combine the tuple from
S with all matching tuples from R.

8



CHAPTER 3
Decomposition-based query

evaluation

In this chapter we present structural-decomposition based approaches for query evaluation.
These do not take into account the cardinality estimates as a query optimizer of a
traditional DBMS does. Instead, we utilize the structural properties of the query. We
start this chapter by defining acyclic queries and explaining how they can be recognized.
Next, we introduce the Yannakakis algorithm, which can efficiently evaluate acyclic
queries. Then, we will go beyond acyclic queries and discuss how we can generalize this
class of queries to a broader class of nearly acyclic queries. Finally, we will present one
possible way for evaluating such queries.

3.1 Acyclic queries
A join query involving multiple relations can potentially result in an exponentially large
output. Furthermore, the problem of checking whether the output of such a query is
empty is NP-complete. In general, efficient algorithms for joining may not exist, unless P
= NP [Yan81]. However, this does not apply to acyclic queries. In case of acyclic queries,
the associated hypergraph is itself acyclic. The definition of an acyclic hypergraph given
in Chapter 2 is equivalent to the existence of a join tree [GLS01a].

A join tree [BFMY83] is a tree T = (V, E), where V consists of the atoms of a query, i.e.
V = {R1(z⃗1), R2(z⃗2), . . . , Rn(z⃗n)}. Beyond that, the tree has to satisfy the following
two conditions.

1. Every edge {Ri, Rj} ⊆ E, where i ̸= j, is labelled with its common variables, zi ∩zj .

2. For every vertex pair (Ri, Rj) with i ̸= j, every shared variable z ∈ zi ∩ zj is part
of the label of every edge on the unique path between Ri and Rj . Thus, z induces

9



3. Decomposition-based query evaluation

a connected subtree within T . As a result, this property is also referred to as the
connectedness condition in the literature (e.g. [GLS01b]).

The join tree can be used to evaluate acyclic queries, previously referred to as tree queries
by Bernstein and Chiu [BC81], in polynomial time [Yan81]. This is because acyclic queries
can rely on semi-joins to compare subtuples of common attributes between two relations,
resulting in less data transfer if the relations reside at different sites and improved query
performance. Conversely, cyclic queries require more data transfer [YO79].

Bernstein and Chiu [BC81] proposed an algorithm to determine whether a query is a
tree query. Yu et al. [YO79] later identified two limitations with the algorithm. First, it
is only applicable to a subset of acyclic queries, due to the assumption that semi-joins
would only be able to compare one common attribute between two relations. Second,
Bernstein and Chiu’s algorithm may produce false negatives in some cases, i.e., it may
incorrectly classify a query as cyclic.

To overcome these limitations, Yu et al. have created an algorithm that operates in linear
time and requires linear space, which is referred to in the literature as GYO (Graham, Yu,
and Ozsoyoglu) [Gra80, YO79] reduction. The algorithm eliminates vertices and edges in
the hypergraph of the query, while preserving the query type. If the resulting hypergraph
is a “null query graph”, with no edges or vertices, the query is acyclic; otherwise, it is
cyclic. In case the query is acyclic, we can use the elimination sequence to construct a
join tree [YO79].

The GYO reduction works as follows for a query Q of the form:

out() : −R1(z⃗1), R2(z⃗2), . . . , Rn(z⃗n).

The hypergraph corresponding to Q is defined as H = (V, E), where V is the set of
variables and E = {z⃗1, z⃗2, . . . , z⃗n} is the set of edges.

The algorithm repeatedly applies the following two rules until no more eliminations can
be done.

1. Elimination of isolated hyperedges: A hyperedge z⃗i is eliminated from E, if
each vertex in z⃗i does not appear in any other hyperedge.

2. Elimination of redundant hyperedges: A hyperedge z⃗i is eliminated from E,
if there exists a witness hyperedge z⃗j such that every vertex in z⃗i either does not
appear in any other hyperedge, or it appears in z⃗j .

If an edge elimination leads to a vertex no longer being covered by any hyperedge, the
vertex will be deleted as well. If no vertices and edges are left in H at the end, then
the query is acyclic. According to Tarjan et al. [TY84], the GYO reduction satisfies

10



3.1. Acyclic queries

the Church-Rosser property. This means that the algorithm always ends with the same
result, regardless of the order in which the two rules are applied.

We now show the GYO reduction with example join query Q1 (based on [Pic21]) that is
defined as follows:

out(x1, x2, x3, x4, x5, x6) : −R1(x1, x2, x3), R2(x2, x3), R3(x3), R4(x2, x4, x3), R5(x5, x6).

The hypergraph HQ1 = (V, E) of query Q1 has vertices V = {x1, x2, x3, x4, x5, x6} and
hyperedges E = {{x1, x2, x3}, {x2, x3}, {x3}, {x2, x4, x3}, {x5, x6}}.

1. We start the GYO reduction with a full edge set, i.e. E′ = E.

2. We apply the first rule to remove edge {x5, x6} from E′ since its vertices do not
appear in any other hyperedge in E′. Thus, E′ = {{x1, x2, x3}, {x2, x3}, {x3},
{x2, x4, x3}}.

3. We apply the second rule to remove edge {x3} from E′ since it is contained in edge
{x1, x2, x3}. We now have E′ = {{x1, x2, x3}, {x2, x3}, {x2, x4, x3}}.

4. We apply the second rule to remove edge {x2, x4, x3} since x4 does not appear
in any other hyperedge and {x2, x3} is contained in edge {x1, x2, x3}. Therefore,
E′ = {{x1, x2, x3}, {x2, x3}}.

5. We apply the second rule to remove edge {x1, x2, x3} since x1 does not appear
in any other hyperedge and {x2, x3} is contained in edge {x2, x3}. Consequently,
E′ = {{x2, x3}}.

6. We apply the first rule to remove edge {x2, x3} from E′ since its vertices do not
appear in any other hyperedge in E′. Thus, E′ = ∅.

7. The algorithm terminates now as no rule can be applied. Since E′ = ∅, we know
that Q1 is acyclic.

We can then derive a join tree from the GYO elimination sequence as follows [Yan81]:

1. If the hyperedge associated with atom Ri has a witness hyperedge associated with
atom Rj , Ri is made child node of Rj in the join tree.

2. Otherwise, Rj is simply added as a node in the forest.

3. The resulting join forest is merged arbitrarily to obtain a join tree.
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3. Decomposition-based query evaluation

R2(x2, x3)

R5(x5, x6) R1(x1, x2, x3)

R3(x3) R4(x2, x4, x3)

Figure 3.1: Join tree TQ1 for query Q1 (based on [Pic21])

Figure 3.1 shows a join tree TQ1 that has been derived from the prior example query Q1
and the application of the GYO reduction.

It would be desirable if joins were monotonic, i.e. no tuple is removed during any of the
joins. Monotonicity guarantees that the intermediate results generated during the joins
are a subset of the final result, with no additional tuples that are not included in the
final result. In general, monotonicity is not satisfied, as the following counter-example
by Beeri et al. [BFMY83] shows. They considered a scenario where four relations, r1
r2, r3 and r4, are joined together. The first join operation between r1 and r2 results
in an intermediate result size of thousand tuples. Joining this intermediate result with
r3 leads to a set of one million tuples. Finally, the last join with r4 yields a result
containing just ten tuples. In this case, the monotonicity property is clearly violated,
as tuples are removed by join operations. To obtain monotonicity, we need the join of
k relations RD = ▷◁

1 ≤ i ≤ k
RD

i to be globally consistent over a database D, i.e. it holds

that RD
j = πRj (RD) for each relation Rj . In case of acyclic queries, global consistency is

achieved if pairwise consistency is satisfied. Pairwise consistency holds if every pair Ri,
Rj with i ̸= j of relations is consistent over D, meaning that their projections on shared
variables are equal, i.e. πzi∩zj RD

i = πzi∩zj RD
j . In the following, we discuss an algorithm

that performs semi-joins along a join tree to establish pairwise consistency, enabling a
monotonic join to be performed between the relations involved in the acyclic query.

3.2 Yannakakis algorithm

Yannakakis [Yan81] has proposed an algorithm for acyclic queries that can (1) decide
in polynomial time whether the result of a query over a database D is empty, and (2)
compute the result set of a query over D in output polynomial time. The algorithm relies
on a join tree T = (V, E) and a database D. It needs either one (for boolean queries) or
three tree traversals with alternating sequence.
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3.2. Yannakakis algorithm

1. Each relation in the database RD
i is associated with its corresponding node Ri ∈ V .

2. A bottom-up traversal is performed. For each child node Rj(z⃗j) of Ri(z⃗i) having at
least one common variable, i.e. z⃗j ∩ z⃗i ≠ ∅, a semi-join is computed such that all
tuples from the parent relation (RD

i ) are removed for which there is no join partner
in the child relation (RD

j ). If the emerging relation at the root node is subsequently
empty, the result of the query over D is also empty.

3. If it is not empty, we continue with the second tree traversal, which is done from
top to bottom. For this, a semi-join is computed such that all tuples from the child
relation (RD

j ) are removed for which there is no join partner in the parent relation
(RD

i ).

4. In the third pass, we conduct a bottom-up traversal again. This time, however, we
perform regular joins so that the relation at the root node contains the result of
the query over D after all. In case two nodes Rj(z⃗j) and Ri(z⃗i) do not share any
common variable, a cross join is performed.

The use of the two semi-join passes prevents the exponential growth of intermediate
results. Semi-joins are an efficient form of selection, keeping only those tuples for which
there is a matching partner. When performing the third pass, which prunes the tree from
the leaves to the root, we are guaranteed that everything we have as an intermediate
result is also included in the final join result. It is only extended by additional attributes.
This is made possible by the two semi-join passes carrying out a “full reduction” of a set
of relations {R1, . . . , Rk} over D that correspond to the atoms in the acyclic query. The
set is considered to be “fully” reduced, if the relations are globally consistent over D.

We now illustrate the application of the Yannakakis algorithm using the query Q1 (defined
in Section 3.1) along some example data for the involved relations. Figure 3.2 shows
the application of the first bottom-up traversal. Each grey tuple has been removed by
the application of some semi-join. The algorithm has first removed the tuples from
relation R1(x1, x2, x3) due to them having no join partner in R3(x3) or R4(x2, x4, x3).
No semi-join was performed between R2(x2, x3) and R5(x5, x6) since these relations have
no variable in common. As a final step in this traversal, the tuple from R2(x2, x3) got
removed from R1(x1, x2, x3) because there was no matching tuple in R1(x1, x2, x3). Since
the result at the root node is non-empty at this point, we continue with the top-down
traversal shown in Figure 3.3. The tuples which got removed with the prior traversal
are now shown in light-grey for reference. Only one tuple is removed with the top-down
traversal, i.e. value b3 from relation R3(x3) is removed by a semi-join because there is no
longer a join partner in R1(x1, x2, x3). All remaining tuples will be part of the final join
result (given in Table 3.1) which is computed by the second bottom-up traversal.
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R2(x2, x3)
x2 x3
c1 b2
c1 b1
c4 b6

R5(x5, x6)
x5 x6
c1 b2
c1 b1
c4 b6

R1(x1, x2, x3)
x1 x2 x3
s1 c1 b1
s1 c1 b2
s3 c3 b1
s3 c1 b4
s2 c2 b3

R3(x3)
x3
b1
b2
b3

R4(x2, x4, x3)
x2 x4 x3
c1 a1 b1
c1 a1 b2
c1 a2 b2

Figure 3.2: Apply bottom-up traversal with Yannakakis algorithm for query Q1 (based
on [Pic21])

3.3 Generalization of acyclic queries
There has been interest among researchers in extending the benefits of acyclic queries to
a larger class of queries, since a significant proportion of queries encountered in practice
are not acyclic, but nearly acyclic. As a result, since the 1990s, efforts have been made
in research to weaken the notion of acyclicity by defining concepts for near acyclicity,
along with the development of algorithms that can efficiently evaluate such queries. To
specify the degree of acyclicity for a query Q and its associated hypergraph HQ, different
notions of width have been proposed over time. According to Gottlob et al., for a fixed
constant k ≥ 1, a good generalization for acyclicity should satisfy the following three
fundamental criteria [GGLS16].

1. Generalization of acyclicity: The class of queries having width bounded by k
should include all acyclic queries.
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R2(x2, x3)
x2 x3
c1 b2
c1 b1
c4 b6

R5(x5, x6)
x5 x6
c1 b2
c1 b1
c4 b6

R1(x1, x2, x3)
x1 x2 x3
s1 c1 b1
s1 c1 b2
s3 c3 b1
s3 c1 b4
s2 c2 b3

R3(x3)
x3
b1
b2
b3

R4(x2, x4, x3)
x2 x4 x3
c1 a1 b1
c1 a1 b2
c1 a2 b2

Figure 3.3: Apply top-down traversal with Yannakakis algorithm for query Q1 (based on
[Pic21])

2. Tractable recognizability: An algorithm exists which decides if the width of a
given query is ≤ k for fixed k in polynomial time.

3. Tractable query-answering: There should be an algorithm that can evaluate
a query in polynomial time (in the combined size of the input and output for
non-boolean CQs).

