
D ISSERTATION

Fast trajectory planning frameworks for

robotic systems

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenschaften (Dr. techn.)

unter der Leitung von

Univ.-Prof. Dipl.-Ing. Dr. techn. Andreas Kugi
E376

Institut für Automatisierungs- und Regelungstechnik

eingereicht an der

Technischen Universität Wien

Fakultät für Elektrotechnik und Informationstechnik

von

Minh Nhat Vu
Matrikelnummer: 11742814

Wien, 31st May 2023

.

Studiendekan

ao.-Prof. Dr. Thilo Sauter

Betreuer

Univ.-Prof. Dipl.-Ing. Dr. techn. Andreas Kugi

Tag des Rigorosums

26.05.2023

Prüfungsvorsitzender

Prof. Dr.-Ing. habil. Thomas Meurer

Univ.-Prof. Dipl.-Ing. Dr. techn. Andreas Kugi

Erster Gutachter

Prof. Dr.-Ing. habil. Thomas Meurer

Zweiter Gutachter

ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Markus Vincze

For my loved ones.

Acknowledgement

Approximately 24 years ago, my father presented me with a small robot toy. I

was filled with joy and gratitude, knowing that it had cost him a week’s salary. In

the 1990s, electronic devices in Vietnam were considerably expensive due to the

country being in its early stages of development. Unfortunately, the toy stopped

working after a few days, and the shop refused to exchange it. Despite my sadness,

I found solace in the fact that I had enjoyed playing with it for a while. It was then

that I made a personal commitment to learn how to repair and develop robots.

I am profoundly grateful for the opportunity to embark on this journey towards

the completion of my PhD thesis in the field of robotics, automation, and control

systems. Achieving this goal would not have been possible without the tremendous

support, encouragement, and inspiration from numerous individuals who have con-

tributed to my academic and personal growth.

First and foremost, I would like to express my sincere gratitude to my esteemed

Doktorvater, Univ. Prof. Dr. Andreas Kugi, for his expert guidance, unwaver-

ing support, and encouragement throughout my research. Your mentorship has

equipped me with the confidence to overcome the challenges inherent in this aca-

demic pursuit and has instilled in me an enduring passion for research. Further-

more, I am grateful to Prof. Andreas for providing me with the opportunity to

stay in Vienna, where I had the chance to meet my wife in 2018. Words cannot

adequately convey my appreciation for your generosity. I would also like to extend

my thanks to the members of my thesis committee, Prof. Dr. Thomas Meurer and

ao.Univ. Prof. Dr. Thilo Sauter, for their invaluable insights, thoughtful feedback,

and constructive criticism. I would especially like to thank Ms. Maria Ochsenre-

i

0 Vorwort ii

iter for her hard work in the ACIN office, you handle all the paperwork in ACIN

smoothly. I don’t think we could do the research work in peace without you.

Additionally, I am deeply indebted to my colleagues and collaborators, whose pres-

ence and support have enriched my academic experience and provided a nurturing

network of like-minded individuals. Your camaraderie, enthusiasm, and creativity

have been indispensable in sustaining my passion for research. Thank you, Dipl.-

Ing. Thomas, for being my roommate and being my partner in crime, thank you

Dr.techn. Christian, for your guidance and motivation, thank you Dipl.-Ing Flo-

rian, for the collaboration and discussions in your library and thank you Dipl.-Ing

Moine, for my disruption in your office which is the library of ACIN, thank you

Dipl.-Ing Michael, for your unconventional help, thank you Dipl.-Ing Gerald and

Msc. Lucia, for being the same “monkey”-Zodiac as me, thank Dipl.-Ing Christoph,

for sharing the same passion for spicy food with me, and thank Msc. Thies for

bringing me cheeses and playing football with me.

To my father, Vu Thai Binh, my mother, Tran Thi Mai Hoa, and my younger

brother, Vu Nhat Tan, I offer my heartfelt appreciation for their unwavering love,

unconditional support, and constant encouragement. Your unwavering belief in

me has been a source of strength and inspiration, enabling me to overcome the

challenges of this journey with grace and perseverance.

To my wife, Le Thi Thuy Trang, thank you for entering my life and accompanying

me during my PhD journey either in the United States, Austria, or Vietnam. Your

presence has been an integral part of my PhD journey, and I am truly grateful for

your unconditional love and unwavering support.

Finally, I extend my gratitude to the faculty and staff of the Automation and

Control Institute (ACIN), TU Wien, whose unwavering dedication to academic

excellence and commitment to fostering a vibrant and supportive academic com-

munity have played a crucial role in my success. Your tireless efforts to provide

state-of-the-art resources, facilities, and mentorship have been invaluable in en-

abling me to achieve this significant milestone.

With gratitude and appreciation,

Minh Nhat Vu

Vienna, 4 May 2023.

iii 0 Vorwort

I would like to write a Vietnamese version of this Acknowledgement as my parents

can read it.

Khoảng 24 năm trước đây, ba của tôi tặng cho tôi một con robot đồ chơi. Tôi rất

vui mừng và biết ơn, khi biết rằng nó đã tốn cha một tuần lương. Vào thập kỷ

1990, các thiết bị điện tử ở Việt Nam rất đắt đỏ do đất nước đang ở giai đoạn

phát triển. Thật không may, sau vài ngày, con đồ chơi bị hỏng và cửa hàng từ chối

đổi nó. Mặc dù rất buồn, nhưng tôi tìm được sự an ủi bởi vì tôi cũng đã chơi với

nó trong một thời gian ngắn. Lúc đó, tôi đã tự nhủ rằng mình phải trở thành một

nhà khoa học để có thể sửa chữa robot.

Tôi rất biết ơn vì đã được trao cơ hội để hoàn thành luận án tiến sĩ trong lĩnh vực

robot, tự động hóa và hệ thống điều khiển. Để đạt được mục tiêu này không thể

thiếu sự hỗ trợ, động viên và nguồn cảm hứng từ thầy của tôi, gia đình của tôi,

và cả bạn bè của tôi.

Đầu tiên và quan trọng nhất, tôi xin bày tỏ lòng biết ơn chân thành đến Doktor-

vater đáng kính của tôi, GS. TS. Andreas Kugi, vì sự hướng dẫn tận tâm, sự hỗ

trợ vững chắc, và sự động viên trong suốt quá trình nghiên cứu của tôi. Sự hướng

dẫn của người thầy đã trang bị cho tôi sự tự tin để vượt qua những thách thức

trong việc theo đuổi học thuật và đã truyền cảm hứng cho tôi trong việc nghiên

cứu. Hơn nữa, tôi biết ơn GS. Andreas đã cho tôi cơ hội để làm việc tại Vienna,

nơi tôi đã có cơ hội gặp gỡ vợ tôi vào năm 2018. Lời nói không thể diễn đạt đủ lòng

biết ơn của tôi vì sự giúp đỡ vô bờ bến của thầy. Tôi cũng muốn gửi lời cảm ơn đến

các thành viên trong hội đồng đánh giá luận án của tôi, GS. TS. Thomas Meurer

và ao.Univ. GS. TS. Thilo Sauter, vì những đóng góp, những phản hồi tích cực, và

sự tranh luận mang tính xây dựng cao từ họ. Tôi đặc biệt muốn cảm ơn cô Maria,

thư ký của thầy Andreas, vì đã làm việc chăm chỉ tại văn phòng ACIN, cô xử lý

mọi thủ tục giấy tờ ở ACIN một cách trôi chảy. Tôi không nghĩ rằng chúng tôi có

thể thực hiện công việc nghiên cứu một cách yên bình mà không có cô Maria.

Hơn nữa, tôi rất cảm kích đối với đồng nghiệp và các cộng tác viên, sự hiện diện

và sự hỗ trợ của họ đã làm phong phú thêm trải nghiệm học thuật của tôi. Sự

đoàn kết, sự hăng hái, và sự sáng tạo của các bạn đã không thể thiếu trong việc

duy trì đam mê nghiên cứu của tôi.

Với ba, Vũ Thái Bình, mẹ, Trần Thị Mai Hoa, và em trai, Vũ Nhật Tân, “Con xin

0 Vorwort iv

bày tỏ lòng biết ơn chân thành vì tình yêu không đổi, sự hỗ trợ vô điều kiện, và sự

động viên liên tục của gia đình tôi. Lòng tin của của gia đình đã mang đến nguồn

sức mạnh và cảm hứng cho con, giúp con vượt qua những khó khăn trong hành

trình này.”

Với vợ, Lê Thị Thùy Trang, “Cảm ơn em đã đến trong cuộc đời anh và đi cùng

anh trong hành trình tiến sĩ, dù ở Hoa Kỳ, Áo hoặc Việt Nam. Sự hiện diện của

em đã là một phần quan trọng trong hành trình của anh và anh thật sự biết ơn

tình yêu không điều kiện và sự hỗ trợ vững chắc của em”.

Cuối cùng, tôi muốn bày tỏ lòng biết ơn nhân viên của Viện Automation và Control

(ACIN). Những nỗ lực không ngừng nghỉ của bạn để cung cấp điều kiện, cơ sở vật

chất là không thể thiếu trong việc giúp tôi đạt được mốc quan trọng này.

Với tất cả lòng thành,

Vũ Nhật Minh

Thành phố Viên, 4 May 2023.

Kurzzusammenfassung

In den letzten Jahren ist die Nachfrage nach agilen und reaktionsschnellen Robo-

tersystemen erheblich gestiegen, was schnelle und zuverlässige Bahnplanungsalgo-

rithmen erfordert. Die Bewegungsplanung von Robotern war Gegenstand umfang-

reicher Forschungsarbeiten, die zu verschiedenen Lösungen geführt haben. Trotz

der Vielfalt der verfügbaren Bewegungsplanungsmethoden ist die Berechnung ei-

ner kollisionsfreien Bahn in Echtzeit unter systematischer Berücksichtigung von

Zustands- und Stellgrößenbeschränkung je nach Anwendungsfall eine Herausforde-

rung. Bei vielen industriellen Bewegungsplanungsaufgaben, wie z.B. Montage- oder

Pick-and-Place-Aufgaben, treten wiederkehrende Bewegungen in sehr ähnlichen

Szenarien auf, bei denen die Start- und Zielpositionen innerhalb vordefinierter

Teilräume bleiben und nur kleine Abweichungen aufweisen. In solchen Fällen ist es

nicht notwendig, die gesamte Trajektorie komplett neu zu berechnen, da die sich

wiederholende Natur des Prozesses ausgenutzt werden kann. Diese Arbeit widmet

sich diesem Thema und entwickelt rechnerisch effiziente Lösungen, die in Echtzeit-

anwendungen eingesetzt werden können.

Die vorgeschlagenen Konzepte basieren auf physikalischen Modellen und nutzen

fortgeschrittene Optimierungsmethoden, um Trajektorien zu generieren, die Hin-

dernisse vermeiden mit der Systemdynamik konsistent sind. Die Konzepte werden

durch Simulationen und Experimente auf verschiedenen Plattformen evaluiert, um

ihre Effektivität bei der Erzeugung kollisionsfreier und dynamisch realisierbarer

Trajektorien in Echtzeit zu demonstrieren. Dies trägt zur Verbesserung der Leis-

tung von Robotersystemen bei und ermöglicht agilere und reaktionsfähigere Sys-

teme, die sich an veränderte Umgebungen und Anforderungen anpassen können.

v

0 Kurzzusammenfassung vi

In dieser Arbeit wird das folgende Szenario betrachtet. Ein 3D-Portalkran im La-

bormaßstab wird verwendet, um Güter oder Materialien von einem bestimmten

Ort zu einem anderen Ort in einer statischen Umgebung mit bekannten Hinder-

nissen zu transportieren. Ziel ist es, eine zeitoptimale Trajektorie von einem gege-

benen Startpunkt zu einem gegebenen Zielpunkt zu planen, wobei sowohl Hinder-

nisse als auch dynamische Beschränkungen für Zustandsvariablen und Stellsgrösen

berücksichtigt werden. Der Fokus der Arbeit liegt darin eine schnelle Trajektorien-

planung in Echtzeit zu realisieren, wenn sich der Start- und/oder Zielpunkt ändert

oder bewegt. Zu diesem Zweck werden zwei Konzepte für die Trajektorienplanung

vorgeschlagen.

Das erste, in dieser Arbeit vorgeschlagene Konzept basiert auf dem informierten

optimalen Rapid Exploring Random Tree-Algorithmus (informierter RRT*). Mit

diesem Algorithmus werden Trajektorienbäume erstellt, die für die Neuplanung

wiederverwendet werden können, wenn sich der Start- und/oder Zielpunkt ändert.

Im Gegensatz zu bestehenden Ansätzen enthält der vorgeschlagene Algorithmus

einen lokalen Planer basierend auf einem linear quadratic minimum-time (LQTM)

Algorithmus. Um die Effizienz des Algorithmus weiter zu verbessern, wird die

Branch-and-Bound-Methode integriert. Dadurch werden Punkte im Baum elimi-

niert, die nicht dazu beitragen, bessere Lösungen zu finden, was den Speicher-

bedarf und die Rechenkomplexität reduziert. Simulationsergebnisse anhand eines

validierten mathematischen Modells eines 3D-Portalkrans im Labormaßstab bele-

gen die Brauchbarkeit des vorgeschlagenen Ansatzes. Die Ergebnisse zeigen, dass

der vorgeschlagene Trajektorienplanungsalgorithmus nahezu zeitoptimale und kol-

lisionsfreie Trajektorien generieren kann, während er gleichzeitig dynamische Be-

schränkungen und Änderungen der Zielzustände berücksichtigt. Insgesamt bietet

das vorgeschlagene Konzept eine neue und innovative Lösung für eine schnelle und

effiziente Trajektorienplanung in Umgebungen mit Hindernissen. Durch die Inte-

gration des lokalen LQTM Planers und der Branch-and-Bound-Methoden kann der

Algorithmus dynamische Eigenschaften systematisch berücksichtigen und die Be-

rechnungseffizienz verbessern, so dass er sich für eine schnelle Neuplanung eignet.

Das erste Trajektorienplanungskonzept bietet eine gute Lösung für Online Neupla-

nungsaufgaben. Um jedoch ein sich dynamisch bewegendes Ziel zu berücksichtigen,

muss der Trajektorienbaum neu berechnet werden, was die Echtzeitfähigkeit ein-

schränkt. Daher wird ein zweites optimierungsbasiertes Konzept für die Trajekto-

rienplanung entwickelt. Dieses besteht aus zwei Hauptkomponenten, nämlich ei-

vii 0 Kurzzusammenfassung

nem Offline-Trajektorienplaner und einem Online-Trajektorienreplanner. In der

Offline-Phase wird eine zeitoptimale, kollisionsfreie und dynamisch konsistente

Trajektoriendatenbank erzeugt, indem alle möglichen Trajektorien berechnet wer-

den, die den vordefinierten Unterraum der Startpunkt mit dem Unterraum der

Zielpunkte verbinden. Die resultierende Trajektoriendatenbank wird dann für die

Online-Nutzung gespeichert. In der Online-Phase nutzt der Trajektorienplaner die-

se Datenbank, um eine optimale Trajektorie in Echtzeit zu erzeugen. Der Online-

Trajektorienplaner basiert auf einem linearen, beschränkten quadratischen Pro-

gramm. Der Online-Planer berücksichtigt alle Änderungen des Zielzustands und

stellt sicher, dass die generierte Trajektorie kollisionsfrei und dynamisch konsis-

tent ist. Um eine genaue Bahnverfolgung zu gewährleisten, wird ein Trajekto-

rienfolgeregler entwickelt, der die dynamischen Beschränkungen des Portalkrans

berücksichtigt und Modellungenauigkeiten, Störungen und andere nicht modellier-

te Effekte kompensiert. Die Simulationen und experimentellen Ergebnisse zeigen

die Brauchbarkeit des vorgeschlagenen Konzepts für die Trajektorienplanung und

regelung des 3D-Portalkrans. Das Konzept generiert glatte und zeitoptimale Tra-

jektorien, die den dynamischen Einschränkungen des Systems genügen und Hin-

dernissen in Echtzeit ausweichen.

Aufgrund der Allgemeingültigkeit ist das vorgeschlagene optimierungsbasierte Tra-

jektorienplanungskonzept nicht auf den 3D-Portalkran beschränkt und kann auf

andere Robotersysteme angewandt werden. Um dies zu demonstrieren, wird der

Algorithmus dazu eingesetzt, ein sphärisches Pendel mit Hilfe eines Roboters mit

7 Freiheitsgraden (KUKA LBR iiwa 14 R820) von einer in einem bestimmten Ar-

beitsbereich beliebigen Ausgangslage in die obere Ruhelage auf zu schwingen. Die

mit dem Algorithmus geplante Trajektorie wird mit einem zeitvarianten Riccati-

Regler stabilisiert. Die Simulationen und die experimentellen Ergebnisse bestätigen

die Funktionsfähigkeit des vorgeschlagenen Konzepts.

Abstract

In recent years, the demand for agile and responsive robotic systems has grown sig-

nificantly, requiring fast and reliable trajectory planning algorithms. Robot motion

planning has been the subject of extensive research, resulting in various solutions.

Despite the plethora of available motion planning methods, real-time calculation

of a collision-free trajectory that systematically accounts for state and control

input constraints remains a challenge depending on the specific application. For

many industrial motion planning tasks, such as assembly or pick-and-place tasks,

repetitive motions occur in very similar scenarios where the starting and target

positions remain within predefined subspaces and only exhibit small changes. In

such cases, it is unnecessary to completely re-calculate the entire trajectory, as

the repetitive nature of the process can be exploited. This thesis is devoted to

this topic and develops computationally efficient solutions that can be employed

in real-time applications.

The proposed frameworks are based on first-principles models and utilize advanced

optimization techniques to generate trajectories that can avoid obstacles and meet

the dynamic constraints of the system. The frameworks are evaluated by simu-

lations and experiments on different platforms to demonstrate their feasibility in

generating collision-free and dynamically consistent trajectories in real time. This

helps to enhance the performance of robotic systems, enabling more agile and

responsive systems that can adapt to changing environments and requirements.

In this thesis, the following scenario is considered. A lab-scale 3D gantry crane is

employed to move goods or materials from one dedicated place to another place

in a static environment with known obstacles. The goal is to plan a time-optimal

ix

0 Abstract x

trajectory from a given starting point to a given target point, taking into account

both obstacles and dynamic constraints on the state variables and control inputs.

