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Kurzfassung

Entscheidungen von automatisierten Systemen im Gesundheitswesen können weitreichen-
de Folgen haben, wie z.B. eine verzögerte oder falsche Behandlung, und müssen daher
für medizinische Experten erklärbar und nachvollziehbar sein. Dies gilt auch für den
Bereich der automatisierten Flow Cytometry (FCM) Datenanalyse. Bei der Leukämie-
therapie werden FCM-Proben aus dem Knochenmark des Patienten gewonnen, um die
Anzahl der verbleibenden Leukämiezellen zu bestimmen. In einem manuellem Prozess,
dem so genannten Gating, zeichnen medizinische Experten mehrere Polygone um ver-
schiedene Zellpopulationen in 2D-Projektionen, um eine Krebszellpopulation in einer
FCM-Probe aufzuspüren. Es gibt mehrere Ansätze, die darauf abzielen, diese Aufgabe
zu automatisieren. State-of-the-art Modelle zur automatischen zellweisen Klassifizierung
agieren in ihrer Vorhersage als Black-Boxen und haben nicht die Erklärbarkeit von
durch den Menschen erstellten Gating Hierarchien. In dieser Arbeit wird ein neuartiger
transformer-basierter Ansatz vorgestellt, der Zellen in FCM-Daten klassifiziert, indem
er den Entscheidungsprozess von medizinischen Experten nachahmt. Das Netzwerk be-
rücksichtigt alle Messereignisse einer Probe auf einmal und sagt die entsprechenden
Polygone der Gating-Hierarchie voraus, wodurch eine nachvollziehbare Visualisierung
ensteht, ähnlich wie es ein menschlicher Operator tut. Das vorgeschlagene Modell wurde
an drei öffentlich zugänglichen Datensätzen für akute lymphoblastische Leukämie (ALL)
evaluiert. Im experimentellen Vergleich erreicht es mit großen Datensätzen ähnliche Ge-
nauigkeit bei der automatischen Identifizierung von Blastenzellen und liefert gleichzeitig
erklärbare Visualisierungen für menschliche Experten.
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Abstract

Decisions of automated systems in healthcare can have far- reaching consequences such
as delayed or incorrect treatment and thus must be explainable and comprehensible for
medical experts. This also applies to the field of automated Flow Cytometry (FCM)
data analysis. In leukemic cancer therapy, FCM samples are obtained from the patient’s
bone marrow to determine the number of remaining leukemic cells. In a manual process,
called gating, medical experts draw several polygons among different cell populations on
2D plots in order to hierarchically sub-select and track down cancer cell populations in
an FCM sample. Several approaches exist that aim at automating this task. However,
predictions of state-of-the-art models for automatic cell-wise classification act as black-
boxes and lack the explainability of human-created gating hierarchies. In this thesis
a novel transformer-based approach is proposed that classifies cells in FCM data by
mimicking the decision process of medical experts. The network considers all events of a
sample at once and predicts the corresponding polygons of the gating hierarchy, thus,
producing a verifiable visualization in the same way a human operator does. The proposed
model has been evaluated on three publicly available datasets for acute lymphoblastic
leukemia (ALL). In experimental comparison it reaches state-of-the-art performance for
automated blast cell identification while providing transparent results and explainable
visualizations for human experts.
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CHAPTER 1
Introduction

In this chapter, the thesis is first motivated, followed by a specification of the main
research questions.

1.1 Motivation & Problem Statement
Deep Learning models are applicable to a variety of problems arising in healthcare.
However, since wrong predictions can have severe consequences, the interpretability of
models in this domain is crucial. The output produced by a model needs to be transparent,
even for clinicians without any knowledge about the interior of the model. For example,
Zech et al. [ZBL+18] underpins the urgency to develop explainable approaches in
healthcare. Their cross-sectional study revealed that a Convolutional Neural Network
(CNN), which was originally designed to identify pneumonia actually differentiated the
equipment employed on patients in emergency situations. Using explainable 1 methods
could have highlighted the model’s wrong assumption early on [ABV+20] and therefore
could have helped to verify if the correct concept is learned. This example demonstrates
the need for explainability when deploying Deep Learning in healthcare.

The necessity of explainability of Deep Learning approaches also applies to the field of
automated cell detection in Flow Cytometry (FCM) data. FCM measures the antigen
expression levels of blood or bone marrow cells. It is used in research as well as in daily
clinical routines for tasks such as immunophenotyping or for monitoring residual numbers
of cancer cells (minimal residual disease, MRD) during chemotherapy. A typical sample
contains 50k-500k cells per patient with up to 15 different features (markers) measured.
Each feature corresponds to either the physical properties of a cell (cell size, granularity)
or to the expression level of a specific antigen marker on the cell’s surface [McK18]. While

1Note that the terms explainability and interpretability are used as interchangeable concepts in this
work.
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1. Introduction

methods for automated MRD assessment already reach human expert level performance
[WRW+22], they lack interpretability of their predictions. Regardless of a model’s
performance, clinicians have to manually verify the prediction in a time-consuming
process. Using explainable methods could overcome this issue.

Molnar [Mol20] divides existing explainable AI methods into two categories:
Intrinsically interpretable models are interpretable due to their internal structures.
Linear models, decision trees, or naive Bayes are common examples of this category.
Post-hoc interpretation methods analyze a model after training in order to gather
explainable insights. A common example of this category are saliency maps, which
visualize inner structures of neural networks [NZP18]. In [Elt20] a third category self-
explaining AI is described, according to which a self-explaining model yields two
outputs: a decision and an explanation of that decision. Self-explaining models seem
particularly suitable for MRD assessment in FCM data since there already exists a
standardized procedure for communication and documentation of the FCM data analyses
by medical experts. Predicting this procedure by a model would generate explainable
solutions to the problem.

1.2 Aim of the Work
The aim of this work is to develop a novel method that outputs explainable predictions of
MRD assessment in FCM samples. The model’s explainability is achieved by predicting
the entire sequence of polygons (called gates) that lead to the classification of the target
population. This sequence mimics the procedure which is used to manually analyze
MRD in FCM samples by human experts as pictured in Figure 1.1. In this process,
several 2D projections of the FCM data are inspected and sub-populations are labeled
by drawing gates around them. Gates drawn in specific projections are often applied
in sequence, such that one plot only depicts the events selected by the previous plot’s
polygon. Sequentially applying these gates allows identifying cancer cell populations in
the FCM sample. Gating enables the analysis of complex cell populations patterns by
a sequence of simpler intermediate steps, which are interpretable by clinicians. Thus,
gating is not only a way for finding biologically meaningful sub-populations but has also
become the standard for communication and documentation of FCM sample assessment.

The method to develop extends the state-of-the-art set transformer [WRW+22] model.
Similar to the model in [WRW+22] the input are events of a full FCM sample. However,
instead of predicting the class label for each cell, the model predicts a sequence of 2D
coordinates, that form the polygons of the gating hierarchy. The cell-wise class labels,
as well as the MRD value, can then be obtained from this gating hierarchy. The model
follows an encoder-decoder architecture similar to Facebook’s Detection Transformer
(DETR) [CMS+20]. For the encoder a set transformer similar to [WRW+22] is used. The
decoder design is inspired by [CMS+20]: Object queries are learned for each predicted
polygon. These object queries are applied to the encoder’s output via cross attention.
The goal of providing an interpretable method to assess MRD in FCM data is considered

2



1.2. Aim of the Work

Figure 1.1: Example of a gating hierarchy for a single FCM sample. The gates are drawn
in the 2D projection of the FCM data, which is obtained by plotting the expression levels
of two markers against each other. The gates are drawn in the order of their application.

fulfilled when the predicted gating hierarchies reach a similar performance as the state-
of-the-art set transformer on all experiments stated in [WRW+22]. The performance is
measured in median per sample classification F1-Score.

1.2.1 Research Questions
As described above the aim of this work is to investigate development of an self-explainable
model for MRD assessment in b-ALL FCM samples. In detail the research is split among
the following three questions:

1. What are the main building blocks that enable to predict FlowCytometry (FCM)
gating hierarchies with set transformers?
This research question addresses the architectural extensions of the set transformer,
which are needed to predict gating hierarchies. Several design choices should
be explored: What number of object queries per predicted gate leads to the best
performance? How many layers of encoder and decoder lead to the best performance
while being computational feasible? How can the loss function be designed to work
with a varying number of polygon points in the ground truth?

2. Which data augmentation strategies and synthetic data generation strategies
are beneficial for the given task?
As the model is trained on some rather small datasets (< 60 samples) data aug-
mentation strategies as well as pretraining on artificially generated data should be
investigated and their effect on the model performance should be examined.

3. Which visualization techniques ease explainability of the proposed model’s decision
process?
In this question, additional insights about the model’s inner workings should
be explored. Common explainability methods for deep learning models include

3



1. Introduction

attention visualization and gradient-based visualization techniques. The suitability
of those techniques for FCM data models should be investigated.

1.3 Summary of Results
In the course of this thesis a deep learning method is created that predicts the gating
hierarchy for B-ALL MRD assessment of FCM samples. Thereby the proposed method not
only automatically identifies the cancer cells in the data, it also provides an comprehensible
path of decisions that documents and explains the identification process. When trained
on bigger datasets (≥ 180 samples) the proposed method achieves equal performs as the
state-of-the-art for direct cell classification [WRW+22]. However, when trained on smaller
datasets (≤ 60 samples) it fails to meet the performance of direct cell classification. The
conducted experiments indicate that various data augmentation techniques benefit the
model’s performance, while pre-training on synthetic data only increase the convergence
speed but not the performance. Visualizing the self-attention revealed that different
heads specialize attending on different biologically plausible populations. Visualizing the
gradients of the model’s output with respect to the input data demonstrated how the
learned relationship between predicted polygon and input data can be inspected.

1.4 Structure of the Thesis
The content of this master’s thesis is divided among five chapters. In chapter 1, an
introduction into this work is given. Chapter 2 describes the necessary medical background
on Flow Cytometry and Acute Pediatric Leukemia. This is followed by chapter 3, which
outlines existing methods for automated FCM analysis, object detection and explainability.
Chapter 4 provides an overview of the transformer architecture and then describes the
proposed method. The last chapter, 5 elaborates on the results of the conducted
experiments, exploratory data analysis as well as concludes this thesis.
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CHAPTER 2
Medical Background

This chapter provides an introduction to the medical background of this thesis describing
the principles of FCM as well as basic knowledge regarding Pediatric Leukemia. In brief,
FCM is a laser-based technique that allows us to measure both the physical properties
of cells and antigen expression levels. It is used in research as well as in daily clinical
tasks such as immunophenotyping or for monitoring residual numbers of cancer cells
(Measurable Residual Disease (MRD)).

2.1 Principles of Flow Cytometry
The core underlying mechanism of FCM is to retrieve properties of particles in a fluid by
measuring the amount of emitted scatter and fluorescence light when one particle passes
a laser. In the case of biological cells, the scattered light reveals physical properties of
the cell, such as cell size or granularity, and, under the use of chemicals, the emitted light
allows to measure expression levels of antigens on the cell’s surface [doi13a]. Modern
cytometers are able to analyze hundreds-thousands cells in one sample measuring over 15
different features per cell. One recorded observation is referred to as event as acquisition
artifacts can cause recordings without a concrete cell present.

2.1.1 The Flow Cytometer
A cytometer consists of three main parts [Dic02] as illustrated in Figure 2.1:

• Fluidic System
This component aims to correctly present one cell after the other to the laser. A
fast-moving stream of sheath fluid surrounds the sample fluid and focuses it in front
of the laser. This process is called hydrodynamic focusing as pressure, velocity and
density differences of the two fluids prevent them from mixing and allows to focus
the sample fluid, forcing the cells to pass the laser individually [doi13a].

5



2. Medical Background

Laser(s) Optic System Dichromatic Mirror

Bandpass Filter

Biomarker

Fluorescence Detectors

Forward/Side Scatter

Fluidic System

Figure 2.1: The main parts of a cytometer consisting of a fluidic system, optical system
and electronic system.

