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Kurzfassung

Der Quantenalgorithmus von Bernstein und Vazirani stellt einen Meilenstein in der
Komplexitätsforschung von Quantencomputern dar. Es konnte gezeigt werden dass
Quantencomputer das Bernstein-Vazirani-Problem, auch bekannt als diskretes Fourier-
Sampling, schneller lösen können, als es mit klassischen Rechnern möglich ist.

In der nicht-rekursiven Basisvariante konnte eine lineare Verbesserung durch Quanten-
computer gegenüber klassischen Algorithmen beschrieben werden. Darüber hinaus konnte
mittels Rekursion eine superpolynomielle Verbesserung gezeigt werden, die Quantenalgo-
rithmen eine mächtigere Komplexitätsklasse als klassischer Programmierung zuordnet.

Die rekursive Variante des Bernstein-Vazirani-Problems wird in dieser Arbeit neu for-
muliert und nach Problemgröße und Rekursionstiefe parametrisiert. Danach wird der
Algorithmus sowohl in der stark typisierten Quantenprogrammiersprache Silq als auch in
Qiskit, einer zeitgemäßen Bibliothek zur Quantenprogrammierung, implementiert. Das
Programm kann in maschinenlesbarer Form für einen Quantencomputer exportiert oder
auf klassischen Rechnern emuliert werden.

Damit können die Ergebnisse von Bernstein und Vazirani bezüglich der Komplexität
prinzipiell auch auf Quantencomputern überprüft werden. In dieser Arbeit wird ein neuer
Ansatz präsentiert, das rekursive Bernstein-Vazirani-Problem mit einem Kontrollargument
zu formulieren. Mit dieser Formulierung wird die Implementierbarkeit des Algorithmus
wesentlich verbessert.
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Abstract

The Bernstein–Vazirani quantum algorithm serves as an important milestone in the
assessment of the computational power of quantum computers. Bernstein and Vazirani
showed that the Bernstein–Vazirani problem, alias discrete Fourier sampling, could be
solved faster by a quantum algorithm than by any classical formulation.

While the non-recursive, base variant shows a linear improvement of the quantum
algorithm over classical ones, a superpolynomial improvement could be achieved by
applying recursion to the problem. This recursive Bernstein–Vazirani problem separates
the complexity classes of quantum and classical computation.

The recursive variation of the Bernstein–Vazirani problem is reformulated and parametrised
by problem size and recursion depth. It is then designed in the strongly typed quantum
programming language Silq and also implemented in the state-of-the-art quantum library
Qiskit. This program can be exported into machine-readable quantum assembly suitable
for a quantum computer or emulated on classical computers.

Using these results, the complexity results of Bernstein and Vazirani can in principle be
verified on quantum hardware. We present a new variant of formulating the recursive
problem using a control argument that greatly simplifies actual implementations.
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CHAPTER 1
Introduction

The Bernstein–Vazirani problem, also known as discrete Fourier sampling, is well-known
in quantum computing. Its basic, non-recursive formulation is an adaption of the
Deutsch–Josza problem to a parity function of a secret bit string which uses only a single
oracle function call to extract said secret. The relation between the Deutsch–Josza and
Bernstein–Vazirani problems is discussed in [SM12, p. 1454].

However, the Bernstein–Vazirani problem uses recursion to further increase the computa-
tional complexity. There is currently no implementation of this recursive variant in a
quantum programming language available.

Whilst the non-recursive variant is a common example problem for introducing the
capabilities of a new quantum programming language, the full recursive problem is often
left out, even though its implementation can be a prime example of how to achieve
recursion in the demonstrated language.

The result of this thesis is a new formal definition of the recursive Bernstein–Vazirani
problem and algorithms for solving it both classically and on a quantum computer. The
quantum solution is also presented as a quantum circuit diagram and implemented in
the quantum programming languages Silq and Qiskit.

The recursive Bernstein–Vazirani problem provides a separation between computational
complexity classes. It is designed in a way that allows quantum computers to solve it in
a linear number of calls of a given oracle while a classical computer has to perform a
superpolynomial amount of oracle calls.

As such, the problem belongs to the class BQP of problems solvable in polynomial time
by a quantum computer relative to an oracle. Bernstein and Vazirani show in [BV97]
that it is not possible to solve the problem by classical computation in polynomial time.
That means that the class BPP of problems solvable with bounded error probability in
polynomial time, again relative to an oracle, by a classical machine is distinct from BQP.
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1. Introduction

The structure of this thesis is as follows. The next chapter presents the mathematical
foundations and notations that are used in this work. These preliminaries define operations
on bit strings as well as on quantum states.

Chapter 3 then shows the Bernstein–Vazirani problem and its solution algorithms while
discussing different ways of applying recursion. Both classical and quantum algorithms
for solving this problem are developed.

The final recursive variant and the non-recursive base case are then implemented in
Chapter 4 in the quantum programming languages Silq and Qiskit.

Finally, the last chapter compares the running time between the classical and quantum
algorithms.
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CHAPTER 2
Preliminaries

In this chapter we are going to establish the prerequisite notations and definitions used
in the subsequent chapters of this thesis. The usage of bit strings is formalised as a
Boolean vector space, the definition of quantum states is formed in terms of complex
Hilbert spaces and quantum circuits are presented as a practical model for quantum
computation, which can be visualised as diagrams.

2.1 Boolean Vector Space
Let B denote the field of integers modulo two, that is the quotient ring Z/2Z with two
elements 0 and 1. The field operations of addition and multiplication are defined as
exclusive disjunction and logical conjunction, respectively. The values of these operations
are defined for x ∈ B as

0 + x = x + 0 = x and 1 + 1 = 0 (2.1)

with the additive identity 0 as well as

1 · x = x and 0 · x = 0 (2.2)

with the multiplicative identity 1. Other notational variants include x + y = x XOR y
and x · y = x AND y, respectively.

Since these operations are associative, summation and products of finite sequences (xi)i∈I

can be written as �
i∈I

xi and
�
i∈I

xi, (2.3)

respectively, where for I = ∅ the empty sum is defined to be the additive identity 0 and
the empty product to be the multiplicative identity 1.
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2. Preliminaries

Using this Boolean field, for a natural number n the n-dimensional vector space of n-tuples
over B is denoted as Bn. For consistency with zero-based arrays in programming languages,
the components of these vectors are numbered from 0 to n − 1. The notation x[i] shall
denote the ith component of x ∈ Bn for i in this range from 0 to n − 1.

The Boolean vector space Bn is defined with componentwise addition x+y that is defined
for i from 0 to n − 1 as

(x + y)[i] = x[i] + y[i] (2.4)

and scalar multiplication defined as

1 · x = x and 0 · x = 0 (2.5)

for x, y ∈ Bn where 0 is the zero vector whose components are all 0.

A basis of a vector space is a set of vectors that are linearly independent and span the
vector space. In Boolean vector spaces a linear combination of vectors is simply the sum
of a subset of vectors.

A set B of the Boolean vectors is linearly independent if and only if the only subset S ⊆ B
whose sum of vectors yields the zero vector

0 =
�
b∈S

b (2.6)

is the empty set S = ∅.

B is spanning the Boolean vector space if and only if any vector x ∈ Bn can be written
as the sum of a subset S ⊆ B

x =
�
b∈S

b (2.7)

of these vectors.

The standard basis of Bn consists of n vectors ei that have the ith component equal to 1
and the others all set to 0. That is

ei[j] =
�

1 i = j

0 i �= j
(2.8)

for all i and j from 0 to n − 1.

Furthermore, let the bitwise inner product in Bn be defined as

x � y =
n−1�
i=0

x[i] · y[i] (2.9)

for x, y ∈ Bn. It assigns to each pair of Boolean vectors a Boolean value, namely the
exclusive disjunction of the components of their componentwise logical conjunction. This
is also known as the parity of the bitwise conjunction x AND y.
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2.2. Hilbert Space

2.2 Hilbert Space
The following definitions for notation used for Hilbert spaces are commonly used in
literature. Nielsen and Chuang give more detailed descriptions and explanations in their
book entitled Quantum Computation and Quantum Information [NC10].

2.2.1 Inner Product Space
A Hilbert space V is a complex vector space whose vectors will be written in Dirac
notation as kets |ϕ� ∈ V . It has an inner product pV : V × V → C that for two kets |ϕ�
and |ψ� returns a complex number, symbolically written in angle brackets as

�ϕ|ψ� = pV (|ϕ�, |ψ�). (2.10)

The inner product in our definition is linear in its second argument

pV (|ϕ�, a|χ� + b|ψ�) = a�ϕ|χ� + b�ϕ|ψ�, (2.11)

and swapping the arguments results in the complex conjugate result �ψ|ϕ� = �ϕ|ψ�∗ for
|ϕ�, |χ�, |ψ� ∈ V and a, b ∈ C.

