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J., Morgenstern, A., Nieuwendam, A., Oliva, M., Paquette, M., Rudy, A. C.
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Abstract

The Arctic tundra lowlands are to a large extent underlain by permafrost, which

counts as an essential climate variable. Observations show a nearly four-fold faster

warming here than the rest of the world during the last decades. The remote

nature of the Arctic means that collected ground data are scarce, which is why

availability and applicability of satellite data are crucial here.

Soil moisture data from the active layer are of high demand for permafrost

applications, such as modeling and flux up-scaling studies. Data from the C-band

active microwave remote sensing instrument Advanced Scatterometer (ASCAT)

provides an operational global coarse scale (25 km) surface soil moisture (SSM)

product in near real time since 2008. However, there are challenges to the radar

retrieval, related to the specific character of the Arctic, such as frozen ground

conditions, landscape heterogeneity and seasonal variations.

Here, such typically expected influences were examined for C-band backscat-

ter derived SSM. Comparisons with Permafrost Land Surface Model output and

analysis of finer resolution C-band SAR data showed backscatter deviations origi-

nating from water body surface roughness rather than actual SSM variations. The

influence of water surfaces together with investigations of in-situ soil moisture data

and meteorological data formed the base for suggesting precautions to the use

of the satellite product as well as improvements to it. A potential bias could be

explained by the lake fraction and to a great extent be attributed to wind. Hence,

a correction was suggested with meteorological data in lake rich areas.

The usage of higher spatial resolution data than currently available for oper-

ational global SSM is required in lowland permafrost environments. Temporal

variations of soil moisture across tundra are high, theoretically pointing to applica-
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bility of the temporal evolution of C-band backscatter soil moisture products. Soil

temperature measurements indicate an influence of temperature variations during

the first half of the summer.



Zusammenfassung

Das Tiefland der Arktischen Tundra ist zu einem großen Teil von Permafrost

unterlagert, der als wesentliche Klimavariable gilt. Beobachtungen zeigen, dass sich

dieses Gebiet in den letzten Jahrzehnten fast viermal schneller erwärmt hat als der

Rest der Welt. Durch die Abgescheidenheit großer Teile der Arktis, können vor Ort

kaum Bodendaten erhoben werden, weshalb Satellitendaten hier von entscheidender

Bedeutung sind.

Daten über die Bodenfeuchte sind essenziell für Anwendungen im Zusammenhang

mit Permafrost, insbesondere für Modellierungs- und Flux-Up-Scaling-Studien.

Daten des aktiven C-Band-Mikrowellen-Fernerkundungsinstruments Advanced

Scatterometer (ASCAT) werden seit 2008 verwendet, um ein grob aufgelöstes (25

km) Bodenfeuchteprodukt (Surface Soil Moisture, SSM) in nahezu Echtzeit zu

erzeugen. Die Herausforderungen für die Ableitung von SSM aus Radardaten, die

mit dem spezifischen Charakter der Arktis zusammenhängen, sind z.B. gefrorener

Boden, Landschaftsheterogenität oder saisonale Schwankungen.

In der vorliegende Arbeit wurden solche typischerweise erwarteten Einflüsse für

durch C-Band-Rückstreuung abgeleitete SSM in der Arktis untersucht. Auf der

Grundlage eines Vergleichs mit den Ergebnissen eines Landoberflächenmodells und

Untersuchungen von C-Band-SAR-Daten mit feinerer Auflösung konnten Rück-

streuungsabweichungen festgestellt werden, die eher auf die Oberflächenrauhigkeit

als auf tatsächliche SSM-Variationen zurückzuführen sind. Der Einfluss von Wasser-

oberflächen bildete, zusammen mit Untersuchungen von in-situ-Bodenfeuchtedaten

und meteorologischen Daten, die Grundlage, um Vorsichtsmaßnahmen für die

Verwendung des Satellitenprodukts sowie dessen Verbesserungen vorzuschlagen.

Der potenzielle systematische Fehler lässt sich durch den Seeanteil erklären und zu
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einem großen Teil auf den Wind zurückführen. Daher wird eine Korrektur mittels

meteorologischer Daten für seenreiche Gebiete vorgeschlagen.

Die Verwendung von Daten mit höherer räumlicher Auflösung als sie derzeit

für operative globale SSM verfügbar ist, ist in Permafrostumgebungen im Tiefland

erforderlich. Es gibt in der Tundra starke Schwankungen der Bodenfeuchte im

Satellitenprodukt über den Sommer, was auf die Anwendbarkeit der zeitlichen

Entwicklung von C-Band-Rückstreuprodukten der Bodenfeuchte hindeutet. Mes-

sungen der Bodentemperatur deuten jedoch auf eine weitere fehlerquelle, einen

Einfluss der Temperaturschwankungen in der ersten Sommerhälfte hin.
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Chapter 1

Problem statement

The Arctic tundra lowlands are to a large extent underlain by perennially frozen

ground, known as permafrost. As it is connected to a multitude of climate

processes, permafrost counts as one of the 50 essential climate variable (ECV),

defined by the Global Climate Observating System (GCOS). In recent decades,

the warming in the Arctic has been much faster than in the rest of the world,

a phenomenon known as Arctic amplification. Observations show a nearly four-

fold faster warming than the rest of globe during the last decades in this area

[Pithan and Mauritsen, 2014, Rantanen et al., 2022]. As a result, a degradation of

permafrost is already being observed and an increased degradation is predicted

[Grosse et al., 2011, Guo and Wang, 2017, IPCC, 2013, Turetsky et al., 2019]. The

accelerated release of carbon in teh form of carbon dioxide or methane into the

atmosphere from thawing permafrost and its effects on the global climate itself,

referred to as permafrost carbon feedback, is of great concern and an impor-

tant research focus since many years [Friborg et al., 2003, Christensen et al., 2004,

Miner et al., 2022].

The soil layer close to the surface, just above the permafrost table, which expe-

riences seasonal freezing and thawing is referred to as the active layer. In summer,

the thaw front moves downward from the surface so that the active layer deep-

ens, depending on heat inputs, insulation from vegetation, and soil characteristic,

whereas in autumn, the freeze front penetrates both downwards from the surface

and upwards from the permafrost table [Painter et al., 2016, Sjöberg et al., 2016].
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CHAPTER 1. PROBLEM STATEMENT 2

Knowledge about the amount of water that freezes in this active layer in autumn

is of interest, as this water will be available as potentially liquid water for the

following spring. Water content in the active layer is a control parameter for carbon

exchange with the atmosphere, as well as for the soil thermal properties and surface

energy balance [Westermann et al., 2017, Westermann et al., 2022]. Soil moisture

data is therefore of high importance for permafrost related applications, specifically

for modeling and flux up-scaling studies [Jung et al., 2010, Marchenko et al., 2008,

Zhang et al., 2011, Lupascu et al., 2013, Kimball et al., 2009].

The remote nature of large parts of the Arctic means that collected ground data

are scarce, which is why availability and applicability of satellite data are crucial

here. Global maps of near surface soil moisture are produced using coarse resolu-

tion (ca 25-50 km) sensors operating in the microwave frequencies (e.g. ASCAT

C-band 5.3 GHz, AMSR-E 6.9, 10.7, 18.7 GHz, SMOS and SMAP L-band 1.4 GH),

employing passive as well as active systems. A wide range of global satellite derived

soil moisture products are available today from microwave sensors, such as the

AMSR-E [Njoku et al., 2003, Owe et al., 2008], TRMM Microwave Imager (TMI)

[Owe et al., 2008], Special Sensor Microwave/Imager (SSM/I) [Owe et al., 2008],

WindSat Polarimetric Radiometer [Li et al., 2010], European Remote Sensing

Satellites ERS 1 and 2 [Wagner et al., 1999, Scipal et al., 2002], and the Ad-

vanced Scatterometer (ASCAT) onboard the Meteorological Operational satel-

lite (MetOp)[Bartalis et al., 2007, Wagner et al., 2010]. More recent data collec-

tion programs include the Soil Moisture and Ocean Salinity Mission (SMOS) of

the European Space Agency and the Soil Moisture Active and Passive (SMAP)

[Kerr et al., 2012, Sadri et al., 2020, Colliander et al., 2017] of the United States

National Aeronautics and Space Administration (NASA) [Entekhabi et al., 2010],

which were specifically designed for the purpose of soil moisture retrieval. Data

from the C-band active microwave remote sensing instrument Advanced Scat-

terometer (ASCAT) has been used since 2008 to produce an operational global

coarse scale (25 km) surface soil moisture (SSM) product in near real time
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[Bartalis et al., 2007, Wagner et al., 2010]. The method relies on the fact that

the grounds dielectric properties change with its moisture level [Ulaby et al., 1986],

hence soil moisture variations are assumed to be reflected in the backscatter

signal. Surface roughness and volume scattering, which also contribute to the

backscatter signal, are parameterized or assumed to be constant under certain

conditions [Bartalis et al., 2007, Naeimi et al., 2009a, Naeimi et al., 2009b]. The

ASCAT SSM product is suitable for continuous monitoring as it provides an 80

percent daily coverage, and it has been shown to capture the annual cycle as well

as fluctuations over shorter time [Naeimi et al., 2009b, Albergel et al., 2012].

However, the retrieval of SSM from satellite data can be particularly challenging

at high latitudes because of frozen ground conditions [Zhang et al., 2003], landscape

heterogeneity [Fletcher et al., 2010, Bartsch et al., 2016]), seasonal land cover vari-

ations and abundant water bodies [Smith et al., 2007], which also contribute to

the radar return signal [Bartsch et al., 2011, Wagner et al., 2013]. Freezing of the

ground usually results in low backscatter, similar to those attributed to dry soil,

which can lead to misinterpretations of the readings as SSM [Naeimi et al., 2012]

and snow scattering processes are even more complex [Bartsch, 2010]. Therefore,

frozen conditions are flagged and such satellite data are not included in the process.

The Arctic tundra is to a large extent characterized by wetlands, with poorly

drained, highly saturated soils and abundant ponds and lakes, with as much as

8% being covered by water bodies [Grosse et al., 2008, Walker et al., 2005]. The

existence of surface water within the scatterometer footprint poses a challenge for

the ASCAT SSM retrieval [Wagner et al., 2013]. The water surface roughness can

quickly increase at rain events or at high wind speeds, causing backscatter variations

unrelated to but misinterpreted as SSM variations. This retrieval issue is currently

taken into account through a flag that warns for high water fraction, derived

from the Global Lake and Wetland Database (GLWD) [Lehner and Döll, 2004]

and the Global Selfconsistent, Hierarchical, High-resolution Shoreline Database

(GSHHS) [Wessel and Smith, 1996]. This flag does not take wetland dynamics

into account or changes in inundation that may occur and it does not capture



CHAPTER 1. PROBLEM STATEMENT 4

small lakes, which is problematic since a large part of the tundra lakes are small

and may vary in size with the seasons. The impact that the presence of water

bodies through weather events may have on the backscatter and hence on the soil

moisture retrieval, was not yet quantified. The potential to correct such bias in

lake rich areas is likewise yet to be explored and attempted in this thesis. C-band

is expected to provide a means for assessment. A similar strategy was recently used

to quantify the impact of lakes on retrieval of freeze/thaw timing from ASCAT

[Bergstedt and Bartsch, 2017].

The spatial and temporal resolutions makes global land surface models suitable for

comparison with the ASCAT product. One such model is ORCHIDEE (ORganizing

Carbon and Hydrology in Dynamic EcosystEms) – a Permafrost Model incorporated

into a Land Surface Model (LSM) [Gouttevin et al., 2012]. Such inter-comparisons

can be useful in order to evaluate and improve the understanding of limitations

associated to the model as well as to the satellite product.

Lastly, in situ measurements are essential for evaluating satellite based soil

moisture estimates, and to understand what is represented in the backscatter signal

[Ceballos et al., 2005, Wagner et al., 2007]. A multitude of studies have validated

soil moisture detection approaches through comparison with in situ measurements

(e.g. [Rudiger et al., 2007, Dorigo et al., 2013, Colliander et al., 2017]). Because

soil moisture is highly variable in space and time it is a challenge to compare the

point observations of measurement stations to large scatterometer footprints of 25-

50 km size [Western et al., 2002, Wagner et al., 2013]. Soil moisture measurements

have been used for satellite validation purposes since the 1980s [Wang et al., 1980],

and the availability of soil moisture in situ data has increased [Krauss et al., 2010],

for example through networks such as the International Soil Moisture Network

(ISMN) [Robock et al., 2000, Dorigo et al., 2013]. Soil moisture observation net-

works have been installed and used for calibration/validation activities for the

Soil Moisture Active Passive (SMAP) from the National Aeronautics and Space

Administration (NASA) [Colliander et al., 2017], the Soil Moisture and Ocean

Salinity (SMOS) from the European Space Agency (ESA) [Bircher et al., 2012]
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missions, as well as the ESA Climate Change Initiative (CCI) soil moisture product

[Ikonen et al., 2016]. Even though these are all highly valuable efforts for quantita-

tive assessments of global remote sensing products, the networks themselves were not

always installed for that purpose. Multiple measurements may therefore not exist

in one satellite footprint [Crow et al., 2012], meaning that the point measurements

might not be representative for a larger area. The large spatial variability in soil

moisture [Western et al., 2002] is still challenging, and there is a need to understand

the variable satellite derived soil moisture product quality across different envi-

ronments [Dirmeyer et al., 2004, De Jeu et al., 2008, Sinclair and Pegram, 2010].

Small-scale networks also exist with relatively high spatial density (e.g. 3-5 km2;

[Jackson et al., 2010]) but in-situ data are overall concentrated to the mid-latitudes

and scarce in the Arctic.

Even though soil moisture shows high temporal and spatial variability, the

spatial variability has been shown to increases with the size of the area up to 10

km2, thereafter it remains relatively constant. A small number of measurements

are actually sufficient to obtain accurate areal measurements [Brocca et al., 2012].

Correlations between satellite and in-situ measurements are usually not very high.

Even so, a low correlation does not necessarily mean that the satellite data are

wrong. It may, for example, be explained by the fact that the point measured

in-situ data are not representative for a larger area, such as that of the satellite

footprint. The results simply need to be interpreted in their relative context.

It is also necessary to consider the accuracy and quality of the in-situ dataset

[Wagner et al., 2013].

par The difference in depth between an in-situ sensor, commonly installed at

10 cm or deeper, and the top layer through which the microwave signal can

penetrate is also important to consider. [Bartsch et al., 2012b] demonstrated

that Pearson correlations for sensors deeper than 10 cm are below 0.4 in tun-

dra environments. The microwave signal penetration depth also depends on the

moisture level itself (deeper penetration in drier soil). The shallow installation

of sensors has been shown to be the appropriate choice in tundra environment
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[Bartsch et al., 2011, Bartsch et al., 2012a]. The uppermost sensors are more di-

rectly affected by the atmospheric conditions than those in deeper soil layers, where

changes in moisture and temperature are slower and damped. Prior measure-

ments of in-situ unfrozen water content in tundra over time have been conducted

using bulk electrical conductivity and in-situ soil temperature data in Alaska,

demonstrating the potential to remotely ’visualize’ permafrost via autonomous

monitoring over field relevant scales [Dafflon et al., 2017]. Dedicated surveys of

near surface soil moisture which specifically advance our understanding of satellite

based retrieval issues are, however, still lacking.



Chapter 2

Objectives

Remote sensing is a valuable tool for monitoring and providing useful data products

for Arctic research. Meeting the needs for earth observation products in these

largely inaccessible regions, this thesis aims to explore the potentials of a coarse

scale soil moisture product retrieved from C-band scatterometer for the purpose of

permafrost studies. The focus of this thesis lies on soil and surface properties and

their connections to the soil dielectric properties, hence their influence on radar

C-band backscatter. The interrelations between coarse scale ASCAT backscat-

ter and the medium/finer scale SAR backscatter intensity are explored, in order

to understand the origin of potential misreadings of soil moisture in the coarse

scale data. In particular, the influence of water surfaces is investigated as well

as in-situ data in order to suggest improvements to the satellite product. The

intention is to enable circumpolar monitoring of higher quality than available so far.

The following objectives are addressed within the research articles which form

the basis of this thesis:

• Investigating the influence of landscape heterogeneity typical for the Arctic

environment on C-band backscatter variability other than related to changing

soil moisture and delineating the potential impacts on soil moisture retrieval.

• Quantifying the impact of sub-footprint size water bodies on C-band scat-

terometer observations and understand the specific origin of this bias.

• To lay out path ways for a correction of the soil moisture retrieval through

7



CHAPTER 2. OBJECTIVES 8

meteorological data and, in cases when such data are not available, to suggest

improved retrieval methods or flags that take typical landscape heterogeneity

in the Arctic into account.

• Analyzing the representativity of C-band scatterometer temporal dynamics in

tundra landscapes through in-situ soil moisture and temperature data.



Chapter 3

Methodology

The following methods have been used in the course of this thesis:

• Literature review, focusing on microwave remote sensing with emphasis on

Arctic regions, land cover (specifically lakes) of the Arctic and their inherent

wetness conditions, relations to soil properties and meteorological conditions,

as well as literature covering soil moisture validation data availability and

monitoring networks.

• Statistical and time series analysis of backscatter intensity with respect to

water bodies including Geographical Information Systems (GIS) analyses.

Here, the higher spatial resolution SAR data were used to assess the spatial

variability and representativity of the coarse scale scatterometer data.

• Statistical and time series analysis of backscatter compared to in-situ soil

moisture and temperature data.

• Statistical analyses for assessment of agreement between C-band derived SSM

and a Land surface Model (ORCHIDEE (ORganizing Carbon and Hydrology

in Dynamic EcosystEms) supporting the evaluation.

• Field survey in a tundra environment including installation of monitoring

stations for soil moisture and temperatures, specifically adapted for comparison

with C-band backscatter data.

• Statistical analysis of backscatter dependence on meteorological parameters

available from external datasets as well as the dedicated field survey.

9



Chapter 4

Summary of publications

4.1 Publication I: Assessing Seasonal Backscatter Varia-

tions with Respect to Uncertainties in Soil Moisture

Retrieval in Siberian Tundra Regions

In this study, backscatter variability which is not associated to changing soil

moisture, is investigated in order to examine and understand the possible impact

on soil moisture retrieval. ENVISAT Advanced Synthetic Aperture Radar(ASAR)

Wide Swath (WS, 120 m) data are used to understand and quantify impacts on

Metop Advanced Scatterometer (ASCAT, 25 km) soil moisture retrieval during the

snowfree period. Sites of interest are chosen according to ASARWS availability, and

by selecting areas where the agreement between outputs from the land surface model

ORCHIDEE and ASCAT derived SSM is particularly high or low. ORCHIDEE

(ORganizing Carbon and Hydrology in Dynamic EcosystEms) is a Land Surface

Model designed to represent terrestrial fluxes of carbon, water and the energy

budget, simulating the soil hydrological and thermal dynamics and incorporating a

soil freezing scheme necessary for high-latitude processes [Gouttevin et al., 2012].

In each of these sites, backscatter variations are analyzed with respect to the

ASCAT footprint area, defined as Regions of Interest (ROI).