• Optical System
The optical system consists of lasers, focusing lenses, prisms, collection lenses,
mirrors and filters. Modern cytometers use multiple lasers that transmit different
wavelengths of light. When a cell is illuminated by the laser beam scatter light and
fluorescence light is emitted. The scatter light is either diffracted at narrow angles
(Forward Scattered (FSC) light) or 90° (Side Scattered (SSC)) to the laser beam.
The amount of scatter light is measured by detectors in line and in 90° to the laser
beam. In addition to the scatter light, specific dyes and fluorochromes are used
to produce fluorescence light. Either dyes bind directly to a cell or fluorochromes
are bound to antibodies that bind to the cell’s surface antigens. These molecules
absorb light of a specific wavelength band (absorption spectrum) and as a result
emit light in another wavelength band (emission spectrum). A careful selection of
fluorochromes is needed to minimize overlaps in the emission spectrum of different
fluorescent compounds. Photon-multipliers together with optical bandpass filters
are used to measure the amount of emitted light of different spectra [doi13a].

• Electronics
This component is responsible for the conversion of optical to digital signals. The
comparable strong signal of the FSC light is captured by photodiodes. While the less
intensive SSC and fluorescent light is collected by more sensitive photon-multiplier
tubes. In brief, photodetectors convert photons of incoming light to electrons, which
generates a voltage pulse that is proportional to the number of detected photons
[Giv01]. A analogue-to-digital converter (ADC) transforms the produced signal
into digital numbers and records the height, width and area of the voltage pulse
[doi13a].

6



2.1. Principles of Flow Cytometry

2.1.2 Staining & Cluster of Differentiation
Scatter light is caused by laser light passing through the cell membrane and refracting
and reflecting on cytoplasmic organelles or nucleus of the cell. In contrast, fluorescence
light is emitted by special chemicals attached to or placed inside a cell. Usually, these
fluorochromes are combined with specific antibodies to which they covalently bind. The
antibodies anon bind to specific cell antigens. The process of combining the sampled cells
with fluorochromes is called staining. The Cluster of Differentiation (CD) nomination
gives the antigens unique and standardized names [EBB+15, McK18]. For instance,
cluster of differentiation number 19 (CD19) is a surface marker for B-lymphocyte cells
[RRK+16]. Besides these, there are also fluorochromes that do not utilize antibodies
or target cell antigens. For instance, cell dyes like propidium iodide (PI), which binds
to nucleic acids of a cell’s DNA, are used to assess a cell’s viability since it is blocked
by an intact cell membrane but can pass in dying or dead cells [RN06]. For instance,
there is the specialized DNA polymerase Terminal deoxynucleotidyl Transferase (TdT), a
molecule, which is only present inside a cell’s nucleus. In this case, before staining, the
cell’s surface and nucleus membrane must be permeablized, such that the fluorochromes
can pass through [GTB+09]. Fluorescent dyes can be categorized into single dyes and
tandem dyes. While single dyes emit light at a single wavelength, tandem dyes emit
multiple wavelengths simultaneous as they consists of multiple fluorescent dyes chemically
linked together [LRVBACL09, BNRC12].

2.1.3 Data Visualization
The measured scatter and fluorescence signals are often displayed in two dimensional
plots, where each measured event is represented by a point. The signal strength of
two parameters define the point’s location. According to the AIEOP-BFM consensus
guidelines of 2016 [DBG+18] cell populations can be classified into one of three categories
based on the measured signal strength:

• Negative: Populations of low to no expression of a particular marker.

• Dim Positive: Populations of moderate measured signal intensity, but strong enough
to exceed potential background variability.

• Positive Bright: Populations of intensive measured signal intensity.

Most antibody conjugated fluorochromes generate a large dynamic range of fluorescence
intensity. Therefore, to view the wide-ranging FCM data, the displayed data is usually
logarithmic or logical scaled as discussed in Subsection 2.1.5.

2.1.4 Compensation
Although the fluorochrome selection aims to minimize emission spectra overlap, complete
avoidance is in practice often not possible. Figure 2.2 illustrates the emission spectral

7



2. Medical Background

profile of the two fluorochromes Fluorescein Isothiocyanate (FITC) and Phycoerythrin
(PE). It displays how spectral profile overlap is recorded by opposing detectors. The red
area shows the amount of FITC fluorescence detected in the PE channel. Because signal
spills over from FITC to PE, this is called spillover [Roe02]. This effect can introduce
misleading measurements in the obtained data. For instance, cells without any antigen
for the PE stained compound expressed on their surface, can display a dim appearance
of PE, since the emitted light of FITC spills over to the spectrum of the PE detector.
Another common example of a spillover-related issue is the appearance of double-positive
events in biological unreasonable settings. For instance, CD5 and CD19 are mutually
exclusive markers in healthy cells and are only known to be double positive in B-cell
Chronic lymphocytic leukemia (CLL) but due to spillover can be spotted in a healthy
sample too [DGA+11]. To account for the unwanted side-effects a post-processing step
called compensation is conducted. Knowing the proportion of light that spills over to
another fluorochrome’s detector, allows subtracting this amount from the measured signal
in the other detector. As shown in Figure 2.2 the red area depicts the amount of FITC
light detected in the PE detector. This area is always proportional to the amount of
light in the FITC detector. Therefore, staining cells only with FITC reveals the spillover
amount in the PE detector and can further be used to compensate the spillover by
subtracting this proportion of FITC signal from the measured PE signal. This process
only demonstrates the compensation for the spillover of one fluorochrome into one other’s
detector. However, in practice, the procedure is more complex:

1. Spillover usually occurs in both directions, for instance not only from FITC to PE
but also from PE to FITC (see Figure 2.2).

2. Modern cytometers have multiple lasers with different excitation spectra and
measure signals in 10-20 different channels resulting in a more complex spillover
behavior.

3. Not only the used compounds emit light but also the cells themselves emit fluores-
cence light by a phenomenon called autofluorescence. The cytometer laser generates
fluorescence emission from cell compounds such as the coenzymes Nicotinamide
adenine dinucleotide phosphate (NADPH) or flavin, occurring in mitochondria
and lysosomes [doi13a]. Autofluroscence is more likely for short wavelength lasers
(488nm) [PR07], on aged cells [doi13a] and for specific cell types like myeloid cells
due to their high content of granule-associated flavoproteins [Mon05].

Nevertheless, also in more complex cases compensation is based on the principle of
subtracting the amount of spilled over signal per channel. The parameters defining the
compensation are therefore stored in a C × C matrix, where C denotes the number
of channels. To address the complexity the compensation procedure is often aided by
software and special chemicals are stained to measure spillover amounts. In general, it is
still preferable to minimize spillover in the first place by carefully selecting fluorochromes
tailored for the intended use. Spectral overlap is still one of the most frequent sources

8



2.1. Principles of Flow Cytometry
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Figure 2.2: The emission spectral profile of the FITC and PE and the bandwidth of two
detectors. Figure inspired by [BR].

of error in flow signal and requires experienced operators [doi13a, Roe01]. For more in
depth discussion about compensation in FCM the reader is referred to [Roe02].

2.1.5 Logicle Scale
After compensation, some cell populations can have low mean and include events with
negative data values. Both, low mean and negative values cause issues on the logarithmic
scale, as displayed in Figure 2.3. The Figure shows that the population with a low
mean is disturbed on the log scale, as the location of the median (red cross) differs
from the visual center of the data [PRM06]. Parks et el. [PRM06] proposed a display
method called logicle scaling, which addresses these issues and aims to be advantageous
over both linear and logarithmic scaling. Logicle scaling combines properties of both
logarithmic functions and linear functions. For large data values it is logarithmic, to
ensure a wide dynamic range and provide good visualization for population at high
fluorescence intensities. Near zero the function is linear and also extends to negative
values to correctly display populations with low mean fluorescence intensity as well as
negative values after compensation. The logicle scaling is based on the hyperbolic sine
function (sinh):

sinh(x) = ex − e−x

2 . (2.1)

Parks et el. refers to the generalization of sinh as the family of biexpoential functions:

S(x; a, b, c, d, f) = aebx − ce−dx + f. (2.2)

9



2. Medical Background

Figure 2.3: Two scatter plots of the same FCM sample. The right plot is scaled with
logicle scale and the left plot is logarithmic. The red arrows indicate the median of the
three populations. Graphic taken from [PRM06].

For a given FCM sample the best function’s parameters are computed dynamically. For
a more in depth discussion about details on the logicle scaling the reader is refered to
Parks et el. [PRM06].

2.1.6 Gating

The conventional procedure to analyze FCM data in the clinical routine is to look at 2D
projections of the FCM data and label sub-populations of events by drawing polygons
around them [McK18]. This procedure is called gating and the polygons are called
gates. As illustrated in Figure 2.4, gates act as filters by defining the events that are
subject to further analysis in other 2D projections (events inside a gate) and the events
that will be discarded (events outside the gate). The target population can then be
identified by a boolean combination of gates. Gates drawn in specific projections are
often applied in sequence, such that one plot only depicts the events selected by the
previous plot’s polygon. Sequentially applying these gates allows to identify cancer cell
populations in the FCM sample. The 2D plots of the data space allow to explicitly depict
antigen expressions of the cells in the sample, which are known to be relevant in particular
diseases. For example, among other characteristics, CD19 is known to be higher expressed
for B-cells [McK18]. Gating allows analyzing complex patterns of cell populations by
a sequence of simpler intermediate steps, which are interpretable by clinicians. Thus,
gating is not only a way for finding biologically meaningful sub-populations but has
also become the standard for the communication and documentation of FCM sample
assessment.

10
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Figure 2.4: Gating Hierachy: By sequentially sub-selecting individual cell clusters in
different 2D projections, medical experts can track down cancer cells.

2.2 Hematology and the Human Immune System
This section provides a short overview of the human immune system and the primary
hematologic cells involved.

2.2.1 Human Immune System
Human blood essential provides three functionalities:

1. The transportation and distribution of nutriment throughout the body as well as
regulation of body temperature, pH and water balance. This is mainly achieved by
erythrocytes (red blood cells).

2. Blood protects the body from physical damages to tissues. The thrombocytes in
blood are responsible to close and heal wounds.

3. Various other cells circulating in the blood are responsible to defend the body
against infections and invaders.

The immune system can be divided into two parts the innate immune system, that
consists of all counter measurements that are unspecific to any particular invader, and the
adaptive immune system, which consists of the cells that specialize for specific pathogens
[MWWK18].

Besides physical and chemical barriers the innate immune system consists of macrophages,
neutrophils, natural killer cells and dendritic cells. An invading pathogen to the human
body will most likely first encounter macrophages and neutrophils. Macrophages are
rather big cells that attack and swallow foreign bacteria. Neutrophils join the battlefield
guided by chemical signals released by cells in response to the presence of a pathogen.
They attack pathogens by releasing toxic substances, swallowing or forming web-like
structures that trap and kill pathogens [YL15].

11



2. Medical Background

The consistent activity of macrophages and neutrophils increases inflammation, a body
response that floods the attacked area with blood and deploys complement proteins. This
effect is usually perceived as a warm and red swelling of a wound. The complement
proteins coat pathogens to assists other immune cells to recognize those. Some also
directly cut wholes into pathogen’s cell membrane and increase the inflammation response.
Denditric cells collect parts of the observed pathogens at the site of the wound and
then move through the lymph system in search of a matching helper-T-cell. The body
constantly produces T-cells with different specialized receptors. Once found, the denditric
cell activities the helper-T-cell by presenting the found pathogen parts to specific receptors
of the helper-T-cell.

The helper-T-cell immediately starts to divide itself. Some of its clones enter the
battlefield, where they reactivate and intensify the immune response of the macrophages.
While other clones aim to find and activate corresponding B-cells. The B-cells produce
specialized antibodies for the observed pathogen and flood the battlefield with these
antibodies. The antibodies attach to the pathogens and thereby damp their activity and
mark them for the other immune cells. Some of the helper-T-cells and B-cells remain
and turn into memory cells, which accelerates future immune response of the same and
similar pathogens [MWWK18, YL15].

2.2.2 Blood Cell Maturation
Blood cells develop from haematopoietic stem cells (HSC) in the bone marrow (BM).
These immature cells can differentiate into progenitors of any lineage, are CD34+ and do
not express any lineage-related antigens (for instance markers for lymphoid or myeloid
differentiation) [doi13b]. Figure 2.5 depicts the maturation of blood cells, showing the
different possible lineages from a hematopoietic stem cell to fully developed blood cells.
The HSC further develops into two major progenitors:

• Common myeloid progenitors, which, once fully develop, become neutrophils,
eosinophils, basophils, monocytes, erythrocytes, megakaryocytes, mast cells, mar-
cophages or myeloid dentiric cells and are defined by the following expression
pattern: CD34+CD117+CD45dimCD13+ [doi13b].