The focus of this work is to realize fast real-time trajectory planning when the

start and/or target state changes or moves. To this end, two trajectory planning

frameworks are proposed.

The first framework is based on the informed optimal rapidly exploring random

tree algorithm (informed RRT*). This algorithm is used to build trajectory trees

that can be reused for replanning when the start and/or goal states change. In

contrast to existing approaches, the proposed algorithm includes a local planner

with a linear quadratic minimum-time (LQTM) solver. To enhance the efficiency

of the algorithm, a branch-and-bound method is integrated. This helps to elimi-

nate points in the tree that do not contribute to finding better solutions, reducing

memory consumption and computational complexity. Simulation results using a

validated mathematical model of a lab-scale 3D gantry crane demonstrate the fea-

sibility of the proposed approach. The results show that the proposed trajectory

planning algorithm can generate near time-optimal and collision-free trajectories

while considering dynamic constraints and changes in target states. Overall, the

proposed trajectory planning framework offers a new and innovative solution for

fast and efficient trajectory planning in environments with obstacles. The inte-

gration of the local LQTM planner and the branch-and-bound method enable the

algorithm to systematically consider dynamic properties and improve the compu-

tational efficiency, making it suitable for fast replanning.

The first trajectory planning framework shows a good performance for online re-

planning tasks. However, to account for a dynamically moving target, the trajec-

tory tree has to be recomputed, which limits the real-time capability. Therefore, a

second optimization-based framework is developed. The optimization-based trajec-

tory planning framework consists of two main components, i.e., an offline trajectory

planner and an online trajectory replanner. In the offline phase, a time-optimal,

collision-free, and dynamically feasible trajectory database is generated by com-

puting all possible trajectories that connect starting points in a the predefined

subspace to target points in another subspace. The resulting trajectory database

is then stored for online use. In the online phase, the trajectory planner utilizes

the database to generate an optimal trajectory in real time. The online trajectory

planner is based on linear constrained quadratic programming. The online planner

takes into account all changes in the target state and ensures that the generated

xi 0 Abstract

trajectory is collision free and dynamically feasible. To ensure accurate trajec-

tory tracking, a trajectory tracking controller is developed that takes into account

the dynamic constraints of the gantry crane and compensates for model inaccu-

racies, disturbances, and other non-modeled effects. Simulation and experimental

results demonstrate the effectiveness of the proposed trajectory planning and con-

trol framework for the 3D gantry crane. The framework can generate smooth and

time-optimal trajectories that satisfy the dynamic constraints of the system and

avoid obstacles in real time.

Due to its generality, the proposed optimization-based trajectory planning algo-

rithm is not limited to the 3D gantry crane and can be applied to other robotic

systems. To demonstrate this, the algorithm is used to swing up a spherical pen-

dulum with a 7-axis robot (KUKA LBR iiwa 14 R820) from an arbitrary position

in a starting subspace. The trajectory planned with the proposed framework is

stabilized by a discrete time-variant linear quadratic regulators. Simulations and

experimental results demonstrate the feasibility of the proposed approach.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and approaches presented in this work 3

1.3 Outline of the thesis . 5

2 Mathematical modeling 7

2.1 Lab-scale 3D gantry crane . 8

2.1.1 Equations of motion . 8

2.1.2 Differential flatness . 14

2.2 Collaborative 7-axis robot with a spherical pendulum 17

2.2.1 Forward kinematics . 18

2.2.2 Dynamics . 22

3 Sampling-based trajectory planning for a 3D gantry crane 25

3.1 Introduction . 26

3.2 Flat-informed RRT* trajectory planning 29

3.2.1 Overview of the trajectory planning scenario 29

3.2.2 Local planner . 31

3.2.3 Flat-Informed RRT* trajectory planning algorithm 33

3.3 Simulation results . 36

3.4 Conclusions . 48

4 Optimization-based trajectory planning for a 3D gantry crane 49

4.1 Introduction . 50

xiii

0 Contents xiv

4.2 Two-step trajectory planning . 52

4.2.1 Offline trajectory optimization 53

4.2.2 Collision avoidance . 54

4.2.3 Trajectory database . 56

4.2.4 Online trajectory replanner 58

4.3 Trajectory tracking controller design 64

4.4 Simulation and experimental results 67

4.4.1 Simulation results . 67

4.4.2 Experimental results . 74

4.5 Conclusions . 79

5 Swing-up trajectory optimization of a pendulum on a collaborative

robot 81

5.1 Introduction . 82

5.2 Offline trajectory optimization . 84

5.2.1 Near time-optimal swing-up trajectory optimization 85

5.2.2 Trajectory database . 87

5.3 Fast trajectory replanner . 88

5.4 Trajectory tracking controller . 90

5.5 Simulation and experimental results 92

5.6 Conclusions . 97

6 Conclusions and Outlook 99

A Parameters 103

A.1 Parameters of the lab-scale 3D gantry crane 103

A.2 Parameters of the 7-axis KUKA LBR iiwa 14 R820 and the spher-

ical pendulum. 104

Bibliography 1

1

Introduction

The focus of this thesis is motivated and presented in this section. Additionally,

the objectives and the content of this work are outlined.

1.1 Motivation

In recent decades, the rapid development in robotics and automation has enor-

mously changed the structure of society and the way we live and work. In many

manual tasks, such as picking, assembling, gluing, welding, transferring, etc., robots

and machines are designed to perform these tasks autonomously, precisely, and

quickly. Mostly, their performance is better than that of human workers. As a

result, production time and costs can be significantly reduced. This leads to the

emergence of new industries and directs our time and efforts to further improve

the standards of living of our society.

Industrial robots and collaborative robots, e.g., SCARA robots [1], delta robots

[2], serial manipulators [3, 4], gantry systems [5, 6, 7], are integrated with general-

purpose hardware architecture combined with application-based software for pro-

cess control and monitoring. This creates flexibility and helps these robots to

be used in many different processes and applications. In industry, these robots are

1

1 Introduction 2

mostly programmed and developed by experts for specific repetitive tasks in struc-

tured environments. Custom programming for a specific industrial application is

still very costly, although much research effort has been made to render robot

programming easier in the last years, see, e.g., [8, 9, 10, 11]. In mass production,

the long-term benefits outweigh these high costs, e.g., in automotive assembly,

pick-and-place, lifting and sorting in large warehouses and ports. For low-volume

high-mix production, the increasing flexibility and adaptability of cognitive robotic

systems, developed in the last years, make it more and more possible that robots

also slowly penetrate this market.

In this context, motion planning is an important task that is widely used in various

robotic applications. The goal of motion planning is to find a collision-free, dynam-

ically feasible path or trajectory that drives the robot from its starting configura-

tion to a target configuration to fulfill specific tasks. Robot motion planning has

been extensively studied in the literature, leading to various solutions which can

be essentially classified into sampling-based, e.g., [12, 13] and optimization-based

approaches [14, 15]. Despite this plethora of motion-planning methods available,

calculating a collision-free trajectory which systematically accounts for state and

control input constraints in real time, depending on the application, is still a chal-

lenge. Many motion planning tasks in industry, e.g., assembly or pick-and-place

tasks, refer to scenarios with nearby repetitive motions where starting and target

position are always within predefined subspaces and sometimes are only slightly

changing. In this case, there is no need to completely calculate the whole trajectory,

but exploit the repetitive properties of the process. This leads to computationally

much more efficient solutions which may be used in real-time applications. In this

work, novel trajectory planning frameworks are proposed for such scenarios, which

include an offline and an online planner capable of reacting to changing targets

or changing environmental conditions during process execution. The offline tra-

jectory planner is used to create a trajectory database which serves as a basis

for the online trajectory replanner. The online planner can quickly compute lo-

cally deformed trajectories that result in suboptimal, but still collision-free and

dynamically feasible solutions at moderate computational costs.

3 1 Introduction

1.2 Objectives and approaches presented in this

work

The aim of this thesis is to develop a trajectory planning framework that is able to

compute collision-free and dynamically feasible trajectories in real time for a cer-

tain class of robotic applications. The following scenario is considered: A 3D gantry

crane has to move goods or material from one dedicated place (starting space) to

another place (target space) in a static environment with known obstacles. The

task is to plan a time-optimal trajectory from a given starting point to a given

target point, which systematically accounts for both the obstacles and the dynamic

constraints on the state variables and control inputs. The focus of this work is on

a solution that allows for a fast online planning if the starting and/or target point

are changing or moving. Although system constraints and static obstacles increase

the complexity of the problem, the proposed trajectory planning framework is able

to provide a real-time solution. In this work, two trajectory planning frameworks,

one based on sampling-based and the other one on optimization-based motion

planning, are presented.

Inspired by the sampling-based trajectory planning approach RRT*, the so called

flat-informed RRT* is developed. First, a collision-free and dynamically feasible

trajectory tree is built by sampling the system states in an informed set that

guarantees finding a better solution. To connect the sampled states in the tra-

jectory tree, the linear quadratic minimum-time (LQMT) approach is employed,

which exploits the property of differential flatness of the system. In the second

step, when the target state is changed, the proposed flat-informed RRT* quickly

generates a feasible trajectory. In contrast to other works in the literature, e.g.,

[16, 13, 12], the proposed flat-informed RRT* systematically considers the system

dynamics constraints and the state and input constraints, which are important

safety factors.

The proposed flat-informed RRT* achieves good performance for online replan-

ning tasks (≤ 100ms for the considered lab-scale 3D gantry crane). However, to

obtain a better time-optimal solution, the size of the trajectory becomes larger,

which limits the real-time capability. Therefore, an optimization-based framework

for trajectory planning is developed, which consists of two steps. First, an offline

trajectory planner is implemented to compute a time-optimal, collision-free, and

1 Introduction 4

dynamically feasible trajectory database that connects all possible initial states

from a starting subspace to all possible states in a target subspace. Second, us-

ing the linear constrained quadratic programming (LCQP), the online trajectory

replanner utilizes the computed trajectory database to generate a suboptimal tra-

jectory in real time. In comparison with the most successful practical studies known

from the literature, e.g., [5, 17], the proposed optimization-based trajectory plan-

ning has the ability to generate near time-optimal dynamically feasible trajectories

online for scenarios with obstacles and a moving target. The feasibility of the pro-

posed optimization-based approach is shown by extensive Monte-Carlo simulations

and experiments. Due to its generality, this proposed optimization-based trajec-

tory planning algorithm can be applied to a wide range of other robotic systems,

e.g., the collaborative robot KUKA LBR iiwa 14 R820 [18].

Main parts of this work and extended robotic applications are already published

or accepted in the following journal and conference papers:

[19] M. N. Vu, P. Zips, A. Lobe, F. Beck, W. Kemmetmueller, and A. Kugi, “Fast

motion planning for a laboratory 3D gantry crane in the presence of obstacles”.

IFAC-PapersOnLine, vol. 53, no. 2, pp. 9508-9514, 2020.

[20] M. N. Vu, C. Hartl-Nesic, and A. Kugi, “Fast swing-up trajectory optimization

for a spherical pendulum on a 7-dof collaborative robot,” in Proceedings of the

International Conference on Robotics and Automation (ICRA), pp. 10114–10120,

2021.

[21] M. N. Vu, A. Lobe, F. Beck, T. Weingartshofer, C. Hartl-Nesic, and A. Kugi,

“Fast trajectory planning and control of a lab-scale 3d gantry crane for a moving

target in an environment with obstacles,” Control Engineering Practice, vol. 126,

p. 105255, 2022.

[22] M. N. Vu, M. Schwegel, C. Hartl-Nesic, and A. Kugi, “Sampling-based trajec-

tory (re)planning for differentially flat systems: Application to a 3d gantry crane,”

IFAC-PapersOnLine, vol. 55, no. 38, pp. 33–40, 2022

[23] F. Beck, M. N. Vu, C. Hartl-Nesic, and A. Kugi, “Singlularity avoidance

with application to online trajectory optimization for serial manipulators,” IFAC-

PapersOnLine, [Accepted for IFAC World Congress], 2023.

[24] M. Zimmermann, M. N. Vu, F. Beck, C. Hartl-Nesic, A. Nguyen, and A. Kugi,

“Two step online trajectory planning of a quadcopter in indoor environments with

5 1 Introduction

obstacles,” IFAC-PapersOnLine, [Accepted for IFAC World Congress], 2023.

[25] M. N. Vu, F. Beck, M. Schwegel, C. Hartl-Nesic, A. Nguyen, and A. Kugi,

“Machine learning-based framework for optimally solving the analytical inverse

kinematics for redundant manipulators,” Mechatronics, vol. 91, p. 102970, 2023.

1.3 Outline of the thesis

The remainder of this thesis is structured as follows.

In Section 2 “Mathematical modeling”, the basics for the mathematical modeling

of the two considered robotic systems used in this work, i.e. a lab-scale 3D gantry

crane and the KUKA LBR iiwa 14 R820, are presented. In addition, for the

lab-scale 3D gantry crane, the differential flatness property of the corresponding

mathematical model is derived.

Section 3 “Sampling-based trajectory planning for a 3D gantry crane” presents a

novel sampling-based trajectory planning framework, named flat informed RRT*,

which is applied to the lab-scale 3D gantry crane. The focus of this approach is

to develop a novel fast motion planning algorithm for differentially flat systems,

where intermediate results can be stored and reused for further tasks, such as

online replanning. After a review of related sampling-based trajectory planning

approaches in the literature, the flat-informed RRT* algorithm is presented in

Section 3.2. This allows to create trajectory trees that are reused for fast replanning

processes when, for instance, the target state changes. In Section 3.3, simulation

studies show the feasibility of the proposed algorithm for different scenarios. This

section is largely based on the author’s publication [22].

In Section 4 “Optimization-based trajectory planning for a 3D gantry crane”, a

more flexible optimization-based approach is presented, which outperforms the

flat-informed RRT* of Section 3 in terms of computational speed. The focus of this

section is on a novel two-step optimization-based trajectory planning algorithm.

First, an offline trajectory planner is implemented to compute a time-optimal,

collision-free, and dynamically feasible trajectory database that connects all pos-

sible initial states of the considered lab-scale 3D gantry crane from a predefined

starting subspace to all possible states in a target subspace. Second, an online

trajectory replanner is designed which is based on this trajectory database and a

linear constrained quadratic programming (LCQP) approach to generate an opti-

1 Introduction 6

mal trajectory in real time. In addition, a model predictive control (MPC)-based

trajectory tracking controller is designed for the considered lab-scale 3D gantry

crane to compensate for model inaccuracies, disturbances, and other unmodeled

effects. Finally, simulation and experimental results are presented to demonstrate

the performance of the proposed trajectory planning framework and the trajectory

tracking controller. This section is largely based on the author’s publications [19]

and [21].

Section 5 “Swing-up trajectory optimization for a pendulum on a collaborative

robot” presents an extended application of the novel two-step optimization-based

trajectory replanning introduced in Section 4. The considered system has nine

degrees of freedom (DoF) and consists of a spherical 2-DoF pendulum mounted

on a 7-DoF robot. The task is to compute an optimal swing-up trajectory of

the spherical 2-DoF pendulum using the 7-DoF KUKA LBR iiwa 14 R820 from

an arbitrary initial configuration in a certain admissible range of the complete

system. The main focus of this section is to apply the optimization-based trajectory

planning presented in Section 4 to the swing-up by systematically incorporating

the kinematic and dynamic constraints. After a literature review, offline trajectory

optimization is employed to build a database of swing-up trajectories. Then, a fast

trajectory replanner based on a constrained quadratic program is developed to

compute the swing-up trajectory. Simulations and experiments are demonstrated

for the swing up of the spherical pendulum using a discrete time-varying linear

quadratic regulator (LQR) as a feedback controller. This section is largely based

on the author’s publication [20].

Finally, the thesis is concluded with a brief summary as well as an outlook on

possible future research activities in Section 6.

2

Mathematical modeling

This section presents the mathematical modeling of the considered lab-scale 3D

gantry crane and the seven degrees-of-freedom (DoF) collaborative robot KUKA

LBR iiwa 14 R820 with a spherical pendulum mounted on the flange.

A gantry crane is a robotic system widely used in industry to transport goods,

such as steel coils in the steel industry or containers in ports. In these scenarios,

the objects must be moved along a process-oriented trajectory, while avoiding

swinging of the payload for safety reasons. In this work, a lab-scale 3D gantry

crane is considered which constitutes a mechanical system with five degrees of

freedom (DoF). Three of these five DoFs are actuated by DC motors equipped

with the incremental encoders. In Section 2.1, the mathematical model of the 3D

gantry crane is derived. Assuming that the payload of the 3D gantry crane is a

point mass, the position of the payload is a differentially flat output, a property

which will be exploited in the trajectory planning.

The collaborative robot KUKA LBR iiwa 14 R820 is a lightweight industrial

manipulator with seven rotational DoF. This robot is designed for human col-

laboration as an “intelligent industrial work assistant” (iiwa). Each rotary joint is

equipped with a torque sensor and a harmonic drive with a high gear ratio. In Sec-

7

2 Mathematical modeling 8

tion 2.2, homogeneous transformations are introduced as the basis for deriving the

forward kinematics and dynamics of the robot. Moreover, a custom-built spherical

pendulum, which is mounted on the flange of the robot for swing-up experiments,

will be presented and included in the mathematical model.

2.1 Lab-scale 3D gantry crane

In the following, the dynamic model of the 3D gantry crane is derived using the

Euler-Lagrange formalism, see, e.g., [26].

2.1.1 Equations of motion

The CAD model of the lab-scale 3D gantry crane is illustrated in Fig. 2.1. The

gantry crane system consists of five degrees of freedom qT = [sx, sy, sz, α, β], where

sx, sy denote the position of the trolley on the bridge in x-, y-direction and sz is

the current hoisting cable length in z-direction. The variables α and β refer to the

sway angles of the hoisting cables in the zy- and zx-plane, respectively, see Fig.

2.2. Note that the system state q is measured by five incremental encoders located

at the three actuators for sx, sy, and sz, and at the lifting drum for the two sway

angles α and β.