For any ket |ϕ� ∈ V , furthermore, the inner product with itself �ϕ|ϕ� is defined to be
non-negative �ϕ|ϕ� ≥ 0 and that it is only zero for the zero vector.

Note that |0� is going to be used to denote the first standard basis vector of the Hilbert
space, so the zero vector is written as |∅� = 0|ϕ� here instead.

The norm induced by this inner product is written as
��|ϕ��� =

��ϕ|ϕ�.

2.2.2 Hermitian Adjoint
The Hermitian adjoint of any ket |ϕ� ∈ V is a bra �ϕ| = |ϕ�†, which is defined as a linear
mapping

�ϕ| : V → C, |ψ� �→ �ϕ|ψ� (2.12)

and, vice versa, the Hermitian adjoint of a bra is a ket |ψ� = �ψ|†. This lets us
reinterpret the symbolic bracket form of equation (2.10) as the application of a bra to a
ket �ϕ|ψ� = �ϕ|
|ψ��.

An outer product of the form |ϕ��ψ| denotes an operator that for a ket |ϕ� ∈ V and a
bra �ψ| : W → C results in the linear mapping

|ϕ��ψ| : W → V, |χ� �→ �ψ|χ� |ϕ�. (2.13)

Moreover, the Hermitian adjoint A† : W → V of any linear mapping A : V → W between
to Hilbert spaces V and W is defined by the equation

pW (|ϕ�, A|ψ�) = pV (A†|ϕ�, |ψ�) (2.14)

5



2. Preliminaries

where |ϕ� ∈ W and |ψ� ∈ V .

A linear mapping U : V → W is unitary if and only if U †U = idV is the identity mapping
on V . Thus, U applied to two kets preserves their inner product

pW (U |ϕ�, U |ψ�) = pV (U †U |ϕ�, |ψ�) = �ϕ|ψ�. (2.15)

2.2.3 Tensor product
The tensor product of two Hilbert spaces V and W is itself a Hilbert space

V ⊗ W =
�

|ϕ� ⊗ |ψ�
��� |ϕ� ∈ V ∧ |ψ� ∈ W

�
(2.16)

with the properties that�
a|ϕ�

�
⊗ |ψ� = |ϕ� ⊗

�
a|ψ�

�
= a

�
|ϕ� ⊗ |ψ�

�
(2.17)

for a ∈ C, |ϕ� ∈ V and |ψ� ∈ W as well as�
|ϕ� + |χ�

�
⊗ |ψ� = |ϕ� ⊗ |ψ� + |χ� ⊗ |ψ� (2.18)

and
|ϕ� ⊗

�
|ψ� + |ω�

�
= |ϕ� ⊗ |ψ� + |ϕ� ⊗ |ω� (2.19)

for |ϕ�, |χ� ∈ V and |ψ�, |ω� ∈ W .

Analogously, the tensor product of two linear mappings A : V → V � and B : W → W � is
a linear mapping

A ⊗ B : V ⊗ W → V � ⊗ W �, |ϕ� ⊗ |ψ� �→ A|ϕ� ⊗ B|ψ�. (2.20)

Tensor products of more than two Hilbert spaces are defined in the same manner. The
n-fold tensor product of a Hilbert space V , a ket |ϕ� and a linear mapping A with itself
is denoted by V ⊗n, |ϕ�⊗n and A⊗n, respectively.

2.2.4 Basis
A basis is, like in the previous section, a linearly independent, spanning vector set. That
is to say that for a basis B of a Hilbert space V , each ket |ϕ� ∈ V can be written in
terms of complex coordinates ϕb ∈ C corresponding to the basis vectors |b� ∈ B as

|ϕ� =
�

|b�∈B

ϕb|b�. (2.21)

The basis vectors |b� ∈ B are linearly independent and hence the only coordinate
representation of the zero vector |∅� in this basis has all components equal to zero
∅b = 0.
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2.3. Quantum Computation and Quantum Circuits

The basis vectors of an orthonormal basis are orthogonal to each other, meaning that the
inner product �a|b� of two distinct ones |a�, |b� ∈ B is zero, as well as normalised, such
that their norms are one.

Let H(A) for a finite set A denote the |A|-dimensional Hilbert space isomorphic to C|A|

whose orthonormal standard basis vectors are labelled by the elements of A. For example,
the Hilbert space H(B) is the set of vectors written as a|0� + b|1� for a, b ∈ C.

2.3 Quantum Computation and Quantum Circuits
Using the definitions and notations of Boolean vectors and Hilbert spaces, we can now
establish a rigorous description of quantum states and quantum circuits.

2.3.1 Single Qubit Registers
Quantum computation operates on qubits instead of classical bits. A qubit is a unit vector
of the Hilbert space H(B). Unit vectors have a norm of one unit; thus, |ϕ� = a|0� + b|1�
for a, b ∈ C with |a|2 + |b|2 = 1 describes the state of a qubit where |x + iy| =

�
x2 + y2

denotes the absolute value of a complex number x + iy.

When a qubit is measured in the standard basis {|0�, |1�}, it can only ever be observed
in one of these two basis states. Superpositions of the two states collapse to a basis state
on measurement. Measuring |ϕ� in this basis yields |0� with probability |a|2 and |1� with
probability |b|2.

Performing computation on a qubit is possible by applying quantum gates, which are
unitary operators on the Hilbert space. Unitarity ensures the preservation of the norm.

The X gate, also known as NOT gate, is a simple quantum gate that operates on a single
qubit register. The operator X : H(B) → H(B) is defined as X = |1��0| + |0��1| and thus
swaps out the components of quantum states with respect to the standard basis. If the
ket |ϕ� = a|0� + b|1� is represented by the column vector	

a
b



∈ C2, (2.22)

then the corresponding matrix representation for X is	
0 1
1 0



. (2.23)

Note that the X gate is self-adjoint, that is X† = X.

Another important quantum gate on a single qubit that we are going to use is the
Hadamard gate H : H(B) → H(B) defined as H = |+��0| + |−��1| where

|+� = |0� + |1�√
2

and |−� = |0� − |1�√
2

. (2.24)

7



2. Preliminaries

Figure 2.1 Simple quantum circuit for a random bit.

X |0� H x

The matrix representation of H corresponding to the standard basis notation from
equation (2.22) is

1√
2

	
+1 +1
+1 −1



. (2.25)

Note that the Hadamard gate is also self-adjoint. It is furthermore useful to formulate
the Hadamard gate as the function

H : H(B) → H(B), |x� �→ 2−1/2 �
y∈B

(−1)x·y|y�. (2.26)

The diagram of a single qubit quantum circuit is drawn as a horizontal line with labelled
boxes denoting quantum gates, e. g. X or H , and a measure symbol for receiving
the measured classical value of a qubit. While a single line represents a qubit, a classical
bit value is drawn as a double line.

The operations are applied in order from left to right. The simple example circuit
in Figure 2.1 performs a Hadamard gate on |0� and measures the resulting |+� state,
returning a random bit. The result is equally probable to be 0 or 1 as in this quantum
state |0� and |1� have the same probability of (1/

√
2)2 = 1/2.

In order to refer to a qubit within a quantum circuit, we treat its line in the circuit as a
quantum register, which we can refer to with a Fraktur letter like X.

The X gate is also drawn as the alternative symbol directly on the wire, especially in
combination with the notation for controlled gates defined in the following subsection.

2.3.2 Multiple Qubit Registers
Quantum circuits can be constructed by taking the tensor product of qubit states. When
we interpret the tensor product of n qubits H(B)⊗n as an n-qubit quantum register, it is
useful to summarise the tensor product states into the isomorphic Hilbert space H(Bn)
by combining the Boolean labels of the basis states into n-dimensional Boolean vectors.
This isomorphism, transforming for example |0� ⊗ |0� ⊗ |1� into |(0, 0, 1)�, is defined as

n−1�
i=0

|x[i]� �→ |x� (2.27)

for all x ∈ Bn.

8



2.3. Quantum Computation and Quantum Circuits

The order of qubits from left to right in the tensor product as well as top to bottom in
quantum circuit diagrams is from the least significant bit x[0] to the most significant
one x[n−1], i. e. the corresponding integer to the vector (0, 0, 1) is 0 ·20 +0 ·21 +1 ·22 = 4.