In [GGLS16], Gottlob et al. have reviewed various decomposition methods and associated
width measures found in the literature. They have also analysed whether these methods
fulfil the three previously defined criteria. Moreover, they have outlined how such a
decomposition-based method can be used to more efficiently evaluate a broader set of
queries that may contain “mild cyclicity”. The remainder of this section will therefore
mainly rely on this work.
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3. Decomposition-based query evaluation

x1 x2 x3 x4 x5 x6
s1 c1 b2 a1 c1 b2
s1 c1 b2 a1 c1 b1
s1 c1 b2 a1 c4 b6
s1 c1 b2 a2 c1 b2
s1 c1 b2 a2 c1 b1
s1 c1 b2 a2 c4 b6
s1 c1 b1 a1 c1 b2
s1 c1 b1 a1 c1 b1
s1 c1 b1 a1 c4 b6

Table 3.1: Result after third pass of Yannakakis algorithm on query Q1 (based on [Pic21])

Tree Decomposition
Tree decomposition and its associated width measure treewidth [RS84, RS86] are well-
known concepts from graph theory that have originally been applied for the generalization
of graph acyclicity. However, we can also utilize these concepts in the context of
hypergraphs and thus for the evaluation of conjunctive queries. A tree decomposition of
a hypergraph H = (V, E) consists of a pair ⟨T, χ⟩, in which T = (V ′, F ) is the tree and χ
is a function that assigns to each node p ∈ V ′ a set of vertices χ(p) ⊆ V , which is also
referred to as the bag of p. Furthermore, the following three conditions must be satisfied
for a valid tree decomposition.

1. Vertex covering: For every vertex v from the hypergraph H there is at least one
tree node p containing the vertex in its bag χ(p). Formally, there must be a p ∈ V ′

such that v ∈ χ(p), for every vertex v ∈ V .

2. Hyperedge covering: For every hyperedge e ∈ E, there must be a tree node
p ∈ V ′, whose associated bag χ(p) fully covers it, i.e. e ⊆ χ(p).

3. Connected subtrees: For each vertex v ∈ V , the set of tree nodes whose associated
bag contains v, i.e. {p | p ∈ V ′ ∧ v ∈ χ(p)}, induces a connected subtree within T .

The width of a tree decomposition ⟨T, χ⟩ is defined as the cardinality of the largest bag
within T minus one, i.e. maxp∈V ′ (|χ(p)| − 1). The degree of acyclicity of a hypergraph
H is denoted by the treewidth tw(H), which corresponds to the minimum width of all
tree decompositions of H. Accordingly, the treewidth tw(Q) of a conjunctive query Q is
defined by the treewidth tw(HQ) of its associated hypergraph HQ.
We now consider the cyclic query Q2 (taken from [Got20]), which can be defined as
follows.

out() : −a(S, X, X ′, C, F ), b(S, Y, Y ′, C ′, F ′), c(C, C ′, Z), d(X, Z), e(Y, Z), f(F, F ′, Z ′),
g(X ′, Z ′), h(Y ′, Z ′), j(J, X, Y, X ′, Y ′), p(B, X ′, F ), q(B′, X ′, F ).
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J, X, Y, X ′ , Y ′

S, X, X ′ , C, F, Y, Y ′, C ′, F ′

X, Y, C, C ′, Z X ′ , Y ′, F, F ′, Z ′

X, Z Y, Z
X ′ , Z ′, F Y ′, Z ′

B, X ′ , F B′, X ′ , F

Figure 3.4: Tree decomposition for query Q2 (based on [Got20])

An example tree decomposition for query Q2 is given in Figure 3.4. The tree decomposition
has a width of 8, since the largest bag {S, X, X ′, C, F, Y, Y ′, C ′, F ′} contains 9 variables.
The “connected subtrees” property is obviously satisfied for each variable. We demonstrate
this with the variable X ′, which we have highlighted with a yellow background.

Having defined tree decomposition and the associated treewidth measure, we will now
examine the three criteria that make up a good generalization for acyclicity of hypergraphs
and check whether all of them are satisfied.

1. Generalization of acyclicity: The notion of treewidth only generalizes graph
acyclicity, i.e. a graph G is acyclic if and only if tw(G) is 1. However, this does not
hold for hypergraphs. For example, the class of single-atom conjunctive queries has
unbounded tree-width, but is acyclic. Consequently, treewidth is not a generalization
for acyclicity of hypergraphs.

2. Tractable recognizability: In general, the computation of the treewidth tw(H)
is NP-hard. However, for fixed k, we can check if tw(H) is ≤ k, and in this
case compute a tree decomposition of optimal width using a linear-time algorithm
that operates in logarithmic space. As a result, tree decompositions satisfy this
condition.

3. Tractable query-answering: Conjunctive queries Q with tw(Q) of k can be
evaluated in time O(m′ ∗ Dk+1 ∗ log D) over a database, where m′ refers to the
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3. Decomposition-based query evaluation

number of tree nodes in T , and D represents the number of unique values in the
DB. The tree decomposition method thus satisfies this condition.

Generalized Hypertree Decomposition
Since tree decomposition is not a good generalization for acyclicity, an extension called
Generalized Hypertree Decomposition (or GHD for short) has been developed to overcome
this limitation. The extension has the form of an additional labelling λ which assigns to
every tree node p ∈ V ′ a set λ(p) of atoms (or hyperedges from H) such that the bag χ(p)
of variables (or vertices from H) is covered by it. This is similar to join trees, but in case
of a GHD, more than one atom per node is allowed. Formally, a generalized hypertree
decomposition of a hypergraph H is defined as a triple HD = ⟨T, χ, λ⟩, referred to as
hypertree for H, where ⟨T, χ⟩ denotes a tree decomposition of H, and λ is a function
which labels vertices of T with sets of hyperedges of H, such that the following condition
holds. For every tree node p ∈ V ′, χ(p) ⊆ U

h∈λ(p) h. Intuitively, this means that for all
tree nodes p ∈ V ′, every variable (or vertex from H) assigned to p with χ(p) must be
covered by at least one hyperedge associated to it with λ(p).

The width of a given GHD is defined as the maximum number of hyperedges used to
cover a single set, i.e. maxp∈V ′ (|λ(p)|). The degree of acyclicity of a hypergraph H is
defined similarly as before with ghw(H), which corresponds to the minimum width of all
GHDs of H. Thus, the goal in computing a GHD is to find a GHD that contains as few
atoms (or hyperedges) per set as possible.

We will now revisit the three criteria that make a good generalization for the acyclicity
of hypergraphs in order to check their fulfilment.

1. Generalization of acyclicity: By the definition of ghw, we have ghw(H) = 1 for
an acyclic hypergraph H. This is the case because a hypergraph H is acyclic if and
only if a join tree exists. Since we assign exactly one atom to each tree node of a
join tree, we obtain ghw(H) = 1. Consequently, GHDs satisfy this criterion.

2. Tractable recognizability: Gottlob et al. [GMS09, GLPR21] have found that it
is NP-hard to decide whether the hypergraph HQ of a query Q has ghw(HQ) ≤ k
for a k ≥ 2. Thus, this criterion is not fulfilled.

3. Tractable query-answering: Conjunctive queries Q with ghw(Q) = k can be
evaluated in polynomial time, provided that a generalized hypertree decomposi-
tion of this width is given. The same time complexity applies as in hypertree
decompositions, which are considered next. This criterion is therefore satisfied for
GHDs.

Hypertree Decomposition
To solve the problem of tractable recognizability, an additional constraint has been
invented for GHDs, called Descendant Condition or Special Condition. Formally, the
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condition is satisfied if h ∩ χ(Tp) ⊆ χ(p) holds for every tree node p of V ′ and hyperedge
h ∈ λ(p), where Tp refers to the subtree of T that is rooted at p, and χ(Tp) denotes the
set of variables contained in the χ labelling of the subtree Tp. The notion of hypertree
decomposition refers to a GHD that satisfies this condition.

Intuitively, the special condition is being applied during the top-down construction of
a width k-GHD for a hypergraph H with the intent to simplify the computation. For
each inner node in the hypertree decomposition, we guess all possible λ labels for its
child nodes. Since each label can consist of up to k atoms, there are polynomially many
possibilities. However, specifying the χ-label for a child node is more complex, since
there are exponentially many possibilities for the χ-bag of a node, if the edges have
arbitrary size. To restrict the choice of possible child bags to a polynomial number of
alternatives, the special condition is used. Each of these alternatives can be represented
in logarithmic space. When an atom appears for the first time, it must appear fully,
i.e., all variables must be part of the χ label for the node. For descendants, this atom
may then appear partially, meaning that not all variables are part of the bag χ(p). If a
variable is removed from the bag χ(p) of some node, it may not appear in any descendant
nodes. Moreover, all nodes that occur in the hyperedges of λ(p) but are not included
in χ(p) are not effective for p and therefore do not count towards the connectedness
condition.

The width of a hypertree decomposition and hw(H) is defined like its corresponding
notions for generalized hypertree decomposition.

We now revisit the previously defined cyclic query Q2. An example hypertree decom-
position HDQ2 for the query Q2 is shown in Figure 3.5. If we compare it with the
tree decomposition of Q2 shown in Figure 3.4, we can see that for each tree node in
HDQ2 , the set of atoms covers the set of variables of the corresponding node in the
tree decomposition. Since we have at most two atoms per tree node, the width of the
hypertree decomposition is 2. To satisfy the connectedness condition, a projection of
an atom is specified for some tree nodes. The removed variables are marked with the
character _. These projections can only be made for an atom within a given tree node if
the “full atom” occurs at least once in a predecessor node. One example is the atom j,
where three missing variables are highlighted in yellow in a tree node. The corresponding
complete atom appears in the root node. Furthermore, any variable that has disappeared
in a tree node cannot reappear in any descendant node (highlighted in blue) due to the
descendant condition.

We will now show that all three criteria that constitute a good generalization for the
acyclicity of hypergraphs are satisfied for hypertree decompositions.

1. Generalization of acyclicity: By the definition of hw, we have hw(H) = 1 for
an acyclic hypergraph H. This is the case because a hypergraph H is acyclic if and
only if a join tree exists. Since we assign exactly one atom to every tree node of a
join tree, we obtain hw(H) = 1. Thus, this criterion is fulfilled.
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j(J, X, Y, X ′, Y ′)

a(S, X, X ′, C, F ),
b(S, Y, Y ′, C ′, F ′)

j(_, X, Y, _, _),
c(C, C ′, Z)

j( _ , _ , _ , X ′, Y ′),
f(F, F ′, Z ′)

d(X, Z) e(Y, Z) g(X ′, Z ′),
f(F, _, Z ′)

h(Y ′, Z ′)

p(B, X ′, F ) q(B′, X ′, F )

Figure 3.5: Hypertree decomposition HDQ2 (based on [Got20])

2. Tractable recognizability: Due to the descendant condition, a hypertree decom-
position with hw(HQ) = k can be computed for the hypergraph HQ of a query Q
in polynomial time using an alternating logspace procedure. The best currently
known upper bound on the time complexity of a deterministic realization of the
alternating procedure is O(m2kv2), where m denotes the number of hyperedges
and v the number of vertices in HQ. It is important to note that k is involved
as a factor in the exponent of the polynomial. According to Gottlob et al., this
is not really a problem in the context of query evaluation in practice for three
reasons. First, a vast majority of conjunctive queries have very low hw(HQ) of up
to 3. Second, they reason that the number of atoms in conjunctive queries hardly
reaches more than 50. Third, they argue that it might be worthwhile to spend
a little more computational effort to get a very good decomposition, because in
practice queries are re-executed very often in a database system, and therefore we
could benefit numerous times when executing a highly-optimised query.

3. Tractable query-answering: Conjunctive queries Q with hw(Q) = k can be
evaluated in polynomial time with an upper bound of O(v ∗ (rk + s) ∗ log(r + s))
over a database, where r corresponds to the size of the largest relation involved in
the query, v denotes the number of variables in Q, and s is the number of output
tuples. Hence, this criterion is fulfilled.
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3.3. Generalization of acyclic queries

Evaluation of queries using hypertree decomposition
While there are several approaches on how we can use a hypertree decomposition to
evaluate a query, we will focus on the most natural one here.

Let Q be a conjunctive query with an associated hypergraph HQ that we want to
evaluate over a database instance DB. Furthermore, let HD = ⟨T, χ, λ⟩ be a hypertree
decomposition for HQ with hw(HQ) = k. The basic idea is to transform the query Q
using HD into an acyclic query Q′ with associated join tree TQ′ so that we can apply
the Yannakakis algorithm as discussed in Section 3.2. First, for each tree node p ∈ V ′,
we compute a fresh atom, which then replaces all atoms assigned to p as hyperedges in
λ(p). A fresh atom is obtained by (1) joining all the relations associated with the atoms
currently assigned to p with λ(p), and (2) projecting the result of the join on the set
of variables assigned to p with χ(p). As a result of these computations, we get a new
database instance, which we refer to as DB′. Due to the hypertree width k, at most k
relations are to be joined per tree node p, which can be done in polynomial time. Since χ
encodes a tree decomposition, we then have a join tree TQ′ , whose conjunction of atoms
would represent an acyclic conjunctive query Q′. The queries Q and Q′ are equivalent in
the sense that the execution of Q′ over DB′ yields identical results to that of Q over DB.
Second, we apply the Yannakakis algorithm on TQ′ and the associated relations in DB′.

We now outline the complexity of evaluating query Q using the approach described
earlier, as reported in [GGLS16]. The first step can be done in polynomial time bounded
by O(m ∗ rk), where m is the number of vertices in the hypertree, and r is the size
of the largest relation in the database instance DB. Let DB′ have at most rk tuples
in the largest relation after performing the first step, and let r′ ≤ rk be the actual
number of tuples in the largest relation of DB′. The total complexity of evaluating
Q is then obtained by adding the cost of evaluating the acyclic instance Q′, which
dominates the total cost. The algorithm has, in the worst case, an upper bound of
O(m ∗ (r′ + s) ∗ log(r′ + s)) for the runtime and O(m ∗ (r′ + s)) for the space, where s
denotes the size of the output.