By assuming that the two hoisting cables suspending the payload are identical and

always under tension, the lab-scale 3D gantry crane can be modeled as a rigid-

body system. Here, only the two sway angles α and β are considered as degrees

of freedom and the twisting motion of the payload is neglected. The coordinate

systems are given in Fig. 2.3 where W and B represent the world frame and the

body frame, respectively. Since there are offset parameters sx,0, sy,0, and sz,max

caused by the construction of the gantry crane, the displacement vector from the

world frame W to the trolley frame C reads as

(dC
W)T = [sx,0 + sx, sy,0 + sy, sz,max] . (2.1)

Using the Euler angle parameterization, the rotation matrix for transforming from

the trolley frame C to the body frame B, located at the center of mass (CoM) of

the payload, by a rotation of the angle β around the y-axis and a rotation of the

9 2 Mathematical modeling

x

yz

1m

1.3m
2m

hoisting drum trolley bridge runway

payload

sy

sx

Figure 2.1: Schematic of the lab-scale 3D gantry crane for α = β = 0.

sz,0

α α
β

β

z

y x

zy

x

CoM of payload (E)h1

b1

sz,max

ground

H

Figure 2.2: The payload with the corresponding hoisting cable angles α and β.

2 Mathematical modeling 10

x

z y

ground

x

z y

sz,max

sy,0

sz,0

W

C

ceiling

z y

x
sx

sy

CoM of payload

S

α

β

sx,0

sz

B

Figure 2.3: Coordinate systems of the 3D gantry crane.

11 2 Mathematical modeling

angle α around the x-axis results in

RB
C = Rβ,yRα,x , (2.2)

where

Rβ,y =

[]]]]
cos β 0 sin β

0 1 0

− sin β 0 cos β

]]]]] , Rα,x =

[]]]]
1 0 0

0 cosα − sinα

0 sinα cosα

]]]]] . (2.3)

The position of the CoM in the trolley coordinate frame C, denoted as rTCoM,

comprises the position of rHC and the vector from the point H to the CoM rH−CoM
C ,

see Fig. 2.2. Thus, rCoM
C is expressed in the form

rCoM
C = rHC + rH−CoM

C , (2.4)

with

rHC = RB
C

[]]]]
0

0

−sz,0 + sz

]]]]] , rH−CoM
C = Rβ,y

[]]]]
0

−b1

−h1

]]]]] . (2.5)

Combining (2.1) and (2.5), the CoM of the payload in the world frame W reads

as

rCoM
W = dC

W + rCoM
C =

[]]]]
sx + sx,0 + sin(β) cos(α)(sz − sz,0)− sin(β)h1

sy + sy,0 − sin(α)(sz − sz,0)− b1

sz,max + cos(β) cos(α)(sz − sz,0)− cos(β)h1

]]]]] . (2.6)

In the following, for a compact notation, the position of the CoM of the payload

rWCoM in the world coordinate frame is denoted by r. The translational kinetic

energy of the payload is computed as

Tt,z =
1

2
mz ṙ

Tṙ , (2.7)

with the mass mz of the payload. The translational parts of the kinetic energy

caused by the movement of the bridge and the trolley in x-direction, Tt,x, and the

2 Mathematical modeling 12

movement of the trolley along y-direction, Tt,y, are given in the form

Tt,x =
1

2
(mx +my)ṡ

2
x , Tt,y =

1

2
myṡ

2
y , (2.8)

where mx is the mass of the bride and my denotes the mass of the trolley and

the lifting drum. The rotational parts of the kinetic energies caused by the two

unactuated pendulum angles α and β read as

Tr,α =
1

2
Iαα̇

2 , Tr,β =
1

2
Iββ̇

2 , (2.9)

where Iα and Iβ are the corresponding mass moments of inertia. The kinetic ener-

gies of the motor drives for the motion in x-, y-, and z-direction take the form

Tr,driver =
∑
i

Iiṡ
2
i

R2
i

, (2.10)

where Ii is the moment of inertia of the motor associated to the axis i ∈ {x, y, z}
and Ri is the radius of the associated sprockets of the drives. Combining (2.7),

(2.8), (2.9), and (2.10), the total kinetic energy of the 3D gantry crane reads as

T =
1

2
mz ṙ

Tṙ+
1

2
(mx +my)ṡ

2
x +

1

2
myṡ

2
y +

1

2
Iαα̇

2 +
1

2
Iββ̇

2 +
∑
i

Iiṡ
2
i

R2
i

. (2.11)

The potential energy of the gantry crane with respect to the generalized coordi-

nates q is calculated in the form

V = mzg(sz,max + cos(α) cos(β)(sz − sz,0)− cos(β)h1), (2.12)

where g is the gravitational acceleration. Applying the Lagrange formalism to the

Lagrange function L = T − V , with the driving forces uT = [u1, u2, u3] of the

motors, yields the mathematical model written in state-space form

ż = f(z,u) =

[]]]]
q̇

M−1(q)

([]u
0

]]−C(q, q̇)q̇− g(q)

)
]]]]] , (2.13)

with zT = [qT, q̇T]. The matrix M(q) denotes the symmetric and positive definite

13 2 Mathematical modeling

mass matrix, C(q, q̇) includes Coriolis and centrifugal terms, and g(q) are the

forces associated with the potential energy. With the expressions

mX = mx +my +mz +
Ix
R2

x

, mY = my +mz +
Iy
R2

y

, mZ = mz +
Iz
R2

z

,

the entries of the system matrices

M(q) =

[]]]]
M11 · · · M15

...
. . .

...

M51 · · · M55

]]]]] , C(q, q̇) =

[]]]]
C11 · · · C15

...
. . .

...

C51 · · · C55

]]]]] , g(q) =

[]]]]
g1
...

g5

]]]]]
follow as

M11 = mX

M13 = cos(α) sin(β)mz

M14 = − sin(α) sin(β)(sz − sz,0)

M15 = mz cos(β)(cos(α)(sz − sz,0)− h1)

M22 = mY

M23 = −mz sin(α)

M24 = −mz(sz − sz,0) cos(α)

M31 = mz cos(α) sin(β)

M32 = −mz sin(α)

M33 = mZ

M41 = mz(sz,0 − sz) sin(α) sin(β)

M42 = mz(sz,0 − sz) cos(α)

M44 = mz(sz − sz,0)
2 + Iα

M51 = mz cos(β)(sz cos(α)− h1)

M55 = −mz(cos(α)(sz,0 − sz) + h1)
2 + Iβ

M12 = M21 = M25 = M34 = M35 = 0

M43 = M45 = M52 = M53 = M54 = 0,

C13 = −mz(cos(α) cos(β)β̇ − sin(α) sin(β)α̇)

2 Mathematical modeling 14

C14 = −mz(sz − sz,0)(sin(α)(sin(β)ṡz + β̇ cos(β) + sin(β) cos(α)α̇)

+ sin(β) cos(α)α̇sz)

C15 = mz((− cos(α) sin(β)β̇ − sin(α) cos(β)α̇)(sz − sz,0)

+ cos(α) cos(β)ṡz + β̇ sin(β)h1)

C23 = − cos(α)mzα̇

C24 = mz(− cos(α)ṡz + sin(α)α̇(sz − sz,0)

C34 = −mzα̇(sz − sz,0)

C35 = β̇ cos(α)mz(− cos(α)(sz − sz,0) + h1)

C43 = mz(sz − sz,0)α̇

C44 = mz(sz − sz,0)ṡz

C45 = mzβ̇ sin(α)(cos(α)(sz − sz,0)
2 − h1(sz − sz,0))

C53 = mzβ̇ cos(α)(cos(α)(sz − sz,0)− h1)

C54 = −mzβ̇ sin(α)(cos(α)(sz − sz,0)
2 − h1(sz − sz,0))

C55 = mz(− cos(α) sin(α)α̇(sz − sz,0)
2

+ (− cos(α)2ṡz + sin(α)α̇h1)(sz − sz,0)− cos(α)h1ṡz)

C11 = C12 = C21 = C22 = C25 = 0

C31 = C32 = C33 = C41 = C42 = C51 = C52 = 0,

g1 = g2 = 0

g3 = mz cos(α) cos(β)g

g4 = −mzg sin(α) cos(β)(sz − sz,0)

g5 = mzg(− cos(α) sin(β)(sz − sz,0) + sin(β)h1).

The parameters of the lab-scale 3D gantry crane are obtained from [27] and can

be found in Appendix A.1.

2.1.2 Differential flatness

For the definition of a flat system, see, e.g., [28], a vector

r = Φ(z,u, u̇, ...,u(nu)), (2.14)

15 2 Mathematical modeling

with nu denoting the highest order of the derivative of u, is a flat output of a

system

ż = f(z,u) (2.15)

if there exist two mapping functions Hz, Hu and the index nf such that the

following equations hold

z = Hz(r, ṙ, ..., r
(nf−1)), (2.16a)

u = Hu(r, ṙ, ..., r
(nf)) . (2.16b)

Under the assumption that the payload is a point mass, the gantry crane is a

well-known flat system and the CoM of the payload in (2.6)

r =

[]]]]
rx

ry

rz

]]]]] =

[]]]]
sx + sx,0 + sin(β) cos(α)(sz − sz,0)− sin(β)h1

sy + sy,0 − sin(α)(sz − sz,0)− b1

sz,max + cos(β) cos(α)(sz − sz,0)− cos(β)h1

]]]]] , (2.17)

is a flat output, see, e.g., [29], [28].

The hoisting drum system generates the axial force along the rope (Fs
B)

T = [0, 0, fs]

expressed in the body frame B, illustrated in Fig. 2.4. Using Newton’s law, the

equations of motion of the CoM read as

mz r̈ = Fs
W +mzF

g
W , (2.18)

where Fs
W = RB

WFs
B, and (Fg

W)T = [0, 0,−g]. Since only translations are required

for the transformation of the world frame W into the trolley frame C, RB
W = RB

C .
Substituting (2.2) into (2.18), we obtain the formulation

mz r̈x = fs cos(α) sin(β) (2.19a)

mz r̈y = −fs sin(α) (2.19b)

mz r̈z = fs cos(α) cos(β)−mzg . (2.19c)

From (2.19), the two sway angles α and β are computed as

α = arctan

(−r̈y√
r̈2x + (r̈z + g)2

)
(2.20a)

2 Mathematical modeling 16

x

z y

ground

x

z y

sz,max

sy,0W

C
z y

x

sx
sy

S

α

β

sx,0

B

Fg
W

Fs
W

CoM of payload

Figure 2.4: Free-body diagram of the 3D gantry crane assuming the payload to be
a point mass.

17 2 Mathematical modeling

β = arctan

(
r̈x

r̈z + g

)
. (2.20b)

Using (2.17) and (2.20), the three system states sx, sy, and sz are parameterized

by the flat output r in the form

sx =
(
rx − sx,0

)
+
(
sz,max − rz

) r̈x
r̈z + g

(2.21a)

sy = ry + b1 − sy,0 +
(
sz,max − rz

) r̈y
r̈z + g

− h1
r̈y√

(r̈z + g)2 + r̈2x

(2.21b)

sz = sz,0 +
(
rz − sz,max

)√(r̈z + g)2 + r̈2x + r̈2y

r̈z + g
+ h1

√
(r̈z + g)2 + r̈2x + r̈2y

(r̈z + g)2 + r̈2x
.

(2.21c)

By combining the two equations (2.21) and (2.20) with their first derivatives,

analytical expressions for the state parameterization

z = Hz(r, ṙ, r̈, r
(3)) , (2.22)

and the control input parameterization

u = Hu(r, ṙ, r̈, r
(3), r(4)) , (2.23)

according to (2.16) are obtained.

2.2 Collaborative 7-axis robot with a spherical

pendulum

The considered system consists of the 7-axis KUKA LBR iiwa 14 R820 robot and

a custom-built spherical pendulum mounted on the flange of the robot, see Fig.

2.5. The spherical pendulum has two crossing axes as depicted in Fig. 2.6. This

allows to move the tip of the pendulum on a sphere. Each axis of the spherical

pendulum is equipped with a magnetic encoder for measuring the angle and angular

velocity. As shown in Fig. 2.6, EtherCAT terminals are employed to read out the

two encoders attached to the mounting housing.

2 Mathematical modeling 18

KUKA LBR iiwa 14 R820

spherical pendulum
tool

ceiling

Figure 2.5: The considered 7-axis robot with a spherical pendulum.

2.2.1 Forward kinematics

The forward kinematics (FK) determines the pose of the end effector from joint

angles. This is done by using the homogeneous transformation

HY
X =

[]RY
X dY

X
0 1

]] , (2.24)

where RY
X and dY

X are the rotation matrix and the distance vector that rotate and

translate the system from the coordinate system X to the coordinate system Y ,

respectively. In this work, a pure rotation by the angle φ around the local axis

i ∈ {x, y, z} is denoted by HRi,φ and a pure translation in the direction of the

local axis i by a length d is denoted by HTi,d. Moreover, the transformation from

a coordinate system Z to a coordinate system X by an intermediate coordinate

system Y takes the form

HZ
X = HY

XH
Z
Y . (2.25)

Forward kinematics of serial manipulators is derived using a set of successive ho-

19 2 Mathematical modeling

axis 9

axis 8

pendulum rod

EtherCAT terminal

mounting enclosure

rotary encoders

Figure 2.6: The spherical inverted pendulum [30].

2 Mathematical modeling 20

(O2, q2)

(O4, q4)

(O5, q5)

(O9, q9)

(O1, q1)

(O3, q3)

(O6, q6)

(O7, q7)

(O8, q8)

d1 = 0.1525m

d2 = 0.2025m

d3 = 0.2325m

d4 = 0.1825m

d7 = 0.081m

d8 = 0.155m

d9 = 0.073m

d6 = 0.1825m

O0

d5 = 0.2175m

Figure 2.7: Schematic drawing of the ceiling-mounted robot KUKA LBR iiwa in
the hanging position and its corresponding coordinate frames Oi, i = 1, . . . , 9.
The x-, y-, and z-axis of each coordinate frame are drawn as red, green, and blue
arrows, respectively.

21 2 Mathematical modeling

Table 2.1: Coordinate transformation of the system

Frame On Frame Om Transformation matrix HOm
On

O0 O1 HTz,d1HRz,q1

O1 O2 HTz,d2HRx,−π/2HRz,q2

O2 O3 HTy,d3HRx,π/2HRz,q3

O3 O4 HTz,d4HRx,π/2HRz,q4

O4 O5 HTy,d5HRz,πHRx,π/2HRz,q5

O5 O6 HTz,d6HRx,π/2HRz,q6

O6 O7 HTy,d7HRz,πHRx,π/2HRz,q7

O7 O8 HTy,d8HRz,q8

O8 O9 HTy,d9HRx,π/2HRz,πHRz,q9

mogeneous transformations HOi
Oi−1

. Note that the axis zi of the coordinate frame

Oi is chosen to be aligned with the corresponding axis of the joint i, see Fig. 2.7.

The complete mechanical system of the 7-axis robot and the spherical pendulum

consists of nine DoF. The nine coordinate frames Oi, i = 1, . . . , 9, of the complete

system are depicted in Fig. 2.7, where the red, green, and blue arrows represent

the x-, y-, and z-axis, respectively. The spherical pendulum has two intersecting

axes, i.e., the z-axis of the frame O8 and the z-axis of the frame O9, which can

be rotated freely. The system is modeled as a rigid-body system in the state-space

form using the generalized coordinates qT = [q1, q2, . . . , q9], see Fig. 2.7, which are

the rotation angles qi around the z-axes (blue arrows) of the coordinate frames Oi,

i = 1, . . . , 9. The kinematic relation between two consecutive coordinate frames

Oi−1 and Oi is given in Table 2.1. The homogeneous transformation of joint ith,

i = 1, ..., 9 w.r.t. the world coordinate frame O0 can be computed as

HOi
O0

= HO1
O0
HO2

O1
...HOi

Oi−1
=

[]Ri di

0 1

]] . (2.26)

Thus, the forward kinematics of the ith joint is given by

yi =

[]yi,t

yi,r

]] =

[] di

Φ(Ri)

]] , i = 1, ..., 9, (2.27)

where Φ(Ri) is the minimal representation of the orientation which can be com-

puted from the rotation matrix Ri. In the following, ZYX-Euler angle representa-

2 Mathematical modeling 22

tion

Φ =

[]]]]
Φ1

Φ2

Φ3

]]]]] = ΦZY X(Ri) (2.28)

is used, where Ri represents a sequence of three pure rotations in the form

Ri(Φ) = Rz,Φ1Ry,Φ2Rx,Φ3 . (2.29)

2.2.2 Dynamics

Let yO0
i,t,c denotes the vector from the origin of the world frame O0 to the center

of mass of joint i = 1, ..., 9, expressed in the coordinate frame O0. Then, the

translational velocity is vi,c of the i-th link is given by

vi,c =
d

dt
yO0
i,t,c, i = 1, ..., 9 , (2.30)

and the angular velocity ωT
i = [ωi,x, ωi,y, ωi,z] results from the skew-symmetric

operator

S(ωi) =
d

dt
Ri(R

T
i) =

[]]]]
0 −ωi,z ωi,y

ωi,z 0 −ωi,x

−ωi,y ωi,x 0

]]]]] , i = 1, ..., 9 . (2.31)

Thus, from (2.30) and (2.31) we get the relation between the velocities q̇ in the

joint space and vO0
i,c and ωi in the task space in the form[]vi,c

ωi

]] = JO0
i (q)q̇ , i = 1, ..., 9, (2.32)

with the geometric Jacobian

JO0
i (q) =

[]JO0
i,v

JO0
i,ω

]] =

[]]]
∂

∂q
yO0
i,t,c

∂

∂q̇
ωi

]]]] , i = 1, ..., 9 . (2.33)

23 2 Mathematical modeling

The Lagrange formalism applied to the Lagrange function L = T − V , with the

kinetic energy

T =
9∑

i=1

1

2
mi

(
vi,c

)T

vi,c +
1

2

(
ωi

)T

RiIiR
T
i ωi, (2.34)

where mi denotes the mass and Ii the inertia matrix of the i-th link, and the

potential energy

V =
9∑

i=1

[
0 0 −g

]
yO0
i,t,cmi , (2.35)

leads to the equations of motion written in state-space form

M(q)q̈+C(q, q̇)q̇+ g(q) =
[
τA 0 0

]T
. (2.36)

Here M(q) denotes the symmetric and positive definite mass matrix, C(q, q̇) is

the Coriolis matrix, g(q) is the force vector related to the potential energy, and

τA ∈ R7×1 are the motor torque inputs of the robot. Friction is neglected in this

model. The parameters of the presented 7-axis robot with the spherical pendulum

are obtained from [30] and can be found in Appendix A.2.