We can also use this isomorphism to define operations like the n-qubit Hadamard gate Hn

isomorphic to H⊗n : H(B)⊗n → H(B)⊗n as

Hn : H(Bn) → H(Bn), |x� �→ 2−n/2 �
y∈Bn

(−1)x�y|y� (2.28)

using the form discovered in equation (2.26). Also note that Hn is self-adjoint as for any
x ∈ Bn

Hn

����2−n/2 �
y∈Bn

(−1)x�y|y�
���� = 2−n

�
z∈Bn

�
y∈Bn

(−1)x�y(−1)y�z|z� (2.29)

= 2−n
�

z∈Bn

�
y∈Bn

(−1)y�(x+z)|z� (2.30)

= |x� (2.31)

because the sum over all y cancels out to zero for all z �= x but evaluates to 2n|z�
for z = x.

Visually, an n-qubit quantum register is marked by a slash

/n

and labelled by a Fraktur letter.

Likewise, unitary operators on multiple qubit registers as well as across quantum registers
are used in quantum computation as quantum gates. Gates using adjacent registers are
drawn as larger labelled boxes across the affected registers. Such multi-register gates can
be defined as tensor products like U = H⊗n ⊗ I⊗n ⊗ X in

X /n
H⊗n ��

Y /n ��

Z X ��

≡
X /n

U

��

Y /n ��

Z ��

or also as non-separable gates like the controlled gates presented below.

If non-adjacent registers are used as input, multiple boxes with the same label denoting
the same gate are used and connected by a vertical line. For example,

X /n
H⊗n ��

Y /n ��

Z X ��

≡
X /n U � ��

Y /n ��

Z U � ��

9



2. Preliminaries

means that the gate U � = H⊗n ⊗ X is applied to registers XZ but not to register Y,
where the juxtaposition of register labels denotes the tensor product of the corresponding
quantum states at those registers.

An important tool for using quantum registers are controlled gates. A controlled gate is
a quantum gate that is conditionally applied to target registers depending on the state
of control registers. Using a single qubit control register X and a n-qubit register Y, any
n-qubit quantum gate U can be conditionally applied on Y controlled by X as depicted
by the circuit

X • ��

Y /n U ��

where the small black disc denotes the control on state |1�. Let the resulting controlled
gate C1 U on XY from this circuit be defined as

C1 U = |0��0| ⊗
���� �

x∈Bn

|x��x|
���� + |1��1| ⊗

���� �
x∈Bn

U |x��x|
����, (2.32)

meaning that U is applied if and only if the control register is in state |1�.
For example, the controlled NOT gate has the following effect on two qubits.

C1 X
�
|x� ⊗ |y�

�
= |x� ⊗ |x + y� (2.33)

for x, y ∈ B.

Additionally, a control on state |0� denoted by C0 does the opposite and applies a gate
when the control register is in state |0� instead. This is visualised with a circle on the
control register and can be realised by inverting the control register using two X gates.

X ��

Y /n U ��
≡

X X • X ��

Y /n U ��

In this definition, the quantum gate U can itself be a controlled gate and hence an
operation can be controlled by the value of multiple qubits. For example, let us define a
multi-controlled X gate. The C1 C1 C0 C1 X gate

X0 • ��

X1 • ��

X2 ��

X3 • ��

Y ��

denotes a quantum gate that inverts the value of the register Y if and only if the value
of the control registers is (1, 1, 0, 1).

10



2.3. Quantum Computation and Quantum Circuits

Figure 2.2 Quantum circuit with a multi-controlled X gate.

X0 |0� H • ��

X1 |0� H • ��

X2 |0� H ��

X3 |0� H • ��

Y |0�

2.3.3 Measurement and Uncomputation

Nielsen and Chuang also present the mathematical definition of quantum measurement
in [NC10]. A measurement is defined by a set M of operators M : V → V such that the
sum of their products with their Hermitian adjoints results in the identity of the Hilbert
space �

M∈M
M †M = idV (2.34)

and the quantum state of the circuit after measuring M ∈ M is transformed from |ϕ� to

M |ϕ��
�ϕ|M †M |ϕ�

(2.35)

where �ϕ|M †M |ϕ� is the probability of measuring this outcome.

Measuring a single qubit register in the standard basis {|0�, |1�} corresponds to the
measurement set M = {|0��0|, |1��1|}.

As a bigger example, let us now apply the multi-controlled X gate from earlier to a
known quantum state. The circuit in Figure 2.2 firstly prepares the state

|ϕ1� = |+� ⊗ |+� ⊗ |+� ⊗ |+� ⊗ |0� =
3�

i=0
|+� ⊗ |0� (2.36)

using four Hadamard gates. We can rewrite this state using the properties of the tensor
product from equations (2.17) to (2.19) as follows.

|ϕ1� =
3�

i=0

����2−1/2 �
x∈B

|x�
���� ⊗ |0� = 2−2 �

x∈B4

���� 3�
i=0

|x[i]�
���� ⊗ |0� (2.37)

11



2. Preliminaries

Then the C1 C1 C0 C1 X gate is applied and yields

|ϕ2� = C1 C1 C0 C1 X |ϕ1� (2.38)

= 2−2
���� �

x∈B4\{(1,1,0,1)}

���� 3�
i=0

|x[i]� ⊗ |0�
���� + |1� ⊗ |1� ⊗ |0� ⊗ |1� ⊗ |1�

����, (2.39)

that is, in the controlled state the X gate is applied to |0� and results in X |0� = |1�,
while the other 15 permutations of qubits do not change the register Y.

Measuring the register Y corresponds to the measurement operators

My = I⊗4 ⊗ |y��y| =
�

x∈B4

���� 3�
i=0

|x[i]��x[i]|
���� ⊗ |y��y| (2.40)

for y ∈ B which are self-adjoint, i. e. M †
y = My, and idempotent, i. e. M2

y = My. This is
because the fifth qubit is measured in the standard basis, while the first four qubits are
left in their quantum state.

Measuring register Y of the state |ϕ2� yields 1 with a probability of (1/4)2 = 1/16. In case
the measurement was 1, the registers X0X1X2X3 remain in the state |1� ⊗ |1� ⊗ |0� ⊗ |1�.
Otherwise, if 0 was measured in Y, the state of the other registers after the quantum
circuit is

15−1/2 �
x∈B4\{(1,1,0,1)}

���� 3�
i=0

|x[i]�
���� (2.41)

where the factor 15−1/2 = 1/
√

15 is the result of dividing the original factor 1/4 by the
square root of the probability of the measured outcome 15/16 as defined in equation (2.35),
preserving the norm of the state vector.

At the end of each quantum circuit all registers are implicitly measured, even when their
values are discarded. Thus, if intermediate values are computed whose measurement
influences the quantum state of other registers, it is necessary to reverse their computation
before the end of the circuit in order to not change the desired result.

This practice of reversing intermediate calculation is called uncomputation. Let us say
as an example that we want to apply a quantum gate Uf to three registers XYZ that

Figure 2.3 Example quantum circuit showing uncomputation.

X |x�
Ug

|x�

Uf

|x�
U †

g

|x���

Y |0� |g(x)� |g(x)� |0���

Z |z� |z� |z + f(x)� |z + f(x)���
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2.3. Quantum Computation and Quantum Circuits

when given XY in a state of |x� ⊗ |g(x)�, for some function g, adds a result of f(x) to
the value of register Z. The state |x� ⊗ |g(x)� shall be obtained via application of another
quantum gate Ug to |x� ⊗ |0�.
In this example depicted in Figure 2.3 the register Y generally cannot be left in the state
of |g(x)� after applying Uf , as it would interfere with the result. Therefore, register Y is
uncomputed by applying U †

g so that register Z only depends on X.

13





CHAPTER 3
Algorithm Design

Using the preliminaries from Chapter 2, we are now presenting the Bernstein–Vazirani
problem and discussing different methods of recursion. Algorithms for the classical and
quantum versions of the problem are given in pseudocode and the corresponding quantum
circuits are visualised.

3.1 The Non-recursive Problem
The Bernstein–Vazirani problem was originally described by Ethan Bernstein and
Umesh Vazirani in 1997 as discrete Fourier sampling problem in their paper entitled
Quantum Complexity Theory [BV97]. Given a function f with an input size of n bits of
the form

f : Bn → B, x �→ x � s (3.1)
using the bitwise inner product defined in equation (2.9), where s ∈ Bn is a secret,
constant n-bit vector, this hidden value s can be computed using the function f and
Hadamard transformations.