• Common lymphoid progentiors, which can develop into natural killer cells, lymphoid
dendritic cells, B and T-cells and are defined in contrast to common myeloid
progenitors by the following expression pattern CD34+CD117−CD45dimCD13−

[doi13b].

Myeloid Maturation

This lineage describes the maturation of common myeloid progenitors that emerge from
HSC. Myeloid progenitors can develop into megakaryoblasts, mast cells, proerythroblasts,
or myeloblasts. Megakryoblasts will finally develop into megakaryocytes, which produce
thrombocytes. Proerythroblasts develop into erythtocytes, which transport oxygen in
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the blood. Myeloblast develops into granulocytes (basophils, neutrophils and eosinophils)
or monocytes (macrophages and myeloid dendritic cells).

Granulocyte maturation describes the progression from myeloblasts into promyelocytes,
myelocytes, metamyelocytes, bands, and finally, the three granulocytes: basophils,
neutrophils and eosinophils. CD34, CD117 and HLA-DR expression initially accompany
the maturation. However, when maturing into promyelocytes HLA-DR and CD34
expression gets lost and CD117 gets lost when maturing into myelocytes. A full-grown
neutrophil expresses CD45, CD13, CD33, CD11b, CD15, CD16. In promyelocyte and
myelocyte state they can express CD64 [doi13b, Hof09]. Fully developed basophils
express CD45, CD13, CD33, CD38, CD123, CD25, CD9 and CD22 [HJB+08]. Matured
eosinophils have intense granularity and therefore show high SSC signals. They express
CD45, CD13, CD11b, CD66 and CD16 [doi13b].

Monocyte maturation, which also starts with myeloblasts, manifests itself, similar to
granulocyte maturation, by CD34 and CD117 expression. In contrast to granulocyte
maturation, HLA-DR remains expressed during the whole monocyte development. Mature
monocytes are characterized by CD4, CD64, CD14 and CD15. While CD15 is also
expressed on neutrophils and CD4 on T-cells and CD64 on myeloblasts, dendritic cells
and activated neutrophils, CD14 is specific to monocytes [doi13b].

Erythroid maturation describes the development from common myeloid progenitors to
proerythroblasts, erythroblasts, polychromatic erythtocyte and finally to erythrocytes the
red blood cells. Erythroblasts express CD34, CD38, CD117 and CD45. These markers
get lost during maturation and expression of CD72, CD235a and CD36 establish [doi13b].

Megakaryocitc maturation describes the development from common myeloid progenitors
to megakaryoblasts, promegakaryoctes to megakaryocytes. During maturation, precursor
markers are lost and expression of CD41, CD42 and CD61 is gained [doi13a].

Lymphoid Maturation

The lymphoid maturation compromises the development of the common lymphoid
progenitor, which are unspecific cells of the lymphoid lineage. They can develop into
natural killer cells, T- or B-lymphocytes. Common lymphoid progenitors express CD45RA
and CD127 [MAS+03].

B-Cells and NK cells develop in the bone marrow. Immature NK cells express low CD16
and high CD56, which progresses into high CD16 and low CD56 over the maturation
process. Throughout their complete development B-cells express CD19 and CD38. Early
B-cell express CD10, Cd34 and TdT, which vanishes over maturation. In contrast,
mature B-cells express CD22, CD20, CD79a and surface immunoglobulin [DFF+97,
VLWVDB+00].

In contrast to the other lineages, most T-cells’ maturation occurs in the thymus. CD7
serves as a T-cell marker throughout the complete development. Early T-cells express
Tdt and CD34, while mature T-cells express CD45, CD2 and CD4 or CD8 [doi13b].
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Figure 2.5: The different lineages from a hematopoietic stem cell to fully developed blood
cells. In Acute Myeloid Leukaemia (AML) the lineage of common myeloid progenitors
is affected, while Acute Lymphoblastic Leukemia (ALL) entails the common lymphoid
progenitors lingeage.

2.3 Targeted Disease: Acute Pediatric Leukemia

Acute leukemia is an abnormal proliferation of partially developed blood cells [OK20].
Since these cells are not yet developed unmatured blood cells, they do not function as
effectively as matured blood cells, but they still consume nutrition and space, which is
disparately needed for healthy matured blood cells [OK20].

According to which kind of precursor cells are dividing in an uncontrolled manner, acute
leukaemia can be classified into AML, where myeloid cell precursors are affected, and
ALL, where lymphoid cell precursors proliferate uncontrollably [OK20]. See Figure 2.5
for the bifurcation in the hematopoietic development. ALL is more common and is
associated with about 25% of all childhood cancer cases [KGS19, KDPV+13]. Most cases
of ALL in children are reported in patients aged 2 to 5 years [IGM13]. While ALL is more
common in childhood, AML is more common in adulthood. The number of registered
AML cases increases with the patients’ age [OK20]. The following symptoms can be
directly related to the suppression of normal blood cell formation, called hematopoiesis,
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and the overflood of unmatured blasts in an uncontrolled way: Pain in lymph nodes is
caused by the deposition of vast amounts of blast cells in the lymphatic system [OK20],
which is comparable to pain in bones originating from the growth of leukemic cells in the
medullary space [RLS+05, Onc09]. Fatigue is caused by anemia (due to the suppression
of healthy hematopoiesis) [RLS+05, OK20]. Fever is related to the reduced amount of
neutrophil granulocytes and easier bleeding results from a shortage of thrombocytes
[RLS+05, Onc09].

Normal precursor cell populations in the BM can be easily confused with leukemic
blast cells since they share many antigens of immaturity and morphological similarities.
However, normal precursors are usually less frequent than leukemic blast cells [doi13b].
For instance CD34+ cells are usually only up to 1-2% of all BM cells [BBL+02, NNSP18].
Although, in stages of regenerating, for instance, after chemotherapy or transplantation,
BM can express proportionally higher levels of progenitor cell antigens than in steady
state [DFF+97, VLWVDB+00].

2.3.1 Treatment of childhood ALL
The main goal of ALL treatment is to decrease the number of blast cells. The treatment
can be divided into three different phases: (1) remission-induction, (2) consolidation
and (3) maintenance [CB15, PRL08]. The initial phase, called remission-induction,
aims to achieve a remission, which means that nearly no leukemia cells are observable
in the BM and normal healthy blood cells regenerate [PRL08, CB15]. In practice,
remission is defined if less than 5% blasts are detectable in the peripheral blood by
microscopic morphology assessment [BVU+05, SHP+12]. The chemotherapy in the
remission-induction phase is carefully adjusted according to the leukemia subtypes, risk
potential, genetic prepositions and the patient’s response [CB15]. This first phase usually
takes 4-6 weeks and approximately 95% of all patients achieve remission in this period
[CB15]. Consolidation is the second phase. It lasts 6-9 months and aims to further
reduce the post-remission remaining blasts cells, also called MRD [CB15, PRL08]. The
third phase of treatment is called maintenance. This phase usually lasts at least two
years. Here much lower doses of chemotherapy are given to the patient. The goal of the
maintenance phase is to lower the risk of relapse [CB15].

In addition, intrathecal chemotherapy is applied to remove any blasts in the brain
and spinal cord. Before the 1970s, additional intrathecal chemotherapy was not part
of standard treatment protocols, which led to several cases of central nervous system
relapses after BM remission [EGZ70]. As an alternative to intrathecal chemotherapy in
the past, it was common to use cranial radiation. However, since the risk of intellectual
disabilities emerged, the use of cranial radiation has been minimized [PCP+09, CB15].

One remaining issue in ALL treatment is the risk of relapse. While in 1998 a relapse
rate of 25-30% has been assumed [MKS+98], more recent reports speak of ALL relapse
rate of 15-20% [CB15]. Nevertheless, more sensitive techniques are needed to identify
potential relapsing cases early. The number of children with ALL who’s treatment fails
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is similar to the number of new AML cases [Gay05]. FCM is a commonly used method,
which enables sensitive MRD assessment [BVV+09].

2.4 Flow Cytometry in Pediatric Leukemia
The clinical application of FCM in Leukemia is twofold: Firstly FCM is used to diagnose
and classify leukemia types (Immunophenotyping). Secondly, during and after therapy,
FCM serves to asses the treatment response [doi13c].

It is important to note that no single marker exists, which is specific for any Acute
Leukemia (AL), rather patterns of expression are used to spot AL blasts [doi13d].
Common expression patterns on AL include:

• Aberrant Expression
For instance, lymphoid marker expression on myeloid cells is a sign for AML and
can be defined as an abnormal expression of foreign-lineage antigens.

• Abnormal Co-expression
The expression of maturity and immaturity is an example of this expression pattern.

• Abnormal Expression
This expression pattern includes abnormally increased or decreased expression or
unusually homogeneous expression of a usually heterogeneous expressed antigen.

In general leukemic blast cell populations show heterogeneous expression patterns, but
AML are considered to be more heterogeneous than ALL blasts [doi13d].

2.4.1 Diagnosis
Based on clinical symptoms and indices in the peripheral blood bone marrow sampling is
conducted. The aim of the FCM analysis is to find hallmarks of specific AL blasts to
derive a diagnosis. While leukemic blast cells are heterogeneous and therefore exhibit
different appearances in the same FCM sample, only the bulk population of leukemic cells
is of interest for clinical diagnosis. In MRD an exact knowledge of the blast characteristics
at diagnosis is prerequisite to allow precise enumeration of very small numbers of blast
cells.

2.4.2 Minimal Residual Disease
Monitoring the response during and after the treatment via MRD is an important
prognostic indicator as it can influence decisions on the duration, type and intensity of the
treatment [doi13c, PMER12]. MRD can be asses with Polymerase Chain Reaction (PCR)
or FCM, while light microscopy is considered to be too insensitive [doi13c]. The estimated
sensitivity in cell-based ALL blast identification is defined as the maximum amount of
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normal cells among which one blast cell can be detected. For FCM this sensitivity is
estimated as 103-104 and that of PCR is estimated as 104-106 [vDvdVBO15]. However,
FCM is considered to be more cost and time efficient than PCR [GCV+12, vDvdVBO15].
For AML PCR is only applicable for a specific gene fusion, which is only presented for
30% of AML patients [doi13c].

Although gating strategies vary depending on the used antibody panels, they follow
similar steps for B-ALL [doi13d]:

1. Select actual cells
First all measured events that are not actual single living cells, like debris, doublets
or air bubbles are gated out. Usually projections in FSC-A, SSC-A and Syto-41
are used to perform this omission.

2. Identify B-cells
The second step is to pin down the analysis on B-cells by utilizing common markers
for B-cells like CD19.

3. Separate blasts from healthy B-cells
In the last step B-ALL blasts are searched within the B-cell population. Common
markers in this step are CD10, CD45, CD20 and CD38. The percentage of the
found blasts in relation to all measured actual cells is usually reported as MRD.
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CHAPTER 3
State of the Art

Numerous approaches have been established to automate the detection of cell populations
in FCM data. The reader is referred to [CCW+21] for a more comprehensive review of
current trends in automated FCM data analysis. In this chapter I firstly outline the
landscape of automated approaches for FCM data, followed by a characterization of
explainable methods for deep learning models and machine learning in the context of
FCM data.

3.1 Targeted analysis of FCM data
In this work methods for the targeted analysis of FCM data are divided into event-
wise and holistic approaches. Approaches that classify each event solely based on the
presented information of this event are referred to as event-wise approaches. In contrast,
holistic approaches process a whole FCM sample and, therefore can account for inter-
sample variations, which has been identified as crucial for the correct classification of cell
populations with high variability such as leukemic cells [WDRMG21].

Event-wise Approaches In [AvUH+19] linear discriminant analysis is proposed for
the classification of cell populations as it allows for interpretable performance and
reproducibility. Authors in [LKB+17] and [JNQ+18] use a table of marker expression
patterns in different cell types as a reference dictionary. Methods based on neural
networks include [LSR+18, LSS+17].