3

Sampling-based trajectory

planning for a 3D gantry crane

In this section, a sampling-based trajectory planning algorithm for a lab-scale 3D

gantry crane is presented, which takes into account the system state and input

constraints in an environment with static obstacles. The mathematical model in-

cluding the equations of motion and the differential flatness property of the 3D

gantry crane are presented in Section 2.1.

The focus of this section is on the development of a fast trajectory planning al-

gorithm, where intermediate results can be stored and reused for further tasks,

e.g. replanning. The proposed approach is based on the informed optimal rapidly-

exploring random tree (informed RRT*) algorithm, which is used to build trajec-

tory trees. The proposed motion planning algorithm takes advantage of the differ-

ential flatness property and incorporates a local planner with a linear quadratic

minimum-time (LQTM) approach. Therefore, dynamic properties such as trajec-

tory smoothness are directly considered in the proposed algorithm. Moreover, the

proposed algorithm is able to eliminate points in the trajectory tree that do not

contribute to finding better solutions by using the branch-and-bound method to

perform the pruning process in the trajectory tree. This helps to reduce mem-

25

3 Sampling-based trajectory planning for a 3D gantry crane 26

ory consumption and computational complexity. Simulation results for a validated

mathematical model of a lab-scale 3D gantry crane show the feasibility of the

proposed approach.

First, Section 3.1 reviews the existing literature. Section 3.2 presents the proposed

trajectory replanning algorithm, which consists of the informed RRT* algorithm

and the LQMT local planner. Simulation results are presented in Section 3.3 and

Section 3.4, respectively. Large parts of this section are identical to the author’s

publication [22].

3.1 Introduction

Motion planning is an important task in robotics that aims to calculate collision-

free and dynamically feasible paths connecting an initial configuration to a target

configuration. In motion planning tasks for unloading containers on ships, trucks,

and in warehouses, repeated movements from and to adjacent positions have to be

planned. In these applications, the motion planning tasks have to be repeatedly

solved for nearly similar starting and target configurations. This leads to a waste

of computational resources if every motion planning job is computed from scratch.

There are a number of different concepts in the literature, which can be essentially

divided into sampling-based approaches and optimization-based approaches. This

section focuses on the sampling-based approaches. There are a number of different

concepts for sampling-based motion planning algorithms in the literature, which

can be essentially divided into two groups. In the first group, the motion planning

problem is commonly solved by discretizing the continuous state space into grids,

i.e., graph-based search [31]. Graph-based search methods, also known as determin-

istic motion planning methods, see, e.g., A* [32], D* [33], are resolution-complete

methods that guarantee optimal resolution. The search procedure is mainly guided

by heuristic minimization of a cost function from the current sampled state to the

target state. There are variant methods in this group such as the Life Long Plan-

ning algorithm [34], Replanning D* [35, 36], and the Anytime algorithm ARA*,

see, [37], in which their solution can be computed and refined in a reasonable

computation time depending on the chosen grid resolution. However, the compu-

tational costs of graph-based search are increasing with the used resolution of the

discretization. This circumstance is well known as the “curse of dimensionality,”

27 3 Sampling-based trajectory planning for a 3D gantry crane

see, [33]. Despite this disadvantage, graph-based searches were successfully applied

to several types of planning tasks, e.g., manipulation planning, see, [38], [39], and

kinodynamic planning, see, [40].

Different from the first group, methods in the second group randomly sample the

state space, i.e., sampling-based search [41]. This method, also known as probabilis-

tic motion planning, builds the motion tree by randomly sampling the system state.

Sampling-based methods are globally probabilistically optimal, see, e.g., [42, 41],

in which the probability of finding the global optimal solution approaches one

when the number of iterations goes to infinity. The probabilistic roadmap (PRM)

[43], i.e., a variant of the sampling-based methods, randomly samples collision-free

states in the working space. These sampled states are connected to the respective

neighboring states using a local motion planner to set up the motion planning

graph. The main advantage of the PRM, especially useful for high-dimensional

configuration space problems, is that only collision-free states are collected in the

data tree. This leads to fewer states which need to be evaluated in the search space

and hence to an improvement of the computation speed.

Another variant of the sampling-based methods, i.e., the optimal rapidly-exploring

random tree (RRT*) algorithm, finds the path from the initial state to each state

in the planning tree by incrementally rewiring the tree of sampled states, see, e.g.,

[41]. Rewiring helps to reconstruct the tree by not only adding new states to the

tree, but also considering them as surrogate nodes for existing states in the data

tree. Further improvements of RRT* have been proposed in the literature, such

as RRT*-SMART, see, e.g., [44], which uses additional heuristics to speed up the

convergence rate. Additionally, Karaman et al. developed and adapted the RRT*

for online motion planning. Therein, the robot moves along the initial path while

the algorithm is still refining the part that the robot has not yet reached. Recently,

Gammel et al. [45] introduces the informed RRT*. Instead of sampling the system

state in the entire workspace, this algorithm randomly samples the system state

in the subspace created by the first solution. Note that there is no difference be-

tween informed RRT* and RRT* until the first solution is found. When a first

collision-free path is found, only feasible samples from the subset of states, i.e.,

the informed set, are taken into account by the informed RRT* algorithm. This

helps to narrow the search space and increase the probability of obtaining a better

solution in a given time. Later, Strub et al. [46] introduced the advanced batch

informed RRT* (ABIT*) in order to unify sampling-based and graph-based search

3 Sampling-based trajectory planning for a 3D gantry crane 28

without sacrificing the advantages of either method. This algorithm discretizes the

continuous search space with an edge-implicit Random Geometric Graph (RGG),

see [41]. This can improve the computation time by applying the informed RRT*

in parallel for each space region created by the RGG method. Since a local plan-

ner is applied iteratively when a new state is sampled, the overall performance

of a sampling-based approach depends on the computational speed of that local

planner. Typically, a local planner computes the cost for moving the system be-

tween two sampled states. To account for the dynamic constraints of the system,

a two-point boundary value problem (TP-BVP) solver, see, e.g., [47, 48], is often

utilized as local planner. Webb et al. [49] employed the linear quadratic minimum-

time (LQMT) analytical solution [50] as local planner for RRT*. Since the LQMT

solver provides an analytical solution for the near-time optimal trajectory con-

necting any two system states, the computation time of this local planner is faster

than numerical solvers, see, e.g., [51, 52]. However, the analytical solution of the

LQMT is only available for linear systems.

In this section, a trajectory planning algorithm based on the informed optimal

rapidly-exploring random trees (RRT*) [45] is introduced, which is capable of

fast replanning if target configurations are changed. Due to the high dimension

of the 3D gantry crane system, i.e., 5 degrees of freedom (DoF) corresponding to

a 10-dimensional system state, the sampling-based motion planning approach is

favorable for this system compared to the grid-based motion planning approach.

The main objective of this section is to develop a fast sampling-based trajectory

planning algorithm that drives the payload of the lab-scale 3D gantry crane from

a given starting state to a given target state by avoiding obstacles and respecting

the dynamic constraints of the system states at the same time. To do so, the

informed RRT* algorithm is extended to meet the requirements of the repeated

motion (re)planning from and to adjacent configurations.

The sampling-based trajectory planning proposed in this section, referred to as

flat-informed RRT*, includes four modifications compared to RRT* [12].

❼ First, the informed subset of randomly selected states is controlled using a

heuristic function to prevent the selection of new states that do not contribute

to a better solution.

❼ Second, the branch-and-bound method is used to prune the parts of the

29 3 Sampling-based trajectory planning for a 3D gantry crane

trajectory tree that do not provide a better solution compared to the current

cost. This helps to reduce both memory requirements and computation time.

❼ Third, taking advantage of parallel data processing, multiple trees are gen-

erated and concatenated to enrich the motion trajectory tree. When such a

collision-free and dynamically feasible trajectory tree is available, the pro-

posed algorithm quickly generates a feasible trajectory when the position of

the target state changes.

❼ In order to achieve a fast computation time, the local planner uses the an-

alytical solution of LQMT [50]. Since the dynamic system of the 3D gantry

crane is nonlinear, the differential flatness property of the 3D gantry crane

is exploited, see, e.g., [53], [29], [54], where all system states and inputs can

be parameterized by the flat output and its time derivatives.

3.2 Flat-informed RRT* trajectory planning

First, an overview of the trajectory planning scenario is given. Then, the flat-

informed RRT* trajectory planning algorithm with the LQMT local planner [50]

is presented. To this end, the mathematical modeling of the 3D gantry crane,

presented in Section 2.1, is utilized.

3.2.1 Overview of the trajectory planning scenario

In this section, the following scenario is considered. The lab-scale 3D gantry crane

in Fig. 2.1 is used to move goods or material from an initial state to a target

state in a static environment with known obstacles. The equations of motion of

the gantry crane in (2.13) and the differential flatness property in (2.22)-(2.23) are

utilized. The task is to plan a dynamically feasible and obstacle-free trajectory.

Moreover, the proposed algorithm allows a very fast replanning when the target

state changes. In Fig. 3.1, the two considered workspaces with different obstacle

structures are shown. In both scenarios, the region of possible of target states is

behind the obstacles in x-direction, while the initial state is zTS = [qS,0].

3 Sampling-based trajectory planning for a 3D gantry crane 30

(a) Scenario 1

obstacles
region of target position

starting position

(b) Scenario 2

obstacles

starting
position

region of target position

T1

T2

T1

T2
T3

Figure 3.1: Visualization of the 3D gantry crane workspace in two simulation sce-
narios with different obstacle structures.

31 3 Sampling-based trajectory planning for a 3D gantry crane

3.2.2 Local planner

The RRT* algorithm typically selects a random state and adds it to a set of states,

also called a tree T . It then tries to connect this random state to other states in

the set using a local planner. In the simple case, such as holonomic planning, the

local planner often performs only a straight-line connection between two system

states. Since dynamic constraints of the 3D gantry crane have to be considered,

the local planner is generally used to connect any two system states zA and zB
subject to the nonlinear equations of motion in (2.13). Iterative solvers, e.g. [51],

are mostly employed as local planners. The computation time of iterative solvers

often constitutes a bottleneck, since the local planner is repeatedly processed to

build the trajectory tree.

To overcome this bottleneck, the differential flatness property of the 3D gantry

crane can be exploited. Since the system states z and the control inputs u are

parameterized by flat outputs r(t) and their time derivatives according to (2.22)

and (2.23), the proposed flat-informed sampling-based trajectory planning algo-

rithm directly samples the flat outputs xT
l = [r, ṙ, r̈, r(3)]. The linear time-invariant

system of the local planner reads as

ẋl = Axl +Bul , (3.1)

with the system matrices

A =

[]]]]]]]
0 I3 0 0

0 0 I3 0

0 0 0 I3

0 0 0 0

]]]]]]]] , B =

[]]]]]]]
0

0

0

I3

]]]]]]]] .

Additionally, ul = r(4) is the input and In is the identity matrix of size n.

The local planner is used to compute the optimal cost c∗(xl,0,xl,1) to drive the

system (3.1) from an initial state xl(t0) = xl,0 to a target state xl(t1) = xl,1. This

optimal cost c∗(xl,0,xl,1) can be analytically obtained by solving the LQMT [50]

3 Sampling-based trajectory planning for a 3D gantry crane 32

problem in the form

min
xl,ul,∆t

c = ∆t+
1

2

∫ t1

t0

uT
l Ruldt (3.2a)

s.t. ẋl = Axl +Bul, t0 ≤ t ≤ t1 (3.2b)

xl(t0) = xl,0 , xl(t1) = xl,1 , (3.2c)

where ∆t = t1 − t0 is the travel time, (3.2b) corresponds to (3.1), and R is a

user-defined positive definite matrix that weighs the trade-off between the trajec-

tory smoothness and the travel time ∆t. The Hamiltonian H of the optimization

problem (3.2) takes the form

H = 1 +
1

2
uT
l Rul + λT

l (Axl +Bul) , (3.3)

with the adjoint state λl(t) is the slack variable. The necessary first-order opti-

mality conditions for the optimality are given by

ẋ∗
l =

(
∂H

∂λl

)T

= Ax∗
l +Bu∗

l , x∗
l (t0) = x∗

l,0 , (3.4a)

λ̇∗
l = −

(
∂H

∂xl

)T

= −ATλ∗
l , λ∗

l (t1) = λ∗
l,1 , (3.4b)

0 =

(
∂H

∂ul

)T

= Ru∗
l +BTλ∗

l . (3.4c)

Using (3.4b) and (3.4c), the optimal control input u∗
l and the optimal adjoint state

λ∗
l as

u∗
l = −R−1BTλ∗

l (t) (3.5a)

λ∗
l (t) = exp (AT(t1 − t))λ∗

l,1 . (3.5b)

Substituting (3.5a) and (3.5b) into (3.4a), the optimal state trajectory x∗
l (t) is

calculated in the form

x∗
l (t) = exp (A(t− t0))xl,0 −G(t0, t)λ

∗
l,1, (3.6)

33 3 Sampling-based trajectory planning for a 3D gantry crane

with

G(t0, t) =

∫ t

t0

exp (A(t− τ))BR−1BT exp (AT(t1 − τ))dτ (3.7)

as the continuous reachability Gramian [50]. Evaluating (3.6) at t = t1, we get λ
∗
l,1

in the form

λ∗
l,1 = −G−1(t0, t1)d∆t, (3.8)

with d∆t = xl,1 − exp (A∆t)xl,0. Combining (3.4c), (3.5b), and (3.8), the optimal

input u∗
l is obtained. Therefore,

u∗
l (t) = R−1BT exp (AT(t1 − t))G−1(t0, t1)d∆t . (3.9)

Substituting the optimal input u∗
l , given in (3.9), into (3.2a), the cost function

(3.2a) is expressed as

c(xl,0,xl,1) = ∆t+
1

2
dT
∆tG

−1(t0, t1)d∆t . (3.10)

Since the initial time t0 is known, the function c(xl,0,xl,1) in (3.10) depends only on

the final time t1. Note that the analytical expression of the reachability Gramian

(3.7) can be computed since the system matrix A is nilpotent, see (3.1). Thereby,

c(xl,0,xl,1) is analytically expressed as a polynomial of the final time t1. Thus, the

optimal value t∗1 can be determined by finding the roots of the first order derivative

of (3.10) with respect to t1. Subsequently, the corresponding optimal state x∗
l and

the control input u∗
l are computed using (3.5a), (3.6), and (3.8). To check the

feasibility of the optimal flat ouput trajectory (x∗
l ,u

∗
l) with respect to the system

state limits and the control input limits, (2.22) and (2.23) are employed to compute

the corresponding system state z∗ and the control input u∗.

Finally, the LQMT local planner returns the optimal cost c∗(xl,0,xl,1) and a feasi-

bility flag cflag which indicates if the computed trajectory (z∗,u∗) is collision free

and dynamically feasible.

3.2.3 Flat-Informed RRT* trajectory planning algorithm

In this subsection, the flat-informed RRT*, taking into account the advantages

of the LQMT local planner and the informed RRT*, is presented in detail and is

summarized in Alg. 1. The starting position and the target position are denoted

3 Sampling-based trajectory planning for a 3D gantry crane 34

as rS and rT , respectively, which can be obtained from the initial state zS and

the target state zT by (2.6), see also (2.13). Note that the starting state and the

target state of the flat system (3.2) are xT
l,S = [rS,0,0,0] and xT

l,T = [rT ,0,0,0],

respectively.

The proposed algorithm builds a tree T = {V ,P , C,L} consisting of the set of

states V , the set of parent states P , the set of child states C, and the set of binary

masks L. The cost between any two states in the tree T is computed using the local

planner LQMT. The set V contains all states of the tree. A state x̃l,parent = P(x̃l) is

considered as a parent state of x̃l if the cost c
∗(x̃l,parent, x̃l) is the smallest compared

to costs c∗(xl, x̃l) from other states xl ∈ V to x̃l. Similarly, a state x̃l,child = C(x̃l) is

considered as a child node of x̃l if the cost c
∗(x̃l, x̃l,child) is the smallest compared to

costs c∗(x̃l,xl) from x̃l to other states xl ∈ V . The set L is the mask set containing

mask values of all states xl ∈ V in the form

L(xl) =

[{] 0 if c∗(xl,S,xl) > J∗

1 otherwise ,
(3.11)

where

J∗ =
P(xl,T)∑
xl=xl,S

c∗(xl, C(xl)) , (3.12)

is the total optimal cost of the collision-free trajectory from xl = xl,S to a sequence

of child nodes C(xl) that leads to the target state xl,T . This total cost is initialized

to J∗ = ∞ at the beginning of the algorithm, since a collision-free trajectory

from the initial state xl,S to the target state xl,T has not yet been found. Once the

optimal total cost J∗ is updated, the mask set L is used to prune the trajectory tree

T , i.e., the states whose corresponding masks are equal to zero are not considered

in the subsequent loop of the algorithm.

In lines 1-3, the algorithm is initialized by inserting the starting state xl,S into the

trajectory tree T . The stopping criterion is chosen to be the total allowed com-

puting time. In the following, important steps of the Alg. 1 are briefly explained.

First, the proposed algorithm randomly samples the flat output x̃l ∈ Xfree in each

iteration (line 6 in Alg. 1) with Xfree = Pfree × [zT, zT]× [uT,uT]. Here, z, z, u,

u are the lower and upper bounds of the system state and control input in (2.13).

Additionally, Pfree denotes the free space not occupied by the obstacles. In line 9

35 3 Sampling-based trajectory planning for a 3D gantry crane

of Alg. 1, the algorithm searches for the parent state x̃l,parent of the sampled state

x̃l by utilizing the best-first search algorithm, see, e.g., [55] and Alg. 2. In line 2 of

the best-first search algorithm in Alg. 2, the standard C++ PopQueue function is

utilized to take the first item of the set Q and to effectively reduce the size of this

set by removing this item. Note that the set Q is first initialized by the starting

state xl,S in line 7 of Alg. 1. Next, in line 4 of Alg. 2, the LocalPlanner, presented

in Section 3.2.2, is employed to compute the optimal cost ctemp and the feasibility

flag cflag from a state in Q to the sampled state x̃l. This process is repeated until

the parent state x̃l,parent of the sampled state x̃l is chosen.