While a classical, deterministic query algorithm for this value s needs to perform n
invocations of the function f , a quantum circuit can measure s with certainty calling
an oracle of f only once. Since the function only returns one bit of information per
invocation, any classical solution needs to perform at least n calls to retrieve the secret.

An algorithm for querying s classically can use an orthonormal basis B of Bn. The
hidden string is queried as

s =
�
b∈B

f(b) · b, (3.2)

which is adding up those basis vectors b ∈ B whose function value f(b) is one. In the
simplest case the standard orthonormal basis is used and the solution is found bitwise.
Algorithm 3.1 shows that function f is called n times.

15



3. Algorithm Design

Algorithm 3.1 Classical algorithm for the non-recursive Bernstein–Vazirani problem

1 variable r of type Bn

2 for i = 0 . . n − 1
3 variable e := 0 of type Bn

4 e[i] := 1 e is now the ith standard basis vector
5 r[i] := f(e) set ith bit of r to ith bit of s by calling f

6 end for
7 return r with value s

Algorithm 3.2 Quantum algorithm for the non-recursive Bernstein–Vazirani problem

1 register X := |0�⊗n

2 register Y := |1�
3 apply H⊗n to X resulting in |+�⊗n

4 apply H to Y resulting in |−�
5 apply Uf to XY resulting in 2−n/2 �

x∈Bn

(−1)x�s|x� ⊗ |−�

6 apply H⊗n to X resulting in |s�
7 discard Y as |−� i. e. measuring Y does not affect the rest of the circuit
8 measure X with value s

Figure 3.1 Quantum circuit for the non-recursive Bernstein–Vazirani problem

X |0�⊗n /n
H⊗n

Uf

H⊗n s

Y |1� H |−���

In order to use the classical function f in a quantum circuit, let Uf be the unitary
operator

Uf : V → V, |x� ⊗ |y� �→ |x� ⊗ |y + f(x)� (3.3)

on the Hilbert space V = H(Bn) ⊗ H(B) that reversibly queries the function value. Note
that this operator is self-adjoint, i. e. U †

f = Uf holds, since the addition operation in the
Boolean field is exclusive disjunction with the property that f(x) + f(x) = 0.

Cleve et al. give a quantum algorithm for the non-recursive Bernstein–Vazirani problem
in their paper entitled Quantum Algorithms Revisited [Cle+98]. The quantum oracle Uf

is applied to all input qubits in the |+� state and an ancilla register in the |−� state. This
algorithm is described in Algorithm 3.2 and shown as a quantum circuit in Figure 3.1.

16
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After preparing the quantum state

|ϕ1� = 2−n/2 �
x∈Bn

|x� ⊗ |−� (3.4)

the problem can be solved using one invocation of the oracle and n Hadamard gates.
Calling the oracle yields the state

|ϕ2� = Uf |ϕ1� (3.5)
= 2−n/2 �

x∈Bn

(−1)x�s|x� ⊗ |−� (3.6)

and the application of the remaining Hadamard gates results in

|ϕ3� = Hn |ϕ2� (3.7)
= 2−n

�
y∈Bn

�
x∈Bn

(−1)x�s+y�x|y� ⊗ |−� (3.8)

= 2−n
�

y∈Bn

�
x∈Bn

(−1)x�(s+y)|y� ⊗ |−� (3.9)

= |s� ⊗ |−�, (3.10)

where measuring register X reveals the secret bit vector s with certainty. As seen in
equations (2.29) to (2.31), the equation from (3.9) to (3.10) holds because for y = s the
exponent evaluates to zero, and for all other values of y the exponent x � (s + y) results
in both Boolean values for exactly half of the values of x, cancelling out those kets |y�.

3.2 Recursive Problem Variants
In order to prove the complexity result of Bernstein and Vazirani that quantum Turing
machines are more powerful than classical ones regarding the number of oracle calls needed,
researchers have come up with different ways to apply recursion to the non-recursive
Bernstein–Vazirani problem.

The following subsections are focused on variants of the recursive Bernstein–Vazirani
problem.

3.2.1 The Variant by Bernstein and Vazirani
The original formulation of the recursive Fourier sampling problem was presented in [BV97]
by adding a second function g : Bn → B to the problem and redefining the goal to answer
g(s) instead of s. The authors describe the creation of the recursive problem as follows.

For each problem instance of size n, we will replace the 2n values of f with
2n independent recursive subproblems of size n

2 , and so on, stopping the
recursion with function calls at the bottom. [BV97, p. 1458]

17



3. Algorithm Design

That is to say that the problem size n is to be chosen as a power of two and the recursion
depth is defined to be its binary logarithm. Let d be this depth of recursion such that
n = 2d.

In order to answer g(s), the function f : x �→ x � s can no longer be queried directly.
Instead, it is promised that for each x ∈ Bn there is a subproblem

fx : Bn/2 → B, x1 �→ x1 � sx (3.11)

with a secret n/2-bit string sx and a goal function gx : Bn/2 → B, whose solution bit
reveals the function value f(x) = gx(sx).

For each x1 ∈ Bn/2 there are in turn subproblems

fx,x1 : Bn/4 → B, x2 �→ x2 � sx,x1 (3.12)

with n/4-bit secrets sx,x1 and goal functions gx,x1 : Bn/4 → B promising that fx(x1) =
gx,x1(sx,x1), and so forth, until reaching the functions

fx,x1,...,xd−1 : B → B, xd �→ xd � sx,x1,...,xd−1 , (3.13)

with 1-bit secrets sx,x1,...,xd−1 . These problem functions fx,x1,...,xd−1 are given as oracle
functions.

Reinterpreting the index parameters as separate function inputs and thus lifting the
constants s to functions, the domain of these functions grows like Bn × Bn/2 × Bn/4 ×
· · · × Bn/2k and the definitions can be rewritten as

fk :
k�

i=0
B2d−i → B, (x0, . . . , xk) �→ xk � sk(x0, . . . , xk−1) (3.14)

sk :
k−1�
i=0

B2d−i → B2d−k (3.15)

gk :
k�

i=0
B2d−i → B (3.16)

for k from 0 to d with the condition that

fk(x0, . . . , xk) = gk+1
�
x0, . . . , xk, sk+1(x0, . . . , xk)

�
(3.17)

for k from 0 to d − 1 with xi ∈ B2d−i .

For k = 0 we let the argument to sk in equation (3.14) and in the following occurrences
of the term sk(x0, . . . , xk−1) denote the empty tuple () and let the empty Cartesian
product in equation (3.15) be the singleton set of the empty tuple. s0 : {()} → Bn can
then be identified with a constant s0 ∈ Bn.

The problem solution may access the oracle function fd as well as all goal functions gk in
order to answer the goal g0(s0).

18



3.2. Recursive Problem Variants

3.2.2 The Variant by Aaronson
In the paper entitled Quantum Lower Bound for Recursive Fourier Sampling [Aar03]
Aaronson removes the necessity to half the problem size in each recursion level. He shows
that the parameter of recursion depth d can be chosen independently of the input size.
Hence, the problem now has two parameters: n and d.

This simplifies the problem’s definitions to

fk : (Bn)k+1 → B, (x0, . . . , xk) �→ xk � sk(x0, . . . , xk−1) (3.18)
sk : (Bn)k → Bn (3.19)
gk : (Bn)k+1 → B (3.20)

for k from 0 to d with the condition that

fk(x0, . . . , xk) = gk+1
�
x0, . . . , xk, sk+1(x0, . . . , xk)

�
(3.21)

for k from 0 to d − 1.

Note that now all parameters x0, . . . , xd and all values of sk are n-bit vectors in Bn. The
rule about empty tuples for k = 0 from the previous subsection still holds.

Having now all subproblems share the same dimensions, Aaronson suggests that the goal
functions’ dependencies on x0, . . . , xk−1 can be removed and the resulting function from
Bn to B can be unified into one function g such that

fk(x0, . . . , xk) = g
�
sk+1(x0, . . . , xk)

�
(3.22)

for k from 0 to d − 1.

For this function he shows that

gmod 3 : Bn → B, x �→
�

0 �x�1 ≡ 0 mod 3
1 otherwise,

(3.23)

where �x�1 denotes the Hamming weight of the bit vector, can be used throughout the
recursive problem as an efficiently computable function that is complicated enough to
not simplify the problem complexity.

Again only one oracle fd and the goal function g are directly accessible to the solution
algorithm.

