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Abstract

Einstein’s theory of general relativity can be extended or adjusted by modified
gravity theories in hopes of answering still open questions like about the nature
of dark matter or dark energy. Some theories predict the existence of novel
scalar fields causing a gravity-like fifth force. However, such a force, which
could exceed gravity in its strength, is tightly constraint within our Solar Sys-
tem due to tests. A popular way to circumvent these constraints is to introduce
so-called screening mechanisms which suppress fifth forces in environments of
high mass density, like our Solar System, but allowing scalar fields to act with
their full strength in vacuum.

In this thesis, the effects of an only little investigated screened scalar field,
the dilaton field, on an open quantum system is discussed. For this, an equa-
tion for directly calculating the reduced density matrix of a single-particle state
of a real scalar field in an environment of another scalar field is derived using
techniques from non-equilibrium quantum field theory. Afterwards, this equa-
tion is used to approximately calculate the effects of the dilaton environment
on a scalar field as a proxy for an atom, motivated by experimental applica-
tions like atom interferometry. Some interesting parts of the solution are then
renormalized before using them to estimate domains of dilaton parameters
where these effects could be measurable.
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Kurzzusammenfassung

Einsteins allgemeine Relativitätstheorie kann durch modifizierte Gravitation-
stheorien erweitert beziehungweise angepasst werden, in der Hoffnung noch
ungelöste Probleme wie dunkle Materie und dunkle Energie zu lösen. Manche
dieser Theorien sagen die Existenz von neuen Skalarfeldern, die fünfte Kräfte
ähnlich der Gravitation verursachen, vorher. Solche Kräfte, die stärker als
Gravitation wirken können, sind allerdings durch Tests innerhalb unseres Son-
nensystems stark eingeschränkt. Eine beliebte Methode, um diese Einschränkun-
gen zu umgehen, ist die Einführung von sogenannten Abschirmungsmechanis-
men, die diese fünfte Kräfte in Umgebungen mit hoher Massendichte, wie
unserem Sonnensystem, unterdrücken, aber im Vakuum die gesamte Stärke
der Skalarfelder zulassen.

In dieser Diplomarbeit werden die Auswirkungen von einem noch wenig un-
tersuchten abgeschirmten Skalarfeld, dem Dilatonfeld, auf ein offenes Quanten-
system untersucht. Dafür wird unter Verwendung von Techniken der Nicht-
gleichgewichtsquantenfeldtheorie eine Gleichung für die direkte Berechnung
der reduzierten Dichtematrix eines Einteilchenzustandes eines reellen Skalar-
feldes in Umgebung eines anderen Skalarfeldes hergeleitet. Anschließend wird
diese Gleichung verwendet, um näherungsweise die Auswirkung einer Dilaton-
umgebung auf ein Skalarfeld, das als Näherung für ein Atom herangezogen
wird, zu bestimmen. Dies ist motiviert durch experimentelle Anwendungen
wie der Atominterferometrie. Interessante Teile des Ergebnisses werden dann
renormiert und anschließend verwendet, um Parameterbereiche des Dilatons
abzuschätzen, wo diese Auswirkungen messbar wären.
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1. Introduction

To this day, there are still some phenomena fundamental to our understanding of the
Universe that are not yet explained. Some of these mysteries are the natures of dark
energy and dark matter [1–4]. Current estimates suggest that our universe contains
about 68 ± 1% dark energy, 27 ± 1% dark matter and only about 5% ordinary matter
like photons, neutrinos and baryonic matter [4]. Both dark matter - the mass missing in
galaxies to explain observations of gravitational lensing and the rotation curves of spiral
galaxies [1] - and dark energy - the energy that is assumed to drive the observed accelerated
expansion of our universe [5, 6] - are not yet understood but a possible explanation for
them could be modifying the theory of general relativity by adding light scalar fields [1,
2, 7]. Modifying general relativity in this way leads to scalar-tensor theories where scalar
fields are coupled to the metric tensor of general relativity [8]. References [1, 2, 9] give
an overview of such models including comments on which of them have already been
disregarded due to cosmological observations and which are still of interest.

Introducing additional scalar fields to modify general relativity may be a rather simple
way to explain dark matter and dark energy. However, any added scalar field will generally
interact with the fields of Standard Model particles by mediating a so-called fifth force.
This fifth force would be an additional fundamental force that has not yet been observed
and is tightly constrained by observations of our Solar System [10]. These constraints
can easily be circumvented by assuming the coupling of the scalar field to matter to be
very weak. More specifically, the fifth force has to be a lot weaker than gravity which is
the weakest of all known fundamental forces [11]. Nonetheless, this would result in the
problem that it could be impossible to observe the force even when going to astrophysical
scales outside of our Solar System.

Therefore, a well-liked alternative to this very weakly coupling is the introduction of
screening mechanisms [7, 12]. Scalar fields with such a screening mechanism, so-called
screened scalar fields, experience a suppression of themselves and their fifth forces in envi-
ronments of high mass density. In vacuum, however, they can act with their full strength.
Due to this screening mechanism, the scalar field can thus bypass the aforementioned
constraints of Solar System observations by being strongly repressed there. So far, several
models of screened scalar fields working with different screening mechanisms have been
developed. An overview of them as well as some experiments can be found in [2, 13].

In this thesis a new quantum physical test of one particular screened scalar field, the
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dilaton, will be presented. This will be done by calculating the open quantum dynamical
system of a Standard Model matter particle, e.g. a cold atom, coupling to the screened
scalar system as its environment. Open quantum systems, where the system is influenced
and effected by a surrounding environment, can be regarded as some of the most realistic
ways of modelling quantum systems [14]. It is therefore possible to calculate occurrences
like momentum or energy diffusion [15] leading to phase shifts or decoherence [16] which
are caused by the interaction between system and environment. Some of the first appli-
cations of open quantum systems include quantum optics [14, 17–19] and physics of cold
atoms [20–22].

Open quantum systems, including the one in this thesis, are often described by density
operators and matrices since they can also be used when describing mixed states, contrary
to wave functions [14]. The quantum Liouville equation can be used to determine the time
evolution of the density operator and from there master equations can be obtained. This
approach was taken by [23–25]. However, solving such a master equation analytically can
become quite difficult if not impossible. Therefore, a different path to directly calculate the
reduced density matrix, where the environmental degrees of freedom have been traced out,
was developed in [26]. Following the same path but without tracing out the environmental
degrees of freedom leads to a formalism able to determine the more general total density
matrix elements as shown in [27].

This thesis will follow the calculations of the reduced density matrix outlined in [26] and
use this equation to determine the effects a dilaton field can have on a scalar field posing
as the system. To do so, first screened scalar fields are introduced in more detail in Section
2 with emphasis on the dilaton field and its coupling to Standard Model matter. Then,
in Section 3 the formalism to determine reduced density matrix elements is calculated
by following [26]. For this purpose, required theoretical concepts like the Schwinger-
Keldysh formalism [28, 29], the Feynman-Vernon influence functional [30] and methods
from thermo field dynamics [31, 32] are introduced in Sections 3.2 and 3.3. These concepts
are then used to derive the formula in Section 3.4. Afterwards, this formula is used
to determine the effects of a dilaton field on the system scalar field in Section 4. In
Section 4.1 the physically interesting parts of the result are renormalized. Its experimental
implications and predictions are subsequently discussed in Section 4.2. Finally, this thesis
is concluded in Section 5.
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2. Screened scalar fields

In classical and quantum field theory, scalar fields are the most simple objects since they
are denoted only by a single complex number. Additionally, they are Lorentz invariant1

and have the dimension of energy in 4-dimensional spacetime. In this thesis, all scalar
fields are presumed to be real and they are represented by ϕ and χ. Furthermore, c0 =

ℏ = 1 and the (−,+,+,+)-metric convention are used.
The equation of motion of a free scalar field,

(□−m2
ϕ)ϕ = 0 (2.1)

with the d’Alembert operator □ = − ∂2

∂t2
+ ∇⃗2 and the mass of the scalar field mϕ, is also

known as the Schrödinger-Gordon or Klein-Gordon equation [33]. Its Lagrangian density,
also referred to as its Lagrangian, is

L0 = −1

2
(∂ϕ)2 − 1

2
m2

ϕϕ
2, (2.2)

while its action results in
S0 =

∫
x

L0 (2.3)

with
∫
x
=
∫
d4x.

The Lagrangian of an interacting system where ϕ interacts with itself and other fields
χ, however, is given by

L = −1

2
(∂ϕ)2 − 1

2
m2

ϕϕ
2 − V (ϕ, χ), (2.4)

where the interaction potential density V (ϕ, χ) is subtracted from the free Lagrangian
in Eq. (2.2). In this case the equation of motion is acquired from the Euler-Lagrange
equations [11], resulting in

(□−m2
ϕ)ϕ =

∂

∂ϕ
V (ϕ, χ). (2.5)

For a scalar field to be used in a quantum field theory, one has to employ either canonical
quantisation [34] or Feynman’s path integral formalism [35].

When using canonical quantisation, the scalar field ϕ as well as the newly defined
1This means that their equations of motion - and consequently their actions - remain unchanged when

using an element of the Lorentz group Λ to transform the field like ϕ(x) → ϕ(Λ−1x).

7



conjugate momentum density π(x) := ∂L/∂ϕ̇(x) [36] are elevated to operators, ϕ → ϕ̂

and π → π̂. This new scalar field operator can be written as a decomposition of plane
waves [36],

ϕ̂(x) =

∫
dΠk

(
âe−iEkt+ik·x + â†eiEkt−ik·x) , (2.6)

where the definitions ∫
dΠk :=

∫
k

1

2Ek

and
∫
k

:=

∫
d3k

(2π)3
(2.7)

are used, â and â† denote the annihilation and creation operators, respectively, and the
energy is given by

Ek :=
√
k2 +m2

ϕ + ∂2
ϕV (ϕ, χ)|ϕ0∈{φ : ∂ϕL|φ=0}. (2.8)

The annihilation and creation operators of a certain momentum p, âp and â†p, fulfil the
commutation relations [36]

[âp, â
†
k] = (2π)3 2Epδ

(3)(p− k),

[âp, âk] = [â†p, â
†
k] = 0

(2.9)

and the former can be used to define a vacuum state |0⟩ via

âp |0⟩ = 0. (2.10)

When calculating the expectation value of two scalar fields, ϕ̂(x) and ϕ̂(y), in the
vacuum state in various ways, the different propagators can be determined. The positive
frequency Wightman propagator ∆>

xy, describing the vacuum transition amplitude for a
particle when moving from spacetime point x to y, is given by [15, 36]

∆>
xy := ⟨0| ϕ̂(x)ϕ̂(y) |0⟩ =

∫
dΠke

−iEk(x
0−y0)+ik·(x−y), (2.11)

while the negative frequency Wightman propagator ∆<
xy is obtained by either complex

conjugating the positive frequency Wightman propagator or switching its arguments x

and y. Using the time ordering operator T̂ defined by

T̂ϕ̂(x)ϕ̂(y) := Θ(x0 − y0)ϕ̂(x)ϕ̂(y) + Θ(y0 − x0)ϕ̂(y)ϕ̂(x), (2.12)

the free Feynman propagator is obtained by [15]

∆F
xy := ⟨0| T̂ϕ̂(x)ϕ̂(y) |0⟩ = −i

∫
k

eik(x−y)

k2 +mϕ − iϵ
(2.13)
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with
∫
k
:=

∫
d4k
(2π)4

and ϵ → 0. Complex conjugating the Feynman propagator leads to the
free Dyson propagator ∆D

xy.
The alternative to canonical quantisation for integrating scalar fields into a quantum

field theory is Feynman’s path integral formalism. Both ways lead to identical predictions
of the physics as they are equivalent theories [37]. However, Feynman’s formalism gets
the results by integrating over all possible paths in spacetime of a classical particle. As a
result, the Feynman propagator in vacuum is given by [36]

∆F
xy := ⟨0| T̂ϕ̂(x)ϕ̂(y) |0⟩ =

∫ DϕeiS0ϕ(x)ϕ(y)∫ DϕeiS0
, (2.14)

where S0 is the free action of the scalar field ϕ, the denominator is used to normalise the
expression and the path integral over all possible paths of ϕ is denoted by

Dϕ :=
∏
i

dϕ(xi). (2.15)

However, to this day, in Nature there has only been found one elementary scalar field
experimentally, the Higgs boson of the Standard Model [38–41]. Nevertheless, there is still
the possibility to find additional fundamental scalar fields. Additionally, there are actually
several theories that speculate on the existence of such fields, like string theory [42, 43],
supergravity [44] or f(R)-gravity [45], a generalisation of general relativity. Independently
of their prediction in such theories, new scalar fields can be used to explain phenomena
in various areas of physics. There are different ideas of how such scalar fields can couple
to particles of the Standard Model. For example, they could reside in so-called hidden
sectors [46], meaning that they do not interact by means of known gauge bosons (photons,
gluons, W- or Z-bosons) but by coupling to the Higgs boson which then couples to other
Standard Model particles, which is known as the Higgs portal [47]. This could be an
explanation for dark matter [48].

Alternatively, novel scalar fields are also used in theories of modified gravity, some of
which are so-called scalar-tensor theories where the scalar field is coupled to the metric
tensor of gravity gµν [8] which is for instance motivated by string theory. Two of the first
examples of theories of modified gravity include Jordan’s theory [49] as well as Brans-Dicke
theory [50]. The coupling is usually achieved by a conformal factor A(ϕ), for example
via A(ϕ)gµν . This way of coupling the scalar field to the Standard Model is oftentimes
considered in explanations for dark energy or the cosmological constant.

However, scalar-tensor theories predict the existence of a fifth force similar to gravity.
Nonetheless, such fifth forces have not yet been found in any observations or experiments
and they are therefore tightly constraint by tests within our Solar System [10]. This
problem could, for example, be solved by assuming that the force carrying scalar is very
heavy or the coupling between scalar and matter is very weak, about 5 orders of magnitude
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weaker than gravity [51]. These explanations, however, follow from fine tuning and they
are not very compelling since in this case fifth forces likely only play an insignificant role
in interesting physical theories.