Holistic Approaches FlowDensity [MTC+14] and FlowLearn [LBC+18] use an op-
erator’s 2D gating strategy as a guideline for detecting cell populations. Recently, a
one-class classification approach based on Uniform Manifold Approximation was in-
troduced [WKW+22]. Further, Gaussian mixture models (GMM) have proven to be
well suited to model cell populations in FCM data [CHL+15, RDS+19]. Reiter et al.
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Figure 3.1: 2D Projection of one patient’s FCM sample. The red dots indicate the position
of blast cells. A simple decision tree, based on the event features can be constructed to
classify blast and non-blast cells.

[RDS+19] fit a linear combination of GMMs with labeled components to an unseen sample
by Expectation Maximization (EM). [ZMH+20, AC17, WRW+22] are approaches based
on neural networks that can process a whole sample at once. Authors in [ZMH+20] use
self-organized maps to obtain a 2D image that a CNN further processes. CellCNN [AC17]
automatically learns a concise cell population representation with a 1D-convolution
layer followed by a pooling layer to aggregate information. More recently, Wödlinger
et al. [WRW+22] presented a method based on the transformer architecture [VSP+17]
that performs classification on single-cell level, while processing an entire sample in a
single neural network forward pass. The attention mechanism of the original transformer
architecture [VSP+17] entails a quadratic complexity in the input length O(n2) of both
memory and time, which is unfavorable in the context of FCM data as one sample can
contain up to millions of events. Wödlinger et al. thus use the concept of the Induced
Set Attention Block (ISAB) as introduced in the set-transformer [LLK+19] that reduces
the complexity to O(n).

Necessity of Holistic Approaches Holistic approaches typically outperform event-
wise approaches, because they can better deal with inter-sample and inter-patient shifts.
Consider Figure 3.1, which depicts a 2D Projection of an FCM sample with pediatric
B-ALL. For this sample, a discriminative approach, for instance, a decision tree, can yield
reasonable performance for the classification of blast and non-blast cells. For comparison,
Figure 3.2 shows the same 2D plot for two other patients. The Figure demonstrates, that
the number of blast cells as well as the position of the blast cell cluster can drastically
differ from one patient to another. The decision tree from Figure 3.1 would not be
applicable for the two samples in Figure 3.2. It is therefore not possible to solely rely
on a cell’s feature values for accurate blast identification. Instead, the whole sample
must be considered in order to draw a decision based on the relative relationship between
different cell clusters.
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Figure 3.2: 2D Projection of two patient’s FCM samples. The red dots indicate the
position of blast cells. The number of blast cells as well as the position of the blast cell
cluster can drastically differ from one patient to another.

3.2 Object Detection Approaches

The task of predicting polygons that surround cell clusters in FCM data can be loosely
related to object detection in computer vision. The goal of object detection is to locate and
identify objects in an image or video. Various approaches have been proposed, including
sliding windows, Region-Based Convolutional Neural Networks (R-CNN) [GDDM15], and
You Only Look Once (YOLO) [RDGF16]. YOLO is a real-time object detection algorithm
that divides an image into patches and uses a single network to predict bounding boxes
and class probabilities for objects in each patch.

In recent years, there has been growing interest in using transformers for object detection.
Transformers are a type of neural network originally developed for natural language
processing tasks and have shown remarkable success in various domains [VSP+17].
Detection Transformer (DETR) [CMS+20] is a object detection algorithm that utilizes
transformers. Unlike YOLO and other grid-based approaches, DETR operates on a set
of learned object queries. The model uses a transformer network to process a sequence of
input pixels and generates class and bounding box predictions for each object query.

Evaluations on benchmark datasets [CMS+20] have shown that DETR outperforms the
state-of-the-art object detection methods, such as Faster R-CNN [Gir15] or Mask R-CNN
[HGDG17]. The results indicate the potential of using transformers for object detection.
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3.3 Towards Explainability

In this section methods for explainability and model inspection that all aim to enhance
the transparency of a model’s decision in the context of FCM data and deep learning
are visited. First, related explainable approaches for automated FCM processing are
presented. Followed by a description of two commonly used explainability visualization
techniques for deep learning models (gradient-based visualization) and transformers
(attention visualization).

Explainable Approaches With respect to explainability of results, [JNQ+18, MTC+14,
LBC+18] can be listed as their results rely on predicted thresholds and hence are inter-
pretable. Algorithmic Population Descriptions (ALPODS), as proposed in [UHR+21], is
designed to provide explainability by fuzzy reasoning rules in a Bayes decision network
expressed in visualizations similar to those generated by domain experts. Simonson et al.
[SWW+21] aim to identify impactful cell populations in FCM data with SHAP values
[Sha53]. They employ an ensemble of CNNs trained on different 2D histograms of FCM
data to detect classic Hodgkin lymphoma on a sample level. The SHAP values were used
to identify the 2D histograms and the specific regions within them that had the greatest
impact. Another approach related to explainable AI and the method presented in this
work is GateFinder [ASK+18]. Its goal is to find the shortest yet most discriminative
series of 2D polygon gates that lead to a previously specified target population. Although
the goal of GateFinder is not targeted analysis, the underlying idea of mimicking the
gating strategy of domain experts is similar to the approach presented.

Attention Visualization A common post-hoc method to interpret a transformer’s
decisions is to visualize how the model attends to different parts of the input data
[BCB14, BBS+18, Vig19], often called attention visualization. For instance, Jesse
Vig [Vig19] proposed an open-source tool to investigate self-attention between word-
tokens by visualizing weighted edges between words and coloring the words based on the
attention magnitude. The visualization allows to focus on individual words, as well as
differentiates between the attention of different heads over multiple layers. For computer
vision tasks, overlaying the input image with a heatmap is commonly used to visualize
the attention [DBK+20, ADT+22, CMS+20]. For the task of object detection, Carion et
al. [CMS+20] demonstrate how, in an image with multiple objects, one pixel of an object
mainly attends to the other pixels belonging to the same object. Besides self-attention,
the authors in [CMS+20] visualize the cross attention of a learned object query to the
input image, revealing which pixels in the image are important to locate an object’s
bounding box as well as for assigning a class label to that object. For instance, the
authors showed an example where the object query’s attention is concentrated on an
elephant’s outlines and especially on characteristic features such as the elephant’s trunk.
Attention visualization facilitates model interpretability since it reveals what part of the
data and which relationship among the data is considered important by the model. It
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can be used to verify that the model learned desired concepts or to spot an unconscious
bias like attending to the background of an image to classify an object in the foreground.

Gradient-based Visualization While attention visualization is a model-specific
technique for attention-based architectures such as transformers, other common post-hoc
explainability techniques for deep learning models, which are not restricted to models
using attention, are gradient based methods such as Saliency Maps [SVZ13] or
Gradient-weighted Class Activation Maps (Grad-CAM) [SCD+17]. These and related
methods rely on computing the model’s gradients of a specific class output with respect
to the input image. Pixels with a low gradient norm are considered unimportant for
the model’s class prediction, as they have minimal impact on the output value. On
the other hand, pixels with a high gradient norm are important for the prediction, as
changing their values leads to a significant change in the class output. Saliency Maps
were initially designed for Convolutional Neural Networks (CNNs) [SVZ13] but are also
used for vision-based transformers [LZW+21, AGBD21], mixed modality vision and text
transformers [ADT+22] as well as pure text transformers [ASLA20].
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CHAPTER 4
Methodology

In this chapter, the proposed method is described. The selection of the method is
motivated by the following discussion about the application of neural networks to FCM
MRD assessment: For that purpose, a FCM sample is defined as a set of events E ∈ RN×m.
N defines the number of events (50 − 500 × 105) and m denotes the number of markers
(typically 10 − 20). Furthermore Y ∈ {0, 1}N denotes the set of class labels for which
∀e ∈ E∃y ∈ Y holds. A reasonable idea is to apply neural networks by processing each
event of a FCM sample on its own and let the network classify each event between
healthy and blast. In this case the neural network is a function feventwise : Rm → {0, 1}.
This approach is refered as event-wise classification. However, as described in Chapter
3, automated MRD assessment is not solvable by pure discriminative approaches and
therefore demands holistic approaches. Therefore a legitimate adaption towards holistic
approaches is, instead of processing each event separately, to use a fully connected neural
network in which all events of an FCM sample are provided as input. In this case the
neural network is a function ffullyconnected : RN×m → {0, 1}N . This approach comes
with two obstacles: First, the network size of such a fully connected network would be
infeasible. Even one layer would exceed the memory of state-of-the-art consumer GPUs.
For instance connecting 500 × 103 events to each other results into (5 × 105)2 = 2510

connections. Secondly, since the events of a FCM sample have no inner order, we would
expect the predicted class labels to change according to changes in the input. Consider a
neural network as a function f that transforms a set X = {x1, ..., xM }, xm ∈ X into a set
Y = {y1, ..., yM }, ym ∈ Y, such that each instance xm has an associated label ym. For
any permutation of the input instances π : f([xπ(1), ..., xπ(M)]) = [fπ(1)(x), ..., fπ(M)(x)]
we expect the output labels to permute accordingly [ZKR+17]. This property is known
as permutation equivariance. Fully connected neural networks do not fulfill this property,
since they are sensitive to the order of input instances. For the same reason, Recurrent
Neural Network (RNN) are not applicable to FCM data, since they require processing
the input instances as sequence. To sum it up, processing FCM data by a neural network
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requires the following properties:

• holistically: The classification decision for an event cannot be based purely on
this event’s features. Instead, the whole FCM sample must be taken into account
[RDS+19].

• transduction: Each input event xm has an associated label ym [ZKR+17].

• equivariance: Changes to the order of the input instances must be reflected
accordingly at the model’s output [ZKR+17].

A family of neural networks that fulfills these properties is the Transformer.

4.1 Transformer & Efficient Attention-based Models
Transformer is a neural network architecture originally designed for Natural Language
Processing (NLP) [VSP+17]. Transformers are capable of capturing global information
among a set or sequence since all tokens are compared to each other in a process called self-
attention. In contrast to RNNs, Transformers process the entire input at once. The vanilla
transformer follows an encoder-decoder architecture. Essentially the architecture consists
of several transformer blocks, where each uses an attention mechanism, normalization
and linear layers. While the linear layers process each token independently and equally,
information can flow between individual tokens due to the attention mechanism. The
attention is calculated between every token and defines the most relevant other tokens
for each token. For instance, Figure 4.1 illustrates the attention of the word token it
among the other word tokens in the sentence. It shows that according to this attention
the words The animal are more relevant to the word it than the others. Each transformer
block embeds every token such that the embedding contains information about the token
itself as well as a weighted combination of other relevant tokens.

For each attention unit 1, three different linear layers are applied to the input. Each
linear layer has independent weights of dimension d and transforms a given token into
one of three different embedded vectors query, key or value vector:

Q = XWQ, K = XWK , V = XWV , with Q, K, V ∈ RN×d (4.1)

then the attention mechanism given the three matrices Queries (Q), Keys (K) and Values
(V) is computed

Z = Attn(Q, K, V ) = softmax


QKT

√
d


V, with Z ∈ RN×d. (4.2)

1In this work we distinguish between transformer block, attention unit and layer. A layer represents
any atomic operation, which is applied to the data in a neural network. An attention unit consists of all
necessary layers that perform self- or cross-attention. Together with layer normalization, skip connections
and fully-connected layers the attention unit forms a transformer block.
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Figure 4.1: The self-attention weight of a given input sentence. Figure inspired by [Ala].

The attention between queries and keys are computed via the dot-product, scaled by�
(d) and normalized by the softmax function. The scaling term

�
(d) is used to stabilize

the model’s gradients[VSP+17]. The computed attention values are used to weight the
vectors of the value matrix V. Finally, a skip connection is introduced by adding the
input X and Z before applying layer normalization [BKH16]:

XA = LayerNorm(Z + X). (4.3)

Similar to the different kernels of Convolutional Neural Network (CNN)s that are
applied in parallel at the same layer, transformers utilize a concept called multi-head
attention [VSP+17]. This means, instead of learning the set of linear attention weights
(WQ, WK , WV ) for one attention unit, k such sets of weights are learned, where each set
of weights is referred to as one attention head. Combining the computed values from
the k different heads is achieved by concatenating the values and projecting it to the
dimension of a single Z matrix using another linear layer with the weights WO:

MHAttn(Q, K, V ) = concat(Z0, Z1, ..., Zk) × WO (4.4)
with Zi = Attn(Qi, Ki, Vi). (4.5)

All these described steps form one transformer block and can be summarized as:

XA = LayerNorm(MHAttn(X, X) + X) (4.6)
XB = LayerNorm(FNN(XA) + XA). (4.7)
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Figure 4.2: Efficient transformer variants often aim to reduce the quadratic complexity
by sparsification of the attention matrix. For instance, by restricting the attention to
local tokens in a sequence (left) or graph structure (right). The depicted illustration is
inspired by [CC20].