3.2.3 The Variant by Johnson
Johnson combines Bernstein’s and Vazirani’s variant with Aaronson’s variant in his
dissertation entitled Upper and Lower Bounds for Recursive Fourier Sampling [Joh08].
The recursive structure by Aaronson from equations (3.18) to (3.21) is used, while
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3. Algorithm Design

the functions gk are not unified like in Aaronson’s formulation, but are kept separate
functions.

By choosing this problem definition, the functions gk still have access to the parame-
ters x0, . . . , xk−1. This allows for more possibilities in selecting the hidden bit strings sk

as they do not have to satisfy equation (3.22).

3.2.4 A New Variant for Implementations
The aforementioned variants cannot be implemented easily for the secret bit vectors sk and
the goal functions gk have to fulfil the recursively promised conditions (3.17) and (3.21).
The authors of the respective papers provide no straightforward way of constructing such
problem instances.

Since the introduction of the goal functions gk is not necessary in order to perform
recursion on the Bernstein–Vazirani problem, the following definition does not use them.
Instead the problem functions fk on all but the last level of recursion receive an additional
control argument a ∈ Bn that ensures having solved the subproblems.

The depth d is again the number of recursion levels, independent of the problem size n.
For k from 0 to d − 1, let the oracle functions be

fk : (Bn)k+2 → B, (x0, . . . , xk, a) �→
�

xk � sk(x0, . . . , xk−1) a = sk+1(x0, . . . , xk)
0 otherwise,

(3.24)
and on the last level

fd : (Bn)d+1 → B, (x0, . . . , xd) �→ xd � sd(x0, . . . , xd−1) (3.25)

with independently choosable hidden bit strings

sk : (Bn)k → Bn (3.26)

for all k from 0 to d. All these problem functions fk including fd are available as oracles
to solution algorithms. The goal is to retrieve the hidden n-bit vector s0.

In this variant the oracle functions fk replace the role of the goal functions gk as the
means to query information about the secrets. This change in oracle accessibility does
not impact the problem complexity because of the added control parameter a. The
functions fk now have the same signature as gk+1 in equation (3.21).

As the intended way of solving this problem shall always provide a = sk+1(x0, . . . , xk) in
equation (3.24), the otherwise branch need not be defined at all if one allows for partial
problem functions fk. Alternatively, the constant 0 can be changed to any expression
not revealing sk.

A classical algorithm for the recursive Bernstein–Vazirani problem can again use vectors
of the standard orthonormal basis to query the secret bit vectors, in the same way as in
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3.2. Recursive Problem Variants

Algorithm 3.3 Classical algorithm for the recursive Bernstein–Vazirani problem

1 function RBVk(e0 : Bn, . . . , ek−1 : Bn) : Bn is
2 k parameters of type Bn, for k from 0 to d

3 variable r of type Bn

4 for i = 0 . . n − 1
5 variable ek := 0 of type Bn

6 ek[i] := 1 ek is now the ith standard basis vector
7 if k = d then
8 r[i] := fd(e0, . . . , ed)
9 else

10 r[i] := fk

�
e0, . . . , ek, RBVk+1(e0, . . . , ek)

�
11 end if
12 end for
13 return r with value sk(e0, . . . , ek−1)
14 end function
15 return RBV0() this function call yields the solution value s0

Algorithm 3.1. In Algorithm 3.3 the inputs xk are set to standard basis vectors that are
stored in the variables ek and the hidden strings sk are then computed bitwise stored in
variables r.

Correctness of this classical algorithm can be shown as follows. In the base case for k = d
the function RBVd(e0, . . . , ed−1) computes

sd(e0, . . . , ed−1) =
�
b∈B

fd(e0, . . . , ed−1, b) · b (3.27)

bitwise by choosing the standard basis for B the same way as in the non-recursive case.

In the induction step we show that for k from d − 1 to 0, given the induction hypothesis
that RBVk+1(e0, . . . , ek) returns sk+1(e0, . . . , ek), the function RBVk(e0, . . . , ek−1) shall
return

sk(e0, . . . , ek−1) =
�
b∈B

fk

�
e0, . . . , ek−1, b, RBVk+1(e0, . . . , ek)

�
· b (3.28)

where B is again the standard basis of Bn.

Thus, RBV0() returns s0 after d induction steps.

As each invocation of RBVk iterates over n values of i calling fk once per iteration and
recursing each time for k < d, this algorithm calls the problem functions fk exactly nk+1
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times for k from 0 to d; thus,

d�
k=0

nk+1 = n

n − 1 · (nd+1 − 1) (3.29)

oracle calls are made in total.

A quantum algorithm for solving this recursive variant is Algorithm 3.4, which is also
shown in Figure 3.2 as a quantum circuit diagram. This algorithm defines n-qubit
registers Xk for k from 0 to d and one ancilla register Y. The initial state

|ϕ1� = 2−(d+1)n/2
d�

l=0

���� �
xl∈Bn

|xl�
���� ⊗ |−� (3.30)

is prepared using Hadamard transformations similar to the non-recursive version.

Then the order of oracle function invocations and Hadamard gates follows a recursive def-
inition. The structure was formalised by McKague in his paper entitled Interactive proofs
with efficient quantum prover for recursive Fourier sampling [McK12, p. 4, Algorithm 2].

The procedure RBV and its corresponding recursively defined quantum gate can be
described as follows. In the base case for k = d the procedure RBV(d) applies the
gate Ufd

to all registers, which performs the computation

|ϕ2� = Ufd
|ϕ1� (3.31)

= 2−(d+1)n/2 �
x0,...,xd∈Bn

����(−1)xd�sd(x0,...,xd−1)
d�

l=0
|xl�

���� ⊗ |−� (3.32)

using the tensor product’s properties from equations (2.17) to (2.19), effectively intro-
ducing a factor of (−1)xk�sk(x0,...,xk−1). For k from d − 1 to 0 we can now compute the
control argument by calling RBV(k + 1), assuming that it adds (−1)xk+1�sk+1(x0,...,xk) as
a factor

RBV(k + 1) 2−(d+1)n/2 �
x0,...,xd∈Bn

���� d�
l=0

|xl�
���� ⊗ |−� = (3.33)

2−(d+1)n/2 �
x0,...,xd∈Bn

����(−1)xk+1�sk+1(x0,...,xk)
d�

l=0
|xl�

���� ⊗ |−�

and applying Hadamard gates to the register Xk+1 after the RBV(k + 1) gate, performing

Hn 2−n/2 �
xk+1∈Bn

(−1)xk+1�sk+1(x0,...,xk)|xk+1� = |sk+1(x0, . . . , xk)� (3.34)

applying the pattern described in equations (2.29) through (2.31).
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Figure 3.2 Quantum circuit for the recursive Bernstein–Vazirani problem

X0 |0�⊗n /n
H⊗n

RBV (0)

H⊗n s0

X1 |0�⊗n /n
H⊗n |+�⊗n��

...
...

...
...

...
...

Xd |0�⊗n /n
H⊗n |+�⊗n��

Y |1� H |−���

RBV (d) := X0 /n

Ufd

...
...

...

Xd /n

Y

for k from 0 to d − 1:

RBV (k) := X0 /n

RBV (k + 1)

Ufk

RBV (k + 1)

...
...

...
...

...

Xk /n

Xk+1 /n
H⊗n H⊗n

Xk+2 /n

...
...

...
...

...

Xd /n

Y Ufk
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Algorithm 3.4 Quantum algorithm for the recursive Bernstein–Vazirani problem

1 for k = 0 . . d

2 register Xk := |0�⊗n

3 apply H⊗n to Xk resulting in |+�⊗n

4 end for
5 register Y := |1�
6 apply H to Y resulting in |−�
7 procedure RBV(k : N) is shift phase by (−1)xk�sk(x0,...,xk−1)

8 if k = d then
9 apply Ufd

to X0 · · ·XdY

10 else
11 call RBV(k + 1)
12 apply H⊗n to Xk+1 resulting in |sk+1(x0, . . . , xk)�
13 apply Ufk

to X0 · · ·Xk+1Y

14 apply H⊗n to Xk+1 uncomputing |sk+1(x0, . . . , xk)�
15 call RBV(k + 1)
16 end if
17 end procedure
18 call RBV(0)
19 for k = 1 . . d

20 discard Xk as |+�⊗n

21 end for
22 discard Y as |−�
23 apply H⊗n to X0 resulting in |s0�
24 measure X0 with value s0

Then Ufk
can be applied to registers X0 · · ·Xk+1Y as expected to yield

Ufk
2−(k+1)n/2 �

x0,...,xk∈Bn

���� k�
l=0

|xl� ⊗ |sk+1(x0, . . . , xk)�
���� ⊗ |−� = (3.35)