We now illustrate this approach for query evaluation with cyclic query Q3 (taken from
[Got20]), which can be defined as follows.

out() : −s(Y, Z, U), g(X, Y ), t(Z, X), s(Z, W, X), t(Y, Z).

First, hypertree decomposition HDQ3 is computed (see Figure 3.6a). Then, we use
HDQ3 and the relations in database instance DB (see Figure 3.6c) to derive a join tree
(see Figure 3.6b), which corresponds to the acyclic conjunctive query Q′

3, and database
instance DB′ (see Figure 3.6d). As part of this step, the two atoms g(X, Y ) and t(Y, Z)
are replaced with fresh atom gt(X, Y, Z) at the root node of the tree. Beyond that,
relation gt = g ▷◁ t is computed, which results in the creation of database instance DB′.
Finally, the Yannakakis algorithm can be applied using the join tree Q′

3 and database
instance DB′.
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g(X, Y ), t(Y, Z)

t(Z, X) s(Y, Z, U)

s(Z, W, X)

(a) HD for Q3

gt(X, Y, Z)

t(Z, X) s(Y, Z, U)

s(Z, W, X)

(b) Join tree for Q′
3

g t s

(c) Relations of DB

t gt = g ▷◁ t s

(d) Relations of DB′

Figure 3.6: Transformation of query Q3 into acyclic query Q′
3 (based on [Got20])
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CHAPTER 4
Worst-case optimal joins

In this chapter, we will discuss worst-case optimal joins as a solution to the problem of
exploding intermediate results in join queries. We shall use the triangle query, which is
the most basic form of a cyclic join query, as an example.

Suppose we have relations R(a, b), S(b, c), T (a, c), with each having a cardinality of n.
When performing two-way joins, i.e. one relation is joined with another relation and
then the result is joined with the third relation, the worst-case intermediate result size is
in Ω(n2) if the data is highly skewed, regardless of how we choose the order of the joins.
However, AGM (Atserias, Grohe, Marx) [AGM13] have shown that there is an upper
bound for a join query with regard to the result size, depending on the size of the input.
As a result, we know that the size of the final result is bounded by O(n ∗ √

n) for the
triangle query. There is obviously a blow-up in between, which produces unnecessarily
large intermediate results.

Worst-case optimal join algorithms have been proposed to solve this problem. These are
characterized by the fact that their time complexity is always within the AGM [AGM13]
bound, i.e. it remains within the largest possible output size. This has been an active
area of research over the last 5 years. Hence, there are now several such methods. We
limit ourselves here to the original approach, called Leapfrog-Triejoin, and another one
that excels in its simplicity.

In summary, this chapter will formally define the AGM bound and present two algorithms
for worst-case optimal joins.

4.1 AGM bound
We will first introduce some key terms that will be necessary later on. An edge cover of a
hypergraph H = (V, E) is a subset C ⊆ E of the edges of H such that every vertex of H
is covered by at least one hyperedge in C. The edge cover number ρ(H) of H corresponds
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4. Worst-case optimal joins

to the minimum size of C among all edge covers of H. A fractional edge cover of a
hypergraph H = (V, E) assigns a weight ψ(e) in [0, ∞) to every hyperedge e ∈ E such
that every vertex v ∈ V has a total weight of at least 1, i.e. ∑

e∈E,v∈e ψ(e) ≥ 1 for every
v ∈ V . The fractional edge cover number ρ∗(H) of H corresponds to the minimum of the
total weights among all fractional edge covers of H. An optimal fractional edge cover
can be computed in polynomial time using a linear program that minimizes the cost
ρ∗(H). For a join query Q, the (fractional) edge cover number is defined by its associated
hypergraph, i.e. ρ(Q) = ρ(HQ) respectively ρ∗(Q) = ρ∗(HQ). Let’s consider the triangle
query again as an example. Figure 4.1 shows a visualization of an edge cover and a
fractional edge cover for it. A valid edge cover would be any subset of edges that is
composed of at least two of the three hyperedges. Hence, we have ρ(Q) = 2. We can
construct a fractional edge cover xR = xS = xT = 1

2 . The total of these weights are the
minimum among all fractional edge covers of HQ. Hence, ρ∗(Q) = 3

2 [GM06a, AGM13].

Figure 4.1: Visualization of an edge cover and a fractional edge cover for the triangle
query (based on [GM06b])

Atserias et al. [AGM13] observed that a fractional edge cover can be used for the
definition of a lower bound for the worst-case output size of a join query. Let Q be a
join query consisting of the join of n relations R1, R2, . . . , Rn, and let D be a database
instance. Furthermore, let x1, x2, . . . , xn be a fractional edge cover for Q, such that xi is
the weight of the hyperedge associated with Ri for 1 ≤ i ≤ n. Then, we have

|Q(D)| ≤
n∏

i=1
|Ri|xi . (4.1)

It follows that the size of the output of the triangle query is bounded by |R| 1
2 ∗ |S| 1

2 ∗ |T | 1
2 .

If we assume equal relation sizes, i.e. |R| = |S| = |T | = n, then we have n
3
2 or n ∗ √

n.
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4.2 Leapfrog-Triejoin algorithm

Leapfrog Triejoin [Vel14] is the first worst-case optimal join algorithm that has been used
in a commercial database system. It achieves worst-case optimal running time (up to a
log factor) for some classes of database instances. Instead of performing multiple two-way
joins in a specific order – with the need for potentially big intermediate results – like a
traditional DBMS, the algorithm from company LogicBlox can join multiple relations
simultaneously by performing a backtracking search based on the variables that are part
of the join. The algorithm assumes that the relations to be joined are sorted. It relies on
linear iterators for accessing the individual relations. Each iterator is required to take at
most log(N) time – with N being the number of tuples in the corresponding relation –
for getting the next value or for seeking a given value from/in a relation for a specific
variable. Beyond that, an iterator must take not more than O(1 + log(N/m)) time, if
m consecutive values are retrieved from a specific variable from a relation. Ngo et al.
[NRR14] mentioned in their survey that this can be achieved either using a balanced tree
structure such as a B-tree, or a hash-based indexing approach.

Unary joins, referred to as leapfrog joins by Veldhuizen, form the basic building block. A
leapfrog join is based on a sort-merge join and can be used to simultaneously join a set of
unary relations A1(x), . . . , Ak(x). Each leapfrog join keeps a list of pointers to iterators,
one for each relation, and stores the smallest and largest values at which the iterators are
currently positioned. It repeatedly moves the iterator with the lowest value to a value
that is equal or greater than the highest value from all iterators. This is done until all
iterators have the same value – yielding a new output value. When a leapfrog join iterator
is constructed, the leapfrog-init (Algorithm 4.1) method is first called, which initializes
its state and finds the first result. The method leapfrog-search (Algorithm 4.2) finds
the next value in the intersection A1(x) ∩ · · · ∩ Ak(x). After we have obtained the first
value from the intersection, we can obtain subsequent ones by calling the leapfrog-next
(Algorithm 4.3) method. In order to seek for a value from the intersection that is greater
than or equal to a given value, we can utilize the leapfrog-seek (Algorithm 4.4) method.

Algorithm 4.1: leapfrog-init() [Vel14]
1 if any iterator has atEnd() true then
2 atEnd := true;

3 else
4 atEnd := false;

5 sort the array Iter[0..k - 1] by keys at which the iterators are positioned;

6 p := 0;

7 leapfrog-search()
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Algorithm 4.2: leapfrog-search() [Vel14]
1 x’ := Iter[(p - 1) mod k].key(); // Max key of any iter

2 while true do
3 x := Iter[p].key(); // Least key of any iter

4 if x = x’ then
5 key := x; // All iters at same key

6 return;

7 else
8 Iter[p].seek(x’);

9 if Iter[p].atEnd() then
10 atEnd := true;

11 return;

12 else
13 x’ := Iter[p].key();

14 p := p + 1 mod k;

15 end

Algorithm 4.3: leapfrog-next() [Vel14]
1 Iter[p].next();

2 if Iter[p].atEnd() then
3 atEnd := true;

4 else
5 p := p + 1 mod k;

6 leapfrog-search();

Algorithm 4.4: leapfrog-seek(int seekKey) [Vel14]
1 Iter[p].seek(seekKey);

2 if Iter[p].atEnd() then
3 atEnd := true;

4 else
5 p := p + 1 mod k;

6 leapfrog-search();

Figure 4.2 shows a leapfrog join of the three unary relations A, B, C. The iterators are
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initially positioned at values 0, 0 and 2 respectively. The execution of seek(2) for the
iterator of relation A moves the iterator to value 3. After that, a seek(3) operation
is carried out on the iterator of relation B, which results in a move to the value 6.
Subsequently, the iterator of C seeks for value 6, which results in a move to value 8. After
that, the iterators of relations A and B are moved to 8 as well with a seek(8) operation.
Then, all iterators have the same value at their current position. Thus, 8 is the first value
being returned by the leapfrog join.

❆ ✵

 ❡❡ ✭✁✂

✦✄
✶ ✸

 ❡❡ ✭☎✂

✧✆
✹ ✝ ✻ ✼ ✽

 ❡❡ ✭✞✟✂

★✠
✾ ✶✶

❇ ✵

 ❡❡ ✭✡✂

✩☛✷ ✻

 ❡❡ ✭☎✂

✪☞
✼ ✽

 ❡❡ ✭✞✞✂

✧✆
✾ ✰✌

❈ ✷

 ❡❡ ✭✍✂

✩☛✹ ✝ ✽
♥❡✎ ✭✂

✫✏ ✶✵

❆ ✑ ❇ ✑ ❈ ✽

Figure 4.2: Leapfrog join of unary relations A, B and C [Vel14]

In some scenarios, a leapfrog join can significantly outperform a two-way join. For
example, consider the join of unary relations A = {0, . . . , 2n − 1}, B = {n, . . . , 3n − 1}
and C = {0, . . . , n − 1, 2n, . . . , 3n − 1}. In this case, each pairwise join would lead to n
tuples being included in the intermediate result, while the final result is empty. Leapfrog
join is able to compute this in O(1) steps.

❘ ✁❛✂✐♦♥
❆✭①✄ ②✄ ③✮

✭☎✄ ✸✄ ✹✮

✭☎✄ ✸✄ ✺✮

✭☎✄ ✹✄ ✻✮

✭☎✄ ✹✄ ✽✮

✭☎✄ ✹✄ ✾✮

✭☎✄ ✺✄ ✷✮

✭✸✄ ✺✄ ✷✮

❚8✐ ♣8 7 ♥✂❛✂✐♦♥
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✺
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☎

✺

✷

✹

✾✽✻

✸
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Figure 4.3: Trie representation of relation A(x, y, z) [Vel14]

The trie iterator interface extends this concept to relations with arity > 1. As can be
seen in Figure 4.3, each tuple (xi, yi, zi) from relation A(x, y, z) should be presented as if
it would be stored in a trie such that there is a unique path from the root to a leaf node.
Upon initialization, the trie iterator is positioned at the root node, i.e. at A. It keeps
track of the current depth within the trie. We can move to the first value at the next
depth with the open (Algorithm 4.5) method. The up (Algorithm 4.6) method can be
used to return to the parent value at the prior depth. After the open method has been
called at some node n, the next, seek and atEnd methods will operate on the children of
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n. For example, if we invoke the open method three times after being at node A, the
iterator would be positioned at node [1, 3, 4]. Calling the next method would then move
the iterator to node [1, 3, 5]. Another next method call would result in the atEnd method
returning true. We could then execute the sequence of method calls up, next and open to
reposition the iterator to leave node [1, 4, 6].

Algorithm 4.5: triejoin-open() [Vel14]
1 depth := depth + 1; // Advance to next var

2 for each iter in leapfrog join at current depth do
3 iter.open();

4 end

5 call leapfrog-init() for leapfrog join at current depth

Algorithm 4.6: triejoin-up() [Vel14]
1 for each iter in leapfrog join at current depth do
2 iter.up();

3 end

4 depth := depth - 1 ; // Backtrack to previous var

We now consider the triangle join query R(a, b) ▷◁ S(b, c) ▷◁ T (a, c) as an example. The
algorithm creates a leapfrog instance for every variable, with each of them having pointers
to the iterators of the relations which the variable occurs in. Beyond that, the optimizer
has to choose a variable ordering, i.e. a permutation of the variables which appear in
the join. Assume we choose variable ordering [a, b, c]. The join utilizing a “backtracking
search” is then performed as follows. First, a unary join is performed for the variable
a with the projections πaR and πaT . As soon as this emits a value ai, a unary join
is performed for variable b between πb(σa=aiR) and πbS. For each bi, a unary join is
then performed for variable c between πc(σb=bi

S) and πc(σa=aiT ). If all values ci are
exhausted, we go to the previous level and obtain the next value for the previous variable.