The ice free ASAR acquisitions were used to separate land from water through

supervised classification (minimum distance). Higher backscatter than what is

typical for C-band for smooth water surfaces may be caused by ice cover, or by

wind and rain acting by increased surface roughness (e.g. [Bartsch et al., 2012b,

10
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Bartsch et al., 2009]). By replacing the actual backscatter values in all the de-

tected water surface areas by the value 20 dB, which is a typical C-band backscat-

ter value for smooth water surfaces in the used dataset [Bartsch et al., 2012b,

Bartsch et al., 2008], a reference dataset with smooth water surfaces was gener-

ated. By comparing the actual backscatter from the acquisitions in each ROI with

this reference dataset with smooth water, the impact on of C-band backscatter

could be derived and was averaged within areas that are approximations of the

ASCAT grid cells. This impact is hence referred to as backscatter deviation.

It could be shown that the low agreement with the model output is related to

water fraction in most cases. Regions with high backscatter deviations are evidently

characterized by a high percentage of total lake area, i.e., many of the ROI in

eastern Siberia. The sites in western and central Siberia show low backscatter

deviation and are areas with few lakes. In one of the sites (Markovo) the low

agreement between the model output and the SSM product is more likely explained

by the exceptionally scarce weather data from this area used to force the model

[Gouttevin et al., 2013].

The backscatter is seen to be impacted by partial short term surface roughness

changes, but no difference could be detected between periods with floating ice (in

snow off situation) and ice free periods at the chosen sites. The water fraction does

correlate with backscatter deviations within the ASCAT footprint areas (R=0.91-

0.97). Backscatter deviations of up to 5 dB can occur in areas with less than 50%

water fraction and an assumed soil moisture related range (sensitivity) of 7 dB in

the ASCAT data. The sensitivity is also positively correlated with water fraction in

regions with low land-surface model agreement (R = 0.68). A precise quantification

of the impact on soil moisture retrieval would, however, need to consider actual

soil moisture changes and sensor differences. The study demonstrates that the

usage of higher spatial resolution data than currently available for SSM is required

in lowland permafrost environments.
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4.2 Publication II: Impact of Backscatter Variations Over

Water Bodies on Coarse-Scale Radar Retrieved Soil

Moisture and the Potential of Correcting With Mete-

orological Data

In this context, satellite-derived soil moisture data are valuable for modeling

purposes. Assessing the applicability of such data at high latitudes is essential but

has, until recently, been given little attention. [Högström et al., 2014] pointed out

that seasonal land cover variations and the presence of small water bodies, which

are typical in the Arctic, can cause complications for soil moisture retrieval in

tundra environments. Here, it is hypothesized that a bias related to water fraction

is caused by variations in the water surface roughness. The impact is quantified

for the Metop Advanced Scatterometer by investigations of the higher spatial

resolution synthetic aperture radar (SAR) data acquired by ENVISAT Advanced

SAR over 11 sites across the Siberian Arctic. The bias calculated as an average

over time can be explained by the lake fraction: a water fraction higher than 20%

causes a bias of more than 10% relative surface soil moisture. This can to a great

extent be attributed to wind, based on which a bias correction was developed.

The correction was applied and evaluated with in situ soil moisture data, which

were available from one of the sites: the Lena Delta. Weak results are obtained

because water surfaces correspond mainly to rivers at this specific site. Variations

in discharge, water height, and streams may also affect the water surface roughness,

rather than wind only.
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4.3 Publication III: Evaluation of MetOp ASCAT-derived

surface soil moisture product in tundra environments

Satellite derived surface soil moisture data are available and highly demanded

for the Arctic but detailed validation is still lacking. Since early 2000s, soil

moisture monitoring networks are being widely established as part of hydrolog-

ical and meteorological observing capacities. The launch of the ESA mission

SMOS in 2009 [Kerr et al., 2012], and the launch of the NASA SMAP mission in

2015 [Entekhabi et al., 2010], lead to the establishment of new research networks

[Colliander et al., 2017]. Nevertheless, most of the in-situ soil moisture data avail-

able are concentrated to the middle and low latitudes, whereas the representation

of the Arctic is still today very limited [Dorigo et al., 2021].

The present study addresses this limit by dedicated soil moisture surveys in

the Arctic tundra. In-situ measurements of water content within the active layer

at four sites across the Arctic in Alaska (Barrow, Sagwon, Toolik) and Siberia

(Tiksi), taken in the spring after thawing and in autumn prior to freezing are

investigated and compared with C-band scatterometer SSM data. From these long

term monitoring sites already available, but not foreseen for satellite soil moisture

validation, only the measurements from shallow depth (5 to 10 cm) were used.

In addition to these relatively deep measurements, additional monitoring stations

were set-up for measurements close to the surface in the Lena River Delta, Siberia,

in order to account for the limited penetration depth of the radar signal. Volumetric

Water Content (VWC) sensors and temperature seonsors were placed in the moss

organic layer (depth 1) and in the fibric layer (depth 2), which is an approximately 2

- 3 cm thick water storage layer for the moss [Yoshikawa et al., 2004]. The stations

were installed in August 2013 and results collected in August 2014.

It is hypothesized that soil temperature variations after soil thaw impact MetOp

ASCAT satellite derived surface soil moisture (SSM) measurements in wet tundra

environments as C-band backscatter is sensitive to changes in dielectric properties

[Chen et al., 2018]. ASCAT SSM variations are generally very small, in line with

the low variability of in situ VWC. Short term changes after complete thawing of
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the upper organic layer, however, seem to be mostly related to soil temperature

changes. Correlations between SSM and in situ VWC are generally low, or even

negative. Mean-standard deviation matching results gives a comparably high

RMSE (on average 11%) for predictions of VWC. Further investigations and

measurement networks are needed to clarify factors causing temporal variation of

C-band backscatter in tundra regions.



Chapter 5

Author’s contribution

• Publication I: Development of the concept of the study, conducting all data

processing and analysis, designing the figures and writing the manuscript.

• Publication II: Development of the concept of the study, conducting all data

processing and analysis, designing the figures and writing the manuscript.

• Publication III: Development of the concept of the study and the concept

of the in-situ measurements, conducting the installation of the in-situ mea-

surements, conducting all data processing and analysis, the literature research,

and writing the majority of the manuscript.

15



Chapter 6

Scientific impact and outlook

Following the objectives of this thesis (see section ??), the key findings and main

scientific contributions for microwave remote sensing of surface soil moisture in the

Arctic regions are listed below:

• It could be shown that C-band backscatter derived SSM is indeed influenced

by landscape heterogeneity typical for the Arctic. Based on comparison with

Permafrost Land Surface Model output and investigations of finer resolution

C-band SAR data, backscatter deviations originating from surface roughness

rather than actual SSM variations could be detected. The findings can be

applied to systems relying on similar principles: change detection approaches

for C-band backscatter.

• The potential impact of sub-footprint size water bodies on C-band scatterome-

ter retrieved SSM could be quantified for the first time, with special emphasis

on wind and rain acting on the water surfaces. The average bias over time,

as calculated from finer scale SAR backscatter within areas representing the

ASCAT footprint, can be explained by the lake fraction and to a great extent

be attributed to wind speed rather than rain.

• A correction was suggested that makes use of meteorological data for lake rich

areas. The findings of this study demonstrate the necessity of higher spatial

resolution data than currently available for operational global SSM in Arctic

environments so that its typical landscape heterogeneity can be taken into

account.

16
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• It could be shown that temporal variations of soil moisture across tundra

are high, theoretically pointing to applicability of the temporal evolution of

C-band backscatter soil moisture products. Soil temperature measurements

indicate an influence of temperature variations during the first half of the

summer.

Northern latitudes still remain challenging for the retrieval from coarse resolution

instruments such as ASCAT [Hahn et al., 2021]. Poor performance in permafrost

regions was also shown more recently for soil moisture retrieval from passive

microwave records (SMAP), by [Wrona et al., 2017], concluding that this product

only should be used with extreme caution in high latitudes. Polarimetric C-band

SAR use on the other hand, shows promising results [Zwieback and Berg, 2019].

Investigations of airborne P-band observations in the context of soil moisture and

active layer thickness were also recently initiated [Chen et al., 2019]. The future

P-band SAR mission BIOMASS is expected to offer further insights on the utility of

this frequency. In general, SAR data availability currently still, howver, constraints

operational retrieval of time series at the spatial resolution required for permafrost

regions.
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Abstract: Knowledge of surface hydrology is essential for many applications, including
studies that aim to understand permafrost response to changing climate and the associated
feedback mechanisms. Advanced remote sensing techniques make it possible to retrieve
a range of land-surface variables, including radar retrieved soil moisture (SSM). It has
been pointed out before that soil moisture retrieval from satellite data can be challenging
at high latitudes, which correspond to remote areas where ground data are scarce and the
applicability of satellite data of this type is essential. This study investigates backscatter
variability other than associated with changing soil moisture in order to examine the possible
impact on soil moisture retrieval. It focuses on issues specific to SSM retrieval in the Arctic,32
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notably variations related to tundra lakes. ENVISAT Advanced Synthetic Aperture Radar
(ASAR) Wide Swath (WS, 120 m) data are used to understand and quantify impacts on
Metop (AAdvanced Scatterometer (ASCAT, 25 km) soil moisture retrieval during the snow
free period. Sites of interest are chosen according to ASAR WS availability, high or low
agreement between output from the land surface model ORCHIDEE and ASCAT derived
SSM. Backscatter variations are analyzed with respect to the ASCAT footprint area. It
can be shown that the low model agreement is related to water fraction in most cases.
No difference could be detected between periods with floating ice (in snow off situation) and
ice free periods at the chosen sites. The mean footprint backscatter is however impacted by
partial short term surface roughness change. The water fraction correlates with backscatter
deviations (relative to a smooth water surface reference image) within the ASCAT footprint
areas (R = 0.91−0.97). Backscatter deviations of up to 5 dB can occur in areas with less
than 50% water fraction and an assumed soil moisture related range (sensitivity) of 7 dB in
the ASCAT data. The sensitivity is also positively correlated with water fraction in regions
with low land-surface model agreement (R = 0.68). A precise quantification of the impact
on soil moisture retrieval would, however, need to consider actual soil moisture changes and
sensor differences. The study demonstrates that the usage of higher spatial resolution data
than currently available for SSM is required in lowland permafrost environments.

Keywords: permafrost; soil moisture; Arctic; high latitudes; water bodies; radar;
remote sensing; land surface model

1. Introduction

The pan-Arctic tundra lowlands are underlain by perennially frozen ground known as permafrost.
Permafrost warming is ongoing and predicted to increase in magnitude over the course of the 21st
century [1]. The potential impact that thawing permafrost may have on the global climate system
through the release of greenhouse gases has been a concern and a research focus since many years
(e.g., [2,3]). Changes to the thermal state of permafrost are linked to rising air temperatures and
variations in the precipitation. These changes to the ground thermal regime are also modifying
hydrological and biogeochemical dynamics [4] which are closely coupled with active layer processes [5].
The soil water content (SWC) of the active layer is a driving factor of ecosystem respiration [6] and
therefore soil moisture may be seen as a control parameter for carbon exchange with the atmosphere [7].
Soil moisture is highly variable in space and time, controlled by precipitation, redistribution and
evapotranspiration. Attempts to address this spatio-temporal variability have led to the development
of remote sensing techniques employing surface soil moisture (SSM) retrieval algorithms (e.g., [8–11]).
The availability and applicability of satellite data in the Arctic is in addition crucial because of the
remote nature of this region. Both passive and active microwave sensors are used to produce SSM
data, including global coarse resolution (25–50 km) datasets [12]. Past studies have often focused on
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developing methods using active microwave sensors. Scatterometer data have become central to SSM
retrieval studies. The ERS scatterometer derived SSM datasets have been used in a number of studies
(e.g., [13,14]). More recently the Advanced Scatterometer (ASCAT) data (e.g., [15,16]), including
an operational retrieval method implemented by the European Organization for the Exploitation of
Meteorological Satellites (EUMETSAT), is used for the same purpose. The ASCAT sensor, which
is onboard the polar-orbiting meteorological satellite MetOp (A and B), is well suited for continuous
monitoring, providing 80% daily global coverage [17,18] undertook a validation study that compares
soil moisture products from ASCAT as well as from the passive microwave Soil Moisture Ocean Salinity
(SMOS) radiometer with in situ observations. They found that the remotely-sensed SSM products show
a significant correlation with the in situ data, capturing the annual cycle as well as trends in short term
fluctuations in SSM.

Furthermore, the feasibility of using synthetic aperture radar (SAR) data to extract soil moisture
patterns at higher spatial resolution (1 km) have been investigated (e.g., [19,20]). There are limitations to
SSM retrieval from active microwave sensors in cold regions where frozen ground conditions, landscape
heterogeneity and seasonal land cover variations all contribute to the radar’s return signal [21]. Each of
these factors impacts on the radar scattering mechanism and hence complicates the SSM retrieval
methods that rely on relating differences in the ground’s dielectric properties to soil moisture levels
according to the empirical relationship established by [22]. Particularly challenging for the SSM retrieval
procedure are frozen ground conditions. In fact, the soil water index (SWI) method entirely relies on
unfrozen and snow-free ground conditions [23]. Phase changes between the liquid and solid states of
water have a significant effect on its dielectric properties [24–26]. Freezing of the ground usually results
in low backscatter values that are similar to those attributed to dry soils, which in turn may lead to
misinterpretation [27]. Furthermore, snow scattering processes are even more complex, depending on
depth, density and grain size of the snowpack, as well as wet or dry snow conditions [28]. Information on
snowmelt timings and duration, as well as freeze/thaw cycles can be extracted from the radar signal
itself [27,29]. However, they still pose a considerable problem for SSM retrieval in cold regions.
The future Soil Moisture Active Passive (SMAP) mission, due to launch in late 2014, will try to address
all of the aforementioned limitations by combining both radar and radiometer measurements [30].

Precipitation records from the field are sparse in remote areas such as the Arctic. Satellite data provide
input data with high temporal and spatial coverage, which in addition can be obtained considerably more
frequently than the field measurements can be collected, which makes it valuable for e.g., real-time
flood forecasting. Thus, to predict precipitation runoff and infiltration, remotely-sensed SSM data
are used as input and/or as validation data for hydrological models [31,32]. In cold regions, the
hydrological system is interconnected to the frozen ground, as it hampers the infiltration capacity
and percolation. Therefore, permafrost hydrology and active layer processes need to be taken into
account for accurate modeling [33]. While permafrost models primarily consider the extent of snow
cover and land surface temperatures, simulations of active layer processes rely on soil composition
including the active layer’s water retention capability [4]. Permafrost models are either developed
as stand-alone algorithms or as modules that are incorporated into Land Surface Models (LSMs) and
General Circulation Model (GCMs) [34]. One such LSM is ORCHIDEE (ORganizing Carbon and
Hydrology in Dynamic EcosystEms). This model is designed to represent terrestrial fluxes (carbon,
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water and energy budget). As such, it is a physically-based model that simulates the soil hydrological
and thermal dynamics, incorporating a soil freezing scheme necessary for appropriately modeling
high-latitude processes [35]. This present study comes in support of a comparison study between
modeling results and satellite-derived surface soil moisture [36], by putting effort in the evaluation of
the limitations associated with the radar backscatter behavior. In [36] ORCHIDEE output is compared
to an ASCAT SSM product, derived using the algorithm put forward by [17], aggregated on weekly time
steps and adjusted to polar regions [27].

In the present study, we take advantage of the higher spatial resolution data from the European Space
Agency’s Envisat Advanced Synthetic Aperture Radar (ASAR) operating in Wide Swath (WS, 120 m)
mode, to investigate how seasonal dynamics other than surface soil moisture changes can affect the radar
backscatter within proportions of the ASCAT footprints. The focus is on open water surfaces, whose
backscatter signal will be altered by winter lake ice covers and weather conditions, e.g., rain or wind.
The open water surfaces are defined by supervised classification (see methods). Previous studies of
coarse scale scatterometer data from Siberia have concluded that the contribution of lakes and rivers to
the overall normalized radar backscatter is negligible [37]. However, weather induced changes on the
open water surface and seasonal changes of its extent may be impacting on the dry and wet references
which are used as input for relative surface soil moisture retrieval [38] and the impact on coarse resolution
backscatter has so far not been quantified with respect to water fraction and water body size.

Gouttevin [36] formulates several hypotheses to explain the low agreement between ORCHIDEE
and ASCAT SSM, including the topographical impact (for which both the modeling and the SSM
retrieval algorithm are not suited), surface ponding (coarsely represented in ORCHIDEE) and unreliable
meteorological forcing data for land-surface modelling in remote, Arctic regions like North-Eastern
Siberia. The present study examines whether the presence of permanent open water surfaces may be an
additional source of disagreement between the SSM product and the model output.

2. Data and Methods

2.1. Study Sites

Across Siberia, 10 sites were selected (Figure 1). These sites were chosen in order to represent
the diversity of landscapes in the Arctic region and because of their proximity to meteorological
stations. Furthermore, among the sites, Kytalyk, Cherski, Vorkuta and Nadym are long-term permafrost
monitoring sites [39]. Lastly, an essential criterion for choosing the sites was the ASAR data availability
(several acquisitions per month). Kharampur and Vorkuta are underlain by sporadic permafrost and
Nadym by discontinuous permafrost, whereas all other sites are underlain by continuous permafrost, with
the exception of Muzi, which is not underlain by permafrost [40]. The site locations include lake-rich
as well as lake-poor areas. The flat and low altitude areas where the sites are located are generally wet.
The Western Siberian Lowlands, the coastal plains and the Taimyr Peninsula largely consist of tundra
landscapes with predominating wet conditions (e.g., [41,42]).
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Figure 1. Site overview indicating the locations of the 10 Arctic sites. Three of the
site names are abbreviated: Cherski (CHE), Kytalyk (KYT) and Andryuskino (AND).
A simplification (not including sub-classes for ground ice content) of the Circum-Arctic
map of permafrost and ground ice conditions [40] is shown as background. The extent
of continuous, discontinuous, sporadic and isolated patches of permafrost (PF), as well as
glaciers, land and ocean is indicated. Projection: Lambert Azimuthal.
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2.2. Satellite and in Situ Data

Both the ASCAT and ASAR instruments are active microwave sensors operating in C-band (frequency
5.2 GHz), which is suitable for SSM applications due to the contrasts in dielectric properties between dry
and wet soils [24–26]. This forms the basis for SSM retrieval methods from microwave remote sensing.
In the method by [8,43], instantaneous backscatter measurements are firstly normalized to a reference
incidence angle (40◦) and corrected for vegetation influences by making use of the scatterometer
multi-incidence angle viewing capacities. The values are thereafter scaled between the so called dry
(σ0-dry, 0%) and wet (σ0-wet, 100%) backscatter references, which correspond to the locally obtained
historical minimum and maximum backscatter. The resulting soil moisture product is a percentage-index
that relates to the uppermost 5 cm of the soil or (in the case of high water content) less. The relative soil
moisture is thus calculated as [8,43]:

θs(t) =
σ0(40,t)−σ0dry(40,t)

σ0wet(40,t)−σ0dry(40,t)
(1)

where θs(t) s(t) is the relative measure of the water content in the uppermost soil layer, ranging between
zero and one (1%–100%). The difference between the wet and dry reference is defined as the sensitivity.36
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MetOp-A ASCAT (launched 2006, C-Band, VV polarization) together with its predecessors onboard
ERS1 and ERS2 (European Remote Sensing Satellite) allows to obtain such references over a time period
reaching back to 1991 [9]. The ASCAT incidence angle ranges from 25◦ to 65◦ and the backscatter is
normalized to a standard incidence angle of 40◦ [44]. The MetOp ASCAT derived dataset which has
been used for this study is available globally from TU Wien [8,9,27,43]. The high global coverage
(approximately 2 days for mapping the entire globe) and coarse spatial resolution (25 km) makes it
appropriate for comparison with global models, such as the ORCHIDEE land surface model.