2−(k+1)n/2 �
x0,...,xk∈Bn

����(−1)xk�sk(x0,...,xk−1)
k�

l=0
|xl� ⊗ |sk+1(x0, . . . , xk)�

���� ⊗ |−�,

which computes the factor (−1)xk�sk(x0,...,xk−1). However, the control argument cannot
be left in the state |sk+1(x0, . . . , xk)� because it depends on other registers that we do not
want to measure here. Therefore, register Xk+1 is uncomputed by applying Hadamard
gates as

Hn |sk+1(x0, . . . , xk)� = 2−n/2 �
xk+1∈Bn

(−1)xk+1�sk+1(x0,...,xk)|xk+1� (3.36)
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and another procedure call RBV(k + 1) to cancel out the factor

RBV(k + 1) 2−(d+1)n/2 �
x0,...,xd∈Bn

����(−1)xk+1�sk+1(x0,...,xk)
d�

l=0
|xl�

���� ⊗ |−� = (3.37)

2−(d+1)n/2 �
x0,...,xd∈Bn

���� d�
l=0

|xl�
���� ⊗ |−�

using the fact that the RBV gates are self-adjoint, since adding a second copy of the
factor multiplies to one. So overall RBV(k) adds a factor of (−1)xk�sk(x0,...,xk−1) to the
quantum state.

Hence, the call of RBV(0) computes a state of

2−n/2 �
x0∈Bn

(−1)x0�s0 |x0� ⊗
d�

l=1

���� �
xl∈Bn

|xl�
���� ⊗ |−�, (3.38)

where the solution s0 can be obtained via another Hadamard transformation on the
X0 register.

This quantum algorithm applies the Ufk
gate 2k times; thus, it uses

d�
k=0

2k = 2d+1 − 1 (3.39)

invocations of oracle functions in total, independent of the problem size n. Recall that
the number of oracle calls of the classical solution in equation (3.29) did in fact depend
on n.

The significance of this result regarding computational complexity is discussed in Chap-
ter 5.
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CHAPTER 4
Implementation

In this chapter the Silq and Qiskit implementations of the Bernstein–Vazirani algorithm
in both non-recursive and recursive forms are presented and discussed.

Silq is a quantum programming language that is based on a strong type system. It is
used to verify that all used intermediate values are correctly uncomputed and do not
interfere with the intended measurement. The Silq implementation emulates quantum
computation on classical computers in a type-safe manner.

As presented in the publication [Bic+20], Silq supports types for interpreting qubits
or classical bits as fixed-width integers of arbitrary width as well as tuples, arrays and
vectors.

Qiskit [Qis22] is a software development kit for Python that provides a way to define
quantum circuits, compile them into quantum assembly instructions and run them on
an emulator or on quantum hardware. Furthermore, quantum circuit diagrams can be
generated from the circuit implementations.

4.1 Concepts and Features of Silq
Information about the features of the programming language Silq is taken from the
paper [Bic+20] as well as Silq’s website [Bic+23]. While the paper does not explain all
the features of Silq that are needed in order to use this language, the website provides us
with more usage examples.

All classical types are marked with an exclamation mark ! in front of the data type. The
data types we are going to use are the following.

Boolean values are of the type B for qubits and !B for classical bits, with the operator
xorb, short for XOR binary, performing Boolean addition. Classical natural numbers
denoted by !N can be arbitrarily large non-negative integers.
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Tuples can be defined by parenthesised expressions like (0, 3, 1) : !B x !N x !N
or built by concatenation, e. g. (0,) ~ (3, 1) where the tuple with one element is
distinguished by a trailing comma. A vector of type T^n for some n : !N is a fixed-length
n-tuple of values of the same type T : * where the asterisk denotes the kind of any data
type.

A sequence of elements of a type T : * with a variable number of elements is an array T[],
whose instances are constructed by the use of brackets, e. g. [0] ~ [3, 1] : !N[]
concatenates two lists of naturals resulting in a 3-element array.

Vectors of n : !N bits or qubits can also be viewed as fixed-size integers. We are going to
use unsigned integers of the type uint[n] which treat a vector x ∈ Bn as its corresponding
binary value

n−1�
i=0

x[i] · 2i (4.1)

with the least significant bit at the lowest index.

Functions can have special annotations related to quantum computation. Quantum type
parameters which are not marked const have to be consumed in order to prevent implicit
measurement, that is to say that their state has to be used up or uncomputed manually.
On the other hand, const parameters are uncomputed automatically.

A function is qfree if and only if it neither introduces nor destroys superpositions, i. e. it
can be described classically. Finally, the annotation lifted after the list of parameters
in a function definition is a shorthand to annotate all parameters as const and mark the
function itself as qfree.

Generic parameters in brackets like [n : !N] can be used to define parametrically poly-
morphic functions by using type variables in their definitions. These generic parameters
can be omitted in function calls if they are redundant with the type information.

There is currently no way to export the quantum circuit as an interchange format nor
to run the program on a quantum computer. The main accomplishment of Silq is to
type-check quantum programs and to emulate them on classical hardware returning
quantum states in Dirac notation.

4.2 Algorithm Modelling in Silq
The following Silq scripts are going to reference utility definitions from util.slq for
n-qubit Hadamard gates as well as array and vector builder functions. Listing 4.1 provides
the source of these reusable definitions.

The function Hn applies the Hadamard transformation to all components of its B^n
argument. An array of values is returned by arrOf given the desired length and a
function that determines the value for each index. Arrays can be coerced into vectors
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Listing 4.1 Silq utility functions util.slq used in the algorithm implementations

1 // apply H to n qubits
2 def Hn [n : !N] (x : B^n) : B^n
3 {
4 for i in [0 .. n)
5 {
6 x[i] := H (x[i]);
7 }
8 return x;
9 }

10
11 // array of supplied classical values
12 def arrOf [T : *] (n : !N, f : !N !-> !T) : !T[]
13 {
14 v := [] : !T[];
15 for i in [0 .. n)
16 {
17 v ~= [f (i)];
18 }
19 return v;
20 }
21
22 // vector of supplied classical values
23 def vecOf [T : *] (n : !N, f : !N !-> !T) : !T^n
24 {
25 return arrOf (n, f) coerce !T^n;
26 }
27
28 // random classical n-bit vector
29 def randomVec [n : !N] () : !B^n
30 {
31 return vecOf (n, lambda (i : !N) => measure (H (0 : B)));
32 }
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of the same length as done by the function vecOf. An easy way to obtain random bit
vectors in Silq is implemented as randomVec.

The algorithms are implemented in Silq in order to test them on actual values for the
secret bit vectors. The following programs select random secrets and then run the
Bernstein–Vazirani algorithm.

Firstly, the non-recursive Bernstein–Vazirani algorithm is implemented. The bitwise inner
product f(x) = x � s is modelled exactly like in its definition in equation (2.9) as the
sum of bitwise logical conjunctions. This lets us define the function f that computes this
dot product, which is then used to define the function main resembling the pseudocode
from Algorithm 3.2. The source code is available in Listing 4.2.

The problem size parameter n can be adapted easily at line 14.

This implementation of the non-recursive Bernstein–Vazirani algorithm chooses a random
secret string s each time. A possible output from running this script is

(1,1,0,0,1)
(1+0i)·|(1,1,0,0,1)〉

where the first line is the value of s that was chosen and the second line represents the
quantum state of the register x returned after the computation, which shows the expected
result.

This program can now be extended towards the recursive Bernstein–Vazirani algorithm
as presented in Algorithm 3.4. In the most general case, we use a lookup table of random
values to store the information for the secrets sk(x0, . . . , xk−1) from equation (3.26) used
to define the oracle functions of the recursive Bernstein–Vazirani problem. For each
k from 0 to d there are 2kn secret values. These correspond to all possible argument
values x0, . . . , xk−1 for k > 0.

The algorithm implementation is given in Listing 4.3. Its output is of the same form as
the non-recursive algorithm.

This implementation defines a vector of arrays with the random secret values at lines 79
to 81. The value of sktab[k][X] here denotes the secret sk(x0, . . . , xk−1) where X is
the unsigned integer representation of the concatenated argument vectors x0, . . . , xk−1.
This index

X =
k−1�
i=0

n−1�
j=0

xi[j] · 2in+j (4.2)

is computed by the function concat, which builds a kn-bit vector from k separate n-bit
vectors and casts it to a kn-bit unsigned integer.