4.3 Partitioning-based algorithm
A well-known worst-case optimal join (WCOJ) algorithm builds upon fundamental ideas
outlined in [NRR14]. On a high-level the algorithm partitions some relation based on
the “light hitters” and “heavy hitters” values of some join attribute. The goal is to avoid
the explosion of the first intermediate result for each of the partitions, i.e. avoid the
worst-case cardinality Ω(n2) of a regular two-way join. This is achieved (1) by selecting
a good partitioning threshold, and (2) by choosing a different sequence of joins for the
two partitions depending on whether the join attribute chosen for the partitioning exists
in the other relations. In the end, both results are combined.
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We will now illustrate this algorithm with the triangle join query Q = R(X, Y ) ▷◁
S(Y, Z) ▷◁ T (X, Z). Assume that the cardinality of every relation is equal, i.e. |R| =
|S| = |T | = n. As can be seen in Figure 4.4, we select relation R to be split into relations
R+ and R− based on attribute X. We assign a tuple of the relation R to the “heavy
hitters” partition R+ if its value in attribute X occurs more than

√
n times within the

same attribute in the entire relation R, or to the “light hitters” partition R− otherwise.
We observe that due to our partitioning, there are at most

√
n different X values in R+,

because otherwise there would be more than
√

n ∗ √
n = n tuples which cannot be the

case since |R| = n. As a result, we join R+ with S because for every tuple from S there
are at most

√
n X values. This yields an intermediate result size bound of O(n ∗ √

n).
This corresponds to the worst-case cardinality of a join, i.e. a Cartesian product, where
every tuple from S would be combined with every value from the X column of R+. In
practice, however, only those tuples are combined where the Y value matches. The join
of the intermediate result R+ ▷◁ S with T can then be done in linear time in case a hash
join is used, since T has no additional attributes, i.e. we just remove those tuples from
R+ ▷◁ S for which there is no join partner in T . For the other partition R−, we apply a
different join sequence. Due to our partitioning, every distinct X value in R− occurs at
most

√
n times. Hence, we join R− with T because there are at most

√
n Y values in R−

for every tuple in T that matches on the X column. Again, this yields an intermediate
result size bound of O(n ∗ √

n). As before, the final join – in this case with S – just
eliminates tuples from the intermediate result R− ▷◁ T . Finally, we obtain the result of
join query Q by taking the union of the two results R+ ▷◁ S ▷◁ T and R− ▷◁ T ▷◁ S. If
appropriate index structures are available prior to query execution, we can compute Q in
time O(n ∗ √

n) [Got20].

Figure 4.4: Partitioning-based algorithm applied to the join query R(X, Y ) ▷◁ S(Y, Z) ▷◁
T (X, Z) [Got20]
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CHAPTER 5
Pandas in data science

In this chapter, we look at the Python ecosystem of tools for Data Science. In particular,
we consider the currently most popular library for data preparation – Pandas. We explore
possible reasons for its widespread use and study the design of Pandas. Finally, we
identify other useful tools from different areas of data science that can be combined with
Pandas.

According to a poll published by the website KDNuggets1 in May 2018, Python has
become the preferred programming language for the data science community, while R
comes in second. Python’s popularity most likely stems from (1) its ease of use and (2)
the existence of a huge ecosystem of third-party libraries for every area of data science
[SJ19].

Data preparation is an important step within a data science pipeline, as it aims to make
the raw data usable for data analysis. This includes data cleansing, integration and
transformation of raw data. Pandas is currently both the best and the most popular tool
in this field because (1) it has an extensive documentation, (2) it has a wide range of
functionality, and (3) it supports a variety of input/output data formats including Excel,
CSV, SQL among others. Since other tools offer fewer features, for example, are limited
to the HDF5 data format, their use is limited [SJ19].

According to McKinney [McK11], a major obstacle to widespread adoption of Python
in the data science domain in the past has been the "lack of rich data structures with
integrated handling of metadata". Metadata refers to the labelling information for data
points in this context. For example, a table typically has labels for columns and possibly
rows. Thus, in most cases, a row within a table can be uniquely identified by one or more
labels. By using this metadata, various operations such as data manipulation, dataset
integration, and aggregations can be specified in an intuitive way.

1https://www.kdnuggets.com
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Pandas has closed this gap by providing its DataFrame abstraction for two-dimensional
data. It is similar to R’s data.frame class, which allows mixed-type data to be stored
as a collection of independent columns while being flexible w.r.t. the size. The metadata
for the two axes of a DataFrame object are stored in Index objects. In the simplest case,
an index consists of a 1-dimensional vector of labels. While the column index consists of
the column names, the row index could contain sequential numbers, although sorting is
generally not required. Pandas stores both the indices and the contents of the columns
of a DataFrame in n-dimensional NumPy2 ndarray objects [McK11].

A so-called BlockManager is used, which serves three purposes. First, it facilitates the
storage of columns with heterogeneous data types. It does this by managing multiple
blocks, with each block containing a collection of columns with the same data type.
Second, by this design, it can speed up row-oriented operations that involve only a
single block, since all data is stored in a single ndarray object. Newly added columns
are stored in new Block objects to avoid reallocate/copy steps when inserting/deleting
columns. These are eventually consolidated into existing blocks of the same data type,
either automatically when some operations are invoked on the DataFrame object, or when
explicitly requested by the user. Third, by using the BlockManager, the user-facing
API is separated from the implementation. This gives developers more freedom to modify
the internal structures to achieve better performance or memory usage [McK11].

To speed up performance-sensitive operations, Pandas leverages the Cython language,
which is built on top of Python and allows the invocation of C functions and the use
of C variables and classes. Since C is a compiled language with lower-level memory
access, critical parts of the code can be made many times faster. In addition, NumPy
provides efficient vectorized computation, broadcasts over n-dimensional arrays, and fast
implementations for many scientific algorithms written in C and Fortran [SJ19, McK11].

Pandas can be used in combination with tools used in other areas of data science thus
enabling the creation of pipelines. Plotly 3, Matplotlib4, and seaborn5 are popular
choices for creating plots in the data visualization domain, offering different levels of
customization and ease of use. In machine learning, scikit-learn6 is a widely used Python
library. TensorFlow7, PyTorch8, and Keras9 are popular in the machine learning field,
the latter building on TensorFlow to increase accessibility with the drawback of limited
customizability. The most popular tools in Big Data are Apache Spark10 and Hadoop11

MapReduce. These tools can be used to work with data stored on a cluster of machines.
2https://numpy.org
3https://plotly.com/python/
4https://matplotlib.org
5https://seaborn.pydata.org
6https://scikit-learn.org/
7https://www.tensorflow.org
8https://pytorch.org
9https://keras.io

10https://spark.apache.org
11https://hadoop.apache.org
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The main difference between Spark and MapReduce is that Spark can work within
memory, while MapReduce must always write to the file system [SJ19].

While we only consider Pandas for the development of a software prototype of a join
optimizer in this thesis, the join ordering problem also exists for other data preparation
tools such as R’s data.frame.
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CHAPTER 6
Related work

As far as the theoretical background of this work is concerned, the papers dealing with
decomposition-based query answering and worst-case optimal joins are most relevant
for our purposes. According to Gottlob et al. [GLL+23], decomposition-based query
evaluation has been studied in many works [BDG07, CK19, CK21, CTG+21, CZB+22,
GKSS22, LP22, GGGS07, SGL04] over the years. While we presented only two worst-case
optimal join algorithms in Chapter 4, one of which we chose for our software prototype,
there are other algorithms as well. The NPRR algorithm [NPRR12] by Ngo et al. was
published before the Leapfrog Triejoin algorithm. In [NRR14], Ngo et al. later showed
that these two algorithms are special cases of a more general algorithm that is also worst-
case optimal. Navarro et al. recently proposed an algorithm that relies on quadtrees
for representing the relations. By using this compact data structure, the algorithm can
avoid the extra storage space required by other algorithms for indices such as B+ trees.

In the following, we consider three different systems in the Python ecosystem that we
consider most comparable to the endeavors of this thesis. We show that these are either
limited in portability due to their reliance on external dependencies or have additional
overhead due to data transformations.

The Grizzly [HKS21] framework by Hagedorn et al. offers a Python API that is similar
to the DataFrame of Pandas. It generates SQL statements, which are executed on an
external database system. As a result, data needs to be already stored in the DBMS or
is being transparently copied to it.

Aberger et al. proposed the EmptyHeaded [ALOR17, ALT+17] engine. A Jupyter
interface allows a user to interact with the system by specifying DataFrames in Pandas
as input and a SQL query to be executed over them. It supports conjunctive queries with
selections and aggregations. EmptyHeaded transforms the query into a GHD (General
Hypertree Decomposition), which is a generalization of a join tree beyond acyclicity. In
addition, the Pandas DataFrames are transformed into a different data structure - namely

35



6. Related work

tries. Then, a C++ code based on the GHD is generated and executed. Finally, the result
of the query is transformed back into a Pandas DataFrame. Aberger et al. improved
upon this concept with the LevelHeaded [ALOR18] engine, enabling it to execute a larger
set of queries. The authors mention that a WCOJ algorithm is used for computing the
results of the individual nodes in the GHD. A cost-based optimizer is used for choosing
the attribute-order as it has an impact on the performance. For computing the final
join-result, the Yannakakis algorithm is used. Both EmptyHeaded and LevelHeaded are
not first-class join implementations in Pandas, i.e. they do not work directly with the
data structure of Pandas. Additionally, their solution is delivered as a Docker image1

instead of a library, because their solution is built around a complex software architecture
that involves many dependencies.

What makes this thesis different is that we aim to create a solution that works directly
with the Pandas data structures and does not require SQL statements to be written.
Additional overhead arising from data transformations should be reduced. Furthermore,
another distinction is that we will not apply an optimization for cyclic join queries
involving more than three relations. The solution should either be integrated directly
into Pandas, or could be delivered as a Python package, e.g. via Python Package Index2.
This increases the portability by not requiring an external dependency on a database
system or a Docker image with the required software components. This would make it
especially suitable for use in cloud notebooks, since the popular Google Colab offering
does currently3 not support the installation of Docker.

1https://hub.docker.com/r/craberger/emptyheaded/
2https://pypi.org
3https://github.com/googlecolab/colabtools/issues/299
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CHAPTER 7
System architecture

In this chapter, we build on the theoretical foundations and discuss the system architecture
of the developed software prototype of a join optimizer for Pandas. First, we consider the
design of the join_baseline function which has been implemented for the evaluation,
since Pandas does not provide a function that performs a natural join between a list of
DataFrame objects if they do not all have the same column name(s). Then we will look
at the very core of this work, the architecture of the function join_optimised, which
applies some optimizations from database theory discussed in Chapter 3 and Chapter 4,
with the goal of achieving better performance compared to the baseline. Finally, we
outline some other implementation aspects, including an extension that allows repeated
execution of queries with reuse of previous parameters, the requirements of our software
prototype, and publishing considerations.

7.1 Baseline join function
A naive implementation would simply perform two-way joins in the order given by the
user, with either an inner join being used if two relations share at least one common
variable, or a cross join otherwise. However, this could lead to more cross joins being
performed instead of inner joins, resulting in bigger intermediate result sizes, which
negatively affects performance. To get a join function which can act as a more fair
comparison during the evaluation later on, we compute the result with a more intelligent
join order that minimizes cross joins with the following algorithm.

1. We create a graph G = (V, E) which represents a given join query Q. The vertices
v ∈ V correspond to the atoms of Q. If there are multiple copies of an atom
involved in the query, then there will also be multiple vertices. An edge (u, v) ∈ E
between the two vertices u and v indicates that the associated atoms share at
least one variable, i.e. an inner join can be performed between them. The graph
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could potentially have multiple connected components in case a cross-join is needed,
but this is unlikely for most queries in practice. If there is only one connected
component, then no cross-join is required.

2. Then, we utilize the graph to perform a DFS search for every connected component
to derive an associated join sequence. As different join orders can have a significant
difference in execution time, we introduce nondeterminism into this process so that
repeated execution can give us different join orders. A random vertex is chosen
as a starting point for the graph traversal in a connected component. During the
DFS, we also select the next vertex to visit randomly from the set of unvisited
neighbouring vertices of the current vertex.

3. Subsequently, we compute an intermediate result for each connected component
by applying inner joins in the sequence determined in the prior step. For this, we
utilize the merge1 function of Pandas that enables us to execute a two-way inner
join between two DataFrame objects. It performs a sort-merge join by default.

4. Finally, we use the merge function of Pandas to perform cross joins between the
intermediate results associated with the connected components, yielding the final
result.

7.2 Optimized join function
As part of this thesis, our focus is on enhancing the query execution time of acyclic join
queries and the basic case of cyclic queries – triangle queries. We utilize the Yannakakis
algorithm for evaluating acyclic queries efficiently. Furthermore, we have selected the
partitioning-based algorithm for answering triangle queries – and other cyclic queries
with three relations – due to (1) its simplicity, and (2) it not requiring specific index
structures. This is an important difference to more sophisticated worst-case optimal join
algorithms such as Leapfrog Triejoin. For cyclic queries with more than three relations
we do not apply any optimizations. These are answered using the baseline join function.
The overall algorithm of the optimized join function is illustrated in Figure 7.1. In the
following, we will address implementation details for the different algorithms being used
for the optimized join function.

GYO reduction & join tree construction
While the GYO reduction always yields the same result in the end, the atom elimination
sequence and the selection of witnesses which are relevant for the join tree construction
can be different. In order to obtain different join trees when a query is repeatedly
executed, the list of remaining atoms that are considered for the reduction process is
randomly shuffled before one of the two rules is (re)applied. Furthermore, with every

1https://pandas.pydata.org/pandas-docs/version/1.5/reference/api/pandas.
DataFrame.merge.html

38

https://pandas.pydata.org/pandas-docs/version/1.5/reference/api/pandas.DataFrame.merge.html
https://pandas.pydata.org/pandas-docs/version/1.5/reference/api/pandas.DataFrame.merge.html


7.2. Optimized join function

List of DataFrame objects

Check acyclicity with GYO reduction

Acyclic? Construct join tree

Apply Yannakakis algorithm

Invoke function join_baseline

Perform partitioning-based approach

Yes

No, > 3 DataFrame objects

No, 3 DataFrame objects

if no suitable partitioning variable has been identified

Figure 7.1: Algorithm of optimized join function join_optimized

step of the reduction, we always try to apply the rule of eliminating isolated hyperedges
before eliminating redundant hyperedges.