Alternatively, the lack of any fifth forces so far could also be described by a so-called
screening mechanism which is phenomenologically more interesting. These screening
mechanisms contain several methods of repressing a fifth force in dependence of the en-
vironment and result from a non-linear scalar field theory. More specifically, the higher
the environmental mass or energy density, i.e. the trace of the energy momentum tensor
T µ

µ or the curvature, in a specific area is, the higher is the suppression of the fifth force
due to the screening mechanism and the coupling between the scalar field and matter
is very weak or even vanishing. In contrast, in areas of a small curvature and trace of
the energy momentum tensor, respectively, the force is hardly suppressed leading to a
significant coupling to matter. For non-relativistic matter it is assumed that T µ

µ = −ρ

[2] holds, where ρ is the mass density, leading to the aforementioned dependence on the
environmental mass or energy density. Presuming that within the Solar System ρ is large
enough, any constraints in this area can be bypassed by a screening mechanism. Scalar
fields affected by such a screening mechanism are called screened scalar fields.

So far, several different categories of screening mechanisms have been developed, as
well as a variety of different models within each category. These categories differ in
the parameters that vary with the environmental mass density and, including the most
prominent model within, work as follows [2]:

• The coupling to matter depends on the mass density of the environment leading the
coupling to become weaker in areas of higher density. This is also called Damour-
Polyakov screening mechanism [52, 53] and an example model is the symmetron
[54–57].

• The effective mass of the scalar field depends on the environmental density leading
the mass to increase in areas of higher density, resulting in a short-ranged force.
The archetypal example is the chameleon [58, 59].

• The kinetic term is modified or new kinetic terms are added leading to kinetic terms
depending on the environmental mass density and a repression of the scalar field’s
kinetics in areas of high mass density resulting in the force becoming short-ranged.
This is also called Vainshtein mechanism and one example is the galileon model
[60–63].

2.1. Dilaton

The environmentally dependent dilaton field is another example of a screened scalar field
[52, 64, 65]. Its screening mechanism works similar to the one of the symmetron field as
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the dilaton is subject to the Damour-Polyakov screening mechanism as well. This means,
that the coupling to matter decreases in regions of increasing matter density.

The dilaton’s potential V (ϕ) decreases exponentially, as required to satisfy the strong
coupling limit of string theory, from where it is originating from [52, 66–68]:

V (ϕ) = V0 e
−λϕ/MPl , (2.16)

where V0 is an energy scale related to the dark energy of the Universe, λ is a numerical
constant [69] and MP l is the reduced Planck mass. Furthermore, the dilaton’s coupling
function A(ϕ) results from the least coupling limit [52] which assumes the dilaton’s cou-
pling to matter to vanish in areas of very high surrounding densities [70]:

A(ϕ) = 1 +
A2

2M2
P l

ϕ2, (2.17)

where assuming A2 ≫ 1 leads to constraints on fifth forces from Solar System tests to be
circumvented [53]. A2 and the coupling constant M, which has the dimension of a mass,
are connected via [69]

A2 =
M2

P l

M2
, (2.18)

whereupon ϕ/M ≪ 1 is required so that terms of higher order in ϕ in the coupling
function (2.17) are negligible [70].

Using Eqs. (2.16) and (2.17), the effective potential for the dilaton in an environment
of matter density ρext reads [2, 69]

Veff(ϕ; ρ
ext) = V (ϕ) + A(ϕ)ρext

= V0 e
−λϕ/MPl +

A2ρ
ext

2M2
P l

ϕ2,
(2.19)

where the additional term ρext was neglected since it does not contribute to the equation
of motion.2 As can be seen in Eq. (2.19), for ϕ ≈ 0 the dilaton’s coupling to matter is
negligible which is the essence of its screening mechanism [2]. Using the effective potential,
the minimum value of the dilaton field in presence of the background density ρext can be

2A different definition of the effective potential can be found for example in [2, 24] as

Veff(ϕ; ρ
ext) = Ṽ0 e

−φ/MPl +
(φ− φ∗)2

2M2
ρext (2.20)

with φ∗ being the critical field value for which the dilaton decouples. This decoupling at φ ≈ φ∗ is
the gist of the screening mechanism of the dilaton. However, it can be easily shown that these two
expressions of the effective potential are equivalent by defining ϕ = φ− φ∗ as the deviation from the
critical field value, using Eq. (2.18) and redefining the energy scale Ṽ0 → V0 in such a way that all
new terms in the dilaton potential V (ϕ) resulting from the transformation ϕ = φ − φ∗ are absorbed
in V0 and λ.
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evaluated by using Veff,ϕ(ϕ; ρ
ext)|ϕ=ϕρ = 0 which gives [70]

ϕρ =
MP l

λ
W

(
λ2V0

A2ρext

)
, (2.21)

where the Lambert W-function

W (x) =
∞∑
n=1

(−n)n−1

n!
xn = x− x2 +

3

2
x3 − 8

3
x4 +

125

24
x5 + . . . (2.22)

was used. Moreover, the mass of the quantum fluctuation is [70]

mρ =
√
Veff,ϕϕ(ϕρ; ρext) =

1

MP l

√
λ2V0 e−λϕρ/MPl + A2ρext. (2.23)

Finally, the fifth force of the dilaton on a point particle is [70]

fϕ := −m∇⃗A(ϕ) = −m
A2

M2
P l

ϕ∇⃗ϕ. (2.24)

2.2. Coupling to Standard Model matter

The coupling of scalar-tensor theories, where the additional scalar field ϕ couples to the
metric tensor of gravity gµν , is commonly achieved by using a conformal factor A(ϕ).
Since scalar-tensor theories are only defined up to a conformal transformation, one can
change from one conformal frame to another [8]. Each conformal frame leads to a different
mathematical formulation, where some computations may be easier to do in some frames
than in others. However, all physical predictions of experimental outcomes are the same
in all conformal frames, only the theoretical interpretations may vary. As an example of
differing interpretations, two of the most common frames, the Einstein and the Jordan
frame, are considered. In the Einstein frame, the presence of a new scalar field leads
the test particle to experience a fifth force and therefore its trajectory differs from the
geodesic. In contrast, in the Jordan frame, the presence of the new scalar field leads
to a modification of gravity, namely a change of the geodesics which the test particle
still follows. Both frames predict the same trajectories for the test particle but their
explanations differ.

The total action used here contains a gravitational action, an action describing the
Standard Model matter dynamics with the matter field ϕ3 as well as the interactions of
the matter field with the additional scalar field X. Throughout this thesis, it is assumed

3The matter field is modelled as a scalar field for simplicity. However, this approximation has some
drawbacks, as scalar fields lack a complex internal structure and, therefore, any stability when it
comes to decay and production processes. Matter fields, for example for atoms or molecules, however,
are a lot more complex and generally stable. Thus, the production of atom-anti-atom pairs is likely
suppressed, justifying a restriction to single particle subspaces as will be done in Section 3.4.
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that the matter field’s mass is given by M , while the screened scalar field’s mass is given
by m. For convenience, the action used is in the Einstein frame, giving [58, 59]

S =

∫
d4x

√−g

[
1

2
M2

P lR− 1

2
gµν∂µX∂νX − V (X)

]
+

∫
d4x

√−gA4(X)L̃M(ϕ̃, A2(X)gµν).

(2.25)

Here, parameters with a tilde ˜ belong to the Jordan frame while quantities without tilde
to the Einstein frame. Furthermore, R is the associated Ricci scalar, V (X) is the potential
for the scalar field X and

L̃M = −1

2
g̃µν∂µϕ̃∂νϕ̃− 1

2
M̃2ϕ̃2 (2.26)

is the Lagrangian of the matter field in Jordan frame of the single scalar field ϕ̃ with mass
M̃ . The rescaled metric is

g̃µν = A2(X)gµν , (2.27)

which also shows the conformal transformation between the two frames. Using the def-
inition of the transformation for the covariant metric, Eq. (2.27), and the requirement
g̃µν g̃

µν = gµνg
µν , one finds for the contravariant metric

g̃µνA2(X) = gµν . (2.28)

The transformation of the matter Lagrangian in the Jordan frame, Eq. (2.26), to the
Einstein frame is given by

LM := A4(X)L̃M

= −1

2
A2(X)gµν∂µϕ̃∂νϕ̃− 1

2
A4(X)M̃2ϕ̃2,

(2.29)

where Eq. (2.28) was used. Now, the matter field ϕ̃ is redefined via

ϕ := A(X)ϕ̃. (2.30)

This leads to the matter Lagrangian becoming

LM =− 1

2
gµν∂µϕ∂νϕ− 1

2
ϕ2gµν∂µ lnA(X)∂ν lnA(X)

+ ϕgµν∂µϕ∂ν lnA(X)− 1

2
A2(X)M̃2ϕ2.

(2.31)

The coupling function A(X) can be expanded under the assumption that the coupling to

13



matter is controlled by a mass scale M, where X/M ≪ 1 holds, as

A2(X) = a+ b
X

M + c
X2

M2
+O

(
X3

M3

)
, (2.32)

where a, b and c are coefficients dictated by the used model. When only keeping operators
of dimension 4 or lower, as operators of higher dimensions are suppressed by higher powers
of M, the matter Lagrangian becomes

LM = −1

2
gµν∂µϕ∂νϕ− 1

2

(
a+ b

X

M + c
X2

M2

)
M̃2ϕ2. (2.33)

In case of the dilaton field, the coupling function is given by Eq. (2.17) which becomes

A2(X) = 1 +
A2

M2
P l

X2 +O
(
X3

M3

)
(2.34)

when using Eq. (2.18). Therefore, for the dilaton, the parameters are a = c = 1 and
b = 0. Furthermore, using the effective potential of the dilaton, Eq. (2.19), and assuming
λX/MP l ≪ 1 [69]4, the exponent can be expanded to second order:

Veff(X) = V0 e
−λX/MPl +

A2ρ
ext

2M2
P l

X2

≈ V0 − V0
λ

MP l

X + V0
λ2

2M2
P l

X2 +
A2ρ

ext

2M2
P l

X2.

(2.35)

Next, the dilaton scalar field X is expanded, X = ⟨X⟩ + χ, where ⟨X⟩ ̸= 0 is the
background field value or classical expectation value of the field X and χ is the deviation
from the background value. When presuming that the background density ρext as well
as the background field value ⟨X⟩ are constant, the classical equation of motion for the
background field value is

□⟨X⟩ = d

dX
Veff(X)|X=⟨X⟩

= −V0
λ

MP l

+ V0
λ2

M2
P l

⟨X⟩+ A2ρ
ext

M2
P l

⟨X⟩ = 0.
(2.36)

Putting the dilaton field expansion into the effective potential and using Eq. (2.36) leads
to

Veff(⟨X⟩+ χ) = Veff(⟨X⟩) + 1

2
m2χ2, (2.37)

4In string theory, where the dilaton originated, this assumption does not hold. On the contrary, it even
reads λX/MPl ≫ 1. However, for the model itself, there is no reason why the exponent should not be
expandable as it is as much a valid model for a screened scalar field as every other model mentioned
in Section 2 even when it is no longer compatible with string theory.
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where the squared mass for the χ-field was defined as

m2 :=
1

M2
P l

(
V0λ

2 + A2ρ
ext) . (2.38)

This leads to the full Lagrangian of the two scalar system in flat space to be

L =− 1

2
gµν∂µϕ∂νϕ− 1

2
M2ϕ2 − 1

2
α1Mχϕ2 − 1

4
α2χ

2ϕ2

− 1

2
gµν∂µχ∂νχ− 1

2
m2χ2 − Veff(⟨X⟩),

(2.39)

where the squared mass of the ϕ-field is defined as

M2 :=

(
1 +

A2

M2
P l

⟨X⟩2
)
M̃2 (2.40)

and

α1 := 2M
A2

M2
P l

⟨X⟩
(
1− A2

M2
P l

⟨X⟩2
)
, (2.41)

α2 := 2
A2

M2
P l

M2

(
1− A2

M2
P l

⟨X⟩2
)
. (2.42)

For the calculation later in this thesis, it is useful to separate the full Lagrangian of
Eq. (2.39) into the free actions of the massive scalar fields ϕ and χ, respectively, and the
action of the interactions between these two fields:

Sϕ[ϕ] :=

∫
x

[
−1

2
gµν∂µϕ∂νϕ− 1

2
M2ϕ2

]
, (2.43)

Sχ[χ] :=

∫
x

[
−1

2
gµν∂µχ∂νχ− 1

2
m2χ2

]
, (2.44)

Sint[ϕ, χ] :=

∫
x∈Ωt

[
−1

2
α1Mχϕ2 − 1

4
α2χ

2ϕ2

]
, (2.45)

where the terms in Veff(⟨X⟩) were dropped due to the fact that they are constant and do
not contribute to the dynamics. Furthermore, in the following calculations it is assumed
that the interactions between ϕ and χ take place over a finite amount of time corresponding
to the time-span between preparing the initial state and the subsequent measurement of
the system. This is why the hypervolume

Ωt := [0, t]× R (2.46)

was defined.5 The free actions of ϕ and χ, however, are still supported for all times [71].

5Alternatively to restricting the time integration with finite limits, one could also introduce time-
dependant coupling constants α1 and α2 to simulate the switching on and off of the interaction.
Furthermore, the introduction of a switching function would reflect the more general and more realis-
tic switching on and off over a limited period of time instead of switching on and off instantaneously.
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3. Derivation of reduced density matrix
elements in open quantum dynamics

Realistic systems, both classical and quantum dynamical ones, can be considered as open.
This means that the system is noticeably effected by interactions with its uncontrollable
environment [14]. These interactions lead to a variety of phenomena like energy and
momentum diffusion [15] which can cause effects like decoherence and phase shifts [16].

The aim of this thesis is to describe how matter fields, like the one of a cold atom, couple
to a dilaton field since this can be experimentally investigated in relatively cheap tabletop
experiments like atom interferometry. Therefore, the scalar field ϕ, approximating the
atom, is regarded as the system which interacts with its environment, the dilaton field χ.
The combined system of both the open system ϕ and the environment χ is, in general,
considered to be closed and can be described by the density operator ρ̂ϕχ(t) which fulfils
the Liouville-von Neumann equation [14]

∂

∂t
ρ̂ϕχ(t) = L̂(t)ρ̂ϕχ(t). (3.1)

This equation describes the time evolution of ρ̂ϕχ(t) and L̂(t) is the Liouville super-
operator, acting like

L̂(t)ρ̂ϕχ(t) = −i[Ĥ(t), ρ̂ϕχ(t)], (3.2)

where Ĥ(t) is the Hamiltonian of the total system. The density operator can be used to
calculate the expectation value of an arbitrary operator Ô(t), which acts on the combined
system, via

⟨Ô(t)⟩ = Tr(ρ̂ϕχ(t)Ô(t)). (3.3)

Two common approximations when dealing with an open quantum system are the
Born and the Markov approximations. In the Born approximation, the coupling between
system and environment is assumed to be weak so that the system is affected by the
environment but the environment in return is barely influenced by the system. This leads
to the environment to be roughly constant over time so that the combined density matrix
can be separated via ρ̂ϕχ(t) ≈ ρ̂ϕ(t) ⊗ ρ̂χ. Here, ρ̂ϕ(t) and ρ̂χ are the separated density
operators for the system and the environment, respectively. In the Markov approximation,
on the other hand, all excitations of the environment induced by the system are assumed
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to decay faster than any timescales of interest. This means that on a physical level,
memory effects can be ignored - meaning that the open system is unaffected by changes
of the environment caused by the system itself and furthermore independent on earlier
times - and on a practical level that all time integrals can be integrated to ∞.