Having this integer X determined by the state of quantum registers, the array is accessed
by comparing this index to classical values in function sk. For the first index i such that
its integer representation compares equal to the concatenated quantum state of x, the
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Listing 4.2 Silq implementation of the non-recursive Bernstein–Vazirani algorithm

1 import util; // defines randomVec, Hn
2
3 // f(x) = x . s
4 def f [n : !N] (s : !B^n) (x : B^n) lifted : B
5 {
6 r := 0 : B;
7 for i in [0..n)
8 {
9 r xorb= x[i] & s[i];

10 }
11 return r;
12 }
13
14 n := 5; // problem size parameter
15
16 def main ()
17 {
18 s := randomVec [n] ();
19 print (s);
20
21 x := vector (n, 0 : B);
22 x := Hn (x);
23 y := H (1 : B);
24
25 y xorb= f (s) (x);
26
27 x := Hn (x);
28 y := H (y);
29 forget (y = 1);
30
31 assert (measure (x == s));
32 return x;
33 }
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Listing 4.3 Silq implementation of the recursive Bernstein–Vazirani algorithm

1 import util; // defines randomVec, arrOf, vecOf, Hn
2
3 // concat x0 .. x[k-1] as uint[k*n]
4 def concat [n : !N, k : !N] (x : (B^n)^k) lifted : uint[k*n]
5 {
6 arr := [] : B[];
7 for i in [0 .. k)
8 {
9 arr ~= x[i]; // concatenate all qubits into an array

10 }
11 return (arr coerce B^(k*n)) as uint[k*n];
12 }
13
14 // sk(x0,..,x[k-1]) = skarr[concat (x0 .. x[k-1])]
15 // where skarr = sktab[k]
16 def sk [n : !N, k : !N] (skarr : !(B^n)[])
17 (x : (B^n)^k) lifted : B^n
18 {
19 for i in [0 .. 2^(k*n))
20 {
21 if (i as !uint[k*n]) == concat (x)
22 {
23 return skarr[i] : B^n;
24 }
25 }
26 assert (false);
27 }
28
29 // fd(x0,..,xd) = xd . sd(x0,..,x[d-1])
30 def fd [n : !N, d : !N] (sktab : !(B^n)[]^(d+1))
31 (x : (B^n)^d, xd : B^n) lifted : B
32 {
33 s := sk [n, d] (sktab[d]) (x);
34 r := 0 : B;
35 for i in [0 .. n)
36 {
37 r xorb= xd[i] & s[i];
38 }
39 return r;
40 }
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41
42 // fk(x0,..,xk,a) = xk . sk(x0,..,x[k-1]) [ a == s[k+1](x0,..,xk) ]
43 def fk [n : !N, k : !N, d : !N] (sktab : !(B^n)[]^(d+1))
44 (x : (B^n)^k, xk : B^n, a : B^n) lifted : B
45 {
46 s := sk [n, k] (sktab[k]) (x);
47 r := 0 : B;
48 if a == sk [n, k+1] (sktab[k+1]) (x ~ (xk,))
49 {
50 for i in [0 .. n)
51 {
52 r xorb= xk[i] & s[i];
53 }
54 }
55 return r;
56 }
57
58 def rbv [n : !N, d : !N] (sktab : !(B^n)[]^(d+1))
59 (xk : (B^n)^(d+1), y : B, k : !N) : (B^n)^(d+1) x B
60 {
61 if k == d
62 {
63 y xorb= fd (sktab) (xk[0 .. d], xk[d]);
64 return (xk, y);
65 }
66 (xk, y) := rbv (sktab) (xk, y, k + 1);
67 xk[k+1] := Hn (xk[k+1]);
68 y xorb= fk [n, k, d] (sktab) (xk[0 .. k], xk[k], xk[k+1]);
69 xk[k+1] := Hn (xk[k+1]);
70 (xk, y) := rbv (sktab) (xk, y, k + 1);
71 return (xk, y);
72 }
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73
74 n := 2; // problem size parameter
75 d := 2; // recursion depth parameter
76
77 def main ()
78 {
79 genSecrets := lambda (i : !N) => randomVec [n] ();
80 genArrays := lambda (k : !N) => arrOf (2^(k*n), genSecrets);
81 sktab := vecOf (d + 1, genArrays) : !(B^n)[]^(d+1);
82 print (sktab[0][0]);
83
84 xk := vector (d + 1, vector (n, 0 : B));
85 for k in [0 .. d+1)
86 {
87 xk[k] := Hn (xk[k]);
88 }
89 y := H (1 : B);
90
91 (xk, y) := rbv (sktab) (xk, y, 0);
92
93 (x0,) ~ xk := xk;
94 x0 := Hn (x0);
95
96 for k in [0 .. d)
97 {
98 xk[k] := Hn (xk[k]);
99 }

100 forget (xk = vector (d, vector (n, 0)));
101 y := H (y);
102 forget (y = 1);
103
104 assert (measure (x0 == sktab[0][0]));
105 return x0;
106 }
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lookup table entry is returned. It is not possible for this search to fail because the whole
index space from 0 to 2kn − 1 is covered.

While the function fd is written similar to function f in the non-recursive implementation,
fk has to additionally check for the control argument a as specified in the defining
equation (3.24). If the parameter a were not equal to the corresponding value in the
lookup table, a state of |0� would be returned.

Note that (xk,) denotes the singleton tuple of xk with the trailing comma distinguishing
it from other parenthesised expressions. In Silq the concatenation operator ~ applies to
both arrays and vectors.

Finally, the recursive procedure from Algorithm 3.4 is implemented as the function rbv.
Note that the index slice expression xk[0 .. k] yields the vector at the indices from 0
to k − 1.

The parameters n and d can be changed at lines 74 and 75, respectively, but the defaults
are low for performance reasons.

4.3 Program Implementation in Qiskit
While Silq is a useful programming language to evaluate these algorithms, it does not
provide a possibility for assembling quantum circuits or exporting the program into other
formats. We use Qiskit to accomplish this task and show how the algorithm defines an
implementable quantum circuit that can in principle be verified on quantum computers.

Hence, the non-recursive and recursive Bernstein–Vazirani algorithms are implemented in
Qiskit and emulated on a classical computer, while having the option to directly compile
the scripts into machine code for quantum hardware.

Again the non-recursive algorithm is implemented first. We chose to define the Uf gate
as a compound quantum gate as constructed at lines 18 to 22 in Listing 4.4. This is
achieved defining a sub-circuit Uf_qc that is then translated into a quantum gate using
Qiskit’s to_gate method. With this definition the program outputs diagram images of
the quantum circuit with different levels of abstraction.

Before and after each oracle invocation barriers are put in place to prevent the transpiler
from using the oracle implementation instance when optimising the circuit. These barriers
are not shown in the diagrams, though, to avoid clutter.

Running the program prints two lines consisting of the random secret s and the emulation
results, for example

s = 10110
{’10110’: 1024}

showing that all 1024 shots, i. e. repetitions of the emulation, resulted in the correct value
measured. Besides the textual output, the generated images serve as an overview of the
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Listing 4.4 Qiskit implementation of the non-recursive Bernstein–Vazirani algorithm

1 from qiskit import *
2 from random import getrandbits
3
4 n = 5
5 fmt = dict(output='mpl', plot_barriers=False)
6
7 def indexed(x):
8 return enumerate([b == '1' for b in reversed(f'{x:0{n}b}')])
9

10 s = getrandbits(n)
11 print(f's␣=␣{s:0{n}b}')
12 x = QuantumRegister(n, 'x')
13 y = AncillaRegister(1, 'y')
14 c = ClassicalRegister(n, 'c')
15 qc = QuantumCircuit(x, y, c)
16
17 # f(x) = x . s
18 Uf_qc = QuantumCircuit(x, y)
19 for i, bit in indexed(s):
20 if bit:
21 Uf_qc.cx(x[i], y)
22 Uf = Uf_qc.to_gate(label='$U_f$')
23
24 qc.h(x)
25 qc.x(y)
26 qc.h(y)
27 qc.barrier()
28
29 qc.append(Uf, x[:] + y[:])
30 qc.barrier()
31
32 qc.h(x)
33 qc.measure(x, c)
34 qc.draw(**fmt, filename='1bv-circuit.png')
35 qc.decompose('*U*').draw(**fmt, filename='1bv-decomposed.png')
36
37 sim = Aer.get_backend('aer_simulator')
38 tp = transpile(qc, sim)
39 tp.draw(**fmt, filename='1bv-transpiled.png')
40 print(sim.run(tp, shots=1024).result().get_counts())
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circuit 1bv-circuit.png, a decomposition of the oracle gate Uf in 1bv-decomposed.png
as well as the transpiled version 1bv-transpiled.png of how the emulator receives the
circuit. Examples of these images are shown in Figures 4.1 to 4.3 where Qiskit also
produces a U2(−π, −π) gate. This gate U2(ϕ, λ) : H(B) → H(B) for ϕ, λ ∈ C is defined
as

U2(ϕ, λ) = 2−1/2
�
|0��0| + eiϕ|1��0| − eiλ|0��1| + ei(ϕ+λ)|1��1|

�
(4.3)

and used to encode the composition of H after X as HX = U2(−π, −π) = |−��0|+ |+��1|.
The default transpiler backend does not constraint register connectivity and it allows
for a plethora of basic gates including multi-controlled gates. Transpiling for a quantum
computer would require a reduced set of basic gates and a mapping of the available
quantum registers instead. Note that transpiling also simplifies gate combinations that
are not restricted by barriers resulting in the aforementioned U2 gate.