If the GYO reduction terminates with an empty atom list, we know that the query is
acyclic and use the elimination sequence and witness mapping to construct a join tree
as follows. First, we consider the witness mapping and add an edge between an atom
and its associated witness. Then, we add all missing atoms that occur in the elimination
sequence to the graph. At this point, we potentially have a forest of trees. If this is the
case, we merge the trees randomly by choosing some node of one connected component,
connect it to some node of the next connected component and then in turn connect this
node to some node of the subsequent one, and so on, until we have a single connected
component. Finally, we root the tree at some node such that the resulting tree has
minimal depth.
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Yannakakis algorithm

The algorithm starts with a bottom-up traversal on the given join tree to compute left
semi-joins between the relations associated to the parent and child nodes. For each inner
node, we want to first perform the left semi-join where the right relation has the smallest
number of tuples, since we expect this to produce the smallest intermediate result and
thus the remaining semi-joins will be faster. In a regular post-order traversal [Val21]
of a tree, the first child node of an inner node is visited first, followed by the second
child node, and so on until finally the root is visited. However, to achieve our semi-join
optimization, we need a variation of a post-order traversal where we first visit a child
node of an inner node that has a path to a leave node with the highest depth in the
subtree rooted at the current inner node. First, we perform a regular post-order DFS
starting at the root node, determining an "inverse depth" for each node in the tree. For
leaf nodes, the inverse depth is 1, while for inner nodes it is defined as the maximum
of the inverse depth of the child nodes plus 1. Second, we perform an additional DFS
starting at the root node, always visiting the child node with the highest inverse depth
first. This results in a traversal sequence [(u1, v1), (u2, v2), ..., (un, vn)], where vi is the
parent of ui for 1 ≤ i ≤ n with n corresponding to the number of nodes in the tree
minus one since the root node does not have a parent. Third, we repeatedly remove a
non-empty consecutive sublist of tuples from the beginning of the sequence where the
parents are the same. For this sublist, we perform a reordering so that the tuple comes
first that has an associated child relation with the smallest number of tuples. Finally,
the semi-joins are performed for the sublist in the newly determined order. The process
of removing sublists continues until we have performed the left semi-joins at the root
node in the end.

While the merge function of Pandas has currently no dedicated support for the execution
of a semi-join, there is ongoing work in a GitHub pull request2 to integrate this into
a future version. We have extracted the relevant code from the pull request and have
added it to our implementation such that we can perform semi-joins in the meantime.
However, this approach comes with the limitation that data type validations on join
columns that are normally performed by Pandas as part of the merge function will not
be executed. An alternative approach would have been to create a custom Pandas build
that included the code for semi-joins in the merge function. However, this would have
resulted in a more complex installation process and would prevent users from upgrading
to newer Pandas versions.

If the DataFrame associated with the root node is empty after performing the semi-joins
during the bottom-up traversal, we return an empty DataFrame object. Otherwise, we
continue with a pre-order traversal [Val21] where we perform right semi-joins between
the relations associated to the parent and child nodes. This means that the root node
is visited first, followed by a traversal of the subtrees rooted at each of the child nodes
from left to right.

2https://github.com/pandas-dev/pandas/pull/49661
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Finally, we perform a second post-order traversal in the same order as before to compute
the final result by performing inner or cross joins with the merge function of Pandas.

Partitioning-based algorithm
In our evaluation of cyclic queries with three relations, we choose the smallest relation
R out of the three given relations for partitioning such that there exists a variable in
R that exists also in one other relation T , but not also in S. In case no such variable
exists, we answer the join query using the join_baseline function. If there are
multiple candidate variables, then we pick the one with the smallest number of unique
values in R by default, optionally the join_optimized function also enables random
variable selection. We then split relation R into the heavy-hitters R+ and light-hitters
R− partitions using the

√
n threshold, where |R| = n.

Subsequently, we join R+ first with the relation in which the partitioning variable does
not occur, i.e. S. On the other hand, R− is joined first with T , i.e. the relation which
the partitioning variable appears in.

In case we have a triangle query of the form R(X, Y ) ▷◁ S(Y, Z) ▷◁ T (X, Z), both
intermediate results would have already all variables that occur in the final result. Since
we are not interested in duplicate results for this type of query, it would therefore
be sufficient to perform a semi-join between the intermediate results and relations T
respectively S. However, this behaviour might not be wanted by a user in general for
a cyclic query involving three relations as this could cause a difference compared to
performing a regular sequence of two-way joins. This is due to semi-joins not producing
duplicates for every matching tuple in the other relation. Therefore, we perform an inner
join by default in this case, and allow a user to optionally specify that a semi-join should
be performed instead. If the intermediate results do not contain all the variables that
appear in the final result, we must of course perform inner joins in any case.

Finally, we obtain the final result by taking the union of the two intermediate results.

7.3 Implementation
For evaluation purposes, we have added the possibility to repeat a query execution with
the same strategy. This has been facilitated by adding a second return argument besides
the DataFrame object that can be optionally fed as input to the join_baseline and
join_optimized functions. A strategy hereby includes either a join order in case the
baseline function has been applied; a join tree with a root node and associated pre-order
and post-order traversal sequences in case the Yannakakis algorithm has been used; or the
assignment of the given DataFrame objects to the R, S, T scheme and the specification
of the partitioning variable if the partitioning-based algorithm has been utilized.

The Pandas join optimizer has been developed for Python 3.9 and higher. Beyond that,
two Python packages must be installed on the system to ensure the successful execution
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of our implementation. First, we recommend installing Pandas3 version 1.5.3. Second,
we use NetworkX4 version 3.0, which is a Python package for working with graphs. It
provides the necessary data structures for representing graphs and implements a variety
of graph algorithms, including some relevant to our implementation.

Since the implementation does not rely solely on the Pandas package, we have decided that
instead of integrating it directly into the Pandas library, the better approach is to enable
our join optimizer to be published as a separate Python package. Therefore, we have
already prepared the setup.py file required for this. The package can be uploaded to the
Python Package Index (PyPi5), which provides a directory of Python software packages.
After an upload to PyPi, users can then simply install the package with the pip6 package
installer and use one of the two join functions, provided that the other requirements for
the Python environment are met. The source code for the implementation is available
here: https://github.com/steindlmedia/pd_join_optimizer

3https://pandas.pydata.org
4https://networkx.org
5https://pypi.org
6https://pip.pypa.io/
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CHAPTER 8
Empirical evaluation

In this chapter, we conduct the empirical evaluation of our software prototype. First, we
describe which datasets and queries were selected for the evaluation. We then explain
how we obtained the datasets and transformed respectively cleaned them so that they
can be used for query execution. Next, we outline how the queries are executed, and
specifically how the join functions described in the previous chapter are used. We then
explain how the evaluation was performed. Finally, we present the results of our empirical
evaluation.

8.1 Selection of datasets and queries
In order to acquire relevant data sets or queries, we looked at papers on related systems
that claimed to improve the evaluation of acyclic queries or triangle queries.

Tu et al. have evaluated their query compiler DunceCap [TR15] with triangle queries on
two datasets from the Stanford Network Analysis Project (SNAP) [LK14], Facebook1

friend lists and Arxiv GR-QC2 (General Relativity and Quantum Cosmology) collabo-
ration network. Aberger et al. have performed the evaluation of their EmptyHeaded
[ATOR16, ALT+17, ALOR17] prototype engine with triangle queries on the Google+3

social circles, LiveJournal4 social network, Orkut5 social network and Patents 6 citation
network datasets from SNAP. The statistics provided by SNAP for these selected datasets
are given in Table 8.1.

1https://snap.stanford.edu/data/ego-Facebook.html
2https://snap.stanford.edu/data/ca-GrQc.html
3https://snap.stanford.edu/data/ego-Gplus.html
4https://snap.stanford.edu/data/soc-LiveJournal1.html
5https://snap.stanford.edu/data/com-Orkut.html
6https://snap.stanford.edu/data/cit-Patents.html

43

https://snap.stanford.edu/data/ego-Facebook.html
https://snap.stanford.edu/data/ca-GrQc.html
https://snap.stanford.edu/data/ego-Gplus.html
https://snap.stanford.edu/data/soc-LiveJournal1.html
https://snap.stanford.edu/data/com-Orkut.html
https://snap.stanford.edu/data/cit-Patents.html


8. Empirical evaluation

Facebook Arxiv Google+ LiveJournal Orkut Patents
Nodes 4039 5242 107614 4847571 3072441 3774768
Edges 88234 14496 13673453 68993773 117185083 16518948
# Triangles 1612010 48260 1073677742 285730264 627584181 7515023

Table 8.1: Statistics provided by SNAP [LK14] for selected datasets containing triangles

We experimented with these datasets by loading them into a PostgreSQL database and
executing the triangle query shown in Listing 8.1, which aims to find triangles in the
dataset, with a triangle being defined as a set of three points connected by edges such
that the first point is connected to the second, the second is connected to the third, and
the third is connected to the first. We noticed that running the query on the Facebook
dataset first gave an empty result. By adding the reversed edges to the dataset, we were
able to get a non-empty result. We reason that only directed edges are stored in the
dataset and adding the reversed edges results in an undirected set of edges which enables
us to find triangles.

Listing 8.1: SQL for triangle query
SELECT a.x, a.y, b.y AS z
FROM dataset a
JOIN dataset b ON a.y = b.x
JOIN dataset c ON b.y = c.x
WHERE a.x = c.y;

To our surprise, we observed that the number of triangles found by the query for the
Facebook and Arxiv datasets did not match the numbers given on the SNAP website for
these datasets. We found multiples of the specified values, namely 9672060 respectively
289779 triangles. Due to the other SNAP datasets listed before being much larger, and
the PostgreSQL database not having an optimization for this type of queries, we were not
able to execute the triangle query on them, since we got a "No space left on device" error.
Hence, we could not verify the number of triangles for these datasets and whether we
need to add the reverse edges to find them. One possible explanation for the discrepancies
could be that the statistics are outdated. Therefore, we will treat the results of the query
execution with the PostgreSQL DB as ground truth for the correctness verification of
the join execution with Pandas later on.

Aberger et al. have also evaluated their EmptyHeaded engine using a standard RDF
workload, the LUBM [GPH05] benchmark. This benchmark provides a synthetic data
generator that produces RDF data for a university ontology. The data generator has
a scaling factor that is expressed in terms of the number of universities to generate.
The authors of EmptyHeaded generated 133.6 million triples for their evaluation, which
is equivalent to LUBM-10007. Instead of storing the RDF data as triples in a single
table, they used vertical partitioning as it turned out to deliver better performance. As

7https://www.w3.org/2007/OWL/wiki/images/c/cf/Zhe-f2f1.pdf
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Dataset name # Queries # Acyclic queries # Triangle queries
LUBM-1000 12 10 2
IMDB 14 14 0
Facebook 1 0 1
Arxiv 1 0 1
Google+ 1 0 1
LiveJournal 1 0 1
Orkut 1 0 1
Patents 1 0 1

Table 8.2: Overview of collected datasets and queries

a result, only the triples that share a predicate name were stored in the same table.
The benchmark includes mostly acyclic multiway star join patterns. There are only two
cyclic queries that have a triangle pattern (LUBM queries 2 and 9). The evaluation was
performed without the inference step for each query, as this is a standard practice for
benchmarking comparisons, according to them. LUBM queries 6 and 10 were removed as
they would correspond to the other queries in the benchmark without the inference step
[ATOR16, ALT+17, ALOR17].

Fischl et al. [FGP16] have conducted an empirical study on hypergraph properties
associated with CQs. For this purpose, they selected the conjunctive queries that are
part of the JOB [LGM+15] query collection. The job benchmark uses an IMDB dataset.

Table 8.2 gives an overview of the data sets and the associated queries to be used for the
empirical evaluation. It indicates how many of the queries are acyclic respectively have a
triangle query pattern.

8.2 Dataset collection and cleansing
The Python script get_datasets.py has been created to enable a user to import all
datasets chosen for the evaluation as CSV files into a specified directory, if they do not
exist yet. This process involves (1) either downloading a dataset in compressed form
from an external URL, or in the case of the LUBM benchmark, using a synthetic data
generator, and (2) various transformations to ensure that the resulting CSV files can be
imported into both Pandas DataFrame objects and a PostgreSQL DB without any data
inconsistencies that may arise due to CSV parser behaviour differences. In the following
we will outline the collection and cleansing pipeline for the different datasets.

To obtain a vertically-partitioned LUBM-1000 dataset in CSV format, we first use an
improved8 version of the associated data generator provided as a Java application for
generating an ontology containing 1000 universities in the N-Triples format. After that

8https://github.com/rvesse/lubm-uba
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we convert the N-Triples file to the CSV format using the W3CNTriplesParser of the
rdflib9 library. As part of this procedure, we remove the base URI of the ontology
from subject, predicate and object. Beyond that, we perform vertical partitioning such
that multiple CSV files are created, one for each predicate. Before we can invoke the
parser, we need to remove all lines starting with <> from the N-Triples file using the
application sed. This step ensures that the parser will not crash due to invalid lines
occurring in the file. Finally, we remove duplicate lines from one of the generated CSV
files, i.e. type.csv.