Next, in line 10 of Alg. 1, the feasibility condition Xf̂c
(x̃l) is verified if the sampled

state x̃l provides a better solution than the current total cost J∗. The set Xf̂c
, also

named “informed set”, reads as

Xf̂c
=

{
f̂c(x̃l) < J∗

}
, (3.13)

where

f̂c(x̃l) = ĉ(xl,S, x̃l) + c∗(x̃l,xl,T) , (3.14)

and

ĉ(xl,S, x̃l) =

P(x̃l)∑
xl=xl,S

c∗(xl, C(xl)) (3.15)

is the optimal cost incurred by moving the system from the starting state xl,S

through all corresponding child states to the sampled state x̃l. Once the condition

of the informed set Xf̂c
is satisfied for x̃l, in line 12 of Alg. 1, the sampled state

x̃l and its corresponding cost ĉ(xl,S, x̃l) and c∗(x̃l,xl,T) (3.15) are appended to the

set V .
In lines 14-19 of the Alg. 1, the rewiring process is performed after inserting the

sampled state x̃l. This process is essential because the newly added state x̃l may

be a parent state of some states in V . Only states xl ∈ V that have the non-

zero corresponding mask value L(xl), see (3.11), are considered for the rewiring

process. Here, the newly added state x̃l is considered as the parent state of xl, if

the condition c∗(xl,parent,xl) > c∗(x̃l,xl) holds, see line 16 in Alg. 1. Then, the

parent and child sets are updated in lines 17-18 of Alg. 1.

In lines 21-22 in Alg. 1, the proposed algorithm is checked to ensure that the

3 Sampling-based trajectory planning for a 3D gantry crane 36

sampled state x̃l can be connected to the target state xT via a collision-free and

dynamically feasible trajectory. If so, in line 23 of Alg. 1, the total cost

J∗ = ĉ(xl,S, x̃l) + c∗(x̃l,xl,T) (3.16)

is updated where ĉ(xl,S, x̃l) can be obtained via (3.15). Subsequently, the mask

values for each state xl ∈ V are also updated in line 29 of Alg. 1. Note that this

set of masks L helps to prune the tree T . The advantage of this procedure is

twofold. First, this procedure helps to reduce the number of states to be checked

during the BFS process in Alg. 2. Second, any state with a mask value of zero can

be eliminated since it does not contribute to finding a better solution. To enrich

the trajectory tree T , the proposed algorithm is processed in parallel to generate

different trajectory tree stacks. Then, these trees are concatenated to form a single

trajectory tree T .

Note that the proposed algorithm can be viewed as a subclass of “anytime” algo-

rithms that quickly finds a feasible (but not necessarily optimal) trajectory and

gradually improves the solution over time towards global optimality, see, e.g., [12].

This “anytime” property can be achieved thanks to the structure of the trajectory

tree T , which contains extensive information about the relationship between the

considered robot system and the environment. Alg. 3 presents the replanning algo-

rithm that takes into account the change of the target state xl,T . When the target

state is changed from xl,T to xl,Tnew , the refinement process updates the associated

costs of all states in the set V , see line 4 of Alg. 3. Then, similar to (3.16), the

optimal total cost is recomputed if a state xl ∈ V can be connected collision-free

to the new target state xl,Tnew , see line 7 of Alg. 3. After the optimal cost J∗ is

determined, the mask set L is updated (in lines 13-15 of Alg. 3). If the trajectory

tree T is dense enough and the deviation of the new target state from the original

target state is small, the proposed algorithm can quickly find a feasible solution

and gradually improve the solution.

3.3 Simulation results

The simulation was performed using MATLAB R2021b on a desktop computer

with 3.4 GHz Intel Core i7 and 32GB RAM. Simulations were performed with

the two scenarios depicted in Fig. 3.1. Without loss of generality, all obstacles are

37 3 Sampling-based trajectory planning for a 3D gantry crane

Algorithm 1: Flat-informed RRT* trajectory planning

Input: (xl,S,xl,T) ∈ Xfree

Output: T = {V ,P , C,L}
1 V ← {xl,S, 0, c

∗(xl,S,xl,T)}
2 P ← ∅, C ← ∅, L(xl,S) ← 1
3 J∗ ← ∞;
4 while NotStopCriteria do
5 while NotFeasibleSample do
6 x̃l ← GetRandomSample(Xfree)
7 Q ← xl,S

8 #perform the best-first search (BFS) in Alg. 2
9 x̃l,parent ← BFS(Q, x̃l)

10 NotFeasibleSample = f̂c(x̃l) ̸= 1

11 end
12 V ← {x̃l, ĉ(xl,S, x̃l), c

∗(x̃l,xl,T)}
13 P(x̃l) ← x̃l,parent , C(x̃l,parent) ← x̃l

14 #perform the rewiring process
15 for xl ∈ V and L(xl) = 1 do
16 if c∗(xl,parent,xl) > c∗(x̃l,xl) then
17 P(xl) ← x̃l, C(x̃l) ← xl

18 C(xl,parent) ← C(xl,parent) \ xl

19 end

20 end
21 c∗(x̃l,xl,T), cflag ← LocalPlanner(x̃l,xT)
22 if cflag = 1 then
23 J∗

temp ← ĉ(xl,S, x̃l) + c∗(x̃l,xl,T)

24 if J∗
temp < J∗ then

25 J∗ ← J∗
temp

26 #pruning process
27 for xl ∈ V do
28 if c∗(xl,S,xl) > J∗ then
29 L(xl) ← 0
30 end

31 end

32 end

33 end

34 end

3 Sampling-based trajectory planning for a 3D gantry crane 38

Algorithm 2: Best-first search (BFS) algorithm

Input: Q, x̃l

Output: x̃l,parent

1 cmin = ∞
2 while isNotEmpty(Q) do
3 xl,min ← PopQueue(Q)
4 ctemp, cflag ← LocalPlanner(xl,min, x̃l)
5 if cflag = 1 ∧ ctemp < cmin then
6 x̃l,parent ← xl,min

7 cmin ← ctemp

8 Q ← C(xl,min)

9 else

10 end
11 Q ← C(xl,min)

12 end

Algorithm 3: Update tree T w.r.t. a new target state

Input: T ,xl,tnew ∈ Xfree

Output: T
1 J∗ ← ∞
2 #recompute the trajectory cost J∗

3 for xl ∈ V do
4 c∗(xl,xl,Tnew), cflag ← LocalPlanner(xl,xl,Tnew)
5 if cflag = 1 then
6 if ctemp + c∗(xS,xl) < J∗ then
7 J∗ ← ctemp + ĉ(xS,xl)
8 end

9 end

10 end
11 #pruning process
12 for xl ∈ V do
13 if c∗(xl,S,xl) > J∗ then
14 L(xl) ← 0
15 end

16 end

39 3 Sampling-based trajectory planning for a 3D gantry crane

0

1

0.5

3
0.5

2

1

1
0

0

0 0.5 1 1.5 2 2.5 3

0

0.5

1

(a)

(b)

x in m

y in m

x in m

y in m

z in m

Figure 3.2: Scenario 1: Collision-free path from a starting state (green dot) to a
target state (red dot) resulting as a solution of Algorithm 1. The grey asterisks are
the flat output states in the trajectory tree. (a) Path in the xy-plane. (b) Path in
3D space.

3 Sampling-based trajectory planning for a 3D gantry crane 40

0 0.5 1 1.5 2 2.5 3

0

0.5

1

0

0.5

1

1

0.5
3

2.5
2

1.5
0 1

0.5
0

(a)

(b)

x in m

y in m

x in m

y in m

z in m

Figure 3.3: Scenario 2: Collision-free path from a starting state (green dot) to a
target state (red dot) resulting as a solution of Algorithm 1. The grey asterisks are
the flat output states in the trajectory tree. (a) Path in the xy-plane. (b) Path in
3D space.

41 3 Sampling-based trajectory planning for a 3D gantry crane

Table 3.1: Obstacle parameters.

(a) Scenario 1 in Fig. 3.1(a)

Obstale number
Cartesian position

TT
i

Dimension
pT
i

1 [1.5, 0.1, 0] [0.35, 0.75, 0.75]
2 [0.75, 0.5, 0] [0.35, 0.75, 0.75]

(b) Scenario 2 in Fig. 3.1(b)

Obstale number
Cartesian position

TT
i

Dimension
pT
i

1 [0.735, 0.20, 0] [0.72, 0.3, 0.75]
2 [0.65, 0.94, 0] [0.63, 0.13, 0.75]
3 [1.65, 0.35, 0] [0.35, 0.45, 0.75]

on the ground and aligned with the x-, y-, and z-axis of the world coordinate

system. The obstacles’ positions and dimensions are introduced in Tab. 3.1, where

pT
i = [wi, hi, di] contains the width wi, the height hi, and the depth di of the ith

obstacle at the location TT
i = [Ti,x, Ti,y, Ti,z], see Fig. 3.1.

The starting and target positions of the 3D gantry crane payload in both scenarios

are rS = [0.19, 0.065, 0.7]T and rT = [2.5, 1, 0.2]T, respectively.

The proposed flat-informed sampling-based trajectory planning takes random sam-

ples of the flat initial system state x̃l and builds the tree T according to Alg. 1.

To connect a randomly sampled system state x̃l with a point in the trajectory

tree T , the local planner LQMT from Subsection 3.2.2 was employed where the

user-defined weighting matrix R = 10−1I3 with the identity matrix I3, was chosen.

In both scenarios, the total allowed planning time tplan of 30 s was used as the

termination criterion, i.e. it is the maximum time allowed to build the tree T .

To calculate the distance from each point in the workspace to the obstacles, the

two scenario maps are discretized into equidistant 3D voxel grids of 0.01m in

each dimension and the value 1 is assigned to all voxels occupied by an obstacle.

Successively, the fast Euclidean distance transform (EDT), see [56], was used to

check whether the trajectory of the payload is obstacle-free or not.

Figs. 3.2 and 3.3 show collision-free paths from a payload start position (green dot)

to a payload target position (red dot) in the two scenarios 1 and 2, respectively.

In the first scenario, the optimal travel time ∆t∗ is 14.94 s and the optimal total

3 Sampling-based trajectory planning for a 3D gantry crane 42

−0.5

0

0.5

ṡ x
in

m
/s

−0.1

0

0.1

u
1
in

N
m

−0.4
−0.2

0
0.2
0.4

ṡ y
in

m
/s

−0.1

0

0.1
u
2
in

N
m

−0.2

0

0.2

ṡ z
in

m
/s

−0.2

−0.1

0

u
3
in

N
m

0 5 10 15

−2
0

2

time in s

α
in

◦

0 5 10 15

−2
0

2

time in s

β
in

◦

Planned trajectory Constraint

Figure 3.4: Scenario 1: Time evolution of the states and control inputs of the
system (2.13).

43 3 Sampling-based trajectory planning for a 3D gantry crane

−0.5

0

0.5

ṡ x
in

m
/s

−0.1

0

0.1

u
1
in

N
m

−0.4
−0.2

0
0.2
0.4

ṡ y
in

m
/s

−0.1

0

0.1

u
2
in

N
m

−0.2

0

0.2

ṡ z
in

m
/s

−0.2

−0.1

0

u
3
in

N
m

0 5 10

−2
0

2

time in s

α
in

◦

0 5 10

−2
0

2

time in s

β
in

◦

Planned trajectory Constraint

Figure 3.5: Scenario 2: Time evolution of the states and control inputs of the
system (2.13).

3 Sampling-based trajectory planning for a 3D gantry crane 44

cost J∗ is 15.32. Although there are more obstacles in the second scenario, the

optimal travel time is shorter than in the first scenario with ∆t∗ = 11.36 s and the

optimal total cost J∗ is 12.5. Since the informed property (3.13) and the pruning

process (3.11) are employed in Alg. 1, random states which are behind the target

region are discarded since these states do not contribute to find a better trajectory.

Therefore, the density of the trajectory tree gradually decreases towards the target

region.

Fig. 3.4 and 3.5 illustrate the time evolution of the corresponding states ṡx, ṡy, ṡz,

α and β, together with the three control inputs u1, u2 and u3 of the 3D gantry

crane system (2.13). Note that the state and input constraints according to (3.13),

shown as black dashed lines, are well respected.

Table 3.2: Performance for different maximum allowed planning times tplan for the
considered scenarios.

Scenario 1
tplan 30 s 50 s 100 s 200 s
∆t∗ 14.94 12.54 12.84 11.24
J∗ 15.32 13.96 13.79 12.05
|T | 1102 1372 1979 2955

Scenario 2
∆t∗ 11.36 10.94 9.42 8.97
J∗ 12.5 11.83 10.23 9.75
|T | 874 998 1049 942

Table 3.2 shows the performance of the proposed algorithm for different maximum

allowed planning times tplan for both scenarios. Note that in this Monte Carlo

simulations, the proposed algorithm is processed in parallel on 8 CPU cores. After

the maximum allowed time tplan elapses, all trees generated by the different CPU

cores are merged into a single tree. Overall, Tab. 3.2 shows that the travel time

and the total cost J∗ decrease when the proposed algorithm is given a longer

planning time tplan. The size of the trajectory tree is denoted by |T |. In the classical

RRT* algorithm, increasing the planning time leads to a more complex data tree.

However, the proposed algorithm uses the informed set (3.13) and performs the

pruning procedure (3.11), which reduces the complexity of the trajectory tree. For

example, in Table 3.2 of scenario 2, although the planning time tplan is increased

from 100 s to 200 s, the size of the trajectory tree |T | is reduced from 1049 nodes

45 3 Sampling-based trajectory planning for a 3D gantry crane

to 942 nodes. This also helps to increase the computational speed compared to the

classical RRT* algorithm.

In both scenarios, the proposed algorithm not only provides a smooth flat output

trajectory that can be used to parameterize the system state using (2.22) and

(2.23), but also makes available the trajectory tree T that can be reused in the

replanning process in Alg. 3 when the target state is changed. If a new target

state is obtained, the trajectory tree T is updated by recalculating the costs of

the trajectory points in the set V with respect to the new target state. In case

the current trajectory tree can generate a collision-free and dynamically feasible

trajectory to the new target state, the remainder of the tree T remains unchanged.

Otherwise, Alg. 1 is processed again with the current trajectory tree as the initial

tree. This property is presented in the following simulations.

Figs. 3.6 and 3.7 show the replanned trajectories from the initial payload position

(green dot) to random target payload positions (red asterisks) in a certain region

of possible target positions for the two scenarios. The new target position rTnew is

randomly chosen according to the current target state rT = [rT,x, rT,y, rT,z]
T in the

form

rTnew =

[]]]]
rTnew,x

rTnew,y

rTnew,z

]]]]] =

[]]]]
rT,x − 0.3 + 0.6 · rand()
rT,y − 0.3 + 0.6 · rand()
rT,z − 0.3 + 0.6 · rand()

]]]]] , (3.17)

where the function rand() returns a uniform distributed random number in the

range of [0, 1].

The blue trajectories are the initial obstacle-free trajectories and the green tra-

jectories are the replanned trajectories to the new target payload positions. In

this simulation, the trajectory tree does not need to be recalculated because the

computed tree T is dense and all generated paths are collision-free and smooth

in both scenarios. However, even small deviations can lead to drastically different

paths, due to the dynamic constraints of the crane and the presence of obstacles.

As is shown in this example, the necessary information to deal with these changes

in the global optimization is captured by the tree. The average computation time

of the rescheduling process in scenarios 1 and 2 is 70ms and 50ms, respectively.

3 Sampling-based trajectory planning for a 3D gantry crane 46

0 0.5 1 1.5 2 2.5 3
0

0.5

1

(a) x in m

y in m

0

1

0.5
3

2.5
2

0.5

1.5
10

0.5
0

1

(b)

x in m

y in m

z in m

Figure 3.6: Scenario 1: Collision-free paths (green lines) for random target payload
positions in a certain region of possible target positions. The blue path is the initial
collision-free path of the tree. Red asterisks denote the random target payload
positions. (a) Paths in the xy-plane. (b) Paths in 3D space.

47 3 Sampling-based trajectory planning for a 3D gantry crane

0 0.5 1 1.5 2 2.5 3
0

0.5

1
y in m

(a) x in m

0

1

0.5

30.5
2.5

2

1

1.5
10 0.5

0

y in m

z in m

(b)
x in m

Figure 3.7: Scenario 2: Collision-free paths (green lines) for random target payload
positions in a certain region of possible target positions. The blue path is the initial
collision-free path of the tree. Red asterisks denote the random target payload
positions. (a) Paths in the xy-plane. (b) Paths in 3D space.

3 Sampling-based trajectory planning for a 3D gantry crane 48

3.4 Conclusions

This section presents a sampling-based flat-informed RRT* trajectory planning

for a 3D gantry crane in an environment with static obstacles. The proposed al-

gorithm considers an informed set that helps to sample a state if that state leads

to an improvement in the overall trajectory cost. Moreover, the informed set indi-

rectly helps to reduce the computation time of the proposed trajectory planning

algorithm. A branch-and-bound technique is utilized to prune the trajectory tree

to reduce the computational complexity. Since a local planner is a core part of the

sampling-based method, the analytical solution of a linear quadratic minimum-

time problem was utilized. Moreover, the structure of the trajectory tree can be

quickly updated when the target state changes. This is useful in many practical

scenarios with repetitive tasks, such as picking up and dropping goods at a fac-

tory or port, where the trajectory tree can be reused instead of solving the entire

trajectory planning problem. The proposed trajectory planning method is in par-

ticular well suited for systems which feature the differential flatness property, such

as gantry cranes and unmanned aerial vehicles.

The proposed flat-informed RRT* can quickly generate replanned trajectories

when the targets are static and the allowable time for building the trajectory

tree and memory consumption are not major issues. However, in a scenario with

moving targets, the informed RRT* is not guaranteed to generate a re-planned

trajectory in real time. This because the entire trajectory tree may not be dense

enough to produce a feasible trajectory and leads to the need for regenerating

the entire trajectory tree, which takes more time. Therefore, the following section

proposes an optimization-based trajectory planning method whose real-time ca-

pability can be demonstrated both in simulation and experiment for the moving

target scenario.

4

Optimization-based trajectory

planning for a 3D gantry crane

This section presents an optimization-based trajectory planning algorithm for the

lab-scale 3D gantry crane in an environment with static obstacles and a dynam-

ically moving target. In the first step, an offline optimization-based trajectory

planner is implemented to compute a time-optimal, collision-free and dynamically

feasible trajectory database that connects all possible initial states from a prede-

fined starting subspace to the target states in a target subspace in the workspace

of the gantry crane. Second, the online trajectory replanning makes use of this

trajectory database to generate an optimal trajectory in real time that accounts

for changes in the target state. The proposed algorithm systematically takes into

account dynamic constraints and control input limits. To realize the proposed

trajectory planning algorithm in an experimental setup, a cascaded trajectory

tracking controller is developed which compensates for model inaccuracies, distur-

bances, and other non-modeled effects. Both simulation and experimental results

are performed to demonstrate the feasibility of the proposed trajectory planning

algorithm and the control concept. Large parts of this section are identical to the

author’s publication [21].