Since the retrieval algorithm makes use of a change detection technique [12,19] it may be sensitive
to other dynamics than those truly related to soil moisture, such as seasonal water body dynamics.
In addition, the SSM values can only be derived under unfrozen conditions. Therefore, an algorithm
for detecting the surface status and if necessary masking frozen surfaces (creating a surface status flag)
has already been implemented for high-latitude applications [17,27]. The ASCAT time series data are
available for a predefined discrete global grid (DGG; for definition see [17]). The grid format is based
on the assumption that the Earth can be modeled as a rotated ellipsoid. Each grid cell over land is
attributed a timeseries of backscatter values which are spatially resampled with an equal spacing of
12.5 km in latitude and longitude. The cells are identified by a unique grid cell index (GPI) [17]. For this
study the global original dataset (without temporal aggregation) has been used, except for the model
to remotely-sensed data comparison, where a weekly composite of the ASCAT data was used [45].
This specific dataset was developed as requested by users from the global modeling community within
the DUE-permafrost project. The weekly composite consists in daily records where the retrieved SSM
values from the preceding week are averaged.

The ASAR WS (C-band) dataset has a higher spatial resolution than ASCAT. ASAR was a ScanSAR
instrument on board ENVISAT. Its spatial resolution in wide swath (WS) mode is 120 m for all
sub-swaths [46]. ASAR had a revisit period of 35 days. Data availability is considerably constraint
compared to scatterometer data. Suitable time series can be obtained for a range of locations across
Siberia for selected years [47]. For this study, an ASAR WS dataset which was pre-processed over
Northern Eurasia for the time period 2007–2008 within the framework of the European Space Agency
(ESA) Support To Science Element (STSE) project ALANIS Methane [47–49] was used. Since the
backscatter signal decreases with increasing incidence angle of the radar beam relative to the surface, the
backscatter measurements are normalized to a common reference angle (30◦) using the SAR Geophysical
Retrieval Toolbox (SGRT), which is a scripting chain developed by the Institute of Photogrammetry and
Remote Sensing (IPF). The scripting chain calls the commercial SARscape or the free NEST software,
allowing for the automatization of the entire preprocessing procedure [47,50]. Single images are split up
into predefined subsets and stored as time series stacks. In addition, the surface status flag developed for
ASCAT [27] is used for masking the frozen ground condition and melting snow from the ASAR data.
Point-station data measurements of maximum- and minimum temperature, precipitation and wind speed
was obtained from the harmonized Global Summary of the Day and Month Observations dataset from
the Global Precipitation Climatology Center [51].
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2.3. Land Surface Model

The land surface model ORCHIDEE combines a multi-layer hydrological scheme recently improved
for high-latitude processes [35], with a detailed representation of the energy and carbon cycles and the
interface between soil and atmosphere. Of more relevance here is the hydrological scheme, which relies
on a vertical discretization of the Richards equation allowing for physically-based diffusion of liquid
water within the soil, up to a depth of 2 m. Soil freezing, vertical soil compaction and the effect of root
water uptake, are also accounted for [52]. When rainfall of meltwater exceed the infiltration capacity
of the uppermost soil layers, exceeding water either ponds or flows as surface runoff, depending on the
local topography. The model uses as input standard meteorological data (precipitation, air humidity,
pressure, temperature, and thermal and solar radiations), which are usually referred to as “forcing
data”. It produces several hydrological outputs, including vertically discretized soil moisture content,
subsurface and surface runoff and evapotranspiration. The ORCHIDEE land surface model has proven
able to reproduce observed hydrological features even in high-latitude regions [36].

The present study uses the model’s output for vertically discretized volumetric SSM of daily
resolution. In order to compare the average volumetric soil moisture calculated by the model to the
weekly aggregated ASCAT SSM data, a number of adaptations were made. The modeled soil moisture
from the uppermost 5 cm of the soil was masked out for frozen conditions and snow cover. For each
model grid cell, the local historical maximum and minimum references were found so that the SWI of
the model output could be established, rescaling between 0% and 100%. A weekly composite of the
model output from the second step was then produced on a daily basis for consistent comparison with
the ASCAT high-latitudes product from the DUE-permafrost project (see Sections 2.1 and 2.2) [36].
On average, the agreement between ORCHIDEE SSM and ASCAT SSM, as measured by the daily
correlation coefficient of the model and ASCAT weekly composites, is however quite low over our study
areas. Possible reasons for this outcome have been mentioned in the introduction.

2.4. Methodology

ASCAT SSM time series were retrieved for each DGG cell. For comparability, these DGG extents
were used to define regions of interest (ROI) within each ASAR grid stack. For each study site,
a 3100 km2 large area was divided into meshes of hexagons using the GPI as center points. This resulted
in 9–11 hexagonal ROI within each of the ten sites (Figure 2 shows the 11 ROI in Cherski).

A supervised classification (minimum distance) was performed on ice free ASAR acquisitions
with summer maximal lake expansion and water/land contrasts, to separate land from water. Higher
backscatter than the typical C-band backscatter for smooth water surfaces may be caused by (1) ice
covers on water surfaces and (2) wind and rain action. Wave ripples on the water body surface due to
wind and rain increase the surface roughness and hence lead to diffuse scattering and high backscatter
values [47,53]. The persistence of lake ice on large lakes well into the summer and the associated water
body classification issues have already been pointed out by [47]. To identify any water surface effects, the
water areas identified by the classification were replaced by the value −20 dB, which is a typical C-band
backscatter value for smooth water surfaces in the used dataset [47,54]. This builds the reference dataset.
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Figure 2. ASAR acquisitions from Cherski, 2008. (A) shows a time with high wind speed
and precipitation (11 August 2007); (B) shows a time with prevailing ice cover (17 June
2007); (C) illustrates an acquisition from 6 July 2007 when there is no disturbances on the
water surface. The overlain hexagon mesh shows the ROI and their grid point index number.

The mean backscatter result of the masking and replacement by a reference value, henceforth referred
to as refilling, was calculated for each ROI and for each available acquisition. This average from the
reference datasets was plotted against the original dataset. The mask effect, Δσ0, is the difference
between the original and the reference ROI average for each available acquisition. The acquisitions were
also visually interpreted together with meteorological data in order to identify any rain, ice and wind
conditions. In addition to the above described specific examination of the surface effects (potentially
from ice, rain and/or wind) it was investigated whether the level of agreement between the ASCAT
and ORCHIDEE SSM results could be related to the abundance of lakes. For this purpose, open water
fraction and lake size were calculated for each ROI from the ASAR WS data by converting the previously
described water classification to polygons. Criteria related to total water cover and lake size were defined
and used to separate ROI into three categories:

(A) More than 20% lake area per total area including only lakes larger than 10 km2

(B) More than 20% lake area per total area including only lakes smaller than 10 km2

(C) Less than 20% lake area per total area.

The fractional area of lake, lake count, Δσ0, ASCAT sensitivity and ASCAT-ORCHIDEE agreement
and the correlation thereof, were computed and analysed for each category. Here, the correlation is
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meant to determine whether significant relationships exist between lake characteristics, identified lake
effect on backscatter (Δσ0) and ASCAT SSM retrieval characteristics (sensitivity) or performance (here
assessed by the ASCAT-ORCHIDEE agreement). Since ice is assumed more likely to be present in early
summer than the high summer months, the Δσ0 during June was calculated separately from that during
July-August, to isolate eventual impacts of prevailing ice cover. For the same reason, a two sampled
t-test of the Δσ0 from June in relation to that in July-August was done in order to know if there was
a significant difference between these two time periods. Analyses of higher temporal resolution than
monthly could not be done due to the irregular acquisition intervals by ENVISAT ASAR WS [47].

3. Results

The original mean backscatter for the ROIs is always higher than or equal to the mean backscatter
from the reference image since frozen ground conditions and spring snowmelt events have been
excluded. Figure 3A shows the backscatter for one of the ROI in Cherski during 2007, including the
mean unmasked backscatter (black diamonds) and the mean of the backscatter after having applied the
water mask and replaced the backscatter values with the smooth water surface reference value (−20 dB)
(red crosses). It can be seen in Figure 3A and that the difference is in the order of more than 2 dB during
several occasions during the warm months of the year. Note that the winter months are excluded since
ASCAT soil moisture is derived only under unfrozen conditions (see Section 2.2). Figure 3B–D shows
the temperature, wind speed and precipitation for the same site and time period.

In three of the acquisitions from Cherski in 2007 where Δσ0 was found to be high, either precipitation
or high wind speed was identified by visual interpretation of the ASAR data and in the meteorological
record. One example is the acquisition from 11 August 2007, illustrated in Figure 2A (see Figure 3D
for precipitation data). Figure 2B shows the same area but an acquisition with presumed ice cover.
One occasion with presumed prevailing ice cover (17 June 2007) was visually identified for this site
during 2007, but strong effects were not recognized compared to the reference (smooth surface).
Figure 2C shows relatively smooth water surface conditions for Cherski (6 July 2007), as well as the
limits of the hexagonal ROI for this site and their GPI numbers. For Kytalyk, Andryuskino and partly
for Druzhina, the results were similar to those from Cherski. In Kharampur, Muzi, Nadym, Taimyr and
Vorkuta, Δσ0 is generally low and no significant backscatter change that could be related to weather
conditions was observed in the ASAR data. Scatterplots of the reference values as a function of the
original data for one of the ROI in Cherski (subject to high Δσ0 ) and one of the ROI in Kharampur (not
subject to a high Δσ0 ) are shown in the left and right panel of Figure 4, respectively.

To isolate the potential effect from prevailing ice cover the early summer months are separated from
the late summer months: the acquisitions from June are plotted as black diamonds whereas those from
July and August as red crosses. Figure 4B shows that the mean from the unmasked backscatter in the case
of Kharampur is similar to that of the masked (reference dataset). A clear difference between Δσ0 in the
low agreement sites compared to the high agreement sites can be seen. It can not be concluded that Δσ0

is different during the early summer months from the later summer months. When statistically testing the
null hypothesis that the Δσ0 is not significantly different in June compared to that in July–August over
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all ROIs, the p-value is 0.616, which is insufficient for rejecting the hypothesis (regardless if choosing
any of the common levels of significance: 0.10, 0.05 or 0.01) and supports our visual analysis.

Figure 3. (A) Time seriesof averaged backscatter Cherski 2007, ROI 3045391. Red crosses
correspond to the reference dataset, black diamonds show the original mean backscatter;
(B) The maximum (black) and minimum (red) temperature over 24 h); (C) wind speed
at 03h00 (black), 09h00 (red) and 15h00 (blue); and (D) total precipitation for 24 h.
Meteorological data from the harmonized CPC Global Summary of the Day and Month
Observations data set [51]. Dates are given in BE standard.
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Figure 4. Scatterplots of masked against unmasked ASAR backscatter for (A) Cherski
(ROI 3045387) and (B) Kharampur (ROI 2950873). The masking implies that lakes have
been masked and re-filled by −20 dB, as a reference backscatter value for smooth water
surfaces. Red crosses represent acquisitions in June and black represent acquisitions from
July–August. The zero difference line is shown as a black line.

A

B

The extracted data for each ROI, including Δσ0, lake count, lake area, ASCAT sensitivity and daily
correlation with ORCHIDEE from [36] are given in Table 1. This last value is a measure of agreement
between the modeled and remotely-sensed surface soil moistures in terms of temporal dynamics. Out of
the total 95 ROI, this table includes the 15 ROI with the maximum and the 15 with minimum Δσ0

in June, respectively. Further, Table 2 shows the correlation matrix for the parameters from Table 1,
calculated from all the 95 ROI, and separately for the low (including negative high correlation) and the
high agreement sites.

For the low agreement sites only (including negative correlation), the sensitivity correlates positively
with the total lake area (0.55) and the total number of lakes (0.68) and shows a strong correlation with
Δσ0, in June (0.71) slightly more so than in July–August (0.68). The ASCAT-ORCHIDEE agreement
correlates negatively with the sensitivity (−0.68) but, regarding Δσ0, displays similar agreement in June
(−0.53) and in July–August (−0.57). Further, it correlates moderately with the lake area (−0.55) and
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only weakly with the lake count (−0.30). That is to say, the areas with a low ASCAT-ORCHIDEE
agreement correspond to areas with a high water fraction, although they are not linked to a high number
of lakes. It is found that the ROI within the lake size group A and B are almost exclusively located within
areas of low agreement between the model output and the remote sensing product. This is the case for the
majority of the ROI in Andryuskino, Cherski and Druzhina. For Kytalyk, only the ROI with large lakes
present are related to low agreement between the model output and remote sensing product. A few ROI
within the site Muzi also fall within the group B but the daily correlation here is positive. Muzi contains
no lakes but the low Δσ0 seen here is related to the masking out of a river rather than lakes. The ROI
within the lake size group A and B also show a strong Δσ0, ranging from 0.55 to 2.61 dB in the case of
group A, from 0.14 to 2.38 for group B, whereas no more than from 0.00 to 0.94 for group C. Lake area
is more strongly correlated to the Δσ0 (0.92 in June, 0.91 in July–August) than the lake count is to the
Δσ0 (0.46 in June, 0.39 in July–August). Considering the correlation matrix for the high agreement
sites, only weak correlation if any at all are found, the caveat being the correlation between lake area
and Δσ0.

Table 1. Characteristics of the 15 ROIs with the highest Δσ0 and the 15 lowest, respectively
(separated by the dashed line). The number of lakes, lake area percentage per total ROI area,
sensitivity (ASCAT dry-wet reference) in decibel, Δσ0 in decibel and the daily correlation
between the ORCHIDEE model and ASCAT SSM are presented in the columns. The ROIs
in group A are written in bold, B in italic and C as plain text. The site names in the table
are Cherski (CHE), Kytalyk (KYT), Taimyr (TAI), Andryuskino (AND), Druzhina (DRU),
Voruta (VOR), Muzi (MUZ) and Kharampur (KHA).

Site Name GPI
June Δσ0 (dB) July–August Δσ0 (dB) Lake Sensitivity

Mean (dB)
Daily

CorrelationMin Max Mean Min Max Mean Count Area (%)

CHE 3045387 0.85 4.78 2.61 1.01 5.09 2.44 34 44.84 7.29 −0.35
CHE 3045391 0.41 4.62 2.60 0.67 4.50 2.22 36 40.82 7.49 −0.35
KYT 3084867 1.43 4.16 2.46 1.09 3.98 2.46 12 39.48 6.27 −0.17
CHE 3045395 0.69 4.25 2.38 0.02 4.05 1.80 35 41.83 7.08 −0.35
TAI 3120067 0.94 4.12 2.25 0.42 3.85 2.97 3 41.17 5.22 0.10

CHE 3047693 1.96 2.37 2.19 1.46 2.45 1.95 27 23.84 7.65 −0.35
TAI 3118181 0.83 3.53 2.08 0.38 3.33 2.70 1 32.44 6.01 0.10

CHE 3047689 0.49 3.21 1.82 0.59 3.53 1.66 41 32.19 7.73 −0.35
CHE 3047685 0.21 3.33 1.81 0.49 4.01 1.70 42 31.99 7.85 −0.21
CHE 3047697 1.54 1.88 1.74 1.31 2.06 1.59 35 17.26 6.89 −0.35
AND 3049899 0.62 2.60 1.72 0.36 2.05 1.19 43 23.83 6.06 −0.13
AND 3052177 0.49 2.24 1.47 0.05 1.91 1.01 27 23.44 5.89 0.00
DRU 3033509 0.21 2.92 1.46 0.47 2.85 1.28 22 18.91 5.74 −0.26
AND 3047609 0.61 2.32 1.46 0.41 1.86 1.08 45 22.26 6.36 0.00
CHE 3045399 0.38 2.25 1.42 0.20 2.35 1.04 45 30.09 6.41 −0.35

KHA 2948131 0.00 0.01 0.01 0.01 0.01 0.01 0 0.00 5.26 0.34
TAI 3120063 0.00 0.01 0.00 0.00 0.01 0.00 0 0.00 5.18 0.10

KHA 2945369 0.00 0.00 0.00 0.00 0.01 0.00 0 0.00 5.40 0.34
VOR 3013089 0.00 0.00 0.00 0.00 0.00 0.00 5 0.61 5.91 0.45
MUZ 2961321 0.00 0.00 0.00 0.00 0.00 0.00 0 0.00 4.50 0.23
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Table 2. Correlation matrix including the number of lakes, lake area percentage per total
ROI area, sensitivity (ASCAT dry-wet reference) in decibel, Δσ0 in decibel and the daily
correlation between the ORCHIDEE model and ASCAT SSM. The correlation is retrieved
for all the 95 ROI in total. The correlations for ROI with lower agreement than or equal to
zero (47 ROI) are presented separated from those with higher agreement than zero (48 ROI).
See legend below the table for explanation of bold, italic and asterisk.

Low Agreement Sites

Lake count Lake area Sensitivity June Δσ0 July–August Δσ0 Daily correlation

Lake count *** *** *** **
Lake area *** *** *** ***
Sensitivity 0.55 0.68 *** *** ***
June Δσ0 0.46 0.92 0.71 ***

July–August Δσ0 0.39 0.91 0.68 ***
Daily correlation −0.30 −0.55 −0.68 −0.53 −0.57

High Agreement Sites

Lake count Lake area Sensitivity June Δσ0 July–August Δσ0 Daily correlation

Lake count | | | |
Lake area | *** *** |
Sensitivity 0.03 −0.04 | | |
June Δσ0 0.16 0.97 0.00 |

July–August Δσ0 0.10 0.96 0.00 |
Daily correlation 0.01 −0.25 0.38 −0.25 −0.30

| = p-value insufficient; bold = strong correlation; italic = moderate correlation; ** = p-value < 0.01;
*** = p-value < 0.001.

Figure 5 shows Δσ0 from June in dB plotted against the ASCAT-ORCHIDEE agreement. It can be
seen that the Δσ0 increases with daily correlation, notably so for group A and B. The R2 can not be
said to be strong for any of the groups. However, R2 for group A is notably stronger than both B and C.
Results are similar for the two investigated time periods, e.g., June as well as July–August.
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Figure 5. Spatially (within each ROI) and temporally (June only) averaged backscatter
(Δσ0) in dB plotted against the ASCAT-ORCHIDEE agreement. The regions of interest
with high total lake area percentage and notably large lakes (group A) are shown as blue
diamonds and those with high lake area including small lakes (group B) are shown as red
squares. Regions with generally little lake area (group C) are shown as green triangles.
This plot includes all the 95 ROI.