As already mentioned, the environment χ is usually difficult to describe theoretically
and to control experimentally. Thus, only the open system ϕ and its development under
influence of the environment are of interest. Mathematically, the reduced density matrix
of only the system ϕ, ρ̂ϕ(t), is extracted by tracing out the environmental degrees of
freedom

ρ̂ϕ(xϕ) =

∫
dxχρ̂ϕχ(xϕ, xχ). (3.4)

In contrast to the density operator of the closed system ρ̂ϕχ(t), which is strictly unitary,
the evolution of the reduced density operator ρ̂ϕ(t) is usually non-unitary leading to
effects like decoherence, typical for open quantum systems. Decoherence might explain
the transition of the quantum physical world to the classical world and it works as follows:
A quantum system is represented by a superposition of states. However, after the so-
called decoherence time, the superposition is destroyed and the quantum system becomes
classical and remains in a specific state. Mathematically this means that the density
matrix of the open system ρ̂ϕ(t) is not idempotent while the density matrix of the combined
system ρ̂ϕχ(t) is, see for example [24].

In order to directly calculate elements of the reduced density matrix, ρ̂ϕ(t), the path
laid out by [26] will be followed. For this, techniques of non-equilibrium quantum field
theory are combined, namely the Schwinger-Keldysh formalism [28, 29] and the Feynman-
Vernon influence functional based on the path integral formalism [30] in Section 3.2, and
an approach based on operators, thermo field dynamics (TFD) [31, 32], in Section 3.3.
In combination with the fact that the Liouville equation (3.1) in the Schrödinger picture
can be expressed as a Schrödinger-like equation within TFD, a Lehmann-Szymanzik-
Zimmermann- or LSZ-like reduction [72] will be used to perturbatively find an explicit
formula for determining elements of ρ̂ϕ(t) in momentum space for a single-particle state
in Section 3.4. Therefore, the weak coupling of the Born approximation is assumed, but
including Markov’s approximation is not necessary. The deduced formula will then be
used to determine the effect a dilaton field has on a single particle in momentum space for
finite temperatures in Section 4. This solution is then renormalized in Section 4.1 before
experimental implications are discussed in Section 4.2.

Throughout this thesis, it is assumed that both system ϕ and environment χ have
constant mass. Furthermore, it is presumed that the system’s mass M is much larger
than the environment’s mass m, m/M ≪ 1. When using the scalar field ϕ as a proxy for
a heavy atom in atom interferometry, as is done in Section 4.2, this approximation holds
true.
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3.1. Density matrices in Fock space

In the following, the density matrix elements are considered in Fock space, which permits
the consideration of an arbitrary number of particles. Additionally, the choice to work in
a momentum basis is made since atoms in atom interferometers can display momentum
superposition. The most universal expression for the density operator in Fock space in
momentum basis is given by

ρ̂(t) =
∞∑

i,j=0

1

i!j!

∫ (
i∏

a=1

dΠk(a)

)(
j∏

b=1

dΠl(b)

)
ρi,j(k

(1), . . . ,k(i), l(1), . . . , l(j); t)

× ||k(1), . . . ,k(i)
> <

l(1), . . . , l(j)
|| . (3.5)

Here, the cases i = 0 and j = 0 describe static vacuum states, |0⟩ and ⟨0|, respectively.
Moreover, each element of the density matrix is determined via

ρi,j(k
(1), . . . ,k(i), l(1), . . . , l(j); t) =

<
k(1), . . . ,k(i)

|| ρ̂(t) ||l(1), . . . , l(j)> , (3.6)

which for a single-particle state becomes

ρ1,1(k,k
′; t) = ⟨k| ρ̂(t) |k′⟩ . (3.7)

Complex conjugating an arbitrary matrix element leads to the usual relation

ρi,j(k
(1), . . . ,k(i), l(1), . . . , l(j); t) = ρ∗j,i(l

(1), . . . , l(j),k(1), . . . ,k(i); t). (3.8)

Physically, the ρ0,0 density matrix element can be interpreted as a 0-particle or vacuum
state. Similarly, the ρi,0 and ρ0,j elements can be understood as correlations of the vac-
uum and the i- and j-particle states, respectively. The ρi,j elements, meanwhile, can be
explained as correlations between the i- and j-particle states.

The time evolution of the density operator is given by the Liouville-von Neumann
equation (3.1). It is solved by

ρ̂S(t) =
(
Te−i

∫ t
0 dτĤS(τ)

)
ρ̂(0)

(
T̃ei

∫ t
0 dτĤS(τ)

)
(3.9)

with the time ordering and anti-time ordering operators T and T̃, respectively, and where
the time dependency of the Hamiltonian results from an external source. Eq. (3.9) becomes

ρ̂S(t) = e−iĤStρ̂(0)eiĤSt (3.10)

if the Hamiltonian is constant over time, as can easily be seen. The index S in equations
(3.9) and (3.10) indicates that these operators are given in the Schrödinger picture which
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is the picture of choice for the beginning of the derivation. However, since all pictures
coincide at t = 0, the subscript S was dropped for t = 0.

In the subsequent Sections (3.2, 3.3, 3.4), a projection into a single particle momentum
space, ρ1,1, is determined by following the derivation laid out in [26].

3.2. The Feynman-Vernon influence functional

When working with an open system in field theory, one oftentimes uses the Feynman-
Vernon influence functional [30] based on the Schwinger-Keldysh closed-time-path (CTP)
formalism [28, 29], see for example [15]. The CTP formalism works with doubling the
degrees of freedom and placing the two copies on branches of a closed time-path labeled
with + and −. More precisely, the degrees of freedom first evolve on the positive branch
from the initial time tinitial = 0 to the final time tfinal = t and then backwards in time on the
negative branch, as can be seen in Figure 3.1. Doubling the degrees of freedom is necessary
to write down a path-integral representation of the trace of an operator, as needed for
the Feynman-Vernon influence functional. The Feynman-Vernon influence functional, on
the other hand, describes the evolution of the open quantum system influenced by the
environment but without describing the environmental degrees of freedom themselves. It
is an important object in the formula for the reduced density matrix element derived
in the next parts. Additionally, it will be shown how it occurs when reducing the total
density operator to the reduced density operator of the system.

Figure 3.1.: Schematic depiction of the closed time-path for a density matrix ρ evolving
from an initial time 0 to a final time t on the +-branch and backwards on
the −-branch. The two time branches + and − are sightly shifted on the
imaginary time axis, giving small imaginary contributions, ±iη in the limit
η → 0, to the time variable. (Taken from Ref. [26])

To do so, it is presumed that the system ϕ and the environment χ are separable at the
beginning, when t = 0,

ρ̂ϕχ(0) = ρ̂ϕ(0)⊗ ρ̂χ(0). (3.11)

Furthermore, the environmental degrees of freedom can be traced out so that the reduced
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density operator for the open system becomes

ρ̂ϕ(t) = Trχρ̂ϕχ(t). (3.12)

Next, the reduced density operator is projected into the field basis on the closed time-path
leading to

ρϕ[ϕ
±
t ; t] :=

<
ϕ+
t

|| ρ̂ϕ(t) ||ϕ−
t

>
=
<
ϕ+
t

|| (∫ dχ+
t

<
χ+
t

|| ρ̂ϕχ(t) ||χ+
t

>) ||ϕ−
t

>
=

∫
dχ±

t

<
ϕ+
t

|| <χ+
t

|| ρ̂ϕχ(t) ||χ−
t

> <
χ−
t

||χ+
t

> ||ϕ−
t

>
=

∫
dχ±

t δ(χ
+
t − χ−

t )ρϕχ[ϕ
±
t , χ

±
t ; t],

(3.13)

where in the second line a complete set of the eigenstates
||χ−

t

>
at the final time t was

inserted, the functional delta function
∫
dχ±

t

<
χ−
t

||χ+
t

>
=
∫
dχ±

t δ(χ
+
t −χ−

t ) was introduced
and

ρϕχ[ϕ
±
t , χ

±
t ; t] :=

<
ϕ+
t , χ

+
t

|| ρ̂ϕχ(t) ||ϕ−
t , χ

−
t

>
(3.14)

was defined. Moreover, ± shows a dependence of the field eigenstates on +- as well as
−-type operators,

∫
dχ±

t =
∫
dχ+

t dχ
−
t , and the subscript t indicates which time slice has

to be taken, χt = χ(t).
Using the time evolution of ρ̂ϕχ(t), Eq. (3.13) becomes

ρϕ[ϕ
±
t ; t] =

∫
dχ±

t δ(χ
+
t − χ−

t )
<
ϕ+
t , χ

+
t

|| e−itĤ ρ̂ϕχ(0)e
itĤ

||ϕ−
t , χ

−
t

>
, (3.15)

where Ĥ is the Hamiltonian corresponding to the Lagrangian of the two scalar system,
Eq. (2.39). Inserting full sets of field and conjugate momentum eigenstates at all times
from 0 to t before and after ρ̂ϕχ(0) and using that for path integrals Dϕ± =

∏
i dϕ

±(xi)

holds, leads to

ρϕ[ϕ
±
t ; t] =

∫
dχ±

t δ(χ
+
t − χ−

t )

∫
dϕ±

0

∫
dχ±

0

∫ ϕ±
t

ϕ±
0

Dϕ±
∫ χ±

t

χ±
0

Dχ±ei
 S[ϕ,χ;t]ρϕχ[ϕ±

0 , χ
±
0 ; 0],

(3.16)
where  S[ϕ, χ; t] :=  Sϕ[ϕ; t]+  Sϕ,int[ϕ; t]+  Sχ[χ; t]+  Sχ,int[χ; t]+  Sint[ϕ, χ; t] is the total action
of the combined system,  Sϕ[ϕ; t],  Sϕ,int[ϕ; t],  Sχ[χ; t] and  Sχ,int[χ; t] are the free and the
self-interacting actions of the system field ϕ and the environment field χ, respectively, Sint[ϕ, χ; t] is the interaction action between ϕ and χ and  specifies which functionals
depend on both +- and −- type operators. The free action of the system, for example, is
given by  Sϕ[ϕ; t] := Sϕ[ϕ

+; t]− Sϕ[ϕ
−; t]. (3.17)
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All of these actions are defined on Ωt, see Eq. (2.46), because only a finite time interval is
considered, so that the actions are structured as

S[t] =

∫
x∈Ωt

L[x]. (3.18)

Additionally, in this calculation two different types of functional integrals are used. The
one indicated by d regards fields over R at one distinct time slice, whereas the one repre-
sented by D includes fields at all points in Ωt.

In a last step, the separability of the system and environment at t = 0 from Eq. (3.11),
which leads to

ρϕχ[ϕ
±
0 , χ

±
0 ; 0] = ρϕ[ϕ

±
0 ; 0]ρχ[χ

±
0 ; 0], (3.19)

is used to find the final expression for the reduced density functional at time t:

ρϕ[ϕ
±
t ; t] =

∫
dϕ±

0 I[ϕ±
t , ϕ

±
0 ; t, 0]ρϕ[ϕ

±
0 ; 0] (3.20)

with

I[ϕ±
t , ϕ

±
0 ; t, 0] =

∫ ϕ±
t

ϕ±
0

Dϕ±ei
 Seff[ϕ;t] (3.21)

being the so-called influence functional propagator (see for example [15]). The effective
action is given by  Seff[ϕ; t] =  Sϕ[ϕ; t] +  Sϕ,int[ϕ; t] +  SIF[ϕ; t], (3.22)

where the influence action  SIF[ϕ; t] is defined via the Feynman-Vernon influence functional

 F [ϕ; t] = ei
 SIF[ϕ;t]

=

∫
dχ±

t dχ
±
0 δ(χ

+
t − χ−

t )ρχ[χ
±
0 ; 0]

∫ χ±
t

χ±
0

Dχ±ei(
 Sχ[χ;t]+ Sχ,int[χ;t]+ Sint[ϕ,χ;t]).

(3.23)

It is also possible to define the influence functional as an expectation value with respect
to χ as  F [ϕ; t] = ⟨ei( Sχ,int[χ;t]+ Sint[ϕ,χ;t])⟩χ (3.24)

when defining the expectation value via

⟨A[χa]⟩χ :=

∫
dχ±

t dχ
±
0 δ(χ

+
t − χ−

t )ρχ[χ
±
0 ; 0]

∫ χ±
t

χ±
0

Dχ±A[χa]ei
 Sχ[χ;t]. (3.25)

3.3. Thermo field dynamics

Using the operator-based approach of thermo field dynamics (TFD) [31, 32, 73] leads
to the desired formula for calculating reduced density matrix elements. Similarly to the
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Schwinger-Keldysh closed-time-path formalism described in the previous section, TFD
works with doubled degrees of freedom on a positive (+) and negative (−) time branch.
Therefore, TFD can be understood as an algebraic version of the CTP formalism, to
some degree. However, TFD works by doubling the number of Hilbert spaces, so that
each Hilbert space corresponds to one of the ±-branches of the time-path, H±:

 H := H+ ⊗H−. (3.26)

Again,  is used to mark objects living on both the +- and −-time branch. A general +-
or −-type field operator in TFD is defined via

Ô+ = Ô ⊗ ✶̂, (3.27)

Ô− = ✶̂⊗ ÔT (3.28)

with ✶̂ being the unit operator and T indicating time reversal.
Furthermore, the doubled vacuum state of TFD in momentum basis is defined as

|0⟩⟩ := |0⟩ ⊗ |0⟩ . (3.29)

Every other state can be reached by acting with creation operators on this vacuum state
like

â+†
k |0⟩⟩ = |k⟩ ⊗ |0⟩ =: |k+⟩⟩, (3.30)

â−†
k |0⟩⟩ = |0⟩ ⊗ |k⟩ =: |k−⟩⟩. (3.31)

The annihilation operators are

â+k |p+,p−⟩⟩ = (2π)22Eϕ
kδ

(3)(p− k) |p−⟩⟩, (3.32)

â−k |p+,p−⟩⟩ = (2π)22Eϕ
kδ

(3)(p− k) |p+⟩⟩ (3.33)

with |p+,p−⟩⟩ := |p⟩ ⊗ |p⟩. Additionally, a special state which corresponds to the unit
operator can be created. It is defined in [31, 32, 73] by

|1⟩⟩ :=
∑
n

|n+, n−⟩⟩ = eâ
+†â−† |0⟩⟩. (3.34)

In momentum basis this state becomes

|1⟩⟩ = |0⟩⟩+
∫

dΠk |k+,k−⟩⟩+ 1

2!