49

4 Optimization-based trajectory planning for a 3D gantry crane 50

4.1 Introduction

There are different concepts for solving motion planning problems in the litera-

ture which can be essentially divided into two major groups, i.e., sampling-based

approaches and optimization-based approaches. In the previous section, the flat-

informed RRT* was introduced, which is a sampling-based approach and allows

for fast replanning to a new target state. However, if the target is dynamically

changing, further post-processing and higher memory consumption are required,

which prevents the execution in real time.

Optimization-based methods are particularly useful for finding locally optimal tra-

jectories and systematically respecting the dynamic constraints of the system, see,

e.g., [57, 58]. Covariant Hamiltonian Optimization for Motion Planning (CHOMP),

developed by [59], is one of the most successful algorithms. The following key fea-

tures are considered by CHOMP. First, the trajectory costs are formulated to be

invariant w.r.t. the time parametrization of the discretized trajectory. Second, the

precalculated signed distance field (SDF), which relies on the Euclidean distance

transform (EDT) [56], provides the distance and gradient from each discretized tra-

jectory point to obstacle surfaces. The covariant Hamiltonian optimization solver

is utilized to find the locally optimal trajectory. CHOMP has proven its effective-

ness in several applications including the Little-Dog quadruped, PR2 robot, and

the HERB mobile manipulation platform, see, e.g., [59]. More recently, inspired

by CHOMP, [60] introduced the TrajOpt optimization open-source software pack-

age. There are two different points between CHOMP and TrajOpt, e.g., the ap-

proach for collision detection and the numerical optimization scheme. The obstacle

avoidance relies on the convex-convex collision checking approach, which takes two

shapes (e.g. the robot’s link and the obstacle) and computes the minimal trans-

lation between them by the Gilbert-Johnson-Keerthi (GJK) algorithm, see, [61].

Additionally, Sequential Quadratic Programming (SQP) is employed in the Trajopt

package as the numerical optimization. Here, the advantage of optimization-based

trajectory planning over flatness-based methods becomes noticeable in terms of

obstacle avoidance, sway suppression, and compliance with dynamic constraints,

state and control input limits. However, the computational time of optimization-

based trajectory planning is still too long for a real-time implementation on a

standard electronic control unit, see, e.g., [62, 63].

51 4 Optimization-based trajectory planning for a 3D gantry crane

In scenarios with repetitive tasks, the optimization-based trajectory planning can

be solved in a computationally more efficient way. For example, if the starting

and/or target states are only changed slightly, only the deviations from the previ-

ous trajectory need to be computed instead of running the full optimization. For

this reason, trajectory replanning algorithms are developed using dynamic mo-

tion primitives (DMPs) or Gaussian Mixture Models (GMMs), see, e.g., [64, 65].

However, the computation of GMMs and DMPs becomes inefficient in a high-

dimensional state space. For the considered lab-scale 3D gantry crane, the di-

mension of the state space is 10. Moreover, GMM- and DMP-based approaches

typically neglect state constraints and control input limitations. Therefore, these

concepts are not suitable for the considered application.

In this section, the following scenario is considered. A 3D gantry crane has to move

goods or material from one dedicated place (starting space XS) to another place

(target space XT) in a static environment with known obstacles. The task is to

plan a time-optimal trajectory from a given starting point to a given target point,

which systematically accounts for both the obstacles and the dynamic constraints

on the state variables and control inputs. The focus is to compute a solution that

allows a very fast (re)planning if the starting and/or target point are changing.

Additionally, the proposed online trajectory planner should be also able to handle

moving targets.

The proposed two-step trajectory planning algorithm is briefly introduced as fol-

lows. First, an offline optimization-based trajectory planning is utilized to build a

time-optimal and dynamically feasible trajectory database that connects points in

the starting space XS with points in the target space XT . Then, a fast search algo-

rithm is employed to quickly look up the relevant offline trajectory in the database

which is then used for the online trajectory optimization in the second step. This

online trajectory replanner uses a quadratic programming solver to generate a

trajectory in real time when the target state is moving.

Together with the trajectory planning, the trajectory tracking controller also plays

an important role for the 3D gantry crane system. In the literature, the mathemati-

cal model of a gantry crane is often decomposed into the slow pendulum subsystem

and the fast subsystem which contains the dynamics of the trolley and the hoist

drum, see, e.g., [29, 27]. Thus, the trajectory tracking controller typically relies on

a cascaded structure, in which the outer loop of the cascaded trajectory tracking

4 Optimization-based trajectory planning for a 3D gantry crane 52

controller keeps the unactuated angles of the hoist cable around the desired trajec-

tory. The inner control loop provides tracking of the desired payload trajectory, see,

e.g., [29, 27, 66]. In these works, the system state and control input constraints are

not directly considered. Thus, there is room for improving the cascaded controller

design by using a control scheme that systematically accounts for these constraints,

i.e., a model predictive control. This feature of the controller, proposed in Section

4.3, is particularly important for the system to navigate around obstacles and for

suppressing sway of the payload.

In recent literature for automated cranes, e.g., [67, 68], the trajectories for a 3D

gantry crane are calculated offline and tested in simulations. In contrast, the pro-

posed algorithm in this work generates collision-free trajectories online, and is

validated by experiments. Moreover, in comparison with the most successful prac-

tical studies, e.g., [5, 17], the proposed combined method has the ability to generate

near time-optimal dynamically feasible trajectories online for scenarios with ob-

stacles and a moving target. In addition, both the fast trajectory planning and

the trajectory tracking controller systematically take into account the system con-

straints and control input limits, which is also experimentally validated in this

section.

This section is organized as follows. In Section 4.2, the novel two-stage trajectory

planning algorithm is presented. Section 4.3 introduces the details of the cascaded

control concept including a model predictive controller (MPC). Simulations and

experiments are presented in Section 4.4. Finally, the last section gives some con-

clusions.

4.2 Two-step trajectory planning

In this section, the fast trajectory planning algorithm is presented, which consists

of an offline trajectory optimization to build up a trajectory database, a fast search

algorithm to search within this trajectory database, and an online trajectory re-

planner. Note that the mathematical modeling of the 3D gantry crane is presented

in Section 2.1.

53 4 Optimization-based trajectory planning for a 3D gantry crane

4.2.1 Offline trajectory optimization

The general task of a gantry crane is to transport the payload from a starting

(initial) state zS to a target state zT in a minimum time tF , while respecting the

constraints on the state variables and control inputs and avoiding collisions with

obstacles. Essentially, the approaches for solving trajectory optimization problems

known from the literature can be classified into direct and indirect methods. A

core feature of direct methods is formulate the trajectory optimization problem as

a nonlinear program. Thus, the trajectory of the 3D gantry crane is discretized in

time with N +1 grid points, the so called collocation points. By using trapezoidal

direct collocation, see, e.g., [69], [70], the system dynamics (2.13) serve as nonlinear

constraints (4.1b) and the nonlinear optimization problem for offline trajectory

planning is formulated as

min
ξ

tF +
1

2
h

N−1∑
k=1

m∑
i=1

φi(qk) (4.1a)

s.t. zk+1 − zk =
1

2
h(fk + fk+1) (4.1b)

z0 = zS, zN = zT (4.1c)

z ≤ zk ≤ z, k = 0, ..., N (4.1d)

u ≤ uk ≤ u, k = 0, ..., N, (4.1e)

where (4.1a) is the objective function with the final time tF and the time step

h = tF/N . Moreover, (4.1c) refers to the desired starting and target state, and

(4.1d), (4.1e) reflect the state and input constraints. Additionally, z, z, u, and u

denote the lower and upper bounds of the state variables zTk = [qT
k , q̇

T
k] and control

input uk, k = 0, ..., N . Note that the sway of the payload can be kept small by

adjusting the admissible range for αk and βk in (4.1d). The index k in (4.1) refers

to the discrete-time step t = kh. Henceforth, ξ contains all optimization variables

ξT = [tF , z
T
0 , ..., z

T
N ,u

T
0 , ...,u

T
N] ∈ R1+13(N+1). (4.2)

The expression φi(qk) in (4.1a) is an artificial potential function, which is formu-

lated in a convex and smooth way and is evaluated at the collocation points qk,

k = 0, ..., N − 1, for avoiding collisions with obstacles i = 1, ...,m, in the operating

range of the 3D gantry crane. The detailed formulation of the artificial potential

4 Optimization-based trajectory planning for a 3D gantry crane 54

function is given in Section 4.2.2.

The interior point method (IPM) solver from the open source package Interior

Point OPTimize (IPOPT) [71] is used to solve the optimization problem (4.1).

Automatic differentiation (AD) is applied to compute the analytical gradients and

the Hessian functions of the objective function (4.1a) and the constraint function

(4.1b).

4.2.2 Collision avoidance

In this section, the artificial potential functions φi, i = 1, ...,m, are introduced.

As illustrated in Fig. 4.1, obstacles are considered to be bounded by boxes with

the parameter vector pi = [wi, hi, di]
T containing the width wi, the height hi, and

the depth di of the box along the x-, y-, and z-axis in the box frame Oi of the

i-th box, i = 1, ...,m. Furthermore, the location of the obstacles is known with

the translation vector Ti and the rotation matrix Ri w.r.t. the world frame W .

Recalling (2.17), the position of the center of mass (CoM) of the payload described

in the world frame W is denoted by r and is associated with a trajectory point

qT = [sx, sy, sz, α, β] in the form

r(q) =

[]]]]
sx + sin(β) cos(α)sz − sin(β)h1

sy − sin(α)sz − b1

cos(β) cos(α)sz − cos(β)h1

]]]]] , (4.3)

with the parameters h1 and b1 depicted in Fig. 2.2. This CoM position can be

expressed in the i-th box frame Oi as

rOi
= RT

i

(
r−Ti

)
. (4.4)

A point q on the trajectory is considered as obstacle-free if and only if the condition

S̄i(q) = min(∆pi,j)j=1,2,3 < 0 (4.5)

is satisfied, where ∆pi,j(q) is the j-th component of the vector

∆pi =

(
rOi

)
◦
(
pi − rOi

)
. (4.6)

55 4 Optimization-based trajectory planning for a 3D gantry crane

2.5

20

1.5
1

0.5

1

1

0.5
0.5

0 0

{Oi}

{Oi+1}

Ti+1

Ti

{W}
Figure 4.1: Illustration of the obstacles in the working space and their coordinate
frames.

The operator ◦ in (4.6) refers to the element-wise product. The artificial potential

function is defined in the form

φ̄i(q) = max(γiS̄i(q), 0), (4.7)

where γi > 0, i = 1, ...,m, is a user-defined scaling parameter. In order to render the

potential function (4.7) with (4.5) sufficiently smooth, the LogSumExp function

is employed, see, e.g., [72, 73], resulting in

Si(q) =
1

η1
log

(
3∑

j=1

eη1∆pi,j

)
(4.8a)

4 Optimization-based trajectory planning for a 3D gantry crane 56

φi(q) =
1

η2
log

(
1 + eη2γiSi(q)

)
, (4.8b)

with the so-called softness coefficients η1 < 0 and η2 > 0. Additionally, the analytic

gradient of the potential function φi(q) reads as

∂φi(q)

∂q
= γi

eγiη2Si(q)

1 + eγiη2Si(q)

∂Si(q)

∂q
, (4.9)

with
∂Si(q)

∂q
=

3∑
j=1

eη1∆pi,j(q)∑3
j=1 e

η1∆pi,j(q)

∂∆pi,j(q)

∂q
. (4.10)

In order to create a safety margin around the obstacles, the margin δ = [δx, δy, δz]
T

is added in the form pi = [wi + δx/2, hi + δy/2, di + δz/2]
T and Ti is replaced by

Ti − δ/2. Finally, the artificial potential functions φi of all obstacles i = 1, ...,m

are combined by simply forming the sum
∑m

i=1 φi. Note that the proposed obstacle

avoidance does not directly consider the collision with the ropes. However, in the

optimization problem (4.1), the two sway angles α and β are restricted to a small

range of ± 0.05 rad (≈ ±3◦). This together with the safety margin reduce the risk

of rope collisions with the obstacles.

4.2.3 Trajectory database

Although the offline trajectory planner in Section 4.2.1 is able to compute the

optimal trajectory very quickly, with an average time of 50ms for one trajectory

with the desired convergence tolerance of 10−8, this computation time is still not

sufficient for the considered real-time application. A gantry crane often performs

repetitive tasks, which means that many similar trajectories have to be tracked

during a work shift. Therefore, it suggests itself to reuse the previous trajectories in

the form of an offline trajectory database. Since (4.1) only leads to locally optimal

solutions and the obstacle potential functions φi, i = 1, ...,m, are represented

as soft constraints in the objective function (4.1a), the solution of (4.1) might

be trapped in a local minimum and may violate the obstacle constraint. In this

case, (4.1a) is recomputed with a different random initial guess. In this way, we

ensure that all trajectories in the offline database are collision-free and dynamically

feasible. Note that the average computation time of 50ms for one trajectory in

57 4 Optimization-based trajectory planning for a 3D gantry crane

starting subspace XS

target su
bspace XT

x in m

z in m

y in m
obstacles

Figure 4.2: Illustration of the two subspaces XS and XT .

the offline database consisting of 104 optimal trajectories includes the violation

checking and recomputation.

Without loss of generality, the starting subspace XS is assumed to cover the entire

workspace, while the target subspace XT covers the workspace of a moving target,

in our case a moving truck on the ground which is represented by a plane parallel to

the bottom of XS, as shown in Fig. 4.2. For each subspace, a grid with equal spacing

is chosen. Then, the offline trajectory planner is used to plan offline trajectories

from each of the nS grid points of the starting subspace XS (starting state zTS =

[qT
S ,0] in (4.1c)) to each of the nT grid points in the target subspace XT (target

state zTT = [qT
T ,0] in (4.1c)), in total nSnT trajectories. The forward kinematics

(4.3) computes the position of the center of mass r(q) of the payload based on the

five degrees of freedom q. In addition, each trajectory in the database is represented

by two labels containing the position rS = r(qS) in the Cartesian space of the

starting state zS and the position rT = r(qT) in the Cartesian space of the target

state zT .

In order to efficiently search for the nearest trajectory, an offline database is con-

structed using the two labels for each trajectory according to the k-d tree algorithm

[74], which is a well-known space partitioning data structure for partitioning and

organizing points. The search complexity of this algorithm for N labels in the

database is O(logN) compared to O(N) for an unprocessed database, see, e.g.,

[75].

4 Optimization-based trajectory planning for a 3D gantry crane 58

r1T r2T rnT
T

XT

XS

r1S r2S rnS
S

ξ∗11 ξ∗12 ξ∗1nS
ξ∗21 ξ∗22 ξ∗2nS

ξ∗nT 1 ξ∗nT 2 ξ∗nTnS

XS

r1S r2S rnS
S

XS

r1S r2S rnS
S

Ξ1 Ξ2 ΞnT

Figure 4.3: Offline database structure.

The offline database structure is shown in Fig. 4.3, where the labels in XT are

denoted by

XT = {r1T , r2T , . . . , rnT
T }

and the labels in XS by

XS = {r1S, r2S, . . . , rnS
S }.

The third layer of the offline database contains the time-optimal offline trajectories

Ξi = [ξ∗ij] ∈ R[1+13(N+1)]×nS with i = 1, . . . , nT and j = 1, . . . , nS connecting

the Cartesian positions riS and rjT , see (4.1) and (4.2). The details of the search

algorithm are presented in the next subsection.

4.2.4 Online trajectory replanner

The online trajectory replanner computes the optimal trajectory according to the

following procedure. After receiving the command to start the motion from the

starting state z̃S to the target state z̃T , the online trajectory replanner first searches

the trajectory database to find the closest trajectory. Later in this subsection, we

will thoroughly explain what we exactly mean with the term closest. For this,

we will specify the metrics used for measuring distances. Then, linear constrained

quadratic programming is applied to minimize the deviation from the offline tra-

jectory while satisfying the dynamic constraints of the 3D gantry crane. To achieve

fast trajectory replanning in real time, a computationally efficient algorithm for

the search task is summarized in Alg. 4 and presented next.

In the first step of Alg. 4, the target position and the target state are predicted for

59 4 Optimization-based trajectory planning for a 3D gantry crane

Algorithm 4: Retrieving offline trajectory in database

1 Function FastRetrievingOfflineTrajectory(rcurrT ,vcurr
T , zcurrS):

2 r̂T , ẑT ← TargetStatePrediction(rcurrT ,vcurr
T , Ts,2)

3 r̂S, ẑS ← StartingStatePrediction(zcurrS , Ts,2)
4 i ← knnsearch(XT , r̂T)
5 if IsTargetStationary(r̂T , r̂

prev
T) then

6 if IsTheFirstSearch then
7 j ← knnsearch(XS, r̂S)
8 ξ∗ = ξ∗ij
9 end

10 else
11 (ξ∗ij, l) = knnsearch(Ξi, ẑS)

12 ξ∗ = TrajectoryRefinement(ξ∗ij, l)
13 end
14 return ξ∗

one sampling time Ts,2 of the trajectory replanner denoted by r̂T and ẑT , based on

the current target position rcurrT and velocity vcurr
T . For this prediction, it is assumed

that the target velocity vcurr
T remains constant for the sampling time Ts,2. Similarly,

in line 3 of Alg. 4, the predicted starting position r̂S and the predicted state ẑS are

estimated using the current starting state zcurrS measured by encoders. Once the

predicted target state r̂T is obtained, the search algorithm k nearest neighbor (k-

nn) [76] is employed to find the index i of the offline target state riT , i = 1, ..., nT ,

in XT that is closest in the sense of the smallest Euclidean distance ||r̂T − riT ||2
to the predicted target position r̂T , see line 4 of Algorithm 4. By comparing the

predicted state r̂T with the previous predicted state r̂prevT , the search algorithm

can detect whether the target is moving or stationary. At this point, the search

algorithm distinguishes between two cases:

❼ If the target state is stationary and the trajectory replanning algorithm was

not executed before, the k-nn search is applied to find the index j of the

closest starting position to r̂S, see line 7 in Algorithm 4 and Fig. 4.3. Using the

two indexes i, j of the label in XS and XT , respectively, the closest trajectory

ξ∗ij is directly taken from the database.