4. Discussion

The results confirm that open water surfaces of tundra lakes are typically rough with respect to
the used wavelength (C-band). Indeed, authors have previously estimated an on average −4.9 dB
higher backscatter (same preprocessing) than under calm conditions [50]. Spatially averaged backscatter
deviations for the ROIs which represent the ASCAT cells and include both water and land area reach up
to 5 dB. High Δσ0 correspond with times of high wind speed or precipitation. It is here hypothesized
that locations with low (including negative) agreement between the ASCAT and ORCHIDEE SSM
correspond to areas that have many and/or large lakes and that the Δσ0 at the same locations is high.
At sites with positive correlation between ASCAT and the landsurface model SSM (Kharampur, Muzi,
Nadym, Taimyr and Vorkuta), Δσ0 is generally low (<0.71 dB). There are two exceptions in Taimyr,
where the mask effect is as large as 2.08 and 2.25 dB. These cases correspond to the only ROI in Taimyr
with a large total water area (32.44% and 41.17%, respectively). This is however not reflected in the
the daily correlation between ASCAT and ORCHIDEE, which is 0.10 for all of the ROI in Taimyr.
This could thus be explained by reasons other than water bodies but related to the model, brought up in
the Section 2.3.

At Markovo (eastern Siberia), the model-SSM retrieval agreement is low (−0.06). Here, the Δσ0

is less pronounced. It is in fact comparable to the high agreement sites, although the site is located in
an area of low agreement. For Markovo, the low agreement between the model output and the ASCAT
data could be explained by other reasons than water bodies; it is more likely due to the exceptionally
scarce forcing weather data from this part of Siberia [36].
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Figure 5 further confirms that there is a difference between the water fraction and lake size classes
(groups A, B and C) regarding the dependency of the ASCAT-ORCHIDEE agreement and Δσ0.
Results are similar for the two investigated time periods (June, July-Aug). Although there is some scatter
among the categories and the R2 value is moderate, it is found that the magnitude of Δσ0 for group C
appears to be independent from the ASCAT-ORCHIDEE correlation whereas it explains 16%–44 % of
the variation for group A and B.

At sites with an ASCAT-ORCHIDEE correlation lower than −0.21, the average June Δσ0 ranges
from 0.56–2.26 dB. This corresponds to 10%–35% of the overall ASCAT sensitivity to soil moisture,
which in turn would translate into as much as 35% higher relative soil moisture value if the difference in
ASAR backscatter (Δσ0) would be directly comparable to the ASCAT soil moisture product. For single
acquisitions it amounts to 60%–70% in areas of 40%–45% water fraction. A direct comparison to
ASCAT backscatter and quantification of impact on soil moisture retrieval is however limited. One would
need to make the assumption that the averaged ASAR WS backscatter over the ROI corresponds to the
ASCAT backscatter. The hexagonal grid of ROI generated in this study is merely an approximation
of the ASCAT grid cells. Furthermore, the absolute backscatter values may deviate due to incidence
angle differences (ranging from 25◦ to 65◦) and differences in signal contribution over the footprint
for ASCAT [44] as well as actual soil moisture changes. In the cases when the high backscatter events
coincide with precipitation events, the impact of dielectric properties changes would need to be taken into
account.In the cases when the high backscatter events coincide with precipitation events, the impact of
dielectric properties changes would need to be taken into account: it is difficult to separate the backscatter
variations due to the actual increase in soil moisture from the action that the rain causes on the surface.
Furthermore, it should be considered that the ASCAT dataset which has been used for comparison with
ORCHIDEE has been aggregated to weekly time steps. One can expect a smoothing of the backscatter
variations in this case, so the actual disagreement with the model may be higher when compared on
a daily basis.

For soil moisture retrieval the signal is impacted if the area covered by open water surface within
the footprint is large [38]. A surface water fraction flag, derived from the Global Lakes and Wetlands
Database [55], exists but it does not take wetland dynamics, temporary inundation and small lakes into
account [54]. An improved flag of this kind could be derived from ASAR data [13,56]. Tundra lakes
can be considerably smaller than the ASAR WS resolution [57]. The impact of these small lakes would
need to be analyzed in addition for the development of a correction algorithm of the scatterometer soil
moisture datasets, e.g., by taking into account subpixel-scale fraction of water cover [57].

5. Conclusions

This study examines backscatter variabilities other than related to soil moisture in order to address
challenges in radar soil moisture retrieval that are specific for in the Arctic. The impact on the soil
moisture retrieval is investigated for sites across Siberia, including permafrost longterm monitoring
sites. Satellite derived surface soil moisture datasets would provide valuable additional information
to point measurements in these regions. Envisat ASAR WS imaging radar data are investigated in order
to identify seasonal variations in backscatter that are not related to SSM but to lake cover surface status.
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This gives an indication for the magnitude of the impact of such features on the coarser spatial resolution
ASCAT SSM retrieval, and cast some light on the model-to-ASCAT low agreement in SSM, highlighted
by a previously published study [36]. Different techniques and sensors can be used for SSM retrieval
from satellites [7,8,10]. The findings of this study can be applied to systems relying on similar principles:
change detection approach in a backscattered signal that is impacted by surface soil moisture but also by
surface conditions, e.g., water surface roughness or frozen conditions. Most importantly, these specific
findings are applicable to C-band sensors.

Identified backscatter difference is in the order of 2 dB on the mean backscatter over several weeks
and up to 5 dB on specific acquisitions in the areas with low ORCHIDEE-ASCAT agreement (no or
negative correlation). In comparison, the assumed ASCAT sensitivity for soil moisture changes reaches
approximately 7 dB in these areas. A direct translation of the identified difference to deviations of the
soil moisture values from the actual values would need to take sensor and data processing differences
into account.

Regions with high backscatter deviations (averaged over ASCAT grid cell) from the reference dataset
representing smooth water surfaces (Δσ0) are however evidently characterized by a high percentage of
total lake area, i.e., many of the ROI in eastern Siberia: Cherski, Andryuskio, Druzhina and Kytalyk.
The sites Kharampur, Taimyr, Nadym, Vorkuta and Muzi (western and central Siberia), show low Δσ0

and are areas with few lakes. In the case of Markovo (far eastern Siberia) the low agreement between
the model output and the SSM product is more likely explained by the exceptionally scarce weather data
from this area used to force the model [36]. Although events of wind and precipitation identified by
the meteorological data only occurred infrequently for each site, the correlation between the backscatter
deviation and the ASCAT-ORCHIDEE agreement together with the lake size distribution lead to the
conclusion that water body fraction and water body size is one explanation for the disagreement between
the ASCAT and ORCHIDEE SSM. In this context, it should be considered that the ORCHIDEE model
does not represent ephemeral lakes (i.e., normally dry lakes that fills with water for short periods), which
are an additional source of error for ORCHIDEE in lake-rich areas.

The low and negative correlation sites compared to the high agreement sites clearly show different
results for the Δσ0 in relation to the total lake expansion and size distribution. However, no significant
difference was shown between the early and late summer months. The presence of ice cover on lakes
does not give strong effect on the Δσ0 in this study.

In addition to the above and other model-related issues as discussed by [36], the low agreement
between ORCHIDEE and ASCAT SSM in the Siberian lowlands is likely related to the existence of
water bodies. Therefore, it should be noted that in circumpolar lowland permafrost areas, where ponds
and lakes are common features, the presence of water bodies has an impact on the ASCAT SSM retrieval.
This supports what has previously been pointed out about open water having a disturbing influence on
the signal and thus for the surface soil moisture retrieval if the area covered by open water surface within
the footprint is large [38]. In Siberia, an improved surface flag product that takes into account wetland
dynamics could be derived from Synthetic Aperture Radar (SAR) imagery [32,53]. The usage of higher
spatial resolution data for SSM retrieval as available from Sentinel-1 is required in regions with large
water fractions, including lowland permafrost environments.
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Impact of Backscatter Variations Over Water Bodies
on Coarse-Scale Radar Retrieved Soil Moisture and

the Potential of Correcting With Meteorological Data
Elin Högström and Annett Bartsch

Abstract—The Northern Hemisphere is, to a large extent, un-
derlain by permafrost, which is prone to thawing due to rapid
warming in the Arctic during the 21st century. In this context,
satellite-derived soil moisture data are valuable for modeling pur-
poses. Assessing the applicability of such data at high latitudes is
essential but has, until recently, been given little attention. Recent
studies have pointed out that seasonal land cover variations and
the presence of small water bodies, which are typical in the Arctic,
can cause complications for soil moisture retrieval. Here, it is
hypothesized that a bias related to water fraction is caused by
variations in the water surface roughness. The impact is quantified
for the Metop Advanced Scatterometer by investigations of the
higher spatial resolution synthetic aperture radar (SAR) data
acquired by ENVISAT Advanced SAR over 11 sites across the
Siberian Arctic. The bias calculated as an average over time can
be explained by the lake fraction: a water fraction higher than
20% causes a bias of more than 10% relative surface soil moisture.
This can, to a great extent, be attributed to wind, based on which
a bias correction was developed. The correction was applied and
evaluated with in situ soil moisture data, which were available
from one of the sites: the Lena Delta. Weak results are obtained
because water surfaces correspond mainly to rivers at this site.
Variations in discharge, water height, and streams may therefore
also affect the water surface roughness.

Index Terms—Arctic, C-band, lakes, microwave measurement,
moisture, radar remote sensing, scatterometer, surface waves, syn-
thetic aperture radar (SAR).

I. INTRODUCTION AND MOTIVATION

A. Remote Sensing of Soil Moisture in the Arctic

A PPROXIMATELY 25% of the Northern Hemisphere is
underlain by permafrost [1]. Permafrost temperatures
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have risen significantly over the past two to three decades
[2], and the Arctic is expected to warm more rapidly than the
global mean temperature until the end of the 21st century [3].
The Arctic is also, to a large extent, characterized by remote
areas which are difficult to access for ground measurements.
There is, thus, a particular need for accurate measurements
from satellite data in these regions. Soil moisture is one of
the main controllers of the exchange of water, energy, and
carbon between the land surface and the atmosphere, and it is an
essential variable for studies of permafrost, including modeling
and upscaling [1], [4], [5].

B. Microwave Remote Sensing of Soil Moisture

A range of retrieval algorithms have been developed in order
to obtain soil moisture from the uppermost surface from radar
satellite data, including passive and active microwave sensors
(e.g., [6] and [7]). From the active microwave remote sensing
instrument Advanced Scatterometer (ASCAT), successor to
ERS-1/2 scatterometer (ESCAT), a global coarse-scale (25-km)
surface soil moisture (SSM) product is derived through a
method implemented by the European Organization for the Ex-
ploitation of Meteorological Satellites. This is a near-real-time
service which has been implemented in cooperation with the
Vienna University of Technology and been in operation since
2008 [5], [8]. Numerous studies have shown the applicability
of the product (e.g., [9] and [10]), including recent operational
use for numerical weather forecasts [11]. The ASCAT data only
reflect the moisture of the upper few centimeters of the soil, and
there are uncertainties for regions of dense vegetation ([12]),
but large moisture patterns are captured well [13]. The retrieval
method relies on the fact that the ground’s dielectric properties
vary with changes in soil moisture levels [14]. The dielectric
properties of the soil change also when freezing. Soil moisture
retrieval is only applied to unfrozen conditions. Frozen condi-
tions are flagged and not included in the processing.

C. Technical Challenges for Soil Moisture Retrieval Related
to Land/Water Fraction

Limitations to the retrieval that are typical for high lati-
tudes include landscape heterogeneity and seasonal land cover
variations, which also contribute to the satellite return signal
[15]. It has been pointed out in the literature that too much
open water within the footprint may have a disturbing influence
on the ASCAT backscatter signal and thus for the surface
soil moisture retrieval [13]. The Arctic tundra includes, to a
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large, part wetlands, which are characterized by poorly drained
highly saturated soils and abundant ponds (< 100 m2) and
lakes [16]–[18]. Eight percent of the unglaciated tundra in the
Arctic is covered by water bodies [18]. It is therefore expected
that there are retrieval issues in the Arctic, where this type of
satellite-derived product is particularly needed. The retrieval
issue related to water fraction is currently taken into account
for the ASCAT soil moisture product by providing the user
with a flag that warns for high water fraction. The flag has
been derived from coarse-scale data sets: the Global Lakes
and Wetlands Database (GLWD) [19] and the Global Self-
consistent, Hierarchical, High-resolution Shoreline Database
(GSHHS) [20]. This flag does not take wetland dynamics into
account, nor does it account for any changes in inundation
that may occur, nor does it capture small lakes. The potential
bias through backscatter variations unrelated to soil moisture
has been assessed based on intercomparison with Land Surface
Model output (ORCHIDEE, 25 km) for the coarse-scale
ASCAT product [21], [22]. Högström et al. [22] utilized
medium-resolution satellite data [ASAR wide swath (WS),
75 km] in order to describe the effects from smaller water bodies
within areas corresponding to the ASCAT footprint. Backscat-
ter differences related to water bodies were assessed. Disagree-
ments between the model (ORCHIDEE)-derived SSM and the
remote sensing ASCAT SSM [21] could, to a large extent, be
explained by the presence of open water (R2 = 0.45 for areas
with high water fraction and large lakes) [22]. The backscatter
variability could be partially attributed to changes in roughness
on the water surfaces rather than variations over land. It remains
to be answered how this difference translates to the ASCAT soil
moisture. Furthermore, it has not yet been determined to what
extent the water roughness relates to wind, rain, or ice cover
and snow on the lakes compared with a smooth surface.

D. Water Fraction Related Bias and Potential Correction With
Wind Data

This study quantifies the water body related potential bias in
the ASCAT soil moisture product and investigates how this bias
relates to in situ meteorological data. It further investigates how
this bias could be corrected. It is expected that wind or rain
acting on the water surface causes a higher backscatter than
during calm weather conditions, an issue which is currently
not considered in the retrieval algorithm. We make use of
the medium-resolution synthetic aperture radar (SAR) data
acquired by the ENVISAT Advanced SAR (ASAR) in WS
mode (120-m resolution) to investigate backscatter variations
unrelated to soil moisture within regions of interest (ROIs) that
correspond to the ASCAT footprints over 11 sites across the
Russian Arctic (Table I). The bias is quantified by generating
an ASAR data set with a virtually smooth water surface and
subsequently comparing it with the original ASAR data set.
The average difference during the summers 2007 and 2008 is
considered with respect to the total water body area in all the
selected study sites across the Arctic. At sites where in situ
data are available, the ASAR-derived bias for specific dates
during the time period is analyzed using meteorological data,
such as wind speed (Table I, column 5). We hypothesize that

Fig. 1. Site overview showing the location of the 11 sites across the Siberian
Arctic. The site names are abbreviated according to Table I. The sites where
meteorological data are available are indicated with yellow color. The un-
derlying permafrost conditions are shown as background as a simplification
(not including subclasses for ground ice content) of the Circum-Arctic map of
permafrost and ground ice conditions [23]. Projection: Lambert azimuthal.

TABLE I
SITE NAMES, ABBREVIATIONS, TYPE OF AVAILABLE in situ DATA,

AND TOTAL ENVISAT ASAR WS DATA AVAILABILITY

FOR THE SNOW-FREE PERIODS IN 2007 AND 2008

if the bias is related to water surface roughness variations
caused by wind or rain, a correction of ASCAT SSM should be
possible with meteorological data. A correction for wind speed
is tested, and the outcome is evaluated with in situ soil moisture
measurements in the Lena Delta.

II. SITE DESCRIPTION

Eleven sites across the Russian Arctic were selected for the
study (see Table I and Fig. 1). They are underlain by different
types of permafrost, from continuous to sporadic (as defined
in [23]), and they cover a variety of land covers, including
tundra and boreal forest, as well as lake-rich and lake-poor
areas. Fig. 1 shows an overview of all sites and the underly-
ing permafrost conditions according to [23]. Kytalyk, Cherski,
Vorkuta, Nadym, and the Lena River Delta are long-term per-
mafrost monitoring sites [2]. The selected locations coincide
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Fig. 2. ENVISAT ASAR WS image of the central Lena Delta from June 31,
2007. The location of the in situ measurements on the Samoylov Island is
shown in red. Black hexagons represent the ROIs corresponding to the ASCAT
footprints and are labeled with the ASCAT product ID. Projection: UPS North
Stereographic.

with the areas of interest in [22], except for the Lena River
Delta. The latter has been added since in situ meteorological
and soil moisture data are available for the time period of the
investigated ASAR archive data. Within the ASCAT footprints
in the Lena River Delta, the water fraction ranges from 14%
to 79%. To a great extent, the water includes rivers with sandy
banks and partially very shallow depth. The in situ data them-
selves have been collected at the Samoylov Island in the Lena
River [24]. The island is one of the 1500 islands that make up
the Lena River Delta (see Fig. 1). It is located within one of the
main river channels at 72◦22� N, 126◦28� E and lies within the
zone of continuous permafrost, which reaches down to 600 m
below the surface [54]. The western part of the Samoylov Island
consists of a flood plain and the eastern part of an elevated
river terrace, which, to a large extent, is covered with sphagnum
moss. The total size of the island is 4.38 km2. The terrace
is characterized by polygonal tundra (average polygonal pond
size = 54 m2) and smaller lakes (average thermokarst lake
size = 26 884 m2) [17], [24]. The polygons take the form of dry
ridges and wet depressed centers. Numerous multidisciplinary
studies with a focus on climate, land cover, ecology, hydrology,
limnology, and permafrost have been conducted here since
1993. Automatic stations for soil and climate measurements
have been installed in 1998 [24]. Fig. 2 shows a part of the Lena
River Delta. The location of the in situ stations where wind
speed and soil moisture are measured is indicated in red. The
ROIs located closest to the in situ stations are shown as black
hexagons.

III. MATERIAL AND METHOD

A. In Situ Meteorological and Soil Moisture Data

Meteorological data from the harmonized CPC Global Sum-
mary of the Day and Month Observations data set [25] were
available from five of the ten sites (Cherski, Kytalyk, Lena

Delta, Markovo, and Vorkuta), including wind speed and pre-
cipitation. Networks with in situ soil moisture data exist,
such as the International Soil Moisture Network, with a high
global coverage, but data are still scarce in the Arctic [55].
From the Samoylov Island in the Lena River Delta, mete-
orological and soil moisture in situ data were available for
this study [17]. Fig. 2 shows the Lena River Delta and the
ASCAT grid points that were located closest to the in situ
measurements of wind speed and soil moisture. The soil mois-
ture sensors are located at the ridge and slope within a low
centered polygon, which is a typical feature in polygonal tun-
dra. One sensor is placed in the rim at a depth of 5 cm and
another in the slope at a depth of 5 cm. At the depth of 5 cm,
the sensor is normally placed within the fibric layer. This layer
consists of dead moss and peat and is located just underneath
the living material. In the case of sphagnum, the lower part of
the dead moss can store significant amounts of water [26].