We download the IMDB dataset10 provided by Leis et al [LGM+15]. Some of the CSV
files are not compatible with the read_csv11 function of Pandas. There are problems
regarding the quotation and escape characters, e.g. if a " character appears in a column
it should be escaped by another " character according to RFC-418012. However, in file
company_name.csv there are lines containing \" instead of "", for example. This
causes an error when trying to import the CSV file with Pandas. We have tried adding the
quotechar=’"’ and escapechar=’\\’ arguments to the read_csv function call.
But, in this case the backslashes from column value TBWA\CHIAT\DAY were removed,
which is not desired, as this led to a discrepancy in the results when executing a query
using both Pandas and PostgreSQL. Replacing \" with "" in the CSV files using the
sed application also did not fix all issues. As a result, we decided to use a PostgreSQL
Docker container to import the CSV files into a database and then re-export them as
CSV files. In this way, we transform the CSV files so that they are interpreted in the
same way by the parsers of Pandas and PostgreSQL. We thus ensure that the dataset can
later be imported into both Pandas DataFrame objects and a PostgreSQL DB without
any differences in the data, for example, a missing backslash character in one of them.

For the remaining graph datasets, which are only used to execute the triangle query, no
transformations were required apart from the extraction of the downloaded compressed
archives. This is due to these datasets containing only two numeric columns.

8.3 Query execution setup
The queries were obtained in SQL format, except for the LUBM queries, which were
defined in Datalog syntax. In order to run the queries with Pandas, we had to translate
them, and create executors.

The translation process involved creating a separate Python class for each query, contain-
ing functions for pre-processing and post-processing. For pre-processing, we first need
to load the required DataFrame objects, i.e. the relations occurring in the query, from
the dataset CSV files. Then, the loaded DataFrame objects must be filtered to match

9https://github.com/RDFLib/rdflib
10http://homepages.cwi.nl/~boncz/job/imdb.tgz
11https://pandas.pydata.org/pandas-docs/version/1.5/reference/api/pandas.

read_csv.html
12https://www.ietf.org/rfc/rfc4180.txt
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the selections specified in the query. Next, all columns are dropped from the DataFrame
objects that are neither needed for the join operation nor for the final result. After that,
we rename the column names so that a natural join can be performed. The preprocess
function then returns a list of DataFrame objects that can be fed into one of our two
join functions as input. The postprocess function accepts a single DataFrame object as
input, i.e., the result of a join function. It involves dropping columns that should not
be part of the final result, as well as renaming columns or performing aggregations if
specified in the original query. A single DataFrame object is returned that represents the
final result of the query execution.

Only for the queries belonging to the IMDB dataset, an aggregation has been defined in
terms of the computation of the minimum value for each of the columns occurring in the
result, which means that the result consists of only one row. However, we found that
the minimum and maximum functions of Pandas behave differently compared to their
counterpart in PostgreSQL, because Pandas apparently applies a different ordering of
strings. Since this can lead to discrepancies when comparing the execution results, we
have not performed any aggregation at all for the query executions of our evaluation.

We implemented three executors that can be used to evaluate a given query. Two of
them rely on Pandas, i.e. we make use of the pre- and postprocessing functions of a
query. Depending on the executor, either the join_baseline or join_optimized
function is used for evaluating the join query.

Correctness verification

A third executor has been added to verify the correctness of the results obtained by
the other two executors. This executor utilizes the Python package sqlalchemy13 to
connect to a PostgreSQL DB and to execute the SQL statement associated with a query.
Upon use, the executor checks if a PostgreSQL Docker container is already running. If
not, a new instance is created and an import of all datasets is performed. Alternatively,
it is also possible to start a PostgreSQL Docker container instance before use with the
interactive Python script postgres_container.py. It enables a user to import either
a single dataset or all of them.

The correctness verification between two executors can be performed with the Python
script compare_executors.py. The script executes all queries on both executors and
compares the execution results. The comparison is done in such a way that the order
of the rows and columns does not matter. If the DataFrame objects are not equal, the
reason for the mismatch is determined as follows. First, a cumulative count of duplicates
is added to both DataFrames so that we can ensure that we have the correct number of
duplicates in each of them. If there is a tuple that occurs n times in a DataFrame, we
add a sequential numbering so that the first tuple is assigned a 1 and the last n. Then,
an outer join is computed between the two DataFrames using the merge function of

13https://www.sqlalchemy.org
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Pandas. Finally, those rows are selected that are missing in one of the two DataFrames,
and an exception is thrown with this information.

8.4 Evaluation setup
As part of our evaluation, we measure both the runtime and peak memory usage of
the join operation during query execution. Since profilers incur additional overhead, we
repeat each query execution a second time with a profiler attached to measure the peak
memory usage.

We have chosen the Scalene [BSP22] profiler, which has recently been proposed by Berger
et al. for the Python ecosystem and has already seen widespread adoption. With its
novel sampling algorithm, it is able to simultaneously profile CPU, GPU, and memory
usage while only having an overhead of up to 30%. Berger et al. claim that Scalene has
the lowest overhead among accurate memory profilers. It provides information about
memory usage over time, which is important to us because we have higher memory usage
before the DataFrame filtering operations. This would mask the peak memory usage
during the join operation if only one value would be reported by the profiler. We extract
the peak memory usage of the join operation from the JSON report generated by Scalene
as follows. We only consider the line-level information provided for the source code of
the Python file containing the implementation of the two join functions. From this, we
then calculate the maximum value for the n_peak_mb field.

The evaluation is started with the Python script perform_evaluation.py. A user
can optionally specify (1) the number of runs to execute, (2) the strategy for selecting
the partitioning variable, and (3) disabling duplicate reduction for the partitioning-
based algorithm. In this context, duplicate reduction is not equivalent to the complete
elimination of duplicates, as duplicates may still be produced by the first (inner) join
that is performed for each of the two partitions. By default, each query is executed
10 times with both the baseline and the optimized executor. We use a different fixed
random seed for each iteration to enable a more meaningful comparison of results among
multiple evaluations with different parameters. We have disabled duplicate reduction
during our evaluation because we found that the semi-join in its current implementation
has a negative impact on the execution time of triangle queries. We have decided to
run the Python script execute_query.py in a subprocess for each query execution
for two reasons. First, this ensures that the evaluation process is not terminated by the
operating system if a memory overflow occurs during a query execution. Second, this
approach enables us to accurately capture the peak memory usage for each execution.
The CLI script is given the query to execute, which executor to use for it, and the last
two optional arguments listed before. If the subprocess is not started by Scalene, it
(1) stores the measured runtime for executing the join function in a CSV file, and (2)
stores the strategy used to execute the query in a pickle14 file. The evaluation process
then reads the CSV file and inserts the execution time into a DataFrame, which is later

14https://docs.python.org/3/library/pickle.html

48

https://docs.python.org/3/library/pickle.html


8.5. Results

exported as a CSV file. In case the CLI script is started with the profiler attached, the
strategy of the previous run is loaded from the pickle file and passed to the executor so
that it can be taken into account when the join function is called.

8.5 Results
The evaluation has been performed sequentially on a computer having an Apple M1 Pro
SoC with 32 GB unified memory. We provide the raw results in Appendix B. Based on
these results, we have computed the mean and standard deviation per query and executor
for both the execution time and peak memory usage, which can be seen in Table 8.3
respectively Table 8.4. Note that most of these queries are acyclic, only the ones marked
with the △ symbol are triangle queries. In the following, we will first analyse the results
for acyclic queries, followed by an investigation of triangle queries.

Figure 8.1a illustrates the mean and standard deviation of the execution time for acyclic
queries per executor. We can see that the optimized executor performs better than the
baseline executor for the vast majority of acyclic queries. In addition, the execution
times reported for the optimized executor tend to have lower variability. These results
are notable because (1) a good join order, as mentioned earlier, is generally difficult for
a user to choose and (2) the basic join function already performs a basic optimization
to perform cross joins at the end, if that is even necessary. A naive user may not have
considered this before when manually specifying a sequence of two-way joins, potentially
yielding worse results than our baseline. We found that the optimized executor performed
worse on only four of the 24 acyclic queries, i.e., queries 4c, 10b, 10c, and 32a on the
IMDB dataset. From our set of acyclic queries, these four queries are among those with
lower execution time, with a maximum mean value of 2276 ms for the optimized executor.
Although lower variability was observed for this executor in these cases, its execution
time was up to 68% longer compared to the baseline. For queries with longer execution
times, the optimized executor was always faster than the baseline executor. The highest
speed-up was observed for query 13d on the IMDB dataset, with a 4.68× speed-up.
Notably, queries 16b and 17e on the IMDB dataset could only be executed with the
optimized executor, as execution with the baseline executor resulted in an overflow of
available memory on our test machine. As can be seen in Figure 8.1b, using the optimized
executor resulted in a reduction of peak memory usage for the vast majority of queries
and lower variability in general. Among all 24 queries, only queries 4c, 10b, and 32a on
the IMDB dataset and query Q7 on the LUBM dataset exhibited higher peak memory
usage with the optimized executor, the latter query showing a 49% increase. The most
significant reduction in peak memory usage was seen for query 13d on the IMDB dataset,
i.e., a reduction of 83% compared to the baseline value.

We now examine the results for the triangle queries. Figure 8.2a and Figure 8.2b visualize
the mean and standard deviation of the execution time respectively the peak memory
usage per executor for these queries. Whereas query execution on the Facebook dataset
was accelerated by 13 % compared to the baseline, our optimized executor performed
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Table 8.3: Execution times (mean ± standard deviation) in milliseconds for baseline and
optimized executors

Dataset Query Baseline Optimized
(ms) (ms)

Arxiv △ 71.0± 3.1 78.1± 2.4
Facebook △ 2692.5±106.6 2347.5±107.9
IMDB 2a 2658.8±1805.5 1374.7±101.6
IMDB 2b 2489.4±1617.0 1319.3±115.5
IMDB 2c 1774.7±1857.5 1062.7± 23.5
IMDB 2d 2923.0±1994.7 1606.6±156.6
IMDB 4c 866.4±272.1 1118.4± 75.7
IMDB 8c 14 594.6±14 816.9 8747.3±779.0
IMDB 8d 15 918.2±13 603.4 7786.9±903.5
IMDB 10b 681.4±331.3 1147.2±111.3
IMDB 10c 1691.7±452.8 2276.4±202.6
IMDB 13a 10 853.7±13 179.8 3695.0±275.5
IMDB 13d 18 298.9±16 176.6 3906.9±151.0
IMDB 16b 12 677.7±2603.3
IMDB 17e 16 316.2±4125.3
IMDB 32a 665.9±294.4 1065.3± 19.4
LUBM Q1 888.5± 24.4 357.1±123.6
LUBM Q2△ 17 096.5±14 426.6 17 782.3±11 437.6
LUBM Q3 3647.6± 42.5 1298.2±825.5
LUBM Q4 22 133.8±4021.8 8586.9±3060.7
LUBM Q5 3691.6± 89.7 1597.5±817.0
LUBM Q7 10 179.8±4863.9 4868.0±2188.7
LUBM Q8 15 806.7±4993.0 7021.1±2114.4
LUBM Q11 81.1± 3.2 45.3± 18.5
LUBM Q12 202.1± 86.9 117.0± 44.8
LUBM Q13 880.8± 19.3 382.0±155.6
LUBM Q14 0.2 0.4
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Table 8.4: Peak memory usage (mean ± standard deviation) in MB for baseline and
optimized executors

Dataset Query Baseline Optimized
(MB) (MB)

Arxiv △ 44.8± 1.3 34.6± 4.9
Facebook △ 1055.7± 0.5 914.5± 3.5
IMDB 2a 1178.5±897.2 416.4± 3.4
IMDB 2b 1190.3±928.0 417.8± 10.7
IMDB 2c 817.9±809.6 415.7± 2.8
IMDB 2d 1060.8±716.0 418.5± 10.5
IMDB 4c 319.9± 49.0 410.9± 2.4
IMDB 8c 3030.4±1817.8 2721.3±570.0
IMDB 8d 3715.9±1729.4 3165.4±465.9
IMDB 10b 295.4± 66.0 297.0± 6.1
IMDB 10c 343.1± 36.2 302.2± 13.5
IMDB 13a 3503.8±4287.8 1000.0±145.1
IMDB 13d 6243.6±5232.0 1074.8±216.0
IMDB 16b 3416.4± 87.0
IMDB 17e 3387.8± 1.0
IMDB 32a 333.0± 66.9 421.6± 13.8
LUBM Q1 265.2± 53.6 188.6± 6.5
LUBM Q2△ 1973.6±1844.7 2653.0±2365.2
LUBM Q3 841.0±229.1 658.8
LUBM Q4 1730.4±155.4 1398.9± 0.9
LUBM Q5 720.7± 24.9 611.2
LUBM Q7 1222.4±375.3 1815.4± 4.3
LUBM Q8 1194.6±112.8 713.3± 0.1
LUBM Q11 20.7± 9.8 11.6
LUBM Q12 60.2± 24.3 48.8
LUBM Q13 249.0± 39.4 187.9
LUBM Q14 0.0 0.0
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Figure 8.1: Visualization of the mean and standard deviation of the execution time and
the maximum memory consumption per executor for acyclic queries

worse on the other two triangle queries with an overhead ranging from 4 % to 10 %,
although variability was around 20 % lower in both cases. In addition, we found the
average peak memory usage to be 13 % and 23 % lower for the queries on the Facebook and
Arxiv datasets, respectively. However, for the LUBM Q2 query, the memory consumption
for the optimized executor is 34 % higher along with 28 % more variability. Unfortunately,
we were unable to execute query Q9 on the LUBM dataset as well as the triangle query
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8.5. Results

on the Google+, LiveJournal, Orkut, and Patents datasets due to an overflow of available
memory on our test system.
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Figure 8.2: Visualization of the mean and standard deviation of the execution time and
the maximum memory consumption per executor for triangle queries
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CHAPTER 9
Conclusion

9.1 Summary

In this thesis, we have investigated whether structure-based approaches from database
theory, which have been shown to exhibit better runtime behaviour in theory, can also
be used effectively in practice and, in particular, in the context of Pandas. To this
end, we have extended Pandas with an open-source1 implementation of a function that
allows the user to specify a list of DataFrame objects to be joined with a natural join.
Depending on the type of join query, we apply a different algorithm from database
research with the intent to improve the execution time. For acyclic join queries, we use
the Yannakakis algorithm. In case of cyclic join queries with three relations, we apply
a partitioning-based worst-case optimal join algorithm with the goal of improving the
execution time for triangle queries – and cyclic queries with three relations in general.
Cyclic queries with more than three relations are beyond the scope of this work, so we
do not apply optimizations for them.