❼ If the target moves, the k-nn search must be executed in the trajectory set

Ξi (line 11 of Algorithm 4). In this case, the predicted starting point is

4 Optimization-based trajectory planning for a 3D gantry crane 60

normally not a stationary point, but ẑTS = [q̂T
S ,

˙̂qT
S], with

˙̂qS ̸= 0. Thus,

the closest starting state in the trajectory database is obtained from the

trajectory set Ξi by choosing those trajectory ξ∗ij, j = 1, ..., nS, which has a

collocation point (z∗ij,l)
T = [(q∗

ij,l)
T, (q̇∗

ij,l)
T], see (4.2), that is closest to ẑS in

the weighted Euclidean distance metric

||q∗
ij,l − q̂S||2 + ||diag(ρn, n = 1, ..., 5)(q̇∗

ij,l − ˙̂qS)||2,

with the user-defined weighting parameter ρn > 0, n = 1, ..., 5. Since the

range of the system state q ≤ q ≤ q and of the system state velocity

q̇ ≤ q ≤ q̇ are different, ρn is chosen to normalize the velocity error with

respect to the state error in the form ρn =
qn − qn

q̇n − q̇n
, n = 1, ..., 5. Note that the

sway angles α, β and the angular velocities α̇, β̇ are also considered in this

case, since the algorithm considers the whole state ẑS. There are two return

variables j and l of the k-nn search in line 11 of Algorithm 4, where j is the

index of the retrieved trajectory ξ∗ij in Ξi and l is the index of the closest

state z∗l of this offline trajectory ξ∗ij. At this point, the closest trajectory from

the offline database reads as

(ξ∗)T = [
l

N
t∗F , (z

∗
l)

T, . . . , (z∗N)
T, (u∗

l)
T, . . . , (u∗

N)
T]. (4.11)

Note that only a segment of the whole offline trajectory ξ∗ij is used in (4.11)

and therefore the number of grid points of (ξ∗) is reduced to N − l+1. Since

the number of (N + 1) grid points is fixed during the computation of the

online trajectory replanner, an interpolation scheme has to be employed in

line 12 of Algorithm 4. Between two adjacent collocation points k and k+1,

with k = l, ..., N−1, the input u∗(t) and the state z∗(t) for t = [kh∗, (k+1)h∗],
are interpolated as linear and quadratic splines, respectively, i.e.,

z∗(t) ≈ z∗k + (t− kh∗)f∗k +
(t− kh∗)2

2h∗ (f∗k+1 − f∗k), (4.12a)

u∗(t) ≈ u∗
k +

t− kh∗

h∗ (u∗
k+1 − u∗

k), (4.12b)

for k = l, ..., N − 1, with h∗ = t∗F/N .

For brevity, the same notation as in (4.2) is used after the refinement of the closest

61 4 Optimization-based trajectory planning for a 3D gantry crane

trajectory (4.11). To this end, the trajectory is expressed as

(ξ∗)T = [t∗F , (z
∗
0)

T, . . . , (z∗N)
T, (u∗

0)
T, . . . , (u∗

N)
T]. (4.13)

Recalling the system dynamics condition (4.1b) for the closest offline trajectory,

the relation

z∗k+1 = z∗k +
t∗F
2N

(f∗k + f∗k+1) (4.14)

holds.

In the following, the online trajectory replanner is explained in detail. Assuming

that the number of grid points in the starting and target subspace is sufficiently

dense, only small deviations

δξT = [δtF , (δz0)
T,, (δzN)

T, (δu0)
T, ..., (δuN)

T]

need to be taken into account to compute the new trajectory connecting the pre-

dicted starting state ẑS with the predicted target state ẑT . The first-order lin-

earization of the discrete-time system dynamics (4.1b) w.r.t. the closest database

trajectory ξ∗ reads as

z∗k+1 + δzk+1 = z∗k + δzk +
t∗F + δtF

2N

(
f∗k + Γz

kδzk + Γu
kδuk

+ f∗k+1 + Γz
k+1δzk+1 + Γu

k+1δuk+1

)
,

(4.15)

with δzk = zk − z∗k, δuk = uk − u∗
k, δtF = tF − t∗F , and

Γz
k =

∂f

∂z

||||
z∗k,u

∗
k

, Γu
k =

∂f

∂u

||||
z∗k,u

∗
k

for k = 0, ..., N − 1. Note that the state deviations at k = 0 and k = N are fixed

by

δz0 = ẑS − z∗0 (4.16a)

δzN = ẑT − z∗N (4.16b)

due to the predicted starting and target state ẑS and ẑT . Inserting (4.14) into

4 Optimization-based trajectory planning for a 3D gantry crane 62

(4.15) and neglecting the terms containing a product of deviation variables, the

constraint function reduces to

δzk+1 = δzk +
t∗F
2N

(
Γz

kδzk + Γu
kδuk + Γz

k+1δzk+1 + Γu
k+1δuk+1

)
+

δtF
t∗F

(z∗k+1 − z∗k).

(4.17)

In a more compact form, (4.17) is rewritten as

Ck+1xk+1 = Akxk, (4.18)

where

Ck+1 =

[]]I− h∗

2
Γz

k+1 −h∗

2
Γu

k+1 0

0 0 1

]]] ,

Ak =

[]]I+ h∗

2
Γz

k

h∗

2
Γu

k

z∗k+1 − z∗k
t∗F

0 0 1

]]] ,

xk =

[]]]]
δzk

δuk

δtF,k

]]]]] ,

and h∗ =
t∗F
N

. For simplicity, only one variable for the final time δtF in (4.15) was

introduced instead of δtF,k, k = 0, . . . , N − 1, which is why δtF,k+1 = δtF,k. The

deviation vector ξk is obtained as the solution of a linear constrained quadratic

program (LCQP) of the form

min
xk

1

2

N−1∑
k=1

xT
kQkxk (4.19a)

s.t. Ck+1xk+1 = Akxk, k = 0, ..., N − 1 (4.19b)

xk ≤ xk ≤ xk, k = 0, ..., N , (4.19c)

with (4.16) and the positive definite weighting matrix

Qk = diag(Qzk ,Quk
, QtF). (4.20)

63 4 Optimization-based trajectory planning for a 3D gantry crane

With the choice of QtF > 0 and the positive definite submatrices Qzk and Quk
,

the deviation of the online trajectory from the selected database trajectory (4.13)

can be specifically weighted in the objective function (4.19a) w.r.t. the travel time

tF , the state zk, and the control input uk, respectively. The inequality condition

(4.19c) corresponds to (4.1d) and (4.1e), where

xk
T = [zk

T − (z∗k)
T,uk

T − (u∗
k)

T, δtF],

xk
T = [zk

T − (z∗k)
T,uk

T − (u∗
k)

T, δtF],

for k = 1, . . . , N −1, and δtF and δtF is a sufficiently large upper and lower bound

for δtF , respectively. Note that the equality constraints in (4.16) must be taken

into account by taking the same values for the lower and upper bounds of the

corresponding variables in the form

x0
T = [δzT0 , δu

T
0 , δtF], x0

T = [δzT0 , δu
T
0 , δtF] ,

xN
T = [δzTN , δu

T
N , δtF], xN

T = [δzTN , δu
T
N , δtF] .

It is important to keep δqk of δzTk = [δqk, δq̇k] close to zero if the corresponding

collocation points q∗
k on the selected database trajectory are already close to one

of the obstacles. Therefore, the submatrix Qqk
of the weighting matrix Qzk =

diag(Qqk
,Qq̇k

) in (4.20) is adjusted depending on the distance of the corresponding

payload position r(q∗
k) to an obstacle. Note that instead of calculating the exact

distance, the artificial potential functions φi(q), i = 1, ...,m, according to (4.8),

see also (4.1), serve as a basis to indirectly consider the obstacles in (4.19a). In

particular, the Hessian of the artificial potential function is used to adjust the

weighting matrix Qqk
in the form

Qqk
= Qq + λ

∂2

(∑m
i=1 φi,k(qk)

)
∂q2

k

||||||
q∗
k

, (4.21)

with the constant matrix Qq > 0 and the tuning parameter λ > 0. Clearly, the

closer a collocation point q∗
k of the database trajectory is to an obstacle, the larger

is the corresponding entry in the weighting matrix Qqk
. This in turn makes the

deviation of the online trajectory, which is a solution of (4.19), from the database

trajectory in terms of δqk at the considered point q∗
k small. This adaption of

4 Optimization-based trajectory planning for a 3D gantry crane 64

the weighting matrix Qqk
, see (4.21), is introduced to ensure that also the online

replanned trajectory is collision-free. Finally, the optimal trajectory of the online

trajectory replanner ξ∗,onl reads as

ξ∗,onl = ξ∗ + δξ∗, (4.22)

where δξ∗ results from the solution of (4.19) in the form

(δξ∗)T = [δt∗F , (δz
∗
0)

T, ..., (δz∗N)
T, (δu∗

0)
T, ..., (δu∗

N)
T].

Since the LCQP (4.19) only leads to locally optimal solutions, it may get stuck

in a local minimum that violates the obstacle constraint. Thus, if the solution of

(4.19) gets stuck in a local minimum, (4.19) is reprocessed with a different nearest

offline trajectory resulting from the solution of the k-nearest neighbor search in

Alg. 4. This heuristic modification is used in the experiment as a safety measure

to protect the laboratory equipment. In Tab. 4.1, these heuristic measures are not

included in the Monte Carlo simulations to show the performance of the proposed

algorithm without any heuristic modifications.

4.3 Trajectory tracking controller design

The control structure of the 3D gantry crane consists of the online trajectory re-

planner, the trajectory tracking controller, and a friction compensation. The overall

control structure is depicted in Fig. 4.4. To stabilize the payload around a given

trajectory, a combination of a feedforward and a feedback controller, also denoted

as trajectory tracking controller, is introduced. The control output of the online

trajectory replanner is used as feedforward part, while the feedback controller has

a cascaded structure consisting of the outer model predictive control (MPC) and

the inner velocity controller. The details of the friction compensation are discussed

in [27] and the velocity controller is a decoupled standard PI controller. In this

section, we focus on the model predictive controller.

As a first step, in order to reduce the complexity of the system dynamics and

further increase the computational speed, the state q is divided into the state of the

actuated subsystem qA = [sx, sy, sz]
T and the unactuated subsystem qU = [α, β]T.

65 4 Optimization-based trajectory planning for a 3D gantry crane

friction
compensation

online
trajectory
replanner

gantry

velocity
controller

model
predictive
control

DT1 filter

+

q̇A, q̇U

∆q̈A

q̇A

q̇d
A

qd, q̇d

crane+
+

+
+
–

qA,qU

ud

ufr

ufb

q̇d

∫
trajectory

tracking controller

Figure 4.4: Block diagram of the control structure. The yellow blocks are processed
with the fast sampling time Ts,1 while the red block is computed with the slower
sampling time Ts,2, see also Fig. 4.9.

Therefore, the system dynamics (2.13) is expressed as[] MA MAU

MT
AU MU

]][]q̈A

q̈U

]]+

[]CA CAU

CUA CU

]][]q̇A

q̇U

]]+

[]gA

gU

]]=

[]u
0

]]. (4.23)

The acceleration of the unactuated angles q̈U and the control input u are calculated

from (4.23), which yields

q̈U = M−1
U (−MT

AU q̈A −CUAq̇A −CU q̇U − gU), (4.24a)

u = MAq̈A +MAU q̈U +CAq̇A +CAU q̇U + gA. (4.24b)

It is worth noting that the acceleration of the actuated state q̈A acts directly on

the unactuated subsystem. Thus, considering uA = q̈A as a new control input to

the system, the state-space representation of (2.13) reads as

d

dt

[]]]]]]]
qA

qU

q̇A

q̇U

]]]]]]]]=
[]]]]]]]

q̇A

q̇U

uA

M−1
U (−MT

AUuA −CUAq̇A −CU q̇U − gU)

]]]]]]]]. (4.25)

4 Optimization-based trajectory planning for a 3D gantry crane 66

In a more compact form, (4.25) is rewritten as

d

dt
z = f̃(z,uA). (4.26)

The system (4.26) is linearized around the desired trajectory (zd,ud
A) = (z∗ +

δz, q̈d
A), with

(zd)T = [(qd
A)

T, (qd
U)

T, (q̇d
A)

T, (q̇d
U)

T] ,

obtained from the solution ξ∗,onl (4.22) of the online trajectory replanner (4.18).

By approximating the system dynamics (4.25) around (zd,ud
A), the discrete time-

varying system dynamics is expressed as

∆zk+1 = Φk∆zk +Ωk∆uA,k , (4.27)

with
∆zk = zk − zdk ∆uAk = uA,k − ud

A,k

Φk = I10 + Ts,1Ak Ωk = Ts,1Bk

Ak =
∂ f̃

∂z

||||
zdk,u

d
A,k

Bk =
∂ f̃

∂uA

||||
zdk,u

d
A,k

,

(4.28)

and the sampling time Ts,1. The model predictive control is applied at the time

instant tk to control the error system (4.27) by solving the following optimization

problem w.r.t. ∆uT
A = [∆uT

A,k, . . . ,∆uT
A,k+Nm

] over a finite horizon of Nm+1 steps

min
∆uA

Nm∑
j=0

(∆zTk+jQm∆zk+j +∆uT
A,k+jRm∆uA,k+j)

+ ∆zTk+Nm+1Qf∆zk+Nm+1 (4.29a)

s.t. ∆zk+j+1 = Φk∆zk+j +Ωk∆uA,k+j , (4.29b)

∆z ≤ ∆zk+j ≤ ∆z, j = 0, ..., Nm, (4.29c)

where Qm, Rm, and Qf are positive definite weighting matrices and ∆z = z− zd

and ∆z = z− zd is the lower and upper bound of the state variables, respectively.

The first element of the solution ∆uA from (4.29), i.e. ∆uA,k is then used as control

input for the inner velocity controller. Since the model predictive control is able to

67 4 Optimization-based trajectory planning for a 3D gantry crane

specifically constrain the full state zk, including the sway angles αk and βk, the use

of model predictive control is advantageous for the performance of the closed-loop

system.

4.4 Simulation and experimental results

In this section, simulation and experimental results are presented for two different

scenarios. In the first scenario, the 3D gantry crane follows the trajectory from

the online replanner connecting two points, with the states zS and zT in XS and

XT , respectively, and the target is not changing during the motion of the crane.

The second scenario concerns the case when the target can move freely within XT .

Therefore, the online replanner must actively update the trajectory according to

the new position of the moving target and its current speed. To prove the efficiency

of the proposed combined method of fast trajectory optimization and trajectory

tracking control, it is assumed that the map containing all obstacles is known, i.e.

the obstacles are static. This assumption is justified for many practical scenarios.

4.4.1 Simulation results

The offline trajectory optimization and the offline database are both developed in

Matlab/Simulink 2020b on a computer with 3.8 GHz Intel Core i7 and 32 GB

RAM. The open-source package Interior Point OPTimize (IPOPT) was employed

to solve the nonlinear optimization problem (4.1), see, e.g., [71]. In IPOPT, the

multifrontal linear solver (MA57) was used to increase the computational speed.

The analytical gradients of the cost function and the constraint functions are com-

puted using CasADi, see, e.g., [77]. In addition, the numerical Hessian is evaluated

using the BFGS approximation method, see, e.g., [78].

Each time-optimal obstacle-free trajectory in the offline database is discretized

with 26 grid points, resulting in 339 optimization variables. Since the solution of

the direct collocation optimization is interpolated between two neighboring grid

points, the accuracy of the resulting trajectory depends on the number of grid

points. However, there is a trade-off between the number of grid points and the

computational speed. Because the workspace is approximately a cuboid of size

2m × 1m × 0.55m, the average travel time from the initial location to the most

distant target location is approximately 9 s. Thus, the solution accuracy of direct

4 Optimization-based trajectory planning for a 3D gantry crane 68

Offline traj.
Online traj.
Simulated traj.

(a)

z (m)

y (m)

x (m)

y (m)

(b)

x (m)

Figure 4.5: Collision-free trajectories in the stationary target scenario: closest tra-
jectory from the offline database, online replanned trajectory, and simulated tra-
jectory using the trajectory tracking controller. The circle and the cross symbol
constitute the starting and the target point, respectively. (a) Trajectories in 3D
space, (b) Trajectories in the xy-plane.

69 4 Optimization-based trajectory planning for a 3D gantry crane

Online traj.

1st Online traj.

Simulated traj.

(a)

z (m)

y (m)

x(m)

y (m)

(b)

x(m)

Moving target traj.

1st Offline traj.

Figure 4.6: The collision-free offline path and the online paths resulting from the
online replanner for a moving target. (a) Trajectories in 3D space, (b) Trajectories
in the xy-plane.

4 Optimization-based trajectory planning for a 3D gantry crane 70

−0.2

0

0.2

ṡ x
in

m
/s

−0.1

0

0.1

u
1
in

N
m

−0.2

0

0.2

ṡ y
in

m
/s

−0.1

0

0.1

u
2
in

N
m

−0.1

0

0.1

ṡ z
in

m
/s

0

0.1

0.2

u
3
in

N
m

0 2 4 6 8
−4

−2
0

2

4

time in s

α
in

◦

0 2 4 6 8
−4

−2
0

2

4

time s

β
in

◦

Online traj. Simulated traj.
Offline traj. Constraint

Figure 4.7: Time evolution of the states and control inputs for the stationary target
scenario in Fig. 4.5.

71 4 Optimization-based trajectory planning for a 3D gantry crane

−0.2

0

0.2

ṡ x
in

m
/s

−0.1

0

0.1

u
1
in

N
m

−0.2

0

0.2

ṡ y
in

m
/s

−0.1

0

0.1

u
2
in

N
m

−0.1

0

0.1

ṡ z
in

m
/s

0

0.1

0.2

u
3
in

N
·m

0 2 4 6 8 10 12
−4
−2
0
2
4

time in s

α
in

◦

0 2 4 6 8 10 12
−4
−2
0
2
4

time in s

β
in

◦

Online traj. Simulated traj. Constraint

Offline traj. at selected time instances

Figure 4.8: Simulations of the states and control inputs for the moving target sce-
nario in Fig. 4.6. The four colored squares and the corresponding dashed lines
illustrate the offline trajectories which are utilized by the online replanner at se-
lected time instances.