B. Satellite Data and Preprocessing

1) Satellite Sensors: The ASCAT is an active microwave
remote sensing instrument that is well calibrated, stable over
time, and has high radiometric accuracy [5], [27], which means
that the signal-to-noise ratio is expected to be high enough to
achieve acceptable retrieval accuracy [13]. It was originally
designed to monitor winds over the oceans to support, e.g.,
numerical weather forecasting [28]. Although no terrestrial
applications were foreseen, the ASCAT predecessor instrument,
i.e., the ERS-1/2 scatterometer (ESCAT), has been shown suit-
able for monitoring soil moisture [7], [29].

The ASAR was a ScanSAR instrument carried on the satellite
ENVISAT, which operated until 2012. The ASAR WS archive
data analyzed here have a spatial resolution of 120 m, and
the revisit time is 35 days [30]. The data availability is thus
considerably lower than for the ASCAT data, but the spatial
resolution is higher. The ASAR WS was preprocessed for
Northern Eurasia for 2007–2008 within the framework of the
European Space Agency Support to Science Element project
ALANIS Methane [31]–[33]. This was done using the SAR
Geophysical Toolbox (SGRT), which is a scripting chain that
calls the commercial SARscape or the free NEST software, thus
allowing for the automatization of the processing [34], [56]. The
data were resampled to a fixed grid to allow efficient spatial
and temporal analysis. The 15-arc-second grid was divided into
blocks of 0.5◦ × 0.5◦ boxes (denoted “gridboxes”), resulting
in 720 columns and 360 rows globally, to be used for efficient
referencing of the data. To remove influences of the local
incidence angle, the data were normalized to a reference angle
of 30◦ [34], Sabel et al., 2007. The ASCAT and ASAR satellite
sensors are both operating in C-band (center frequency of 5.2
GHz), which has been shown suitable for soil moisture retrieval
through the dielectric properties of water, making it possible to
build the retrieval technique on backscatter contrasts between
dry and wet soil. The polarization is vertical (VV) in both cases.
The available data sets differ, however, in reference incidence
angle for the normalization.

2) ASCAT Soil Moisture Retrieval: The retrieval algorithm
for the ASCAT soil moisture products is based on a change
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detection method implemented for ESCAT but later transferred
to ASCAT [8], [29], [35], [36], [57], [58]. Dry soil gives a
contrasting radar backscatter signal to that of wet soil. A
linear relationship between the backscattering coefficient (dB)
and the surface soil moisture content is assumed [14], [36],
[37]. Because vegetation has a significant effect on the radar
backscatter, the ASCAT soil moisture algorithm uses a veg-
etation correction that depicts vegetation scattering at large
incidence angles and a reduced sensitivity to soil moisture dur-
ing the peak of the vegetation season ([38] [39]). The ASCAT
backscatter is normalized to a reference angle incidence of 40◦,
and a vegetation correction through the scatterometer multiinci-
dence angle capacities is applied. Thereafter, the backscatter is
scaled to its local historical maximum and minimum, which are
referred to as the wet (σ0wet) and dry (σ0dry) references [7].
The scaling results in a soil moisture product in the form of a
saturation percentage, which is referred to as SSM. The relative
soil moisture is thus calculated as

Θs(t) =
σ0(40, t)− σ0dry(40, t)

σ0wet(40, t)− σ0dry(40, t)
(1)

where Θs(t) is the relative measure of the water content in the
uppermost soil layer, and σ0(40, t) is the backscatter at 40◦

incidence angle. The absolute difference in decibels between
σ0wet and σ0dry is the sensitivity and can be seen as a measure
of local historical backscatter range. The ASCAT data are
available for a predefined discrete global grid where each grid
cell is identified by its unique grid cell point index (GPI).
Over land, each GPI is attributed a time series of data which
is spatially resampled with an equal spacing of 12.5 km in
the latitude and longitude directions [40]. A surface state flag
(SSF) exists for each backscatter measurement, which shows
whether the surface is frozen/unfrozen and if there are thaw
conditions or snow melt. This SSF is derived from ASCAT
backscatter time series and is used for masking ASCAT and
ASAR data for this study. External (nonscatterometer derived)
advisory flags also exist, which are calculated from several
sources and provided to identify problematic areas. The records
start in 2007. The advisory flags include inundation/wetland
fractions derived from the GLWD and the GSHHS [19], [20].

C. Method for Bias Quantification and Wind Correction

For this study, a supervised classification (parallelepiped)
was performed on ice-free ASAR acquisitions under calm
conditions and with maximal lake extension in the summer,
as well as maximal water/land contrasts, in order to separate
land from water. This was done for all the areas. The water
bodies were masked out and replaced by −20 dB in accordance
with [22], which is a backscatter value typical for smooth water
surfaces for the applied preprocessing (see Section III-B) Sabel
et al., 2007; [31], [41]. This data set is hereby referred to as the
smooth water data set.

The ASCAT time series of backscatter and SSM were re-
trieved for each grid point index (GPI) cell. In order to create a
data set comparable with the ASCAT data, a mesh of hexagons
with the GPI as center points was generated to define ROIs

within each ASAR data stack following the method of [22]. For
the 11 sites, this resulted in a total of 100 ROIs. To avoid frozen
ground conditions, the ASCAT SSF (see Section III-B) was
used for the selection of the ASAR acquisitions. The site Lena
Delta turned out to have the shortest season of unfrozen ground
conditions (June 21 to September 2), and this time period was
applied for all sites during the years 2007 and 2008.

A saturation index (SI), which is comparable with ASCAT
SSM [see (2)] and expressed as saturation in percentage, was
calculated from the ASAR backscatter. The SI was derived by
scaling the backscatter values to the local historical (ASAR)
minimum (σ0dry) (respectively, maximum (σ0wet)). The dry
reference values were delineated from ASAR WS acquisitions
from December 2007 or 2008 depending on data availability
[31], [51]. The backscatter in winter represents the minimum
backscatter during frozen conditions, which is similar to that
of dry conditions [42], [43]. The wet reference was obtained
from the summer periods 2007 and 2008, representing the
local maximum backscatter values. The smooth water data sets
(masking with smooth water) were also derived for the wet and
dry references. The ASAR SI was thus calculated as

SI(t)
σ0(30, t)− σ0dry(30, t)

σ0wet(30, t)− σ0dry(30, t)
× 100 (2)

where σ0(30, t) is the average ASAR backscatter at a 30◦

incidence angle within the ASCAT footprint, and σ0dry is the
ASAR average dry reference retrieved from December only.

In order to investigate the comparability of ASCAT and
ASAR with respect to the difference in incidence angle, the
average backscatter was calculated within four pairs of ROIs
across nonnormalized ASAR imagery in a homogenous area
with close-to-zero water fraction located near the Lena Delta
site. The four ROI pairs were located opposite to each other,
separated by 30◦. The average backscatter at these ROIs and
the resulting backscatter difference per 10◦ incidence angle
were calculated and compared with the direct difference in
backscatter between the ASCAT and ASAR time series.

To quantify the impact of water surface roughness at ASCAT
scale, the average backscatter within each ROI of the smooth
water data set was subtracted from that of the original data
set, i.e.,

Δσ0 = ASARσ0
ORIG. − ASARσ0

SMOOTH.. (3)

In the same manner, the bias was also calculated in the form
of ΔSI, which compares to the ASCAT SSM. The ASAR ΔSI
was derived as follows:

ΔSI = SIORIG. − SISMOOTH.. (4)

For all the sites and each ROI, Δσ0 and ΔSI were thus
calculated, and they are referred to as the bias. First, this
bias was compared with the water fraction in order to assess
the linear dependence of water fraction. Second, the bias was
compared with the in situ meteorological data in order to
understand to what extent the difference is caused by wa-
ter surface roughness due to wind or precipitation. This was
done for all sites where meteorological data were available
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Fig. 3. (Diamond) ASCAT backscatter, (asterisk) ASAR original, and (trian-
gle) ASAR smooth water average backscatter in decibels for ROI 2943999
in Markovo. The water fraction in this ROI is 0.05%. (a) Unshifted ASAR
backscatter. (b) Values shifted by 2.6 dB for improved comparability with
ASCAT. (c) Difference between the (asterisk) ASCAT-ASAR original and the
(triangle) ASCAT-ASAR smooth water.

(Cherski, Kytalik, Lena Delta, Markovo, Vorkuta). The Pearson
correlation and covariance of wind speed and precipitation
with the bias during the summer (June 21 to September 2)
2007–2008 were calculated (see Table III). A linear fit was
applied, and the resulting linear equations based on wind data
and the ASAR ΔSI bias were used for the correction of ASCAT
SSM, according to the following equation:

ASCATcorr(t) = ASCATorig(t)− (k U(t) +m) (5)

where U is the wind speed, ASCATorig is the original ASCAT-
derived soil moisture, and ASCATcorr is the corrected ASCAT
soil moisture. The constants (k = slope, m = y-intercept),
which are derived from the linear regression between ASAR
ΔSI and the wind, remain specific for each ROI. The resulting
time series with corrected ASCAT SSM were evaluated using
the in situ soil moisture data from the Samoylov Island in the
Lena Delta—the only site where both in situ meteorological
data and soil moisture data were available. The ASAR- and
ASCAT-derived sensitivity (see Section III-B) is discussed in
the context of the applicability of the ASAR-derived correction
for the wind-related SI bias on the ASCAT SSM.

IV. RESULTS

The time series (summers 2007 and 2008) of the ASCAT
backscatter were plotted together with the ASAR-derived orig-
inal and smooth water average backscatter (see Figs. 3 and 4).
The low water fraction (2%) of ROI 2943999 in Markovo cor-
responds to a low difference between the original and smooth
water ASAR data sets (see Fig. 3). The time series of the
backscatter from ROI 3108903 in the Lena River Delta, with
a high water fraction (50%), show a large difference between
the original and smooth water ASAR data sets (see Fig. 4). In
Markovo, it can be seen that the ASAR data set generally is a
few decibels higher than the ASCAT backscatter [see Fig. 3(a)],
and in the Lena Delta, the same is valid for the original ASAR

Fig. 4. (Diamond) ASCAT backscatter, (asterisk) ASAR original, and (trian-
gle) ASAR smooth water average backscatter in decibels for ROI 3110849 in
the Lena Delta. The water fraction in this ROI is 77%. (a) Unshifted ASAR
backscatter. (b) Values shifted by 2.6 dB for improved comparability with
ASCAT. (c) Difference between the (asterisk) ASCAT-ASAR original and the
(triangle) ASCAT-ASAR smooth water.

TABLE II
DIFFERENCE PER 10◦ INCIDENCE ANGLE ACROSS AN ASAR

ACQUISITION IN THE LENA DELTA, BEFORE NORMALIZATION

(COLUMN 4). THE DIFFERENCE IS CALCULATED FROM THE AVERAGE
BACKSCATTER WITHIN FOUR ROI PAIRS (COLUMN 1) SEPARATED BY

30◦ INCIDENCE ANGLE (COLUMNS 2 AND 3). THE BACKSCATTER

AVERAGE IN THESE ROIS WAS CALCULATED FROM

NONNORMALIZED RADAR IMAGERY OVER A HOMOGENEOUS
AREA CLOSE TO THE LENA DELTA

backscatter, but not for the smooth water data set [see Fig. 4(a)].
This difference between ASCAT and ASAR is related to the
incidence angle: a 40◦ incidence angle should give a 2.6 dB
lower backscatter value than a 30◦ incidence angle. This is
demonstrated in Table II, which shows the resulting average
backscatter within the four subset pairs from different incidence
angle regions (see Section III-C). It also shows the backscatter
difference per 10◦ incidence angle. The average is 2.6 dB.
We can see that the smooth water ASAR backscatter remains
lower than the ASCAT backscatter for an area with a high
water fraction such as the Lena Delta [see Fig. 4(b)] in the
time series of ASAR and ASCAT backscatter after applying
a 2.6-dB offset to the ASAR data. This is also clearly shown
by the difference between the ASCAT and ASAR backscatter,
which is below 1 dB in the ROI in Markovo [see Fig. 3(c)],
whereas in the Lena Delta [see Fig. 4(c)], the difference is close
to zero for the original ASAR and up to 6 dB for the smooth
water data. The absolute SI is thus not directly comparable to
the absolute ASCAT-derived SSM due to the incidence angle.
However, we assume that the relative difference Δσ0 and ΔSI
can be considered independent of this angle difference and thus
be applied to ASCAT, although retrieved from ASAR.
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Fig. 5. Bias in the form of (a) backscatter Δσ0 and (b) saturation index ΔSI,
for each ROI averaged over time, as a function of water fraction. The values
are averages for the summer season in 2007 and 2008 for each ROI of all the
11 sites. The bias is shown as negative values, since the smooth water data set
results in a reduction in relation to the original data set.

Fig. 6. (a) Impact of the bias on σ0wet (Δwet original–smooth water-R) and
σ0dry (Δdry original–smooth water) in backscatter as a function of water
fraction. (b) Difference in sensitivity (Δsensitivity) between the original and
smooth water ASAR data sets, as a function of water fraction. All ROIs are
included, and the backscatter is averaged over the summer period in 2007
and 2008.

The impact of water surface roughness (Δσ0 and ΔSI) for
each ROI was calculated as an average over time, plotted
against water fraction (see Fig. 5). In terms of backscatter, this
ranges from 1 to 3.1 dB for ROIs with high water fraction, such
as the sites Lena Delta, Cherski, Kytalyk, Andryoskino, and
Druzhina. The linear relationship between the water fraction
and the bias in the form of backscatter Δσ0 (R2 = 0.87) is
shown in Fig. 5(a), and that between the water fraction and the
bias in the form of ΔSI (R2 = 0.28) is shown in Fig. 5(b). Five
outliers with sensitivity lower than 1 dB and which thus cause
an exceptionally high (negative) scaled bias were excluded
from Fig. 5(b). It can be seen that, in areas with more than,
e.g., 40% water bodies, higher than 2 dB is to be expected,
which translates to a bias of 20% in terms of ΔSI. The impact
of water surface roughness (Δσ0) on σ0wet (Δwet) and σ0dry
(Δdry) plotted against the water fraction is shown in Fig. 6(a).
The same impact on the sensitivity (Δsensitivity) is shown in
Fig. 6(b). Both the σ0dry and σ0wet are affected similarly, and
the difference between the masked ASAR sensitivity and the
original is, on average, close to zero. A significant impact of
wind on the ASCAT sensitivity is therefore not expected.

The ASCAT backscatter is further plotted with ASAR sen-
sitivity [see Fig. 7(a)], with the ASAR wet reference σ0wet
[see Fig. 7(b)] and with the ASAR dry reference σ0dry [see

Fig. 7. (a) ASCAT plotted with ASAR sensitivity. (b) ASCAT plotted with
ASAR σ0wet. (c) ASCAT plotted with ASAR σ0dry. The ASAR smooth water
data set is shown as triangles, and the ASAR original is shown as crosses.

Fig. 7(c)]. The ASAR shows almost exclusively lower values
than ASCAT with respect to the sensitivity. σ0dry is similar,
but the ASAR smooth water data set shows about 2–4 dB higher
σ0wet values than ASCAT. The ASAR original data set shows
σ0wet values more similar to ASCAT. The σ0dry reference
from the ASAR smooth water data set is relatively well in line
with that of ASCAT, whereas the ASAR original shows up to
4 dB lower values than ASCAT.

At each of the five sites where meteorological data were avail-
able (Cherski, Kytalyk, Lena Delta, Markovo, and Vorkuta),
20–72 ASAR acquisitions, depending on the coverage at each
site, were matched with the dates of the in situ measure-
ments. The meteorological data from the Lena Delta were
daily averaged for comparability with the other sites. Days
with rain, as well as ROI with a water fraction lower than
5%, were excluded for all scatterplots and Pearson correlation
analysis between wind speed and the backscatter or SI bias.
Scatterplots of the backscatter bias Δσ0 and the wind speed
for the ROIs located closest to the meteorological station in
the Lena Delta are shown in Fig. 8. The meteorological data
from the Lena Delta were measured on an hourly basis and
could therefore be matched with the ASAR data according to
the timing of acquisitions of ASAR with a difference of less
than 4 h. The ROIs 3108903 and 310889 are areas with a high
water fraction (50% and 39%, respectively), and they show the
strongest dependence on wind for the backscatter bias. The ROI
3110849 has a water fraction as high as 77%, but it is found to
show less strong dependence on wind speed than expected (see
Section V). Results from all the five sites with meteorological
data, including the Lena Delta, are shown in Fig. 9(a) and (b).
The slope in a linear regression between the bias and the wind
speed is clearly highest for the sites with high water fraction
[see Fig. 9(a)]. The Pearson correlation between the wind speed
and the bias is the highest for the ROI located closest to the
meteorological stations [see Fig. 9(b)]. Correlations between
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Fig. 8. Scatterplots of Δσ0 and wind speed for the ROIs located closest to
the meteorological station in the Lena Delta. The wind data are available on an
hourly basis. The ASCAT GPI and water fraction for each ROI are indicated in
the table to the right.

Fig. 9. (a) Scatterplot of water fraction and the slope from linear regressions
between wind speed and the bias from all five sites from which meteorological
data are available. (b) Scatterplot of the correlation between the wind speed and
the bias, plotted together with the distance from the in situ measurements and
the center point of each ROI where meteorological data were available. Dates
with any precipitation are excluded. The wind data are obtained averaged as a
diurnal average.

TABLE III
MINIMUM, MAXIMUM, MEAN, AND MEDIAN CORRELATION AND

COVARIANCE BETWEEN THE ASAR-DERIVED BACKSCATTER BIAS

(Δσ0) AND THE WIND SPEED AND BETWEEN THE SAME BIAS AND THE
PRECIPITATION. THE VALUES WERE CALCULATED AS AVERAGES FROM

THE ROIS WHERE METEOROLOGICAL DATA WERE AVAILABLE

the bias and the precipitation showed almost exclusively low
values, ranging from −0.31 to 0.29 (see Table III).