In the case of self-attention Q, K, V are derived from the same input matrix X, while in
the case of cross-attention the input matrix for Q and K,V differ.

The above description of transformers only considers the network architecture as operating
on sets of input instances. Since all tokens are processed equally and the attention is
computed between every token combination, transformers are inherently equivariant
[ZKR+17]. However, for some tasks, such as language translation, the order of input
instances reflects important information. To include the order information a positional
encoding is added to the input. The positional encoding is a sequence of vectors that
follow a specific pattern such as the sine and cosine functions of different frequencies
[VSP+17]. The new resulting values of a token therefore not only depend on the initial
token value but also on the position of the token in the input sequence. This allows the
network to utilize sequencing information if necessary.

4.1.1 Overcoming quadratic complexity

Since all input tokens are compared to each other in the self-attention process, the
transformer has a quadratic complexity in the input length for both memory and time
O(N2). While some tasks, such as sentence-to-sentence translation, do not require long
input sequences, processing images, video or raw audio would become infeasible with pure
self-attention. Due to this, several more efficient approaches exist that target to overcome
the quadratic complexity of transformers. Efficient transformer variants often aim to
reduce the quadratic complexity by sparsification of the attention matrix (see Figure
4.2). According to Tay et al. survey [TDBM20] the strategies to overcome quadratic
complexity of self-attention in transformers can be divided into eight categories by their
core techniques and primary use case. Whereas many models can be counted to more than
one of the described categories. Here we discuss each category and introduce prominent
examples for each.
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• Fixed Patterns
This category includes limiting the field of view to fixed, predefined patterns such as
local windows and block patterns of fixed strides. BlockBert [QML+19] divides the
input sequence into fixed-sized blocks of k tokens. Self-attention is only computed
among a block. However, the position of the blocks changes to allow modeling
long-sequence relationships. Image Transformer [PVU+18] restricts the attention
to the local neighborhood and thereby introduces a similar bias as CNNs. The
memory complexity depends on the chosen neighborhood size M as well as input
size N : O(N · M). Nevertheless restriction to local attention imposes limitations
in tasks where global information is crucial.

• Combination of (fixed) Patterns
Several approaches exist that combine two or more distinct access patterns e.g.
strided and local attention. The underlying motivation is, while still reducing
the memory complexity, aggregation and combination of multiple patterns the
overall coverage of the self-attention mechanism improves [TDBM20]. Sparse
Transformer [CGRS19] reduces the quadratic complexity by only computing the
attention between a sparse number of token pairs. Half of the heads compute
attention among a local neighborhood of tokens, while the other half of the heads
compute the attention among strides of tokens. The computational complexity is
reduced to O(N

√
N). Longformer [BPC20] extends this concept by using heads

with different amounts of dilation between the tokens considered for attention.
Heads with none or little dilation focus on local context, while stronger dilation
focuses more on long-range context.

• Learnable Patterns
Approaches of this category aim to learn access-patterns in a data-driven fashion.
Reformer [KKL20] addresses the transformer’s quadratic complexity problem by
utilizing Local Sensitify Hashing (LSH) attention. First, the authors show that
there is no significant performance drop if the same linear layer is used to encode
Queries and Keys such that Q = K holds. Secondly, they argue only considering the
query-key pairs that are similar to each other regarding dot-product gives a sufficient
approximation of the attention since the softmax computation softmax(QKT ) is
dominated by its largest components. LSH applied to these tokens allows obtaining
buckets of similar tokens among which the attention is computed. The memory
complexity of Reformer is O(Nlog(N)). Sinkhorn Transformer [TBY+20] learns to
sort the input sequence before computing local attention. This enables efficient quasi-
global attention computation. For both models (Reformer & Sinkhorn Transformer),
the similarity function is trained end-to-end jointly with the rest of the network
[TDBM20].

• Neural Memory
Instead of learning the access pattern, another category of approaches aims to
improve efficiency by learning a side memory that can access multiple tokens at
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once. The set transformer [LLK+19] architecture first introduced this concept with
the usage of inducing points. To avoid the quadratic complexity the attention
is not computed between each pair of input instances but rather between the
input instances and a fixed set of learned vectors, the so-called inducing points.
Information cannot flow directly from one token to another but by using the
inducing points as proxies. First, the k inducing points serve as Query for cross-
attention computation with the input instances as Keys and Values. The attention
direction is swapped in the next step as the resulting k vectors from the previous
attention-computation are then used as Keys and Values with the input instances
as Query. The computational complexity is thereby reduced to O(kN). Perceiver
[JGB+21] is similar to the set transformer as is alternates between cross-attention
in both direction. But Perceiver, in contrast to set transformer, only uses one set
of learned vectors in the first layer. The output of cross-attending these learned
vectors in the first layer is then reused as input for the following layers.

• Downsampling
Several models aim to tackle the quadratic complexity problem by reducing the
resolution of the input sequence. The DEtection TRansformer (DETR) [CMS+20] is
designed for object detection in images. The model reduces the sequence resolution
first by applying convolution to the image. This typically reduces the image width
and height by a factor 32. These obtained superpixels are then rearranged to a 1D
sequence that serves as input to a vanilla self-attention based transformer. This
sequence of superpixels is much shorter than a sequence of original pixels and
therefore feasible for vanilla self-attention.

• Low-Rank Methods
Approaches of this category reduce the computational costs by utilizing low-rank
approximations of the self-attention matrix. For instance, Linformer [WLK+20]
reduces the Values and Keys matrix via a linear projection among the sequence
dimension. With Keys K ′(k × d) and Queries Q(N × d) the attention matrix
Softmax(QK ′) has a dimension of N × k. When multiplied with Values V ′(k × d)
we obtain the usual N × d matrix as result. This trick allows reducing the memory
complexity to O(n). Since the Linformer compress along the sequence dimension,
it is not possible to hinder the model to mix past and future information when
computing attention scores [TDBM20]. In addition, compressing along the sequence
dimension violates the equivariance property of vanilla transformers. Since the
weights of the transformations are applied to different positions in the sequence,
reordering the tokens would affect the compressed representation.

• Kernels
The idea behind the approaches of this category is to utilize kernels to avoid
explicitly computing the N ×N attention matrix. For instance, Performer [CLD+20]
uses a Generalized Attention mechanism with random Kernels called FAVOR+
mechanism. In the original attention mechanism, it is not possible to decompose
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the attention matrix Softmax(QK ′) after passing it into the nonlinear softmax
function. Nevertheless, it is possible to decompose the attention matrix into
a product of random nonlinear functions of Q and K. cosFormer [QSD+22]
overcomes the quadratic complexity by linearization of self-attention. While the
original transformer uses the non-decomposable similarity function S(Q, K) =
exp(QKT ) the authors argue when using a decomposable similarity function such
that S(Qi, Kj) = ϕ(Qi)ϕ(Kj)T we can exploit a matrix product property and
compute ϕ(K)T V before we multiple the result with ϕ(Q)

(ϕ(Q)ϕ(K)T )V = ϕ(Q)(ϕ(K)T V ), (4.8)

which avoids the necessity of materializing the N2-sized attention matrix A = QKT .
Since the softmax entails some essential properties that enable the transformer
performance, Qin et al. aim to approximate the main properties of the softmax by
applying ReLU [NH10] to ensure non-negativity and a cosine-based re-weighting
mechanism that enforces locality. Figure 4.3 compare the matrix computations of
the linearized self attention to the vanilla self attention.

• Recurrence
Approaches in this category are united by the idea to process tokens blockwise but
introduce some recurrent connections in order to enable information flow among
the blocks. Transformer-XL [DYY+19] processes the input tokens in segments and
utilizes the hidden states from previous segments to compute the hidden state of
the current segments. The reused hidden states serve as a memory for the current
segment, creating a recurrent connection between the segments.

4.1.2 Transformer for FCM
The transformer fulfills required properties for FCM data processing by neural networks:
Firstly, it is holistic since it processes a whole sample at once thereby takes the whole
sample into account when decided on one event’s predicted class. We can view the set
transformer as classifying each event on its own under the use of global sample-wide
information aggregated by the attention mechanism. Secondly, it is transductive since we
obtain a predicted class label for each event of the input sample.

However, the typical input size of 50 − 500 × 105 of an FCM sample makes the direct
utilization of vanilla transformer infeasible. Moreover, many of the above described
efficient transformer approaches are not applicable for input sets such as FCM data, since
the events of an FCM sample have no ordering. For instance, the Low-Rank Method
Linformer [WLK+20] utilized ordering to compress along the sequence dimension and can
therefore not be used for sets. Similarly, the approaches of the Downsampling category
that aim to reduce the resolution of the input sequence are not suitable for sets. Also
models of the categories Fixed Patterns and Combination of (fixed) Patterns, such as
BlockBert [QML+19] or Longformer [BPC20] are not suitable if they rely on computing
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Figure 4.3: The difference between computing vanilla self attention and linearized self
attention. By using a decomposable similarity function, we can multiple the matrix
K and V before we incorporate the matrix Q, which prevents the materialization of a
NxN-sized attention matrix and therefore reduced the computational footprint. The
illustration is inspired by [QSD+22].

attention of nearby tokens in the sequence (tokens with nearby indices). Approximating
attention via such locality constraints introduces the inductive bias that tokens near to
each other in the sequence are more important for each other than tokens far away. All
approaches of efficient transformer architectures that rely on this bias are not applicable
to FCM data. For this reason also the discussed model Transformer XL [DYY+19] is
not suitable for FCM data. Only models of the categories Learnable Patterns or Neural
Memory or Kernels such as Reformer [KKL20], set transformer [LLK+19] or Performer
[CLD+20] are suitable for FCM data.

As mentioned in Chapter 3, Wödlinger et al. [WRW+22] proposed a model based on
the set transformer for blast cell classification of FCM data. This architecture, which
uses inducing points to reduce the computational complexity, is also equivariant since all
computations performed by the network are order invariant to the input set meaning that
changes in the order of the input are reflected by corresponding changes of the output
order. It therefore forms the basis upon which the proposed gate prediction model is
built.
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4.2 Gating Polygon Prediction for FCM

Since the proposed model gains explainability by predicting the polygons of the gating
hierarchy, the objective function changes in comparison to direct cell classification
approaches. While the model of Wödlinger et al. [WRW+22] produces predictions in
the same shape as the ground truth labels Y ∈ {0, 1}N , the proposed approach must
predict k polygons of t points p ∈ R2 each. The task of predicting a set of polygons from
a sequence or set of tokens as input is related to the task of object detection. In objection
detection a set of bounding boxes (and object classes) should be predicted from an input
image, which can be viewed as a sequence of tokens. DETR [CMS+20] is a transformer
based object detection model. It is the first architecture that managed to perform object
detection without a post-processing step. Previous pipelines suffered from the problem
of predicting multiple bounding boxes of the same object in an image. They required a
post processing step called Non-Maximum Suppression [NVG06] to remove redundant
bounding boxes. DETR overcomes this issue by utilizing self-attention among the latent
representation of the bounding boxes. This flow of information allows the bounding
boxes to be placed without redundancy. The proposed model model is fusion of DETR
and set transformer to enable the prediction of polygons for FCM data.

4.2.1 The Model

The proposed method consists of a trained neural network that is based on the transformer
architecture. The model expects a single FCM sample as input, i.e. a set of events
E ∈ RN×m. N defines the number of events (50 − 500 × 105) and m denotes the number
of markers (typically 10 − 20). The network’s output are 7 polygons defined by P = 20
2D points each. The polygons describe the gating hierarchy for MRD assessment in B-cell
ALL data, which implies the cell’s class membership.