∫
dΠkdΠk′ |k+,k

′
+,k−,k′−⟩⟩+ . . . (3.35)
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and thus allows to write the expectation value of an arbitrary operator as

⟨Ô(t)⟩ = Tr Ô(t)ρ̂(t) = ⟨⟨1| Ô+(t)ρ̂+(t) |1⟩⟩. (3.36)

Using all this, one can now see that in the Schrödinger picture the Liouville-von Neu-
mann equation (3.1) can be rewritten into an form similar to the Schrödinger equation1

∂

∂t
ρ̂+S (t) |1⟩⟩S = −i  HS(t)ρ̂

+
S (t) |1⟩⟩S (3.37)

with  HS(t) := ĤS(t)⊗ ✶− ✶⊗ ĤS(t) which, in general, is solved by

ρ̂+S (t) |1⟩⟩S = Te−i
∫ t
0
 HS(τ)dτ ρ̂+(0) |1⟩⟩S . (3.38)

Since all pictures coincide at t = 0, the subscript S was dropped on the right-hand side.
Similarly to Eq. (3.37), one can write down the Schrödinger-like equation for the reduced

density operator of the open system ϕ

∂

∂t
ρ̂+ϕ,S(t) |1⟩⟩S = −i  Heff,S(t)ρ̂

+
ϕ,S(t) |1⟩⟩S. (3.39)

The effective Hamiltonian is given by

 Heff,S(t) = [Ĥ0,S(t) + Ĥint,S(t)]⊗ ✶− ✶⊗ [Ĥ0,S(t) + Ĥint,S(t)] +  HIF,S(t), (3.40)

where  HIF,S(t) is non-unitary, in contrast to Ĥ0,S(t) and Ĥint,S(t). Since the general
relation H(t) = − ∂

∂t
S(t) holds true, one can find correlations between the effective action

in Eq. (3.22), which represents the open system’s evolution in ρϕ, and the Hamiltonian of

1After multiplying Eq. (3.1) from the right-hand side with ⊗✶ |1⟩⟩S one can easily see that the relation
[ĤS(t), ρ̂S(t)] ⊗ ✶ |1⟩⟩S = −i  HS(t)ρ̂

+
S |1⟩⟩S has to be shown. Using the expansion of  HS(t), the first

term of the commutator on the left-hand side and the first term of  HS(t) on the right-hand side
cancel each other, leaving ρ̂S(t)ĤS(t) ⊗ ✶ |1⟩⟩S = ρ̂S(t) ⊗ ĤS(t) |1⟩⟩S to be proven. This relation
will be shown for single-particle states only, for simplicity. In this case, |1⟩⟩S =

∫
dΠp |p⟩ ⊗ |p⟩ and

ρ̂S(t) =
∫
dΠkdΠk′ρ1,1(k,k

′; t) |k⟩ ⟨k′|. Therefore, the left-hand side is

ρ̂S(t)ĤS(t)⊗ ✶ |1⟩⟩S =

∫
dΠkdΠk′dΠpρ1,1(k,k

′; t) |k⟩ ⟨k′| ĤS(t) |p⟩ ⊗ |p⟩

=

∫
dΠkdΠ

′
khk′ρ1,1(k,k

′; t) |k⟩ ⊗ |k′⟩ ,

where hk′ is the eigenvalue of ĤS(t) for momentum k′ in momentum space. Meanwhile the right-hand
side is

ρ̂S(t)⊗ ĤS(t) |1⟩⟩S =

∫
dΠkdΠk′dΠpρ1,1(k,k

′; t) |k⟩ ⟨k′|p⟩ ⊗ ĤS(t) |p⟩

=

∫
dΠkdΠ

′
khk′ρ1,1(k,k

′; t) |k⟩ ⊗ |k′⟩ ,

identically to the left-hand side.
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the ϕ-field in the interaction picture  HIF,I(t). More precisely, Ĥ0,S(t) + Ĥint,S(t) correlate
to Sϕ(t)+Sϕ,int(t) and  HIF,S(t) to the influence action in Eq. (3.23), which will be of more
importance later on when the path integral expression for the reduced density matrix
elements is determined. Furthermore, it should be noted that the free Hamiltonian is
picture-independent and the subscript can, thus, be dropped, Ĥ0,S = Ĥ0,I = Ĥ0.

Going forward, the interaction picture will be more useful than the Schrödinger picture,
so that Eq. (3.39) will now be transformed. To do so, a unitary evolution operator

 U := e−iĤ0t ⊗ eiĤ0t (3.41)

is defined to transform operators on the doubled Hilbert space of TFD via2

OS :=  UOI(t) U †. (3.42)

The state corresponding to the unit operator |1⟩⟩ introduced in Eq. (3.35) transforms like
a base vector  U † |1⟩⟩S = |1(t)⟩⟩I . (3.43)

Similarly to the free Hamiltonian, it is picture-independent since the evolution operators  U
and  U † act like unit operators on |1⟩⟩S3, which also implies time-independence. Therefore,
the subscripts can, again, be dropped |1⟩⟩S = |1(t)⟩⟩I = |1⟩⟩.

With this at hand, Eq. (3.39) becomes

∂

∂t

( Uρ̂+ϕ,I(t)
 U †
)
|1⟩⟩ = −i U  Heff,I(t)ρ̂

+
ϕ,I(t) |1⟩⟩ (3.44)

in the interaction picture. Calculating the partial derivative gives

∂

∂t

( Uρ̂+ϕ,I(t)
 U †
)
|1⟩⟩ =  U [

−i  H0ρ̂
+
ϕ,I(t) + ∂tρ̂

+
ϕ,I(t) + iρ̂+ϕ,I(t)

 H0

]
|1⟩⟩ , (3.45)

where ∂t  U = −i  H0
 U , ∂t  U † = i  H0

 U †, Eq. (3.43) and  H0 = Ĥ0 ⊗ ✶ − ✶ ⊗ Ĥ0 was used.

2It should be remembered that operators acting on a general single Hilbert space transform like ÔS =

e−iĤ0tÔI(t)e
iĤ0t

3

 U † |1⟩⟩S = |0⟩ ⊗ |0⟩+
∫

dΠke
iEkt |k⟩ ⊗ e−iEkt |k⟩

+
1

2!

∫
dΠkdΠk′ei(Ek+Ek′ )t |k,k′⟩ ⊗ e−i(Ek+Ek′ )t |k,k′⟩+ . . .

= |1⟩⟩S
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Next,  H0 |1⟩⟩ = 0 is applied4, so that Eq. (3.44) becomes[
−i  H0ρ̂

+
ϕ,I(t) + ∂tρ̂

+
ϕ,I(t)

]
|1⟩⟩ = −i  Heff,I(t)ρ̂

+
ϕ,I(t) |1⟩⟩ . (3.46)

Using  Heff,I(t) =  H0+  Hint,I(t)+  HIF,I(t) with  Hint,I(t) = Ĥint,I(t)⊗✶−✶⊗Ĥint,I(t) finally
leads to

∂tρ̂
+
ϕ,I(t) |1⟩⟩ = −i

[  Hint,I(t) +  HIF,I(t)
]
ρ̂+ϕ,I(t) |1⟩⟩ , (3.47)

which can be solved by

ρ̂+ϕ,I(t) |1⟩⟩ = Te−i
∫ t
0 [  Hint,I(τ)+  HIF,I(τ)]dτ ρ̂+ϕ,I(0) |1⟩⟩ . (3.48)

3.4. Reduced density matrix elements

Using what was presented in Sections 3.1, 3.2 and 3.3, the formula for directly determining
the reduced density matrix element of a single-particle state in momentum basis can be
derived now. This restriction to a single-particle subspace is justified since the production
of atom-anti-atom pairs is probably highly suppressed due to the complex structure of
atoms and their large masses. Since only the interaction picture will be used from now
on and only the reduced density matrix of the open system will be considered, both
subscripts, I and ϕ, will be dropped for easier readability.

The reduced density matrix element of a single particle is given by

ρ1,1(p,p
′; t) = ⟨p; t| ρ̂(t) |p′; t⟩ . (3.49)

This matrix element is picture-independent since all basis states and operators are inde-
pendently evaluated from each other at the same time t [71, 74]. Additionally, in TFD it
can be represented as

Tr |p′; t⟩ ⟨p; t| ρ̂(t) = ⟨⟨1| (|p′; t⟩ ⟨p; t| ⊗ ✶)ρ̂+(t) |1⟩⟩. (3.50)

Inserting Eq. (3.48) leads to

ρ1,1(p,p
′; t) = ⟨⟨1| (|p′; t⟩ ⟨p; t| ⊗ ✶)Te−i

∫ t
0 [  Hint(τ)+  HIF(τ)]dτ ρ̂+(0) |1⟩⟩. (3.51)

The fact that only a single-particle state is considered, |1⟩⟩ = ∫
dΠk |k⟩⊗|k⟩, can be used

to write ⟨⟨1| (|p′; t⟩ ⟨p; t| ⊗ ✶) = ⟨<p+,p
′
−; t

||. Furthermore, it is assumed that at t = 0

the exact number of particles and their correlations are known and a single-particle state

4  H0 |1⟩⟩ = (Ĥ0 ⊗ ✶− ✶⊗ Ĥ0)
∑
n

|n⟩ ⊗ |n⟩ =
∑
n

(En |n⟩ ⊗ |n⟩ − |n⟩ ⊗ En |n⟩) = 0
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at the initial time is chosen. Thus, only ρ1,1(0) ̸= 0 whereas ρi,j = 0 for all i ̸= 1 and
j ̸= 1. With this assumption, the density operator from Eq. (3.51) can be expanded using
Eq. (3.5), so that

ρ̂+(0) |1⟩⟩ =
(∫

dΠkdΠk′ρ1,1(k,k
′; 0) |k⟩ ⟨k′| ⊗ ✶

)
|1⟩⟩

=

∫
dΠkdΠk′ρ1,1(k,k

′; 0)
||k+,k

′
−
>⟩. (3.52)

So, Eq. (3.51) can be written as

ρ1,1(p,p
′; t) = ⟨<p+,p

′
−; t

||Te−i
∫ t
0 [  Hint(τ)+  HIF(τ)]dτ

∫
dΠkdΠk′ρ1,1(k,k

′; 0)
||k+,k

′
−
>⟩,
(3.53)

which by using the creation and annihilation operators from Eqs. (3.30)-(3.33) turns into

ρ1,1(p,p
′; t) =

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

× ⟨⟨0|Tâ+p (t)â
−
p′(t)e

−i
∫ t
0 [  Hint(τ)+  HIF(τ)]dτ â+†

k (0)â−†
k′ (0) |0⟩⟩ .

(3.54)

Moreover, the creation and annihilation operators can be written in terms of field opera-
tors:

â+p (t) = i

∫
x

e−ip·x∂t,Eϕ
p
ϕ̂+(t,x), â+†

p (t) = −i

∫
x

eip·x∂∗
t,Eϕ

p
ϕ̂+(t,x),

â−p (t) = −i

∫
x

eip·x∂∗
t,Eϕ

p
ϕ̂−(t,x), â−†

p (t) = i

∫
x

e−ip·x∂t,Eϕ
p
ϕ̂−(t,x)

(3.55)

with
∫
x
:=

∫
d3x and ∂t,Eϕ

p
:= ∂⃗t − iEϕ

p, where Eϕ
p =

√
p2 +M2 for the scalar field ϕ.

Inserting (3.55) yields

ρ1,1(p,p
′; t) = lim

x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

×
∫
xx′yy′

e−i(p·x−p′·x′)+i(k·y−k′·y′)∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′

× ⟨⟨0|T
[
ϕ̂+
x ϕ̂

−
x′e

−i
∫ t
0 [  Hint(τ)+  HIF(τ)]dτ ϕ̂+

y ϕ̂
−
y′

]
|0⟩⟩,

(3.56)

where limits were introduced to ensure the right time ordering. x0 and x0′ approach t
from above while y0 and y0′ approach 0 from below. Furthermore, the notation ϕx := ϕ(x)

was introduced.
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Writing this expression in the path integral formalism, leads to

ρ1,1(p,p
′; t) = lim

x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

×
∫
xx′yy′

e−i(p·x−p′·x′)+i(k·y−k′·y′)∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′

×
∫

Dϕ±ei
 Sϕ[ϕ]ϕ+

x ϕ
−
x′e

i
∫ t
0

d
dτ [ Sϕ,int[ϕ;τ ]+ SIF[ϕ;τ ]]dτϕ+

y ϕ
−
y′ ,

(3.57)

where  Hint(τ)+  HIF(τ) = − d
dτ

[ Sϕ,int(τ) +  SIF(τ)
]

was used5. Next, the integral in the ex-

ponent has to be evaluated. Using that for t = 0:  Sϕ,int[ϕ; 0] =  SIF[ϕ; 0] = 0, this becomes∫ t

0
d
dτ

[ Sϕ,int[ϕ; τ ] +  SIF[ϕ; τ ]
]
dτ =  Sϕ,int[ϕ; t] +  SIF[ϕ; t]. Finally, inserting the definition

of the Feynman-Vernon influence functional (3.23), gives the formula for calculating the
reduced density matrix element of a single-particle state in momentum basis which was
sought after:

ρ1,1(p,p
′; t) = lim

x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

×
∫
xx′yy′

e−i(p·x−p′·x′)+i(k·y−k′·y′)∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′

×
∫

Dϕ±ei
 Sϕ[ϕ]ϕ+

x ϕ
−
x′e

i Sϕ,int[ϕ;t]  F [ϕ; t]ϕ+
y ϕ

−
y′ .