The wind correction was derived based on regression with
ΔSI and applied to the ASCAT SSM. The results of the
correction for ROIs 3110841 and 3110845 are shown in Fig. 10.
The SI bias calculation and its relation with wind were lim-
ited to the dates for which ASAR acquisitions are available.
The correction was applied to all dates during this period of

Fig. 10. (a) Wind correction, calculated from the linear regression between
wind speed and soil moisture bias, for GPIs 3110841 (black) and 3110845 (red).
(b) In situ wind speed data (m · s−1) (blue) and precipitation (mm) (red) from
Samoylov Island [24]. (c) In situ soil moisture data (VWC) from the Samoylov
Island [17]. The sensors are located within a polygon: at a depth of 5 cm in the
slope (S5) and in the rim (R5). The in situ soil moisture has been scaled to its
respective maximum and minimum. (d) ASCAT surface soil moisture for GPI
3110845: original (blue) and wind corrected (red). All three time series show
values for June to September 2007.

time according to the ASCAT availability. The actual wind
corrections, i.e., ΔSSM, for ROIs 3110841 and 3110845 to be
applied on the ASCAT SSM are shown in Fig. 10(a). The ROI
3110845 includes the Samoylov Island, where the in situ data
were collected. This ROI has a water fraction of 24.19%, which
mostly corresponds to rivers. The ROI 3110841 is located next
to 3110845, has a water fraction of 14%, and includes no
river at all (see Fig. 2). The in situ wind speed (m · s−1) and
precipitation (mm) are shown in Fig. 10(b), whereas the in situ
soil moisture as volumetric water content (VWC) from sensors
at three different locations within a polygon (ridge, slope) at
a depth of 5 cm is shown in Fig. 10(c). The ASCAT original
soil moisture and the wind-corrected ASCAT soil moisture
are shown in Fig. 10(d). The correction for 3110845 is rather
steadily close to a reduction of 11%, whereas the correction
for 3110841 generally ranges from −9% to −11% but even
reaches −12% and close to −15% [see Fig. 10(a)] on occasions
with high wind speed [see Fig. 10(b)]. Although the impact of
water surface roughness is large for ROI 3110845, it is less
controlled by wind speed here than for ROI 3110841. The high
wind speed from the meteorological data can only be matched
with high ASCAT soil moisture in few cases (e.g., 30/06, 20/07,
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TABLE IV
PEARSON CORRELATIONS AND COVARIANCE OF in situ SSM AND THE

ORIGINAL ASCAT SSM (ORIG. SSM) AND WIND-CORRECTED ASCAT
SSM (CORR. SSM) FOR THE SUMMER OF 2007. ONLY THE RESULTS

FROM THE SENSORS WHICH GAVE THE STRONGEST CORRELATION

AND COVARIANCE WITH ASCAT ARE INCLUDED, AS INDICATED
IN COLUMN 2 (R5 = POLYGON RIDGE 5-cm DEPTH;

S5 = POLYGON SLOPE 5-cm DEPTH)

12/08, and 18/08); at other times, they cannot be matched (e.g.,
10/07 and 13/07). The in situ measured soil moisture obviously
does not increase on occasions with high wind speed, with the
exception of 10/07, when there is a peak in wind speed and pre-
cipitation simultaneously and what therefore likely means there
is an actual increase in soil moisture in addition to the increase
in roughness on the water surfaces. The covariance and Pearson
correlation calculated between the in situ SSM and the ASCAT
SSM, i.e., the original and wind-corrected data, are presented
in Table IV. Due to strong differences between the years 2008
and 2007 of the in situ and ASCAT soil moisture correlation and
because of the scarce ASAR data availability from 2008, only
results from 2007 are shown here. Furthermore, only the results
from the sensors which gave the strongest Pearson correlation
and covariance with ASCAT are shown. The wind correction
leads to a decrease or an improvement of the correlation ranging
from −0.02 to +0.07, whereas the change in covariance ranges
from −0.30 to +15. For the ROI 3110841, which is the only
ROI in the table which does not include any river, the correction
leads to a weak improvement of the correlation and a decrease
of the covariance.

V. DISCUSSION

From the literature, we know that the water surfaces of
tundra lakes in the Arctic are typically rough with respect to
the wavelength in question (C-band) [22], [34]. The typical
bimodal histogram of backscatter under calm conditions cannot
be detected in more than 60% of ASAR WS acquisitions [32].
The average bias due to water surface roughness during the
summer (June 21 to September 2) in 2007 and 2008 is up to
4 dB for the selected sites. There is a clear linear relationship
between the bias (Δσ0 and ΔSI) and the water fraction within
each ROI (summers 2007 and 2008) for all sites, with the
exception of the outliers. For areas with more water than 40%,
we can expect a bias of almost 2 dB, which translates to a
ΔSI close to 20%. Outliers with a very high ΔSI have been
derived by scaling of the backscatter to a very low sensitivity
(see Section III-B), i.e., the difference between the dry and wet
references is very small. The backscatter bias does not only
affect the average backscatter in each ROI but also the dry and
wet references which are used for the scaling of the ASAR ΔSI.

The impact is on the order of 3 to 7 dB in areas with higher
water fraction than 40%. The bias leads to an offset of both the
wet and dry references of approximately the same magnitude,
which means that the sensitivity is not much affected. The wind
is thus not expected to have any major impact on the sensitivity.

The Pearson correlations between the bias and the wind
speed in the Lena Delta for specific dates during the time
period of interest are low but notably higher than between the
bias and the precipitation (see Table III). If the correlation is
unexpectedly low with respect to the high water fraction in an
ROI, this could be related to shallow water depth. There can
be substantial changes in river discharge, which means that
the water depth can fluctuate seasonally [24]. Relatively large
areas in the Lena River around the Samoylov Island are flat and
shallow, and seasonal changes in water depth are noticeable.
Shallow water depth could contribute to unexpectedly low bias,
since waves cannot develop the same height/amplitude as in
deep water, even with high wind speed [44]. A low correlation
could be also explained by other roughness effects on the
surface than the wind, such as flow patterns in the river.

When the SI and the wind-derived bias correction are ap-
plied to the ASCAT SSM, the correction only improves the
measurements partially, which can be seen when the original
SSM and the corrected SSM are compared with the evalua-
tion data (see Table IV). The applied correction improves the
Pearson correlation for some of the ROIs. The ROIs included
in Table IV are located in the proximity of the in situ data.
However, there are differences between these ROIs with regard
to the distance to the Samoylov Island, where the in situ wind
and soil moisture measurements were collected. Local wind
conditions can be further reasons to explain unexpectedly low
correlation coefficients that we see in Table IV. For an optimal
comparison between the different ROIs and in order to truly
isolate the effects of wind on the water surface on the bias,
wind data would need to be collected from each of these ROI
or at least from more than one location. Such meteorological
data are unfortunately not available for this study during the
time period of the ASAR WS acquisitions. Constraints were
the ASAR satellite failure in 2012 and the low availability
of ASAR data compared with ASCAT (see Section III-B1).
However, networks of meteorological data are expanding, and
without the limitation to archive data but with data from the
recently launched Sentinel-1, examination of wind data and
subsequent ASCAT footprint specific determination of para-
meters for the correction could be applied. The distance to the
in situ measurement as described earlier is thus one limitation,
but there is also the scaling issue to take into consideration
(25 km compared with point in situ measurements). Due to
variable soil properties, vegetation, and fine-scale topography,
the soil moisture may vary strongly in space, making it difficult
to match the satellite measurements [45]. Previous studies have,
however, concluded that the ASCAT SSM product shows a
significant correlation with the in situ data and that the annual
cycle and trends in short-term fluctuations are captured [5], [9].

A direct comparison between the ASAR and ASCAT ab-
solute backscatter is constrained due to the 10◦ difference in
normalization incidence angle between the available ASAR
and ASCAT backscatter products, which translates to a shift of
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2.6 dB in homogenous terrain without water. The bias, however,
which is a relative difference, is assumed independent from the
incidence angle correction under the assumption that noticeable
volume scattering (which differs by incidence angle) does not
occur in tundra where trees are not present. A parameteriza-
tion based on SAR is thus applicable to ASCAT backscatter.
It should be also considered that the averaged ASAR WS
backscatter over the ROI is assumed to correspond to the
ASCAT backscatter, although the hexagonal grid generated for
the ROI in this study is merely an approximation of the ASCAT
grid cells. There are also differences in signal contribution over
the footprint for ASCAT to take into account, as well as actual
soil moisture changes [8] during times with high wind speed.
Finally, the limited time period of this study means that few
data are used for defining the wet reference from ASAR here
in comparison with when it is derived from ASCAT. Com-
parisons of ASAR with ASCAT show that the dry reference
is relatively comparable but that the wet reference is notably
lower for ASAR than for ASCAT, which, in turn, also gives
a low sensitivity for ASAR compared with ASCAT. The short
time period used for ASAR may be insufficient for defining the
appropriate wet reference.

Finally, there are limitations of the ORCHIDEE model with
regard to the representation of ephemeral lakes, i.e., which are
commonly dry but seasonally water filled, and scarce forcing
weather data in certain regions [59]. In addition to that, water
body fraction and water body size can cause a problem for
the remote sensing retrieval and thus explain the disagreement
between ASCAT and model-derived (ORCHIDEE) SSM [22].
This study shows that wind can be a reason for the aforemen-
tioned disagreement, which has already been shown attributed
to water bodies in the Arctic. This is essential information for
studies in high-latitude landscapes, which are indeed rich in
lake and in streams and rivers, and where remote sensing data
of this kind are needed.

VI. CONCLUSION

The applicability and quality of the soil moisture product
derived from ASCAT have been studied extensively since it was
put in operation in 2008 (e.g., [9] and [10]). Potential limitations
which are specific for high latitudes have so far been given
little attention, although this type of satellite product is of great
interest in these regions. Recent studies have concluded that
disagreements between the land surface model ORCHIDEE
and ASCAT SSM can be explained by the presence of water
bodies [21], [22]. Here, we hypothesize and test whether this
difference can be explained in terms of variations in the water
surface roughness due to rain or wind. Furthermore, we test
whether this bias can be corrected with meteorological data.

Medium-resolution ASAR WS data were used to quantify
the average bias from water surface roughness within ROIs
corresponding to the coarse-scale ASCAT footprint in 11 sites
across the Siberian Arctic. The hexagonal grid generated for
the ROI in this study is merely an approximation of the ASCAT
grid cells, and there are differences in signal contribution over
the footprint for ASCAT to take into account, as well as actual
soil moisture changes. These aspects need to be considered as

limitations. The bias was quantified in the form of backscatter
and as SI for improved comparison with the ASCAT SSM data.
In support of previous statements that too much water within the
ASCAT footprint can disturb the SSM retrieval [13], [22], the
results show that the average bias over time can be explained by
the lake fraction. For the five sites where meteorological in situ
data were available, the bias could clearly be better explained
by the wind speed than by precipitation.

Low correlations with wind were likely due to a large
distance between the ROI and the in situ station or to the
presence of river; shallow floodplains combined with changes
in discharge can give only low wave height even with high wind
speeds, or oppositely, streams can give high wave height even
when there is no wind. The evaluation of the correction with
in situ soil moisture data in the Lena River Delta did not give
a satisfying result to support the stated hypothesis. However,
in situ SSM data were only available from the Lena River
Delta during this time period when the ASAR archive data were
analyzed for this study. It should be considered that this site in
many ways is a special case, due to the previously discussed
river issues. Future studies can hopefully be expanded by mak-
ing use of satellite data from the recently launched Sentinel-1,
as well as through more recently established in situ networks
in several sites across the Arctic. The findings of this study are
applicable to systems that rely on similar principles, notably the
change detection approach for a backscatter signal impacted by
soil moisture or other surface conditions.
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Abstract Satellite-derived surface soil moisture data are available for the Arctic, but detailed validation
is still lacking. Previous studies have shown low correlations between in situ and modeled data. It is
hypothesized that soil temperature variations after soil thaw impact MetOp ASCAT satellite-derived surface
soil moisture (SSM) measurements in wet tundra environments, as C band backscatter is sensitive to
changes in dielectric properties. We compare in situ measurements of water content within the active layer
at four sites across the Arctic in Alaska (Barrow, Sagwon, Toolik) and Siberia (Tiksi), taken in the spring after
thawing and in autumn prior to freezing. In addition to the long-term measurement fields, where sensors
are installed deeper in the ground, we designed a monitoring setup for measuring moisture very close
to the surface in the Lena River Delta, Siberia. The volumetric water content (VWC) and soil temperature
sensors were placed in the moss organic layer in order to account for the limited penetration depth of
the radar signal. ASCAT SSM variations are generally very small, in line with the low variability of in situ
VWC. Short-term changes after complete thawing of the upper organic layer, however, seem to be mostly
influenced by soil temperature. Correlations between SSM and in situ VWC are generally very low, or even
negative. Mean standard deviation matching results in a comparably high root-mean-square error (on
average 11%) for predictions of VWC. Further investigations and measurement networks are needed to
clarify factors causing temporal variation of C band backscatter in tundra regions.

1. Introduction

The Arctic landscape is characterized by its heterogeneity (e.g., Bartsch et al., 2016; Fletcher et al., 2010), its
many surface water bodies (Smith et al., 2007), the presence of permafrost in the ground and frozen surface
conditions for themajority of the year (Zhanget al., 2003). The soil layer close to the surface, just above theper-
mafrost table, which experiences seasonal freezing and thawing is referred to as the active layer. In summer,
the thaw front penetrates from the surface downward and the active layer deepens as positive soil tempera-
tures prevail. In autumn, the freeze front penetrates downward from the surface, as well as upward from the
permafrost table. Knowledge about the amount of water that freezes in the active layer in autumn is of inter-
est, as thiswaterwill be available as potentially liquidwater for the following spring. This informationhas been
shown to be valuable, for example, for wildfire prediction and is of interest for purposes related to heat trans-
fer from and isolation of the frozen ground (Beer et al., 2007). Ice has a lower thermal conductivity than water.
Therefore, the active layer is expected to isolate the underlying permafrost better if the water fraction in the
soil is high at the time of freezing in autumn. Soil moisture data are generally in high demand in this region;
for example, for permafrost-related applications, specifically modeling and flux upscaling studies (Jung et al.,
2010; Marchenko et al., 2008; Zhang et al., 2011).

A wide range of global satellite-derived soil moisture products are available today from microwave sensors,
such as the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) (Njoku et al., 2003; Owe et al.,
2008), Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; Owe et al., 2008), Special Sen-
sor Microwave/Imager (SSM/I; Owe et al., 2008), WindSat Polarimetric Radiometer (Li et al., 2010), European
Remote Sensing Satellites ERS 1 and 2 (Scipal et al., 2002; Wagner, Lemoine, et al., 1999), and the Advanced
Scatterometer (ASCAT) onboard the Meteorological Operational satellite (MetOp; Bartalis et al., 2007;
Wagner et al., 2010). More recent data collection programs include the Soil Moisture and Ocean Salinity Mis-
sion (SMOS) of the European Space Agency (Kerr et al., 2001) and the Soil Moisture Active and Passive of
the United States National Aeronautics and Space Administration (NASA; Entekhabi et al., 2010), which were
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specifically designed for the purpose of soil moisture retrieval. Global maps of near surface soil moisture are
produced using coarse resolution (∼25–50 km) sensors operating in the microwave frequencies, employing
passive as well as active systems.

C band scatterometer information is of specific interest in heterogeneous environments due to the avail-
ability of higher spatial resolution Synthetic Aperture Radar (SAR) data at this wavelength. SAR can be used
to assess the spatial variability and representativity of the scatterometer information (Wagner et al., 2008).
The C band scatterometer ASCAT provides operational data in near real time since 2008 (Bartalis et al., 2007;
Wagner et al., 2010). The microwave backscatter variations are expected to correspond to soil moisture
variations. Surface roughness and volume scattering, which also contribute to the backscatter signal, are
parameterized or assumed to be constant under certain conditions (Bartalis et al., 2007; Naeimi, Bartalis, et
al., 2009; Naeimi, Scipal, et al., 2009). The measurements available during frozen and snow cover conditions
are masked out because soil moisture data, as absolute values or saturation, can only be obtained during the
unfrozen period. In addition, the existence of surface water within the scatterometer footprint poses a chal-
lenge (Wagner et al., 2013). The water surface roughness can quickly increase at high wind speeds and thus
introduce a bias in lake-rich areas (Högström & Bartsch, 2017).

A multitude of studies have validated soil moisture detection approaches through comparison with in situ
measurements (Rudiger et al., 2007). The challenge is to compare the point observations of measurement
stations to large scatterometer footprints of 25- to 50-km size (Wagner et al., 2013).

In situ measurements are essential for evaluating satellite-based soil moisture estimates and to understand
what is represented in the backscatter signal (Ceballos et al., 2005;Wagner et al., 2007). Soilmoisturemeasure-
ments have been used for satellite validation purposes since the 1980s (Wang et al., 1980), and the availability
of remotely sensed soil moisture from, for example, SMOS, AMSR-E, and WindSat have led to further valida-
tion activities such as the installation of new in situ soil moisture networks (Delwart et al., 2008; Wagner et al.,
2007). There is increasing availability of in situ soil moisture data (Krauss et al., 2010), and there have been
attempts to collect and disseminate soil moisture data from several networks (Robock et al., 2000). In 2011,
the International SoilMoistureNetwork (ISMN)was established, which is a centralized hosting facility of in situ
soil moisture data (Dorigo et al., 2013). Soil moisture observation networks have been installed and used for
calibration/validation activities for the Soil Moisture Active Passive Mission (Colliander et al., 2017), the SMOS
(Bircher et al., 2012) missions, as well as the European Space Agency Climate Change Initiative soil moisture
product (Ikonen et al., 2016). The above mentioned efforts are highly valuable for quantitative assessments
of global remote sensing products, but the networks themselves were not always installed for that purpose,
which can mean that multiple measurements within a satellite footprint are not provided (Crow et al., 2012).
The large spatial variability in soil moisture (Western et al., 2002) is still challenging, and there is a need to
understand the variable satellite-derived soil moisture product quality across different environments (De Jeu
et al., 2008; Dirmeyer et al., 2004; Sinclair & Pegram, 2010). Small-scale networks also exist with relatively high
spatial density (e.g., 3–5 km2; Jackson et al., 2010). In situ measurements overall are still concentrated in the
middle and low latitudes, and there are clearly gaps to be filled across the Arctic.

Scaling between local in situ measurements and 25- to 50-km footprints for scatterometer and microwave
radiometermeasurements remains problematic for validating results, in particular, due to the spatial and tem-
poral variability of soil moisture (Western et al., 2002). It has been shown that the spatial variability increases
with the size of the area up to 10 km2 but remains relatively constant thereafter and that a small number of
measurements are sufficient to obtain accurate areal measurements (Brocca et al., 2012). The difference in
depth between the in situ sensor, commonly installed at 10 cm or deeper, and the top layer through which
the microwave signal can penetrate is crucial. The microwave signal penetration depth also depends on the
moisture level itself (deeper penetration for low percentages of water). In fact, correlations between satellite
and in situ measurements are usually not very high. Bartsch, Trofaier, et al. (2012) demonstrated that Pearson
correlations for sensors deeper than 10 cm are below 0.4 in tundra environments. But even a lack of correla-
tion does not necessarily mean that the satellite data are wrong. It may, for example, be explained by the fact
that the point measured in situ data are not representative for a larger area, such as that of the satellite foot-
print of the remote sensing data product. The results need to be interpreted in their relative context. Direct
comparisons between in situ data and remote sensing products remain an important aspect of validating
spatial scaling of predictions and understanding small-scale moisture variations in specific land types. When
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interpreting the results of a direct comparison, it is also important to consider the accuracy and quality of the
in situ data set (Wagner et al., 2013).

Previous studies that compared in situ water content with satellite data indicate that the shallow installa-
tion of sensors is an appropriate choice (Bartsch et al., 2011, 2012). The uppermost sensors are more directly
affected by the atmospheric conditions than those in deeper soil layers, where changes in moisture and tem-
perature are slower and damped. Prior estimations of in situ unfrozen water content in tundra over time
have been conducted using bulk electrical conductivity and in situ soil temperature data in Alaska, demon-
strating the potential to remotely visualize permafrost via autonomous monitoring over field-relevant scales
(Dafflon et al., 2017).