We have conducted an empirical evaluation to validate the benefits of integrating the
selected algorithms from database theory into Pandas. For this purpose, we have selected
both synthetic and real-world datasets, including LUBM, IMDB, as well as some graph
datasets. In total, we have executed 24 acyclic queries as well as triangle queries. Our
experiments have shown that our optimized join function significantly improves execution
time for most acyclic join queries through the use of the Yannakakis algorithm, while
adding overhead to only a very small number of queries that have a lower execution time.
The highest speed-up we have observed was 4.68 × compared to a baseline execution
involving a sequence of two-way joins. Furthermore, we have seen lower peak memory
usage for our optimized join function.

1https://github.com/steindlmedia/pd_join_optimizer
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9. Conclusion

However, the worst-case optimal join algorithm we have chosen for triangle queries,
which relies on partitioning a relation and applying different join sequences on the two
partitions, has only been able to improve the execution time for one out of three triangle
queries we have been able to run on our test machine. For the other two triangle queries,
the use of this algorithm has resulted in an increase in execution time of up to 10%,
although the variability has been about 20% lower compared to the baseline. We assume
that this might be due to the datasets used in these queries not having enough skew to
make a worst-case optimal join algorithm useful.

9.2 Future work
Worst-case optimal join algorithms are known to be particularly beneficial in situations
with big skew. The fact that our worst-case optimal join implementation does not lead
to a performance improvement in most cases is likely due to the absence of skew in the
data. To improve the execution time for triangle queries, a promising approach would be
to choose a different algorithm depending on the amount of skew.

In addition, the function we currently use to perform a semi-join (1) is not directly
integrated into the merge function of Pandas, so the usual data type validations are not
currently performed, and (2) has not been tuned for performance as it represents an
initial PoC for integration. We assume that a future version of the semi-join function
could also improve the execution time for the few acyclic queries on which our optimized
join implementation is currently outperformed by the baseline.

In addition, we do not currently consider nearly acyclic queries. Future work could exploit
hypertree decompositions in conjunction with the Yannakakis algorithm to improve the
execution time for this broader class of queries.

Finally, we think that the concepts of decomposition-based query evaluation and worst-
case optimal joins might also prove useful for other data preparation tools used in data
science, e.g., R’s data.frame.
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APPENDIX A
Queries

Table A.1: Queries on IMDB dataset (based on [LGM+15])

Name SQL syntax

2a

SELECT t.title AS movie_title
FROM company_name AS cn, keyword AS k, movie_companies AS mc,

movie_keyword AS mk, title AS t
WHERE cn.country_code = ’[de]’ AND k.keyword = ’character-name-in-title’
AND cn.id = mc.company_id AND mc.movie_id = t.id AND t.id = mk.movie_id
AND mk.keyword_id = k.id AND mc.movie_id = mk.movie_id;

2b

SELECT t.title AS movie_title
FROM company_name AS cn, keyword AS k, movie_companies AS mc,

movie_keyword AS mk, title AS t
WHERE cn.country_code = ’[nl]’ AND k.keyword = ’character-name-in-title’
AND cn.id = mc.company_id AND mc.movie_id = t.id AND t.id = mk.movie_id
AND mk.keyword_id = k.id AND mc.movie_id = mk.movie_id;

2c

SELECT t.title AS movie_title
FROM company_name AS cn, keyword AS k, movie_companies AS mc,

movie_keyword AS mk, title AS t
WHERE cn.country_code = ’[sm]’ AND k.keyword = ’character-name-in-title’
AND cn.id = mc.company_id AND mc.movie_id = t.id AND t.id = mk.movie_id
AND mk.keyword_id = k.id AND mc.movie_id = mk.movie_id;

2d

SELECT t.title AS movie_title
FROM company_name AS cn, keyword AS k, movie_companies AS mc,

movie_keyword AS mk, title AS t
WHERE cn.country_code = ’[us]’ AND k.keyword = ’character-name-in-title’
AND cn.id = mc.company_id AND mc.movie_id = t.id AND t.id = mk.movie_id
AND mk.keyword_id = k.id AND mc.movie_id = mk.movie_id;
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A. Queries

Name SQL syntax

4c

SELECT mi_idx.info AS rating, t.title AS movie_title
FROM info_type AS it, keyword AS k, movie_info_idx AS mi_idx,

movie_keyword AS mk, title AS t
WHERE it.info = ’rating’ AND k.keyword like ’%sequel%’
AND mi_idx.info > ’2.0’ AND t.production_year > 1990
AND t.id = mi_idx.movie_id AND t.id = mk.movie_id
AND mk.movie_id = mi_idx.movie_id AND k.id = mk.keyword_id
AND it.id = mi_idx.info_type_id;

8c

SELECT a1.name AS writer_pseudo_name, t.title AS movie_title
FROM aka_name AS a1, cast_info AS ci, company_name AS cn,

movie_companies AS mc, name AS n1, role_type AS rt,
title AS t

WHERE cn.country_code = ’[us]’ AND rt.role = ’writer’
AND a1.person_id = n1.id AND n1.id = ci.person_id
AND ci.movie_id = t.id AND t.id = mc.movie_id
AND mc.company_id = cn.id AND ci.role_id = rt.id
AND a1.person_id = ci.person_id AND ci.movie_id = mc.movie_id;

8d

SELECT an1.name AS costume_designer_pseudo,
t.title AS movie_with_costumes

FROM aka_name AS an1, cast_info AS ci, company_name AS cn,
movie_companies AS mc, name AS n1, role_type AS rt, title AS t

WHERE cn.country_code = ’[us]’ rt.role = ’costume designer’
AND an1.person_id = n1.id AND n1.id = ci.person_id
AND t.id = mc.movie_id AND mc.company_id = cn.id
AND an1.person_id = ci.person_id AND ci.movie_id = mc.movie_id
AND ci.movie_id = t.id AND ci.role_id = rt.id;

10b

SELECT chn.name AS character,
t.title AS russian_mov_with_actor_producer

FROM char_name AS chn, cast_info AS ci, company_name AS cn,
company_type AS ct, movie_companies AS mc, role_type AS rt,
title AS t

WHERE ci.note like ’%(producer)%’ AND cn.country_code = ’[ru]’
AND rt.role = ’actor’ AND t.production_year > 2010
AND t.id = ci.movie_id AND ci.movie_id = mc.movie_id
AND chn.id = ci.person_role_id AND rt.id = ci.role_id
AND cn.id = mc.company_id AND ct.id = mc.company_type_id
AND t.id = mc.movie_id;

10c

SELECT chn.name AS character, t.title AS movie_with_american_producer
FROM char_name AS chn, cast_info AS ci, company_name AS cn,

company_type AS ct, movie_companies AS mc, role_type AS rt,
title AS t

WHERE ci.note like ’%(producer)%’ AND cn.country_code = ’[us]’
AND t.production_year > 1990 AND t.id = mc.movie_id
AND ci.movie_id = mc.movie_id AND chn.id = ci.person_role_id
AND rt.id = ci.role_id AND cn.id = mc.company_id
AND ct.id = mc.company_type_id AND t.id = ci.movie_id;
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Name SQL syntax

13a

SELECT mi.info AS release_date, miidx.info AS rating,
t.title AS german_movie

FROM company_name AS cn, company_type AS ct, info_type AS it,
info_type AS it2, kind_type AS kt, movie_companies AS mc,
movie_info AS mi, movie_info_idx AS miidx, title AS t

WHERE cn.country_code = ’[de]’ AND ct.kind = ’production companies’
AND it.info = ’rating’ AND it2.info = ’release dates’ AND kt.kind = ’movie’
AND mi.movie_id = t.id AND it2.id = mi.info_type_id AND kt.id = t.kind_id
AND mc.movie_id = t.id AND cn.id = mc.company_id
AND ct.id = mc.company_type_id AND miidx.movie_id = t.id
AND it.id = miidx.info_type_id AND mi.movie_id = miidx.movie_id
AND mi.movie_id = mc.movie_id AND miidx.movie_id = mc.movie_id;

13d

SELECT cn.name AS producing_company, miidx.info AS rating, t.title AS movie
FROM company_name AS cn, company_type AS ct, info_type AS it,

info_type AS it2, kind_type AS kt, movie_companies AS mc,
movie_info AS mi, movie_info_idx AS miidx, title AS t

WHERE cn.country_code = ’[us]’ AND ct.kind = ’production companies’
AND it.info = ’rating’ AND it2.info = ’release dates’ AND kt.kind = ’movie’
AND mi.movie_id = t.id AND it2.id = mi.info_type_id AND kt.id = t.kind_id
AND mc.movie_id = t.id AND cn.id = mc.company_id
AND ct.id = mc.company_type_id AND miidx.movie_id = t.id
AND it.id = miidx.info_type_id AND mi.movie_id = miidx.movie_id
AND mi.movie_id = mc.movie_id AND miidx.movie_id = mc.movie_id;

16b

SELECT an.name AS cool_actor_pseudonym, t.title AS series_named_after_char
FROM aka_name AS an, cast_info AS ci, company_name AS cn, keyword AS k,

movie_companies AS mc, movie_keyword AS mk, name AS n, title AS t
WHERE cn.country_code = ’[us]’ AND k.keyword = ’character-name-in-title’
AND an.person_id = n.id AND n.id = ci.person_id AND ci.movie_id = t.id
AND t.id = mk.movie_id AND mk.keyword_id = k.id AND t.id = mc.movie_id
AND mc.company_id = cn.id AND an.person_id = ci.person_id
AND ci.movie_id = mc.movie_id AND ci.movie_id = mk.movie_id
AND mc.movie_id = mk.movie_id;

17e

SELECT n.name AS member_in_charnamed_movie
FROM cast_info AS ci, company_name AS cn, keyword AS k,

movie_companies AS mc, movie_keyword AS mk, name AS n, title AS t
WHERE cn.country_code = ’[us]’ AND k.keyword = ’character-name-in-title’
AND n.id = ci.person_id AND ci.movie_id = t.id AND t.id = mk.movie_id
AND mk.keyword_id = k.id AND t.id = mc.movie_id AND mc.company_id = cn.id
AND ci.movie_id = mc.movie_id AND ci.movie_id = mk.movie_id
AND mc.movie_id = mk.movie_id;

32a

SELECT lt.link AS link_type, t1.title AS first_movie,
t2.title AS second_movie

FROM keyword AS k, link_type AS lt, movie_keyword AS mk, movie_link AS ml,
title AS t1, title AS t2

WHERE k.keyword = ’10,000-mile-club’ AND mk.keyword_id = k.id
AND t1.id = mk.movie_id AND ml.movie_id = t1.id
AND ml.linked_movie_id = t2.id AND lt.id = ml.link_type_id
AND mk.movie_id = t1.id;
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A. Queries

Table A.2: Queries on LUBM dataset (based on [ALT+17])

Name Datalog syntax

Q1 out (x) ← type (x, ’GraduateStudent’),
takesCourse (x, ’Dept0.Uni0.edu/GraduateCourse0’).

Q2
out (x, y, z) ← memberOf (x, y), subOrganizationOf (y, z),

undergraduateDegreeFrom (x, z),
type (x, ’GraduateStudent’), type (y, ’Department’),
type (z, ’University’).

Q3 out (x) ← publicationAuthor (x, ’Dept0.Uni0.edu/AssistantProf0’),
type (x, ’Publication’).

Q4
out (x, y, z, w) ← worksFor (x, ’Dept0.Uni0.edu’), name (x, y),

emailAddress (x, w), telephone (x, z),
type (x, ’AssociateProf’).

Q5 out (x) ← type (x, ’UndergraduateStudent’),
memberOf (x, ’Dept0.Uni0.edu’).

Q7
out (x, y) ← teacherOf (’Dept0.Uni0.edu/AssociateProf0’, x),

takesCourse (y, x), type (x, ’Course’),
type (y, ’UndergraduateStudent’).

Q8
out (x, y, z) ← memberOf (x, y), emailAddress (x, z),

type (x, ’UndergraduateStudent’), type (y, ’Department’)
subOrganizationOf(y, ’Uni0.edu’).