(3.58)

Going forward, this equation will be used to calculate the influence of a dilaton environ-
ment on the open system ϕ in the subsequent sections.

In [26] and [27] the authors also extrapolated this formula for the universal case of
determining a general density matrix element ρg,h(k

(1), . . . ,k(g), l(1), . . . , l(h); t) with the
initial non-vanishing density matrix elements being chosen arbitrarily. However, since
this thesis only focuses on the single-particle case, this more general equation will not be
elaborated on further here.

5This relation can be easily seen when using that  Heff(t) =  H0 +  Hint(t)+  HIF(t), the relations between
H(t) and S(t) discussed below Eq. (3.40) and Eq. (3.22):

 Hint(τ) +  HIF(τ) =  Heff(τ)−  H0(τ) =
∂

∂τ
 Sϕ(τ)− ∂

∂τ
 Seff(τ)

=
∂

∂τ
 Sϕ(τ) +

∑
a=±

a(ϕ̇aπa
ϕ + φ̇aπa

φ)−
[
∂

∂τ
 Seff(τ) +

∑
a=±

a(ϕ̇aπa
ϕ + φ̇aπa

φ)

]

=
d

dτ
 Sϕ(τ)− d

dτ
 Seff(τ) = − d

dτ

[ Sϕ,int(τ) +  SIF(τ)
]
.
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4. Single-particle state in dilaton
environment

In order to evaluate Eq. (3.58) for a dilaton environment, contractions of the system field
ϕ, leading to propagators denoted by D, have to be calculated. In the case of a single-
particle subspace, only contractions between plus- and minus-type operators (++ and
−−) are permitted. Mixed contractions, however, (+− or −+) are not possible due to
the way the vacuum state is defined in TFD:

⟨⟨0| ϕ̂+(−)
x ϕ̂−(+)

y |0⟩⟩ = 0, (4.1)

as shown in [23]. The Feynman and Dyson propagators, however, are allowed and read

⟨⟨0|T[ϕ̂+
x ϕ̂

+
y ] |0⟩⟩ = D++

xy = DF
xy = −i

∫
k

eik·(x−y)

k2 +M2 − iϵ
, (4.2)

⟨⟨0|T[ϕ̂−
x ϕ̂

−
y ] |0⟩⟩ = D−−

xy = DD
xy = i

∫
k

eik·(x−y)

k2 +M2 + iϵ
. (4.3)

Restricting to a single-particle subspace also implies the system field ϕ to remain at
zero temperature. Contrary to the ϕ field, when contracting the χ-field in the course of
evaluating the Feynman-Vernon influence functional (3.24), all contractions are allowed.
Additionally, the environment χ can be taken at finite temperatures, in which case the
system ϕ and the environment χ are out of equilibrium. This is so, because the dilaton
fluctuations can be assumed to be in thermal exchange with the walls from the vacuum
chamber. The Feynman, Dyson, negative and positive frequency Wightman propagators
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for the χ field, denoted by ∆, are therefore [75]

χ+
x χ

+
y = ⟨Tχxχy⟩ = ∆++

xy = ∆F
xy

= −i

∫
k

eik·(x−y)

[
1

k2 +m2 − iϵ
+ 2πif(|k0|)δ(k2 +m2)

]
, (4.4)

χ−
x χ

−
y = ⟨T̃χxχy⟩ = ∆−−

xy = ∆D
xy

= i

∫
k

eik·(x−y)

[
1

k2 +m2 + iϵ
− 2πif(|k0|)δ(k2 +m2)

]
, (4.5)

χ+
x χ

−
y = ⟨χyχx⟩ = ∆+−

xy = ∆<
xy =

∫
k

eik·(x−y)2πsgn(k0)f(k0)δ(k2 +m2), (4.6)

χ−
x χ

+
y = ⟨χxχy⟩ = ∆−+

xy = ∆>
xy = ∆<

yx = (∆<)∗xy, (4.7)

where the thermal contributions are included via the Bose-Einstein distribution function

f(k0) :=
1

eβk0 − 1
(4.8)

with β being the inverse temperature. The Bose-Einstein distribution also follows the
identity

f(−k0) = −[1 + f(k0)], (4.9)

which can easily be shown1. Lastly, the signum function in both the negative and positive
frequency Wightman propagators is given by sgn(k0) = Θ(k0)−Θ(−k0).

Additional information on the propagators of scalar fields can be found in Appendix A.
Furthermore, for evaluating Eq. (3.58), the Feynman-Vernon influence functional  F [ϕ; t]

has to be determined. Assuming a weak coupling between the system ϕ and the environ-
ment χ, Eq. (3.24) can be expanded up to second order in α1 and α2:

 F [ϕ; t] = ⟨ei Sint[ϕ,χ;t]⟩χ
≈ 1 + i

∑
a=±

a⟨Sint[ϕ
a, χa; t]⟩χ − 1

2

∑
a,b=±

ab⟨Sint[ϕ
a, χa; t]Sint[ϕ

b, χb; t]⟩χ +O(α3
1,2)

(4.10)

when considering that for the dilaton field Sχ,int[χ; t] = 0. Inserting Eq. (2.45), using
Eqs. (4.4)-(4.7) and the coincidence limit at equal times, Eq. (A.5), as described in Ap-

1

f(−k0) =
1

e−βk0 − 1
=

eβk
0

1− eβk0 =
eβk

0 − 1 + 1

1− eβk0 =
1− e−βk0

e−βk0 − 1
+

1

1− eβk0

= −[1 + f(k0)]
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pendix A, the expectation values are

⟨Sint[ϕ
a, χa; t]⟩χ = −α2

4

∫
x

(ϕa
x)

2∆F
xx, (4.11)

⟨Sint[ϕ
a, χa; t]Sint[ϕ

b, χb; t]⟩χ =
α2
1M

2

4

∫
xy

(ϕa
x)

2(ϕb
y)

2∆ab
xy (4.12)

+
α2
2

16

∫
xy

(ϕa
x)

2(ϕb
y)

2
[
∆F

xx∆
F
yy + 2(∆ab

xy)
2
]
.

For an easier readability the subscript Ωt (Eq. (2.46)) for the integral was dropped, but
time integrations still run over the interval [0; t]. Putting this back into the influence
functional leads to

 F [ϕ; t] = 1− i
α2

4

∑
a=±

a

∫
x

(ϕa
x)

2∆F
xx −

1

2

∑
a,b=±

ab

∫
xy

[
α2
1M

2

4
(ϕa

x)
2(ϕb

y)
2∆ab

xy

+
α2
2

16
(ϕa

x)
2(ϕb

y)
2
(
∆F

xx∆
F
yy + 2(∆ab

xy)
2
)]

+O(α3
1,2).

(4.13)

Inserting Eq. (4.13) into the formula for the reduced density matrix element of a single-
particle state in momentum basis, Eq. (3.58), gives

ρ1,1(p,p
′; t) = lim

x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

×
∫
xx′yy′

e−i(p·x−p′·x′)+i(k·y−k′·y′)∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′

×
∫

Dϕ±ei
 Sϕ[ϕ]ϕ+

x ϕ
−
x′

{
1− i

α2

4

∑
a=±

a

∫
z

(ϕa
z)

2∆F
zz

− 1

2

∑
a,b=±

ab

∫
zz′

[
α2
1M

2

4
(ϕa

z)
2(ϕb

z′)
2∆ab

zz′

+
α2
2

16
(ϕa

z)
2(ϕb

z′)
2
(
∆F

zz∆
F
z′z′ + 2(∆ab

zz′)
2
)]}

ϕ+
y ϕ

−
y′

(4.14)

when using that for this system Sϕ,int[ϕ; t] = 0.
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Next, contracting the system fields according to Eqs. (4.2)-(4.3) leads to

ρ1,1(p,p
′; t) = lim

x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

×
∫
xx′yy′

e−i(p·x−p′·x′)+i(k·y−k′·y′)∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′

×
{
DF

xyD
D
x′y′ − i

α2

2

∫
z

[
DF

xzD
F
zyD

D
x′y′ −DF

xyD
D
x′zD

D
zy′
]
∆F

zz

− α2
1M

2

8

∫
zz′

[
DD

x′y′

(
8DF

xzD
F
zz′D

F
z′y + 2DF

xyD
F
zz′D

F
zz′ + 4DF

xzD
F
zyD

F
z′z′

+DF
xyD

F
zzD

F
z′z′

)
∆F

zz′

−
(
8DF

xzD
F
zyD

D
x′z′D

D
z′y′ + 4DF

xyD
F
zzD

D
x′z′D

D
z′y′ + 4DF

xzD
F
zyD

D
x′y′D

D
z′z′

+ 2DF
xyD

F
zzD

D
x′y′D

D
z′z′

)
∆+−

zz′

+DF
xy

(
8DD

x′zD
D
zz′D

D
z′y′ + 2DD

x′y′D
D
zz′D

D
zz′ + 4DD

x′zD
D
zy′D

D
z′z′

+DD
x′y′D

D
zzD

D
z′z′

)
∆D

zz′

]
− α2

2
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∫
zz′

[
DD

x′y′

(
8DF

xzD
F
zz′D

F
z′y + 2DF

xyD
F
zz′D

F
zz′ + 4DF

xzD
F
zyD

F
z′z′

+DF
xyD

F
zzD

F
z′z′

)(
∆F

zz∆
F
z′z′ + 2(∆F

zz′)
2
)

−
(
8DF

xzD
F
zyD

D
x′z′D

D
z′y′ + 4DF

xyD
F
zzD

D
x′z′D

D
z′y′ + 4DF

xzD
F
zyD

D
x′y′D

D
z′z′

+ 2DF
xyD

F
zzD

D
x′y′D

D
z′z′

)(
∆F

zz∆
F
z′z′ + 2(∆+−

zz′ )
2
)

+DF
xy

(
8DD

x′zD
D
zz′D

D
z′y′ + 2DD

x′y′D
D
zz′D

D
zz′ + 4DD

x′zD
D
zy′D

D
z′z′

+DD
x′y′D

D
zzD

D
z′z′

)(
∆F

zz∆
F
z′z′ + 2(∆D

zz′)
2
)]}

.

(4.15)

How to evaluate this equation is demonstrated in Appendix B for the example of the
first term in the fourth line of Eq. (4.15). After evaluating all terms, one finds for the
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single-particle in a dilaton environment:

ρ1;1(p,p
′; t) = ρ1;1(p,p

′; 0)e−i(Eϕ
p−Eϕ

p′ )t

{
1− (2π)3δ(3)(0)

[
α2
2

8

∫
q

sin2(Eϕ
qt)

4(Eϕ
q)4

∆F
zz∆

F
z′z′

+
α2
1M

2

2

∫
kq

1

2Eϕ
kE

ϕ
qE

χ
q−k

(sin2

(
(Eϕ

k+Eϕ
q+Eχ

q−k)t

2

)
(Eϕ

k + Eϕ
q + Eχ

q−k)
2

+
∑
s=±

sin2

(
(Eϕ

k+Eϕ
q+sEχ

q−k)t

2

)
(Eϕ

k + Eϕ
q + sEχ

q−k)
2
f(Eχ

q−k)

)

+
α2
2

4

∫
kql

1

2Eϕ
kE

ϕ
k+q+lE

χ
qE

χ
l

(∑
r,s=±

sin2

(
(Eϕ

k+Eϕ
k+q+l+sEχ

q+rEχ
l )t

2

)
2(Eϕ

k + Eϕ
k+q+l + sEχ

q + rEχ
l )

2
f(Eχ

q)f(E
χ
l )

+

sin2

(
(Eϕ

k+Eϕ
k+q+l+Eχ

q+Eχ
l )t

2

)
2(Eϕ

k + Eϕ
k+q+l + Eχ

q + Eχ
l )

2
+
∑
s=±

sin2

(
(Eϕ

k+Eϕ
k+q+l+Eχ

q+sEχ
l )t

2

)
(Eϕ

k + Eϕ
k+q+l + Eχ

q + sEχ
l )

2
f(Eχ

l )

)]

− iα2

4

(
1

Eϕ
p

− 1

Eϕ
p′

)
t∆F

zz −
α2
2

16

[
1

2

(
1

(Eϕ
p)2

− 2

Eϕ
pE

ϕ
p′

+
1

(Eϕ
p′)2

)
t2

+

((
−i

2(Eϕ
p)3

t+
1− e−2iEϕ

pt

4(Eϕ
p)4

)
+ (p ←→ p′)∗

)]
∆F

zz∆
F
z′z′

+ iα2
1M

2

∫
q

[
1

8Eϕ
pE

ϕ
qE

χ
p−q

(∑
s=±

i

sEϕ
p+Eϕ

q+Eχ
p−q

(
1− e−i(sEϕ

p+Eϕ
q+Eχ

p−q)t
)
+ t

sEϕ
p + Eϕ

q + Eχ
p−q

(4.16)

+
∑
r,s=±

i

rEϕ
p+Eϕ

q+sEχ
p−q

(
1− e−i(rEϕ

p+Eϕ
q+sEχ

p−q)t
)
+ t

rEϕ
p + Eϕ

q + sEχ
p−q

f(Eχ
p−q)
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p
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+
α2
2

2

∫
kq

ρ1;1(p− k− q,p′ − k− q; 0)e
−i(Eϕ
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∑
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where the dummy parameters r, s, v = ± were introduced to simplify the sum over two
different energy flows.

One finds this to be the unitary evolution and corrections thereof resulting in deco-
herence and phase shifts. The diagrammatic representation of these correction term can
be found in Figures 4.1 and 4.2, where the former one depicts all diagrams containing χ

tadpoles and χ-ϕ bubble diagrams while the latter one shows the ones with ϕ tadpoles.
Figures 4.1 (a)-(c) show the disconnected vacuum diagrams corresponding to the addi-
tional terms in the first four lines of Eq. (4.16). Lines five and six of Eq. (4.16) can be
seen in the χ tadpoles of Figures 4.1 (d)-(h) whereas the first term of the fifth line in
Eq. (4.16) describes the diagrams with only one χ tadpole and the other ones those with
two χ tadpoles. The χ-ϕ bubble diagrams in Figure 4.1 (i) and (j) are described by the
seventh and eighth line of Eq. (4.16), while the bubble diagrams of Figures 4.1 (k) and (l)
appear in lines nine to eleven of Eq. (4.16). Lines twelve and thirteen of Eq. (4.16) contain
ϕ tadpoles and are represented by Figures 4.2 (d)-(g) with line twelve corresponding to
Figures 4.2 (d) and (e) and line thirteen to the other two diagrams. The last five lines of
Eq. (4.16) are depicted by the last two diagrams in Figure 4.1, namely (m) and (n).