Analogously to the Silq scripts, this non-recursive implementation is extended towards
a full implementation of the recursive Bernstein–Vazirani algorithm in Qiskit. The
randomly chosen values of the secrets sk(x0, . . . , xk−1) are once again stored as a lookup
table. The final program is given in Listing 4.5.

The focus of this script lies on the implementation of conditionals as controlled quantum
gates. The definition of Ufd

at lines 25 to 31 has to account for all instances of x0, . . . , xd−1
and therefore iterates over 2dn values for these qubits. Each of these values additionally
controls the controlled X gate, added via the control method, resulting in gates with
d · n + 1 control qubits.

The gates Ufk
for k from 0 to d − 1 at lines 34 to 46 also iterate over 2kn values of

x0, . . . , xk−1 but then additionally consider the 2n options for xk and check for the control
register value a to equate to sk+1(x0, . . . , xk). This definition requires multi-controlled
X gates with (k +2) ·n control qubits for all values of x0, . . . , xk where the ith component
of both xk and sk(x0, . . . , xk−1) is 1.

Thus, this implementation is a close translation of the presented Silq code into Qiskit.

The outputs of running this Qiskit script are similar to the non-recursive variant. While
the text is of the same form, the diagram images show the increased complexity of the
quantum gates. An example for the circuit overview image is given in Figure 4.4.

Note that the decomposed and transpiled output images are too detailed to be displayed
here. Figures 4.5 and 4.6 show the first two rows of these diagrams.

This general implementation of the oracle functions Ufk
using lookup tables requires an

exponential number of gates with respect to both parameters n and d. However, treating
these oracles as black boxes, the findings about this algorithm’s complexity still hold as
discovered in the previous chapter.
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Figure 4.1 Example output image 1bv-circuit.png of the program in Listing 4.4

Figure 4.2 Example output image 1bv-decomposed.png of the program in Listing 4.4

Figure 4.3 Example output image 1bv-transpiled.png of the program in Listing 4.4
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Listing 4.5 Qiskit implementation of the recursive Bernstein–Vazirani algorithm

1 from qiskit import *
2 from qiskit.circuit.library import CXGate, MCXGate
3 from random import getrandbits
4
5 n = 2
6 d = 3
7 fmt = dict(output='mpl', plot_barriers=False, fold=18)
8
9 def indexed(x):

10 return enumerate([b == '1' for b in reversed(f'{x:0{n}b}')])
11
12 def concat(xss):
13 return [x for xs in xss for x in xs]
14
15 # sk(x0,..,x[k-1])
16 sk = [[getrandbits(n) for x in range(2**(k*n))] for k in range(d+1)]
17 print(f's0␣=␣{sk[0][0]:0{n}b}')
18
19 xk = [QuantumRegister(n, f'x{k}') for k in range(d+1)]
20 y = AncillaRegister(1, 'y')
21 c = ClassicalRegister(n, 'c')
22 qc = QuantumCircuit(*xk, y, c)
23
24 # fd(x0,..,xd) = xd . sd(x0,..,x[d-1])
25 Ufd_qc = QuantumCircuit(*xk, y)
26 for ix in range(1 << d*n):
27 for i, bit in indexed(sk[d][ix]):
28 if bit:
29 gate = CXGate().control(d*n, ctrl_state=ix)
30 Ufd_qc.append(gate, concat(xk[:d]) + [xk[d][i]] + y[:])
31 Ufd = Ufd_qc.to_gate(label=f'$U_{{f_{{{d}}}}}$')
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32
33 # fk(x0,..,xk,a) = xk . sk(x0,..,x[k-1]) [ a == s[k+1](x0,..,xk) ]
34 Ufk = []
35 for k in range(d):
36 Ufk_qc = QuantumCircuit(*xk[:k+2], y)
37 for ix0 in range(1 << k*n): # x0,..,x[k-1]
38 for ixk in range(1 << n): # xk
39 for i, bit in indexed(sk[k][ix0]):
40 if bit and ixk & (1 << i):
41 ix = (ixk << k*n) + ix0
42 gate = MCXGate(n, ctrl_state=sk[k+1][ix])
43 gate = gate.control(n, ctrl_state=ixk)
44 gate = gate.control(k*n, ctrl_state=ix0)
45 Ufk_qc.append(gate, Ufk_qc.qubits)
46 Ufk.append(Ufk_qc.to_gate(label=f'$U_{{f_{{{k}}}}}$'))
47
48 for k in range(d+1):
49 qc.h(xk[k])
50 qc.x(y)
51 qc.h(y)
52 qc.barrier()
53
54 def rbv(k):
55 if k == d:
56 qc.append(Ufd, concat(xk[:]) + [y])
57 qc.barrier()
58 return
59 rbv(k + 1)
60 qc.h(xk[k+1])
61 qc.barrier()
62 qc.append(Ufk[k], concat(xk[:k+2]) + [y])
63 qc.barrier()
64 qc.h(xk[k+1])
65 qc.barrier()
66 rbv(k + 1)
67
68 rbv(0)
69
70 qc.h(xk[0])
71 qc.measure(xk[0], c)
72 qc.draw(**fmt, filename='rbv-circuit.png')
73 qc.decompose('*U*').draw(**fmt, filename='rbv-decomposed.png')
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74
75 sim = Aer.get_backend('aer_simulator')
76 tp = transpile(qc, sim)
77 tp.draw(**fmt, filename='rbv-transpiled.png')
78 print(sim.run(tp, shots=1024).result().get_counts())

Figure 4.4 Example output image rbv-circuit.png of the program in Listing 4.5
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Figure 4.5 Initial part of an example output image rbv-decomposed.png of the program
in Listing 4.5

...
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Figure 4.6 Initial part of an example output image rbv-transpiled.png of the program
in Listing 4.5

...

43





CHAPTER 5
Discussion

The Bernstein–Vazirani problem is one of the most important problems for examining
the power of quantum computers and comparing it against the class of problems that are
efficiently computable on classical computers.

The complexity classes BPP and BQP denote the classes of decision problems solvable
with bounded error probability in polynomial time by classical and quantum computers,
respectively. As shown in [BV97], the recursive Bernstein–Vazirani problem belongs to
the complexity class BQP but not to the class BPP relative to the given oracle, assuming
that one-way functions exist and thus that P �= NP.

A one-way function is computable in polynomial time but cannot be inverted easily, that
is to say that there is no procedure that gives an input for any given output of this
function in polynomial time. If P is equal to NP, one-way functions cannot exist as shown
in Foundations of Cryptography by Oded Goldreich [Gol01, Chapter 2].

Therefore, implementing the recursive Bernstein–Vazirani algorithm in modern quantum
programming languages helps to verify the power of quantum computation with respect
to computational complexity.

Recall the number of oracle invocations of the recursive algorithm. The classical imple-
mentation used

n

n − 1 · (nd+1 − 1) (5.1)

oracle calls, while the quantum version only made

2d+1 − 1 (5.2)

calls. For d = 0 we get the non-recursive version as well.

Since we dropped the original constraint between n and d, we can revisit the case when
n = 2d+1 or equally d = ld n − 1 where ld denotes the logarithm to the base 2. In this
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case the classical problem solution makes
n

n − 1 · (nld n − 1) (5.3)

oracle calls and the quantum program uses only n − 1 invocations. Thus, the quantum
computer solves the problem in a polynomial number of calls of the given oracle, whereas
a classical machine needs a superpolynomial number of calls with respect to the input
size to run the algorithm.

Hence, we could demonstrate the computational power of quantum computers by design-
ing and implementing the recursive Bernstein–Vazirani algorithm in modern quantum
programming languages.
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