Architecture

As depicted in Figure 4.4, the model’s architecture follows an encoder-decoder schema
as in [CMS+20]. A set transformer similar to Wödlinger et al. [WRW+22] is used for
the encoder, consisting of two set transformer blocks. The decoder design is inspired
the DETR model [CMS+20]: for each predicted polygon, four static object queries are
learned. The object queries are applied to the encoder’s output via cross-attention, which
is followed by a self-attention layer. Each element of the 7-element long decoder output
set is passed through a two-layer fully connected neural network called the prediction
head. The resulting 20 2D points per element are used as gate polygon for each of the
7 gates in the ALL gating hierarchy. I empirically evaluated that 20 points are most
suitable for the given task. More than 20 points only slightly increase the performance
(max 1% median F1-Score) while drastically increasing the network size (see Table 5.4 in
Result Chapter 5).
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Figure 4.4: The network architecture consists of the encoder, decoder, prediction head
and the resulting polygons that form the gating hierarchy for a given input FCM sample.

4.3 Preprocessing
The operator-annotated polygons comprise two issues regarding their usage as ground
truth for training:

1. Polygons are typically only roughly estimated, with borders often far away from
the nearest events inside the polygon. While this does not affect the effectiveness
of the procedure during clinical routine, it introduces a source of ambiguity in the
gating process by perturbing the relationship between polygon position and data
points.

2. For different FCM samples different feature combinations for some of the plots in
the gating hierarchy were used by the operator since different operators may use
slightly different strategies to track down blast events. However, the model predicts
the polygons for a statically predefined set of 2D plot feature combinations. The
selected set reflects the most common feature combinations for each gate in the
given datasets.

I address both issues by computing the convex hull of all events inside the polygon during
preprocessing for each gate. The resulting hull serves as adapted training ground truth,
which can be created for any required combination of 2D plot features while tightly
enclosing the events inside.

However, this solution gives rise to another issue: Some events that are inside an operator-
drawn polygon can be far apart from the selected cluster when projecting them on a 2D
plot using a different combination of features. The resulting convex hull is unnecessarily
widespread, which violates the relation between polygon and data cluster position and
hence may include unwanted events. This issue is resolved by excluding outlier events
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Figure 4.5: The four preprocessing steps to construct the polygons are used as training
ground truth.

from the hull computation measured by the Mahalanobis distance [Mah36]. Assuming a
normal distribution, events are excluded using a Chi-squared test with two degrees of
freedom at a significance level of 1 × 10−5. Figure 4.5 illustrates the four preprocessing
steps to construct the ground truth polygons. Depending on the number of vertexes
resulting from the convex hull construction, vertexes are either inserted or removed in
the fourth step. For both, inserting or omitting vertexes, the position is evenly selected,
such that no accumulation of vertexes on one side of the polygon appears.

4.4 Training

Lpoly(p̂, p) =
P�
i

∥p̂σ̂(i), pi∥1 with σ̂ = argmin
σ∈SP

P�
i

∥pi, p̂i∥1 (4.9)

The model is trained in a supervised manner. Since the number of polygon vertices differs
from sample to sample in the ground truth but is fixed to P = 20 for the model prediction,
we artificially insert or remove points in the ground truth polygons to obtain P points.
Equation 4.9 states the loss for a predicted polygon p̂ where σ̂ ∈ SP defines a permutation
of the polygon points such that every predicted point is matched to one corresponding
ground truth point using the Hungarian method [Kuh55]. The distance between two
points is calculated via L1 norm. Similar to [CMS+20, ARCC+19] I experienced, an
auxiliary loss benefits the model convergence. The auxiliary loss performs the same
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computation as the main loss but after each intermediate layer the following intermediate
layers are skipped.

4.4.1 Regularization
The high capacity of deep learning models make them prone to overfitting, especially on
small train datasets. To still facilitate generalization to real-world tasks deep learning
heavily relies on regularization techniques [GBC16a]. Goodfellow et al. [GBC16b] defines
regularization as any modification we make to a learning algorithm that is intended to
reduce its generalization error but not its training error. Besides regularization techniques
that alternate the model (e.g. dropout [SHK+14] or convolutional networks [LB+95]),
or alternate the optimization process (e.g. weight decay or early stopping [GBC16b]),
there also exists regularization techniques that alternate the training data. While data
augmentation refers to the alternation of existing data (e.g. horizontal flip of an image),
data synthesis describes drawing artificial data from a generation process. In fact the
border between data augmentation and synthetic data generation is smooth since the
more information the synthesis process entails about the data to more it is closer to
alternation of existing data.

I employ both data augmentation and pretraining on synthetic data to address the low
number of training samples (e.g.: ≤ 60 for the BUE dataset), to overcome inter-laboratory
differences and to facilitate learning the relationship between polygon and cell cluster
position.

Data Augmentation

Four different data augmentation steps are applied to the FCM samples during training:
For all events and polygons random linear translations of randomly selected features are
applied. For randomly selected gates linear scaling (stretching and squeezing in relation to
the center), linear translation and shearing of polygons and their corresponding events are
used. Figure 4.6 displays all four different data augmentation operations. The following
equation defines the event and polygon scaling data augmentation:

x̂ = (x − c) · (1 ± s) + c (4.10)

with c = min(x) + ∆x
2 , where ∆x = max(x) − min(x) and s ∼ U(0, 0.3)

Data Synthesis

Another branch of options to overcome the problem of limited training data is the
utilization of synthetic data. The core idea is to generate data by simulating processes, or
sampling from distributions. Often the generation method allows to directly access label
information, in contrast to the otherwise expensively human-crafted labels. For instance,
when rendering scenes in 3D engines, one can obtain pixel-exact labels for panoptic
segmentation from the 3D engine [Nik21]. A common problem of training on synthetic
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Figure 4.6: The different augmentation steps applied to an FCM sample: a) Random
linear shifts of the whole feature space. b) Scaling of the blast population’s shape. c)
Random linear shifts of the blast events. d) Shearing of gates and events along single
features.

data is domain transfer [Nik21]. Since the synthetic data often does not perfectly reflect
the real-world data, a model purely trained on synthetic data can fail to generalize on
the test set. Therefore, when using synthetic data, models can be pre-trained on the
synthetic data and then fine-tuned on the limited training data.

As discussed later in the Result Chapter 5, when training on the small dataset BLN or
BUE the model tends to overfit and fails to generalize on the validation set. Observing
that although the position of the cell clusters were often captured by the predicted
polygons, they failed to form the shapes to entail all cells in those clusters, leads to the
hypothesis that some of those shapes are never presented to the model during training
when using the small datasets. This motivates the usage of synthetic data. The idea is
to utilize synthetic data to first train the model to predict polygons that surround all
kind of different shaped clusters. After that, the model is fine-tuned on the real FCM
training data, where it now mainly learns which of the presented clusters to select in
order to track down the blast cells. Since the goal of the synthetic data training is to
present the model differently shaped clusters, I keep the process simple by employing
gaussian distribution to sample synthetic FCM cell data. More sophisticated synthesizing
processes, such as multi modal distributions may reduce the domain gap to the real
FCM data, but also bare the risk of restricting the model to made assumptions about
FCM data. The synthesis process consists of sampling 3 × 105 vectors from a gaussian
distribution xsyn ∼ N(µ, Σ) where µ and Σ are sampled from a uniform distribution
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Figure 4.7: Polygon gates of 50 (first row) and 500 (second row) samples of synthetically
generated data.

for each synthetic sample. In addition, I apply the data augmentation pipeline to the
synthetic data. Similar to the real FCM data I compute convex hulls of the synthetic
data for the same 7 2D projections as the real FCM data (as described in Section 5.1).
Figure 4.7 pictures the polygon gates of 50 (first row) and 500 (second row) synthetic
samples.

4.5 Explainability Visualization
To answer the third research question I investigated several common explainability
techniques for deep learning models and tailored them for FCM data. First the techniques
are examined for a cell classification transformer as presented in [WRW+22]. Then they
are applied to the polygon prediction model of this thesis. Figure 4.8 provides an overview
on the investigated explainability visualization techniques.

4.5.1 Attention Visualization
We are interested in visualizing the attention mechanism of the transformer model. As
defined in Equation 4.1, for self-attention the matrix of input tokens X is linearly projected
via the learned weight matrices WQ, WK , WV to obtain three matrices Queries (Q), Keys
(K) and Values (V). Then, the dot-product attention with Softmax normalization, as
defined in Equation 4.2 is the dot-product between Q and K, scaled by the square root of
the dimension of K

�
(d) and normalized by the Softmax function. Usually, the result of

the Softmax-normalized dot-product QKT is used to visualize the attention. For instance,
to visualize the attention score between the ith input token and all other tokens, the
result of QiK

T can be plotted as a heatmap or weighted graph. For cross-attention, Q
originates from different input matrices than K and V. Carion et al. [CMS+20] visualized
the cross-attention between the learned object queries and the input image as overlay
heatmap on the input image, which reveals which parts of the image are relevant for the
model to locate a particular bounding box as well as to predict the corresponding object
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Figure 4.8: The three visualization techniques: A) The attention scores are retrieved from
the intermediate layers of the model. I plot the top 500 events with strongest attention
scores in different 2D projections of the data. B) The gradients of the summed event-wise
class predictions with respect to the input data is computed. I plot the vectors of the
top 100 gradients are displayed, which point in the direction of fastest change of the
predicted class. C) The gradients of the distance between the predicted polygon to a
desired target polygon with respect to the input data is computed. I depict the vectors of
the top 100 gradients, which indicate the direction the input should change to minimize
the different between predicted and target polygon.

class. With multi-head attention the different heads can learn to attend to different
parts of the data. Common attention visualization tools either allow to switch between
different heads in different layers of the model [Vig19] or visualize the last layer’s attention
[ADT+22, CMS+20].

Attention Visualization for FCM Data

To visualize transformer attention in FCM data, the possibility of obtaining attention
scores between individual events of an FCM sample is needed. However, the set trans-
former does not directly compute the attention between the individual tokens, it calculates
the attention between tokens and the k prototype vectors and vice versa. Thus, in this
work, we utilize another efficient transformer called cosFormer [QSD+22], which allows
us to directly compute attention between individual events while still having a feasible
complexity, as described in Subsection 4.1. cosFormer overcomes the quadratic complex-
ity by linearization of self-attention and applying a cosine re-weighting. However, the
re-weighting mechanism assumes that the input forms a sequence, which is not given for
the set of events forming an FCM sample, we, therefore, omit this part of the cosFormer.
In the following, we refer to this simplified version of the cosFormer as ReluFormer.
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To obtain attention scores between any events of interest we can simply compute the
attention matrix Aviz = ReLU(Q̌)ReLU(Ǩ)T , where Q̌ and Ǩ represents the queries and
keys for the selected events respectively and Ǎviz represents the row-normalized matrix.
When computing the self-attention between all events of an FCM sample, we obtain these
interactions as a N2-sized matrix. In the following, we present three ways to visualize
the information entailed in this matrix as well as one way to visualize cross-attention
between learned object queries and the input events.

Single Event Attention 2D plots A common way to inspect FCM data is by plotting
several 2D projections of the high-dimensional data. In clinical practice, this emerged as
a common standard to document FCM data and its analysis as experienced clinicians can
consistently spot different biological phenoms in these plots. It, therefore, seems natural
to visualize the attention of a single event to all other events by coloring the attention
score as heatmap in these 2D plots. This visualization is comparable to the self-attention
heatmap of individual pixels to the whole images as demonstrated in[CMS+20].

Aggregated Attention 2D plots Focusing on the attention of a single event can
provide too much detail and thereby miss to depict more sample-wide data relations.
Often we are interested in inspecting the attention of a particular biologically reasonable
sub-population. To do so, we can aggregate the attention of all cancer cells to all other
events in an FCM sample and again visualize the attention scores as colors on several
2D plots. By aggregating the attention of a group of events, we can gain insight into
how the model handles these events. However, this approach is still limited because it
does not reflect the attention of all events in the sample. Additionally, the aggregation
process may cancel out some of the effects of individual events.

UMAP-based full Attention plots A possible way to exploit the whole attention
matrix is to use Uniform Manifold Approximation and Projection (UMAP) [MHM18], a
graph-based non-linear dimensionality reduction method. UMAP creates a graph based
on the distances between data points in a high-dimensional space and tries to find a
lower-dimensional representation of the data points, such that the graph in the embedded
space is similar to the original graph in high dimension. By using the following function
as a distance measure between events a and b in UMAP

d(a, b) = 1
attn(a, b) , (4.11)

we obtain a visualization in which events with strong attention among each other are
clustered together and events that hardly attend to each other are pushed apart.