Eq. (4.15) also contains additional terms with ϕ tadpoles which cancel each other as can
easily be seen when considering the coincidence in the equal time limit (see Eq. (A.5)) and
the greatest time equation (see Eq. (A.11)). Therefore, they do not show up in Eq. (4.16).
The diagrammatic representation of these ϕ tadpole terms can also be seen in Figure
4.2. Again, they include vacuum diagrams (4.2(a)-(c)). Additionally, two diagrams of a
mixture of vacuum and tadpole diagrams can be found (4.2(h)-(i)). However, in reality all
terms containing a ϕ tadpole are expected to not exist, even the ones in the twelfth and
thirteenth line of Eq. (4.16). This is so because realistic atoms are complex and stable and
contain many elementary particles. Therefore, our proxy of describing them by a single
scalar field is a major simplification and any decay (χ → ϕϕ) and production processes
(ϕϕ → χ) as well as loops resulting from this simplification are not permitted for real
atoms.

Inspecting (4.16) more closely, one can easily see that in the limit t → 0 all terms except
the very first one vanish identically, as expected, i.e. ρ1,1(p,p

′; t → 0) = ρ1,1(p,p
′; 0).

Additionally, it is consistent with the property for complex conjugating the density matrix
element given in Eq. (3.8): ρ1,1(p,p

′; t) = ρ∗1,1(p
′,p; t). Furthermore, only looking at the

very first term in the first line and the terms in the fifth line (corresponding to Figures
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(a) (b) (c)

(d) (e)

(f) (g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 4.1.: Diagrammatic representation of terms in reduced density matrix (4.16); solid
lines represent atoms, dashed lines represent dilatons and crossed boxes rep-
resent the reduced density operator.
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 4.2.: Diagrammatic representation of terms with atomic loops in reduced density
matrix (4.15); solid lines represent atoms, dashed lines represent dilatons and
crossed boxes represent the reduced density operator.
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4.1 (d)-(h)), one finds an expansion of an exponential function up to second order:
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′; 0)e−i(Eϕ
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t2 ∆F

zz∆
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}
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′; 0)e−i(Eϕ
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p′ )t ·
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− iα2
4
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1

E
ϕ
p

− 1

E
ϕ
p′

)
t ∆F

zz

+O(α3
2)

))) .

(4.17)

These terms, therefore, result in a first order correction to the unitary evolution, i.e. a
phase shift. Some of the higher order imaginary terms may also describe phase shifts.
All other terms that do not contribute to phase shifts result in decoherence. However,
the phase shift in Eq. (4.17) can be measured more easily since it is of first order while
all others only occur in second order and this phase shift is, therefore, the leading effect.
Thus, all further calculations and discussions in the subsequent Sections 4.1 and 4.2 focus
on the terms contributing to the phase shift in Eq. (4.17).

4.1. Renormalization

Looking at the terms in the fifth line of (4.16), which contribute to the phase shift in
(4.17), one finds them to be quadratically and quartically divergent. Therefore, these
terms will be renormalized now.

Since the relevant terms only contain tadpole divergences, they can be renormalized by
counterterms. The relevant ones for this case are the mass counterterm for the ϕ- and
χ-field and the tadpole counterterm for the χ-field.2 Additionally, the thermal corrections
(T ̸= 0) can be ignored due to the fact that they are ultraviolet finite and thus do not
have to be renormalized. For that reason, relevant counterterms have to contain only the
parts where T = 0.

With this in mind, an ansatz for the counterterm action for the terms contributing to
the phase shift can be made as

δ  SIF = −
∑
a=±

a

[∫
x

δα2χ
a
x +

1

2

∫
xy

δM2
xyϕ

a
xϕ

a
y +

1

2

∫
xy

δm2
xyχ

a
xχ

a
y

]
(4.18)

2When renormalizing the other terms of Eq. (4.16) one has to consider that these interactions take
place over a finite time due to the fact that they are not local tadpole diagrams. Therefore, relevant
counterterms must have equivalent time dependencies to ensure right behaviours in the limits t → 0
and t → ∞. A more detailed discussion can be found in [23].
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with

δα2 = −dDF (T=0)
xx , (4.19)

δM2
xy = −e∆F (T=0)

xx δ(4)xy , (4.20)

δm2
xy = −fDF (T=0)

xx δ(4)xy , (4.21)

where d, e and f are coefficients to still be determined so that the divergences completely
cancel. Inserting (4.18) into the Feynman-Vernon influence functional (3.24), calculating
it and inserting it into the reduced density matrix element of a single-particle state in
momentum basis (3.58) leads the coefficients to be

d =
α1M

2
, e =

α2

2
, f =

α2

2
(4.22)

and therefore

δα2 = −α1M

2
DF (T=0)

xx , (4.23)

δM2
xy = −α2

2
∆F (T=0)

xx δ(4)xy , (4.24)

δm2
xy = −α2

2
DF (T=0)

xx δ(4)xy . (4.25)

After renormalization, all parts of the tadpole diagrams at zero temperature are nullified
and only the thermal parts of the χ-field remain which are given by the integral [23]

∆F (T ̸=0)
xx =

∫
k

2πf(|k0|)δ(k2 +m2) = 2

∫
d3k

(2π)3
1

2Eχ
k

1

eβE
χ
k − 1

= 2

∫
dΠkf(E

χ
k) =

T 2

2π2

∫ ∞

m/T

dξ

√
ξ2 − (m

T
)2

eξ − 1
.

(4.26)

However, since the ϕ-field was defined to not contain thermal parts (see Eqs. (4.2)-(4.3)),
all diagrams with ϕ-tadpoles cancel when renormalizing. All other terms of Eq. (4.16)
were not renormalized and, thus, remain unchanged.

Consequently, the reduced density matrix element can be rewritten as

ρ1;1(p,p
′; t) = ρ1;1(p,p

′; 0)e−i(Eϕ
p−Eϕ

p′ )t
{
1 + κ(p,p′; t) + u(p,p′; t)

+ Γ(p,p′; t) + γ(p,p′; t)
} (4.27)

with κ(p,p′; t) representing the vacuum diagrams in the first four lines of Eq. (4.16),
Γ(p,p′; t) representing the terms in the seventh to eleventh lines of Eq. (4.16) correspond-
ing to decays and γ(p,p′; t) representing the last five lines of Eq. (4.16) and leading to
momentum diffusion due to coupling between different momentum states. Γ and γ both
are responsible for decoherence. Lastly, u(p,p′; t) contains the terms from the fifth and
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sixth line of Eq. (4.16) describing mass shifts which result in a phase shift. After renor-
malization they are given by

u(p,p′; t) =− iα2
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− 1
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)
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dΠkf(E

χ
k)−

α2
2

4

[
1

2

(
1

(Eϕ
p)2

− 2

Eϕ
pE

ϕ
p′

+
1

(Eϕ
p′)2

)
t2

+
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p)4

)
+ (p ←→ p′)∗
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×
∫

dΠkdΠk′f(Eχ
k)f(E

χ
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(4.28)

4.2. Experimental implications

Before discussing the effect of a dilaton field on a single-particle state like the one discussed
earlier, the general functionality of atom interferometry shall be explained since atom
interferometry has already been used to constrain other screened scalar fields like the
symmetron or chameleon fields [76–82]. With this overview it can then be understood
what effects a conformally coupled dilaton can have. Atom interferometry experiments
have the advantage of allowing a broad choice of atomic properties, like mass, polarization
and magnetic moments, a large cross section for scattering light, high precision, and low
costs [83]. Further information on atom interferometry can, for example, be found in [83,
84].

The theory behind atom interferometry is similar to the one behind optical interfer-
ometry. In the latter one, light is split into two paths, travels along these paths for a
certain distance and is then recombined giving a characteristic interference pattern. Any
differences in the path lengths lead to modifications of this interference pattern. With
such a setup, LIGO was, for instance, able to detect gravitational waves [85]. Similarly,
atom interferometry uses the wave-like behaviour of quantum mechanical atoms to achieve
interference between different atoms or superposed states of the same atom. For this, the
atomic wave is split into two or more parts which travel along different paths until being
recombined later to give the interference pattern.

There are various ways to split an atom into two momentum states, the most common
one is to use laser light [84]. For this method, a laser pulse with the correct energy to
excite the atom from the ground state |g⟩ to a higher energy state |e⟩ is used. However,
the atom only has a certain probability P (g → e) < 1 to absorb the photon and get
excited. Without measuring whether the photon was absorbed, the atom is therefore in
a superposed state

|Ψ⟩ =
√
1− P (g → e) |g⟩+

√
P (g → e) |e⟩ .
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Figure 4.3.: Schematic depiction of the paths in atom interferometry; an atom is produced
in a source, a first laser pulse splits the atom into two superposed states which
travel along the paths x1 and x2, a second laser pulse redirects the two paths
back towards each other, a third laser pulse recombines the states before the
detector measures the resulting interference pattern.

Furthermore, absorbing the photon also means absorbing the photon’s momentum re-
sulting in a larger atom momentum for the excited state |e⟩. When assuming that the
photon’s momentum is parallel to the atom’s direction of motion, this larger momentum
would lead to the excited state to reach the detector earlier than the ground state which is
not preferable since this would not lead to interference. Therefore, the laser’s momentum
should not be aligned with the atom’s direction of motion so that the two states have to
travel along different paths [84], x1 for the ground state and x2 for the excited state, and
arrive at the same time at the detector to interfere. Using another laser, the different path
lengths and shapes can be controlled via absorption or induced emission [86] to redirect
the two paths towards each other again. Lastly, a third laser pulse is used to recombine
the states before reaching the detector where the interference pattern is measured. A
schematic depiction of the different paths x1 and x2 is shown in Figure 4.3.

The difference between the path lengths ∆x = |x1 − x2| (or between the momenta
∆x = |(p1 − p2)|t/m with p1 and p2 being the momenta for the ground state and excited
state, respectively [83]) gives the intensity I measured at the detector. This intensity can
lie between 0 and 2Icl, when the intensity a classical atom would exhibit is Icl. If the
measured intensity is bigger than the one expected for a classical particle I > Icl, the
beams interfere constructively, while a smaller intensity I < Icl correlates to destructive
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Figure 4.4.: Schematic depiction of interference pattern in atom interferometry given by
the intensity I over the difference in path lengths ∆x; the blue line corre-
sponds to the intensity Icl expected for a classical atom, which would be seen
if every atom in the interferometer has decohered. In contrast, the orange line
depicts the case in which no particle experiences decoherence with a peak-
to-peak amplitude of 2Icl. Meanwhile, the green line illustrates the case in
between: when reaching the detector, some atoms have already decohered
while others are still in superposition. Therefore, the peak-to-peak amplitude
is larger than 0 but smaller than 2Icl. Lastly, the dashed purple line shows
the interference pattern of an atom experiencing a phase shift but no deco-
herence.

interference. The dependence of the intensity on the path length difference ∆x is shown
in Figure 4.4, where the blue line corresponds to Icl and the orange and green line show
the interference pattern.

One can use an interference pattern as depicted in Figure 4.4 to observe decoherence.
For this, one should remember that decoherence might be an explanation for the transi-
tion from the quantum physical to the classical world as after the decoherence time all
superpositions collapse and the quantum system becomes classical. Further, decoherence
seems like a statistical effect as an atomic superposition only decoheres with a certain
probability before reaching the detector while others remain in superposition. Therefore,
the interference pattern does not disappear completely but the peak-to-peak intensities
lessen for only a reduced amount of atoms interfere (see the green line in Figure 4.4). So,
if a detected pattern exhibits a peak-to-peak intensity amplitude which is smaller than
2Icl it is an indication for decoherence and thus for the presence of an environment. Ad-
ditionally, an interference pattern can be used to identify phase shifts which are assumed
to be the dominant effect of the system discussed in this thesis. Due to a phase shift the
peaks of the intensity are shifted, as can be seen in the dashed purple line in Figure 4.4
for the case of an atom without experiencing decoherence.
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Having understood this, the effects of a dilaton field on atom interferometry can now
be discussed3. However, contrary to other screened scalar fields like the chameleon and
symmetron (see for example [76–82]), the dilaton field has not yet been investigated
experimentally to a great extent. Therefore, the dilaton’s parameters, λ, V0 and A2, can
be chosen rather freely. The subsequent discussion is thus used to set boundaries to the
orders of magnitude of these parameters and to determine with which parameter spaces
the dilaton would be expected to show measurable effects in atom interferometry. For
this discussion, only the terms relevant for phase shifts (see Eq. (4.17)) will be considered.

It should be remembered that most of the calculations until now were performed using
a rescaled mass for the ϕ-field as defined in Eq. (2.40) which depends on the background
value of the dilaton field, ⟨X⟩. Thus, to determine the leading term of the phase shift, all
quantities in the phase shift of Eq. (4.17) depending on the matter field mass have to be
expressed in terms of the absolute mass value M̃ , since this is the mass the experiment is
sensitive to. Recalling that Eϕ

p =
√
p2 +M2, one can expand the energies to first order

to find

Eϕ
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√
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=
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Ẽϕ
p′
,

(4.30)

where Ẽϕ
p =

√
p2 + M̃2 was defined. Therefore, the leading term of the phase shift,

3This part is based on [23]
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without the unitary evolution in Eq. (4.29), is given by
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|||||M̃2 A2
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zz

||||| , (4.31)

with the Feynman propagator at finite temperatures being given by Eq. (4.26). Addi-
tionally, by taking Eq. (2.42), α2 can be written in terms of the absolute mass value M̃

as
α2 = 2

A2

M2
P l

M̃2. (4.32)

Next, these energies can be expanded under the non-relativistic assumption M̃2 ≫ p2:
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This leads to
1

Ẽϕ
p

− 1

Ẽϕ
p′

=
v2

2M̃
(4.34)

where v := ||p|−|p′||
M̃

was defined as the difference in speeds between the two atomic states.
Thus, the absolute value of Eq. (4.31) can be expressed as

|∆u| =
||||M̃ A2

2M2
P l

[⟨X⟩2 +∆F (T ̸=0)
zz

] v2
2

|||| . (4.35)

In order to estimate relevant parameter domains using Eq. (4.35), common values for
atom interferometry experiments are chosen. The vacuum chamber is assumed to be
spherical with a radius of L = 10 cm [78, 81] and made of steel with a density of ρext

steel =

7860 kg m−3 [87]. Furthermore, the density of the residual gas inside the vacuum chamber
is supposed to be ρext = 3 × 10−14 kg m−3 [82]. Additionally, it is assumed that the
quantum test mass is a Rubidium-87 atom with a mass of M̃ = 87mu [82] with mu being
the atomic mass unit. The speed difference between the two atomic states is given by
v = 50 mm s−1 [88]. Furthermore, the reduced Planck mass is given by MP l =

√
ℏc0
8πG

≈
2.435× 1027 eV. In current atom interferometry tests, phase shifts of up to ∆umin ≈ 10−8

Hz are measurable (inferred from [88, 89]). Additionally, three different temperatures are
chosen, namely 0.5 mK, 300 K and 1000 K. The lowest value was chosen to be one of the
lowest values which still made it possible to numerically evaluate the integral in Eq. (4.26),
the other values were selected to be roughly room temperature and a temperature even
higher than that, respectively.