In this study, in situ data records from four existing monitoring sites in northern Alaska and in Siberia, Rus-
sia, were used to investigate how in situ soil moisture data compare with the ASCAT SSM during the period
of freezing in autumn and thawing in spring. Additionally, a setup of in situ temperature and soil moisture
sensors has been developed specifically for the purpose of ASCAT assessment. Sensors have been installed
in a high-latitude Arctic location in order to investigate the validity of near-surface soil moisture retrieved
with the ASCAT instrument. It is hypothesized that although absolute values may differ between the in situ
measurement sites within the ASCAT footprint, the variation in measured values will be similar. The inte-
grated measurement from a certain ASCAT footprint area is expected to reflect the general moisture level
in these landscapes. It is further hypothesized that soil temperature variations during the transition period
are reflected in MetOp ASCAT measurements as the dielectric constant of the water within the soil changes
with the changing soil temperature (Hallikainen et al., 1985) and in turn influences themicrowave backscatter
(Naeimi et al., 2012; Ulaby & Long, 2014). Lastly, we investigatewhether the ASCAT SSMmeasurements before
freeze-up are valid and to what extent the ASCAT SSM is related to the soil temperature development.

2. Materials and Methods
2.1. MetOp ASCAT Soil Moisture Product
ASCAT is a fan-beam scatterometer with six side-looking antennas that illuminate two 550-km-wide swaths
on each side of the satellite track, separated by a gap of 360 km. The instrument is onboard the series of polar
orbiting Meteorological Operational (MetOp) satellites: MetOp-A, launched in 2006, MetOp-B in 2012, and
MetOp-C is planned to be launched in 2018. The MetOp constellation flies in a near-polar Sun-synchronous
orbit with a repeat cycle of 29 days and completing 14 orbits per day. The daily global coverage with one
MetOp is about 82%, with full coverage over the poles (>65∘), where three to four acquisitions are available
per day by combining the ascending and descending orbits, for example, at approximately 2, 5, 9, and 12 p.m.
UTC in the Lena Delta, Siberia.

When ASCAT was designed its main purpose was to measure wind speed and direction over the oceans
(Figa-Saldaña et al., 2002), but quite soon it turned out that unforeseen land applications were possible as
well. EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) in cooperation with
the Vienna University of Technology (TU Wien) have developed a soil moisture retrieval algorithm which is
implemented in a software package called the Water Retrieval Package (WARP). Since 2008 near-real-time
(within∼135min after actual acquisition)measurements of SSM are available globally fromASCAT (Bartalis et
al., 2007; Wagner et al., 2010). The instrument operates at a frequency of 5.3 GHz (C band), both transmitting
and receiving electromagnetic waves in vertical polarization (VV). The ASCAT incidence angle ranges from
25∘ to 65∘, and the backscatter is normalized to a standard incidence angle of 40∘ (Bartalis et al., 2007). A con-
trast in dielectric properties between dry and wet soils leads to a strong dependency of C band backscatter
intensity on the moisture content in the uppermost soil layer. This contrast forms the basis of the retrieval
method. The penetration depth for ASCATmeasurements is approximately 5 cmbut is known to be higher for
dry compared to wet soils. The reason is that water is not only a strong scatterer but also a strong absorber of
low-frequency microwaves (Schanda, 1986). The penetration depth increases almost exponentially in water
depleted soil (Williams & Greeley, 2001). Besides moisture, the radar signal is also affected by surface rough-
ness, vegetation as well as ice, and snow (Bartsch, 2010; Bartsch et al., 2011; Naeimi et al., 2012). For the ASCAT
surface soil moisture retrieval a change detection approach has been developed which assumes roughness
and land cover to be stable in time at a given spatial scale (Wagner, Noll, et al., 1999; EUMETSAT repository).
Since scattering from vegetation is enhanced at large incidence angles and during the vegetation season, it is
corrected for byusing themultiincidence angle-viewing capacities ofASCAT. Thebackscatter values are scaled
between a dry (0%) and wet (100%) reference, corresponding to the locally obtained historical minimum and
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Figure 1. (a) In situ site locations in the Arctic overlain with a simplification (not including subclasses for ground ice
content) of the Circum Arctic map of permafrost and ground ice conditions as background (Brown et al., 2002).
Projection: Lambert Azimuthal. Classes contained are continuous, discontinuous, sporadic, and isolated permafrost as
well as glacier, ocean, and land. (b) ENVISAT ASAR Wide Swath image for the central Lena River Delta, Siberia. The
location of the installed stations on the Kurungnakh island in the Lena Delta is indicated in red. Black hexagons
represent the approximate ASCAT footprint and are labeled with the ASCAT product ID. Projection: UPS North
Stereographic. (c) Setup of the VWC and soil temperature sensor installation at the sites on Kurungnakh: VWC and soil
temperature sensors at Depth 1 (SSM D1, T D1) (a depth of 3 cm) and at Depth 2 (SSM D2, T D2) (a depth of 6–7 cm).
ENVISAT = Environmental Satellite; ASAR = Advanced Synthetic Aperture Radar; WS = Wide Swath; ASCAT = Advanced
Scatterometer; UPS = universal polar stereographic; VWC = volumetric water content; SSM = surface soil moisture.

maximum values, resulting in a relative measurement of the water content (saturation) in the uppermost soil
layer (Wagner, Noll, et al., 1999). Validation results for ASCAT have been overall positive, but there are regions
that are problematic, such as mountains, deserts, or those with a high water fraction (Högström & Bartsch,
2017; Wagner et al., 2013).

The ASCAT time series data are available for a predefined discrete global grid which is based on the assump-
tion that the Earth can be modeled as a rotated ellipsoid. The grid cells are spatially resampled with an equal
spacing of 12.5 km in latitude and longitude and identified by a unique grid cell index (GPI). Each grid cell
over land is attributed a time series of backscatter values as well as SSMdata (Naeimi, Scipal, et al., 2009). Time
series have been extracted from the EUMETSAT Data Center for each location for which in situ data have been
available.

Frozen conditions are indicated through a so-called Advisory Flag that ranges from 0 to 100 (unfrozen to
frozen),which is available for the SSMdata user. AnAdvisory Flag also exists for snowprobability, ranging from
0 to 3 (snow-free to snowy conditions). The flags are both based on analyses of historical data (SSM/I snow
cover data and ERA-40 climate data, respectively) and give the probability for snow and/or frozen ground for
each day of the year (Nolin et al., 1998; Uppala et al., 2005). This probability does not vary from year to year.
However, timing of freezing and thawing can be highly variable (Naeimi et al., 2012). For the present study all
frozen and snow-covered conditions are therefore masked out based on the in situ records.

In order to detect thaw and freeze onset dates, a 7-day median-filter is applied on the in situ time series of
volumetric soil moisture. The thaw and freeze onsets are defined by the first and last days of the year, respec-
tively, where the filtered time series exceed 20%. All ASCATmeasurements before thawand after freeze onsets
were masked out.

2.2. In Situ Soil Temperature and Volumetric Water Content Records
Four sites where in situ soil moisture was already available were selected in Alaska and in Siberia, Russia, for
comparisonbetweenASCATderived SSMand in situmoisture data. All four sites, Barrow, SagwonandToolik in
Alaska, as well as Tiksi in Siberia are long-term permafrost monitoring sites. The data for Alaska were available
through the Natural Resources Conservation Service and for Tiksi through the Finnish Meteorological Insti-
tute in Helsinki, Finland. Given that the C band sensors’ penetration depth is less than 5 cm the records from
in situ sensors at shallow depths correspond well to the ASCAT data records compared to those from deeper
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Table 1
Table Overview of the Five Arctic Sites: Their Location, the Sensor Depth, and Brief Description of the Site

Sensor Data

Sites Location depth (cm) availability Description

Toolik 68∘37’22.9’’N 9 2007–2011 Tussock tundra, inland,

149∘36’35.4’’W daily south of Toolik lake.

Sagwon 69∘24’08.9’’N 10 2007–2011 Moist acidic tundra,

148∘47’52.9’’W daily upland, inland.

Barrow 71∘18’27.7’’N 10 2007–2011 Tussock tundra, Coastal

156∘35’19.7’’W daily lowland, polygon landscape.

Tiksi 71∘35’39.48’’N 5 2011–2014 Mid-wet tundra, Coast,

128∘53’17.4’’E hourly hilly with exposed bedrock.

Lena Delta (see below) 2013–2014 Tundra, high water fraction

daily

Lena Delta Location Sensor Profile Average VWC

Sub sitesa depth (cm)b before freeze-up 2013

K1 72∘19’43.88’’N D1:3 moss layer 0.04

126∘14’59.10’’E D2: 6 fibric layer 0.45

K2 72∘18’25.11’’N D1:3 moss layer 0.07

126∘12’53.50’’E D2: 8 fibric layer 0.32

K3 72∘21’14.23’’N D1:3 moss layer 0.31

126∘08’26.52’’E D2: 6 fibric layer 0.54

S1 72∘22’59.71’’N D1:4 moss layer 0.04

126∘28’10.39’’E D2:10 fibric layer no data

Note. VWC = volumetric water content.
aK1-3 and S1 stand for Kurungnakh one to three and Samoylov 1. bD1 and D2 stand for depth one
and two.

installed sensors (Bartsch, Melzer, et al., 2012). Therefore, although data for more than one depth were avail-
able from the Alaskan sites and Tiksi, only records from sensors at shallow depths were included. Figure 1 and
Table 1 give an overview of the sites location, the included sensor depth, and the in situ time period covered
at the specific sites which also correspond to that of ASCATmeasurements (from 2007). For the selected sites,
sufficiently continuous soil temperature measurements are only publicly available for Barrow on the Global
Terrestrial Network for Permafrost Database (GTN-P). The record ends in 2008, providing two years of overlap
with ASCAT measurements.

To get additional data on soil temperature and VWC automatic stations measuring soil temperature and
VWC were deployed in the central Lena River Delta, Siberia. They were installed at a very shallow depth and
intended for comparisonwith ASCATmeasurements on the islands Kurungnakh and Samoylov (Figure 1). The
Lena Delta is underlain by continuous permafrost between about 400 and 600 m below the surface (Yershov
et al., 1991). It offers a large suite of different permafrost landscape types. At 72∘N the landscape north of the
treeline is characterized by a shrubby tundra on top of the Yedoma Islands and by polygonal wet tundra on
the Holocene river terraces of the Lena Delta. Samoylov is a small island located within one of the main Lena
River channels, where long-term monitoring, including climate and soil measurement stations, has been in
progress since 1996 (Boike et al., 2013). The Samoylov research station with its facilities, as well as the long
study records, makes this a key site for polar research in the Siberian Arctic. Samoylov Island is dominated
by a polygonal wet tundra landscape. The Yedoma landscape unit Kurungnakh is located only a few kilome-
ters south of Samoylov Island. The measurement stations were installed in August 2013 on Kurungnakh and
Samoylov and datawere collected in August 2014. Three stationswere placed on Kurungnakh (K1, K2, and K3)
and one on Samoylov (S1). Each station on Kurungnakh consisted of (a) one VWC Campbell Recording Sensor
CR625 and one Temperature T109 sensor at a shallow depth, referred to as depth one (W1 and T1), (b) one
VWC CR625 sensor and one T109 sensor at a deeper depth, referred to as depth two (W2 and T2; Figure 1c).
The station on Samoylov had the same setup as that on Kurungnakh, with the exception that only one depth
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Table 2
Pearson CorrelationMatrix for Intercomparisons of (top) in Situ Soil Temperatures From the
Different Stations, (middle) in Situ VolumetricWater Content (VWC) From the Different Stations,
and (bottom) ASCAT-Derived Surface Soil Moisture (SSM) From Four Neighboring GPI

In situ sensor VWC

K2 W1 K3 W1 S1 W1 K1 W2 K2 W2 K3 W2

K1 W1 0.980 0.902 0.944 0.937 0.890 0.811

K2 W1 0.902 0.935 0.914 0.838 0.759

K3 W1 0.842 0.890 0.785 0.786

S1 W1 0.819 0.740 0.686

K1 W2 0.935 0.913

K2 W2 0.932

In situ sensor soil temperature

K2 T1 K3 T1 S1 T1 K1 T2 K2 T2 K3 T2

K1 T1 0.995 0.990 0.993 0.998 0.988 0.978

K2 T1 0.989 0.997 0.997 0.997 0.987

K3 T1 0.989 0.988 0.981 0.985

S1 T1 0.995 0.995 0.988

K1 T2 0.994 0.987

K2 T2 0.991

ASCAT SSM

3110841 3110845 3110849

3108899 0.95 0.96 0.95

3110841 0.95 0.91

3110845 0.95

could be instrumented (W1 and T1). The sensors at depth onewere placed in the lower end of the uppermost
porous moss layer (at an average of 5- to 7-cm thickness). The sensors at depth two were placed in the moss
fibric layer, a thin layer of∼2 to 3 cm, which is the water storage layer of the moss and always water saturated
(Yoshikawa et al., 2004). Below the fibric layer very decomposed old moss and roots from the vascular plant
cover frequently form a fibric peat layer of approximately 8 to 10 cm transitioning into mineral-dominated
soil. The fibric layer may also directly overlie mineral soil of the active layer. The precise locations of each sen-
sor are given in Table 1. Soil temperature and VWC were recorded at daily intervals. Figure 1 shows the site
overview of field work in 2013 in the Lena Delta (a) and a photo of the installation (c).

2.3. Comparison of in Situ and Satellite Records
The temporal samplingof in situdata across theArctic variedbetweenmeasurement sites,withdaily sampling
in Toolik, Sagwon, Barrow, and the Lena Delta. Hourly sampling was available only for the Tiksi data. For the
comparison between ASCAT SSM and in situ VWC data, daily means were used for each site and grid point.

In order to compare the ASCAT SSM (percent saturation) and in situ VWC data, two different scaling methods
were employed. In the first method, the in situ data are adjusted to match ASCAT SSM values. ASCAT SSM
values are determined by scaling each backscatter value to the historical maximum and minimum at that
point. The in situ VWC data were therefore likewise scaled to the measured minimum and maximum in situ
data. It should benoted that in the LenaDelta, the historicalminimumandmaximumcould only be calculated
from 1 year, whichwere then comparedwith a 7-year record of ASCAT data combinedwith historical ERS data
(Naeimi, Scipal, et al., 2009). The still mostly frozen soil and permafrost beneath impede percolation of water
into the ground. Therefore, it is generally expected that soils are fully saturated after the spring snow melt
in tundra environments. The fact that only the near surface is observed here needs to be considered, since
this may consist of a greenmoss layer and thus dry up quickly. In the second comparisonmethod, the ASCAT
data are rescaled to the in situ observations using mean standard deviation matching (Brocca et al., 2011),
implemented in the Python Toolbox for the Evaluation of Soil Moisture Observations (pytesmo, Paulik et al.,
2014). Matching allows determination of the root-mean-square error (RMSE) for predicting VWC from ASCAT
SSM. The Pearson correlation has additionally been derived for all sites. All statistical analyses are carried out
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Figure 2. Time series of (a) Advanced Scatterometer (ASCAT) surface soil moisture (SSM), (b) in situ soil temperature,
and (c) in situ volumetric water content (VWC) measured in the organic layer (moss and fibric layers) at the Lena River
Delta during summer 2014. The curves in panel (a) are for different ASCAT grid points. The soil temperature shown in
panel (b) is recorded at each station (K1–K3, S1) at the depth 3 to 4 cm (T1, moss layer) and 6–8 cm (T2, fibric layer). The
VWC shown in panel (c) is recorded at each station (K1–K3, S1) at the depth 3 to 4 cm (T1, moss layer), and 6–8 cm (T2,
fibric layer). In situ depths and ASCAT GPI are shown according to the legend. Vertical dashed lines indicate the
beginning and end of time periods used for analyses in Figures 5 and 6 and Table 3.

separately for the beginning and the end of the unfrozen season, which has been defined by a 20-day period
after the thaw onset and prior to the freeze onset detected from the in situ data. The distribution of the in situ
and ASCAT records (for both scalingmethods, in situ scaled on ownminimum-maximum and ASCAT rescaled
to in situ usingmean standard deviationmatching) are further assessed with boxplots for the Lena Delta and
Barrow over these time periods.

The representativeness of the in situ data for the four stations in the LenaDeltawas investigatedby comparing
the records fromeach stationwith each other. The Pearson correlation coefficientwas calculated between the
records from each sensor (Table 2). In situ data from the Lena Delta were collected from 2 September 2013
to 15 August 2014. The ASCAT SSM from this time period is applicable only during unfrozen and snow-free
conditions. The thaw onset was here defined using data from K1W2, as it showed the steepest increase of
VWC of all the sensors. The same median-filter and threshold of 20% as described above in section 2.1. was
used. The last day used in the analysis is defined by the in situ data availability (15 August 2014). Thus, the last
20-day period for the Lena Delta is termed late summer.

Dependencies between soil temperature and the observed ASCAT backscatter over time have been analyzed
for the stations on Kurungnakh and Barrow, based on Pearson correlations over a 20-day period. This duration
allows for sufficient samples and at the same time can provide information on changes of this relationship
over time, considering the short unfrozen period at the Arctic sites. The Pearson correlation has been derived
for the original data as well as detrended versions in order to investigate short-term variability. Sensor soil
temperature at depth one and two, as well as satellite records, have been temporally averaged over a 3-day
window for this purpose. Three-day windows are often applied to satellite-derived soil moisture records to
reduce noise (e.g., Massari et al., 2017). This noise may, however, result from soil temperature variations. The
resulting time series have been subtracted from the original data in order to exclude the long-term variations.
The correlation analyses for the 20-day period has been repeated with the detrended data set. The same
procedure has been applied to the records from Barrow.
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Figure 3. Temporal development of the Pearson correlation between ASCAT SSM and in situ soil temperature time
series. (a, b) Lena Delta (GPI 3110845), (c, d) Barrow (3091198 over Barrow with ocean in ASCAT footprint, 3089132 south
of Barrow). (left) Results of a 20-day moving time window applied for the full unfrozen summer period. (right) Temporal
development of the correlation between detrended ASCAT SSM and in situ soil temperature time series—results of a
20-day moving time window applied for the full unfrozen summer period. Vertical dashed lines indicate the beginning
and end of time periods used for analyses in Figures 5 and 6 and Table 3. ASCAT = Advanced Scatterometer; SSM =
surface soil moisture.

3. Results
3.1. Soil Moisture and Temperature Dynamics in the Lena Delta
Results from the Pearson correlation analyses showed that for the temporal dynamics of the measured soil
temperature in the moss and fibric peat layer the overall agreement between the sensors of the four stations
is high (0.978–0.998). Table 2 shows the Pearson correlation matrix between the measured soil temperature
at in situ sites. Station K3 with K3T1 and T2 showed the lowest agreement with other sensors (0.978–0.991)
and sensors at similar depths showed slightly higher correlations than between different depths. The Pear-
son correlation for the VWC measurements range from medium to high (0.686–0.980). The lowest values
were again from the K3 station (0.686–0.932). For the VWC measurements, the sensors at similar depths
clearly showed higher correlations than sensor comparisons between different layers. The VWC record of the
uppermost measurement in themoss layer that is in direct exchange with the atmosphere shows the highest
temporal dynamics. The moss layer VWCmeasurements were lower than the VWC in the water-saturated fib-
ric layer, whereas the soil temperature was higher in themoss layer. The VWC record of the fibric layer showed
a reduced expression of the same temporal dynamics with much higher wetness. The intercomparisons of
SSM from the different ASCAT GPI showed overall high agreement (0.86–0.97). The GPI 3110845 showed the
highest agreement with 3108899 and 3110841 (0.97).