Object Queries Cross-Attention While approaches mentioned above are all tailored
for self-attention among events aiming to visualize the N2-sized self-attention matrix, it
is also possible to visualize the cross-attention of k learned object queries entailed in a
k ×N -sized matrix. Similar to [CMS+20] we obtain attention scores per object query and
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input token. Each object query corresponds to a specific predicted gate. It is therefore
reasonable to display the attention by coloring the events in the gate’s corresponding 2D
projects of the input data. It thereby shows which events have been focused on in order
to predict the polygon in a particular 2D projection.

4.5.2 Gradient Fields
During the training of deep neural networks, gradients of the loss L are computed with
respect to the model weights:

gradW = ∂L
∂W

(4.12)

The gradients point in the direction of the steepest ascent, such that a gradient de-
scent based optimizer takes a step in the opposing direction aiming to reduce the loss
[GBC16c, GBC16d]. In contrast, gradient-based explainability methods usually compute
the gradients of a particular output value with respect to the input data [SVZ13] or
intermediate representation [SCD+17]. For instance, the gradients of Ŷi, the binary
classification output of the ith event of the network T , with respect to the input events
E is defined by

gradEi
= ∂T (E)i

∂E
= ∂Ŷi

∂E
(4.13)

Although the gradients are only computed of the ith classification output with respect to
the input sample, we obtain a gradient vector for each event since the class prediction
of one event depends not only on the position of this event in hyperspace but also on
all other events of that sample. Gradient-based explainability methods for images such
as Saliency Map take the norm of gradients of each input pixel and visualize them as a
heatmap on top of the original image. A high gradient norm indicates that these pixels
have a strong impact on the prediction of the corresponding class. For FCM data we
can use different 2D projections of one sample to plot the obtained gradients, similar as
described above for attention visualization. Either we use the gradient norms to highlight
the most influential events or we use the gradient vectors themselves plotted as vector
fields on the 2D plots. But in general, the latter is preferable as it not only indicates
which input events are important for a particular prediction but also reveals the direction
in hyperspace that leads to the greatest change in the prediction. In [STK+17] Smilkov
et al. proposed SmoothGrad, an extension of the standard Saliency Map that aims to
reduce visual noise in Saliency Maps. SmoothGrad creates a visualization by averaging
the gradients of multiple noised versions of the same input image and thereby smooths
out local permutations. I observed that the same procedure leads to more paralleled
gradients in FCM samples. I, therefore, add noise s ∼ U(0, 0.1) to the events and compute
gradients. This action is repeated 10 times (empirically determined) and the average of
the gradients is plotted.

While the above-described gradient-based explainability visualizations are solely for
classification tasks, the same concept can be applied to various downstream tasks such
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4. Methodology

Figure 4.9: Illustration of the gradient computation for polygon regression. The gradients
are computed of the difference between predicted point A and desired target point B
with respect to the input events.

as polygon regression. If we define P as a polygon regression model, A as the ith vertex
of a predicted polygon and B as the actual desired location of that point, then we can
calculate the gradients of the norm of A - B with respect to the input events E

gradAB = ∂∥P (E)i − B∥
∂E

= ∂∥A − B∥
∂E

, (4.14)

which describes the direction in which the events should shift in order to move the
predicted point A to the location of B as illustrated in Figure 4.9.
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CHAPTER 5
Results

This chapter starts with introducing the operated data and then dives into the evaluation
of the experiment results as well as answering the stated research questions. Finally the
conclusion summaries the contribution and insights of this thesis. Figure 5.1 provides
an insight of the polygons predicted by the model in comparison to the ground truth
polygons.

Figure 5.1: Example of a gating hierarchy for a single FCM sample. The gates are drawn
in the 2D projection of the FCM data, which is obtained by plotting the expression levels
of two markers against each other. The predicted gates are drawn in black.

5.1 Exploratory Analysis & Preprocessing

While Section 4.3 described the utilized preprocessing steps this Section introduces the
used data as well as the outcomes of apply the preprocessing to this data.
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5. Results

Table 5.1: Due to missing intermediate or blast gates, not all samples as in [WRW+22]
could be used in this work. This table compares the number of used samples per dataset
to [WRW+22]. In Table 5.3 the same samples were used to evaluate all 3 methods.

Dataset # Transformer [WRW+22] # Proposed
VIE14 200 186
VIE20 319 291
BLN 72 70
BUE 65 60

5.1.1 Datasets
The proposed model is evaluated on four different datasets collected across three distinct
institutions, measured on three different FCM devices, consisting of over 600 samples in
total. From all four datasets, the three datasets VIE14, BLN, BUE are publicly available1.
All samples have been obtained from the bone marrow of pediatric B-ALL patients on
day 15 after induction therapy. The following markers are used in the experiments as
they are shared upon all samples: CD10, CD19, CD20, CD34, CD38, CD45 and Syto41
as well as FSC-A, FSC-W and SSC-A. For a detailed dataset description, the reader is
referred to [RDS+19] for VIE14, BLN and BUE, and to [WRW+22] for VIE20. Table 5.1
states how many samples per dataset are used for the proposed approach.

5.1.2 Gating Hierarchy
Since the utilized datasets originate from different institutions, different strategies were
applied to execute manual gating. This results incompatible 2D projections used for
the ground truth polygons. As described in Section 4.3 preprocessing was applied to
calculate the same gating hierarchy for all samples. Table 5.2 displays the predicted gates
and the used markers. In Figure 5.2 the polygons of all used FCM samples are displayed.
We can see that the first three Gates (Syto, Singlets and Intact) depict more consistent
shapes among the datasets than the Blast Gates. This is especially true for the Singlets.
The Figures also reveals shifts from one dataset to another. For instance, the Singlet
Gates in BLN dataset are on a lower FSC-W position than in the BUE dataset. It is also
noticeable that VIE14 and VIE20 have more variety in the Blast Gates than the BLN
and BUE. While the Blast Gates in CD45/CD10 of BLN are dominated by shapes, does
VIE14 contain a lot of horizontal Gates. I believe that those differences show possible
challenges when generalizing from dataset to another.

5.2 Evaluation Setup
The same experiments as in [WRW+22] have been conducted. In all experiments the
proposed model’s ability to generalize to new unseen FCM samples (in most cases from

1 flowrepository.org
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5.2. Evaluation Setup

Table 5.2: The gates and their used features of the predicted gating hierarchy

Name Syto Singlets Intact CD19 Blast-A Blast-B Blast-C
Marker iy-Axis FSC-A SSC-A SSC-A SSC-A CD10 CD10 CD10
Marker x-Axis Syto41 FSC-W FSC-A CD19 CD45 CD20 CD38

Figure 5.2: The ground truth polygons constructed from convex data hulls. Each row
shows the Gates of one dataset. Each column shows one of the 7 Gates of the used
ALL gating hierarchy. This plot highlights the cell clusters shifts among the different
laboratories.
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5. Results

Table 5.3: Experiment results of the proposed method compared to GMM [RDS+19] and
set transformer [WRW+22]. The table reports mean F1-Score / median F1-Score.

Train Test GMM Transformer Proposed

VIE14
BLN 0.72/0.81 0.77/0.90 0.79/0.88
BUE 0.75/0.90 0.82/0.95 0.78/0.89

VIE20 0.77/0.90 0.80/0.91 0.78/0.87

VIE20
BLN 0.53/0.58 0.68/0.83 0.73/0.85
BUE 0.74/0.88 0.75/0.88 0.82/0.92

VIE14 0.80/0.91 T 0.84/0.93 0.73/0.88

BLN
BUE 0.65/0.76 0.66/0.87 0.69/0.84

VIE14 0.48/0.48 0.82/0.92 0.58/0.73
VIE20 0.53/0.60 0.82/0.91 0.50/0.55

BUE
BLN 0.62/0.73 0.64/0.78 0.57/0.69

VIE14 0.66/0.73 0.83/0.92 0.62/0.69
VIE20 0.67/0.78 0.79/0.90 0.65/0.75

different institutes) is tested. The model is implemented in Pytorch 1.10 [PGM+19] and
trained using the Adam optimizer with a batch size of 12 and a learning rate of 1 × 10−3.
It consists of 32892 parameters and has been trained on a NVIDIA Gefore RTX 2080
Ti. One model forward pass takes ≈ 400ms on the used GPU and ≈ 3000ms on an Intel
i7-10750H CPU. Details about the training setup can be found in the provided code on
GitHub2.

Table 5.3 displays the results compared to [RDS+19] and [WRW+22]. For each experiment
the cell classification performance (blast cell vs. non-blast cell) of each sample is
summarized with the mean and median F1-Score of all samples in the corresponding
test set. The results show that the proposed model is able to reach state-of-the-art
performance for blast identification tested on data across different institutes. However,
the model under-performs on small training datasets such as BLN and BUE with 70 and
60 training samples. In these cases, the model overfitted during training and was not
able to generalize well onto new samples from different sources: Qualitatively inspections
revealed that while the cluster positions were mostly correctly predicted, the model failed
to predict the correct form of unseen polygon shapes.

5.3 Ablation Study

This section summarize the results of the conducted ablation study.

2Github Repository
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5.3. Ablation Study

Table 5.4: Median F1-Score of the artificially generated convex hull polygons compared
to the operator ground-truth for different polygon lengths.

Dataset 5 10 20 30 40 60
VIE14 72.02 92.65 94.81 94.98 95.07 95.38
VIE20 67.90 92.57 92.96 93.35 93.51 94.07
BLN 61.38 88.97 90.35 90.41 90.79 91.18
BUE 72.27 96.75 97.54 97.46 97.71 97.97

5.3.1 Optimal Polygonsize
As described in the Preprocessing Section 4.3, when constructing the ground truth
polygons vertexes are either inserted or omitted to meet the proposed model’s fixed
number of predicted points per polygon. A higher number of vertexes can unnecessarily
increase the model’s capacity and memory footprint. On the otherside, a low number
of vertexes can result in performance reduction since the vertex omission changed the
polygon shape too drastically. In order to find the optimal number of vertexes that the
model should predict, we compared the classification output of ground truth polygons
with a different number of vertexes against the classification output of the original
operator-defined ground truth. Table 5.4 displays the F1-Score for a different number
of vertexes and datasets. Based on these results we have chosen a polygon size of 20
vertexes. As the table shows, a higher number than 20 does not substantially increase
the classification performance: While the difference in F1-Score between 5 vertexes and
20 vertexes is at least 20%, it is at most 1% between 20 vertexes and 60 vertexes. The
thereby obtained results can be seen as the upper bound for the performance of the
proposed model. No matter how well the model learned to predict the polygons, its
performance will not surpass the performance difference between the operator polygons
and the constructed polygons.

5.3.2 Number of Object Queries
An important parameter of the proposed model is the number of learned object queries.
For DETR the number of object queries have an influences of the prediction performance,
since the number represents the upper limit of possible detections. While DETR uses
the learned object queries to represent the individual predicted bounding boxes in image
object detection, the proposed models uses the object queries for the individual predicted
polygons. In the latter case,the number of object queries mainly influence the model’s
capacity. The model can either learn one object query per polygon or divide the points of
the polygon among different object queries, such that one object query corresponds to e.g.
4 points of the predicted polygon. Figure 5.3 plots the average validation F1-Score during
600 epochs of training. The Figure shows, that more object queries per polygon lead
to better performance on the validation set. However, increasing the number of object
queries also impacts the model’s memory foot print. I, therefore, opt for 5 objects-queries
although it under performs compared to 10 on the first 600 epochs.
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5. Results

Figure 5.3: 10 Objects queries per polygon lead to best performance on the validation
set compared to using 5 (proposed model), 2 or 1 object queries.

5.3.3 Number of Layers
I investigated the generalization performance of the proposed model for different number
of layers. Specifically, if more encoder layers or more decoder layers are beneficial. Figure
5.4 shows the average F1-Score of the validation set over 800 epochs of training. Although
different settings overlap multiple times during these 800 epochs, 3 encoder layers seem
more beneficial than 3 decoder layers.

5.3.4 Data Augmentation
Figure 5.5 depicts the average F1-Score on the validation set during 600 epochs of
training. The plot shows that augmentation improves the generalization capabilities,
since it outperforms the same model without augmentation. Scale augmentation seems
to be the most effective augmentation, although additional scale and shear augmentation
still improve the performance.