As already mentioned, due to a lack of experiments, the dilaton’s parameters λ, A2 and
V0 can be chosen rather freely. However, in the course of the evaluation process in this
thesis, some approximations have been made which set some conditions on these param-
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eters. Firstly, as discussed below Eq. (2.17), A2 ≫ 1 is required so that constraints from
Solar System based tests can be circumvented. Secondly, as mentioned below Eq. (2.18),
⟨X⟩/M =

√
A2⟨X⟩/MP l ≪ 1 has to be true in order for the coupling function to contain

no higher order terms. Thirdly, in Eq. (2.35) the exponent of the effective potential was
expanded, giving the condition λ⟨X⟩/MP l ≪ 1. Next, the argument of the Lambert W-
function (see Eq. (2.22)) is assumed to be small so that its expansion can be assumed to
only contain terms up to second order, making the evaluation of the dilaton’s field (see
Eq. (2.21)) and thus also its mass (see Eq. (2.23)) more straightforward. This assumption
leads to λ2V0/(A2ρ

ext) ≪ 1. Lastly, for the effects to be noticeable, the phase shift due
to the dilaton has to be at least of order of the minimal phase shift measurable today,
|∆u| ≳ ∆umin.

Additionally, in [23, 24, 77] it was discussed that a chameleon field could not reach
the minimum of its potential since its Compton wavelength was larger than the radius
of the vacuum chamber. Therefore, it adjusts its Compton wavelength to become equal
to the chamber radius. A similar situation is assumed for some parameter spaces for the
dilaton, while for other parameter domains the dilaton field can reach its minimum. The
dilaton’s Compton wavelength is given by λC = q

m
, where the fudge factor q is assumed to

be roughly 1 based on similar situations for the chameleon field, see [23, 77, 81, 90]. For
parameter spaces where the Compton wavelength is smaller than the chamber’s radius,
i.e. λC ≤ L, the dilaton field can reach its minimum. In this case, the dilaton’s field value
and mass are given by Eqs. (2.21) and (2.23) as

⟨X⟩ = MP l

λ

[
λ2V0

A2ρext −
(

λ2V0

A2ρext

)2
]
,

m =
1

MP l

√
λ2V0 e

− λ2V0
A2ρ

ext +
(

λ2V0
A2ρ

ext

)2

+ A2ρext.

(4.36)

In contrast, when the Compton wavelength is larger than the chamber’s radius, i.e. λC >

L, the minimum cannot be reached and the dilaton adapts its Compton wavelength to
the size of the vacuum chamber. If so, the dilaton’s field value and mass are assumed to
be

⟨X⟩ = ⟨X⟩wall + (⟨X⟩vacuum − ⟨X⟩wall)
L

λC

,

m =
1

L
.

(4.37)

Here, ⟨X⟩wall and ⟨X⟩vacuum correspond to the field value given by Eq. (2.21) the dilaton
would have inside of the chamber’s walls (made of steel with density ρext

steel) and in the
vacuum of the vacuum chamber (with density ρext), respectively. Furthermore, to obtain
the field value for the case λC > L as given by Eq. (4.37), a linear increase from the value
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inside of the wall to the value in vacuum in assumed, for lack of a more precise estimation.
Domains where all these discussed conditions hold can be seen for each of the chosen

temperature values in Figures 4.5, 4.6 and 4.7. In each image the blue area represents
the parameter domain for which a phase shift could be noticeable under the assumption
that λC > L whereas for the orange region λC < L holds. For each of the temperatures,
V0 was chosen to stay fixed at different values, while λ and A2 are varied. For T=0.5 mK
(see Figure 4.5) it can be seen that the minimal value of λ decreases for increasing values
of V0. In contrast, both for T=300 K (see Figure 4.6) and T=1000 K (see Figure 4.7) no
minimum value of λ was found for any value of V0 for the case of λC < L. However, the
possible minimum values of A2 seem to decrease for increasing values of V0 until reaching
the boundary of the first condition discussed (A2 ≫ 1) for all temperatures in the same
way. Additionally, all areas for which λC > L have smaller values of A2 than areas for
which λC < L. Interestingly, for T=300 K (see Figure 4.6) and T=1000 K (see Figure
4.7) the values for λ and A2 for which dilaton-induced changes in the interference pattern
would be measurable are quite similar. Furthermore, while the areas where λC > L (blue
areas in Figures 4.5, 4.6 and 4.7) change shape and position when modifying V0, they seem
to hardly alter when varying the temperature as can for example be seen for V0 = 1020 eV4

when comparing Figures 4.5 (b), 4.6 (c) and 4.7 (c).
The reason for this apparent temperature independence in areas with λC > L is that in

these parameter domains the field value ⟨X⟩ contributes in a higher degree to the phase
shift |∆u| in Eq. (4.35) than the thermal part does. However, in other areas the thermal
contribution dominates. By comparing Figures 4.5, 4.6 and 4.7 one easily finds this to be
the case for λC < L when λ is smaller than the minimal value of λ in the λC > L domain.
The temperature dependent development of the phase shift caused by the dilaton for a
fixed set of parameters in an area where the thermal contribution prevails can be seen in
Figure 4.8. Here, the values λ = 10−8, V0 = 107 eV4 and A2 = 1048 were chosen and the
temperature was varied from 0.5 mK to 1000 K. The resulting progress of |∆u| is shown
in the blue line, while the green line depicts the boundary of detection ∆umin. For these
values of λ, V0 and A2, |∆u| ≳ ∆umin only holds for temperatures higher than roughly 25
K.

However, it should be kept in mind that for a phase shift to be detectable, an ex-
periment has to be conducted at least twice in different conditions. This is so, because
without comparing two interference patterns, a phase shift is not noticeable. Therefore,
the conditions of the two experimental runs have to differ in such a way as to allow the
interference patterns to show distinguished phase shifts. This may be achieved by alter-
ing any parameter value appearing in the dilaton-induced phase shift in Eq. (4.35), for
example the temperature or the density of the residual gas inside the vacuum chamber.

It would be interesting to conduct atom interferometry experiments at these temper-
atures to discover whether these domains for the parameters λ, V0 and A2 should be

44



(a) (b)

(c) (d)

Figure 4.5.: Diagrammatic depiction of allowed parameter spaces for fixed T=0.5 mK and
several values for V0; the depicted domains show for which combination of λ
and A2 the dilaton-induced phase shift would be measurable. Blue areas
correspond to the case λC > L while orange areas correspond to λC < L.
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(a) (b)

(c) (d)

Figure 4.6.: Diagrammatic depiction of allowed parameter spaces for fixed T=300 K and
several values for V0; the depicted domains show for which combination of
λ and A2 the dilaton-induced phase shift would be measurable. Blue areas
correspond to the case λC > L while orange areas correspond to λC < L.
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(a) (b)

(c) (d)

Figure 4.7.: Diagrammatic depiction of allowed parameter spaces for fixed T=1000 K and
several values for V0; the depicted domains show for which combination of
λ and A2 the dilaton-induced phase shift would be measurable. Blue areas
correspond to the case λC > L while orange areas correspond to λC < L.
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Figure 4.8.: Diagrammatic depiction of the temperature dependency of the dilaton-
induced phase shift |∆u| with λ = 10−8, V0 = 107 eV4 and A2 = 1048 for
T∈ [0.5mK, 1000K] in blue with ∆umin being represented by the green line

excluded. However, even more parameter spaces could be covered by altering the experi-
mental setup. For example, increasing the masses of the test masses (as long as they do
not influence the screening mechanism) would be one possible alteration. For instance,
[91] uses atom pairs (e.g. 85Rb − 87Rb) in an atom interferometry experiment, while
[92] has used 1010 silica atoms in a Bell test. Another possibility would be to adjust the
experimental setup in such a way that the two paths of the superposed states are travel-
ing through areas of different background values ⟨X⟩. For this case, Eq. (4.27) has to be
modified to also include a spatially inhomogeneous screened scalar field. In the present
work these and other alterations will not be discussed further.

As already mentioned, the current discussion of experimental implications only focuses
on phase shifts induced by a dilaton field and does not take into account other effects like
momentum diffusion and decoherence. This was done because these effects are expected
to be even less noticeable than the phase shift, which in itself is assumed to not be
detectable similar to the effects of chameleons and symmetrons which have already been
studied experimentally [76–82]. However, not detecting a phase shift puts constraints on
the possible parameter spaces of these models.

Lastly, it should be mentioned again that assuming a scalar field to be a proxy for a non-
relativistic and extended atom is a rough approximation. Therefore, all findings discussed
here are expected to only be qualitative estimates of the true behavior. Applying this
formalism to more realistic probe models, however, is not part of the present work and
will be presented elsewhere.
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5. Conclusion

To this day, many phenomena of our universe are still a great mystery. A few of them are
the natures of dark matter and dark energy. Some attempts to explain them include mod-
ifying Einstein’s theory of general relativity by introducing new light scalar fields which
couple to matter. However, such fields are expected to give rise to fifth forces similar to
gravity which are tightly constrained by tests within our Solar System [10]. To circum-
vent these constraints, so-called screening mechanisms are introduced, which repress fifth
forces in areas of high mass densities, while in less dense environments phenomenologically
relevant effects are permitted. Scalar fields which show such screening mechanisms are
called screen scalar fields and they are subjects of current theoretical and experimental
research. While some screened scalar fields, like the chameleon and symmetron field, have
already been investigated in numerous observations leading to their parameter spaces to
have been constrained, other screend scalar fields, like the environmentally dependent
dilaton field, still do not exhibit any meaningful limitations of their parameters.

Therefore, the aim of this master’s thesis is to theoretically describe the interactions
between the dilaton field and another scalar field as a proxy for a matter field using a
new approach, which was first presented in [26]. This approach uses density matrices as
a mean to describe the open quantum system of a matter field interacting with a dilaton
field as its environment. By tracing out the environmental degrees of freedom, a reduced
density operator can be obtained whose time evolution is given by a master equation.
However, solving a master equation can be impossible, which is why this new approach
to directly compute the reduced density matrix elements was established.

The calculation of the reduced density matrix elements is performed in a momentum
basis in Fock space for weak coupling. Furthermore, it uses different techniques from
non-equilibrium quantum theory, specifically the Feynman-Vernon influence functional,
based on the Schwinger-Keldysh formalism, and thermo field dynamics (TFD). Addition-
ally, it makes use of the fact that the quantum Liouville equation can be rewritten in a
Schrödinger-like form in Schrödinger picture TFD, which then can be used to determine a
general Hamiltonian. Afterwards, an LSZ-like reduction, first developed in [23], is applied
to derive the equation for directly computing reduced density matrix elements.

This equation was then used to calculate the effects of a dilaton field on the system field
for a single-particle state. Open quantum dynamical effects like phase shift, momentum
diffusion and decoherence were found. All terms contributing to the phase shift, the
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effect assumed to be most prominent, were then also renormalized to avoid ultraviolet
divergences. Finally, the found phase shift was used to qualitatively estimate parameter
domains where effects induced by dilatons are expected to cause noticeable changes in an
atom interferometry experiment by using common values for such an experiment.

However, approximating an atom by a scalar field is a rather rough estimate, since
scalar fields allow for production and annihilation processes which are not permitted for
structures as complex and stable as realistic atoms. Therefore, using a more realistic
atomic model would be an interesting way to study this system more truthfully in the
future. Additional improvements include the consideration of inhomogeneous scalar field
backgrounds as well as the usage of more massive fields.
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A. Propagators of scalar fields

Propagators of scalar fields are significant in the derivation of this thesis. Therefore,
they shall be looked at more closely here. Afterwards, two important properties of such
propagators, which are also frequently used in this work, will be presented and proven,
following the proof of [24].

The propagators without thermal corrections used here are given in terms of the doubled
scalar degrees of freedom living on a closed time path contour by [15]

⟨Tφ+
x φ

+
y ⟩ = ∆F

xy = −i

∫
k

eik·(x−y)

k2 +m2 − iϵ
, (A.1)

⟨Tφ−
x φ

−
y ⟩ = ∆D

xy = i

∫
k

eik·(x−y)

k2 +m2 + iϵ
, (A.2)

⟨φ+
y φ

−
x ⟩ = ∆<

xy =

∫
k

eik·(x−y)2πΘ(−k0)δ(k2 +m2), (A.3)

⟨φ−
x φ

+
y ⟩ = ∆>

xy = ∆<
yx = (∆<

xy)
∗ (A.4)

with T indicating time-ordering. These propagators are called Feynman propagator,
Dyson propagator, negative frequency Wightman propagator and positive frequency Wight-
man propagator. In Figure A.1 the integration contours of these propagators in the com-
plex plane can be found.

A.1. Coincidence in the equal time limit

In the following, an important property for the calculation presented in this thesis will
be proven. It states that all four propagators of (A.1)-(A.4) coincide when taken in the
equal time limit, more precisely:

lim
y0→x0

∆F
xy = lim

y0→x0
∆D

xy = lim
y0→x0

∆<
xy = lim

y0→x0
∆>

xy. (A.5)

For this purpose a new notation for the equal time limit is defined, namely

lim
y0→x0

∆xy =: ∆xy. (A.6)
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(a) (b)

(c) (d)

Figure A.1.: Integration contours in the complex plane of (a) the Feynman propagator,
(b) the Dyson propagator, (c) the positive frequency Wightman propagator
and (d) the negative frequency Wightman propagator; images taken from
[24]

The last identity of Eq. (A.5) for both Wightman propagator can easily be shown to be
true, when using the transformation k0 → −k0 to switch between the propagators:

∆<
xy = 2π

∫
k

eik·(x−y)Θ(−k0)δ(k2 +m2)

= 2π

∫
k

eik·(x−y)Θ(k0)δ(k2 +m2)

= ∆>
xy.