The daily recorded in situ soil temperature data showed similar variations as the closest in time daily recorded
ASCAT surface moisture (Figure 2). The soil temperature variations for the deeper sensor K3 as well as the soil
temperature itself were much lower than for the other sites in the Lena Delta. The Pearson correlation for the
20-day time windows ranged from approximately −0.7 to 0 in early spring, followed by a peak of 0.6 at the
end of June (sensor K2 and K3, Figure 3). Correlations were also positive and medium high (values up to 0.6)
in summer (mid July) but in some cases (K3) gradually became lower toward the time of freeze-up in autumn.
For the detrended data set, correlations with organic layer soil temperature were comparably high during the
first 2weeks, except for K3 at 6-cmdepth. They ranged from0.4 to 0.5 (Figure 3). Correlations decreased for the
20-day periods starting after approximately 10 July 2014 in the case of K1 and K2. This period is characterized
bymoisture variations (in situ) as shown in Figure 2. Theperiodof higher correlation ends at the endof June for
K3. Figure 2 also shows the ASCAT SSM for additional GPI locations near the siteswith in situ observations. The
variations of in situ VWC in the case of all the Lena Delta sites were not well represented by ASCAT SSMduring
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Figure 4. Time series of (a) ASCAT surface soil moisture (SSM), (b) in situ soil temperature, and (c) in situ VWC at Barrow
during the summer of 2007 and 2008 for different grid points (3091198 over Barrow with ocean in ASCAT footprint,
3089132 south of Barrow). The sensors in panels (b) and (c) are located at 0-cm (b) and 10-cm (c) sensor depth. ASCAT
GPI are shown according to legend. Vertical dashed lines indicate the beginning and end of time periods used for
analyses in Figures 5 and 6 and Table 3. ASCAT = Advanced Scatterometer; GPI = grid cell index.

the timeperiodof in situ data availability. A periodof lowermoisture could beobserved toward the endof July
atmost in situ locations,which coincideswithhigher SSM/backscatter. StationK1behaveddifferently than the
other sites in August, displaying increasing VWC. However, a late August expedition to this site showed local
changes due towater logging. The installation of the sensors in 2013 seems to have triggered the degradation
of this site 1 year later. The VWC sensor of station K2 ceased to operate in mid-July 2014 due to disturbance
by animals. The soil temperature records for K3 are shorter than for other sites due to damage to the sensors
by rodents. Also, the moisture sensor measurements are disturbed afterward.

3.2. Soil Moisture and Temperature Dynamics in Alaska
Soil temperature, which is measured at 10-cm depth varies less at the Barrow site (Figure 4) compared to
observations from the Lena Delta sites. The same applies to the soil moisture record from ASCAT measure-
ments aswell as in situ VWC. In addition, ASCAT SSMbegins to decrease several days before in situ VWCvalues
in the autumn (Figure 4).

The behavior of the soil temperature and SSM relationship over time is similar to the observations in the Lena
Delta (Figure 3). There is a change topositive correlations after detrendingbut is less pronounced. Correlations
are higher for 2008 than for 2007 (Figure 3d).

3.3. Quantitative Comparisons of Soil Moisture Records
Correlations betweenASCAT SSM and in situ VWC vary strongly from site to site (Table 3). They can be positive
or negative at the same site for different years, especially after snowmelt (average −0.15). Autumn correla-
tions are mostly positive and also higher. The average is 0.16. Maximum values are reached at Barrow, with
an average of 0.65. However, it should be noted that the VWC measurements in 2007 have gaps for the ana-
lyzed springperiod. Correlations are negative for all sensors in the LenaDelta. Low (close to zero) andnegative
correlations coincide with high RMSE values (17–24% VWC, Table 3) derived frommatched ASCAT SSM data.
Barrow shows the lowest RMSE with 2.6–10.2% (VWC).

Boxplots for Barrow and the Lena Delta comparing the ASCAT and in situ VWC records during the first 20 days
after snow clearance and soil thawing in spring, aswell as the last 20 days before freezing in autumn at Barrow
and last 20 days before the end of the records in the Lena Delta are shown in Figures 5 and 6. The first and last
dates are indicated in Figures 2 and 4.
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Table 3
Spring (Spr) and Autumn/Late Summer (Aut/LS) Root-Mean-Square Errors (RMSEs) and Pearson Correlation
Coefficients of ASCAT SSM and in Situ VWC for All Sites and All Years

Site namea Year Spr RMSE Spr Pearson R Aut/LS RMSE Aut/LS Pearson R

Barrow 2007 5.9 -0.42 10.2 0.15

Barrow 2008 8.4 -0.62 3.5 0.64

Barrow 2009 9.8 0.19 2.6 0.76

Barrow 2010 4.4 -0.46 3.9 0.86

Barrow 2011 5.9 -0.50 5.0 0.83

Toolik 2007 12.0 0.03 8.4 0.31

Toolik 2008 9.6 0.21 - -

Toolik 2009 6.9 0.19 - -

Toolik 2010 7.7 0.12 12.3 0.64

Toolik 2011 9.9 -0.48 5.6 0.29

Sagwon 2007 34.3 0.29 19.0 0.75

Sagwon 2008 23.3 -0.20 15.1 0.04

Sagwon 2009 23.5 -0.02 18.6 0.15

Sagwon 2010 23.2 -0.23 22.7 -0.55

Sagwon 2011 21.4 0.22 8.6 0.05

Tiksi 2011 13.4 0.02 22.5 -0.78

Tiksi 2012 11.4 -0.10 14.0 0.32

Tiksi 2013 16.9 -0.33 13.3 -0.18

Tiksi 2014 5.8 -0.29 15.5 -0.86

LD 3108899 - K2W2 2014 24.2 -0.64 16.9 -0.58

LD 3110845 - K2W2 2014 24.0 -0.56 17.5 -0.44

aFor Toolik in autumn 2008 and 2009, no ASCAT data were available. For the Lena Delta (LD), correlations and
RMSEs were calculated between K2W2 and ASCAT GPIs 3108899, 3110845.

Our approach for scaling in situ VWC values with ASCAT SSM shows poor agreement at the Barrow site during
the spring season, with approximately 20–40% difference in values (Figure 5) ASCAT SSM records are mostly
below the scaled in situ values in spring but at a similar (slightly higher) level in autumn. The opposite pattern
can be observed for the Lena Delta (Figure 5). However, it should be noted that values for the second period
represent late summer at the Lena Delta.

The matching of ASCAT SSM to in situ VWC results in similar levels in the case of Barrow. In contrast to the
VWC scaling (Figure 5), matching ASCAT SSM with in situ VWC values produces good agreement at Barrow
(Figure 6). Deviations remain for Lena Delta, but reasonable agreement is obtained for the autumn period at
station K3.

4. Discussion
4.1. In Situ Measurement Setup and Scales, Lena River Delta
For the ASCAT-specific investigation in the Lena River Delta we installed VWC sensors very close to the surface
within the organic layer. Tundra permafrost landscapes are fully covered by moss that overlays the mineral
soil of the active layer. The organic layer in the Lena River Delta generally contains a thickmoss layer (up to 30
cm)with a persistently wet 2- to 3-cm-thick fibric layer at its base. Under themoss and fibric layer a thickmore
decomposed organic peat layer is often present. Therefore, the installed VWC sensors do not measure soil
moisture of a mineral soil body. Installation of VWC sensors in themineral soil below the 20- to 30-cm organic
layer where the fibric layer is persistently wet would not reflect what the ASCAT senses. However, we did not
find strong agreement between the time series of the in situ VWC and satellite-derived soil moisture varia-
tions in the time period that was studied for the comparison with direct values (Table 3) nor for the median
comparisons (Figure 6 and 5). The discrepancy of the temporal behavior betweenASCAT SSMand in situ VWC
in autumndemonstrates the limitation of the satellite information to the upper few centimeters. The soil tem-
perature records in the soil indicate that freezing started at the surface before the decrease in VWC at 10-cm
depth. The soil temperatures remain at 0 ∘Celsius for several days in this case.
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Figure 5. Box plots of Advanced Scatterometer (ASCAT) surface soil moisture (SSM) and in situ volumetric water content
(VWC) scaled to their minimum and maximum values during the spring and autumn/late summer of 2007–2011 at the
(a, b) Lena Delta and (c, d) Barrow sites. For spring, the first 20 days after thawing (determined from the in situ data) are
used. For the autumn values at Barrow, the data during the last 20 days before freeze-up (determined from the in situ
data) are used. For the late summer values at Lena Delta, the data during the last 20 days of in situ data availability are
used. GPI = grid cell index.

The Lena Delta tundra landscape is characterized by a relatively high surface water fraction which can cause
a bias to the ASCAT SSM (Wagner et al., 2013). This results from variations in water surface roughness which
also contribute to the backscatter signal. Such water surface roughness can be caused by wind and rain but
also by variations in river discharge in the Lena Delta site (Högström et al., 2014). Figure 1b shows the amount
of water bodies in each ASCAT GPI. The GPI 3110849 has a high percentage of water bodies (77%) compared
to 3108899 (39%), 3110845 (24%), and 3110841 (14%) (Högström& Bartsch, 2017). GPI 3110841would be the
better choice for comparison with ASCAT SSM, but logistic limitations during fieldwork lead to the choice of
the more accessible GPI 31118899.

The comparisons of the ASCAT temporal SSM dynamics to the temporal dynamics of the in situ organic layer
soil temperature in the Lena Delta suggest that the increase in soil temperature and at the same time increase
in backscatter and SSM, respectively, may reflect subtle changes in liquid water content through thawing and
refreezing of the active layer during the first 2weeks after the endof snowmelt. However, this is not supported
by the in situ VWC data. The drying up toward autumn suggested by the ASCAT measurements could not
be observed in the in situ VWC records. There is more variability for the sensors in the moss layer in direct
exchange with the atmosphere than in the persistently water-saturated fibric layer.

The correlations between the sites are relatively high, suggesting a certain level of representativeness. It
has been shown that wind influences the backscatter when open water is present in the ASCAT footprint as
demonstrated by Högström and Bartsch (2017) for the Lena Delta site. But this has only short-term impacts.
Comparisons of satellite-derived soil moisture data with climate model results at high latitudes have also
shown that models do not produce this drying up suggested by the ASCAT SSM product (Guimberteau et al.,
2018). It should be noted that water logging due to local impacts of the sensor installationsmay also increase
the saturation of the site. Water logging has been observed for sensor K1 toward the end of the summer
season. Conclusions can therefore not be drawn from the data in the Lena Delta for autumn variations.

The overlying moss layer itself may also play a role with regard to the response to soil temperature in spring
and changes toward autumn. The C band signal is expected to penetrate through tundra vegetation and the
moss layer when it is dry. The high in situ moisture values at the deeper sensor installed in the fibric layer
generally indicate very wet conditions, which is expected, as the fibric layer acts as the water storage layer of
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Figure 6. Box plots of in situ volumetric water content (VWC) and Advanced Scatterometer (ASCAT) surface soil
moisture (SSM) rescaled to in situ VWC observations using mean standard deviation matching. Values are for the spring
and autumn/late summer of 2007–2011 at the (a, b) Lena Delta and (c, d) Barrow sites. For spring, the first 20 days after
thaw (determined from the in situ data) are used. For the autumn values at Barrow, the data during the last 20 days
before freeze-up (determined from the in situ data) are used. For the late summer values at Lena Delta, the data during
the last 20 days of in situ data availability are used. GPI = grid cell index.

the moss. The backscatter range which underlies the variations in SSM in the Lena Delta is only on the order
of 1–2 dB across the entire snow-free season (Högström & Bartsch, 2017). In addition, there is low variation
in in situ VWC (see Figure 2). The contribution of moisture change may, therefore, play only a minor role. The
impact of soil temperature on the dielectric constant (above 0 ∘C) may have an effect in the case of these
highly water-saturated soils and surfaces (Mironov & Savin, 2016).

The impact of soil temperature on ASCAT SSM variations in spring is partially confirmed at the Barrow site.
Barrow VWC values are similar to the Lena Delta, but ASCAT SSM levels differ. Thismay result from the proxim-
ity of the site to the ocean and its contribution to the backscatter. The overall low variability of soil moisture
observed in the in situ records is, however, captured with ASCAT which leads to the high correlations and
good results for thematchingwith subsequent low RMSE (3–10% for predicted VWC, Table 3). The average of
the RMSE for all sites (11% in case of spring as well as autumn) does, however, not meet the general accuracy
requirement for satellite-derived soil moisture data sets, which is usually 4% (e.g., Chen et al., 2018; Sanchez
et al., 2012).

4.2. Comparison Across Sites
The deviations which can be observed across the sites and seasons (Table 3) need to be discussed in the
context of variations within the ASCAT footprint and the assumption that the chosen time period represents
unfrozen conditions.

Tiksi is located close to the sea and the measurement site is in a valley surrounded by hills up to 200-m high
with bare rock surfaces. The soils at the measurement site (wetland) differ from the surrounding mountain
landscape, whichmay lead to the low correlation and high RMSE (6–22% for predicted VWC, Table 3). Sagwon
is also located in a hilly area. Bergstedt and Bartsch (2017) demonstrated a high variability of freeze/thaw
transitionwithin theASCAT footprint at this site. Thismayhavean impacton theaccuracyof thedetermination
of the unfrozen period as the in situ location is not representative for the ASCAT footprint.

In general, derived values from satellite measurements are not of the same order as in situ measurement
(scaled between minimum and maximum). In situ values range mostly between 45% and 100% compared
to ASCAT values, which range between ∼20% and 100% for the same time periods. This may result from the
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definition of the minimum and maximum for the scaling. This difference is similar at several sites. Only a few
years have been available to define the scaling parameters for the in situ data. ASCAT dry and wet references
are derived from long-term records which also include its predecessor ERS (Naeimi, Scipal, et al., 2009), which
may impact the comparability. Furthermore, the fraction of open water can impact the scaling parameters as
exemplifiedbyHögströmandBartsch (2017) for the central LenaDelta. Aprevious studywhich compared land
surfacemodel derived near SSMwith ASCAT SSM also obtained awide range of correlations, from negative to
positive values, across Siberia (Gouttevin et al., 2013). The areas with negative correlations included the Lena
Delta. The lowcorrespondence in this regionhasbeenattributed to the lowdensity ofmeasurement sites that,
in turn, drive model results. Högström et al. (2014) investigated the occurrence of these negative correlations
with respect to thewater fractionwithin the ASCAT footprint. High negative correlations coincidedwith areas
with a high water fraction. The subsequent study over the Lena Delta (same ASCAT footprints as this study)
by Högström and Bartsch (2017) showed that the high water fraction indeed causes a bias which results from
wind action (causing waves which increase the backscatter). However, this bias cannot explain the negative
correlations. Our results suggest that it may at least partially result from variations in the ASCAT records which
are related to soil temperature variations.

Matching the ASCAT SSM to in situ data allows one to derive error measures. However, the comparably good
results for Barrow need to be interpreted with care, since this site has low variability over the summer season.
The high RMSE of the near-surface VWC predicted from ASCAT soil moisture data at the Sagwon, Tiksi, and
Toolik sites suggest that the error is generally much larger in tundra environments (Table 3). The higher cor-
relations for the autumn period compared to spring indicate better applicability of ASCAT SSM information
toward the end of the unfrozen period. The soil temperature influence seems to be lower. A good agreement
between scaled in situ data and ASCAT SSM can also be obtained for autumn at Barrow. The record of in situ
data is longer at this site which may give more reliable scaling results. However, general conclusions could
not be drawn due to the low number of sites studied. More monitoring sites which provide information on
multiple parameters, multiple years, and with freely accessible data are required.

K2 has the lowest SSM values of the Kurungnakh Island sites in the Lena Delta in spring. In situ soil tempera-
tures are still close to 0 ∘C (for 8-cm depth as selected for comparability to other sites, K2T2 in Figure 2) at this
site which is lower than at other neighboring sites. It can be expected that the near surface was not yet fully
unfrozen. This supports the findings on temporal variability, and the soil temperature dependence of the C
band observations, in spring (Figure 2).

The low variation of in situ values observed at several sites and the differences between regions underline the
need to use several different sites for assessments in the Arctic. The use of our own sensor setup in the Lena
Delta alone would have limited the analyses to a small range of relative moisture as observed by the satellite
records.

ASCAT data are only available in VV polarization which does not allow further analysis of scattering mech-
anisms. This needs to be further investigated with SAR. SAR also allows for better accounting of landscape
heterogeneity due to the higher spatial resolution of such data (Högström et al., 2014; Wagner et al., 2008).

Results underline what has been pointed out previously by Wagner et al. (2013) regarding the necessity to
build up expert knowledge in order to select those soil moisture values which are fit for application because
the quality of the ASCAT SSM product varies in space and time. Disturbance of the ground through sensor
installation has been identified as a critical issue for validation of near-surface VWC values in permafrost areas.

5. Conclusions

Satellite SSMmeasurements fromMetOpASCAT, which represent relative values, can represent general differ-
ences in the degree of soil saturation between sites.We compared five sites across theArctic in Alaska (Barrow,
Sagwon, and Toolik) and Siberia (Tiksi, Lena Delta) for soil moisture and two of the sites for the relationship
between ASCAT SSM and in situ temperature (Lena Delta and Barrow).

We observe low variability in ASCAT-derived SSM and also low variability in in situ VWC of the uppermost
organic layer in this type of landscape over the snow-free season. Scaling for ASCAT SSM uses longer time
series,whereas the lowvariability of the shorter in situ VWC time records limits the comparability of the scaling
to minimum/maximum. Matching allows determination of the RMSE for the ASCAT-derived near-surface soil
moisture in units of VWC instead of saturation. High error values suggest that ASCAT SSM values need to be
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treatedwith care across tundra environments. However, the investigated sites are all located inheterogeneous
environments with a high water fraction or altitude variation in the ASCAT footprint. Continuous measure-
ments, with multiple parameters and comparably homogeneous sites, are required for better understanding
the influence of environmental factors on remotely sensed values. Soil temperature sensors distributed over
a larger area could be advantageous for determining the complete thaw within the scatterometer footprint.
The sensor setup in the Lena Delta, however, demonstrated the represetativeness of single-point measure-
ments for characterizing the temporal variability of VWC in lowlandenvironments. TheRMSEof the volumetric
water content predicted by ASCAT is on average 11% across the five sites in Alaska and Siberia.

In addition to previous findings regarding the influence of near-surface wind impacting the roughness of
water surfaces, variations of C band backscatter are also impacted by soil temperature. The moss layer tem-
perature variations are reflected in soil moisture variations derived from ASCAT during unfrozen conditions.
The low variation in soil moisture over the snow-free season may contribute to the dominance of soil tem-
perature on the remotely sensed values at the Lena Delta as well as the Barrow site. In fact, the retrieval of
soil moisture is functionally based on the relationship between soil water content and the dielectric constant.
However, it also changes with soil temperature under unfrozen conditions.
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Erratum

The originally published version of this article included several minor typographical errors introduced in
typesetting. These have been corrected, and this may be considered the authoritative version of record.
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