5.4 Pretraining with Synthetic FCM data
For pretraining a synthetic dataset of 2000 samples has been generated using the process
described in Section 4.4.1. Two pretrained models were obtained one after 50 epochs
and one after 150 epochs of synthetic data training. Figure 5.7 displays that synthetic
pretraining already shows an improvement after the first epoch. In addition, using
pretraining speed up the model convergence. In Figure 5.6 the training loss using
different amount of pretraining is depicted. The Figure shows, that the loss faster
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5.5. Visualization Techniques

Figure 5.4: Average Validation F1 Score over 800 epochs of training. 3 encoder layers
seem more useful than 3 decoder layers.

converge to its minimum as well as ends up at a smaller value after 300 epochs, compared
to without pretraining. However, the synthetic pretraining could not avoid the failed
generalization from BLN to VIE14.

5.5 Visualization Techniques

In this section, we demonstrate the proposed visualization techniques. For that purpose
we use the ReluFormer trained on direct cell classification B-ALL FCM samples, as we as
the proposed polygon regression model. We observed that the ReluFormer performs on the
same data similar as in [WRW+22], while allowing to compute attention scores between
events for visualization purposes directly. First, we show how the visualizations help to
reveal different aspects of the model’s decision process. Then we use the visualization
techniques to analyze failure cases, FCM samples for which the model failed to predict
the cancer cells correctly.

49



5. Results

Figure 5.5: Using all described augmentation strategies leads to the best average F1-Score
on the validation set. The Figure shows the average F1-Score on the validation set on
600 epochs during training. Only shear augmentation and no augmentation performs
worst, while applying all augmentation methods performs best.

Figure 5.6: The training loss on the BLN dataset without pretraining (gray), with 50
epochs of pretraining (magenta), with 150 epochs of pretraining (green).
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5.5. Visualization Techniques

Figure 5.7: Synthetic pretraining already shows an improvement after the first epoch.
The Figure shows the predicted ground truth and predicted polygons for one FCM simple
using three different training regimes. The first row represents a model without any
pretraining of synthetic data. In the second row displays the prediction of a model that
was pretrained for 50 epochs on synthetic data. While the last row depicts the polygons
of a model pretrained on 150 epochs of synthetic data.

5.5.1 Attention Visualization
Cell Classification Figure 5.8 visualizes to which events 1000 randomly sampled
cancer cells (blasts) of an arbitrarily selected B-ALL sample attend the most. Although
the network is trained solely for binary classification (cancer cells vs. non-cancer cells),
we can see, that the heads focus on different biologically meaningful populations such
as CD19- CD45- (likely erythroblasts) or CD19+ CD45+ (likely healthy B-cells). The
right-most column pictures the UMAP embeddings using the attention weights of the
corresponding head as a distance measure between the events. While the aggregation
of 1000 randomly sampled blasts only reveals the attention from the perspective of the
cancer cells, the UMAP accounts for the interaction of all events. In the first row, the
blasts mainly attend to themselves. Similarly, in the UMAP plot the blast cells form
a cluster among themselves, while most other cells form another distinct cluster. For
the other heads, the blasts attend to different populations and the UMAP shows more
mixed interactions between blast and non-blast cells. The fact that the model could
identify meaningful biological structures in the data without being explicitly told to do so
suggests that it has a deep understanding of the data modality and is not simply relying
on biased shortcuts for learning.

To quantitatively support this observation I evaluated the amount of blast cells among
the top attention cells. For each head the top 5% of cells according to the aggregated
blast attention are calculated. Then the amount of blast cells among these are computed:

nblasts@top5%
min(ncells@top5%, nblasts) (5.1)
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Blasts

CD19- CD45-
(Erythroblasts)

CD19- CD45+
(T- or NK-cells)

CD19+ CD45+
(B-Cells)

Ground Truth
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UMAPCD45/SSC-A CD19/SSC-A CD45/CD10 CD38/CD10

Cancer Cells

Other Cells

Figure 5.8: Different attention heads find biologically meaningful populations in the
data, when trained on supervised binary classification. The first four rows show the
attention of four different heads for one B-ALL FCM sample. Each column displays a
different 2D projection of the data. For each row we visualize the 500 events with the
strongest attention. Color codes the attention strength for rows and columns 1-4 and the
class-membership cancer cells (red), and other cells (blue) in the remaining plots.
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VIE16 n=291 VIE14 n=186 BUE n=60 BLN n=70

Figure 5.9: Head 1 (blue) and Head 9 (green) show higher amount of cancer cells then
the other heads across all three datasets.

This metric evaluates to 0 if no blast cells are among the top5% and it returns 1 if either
all blasts cells are among the top5% or if the top5% solely consists of blasts. This switch
is needed in case that the number of blast cells in the sample is higher then the number of
cells forming the top5%. Figure 5.9 shows boxplots for this metric computed on VIE14,
BLN and BUE. Head 1 (blue) and Head 9 (green) show higher amount of cancer cells
then the other heads across all three datasets.

Polygon Prediction Figure 5.10 visualizes to which input events the learned object
queries attend the most. The first row shows all input events as well as the predicted and
ground truth polygons for each gate. The other rows display the 500 events to which the
object queries for each gate attend the most. We can see that different heads attend to
different regions inside a polygon. For example consider the Syto Gate: Head 4 focus on
events on the right bottom half of the Gate, while Head 5 and Head 6 attend to different
locations on the left bottom half. Surprisingly, for the three Blast Gates many heads
focus on events outside the Blast polygon. This could indicate that the model learned
detect the Blast population

5.5.2 Gradients Visualization
Figure 5.11 depicts two cases in which the gradients of the difference between the
prediction polygon (black) and a slightly shifted target polygon (blue) with respect
to the input data are visualized. We plot the top 100 biggest gradients and color code
them by their length as well. The gradients indicate in which direction which input
events should change in order to cause the model to shift its prediction to the blue target
polygon. In Figure 5.11 A the gradients are mainly defined by the events inside the
predicted polygon and point in the direction of the polygon shift. It thereby verifies that
the model learned the correct relationship between the position of specific events and the
gate polygon, since a shift of the polygon is mainly caused by a shift of the events inside
the polygon in the same direction. However, similar to the Saliency Map for images, the
visualization is not noise-free as gradients of a few events outside the polygon are among
the top 100 biggest gradients and point in an arbitrary direction.

Figure 5.11 B shows the shifts of the Singlets Gate for one B-ALL FCM sample.
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Ground Truth
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Figure 5.10: Different heads attend to different locations among the input events. For the
task of polygon regression, the first row depicts the ground truth and the other rows show
the attention of six different heads for one B-ALL FCM sample. Each column displays a
different 2D projection of the data corresponding to different Gates. For each row we
visualize the 500 events with the strongest attention. Color codes the attention strength.
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5.6. Answering Research Questions

Although the predicted polygon position is correct, the gradients suggest that the model
has learned an incorrect relationship between the event positions and the polygon position.
The figure shows that when the polygon is shifted in any direction, the gradients are
mainly at the bottom left corner of the event cluster, rather than being distributed evenly
among all events within the polygon. This indicates that the model has learned to rely on
the position of the bottom corner to predict the polygon, since the Singlets Gate mainly
differs in position, not shape, among different samples in the dataset (see Figure 5.2 for a
visualization of different Singlets Gates). However, this learned shortcut is problematic,
as it may cause the model to miss samples with events located outside of typical polygon
shapes.

5.6 Answering Research Questions
In this section the results are observed from the lens of the different research questions.

5.6.1 What are the main building blocks that enable to predict FCM
gating hierarchies with set transformers?

This research question aims to cover the main architectural design choices of the proposed
model. The model is built upon the set transformer [WRW+22] and DETR [CMS+20].
While DETR uses learned objects queries to represent the individual predicted bounding
boxes in image object detection, the proposed models uses the object queries for the
individual predicted polygons. The model can either learn exactly one object query per
polygon or divide the points in the polygon among different object queries, such that one
object query corresponds to e.g. 4 points in the polygon. I experimented with different
amount of object queries per polygons. The

One necessity to enable the prediction of gating hierarchies is the Hungarian matching
based polygon loss, as described in Chapter 4. The utilization of other losses, such as
Mean Squared Error (MSE) did not lead to convergence of the model. My assumption is
that the requirement of MSE to compute the loss between points of the same index (e.g.
between the second point in the predicted polygon and the second point in the ground
truth polygon) is contradictory for learning.

5.6.2 Which synthetic data generation strategies and which data
augmentation strategies are beneficial for the given task?

To answer this question I investigated the effect of different data augmentations, linear
shifts of the whole feature space, scaling of individual cell clusters, linear shifts of individual
cell clusters and shearing of the data from different 2D projections (as illustrated in
Figure 4.6). Without data augmentation the model fails to generalize from the trained
dataset. All the presented data augmentation methods improved the model’s capability
to generalize, but scaling individual cell populations generated the greatest gain in
performance on the validation set. Shearing should the least performance improvement.
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Figure 5.11: Gradients for Polygon regression can be used to confirm correctly learned
relationships (first row) and to spot overfitting behavior (second row). We plot the top
100 gradients of the difference between predicted polygon and query polygon.
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5.7. Conclusion

Synthetic data generation speed up the model’s convergence, but it did not improve the
model performance. Maybe more advanced synthetic data generation processes could
improve on the performance and enable generalization when trained on the small datasets.

5.6.3 Which visualization techniques ease explainability of the
proposed model’s decision process?

To answer this research question I investigated the application of two common explain-
ability techniques attention visualization and gradient-based visualization to the field of
FCM:

Attention visualization proved to be especially useful, when analyzing self-attention in
the direct cell classification setting. It revealed that the model learned to attend to
different biologically meaningful subpopulations in the data, although it was solely trained
on binary blast cell classification. This phenomenon not only emerged in the selected
qualitative analyzed samples, quantitative evaluations could demonstrate that the same
two heads consistently show higher attention for blast cells than non-blast cells over
samples in all datasets (VIE14, BLN, BUE).

Gradient-based visualizations were usefully deployed to analyze the proposed polygon
prediction model. Forming artificial target polygons allows to query the model how
certain predictions would change. Computing the gradients of the difference between the
predicted polygon and the artificial target polygon enables to question certain behaviors
of the models. For instance, an artificial target polygon created from linear shifts of
the predicted polygons could demonstrate that the model learned the true relationship
between cell cluster position and predicted polygon. Also the gradient visualization
revealed the overfitting behavior of the model when predicting the position of the Singlets
Gates. Even when the artificial target polygon only differs from the predicted polygon
in height, the top gradients are accumulated at bottom instead as expected on top
where both polygons differ. The application of gradient-based visualizations to FCM also
confirmed that averaging the repeated noised execution of gradient computation leads to
smoother visualizations similar as proposed in [STK+17].

5.7 Conclusion
In this thesis I propose a novel transformer-based approach for blast cell detection in FCM
samples of ALL patients. The model visually reveals which cells it identifies as blast cells
by predicting the polygons of the gating hierarchy for a given FCM sample. This imitates
the construction of a gating hierarchy by a human expert in clinical practice and therefore
explains why certain events are detected as blast cells. While the proposed model fails
to generalize well when trained on small datasets (≤ 70 samples), its performance is
comparable to non-explainable state-of-the-art approaches on more populated datasets (≥
180 samples). Since the model mimics the decision process of domain experts, it is more
suitable to be included in the clinical gating routines as direct cell classification models.
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5. Results

The proposed model is designed and evaluated for pediatric ALL, but the underlying
concept could be applied to any disease for which standardized FCM gating hierarchies
exist.

The proposed method gives rise to more explainability in the context automated FCM
analysis. Especially in combination with the gradient visualization for polygon regression
in-depth insights about the model’s decision process can be obtained. The investigated
attention visualization helps to understand on which cell population the model focuses.
For instance, the fact that the model can identify meaningful biological structures in the
data without being explicitly told to do so suggests that it has a deep understanding
of the data modality and is not simply relying on biased shortcuts for learning. The
proposed gradient-based visualization demonstrated how to inspect the model’s learned
relationship between input cell data and predicted polygons.

Future work could utilize the proposed FCM-tailored interpretability techniques to
introduce an inductive bias by imposing gradient-based regularization term in model
training similar to [MPR22] or [SLDV98]. This inductive bias in combination with more
sophisticated data synthesis strategies could overcome the problem of generalization when
trained on small datasets.

Summarized, this thesis demonstrates how explainability can be achieved solely by
reframing the task’s objective. It serves as an example that self-explainable models are
an alternative to other explainability methods, not only in theory, but also in practice.
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