Q9
out (x, y, z) ← type (x, ’UndergraduateStudent’), type (y, ’Course’),

type (z, ’AssistantProf’), advisor (x, z),
teacherOf (z, y), takesCourse (x, y).

Q11 out (x) ← type (x, ’ResearchGroup’),
subOrganizationOf(x, ’Uni0.edu’).

Q12 out (x, y) ← worksFor (y, x), type (y, ’FullProf’),
subOrganizationOf (x, ’Uni0’), type (x, ’Department’).

Q13 out (x) ← type (x, ’GraduateStudent’),
undergraduateDegreeFrom(x, ’University567.edu’).

Q14 out (x) ← type (x, ’UndergraduateStudent’).

For some equality conditions, abbreviations have been used to improve readability.
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APPENDIX B
Results

Table B.1: Query execution time and peak memory usage
Dataset Query Executor Execution time (ms) Peak memory usage (MB)

Arxiv △ baseline 76.6 44.4
68.6 48.5
68.6 44.4
68.7 44.4
74.7 44.4
68.7 44.4
70.6 44.4
74.8 44.4
70.0 44.4
68.8 44.4

optimized 78.9 43.8
81.4 32.3
81.2 43.8
79.3 32.3
79.0 32.3
76.7 32.3
75.4 32.3
75.5 32.3
78.5 32.3
74.6 32.3

Facebook △ baseline 2710.7 1055.5
2596.0 1055.5
2628.6 1055.5
2634.8 1055.5
2574.4 1055.5
2582.5 1055.5
2805.1 1055.5
2704.1 1055.5
2848.8 1055.5
2840.6 1057.1

optimized 2290.0 913.1
2336.1 913.1
2304.8 913.1
2628.7 913.1
2313.9 913.1
2432.0 913.1
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B. Results

Dataset Query Executor Execution time (ms) Peak memory usage (MB)
2296.1 916.2
2293.2 913.1
2284.6 924.1
2295.7 913.1

IMDB 2a baseline 3892.8 2105.9
6057.4 2043.7
819.6 310.6
1039.5 292.5
3891.8 2105.9
1232.0 356.9
1048.1 292.5
3473.7 1756.5
1257.0 414.7
3876.2 2105.9

optimized 1165.8 418.4
1426.7 420.9
1428.9 420.9
1418.4 413.0
1200.8 418.4
1413.4 413.0
1411.5 413.0
1441.8 414.6
1418.6 413.0
1421.4 418.4

2b baseline 3863.1 2105.9
783.1 271.7
784.3 261.2
3879.2 2068.3
4036.4 2050.6
4158.2 2073.0
4142.4 2050.6
1255.3 414.7
977.5 324.4
1014.9 282.6

optimized 1169.2 418.4
1376.8 413.1
1386.8 417.0
1388.2 416.9
1376.7 413.0
1421.7 413.0
1376.1 447.6
1144.4 413.0
1146.8 413.0
1405.8 413.0

2c baseline 5857.3 2041.9
3879.7 2105.9
786.4 310.6
785.9 310.6
784.0 347.1
804.9 310.6
3099.7 1810.6
519.0 310.6
784.9 310.6
445.2 320.3

optimized 1035.1 418.4
1035.3 418.4
1067.8 413.0
1099.8 413.1
1072.7 418.4
1070.0 418.4
1048.7 418.4
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Dataset Query Executor Execution time (ms) Peak memory usage (MB)
1065.7 413.0
1036.8 413.0
1094.9 413.0

2d baseline 2214.9 751.2
2606.5 894.9
2593.7 894.9
810.8 424.8
806.9 302.2
5839.8 2045.0
810.9 347.1
2588.0 846.2
5539.3 2050.6
5419.6 2050.6

optimized 1489.5 413.0
1730.2 418.4
1542.0 413.0
1839.0 417.2
1837.2 418.4
1484.9 413.1
1720.0 418.4
1466.3 413.0
1488.0 447.6
1469.0 413.1

4c baseline 930.8 298.4
1413.4 414.9
940.7 297.7
596.2 236.1
1105.5 356.8
938.7 337.3
602.0 313.9
944.1 318.5
592.1 350.4
600.4 275.0

optimized 1172.1 409.2
1163.6 406.2
1166.2 409.6
965.6 413.0
1106.2 413.0
1106.2 413.0
1007.8 413.1
1198.7 409.6
1158.8 409.6
1138.8 413.0

8c baseline 47860.4 6425.7
5067.2 899.7
5238.4 1833.1
5735.2 1832.4
35154.3 5785.5
11824.9 3550.9
12804.4 3007.5
5284.3 1833.1
5520.4 1833.1
11456.4 3303.4

optimized 9924.1 3379.7
7777.1 2281.3
8495.6 2281.3
8191.7 2280.2
8483.2 2281.4
7843.2 2273.6
9213.1 3387.5
9117.9 3387.4
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B. Results

Dataset Query Executor Execution time (ms) Peak memory usage (MB)
9950.8 3379.7
8476.6 2281.4

8d baseline 7099.9 3098.9
2757.8 1833.1
2636.1 899.7
9107.7 3028.0
6856.2 3105.0
31849.7 5763.1
33156.3 5327.2
34603.5 5776.5
25785.5 5342.7
5329.2 2985.4

optimized 8329.7 3387.4
8466.5 3379.7
6225.5 2281.3
8142.2 3387.5
8479.7 3388.3
7956.9 3387.4
5994.6 2281.4
8026.5 3387.5
8226.5 3386.2
8021.0 3387.5

10b baseline 645.6 291.2
400.7 194.0
535.0 217.9
990.7 334.5
872.4 289.8
549.8 361.5
1432.1 364.7
326.7 227.5
499.2 291.2
561.5 382.2

optimized 1162.3 294.9
1207.3 298.1
848.3 290.5
1199.7 298.1
1198.5 287.5
1194.8 298.1
1124.1 294.9
1187.1 304.2
1233.7 308.7
1116.1 294.9

10c baseline 2386.2 373.1
1877.4 365.2
932.4 316.6
1974.2 359.5
1429.3 309.7
1499.6 418.6
1085.3 315.2
2061.9 338.2
1733.9 302.1
1936.5 332.5

optimized 2493.8 290.6
2444.6 290.6
2270.4 320.8
2493.3 290.6
2169.0 293.6
2419.5 322.4
2009.9 293.6
2009.6 314.8
2410.9 311.8
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Dataset Query Executor Execution time (ms) Peak memory usage (MB)
2043.1 293.5

13a baseline 43146.5 14620.4
5573.7 1188.3
3035.3 1072.7
9023.1 2500.4
2858.6 1160.5
3666.4 1018.6
2416.2 1545.9
3968.0 1006.2
10087.3 5146.6
24761.3 5777.9

optimized 3142.5 1396.8
3699.7 1068.9
3890.6 940.9
3547.3 940.9
3437.1 940.9
3988.0 944.2
3852.0 941.3
4033.9 940.9
3792.5 940.9
3566.6 944.1

13d baseline 32232.7 13454.5
3432.8 1102.4
32252.8 13457.0
15201.7 3937.4
14736.3 5329.3
53564.1 13262.6
5223.6 1714.2
8358.3 2682.5
13259.0 6470.1
4727.8 1025.5

optimized 3651.8 944.2
3779.8 941.6
3911.6 940.9
4114.2 934.8
3832.4 940.9
3851.7 1387.9
3934.1 1389.4
4173.7 940.9
3893.5 940.9
3926.1 1386.1

16b optimized 11341.7 3387.3
10840.2 3387.4
13467.5 3395.2
13632.9 3387.5
16997.7 3664.0
14870.2 3390.5
8369.4 3386.7
14041.6 3390.5
9593.5 3387.4
13622.8 3387.5

17e optimized 16760.3 3390.5
20938.7 3387.4
16492.2 3387.6
17681.1 3387.4
21768.8 3387.4
16267.6 3387.5
10344.9 3387.4
8527.0 3387.4
18219.1 3387.4
16162.0 3387.5
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B. Results

Dataset Query Executor Execution time (ms) Peak memory usage (MB)
32a baseline 277.5 313.9

586.9 325.2
913.2 516.4
889.8 323.7
932.2 284.8
921.8 325.9
561.9 313.9
309.0 325.1
976.1 276.3
290.4 325.1

optimized 1031.5 416.1
1067.5 417.2
1095.6 447.6
1065.8 416.1
1087.8 413.1
1060.5 416.1
1051.7 413.0
1063.0 415.8
1047.1 413.1
1082.2 447.6

LUBM Q1 baseline 933.6 350.8
868.2 230.3
858.9 230.3
896.8 246.2
909.5 246.2
852.1 230.3
880.8 379.5
892.0 246.2
899.0 246.2
894.4 246.2

optimized 215.0 183.5
457.2 196.2
455.5 196.2
446.8 183.6
446.7 196.2
455.5 196.2
217.8 183.6
455.0 183.6
211.5 183.5
209.7 183.6

Q2△ baseline 10527.5 1070.6
11302.7 1033.1
10001.4 1033.1
10329.5 1394.6
44313.7 5467.8
9606.6 1086.1
11519.9 1033.1
9057.3 1079.0
44551.6 5467.8
9755.0 1070.6

optimized 9449.2 1107.2
34426.4 6076.4
12898.5 1389.2
34476.8 6076.4
12053.0 1389.2
10567.8 1150.4
8335.2 1107.2
33757.6 6076.4
9336.5 1079.0
12521.7 1079.1

Q3 baseline 3599.3 717.2
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Dataset Query Executor Execution time (ms) Peak memory usage (MB)
3585.4 717.2
3681.6 717.2
3683.8 732.2
3679.9 1274.3
3581.2 781.3
3645.9 732.2
3661.8 732.2
3675.0 1274.3
3682.2 732.2

optimized 2265.9 658.8
2276.3 658.9
658.9 658.8
2206.8 658.9
661.1 658.8
2279.2 658.9
660.8 658.8
652.8 658.8
661.1 658.8
659.3 658.8

Q4 baseline 25788.1 1938.4
19760.5 1627.2
19870.9 1627.3
19764.7 1718.5
20041.6 1621.7
19570.6 1625.5
19768.0 1604.0
19786.4 1627.2
25953.0 1938.4
31034.1 1975.5

optimized 5546.8 1397.5
15493.1 1397.7
6812.4 1399.5
7459.5 1399.5
9187.5 1399.4
7475.0 1399.5
10124.3 1399.5
5679.4 1399.5
6796.0 1399.5
11294.7 1397.6

Q5 baseline 3787.0 716.9
3601.3 702.0
3806.2 716.9
3607.0 702.0
3803.1 716.9
3640.3 766.0
3628.5 766.0
3626.0 702.0
3782.2 716.9
3634.7 702.0

optimized 2238.9 611.2
2226.9 611.2
2214.7 611.2
645.9 611.2
651.2 611.2
2222.1 611.2
648.1 611.1
647.9 611.2
2235.9 611.2
2243.5 611.2

Q7 baseline 7303.9 1053.1
7327.3 1053.1
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B. Results

Dataset Query Executor Execution time (ms) Peak memory usage (MB)
17244.2 1753.3
6742.1 849.1
7372.3 1053.1
7332.8 1053.1
7355.2 1053.1
6706.8 849.1
17257.2 1753.3
17156.1 1753.3

optimized 3166.8 1810.5
7436.6 1818.7
3244.2 1818.7
7349.0 1818.7
7446.1 1818.7
3012.2 1810.5
3226.0 1810.4
3205.9 1818.7
3185.7 1810.4
7407.8 1818.7

Q8 baseline 19364.0 1242.8
15481.0 1201.4
9659.9 1035.1
15036.7 1285.1
9391.2 1035.4
20274.0 1274.2
15443.5 1277.7
22385.4 1274.2
9661.7 1035.2
21369.5 1285.1

optimized 4900.2 713.2
7324.0 713.4
7726.6 713.3
10456.4 713.3
4910.4 713.5
4924.8 713.2
10094.7 713.5
7638.9 713.3
7349.6 713.4
4885.8 713.5

Q11 baseline 79.2 10.4
81.2 10.4
83.4 24.0
84.1 24.0
81.5 34.7
83.6 24.0
78.3 10.4
85.1 24.0
80.4 35.0
74.5 10.4

optimized 30.0 11.6
31.5 11.6
70.4 11.6
33.3 11.6
66.7 11.6
65.5 11.6
30.3 11.6
30.5 11.6
30.5 11.6
64.0 11.6

Q12 baseline 122.1 36.6
299.9 91.7
298.0 91.2
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Dataset Query Executor Execution time (ms) Peak memory usage (MB)
267.5 92.6
118.9 36.6
120.5 36.6
120.2 36.6
122.5 54.4
298.6 59.2
252.9 66.3

optimized 92.9 48.9
97.5 48.9
202.5 48.8
94.7 48.8
93.8 48.8
103.3 48.8
94.6 48.8
92.5 48.9
201.1 48.8
97.1 48.8

Q13 baseline 898.6 232.4
869.1 250.2
899.4 232.4
862.5 219.3
872.5 241.2
860.7 241.2
863.6 241.2
868.7 241.2
909.4 358.5
903.0 232.4

optimized 507.4 187.9
497.8 187.9
502.7 187.9
203.0 187.9
506.0 187.9
503.8 187.9
201.7 187.9
497.1 187.9
198.9 187.9
201.5 187.9

Q14 baseline 0.2 0.0
0.2 0.0
0.2 0.0
0.2 0.0
0.2 0.0
0.2 0.0
0.2 0.0
0.2 0.0
0.2 0.0
0.2 0.0

optimized 0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
0.4 0.0
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