(A.7)

Proving the coincidence of (A.5) for the Feynman and Dyson propagator as well is more
intricate. First, ∆F,D

xy have to be rewritten as

∆F,D
xy = ∓i

∫
k

eik·(x−y)

k2 +m2 ∓ iϵ

= ∓i

∫
k

eik·(x−y)

[ P
k2 +m2

± iπδ(k2 +m2)

]
,

(A.8)

using the Sokhotskii-Plemelj theorem [93, 94]. Here, P stands for the principal value
part [95, 96]. As can be seen, the second term already looks similar to the Wightman
Propagators. Therefore, the first term with the principle value part has to vanish, which
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is actually the case as can be seen by direct computation:∫ ∞

−∞
dk0 P

−(k0)2 + E2
k

= lim
ϵ→0

(∫ −Ek−ϵ

−∞
+

∫ Ek−ϵ

−Ek+ϵ

+

∫ ∞

Ek+ϵ

)
dk0

−(k0)2 + E2
k

= lim
ϵ→0

[
1

2Ek

log

(
Ek + k0

Ek − k0

)]{−Ek−ϵ,Ek−ϵ,∞}

{−∞,−Ek+ϵ,Ek+ϵ}

= lim
ϵ→0

1

2Ek

[
log

( −ϵ

2Ek

)
− log(−1) + log

(
2Ek

ϵ

)
− log

(
ϵ

2Ek

)
+ log(−1)− log

(
2Ek

−ϵ

)]
= 0.

(A.9)

Therefore, the Feynman and Dyson propagators become

∆F,D
xy = π

∫
k

eik·(x−y)δ(k2 +m2)

= π

∫
k

eik·(x−y)(Θ(k0) + Θ(−k0))δ(k2 +m2)

= 2π

∫
k

eik·(x−y)Θ(k0)δ(k2 +m2)

= ∆<,>
xy .

(A.10)

A.2. Greatest time equation

Another important relation between the propagators of scalar fields is the so-called great-
est time equation

∀n ∈ N :
∑
a,b=±

ab∆n
ab = 0, (A.11)

where ++ corresponds to the Feynman propagator, +− and −+ to the negative and
positive frequency Wightman propagator, respectively, and −− to the Dyson propagator.

In order to prove this identity, another connection between the propagators has to be
derived first, namely the fact that Feynman and Dyson propagators can also be expressed
in terms of the Wightman propagators:

∆F,D
xy = Θ[±(x0 − y0)]∆>

xy +Θ[±(y0 − x0)]∆<
xy. (A.12)

Starting with Eqs. (A.1) and (A.2) and using X = x− y leads to

∆F,D
X = ∓i

∫
k

eik·X

k2 +m2 ∓ iϵ

= ±i

∫
d3k

(2π)3
eik·X

∫
dk0

2π

e−ik0X0

(k0)2 − E2
k ± iϵ

.

(A.13)
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Next, Cauchy’s integral formula [97, 98]∫
γ

f(z)

z − a
dz = ω2πf(a) (A.14)

is used, where γ is a closed curve in the complex plane and ω = ± takes integrations in
positive or negative directions into account. This leads to the propagators being rewritten
as

∆F,D
X =

∫
d3k

(2π)3
eik·X

2Ek

(
Θ(X0)e∓iEkX

0

+Θ(−X0)e±iEkX
0
)

=

∫
d4k

(2π)3
eikX

2Ek

(
Θ(X0)δ(k0 ∓ Ek) + Θ(−X0)δ(k0 ± Ek)

)
=

∫
d4k

(2π)3
eikXδ(k2 +m2)

(
Θ(X0)Θ(±k0) + Θ(−X0)Θ(∓k0)

)
= Θ(X0)∆≷

X +Θ(−X0)∆≶
X ,

(A.15)

which is the identity needed for proving the greatest time equation (A.11).
For this proof, Eq. (A.12) is used in a simplified notation, namely

∆F,D
X = ∆++,−− = Θ(±)∆−+ +Θ(∓)∆+−. (A.16)

Additionally, for the propagators considered here

Θ(+)Θ(−)∆(x, y) = Θ(+)Θ(−)∆(x0 ≡ y0,x,y) (A.17)

holds. Using this, one can write∑
a,b=±

ab∆n
ab = ∆n

−− +∆n
++ −∆n

−+ −∆n
+−

= [Θ(−)∆−+ +Θ(+)∆+−]
n + [Θ(+)∆−+ +Θ(−)∆+−]

n −∆n
−+ −∆n

+−.

(A.18)

Using the binomial theorem, (x + y)n =
∑n

k=0

(
n
k

)
xn−kyk [99], one can rewrite these first

two terms as

[Θ(−)∆−+ +Θ(+)∆+−]
n =

n∑
k=0

(
n

k

)
Θn−k(−)Θk(+)∆n−k

−+ ∆k
+−, (A.19)

[Θ(+)∆−+ +Θ(−)∆+−]
n =

n∑
k=0

(
n

k

)
Θn−k(+)Θk(−)∆n−k

−+ ∆k
+− (A.20)
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which leads to

∑
a,b=±

ab∆n
ab =

n∑
k=0

(
n

k

)[
Θn−k(−)Θk(+) + Θn−k(+)Θk(−)

]
∆n−k

−+ ∆k
+− −∆n

−+ −∆n
+−.

(A.21)
Taking from this sum only the terms where k = 0 and k = n, one finds

[Θn(+) + Θn(−)] (∆n
−+ +∆n

+−). (A.22)

Meanwhile, the remaining terms for which 1 ≤ k ≤ n− 1 are

n−1∑
k=1

(
n

k

)[
Θn−k(−)Θk(+) + Θn−k(+)Θk(−)

]
∆n−k

−+ ∆k
+−. (A.23)

Next, Eq. (A.17) and the equal time limit Eq. (A.5) are made use of to find for the terms
where 1 ≤ k ≤ n− 1

n−1∑
k=1

(
n

k

)[
Θn−k(−)Θk(+)∆n

−+ +Θn−k(+)Θk(−)∆n
+−

]
(A.24)

and making use of
∑n−1

k=1 Θ
n−k(−)Θk(+) =

∑n−1
k=1 Θ

n−k(+)Θk(−) leads to

n−1∑
k=1

(
n

k

)
Θn−k(+)Θk(−)(∆n

−+ +∆n
+−). (A.25)

Recombining this with the terms for which k = 0 or k = n (Eq. (A.22)) gives

(∆n
−+ +∆n

+−)

[
n−1∑
k=1

(
n

k

)
Θn−k(+)Θk(−) + Θn(+) + Θn(−)

]

= (∆n
−+ +∆n

+−)

[
n∑

k=0

(
n

k

)
Θn−k(+)Θk(−)

]
= (∆n

−+ +∆n
+−) [Θ(+) + Θ(−)]n ,

(A.26)

where in the last line the binomial theorem was used again. Lastly, making use of the
fact that Θ(+) + Θ(−) = 1, one finds for the greatest time equation (A.21)∑

a,b=±
ab∆n

ab = [Θ(+) + Θ(−)]n (∆n
−+ +∆n

+−)−∆n
−+ −∆n

+− = 0. (A.27)
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B. Scalar field contractions

In order for the reader to better follow the calculations done to get from Eq. (4.15) to
(4.16), one of the terms will be evaluated in more detail here. For these calculations the
equations for ϕ-propagators ((4.2)-(4.3)) and χ-propagators without thermal corrections
as given by (A.1)-(A.4) are used for simplicity. The term that is being presented is the
first term in the fourth line of Eq. (4.15). It reads

(∗) = −α2
1M

2 lim
x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

×
∫
xx′yy′

e−i(p·x−p′·x′)+i(k·y−k′·y′)∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′

×
∫
zz′

DD
x′y′D

F
xzD

F
zz′D

F
z′y∆

F
zz′

= −α2
1M

2 lim
x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′ρ1,1(k,k

′; 0)

×
∫
xx′yy′

e−i(p·x−p′·x′)+i(k·y−k′·y′)∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′

×
∫
zz′

∫
qlrns

ieiq·(x
′−y′)

q2 +M2 + iϵ

−ieil·(x−z)

l2 +M2 − iϵ

−ieir·(z−z′)

r2 +M2 − iϵ

−iein·(z
′−y)

n2 +M2 − iϵ

−ieis·(z−z′)

s2 +m2 − iϵ
.

(B.1)

Acting with the Klein-Gordon operators on the propagators in the last line gives

∂x0,Eϕ
p
∂∗
x0′,Eϕ

p′
∂∗
y0,Eϕ

k

∂y0′,Eϕ

k′
→ (−il0 − iEϕ

p)(−iq0 + iEϕ
p′)(in

0 + iEϕ
k)(iq

0 − iEϕ
k′). (B.2)

Next, the relation ∫
x

eix·(p−k) = (2π)3δ(3)(p− k) (B.3)
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is used to determine the spatial integrals of Eq. (B.1). This leads to

(∗) =− iα2
1M

2 lim
x0(′)→t+

y0(′)→0−

∫
dΠkdΠk′

∫
d4q d4l d4r d4n d4s

(2π)2
ρ1,1(k,k

′; 0)

× δ(3)(l− p)δ(3)(p′ + q)δ(3)(k− n)δ(3)(k′ + q)δ(3)(r+ s− l)δ(3)(n− r− s)

× (l0 + Eϕ
p)(q

0 − Eϕ
p′)(n

0 + Eϕ
k)(q

0 − Eϕ
k′)

×
∫
z0z0′

e−iq0·(x0′−y0′)

q2 +M2 + iϵ

e−il0·(x0−z0)

l2 +M2 − iϵ

e−ir0·(z0−z0′)

r2 +M2 − iϵ

e−in0·(z0′−y0)

n2 +M2 − iϵ

e−is0·(z0−z0′)

s2 +m2 − iϵ
.

(B.4)

After evaluating the 3-momentum integrations by using the δ-functions, this becomes

(∗) =− iα2
1M

2 lim
x0(′)→t+

y0(′)→0−

1

4Eϕ
pE

ϕ
p′

1

(2π)8

∫
dq0 dl0 d4r dn0 ds0ρ1,1(p,p

′; 0)

× (l0 + Eϕ
p)(q

0 − Eϕ
p′)

2(n0 + Eϕ
p)

∫
z0z0′

e−iq0·(x0′−y0′)

−(q0 − Eϕ
p′)(q0 + Eϕ

p′) + iϵ

× e−il0·(x0−z0)

−(l0 − Eϕ
p)(l0 + Eϕ

p)− iϵ

e−ir0·(z0−z0′)

−(r0 − Eϕ
r )(r0 + Eϕ

r )− iϵ

e−in0·(z0′−y0)

−(n0 − Eϕ
p)(n0 + Eϕ

p)− iϵ

× e−is0·(z0−z0′)

−(s0 − Eχ
p−r)(s

0 + Eχ
p−r)− iϵ

.

(B.5)

The temporal momentum integrations can be evaluated by using Cauchy’s integral for-
mula, see Eq. A.14. Additionally, the directions from which x0(′) and y0(′) approach their
limits are included. With this, the first of the remaining integrals, for example, is∫

dq0(q0 − Eϕ
p′)

2 e−iq0·(x0′−y0′)

−(q0 − Eϕ
p′)(q0 + Eϕ

p′) + iϵ
= −2πi(2Eϕ

p′)e
−Eϕ

p′ t, (B.6)

where the exponent on the left-hand side is always negative and thus the integration curve
has to be closed in the lower half-plane for the auxiliary contour to vanish when going to
−i∞. All integrations with z0(′) in the exponent, however, have to consider the fact that
both z0 and z0′ are not yet evaluated and can lie within the interval [0; t]. Solving all the
remaining momentum integrations leads to

(∗) =− α2
1M

2ρ1,1(p,p; 0)

∫
r

1

8Eϕ
pE

ϕ
rE

χ
p−r

e
−i(Eϕ

p−Eϕ

p′ )t

×
∫
z0z0′

[
Θ(z0 − z0′)e−i(Eϕ

r +Eχ
p−r−Eϕ

p)(z
0−z0′) +Θ(z0′ − z0)ei(E

ϕ
r +Eχ

p−r+Eϕ
p)(z

0−z0′)
]
.

(B.7)
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In a last step, the integrations over z0 and z0′ have to be performed:∫
z0z0′

Θ(z0 − z0′)e−i(Eϕ
r +Eχ

p−r−Eϕ
p)(z

0−z0′) +

∫
z0z0′

Θ(z0′ − z0)ei(E
ϕ
r +Eχ

p−r+Eϕ
p)(z

0−z0′)

=
i

Eϕ
r + Eχ

p−r − Eϕ
p

[
−i

Eϕ
r + Eχ

p−r − Eϕ
p

(
1− e−i(Eϕ

r +Eχ
p−r−Eϕ

p)t
)
− t

]

+
i

Eϕ
r + Eχ

p−r + Eϕ
p

[
−i

Eϕ
r + Eχ

p−r + Eϕ
p

(
1− e−i(Eϕ

r +Eχ
p−r+Eϕ

p)t
)
− t

]

=
∑
s=±

i

sEϕ
p + Eϕ

r + Eχ
p−r

[
−i

sEϕ
p + Eϕ

r + Eχ
p−r

(
1− e−i(sEϕ

p+Eϕ
r +Eχ

p−r)t
)
− t

]
.

(B.8)

Therefore, after renaming r → q, the final solution for this term reads:

(∗) =iα2
1M

2ρ1,1(p,p; 0)e
−i(Eϕ

p−Eϕ

p′ )t
∑
s=±

∫
q

1

8Eϕ
pE

ϕ
qE

χ
p−q(sE

ϕ
p + Eϕ

q + Eχ
p−q)

×
[

i

sEϕ
p + Eϕ

q + Eχ
p−q

(
1− e−i(sEϕ

p+Eϕ
q+Eχ

p−q)t
)
+ t

]
,

(B.9)

which can be found in the seventh line of Eq. (4.16).
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