4 Optimization-based trajectory planning for a 3D gantry crane 72

collocation optimization with 26 grid points turns out to be sufficient for this appli-

cation. Furthermore, considering the memory requirements for the offline database

in the dSPACE MicroLabBox of the real experiment, up to 12.000 trajectories can

be stored in the flash memory with 339 variables of type double per trajectory. For

a large scene, such as a factory or a port, the number of required grid points, but

also the required accuracy, scales accordingly. However, the computational power

can be increased depending on the requirements.

In addition, the sparsity of the matrices is exploited to reduce memory consump-

tion. The starting and target points lie in the subspaces XS (cuboid of size 1.8m ×
0.8m × 0.55m) and XT (plane of size 1m × 0.8m), shown as gray box and yellow

plane in Fig. 4.2, respectively. Based on the offline trajectory planning algorithm,

a database of collision-free trajectories is calculated connecting each grid point in

XS with each grid point in XT . Even for coarse grids in the offline database, the

online trajectory replanner shows a high success rate, i.e. provides feasible trajec-

tories, in the Monte Carlo simulation, see [19]. In this work, a fixed number of grid

points nS = 12 × 8 × 3 and nT = 10 × 6 was chosen for XS and XT , respectively.

This results in a total of 11.520 near time-optimal collision-free offline trajecto-

ries in the database after removing the invalid trajectories having its starting or

target state inside an obstacle. Note that the average computation time for a sin-

gle trajectory in the database is approximately 50ms. The user-defined weighting

parameters diag(ρn, n = 1, ..., 5) = diag(4, 2.5, 3.5, 2, 2) are used in the k-nearest

neighbor search in Alg. 4.

Qualitative results

To illustrate the overall concept consisting of the offline trajectory database, the

online trajectory replanner and the underlying trajectory tracking controller, two

example cases are shown in Figs. 4.5 and 4.6 :

❼ Fig. 4.5 shows the results of the stationary target scenario where the offline

trajectory (dashed blue line) is deformed to the online trajectory (dashed

green line) according to a given pair of starting and target positions (green

circle and cross symbols). The dashed red path illustrates the simulated

trajectory of the trajectory tracking controller, which is perfectly tracked

with respect to the trajectory generated by the online trajectory replanner.

The time evolution of the corresponding states ṡx, ṡy, ṡz, α and β as well

73 4 Optimization-based trajectory planning for a 3D gantry crane

as the three control inputs u1, u2 and u3 are depicted in Fig. 4.7. The green

lines refer to the online trajectories, which deviate from the offline trajectory

(blue dashed line). The simulated trajectory (red dashed line) shows a good

tracking performance of the system. Also, the state and input constraints

according to (4.19c), depicted as black dashed lines, are well respected.

❼ Fig. 4.6 shows the performance of the online replanner in the case of a

moving target. The first solution of the online trajectory replanner (i.e. the

green path) leads the 3D gantry crane to the left side of the green obstacle.

Later, the online replanner generates completely different trajectories moving

around the right side of the green obstacle (i.e. multiple blue lines). Anal-

ogous to Fig. 4.7, the simulation results of the moving target scenario are

depicted in Fig. 4.8. The four colored square symbols and the corresponding

colored dashed lines represent the offline trajectories that are taken from the

offline database. Note that the blue dashed line is the first closest trajectory,

while the other three colored dashed lines illustrate offline trajectories in the

database at selected time instances, which are chosen by the online replanner

during the movement of the 3D gantry crane.

It should be noted that small violations of the constraints are possible between two

adjacent collocation points. The simulation results clearly show that the proposed

concept is able to replan the offline trajectory while adhering to the constraints

also in the case of a moving target. It can be nicely seen that the 3D gantry crane is

driven in one of the limits for most of the time, which shows the near time-optimal

behavior and that the admissible range of the system is fully exploited.

Quantitative results

Monte Carlo simulations were performed for both scenarios to investigate the ver-

satility and robustness of the proposed approach. In the Monte Carlo simulation of

the stationary target scenario, 104 trajectories were planned and simulated using

pairs of randomly uniformly distributed starting and target states from the two

subspaces XS and XT , respectively. In the moving target scenario, the following

procedure was repeated 104 times. First, a collision-free trajectory for the mov-

ing target was generated, where the target moves from a random location A to

a random location B within the target subspace XT . Second, a random starting

state was chosen in the starting subspace XS. Third, the scenario including the

4 Optimization-based trajectory planning for a 3D gantry crane 74

Table 4.1: Monte Carlo simulations with 104 test cases for two scenarios.

Stationary target Moving target
Number of

simulation fails
0 6

Number of
failed collision checks

230 251

Success rate 97.70% 97.43%
Average

computing time
2ms 2.5ms

online trajectory replanner and the trajectory tracking controller was simulated.

All simulations were run in Simulink rapid accelerator mode. After each simu-

lation, two result flags, i.e. the simulation fail flag and the collision check flag,

were collected. The simulation fail flag corresponds to an unexpected numerical

error during the simulation, i.e., an infeasible trajectory. The collision check flag

indicates that the online trajectory collides with obstacles. The statistics of the

flags are shown in Table 4.1. The average computation time of the online replanner

is 2ms for the stationary and 2.5ms for the moving target scenario, respectively.

Since the online replanner must actively find the closest trajectory in the third

layer of the database for moving targets, a longer computation time was expected.

It should be noted that not all trajectories are collision-free, since the obstacles

for the online trajectory replanner are only approximated by the Hessian of the

artificial potential functions. This is reflected in the success rate in Table 4.1. The

simulation only fails in the moving target scenario when the online replanner is

unable to generate a feasible trajectory corresponding to the moving target.

4.4.2 Experimental results

The experimental setup shown in Fig. 4.9 consists of the 3D lab-scale gantry crane

equipped with five incremental encoders and a dSPACE MicroLabBox. The online

trajectory replanner and controller were implemented in Matlab/Simulink and

compiled and deployed on the dual-core real-time processor of the dSPACE Mi-

croLabBox. In addition, a six-camera OptiTrack system is connected to dSPACE

via Ethernet and is used to estimate the position of a remote-controlled moving

truck (target) in the workspace. In the experiment of the moving target scenario,

a truck following the colored path at a random speed is used as the moving target.

75 4 Optimization-based trajectory planning for a 3D gantry crane

core 1 core 2

MPC

Giga link

state

measurement

friction

compensation

velocity

controller

payload

target truck

OptiTrack obstacles

dSPACE MicroLabBox

Ts,1 = 1ms Ts,2 = 15ms

(a)

(b)

online trajectory

replanner

Figure 4.9: System overview of the lab-scale 3D laboratory gantry crane. (a) Soft-
ware architecture. (b) Experimental setup.

4 Optimization-based trajectory planning for a 3D gantry crane 76

Without loss of generality, the position of the truck is measured using the Op-

tiTrack system. For a real application in a larger or more complex environment,

there are many ways to determine the position of a moving truck, e.g., using GPS

or vision-based object tracking. The proposed online trajectory replanner and the

trajectory tracking controller are implemented on a dSPACE MicroLabBox real-

time system with the sampling times of Ts,1 = 1ms and Ts,2 = 15ms on the cores

1 and 2, respectively. To solve the LCQP (4.19) in the online trajectory replanner

with box constraints, the CVXgen package, see, e.g., [79], is used to generate op-

timized C code. Note that the time step h = (t∗F + δtF)/N of the online trajectory

is much larger than the sampling time Ts,1 of the controller. Therefore, the desired

trajectory is interpolated before it is fed to the controller. Similar to the previous

subsection, experimental results are demonstrated for a stationary and a moving

target scenario shown in Figs. 4.10 and 4.11, respectively.

❼ Fig. 4.10 depicts the experimental results of the stationary target scenario

containing the measurements of the system states ṡx, ṡy, ṡz, α and β and the

control inputs u1, u2 and u3. The measured signals and the desired trajecto-

ries are depicted as dashed red lines and solid green lines, respectively. All

measured signals satisfy the state and input constraints (black dashed lines)

given by (4.19c). In addition, the online trajectories (solid green lines) of the

system states slightly deviate from the closest offline trajectories (dashed

blue lines). Note that the travel time of the online trajectory differs from the

offline trajectory due to δtF in the LCQP (4.19).

❼ In a similar way as in Fig. 4.10, the experimental results of the moving tar-

get scenario are shown in Fig. 4.11. The four colored square symbols and

the corresponding dashed lines represent the offline trajectories obtained by

the search algorithm from the offline database. Note that online trajectory

generation is indeed sufficient in satisfying the system state and input con-

straints at the collocation points. However, since an interpolation scheme is

applied between two adjacent collocation points of the desired trajectory,

small violations of the system state constraints may occur between the col-

location points. Snapshots of the gantry crane and target truck motions are

presented in Fig. 4.12. At the turning point (green circle in Fig. 4.12), the

gantry crane has not come to a stop, but follows the motion of the moving

truck smoothly. This point is approximately at the time t = 7 s where the

system state velocities ṡx, ṡy and ṡz cross the zero line, see Fig. 4.11.

77 4 Optimization-based trajectory planning for a 3D gantry crane

−0.2

0

0.2

ṡ x
in

m
/
s

−0.1

0

0.1

u
1
in

N
m

−0.2

0

0.2

ṡ y
in

m
/s

−0.1

0

0.1
u
2
in

N
m

−0.1

0

0.1

ṡ z
in

m
/
s

0

0.1

0.2

u
3
in

N
m

0 2 4 6 8
−4

−2
0

2

4

time in s

α
in

◦

0 2 4 6 8
−4

−2
0

2

4

time s

β
in

◦

Online traj. Measured traj.
Offline traj. Constraint

Figure 4.10: Measurements of the system state and control inputs in the stationary
target scenario.

4 Optimization-based trajectory planning for a 3D gantry crane 78

−0.2

0

0.2

ṡ x
in

m
/s

−0.1

0

0.1

u
1
in

N
m

−0.2

0

0.2

ṡ y
in

m
/s

−0.1

0

0.1
u
2
in

N
m

−0.1

0

0.1

ṡ z
in

m
/s

0

0.1

0.2

u
3
in

N
·m

0 2 4 6 8 10 12
−4
−2
0
2
4

time in s

α
in

◦

0 2 4 6 8 10 12
−4
−2
0
2
4

time in s

β
in

◦

Online traj. Measured traj. Constraint.

Offline traj. at selected time instances

Figure 4.11: Measurements of states and control inputs over travel time for the
moving target scenario in Fig. 4.12. The four colored squares and the corresponding
dashed lines illustrate the offline trajectories taken by the online replanner at
selected time instances.

79 4 Optimization-based trajectory planning for a 3D gantry crane

truck traj.
measured traj.

turning point

Figure 4.12: Illustration of the experimental execution of the online trajectory
replanning for a moving target. The collision-free online path is shown as dashed
yellow line. The cyan dashed line is the path of the moving truck. The dot and
cross symbols represent the starting and target positions, respectively.

Note that in Fig. 4.10 and Fig. 4.11, although the gantry crane is traveling up to

its full speed, i.e., the velocities ṡx, ṡy, and ṡz reach the respective limits, the sway

angles α and β stay within a small range of [−0.05, 0.05] rad (≈ ±3◦).

Overall, the trajectory tracking controller exhibits a good tracking performance,

while the deviations of the pendulum angles α and β from the desired trajectory

are clearly visible in both scenarios. These deviations can be attributed to model

uncertainties and backlash caused by the measurement mechanism of the 3D lab-

scale gantry crane. Moreover, a video of the discussed scenarios shown in Fig. 4.10

and Fig. 4.11 is available at https://www.acin.tuwien.ac.at/en/65ce/

4.5 Conclusions

In this section, the lab-scale experiment of a 3D gantry crane is considered that

performs the task to pick up a payload at an arbitrary position and then deposit it

https://www.acin.tuwien.ac.at/en/65ce/

4 Optimization-based trajectory planning for a 3D gantry crane 80

on a moving truck in a workspace with static obstacles. The time from picking up

the payload to its deposition should be kept as small as possible and at the same

time collisions with obstacles must be avoided and the system state and control

input constraints must be respected. For this, a novel two-step trajectory planning

algorithm, consisting of an offline trajectory optimization and an online trajectory

replanner, in combination with an MPC (model predictive control)-based trajec-

tory tracking controller was developed. The offline trajectory optimization is used

to generate a collision-free and dynamically feasible trajectory database. The com-

putation time for an offline trajectory in the database is about 50ms on average

on a standard PC, which is too long for real-time planning in the moving-truck

scenario. Thus, there is a need to develop a real-time online trajectory planner to

fulfill the task requirement. The idea of the online trajectory planner is to minimize

the deviation from a suitable reference trajectory, which is selected according to

a specifically designed strategy from the database, by solving a linear constrained

quadratic program. This is computationally very efficient because it yields a feasi-

ble trajectory within an average computation time of 2.5ms on a standard PC and

is thus 25 times faster than the offline trajectory optimization. The online trajec-

tory then serves as a reference input for an MPC-based tracking controller. Here

an MPC was employed to be able to systematically account for state and control

input constraints. Simulation studies and experimental results demonstrate the

feasibility of the proposed approach.

This work is a proof of concept in the form of a laboratory experiment for real-time

trajectory planning, where it is assumed that the required modules for scanning the

environment including obstacle detection and the tracking system of the moving

truck are available. One of the limitations of the proposed trajectory (re)planning

is that it works only within the predefined starting and target subspaces. However,

arbitrary subspaces can be chosen according to application requirements. For ex-

ample, in this work, the starting subspace covers the entire workspace, while the

target subspace corresponds to the workspace of a moving truck in 2D.

In the next section, the core idea of the proposed two-step optimization-based

trajectory planning is applied to another robotic system with a different task,

i.e., performing the optimal swing-up of a of a spherical pendulum on the 7-axis

KUKA LBR iiwa 14 R820 robot.

5

Swing-up trajectory optimization

of a pendulum on a collaborative

robot

In this section, the fast swing-up trajectory optimization of a custom-designed

spherical pendulum on the robot KUKA LBR iiwa 14 R820 is presented. The

complete mechanical system of nine degrees freedom (DoF) consists of the 7-axis

KUKA LBR iiwa 14 R820 and the two unactuated DoF spherical pendulum.

The primary focus of this work is the design of a fast trajectory planning for

the swing-up by systematically incorporating the kinematic and dynamics con-

straints. Inspired by the two-step trajectory planning in the previous section, the

proposed algorithm consists of the two following steps. First, an offline trajectory

optimization is used to build a database of swing-up trajectories, with an average

computing time of 10 s for one trajectory. Second, a fast trajectory replanner based

on a constrained quadratic program is used to compute the swing-up trajectory for

an arbitrary initial configuration of the system with an average computing time

of 200ms. To realize the proposed trajectory in experiments, a controller based

on a discrete time-variant linear quadratic regulator is implemented. Simulations

81

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 82

and experimental results are presented to validate the feasibility of the proposed

approach. Large parts of this section are identical to the author’s publication [20].

5.1 Introduction

For many years, the inverted pendulum has been a popular benchmark for research

in nonlinear control and trajectory optimization, see, e.g., [80]. Inverted pendulums

with increasingly complex kinematics were published, such as the single pendulum

[81], the double pendulum [82], the triple pendulum on a cart [83], and the spherical

pendulum [84]. Despite its simple structure, the inverted pendulum represents an

underactuated nonlinear mechanical system and exhibits an unstable equilibrium

point and non-minimum phase behavior. Therefore, it offers exciting challenges for

trajectory optimization and nonlinear control.

In the 1960s, several contributions on the stabilization of the single inverted pen-

dulum were published, see, e.g., [85], [86]. Rather than only to achieve the sta-

bilization task, the swing-up control of an inverted pendulum system was first

presented using a simple feedforward control [87]. Later, more advanced control

strategies were applied such as nonlinear model predictive control [88], reinforce-

ment learning [89], and Lyapunov-based damping control [90]. As an alternative

system to the pendulum on a cart, a rotary pendulum system was introduced in

[91], where a bang-bang type feedback controller for the swing-up action together

with a least-squares regulator for stabilization were employed. In 2013, the swing-

up of the triple inverted pendulum on a cart was experimentally demonstrated

in [83] by using an output-constrained feedforward controller [92] on a real-time

hardware.

In most works from the literature, the swing-up and stabilization of a pendu-

lum is performed using a custom-designed mechanical system which is capable

of providing the required forces and torques. However, the complexity increases

significantly for implementations on an industrial robot, where the robot’s joint

position, joint velocity, and input torque limits have to be considered. Winkler et

al. [93] presented the swing-up and stabilizing of a single inverted pendulum on the

KUKA KR3 by using an intuitive control scheme consisting of a feedforward and

a balancing controller. Recently, experiments of balancing an inverted pendulum

on a 7 degrees of freedom (DoFs) robotic arm are accomplished by using Bayesian

83 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

optimization [94] and model-based policy search [95] for automatic tuning of the

controller. The stabilization of a spherical pendulum was first demonstrated on the

robot "DLR LWR II" by Schreiber et al. in [96]. In [97], a first swing-up trajectory

planning approach was proposed which only allows a restricted movement of the

robot. Despite these restrictions, due to the complexity of the system with 9 DoFs

and the associated kinematic and dynamic constraints, the calculation of feasible

swing-up trajectories was very time consuming (≈ several hours on a standard PC

hardware). Additionally, the swing-up demonstration in [97] is limited to a fixed

initial and target configuration.

Recently, in order to plan the desired motion of a system involving inverted pendu-

lums, i.e., brachiation robots, desired trajectories are computed through a multiple-

shooting optimization scheme [98]. Then, a feedback trajectory tracking controller

is designed utilizing a sliding mode control [99] approach or a time-variant lin-

ear quadratic regulator (LQR) [100]. Another common approach is to combine the

planning and controlling phase by using a library of trajectories in order to directly

design the controllers for the nonlinear underactuated system, see, e.g., [101], [102].

In [101], the motion library is built on a sparse tree containing LQR-stabilized tra-

jectories, its region of attraction is verified using a simulation-based falsification

method. Although this approach shows promising results, a large computation

time is required for generating and verifying a single tree policy.

In this work, the custom-built spherical pendulum tool from [97] is mounted on the

7-axis collaborative robot KUKA LBR iiwa 14 R820. The main contribution of

this section is a fast algorithm for the computation of swing-up trajectories, which

consists of two steps. In the first step, an offline trajectory planner computes

a database of near time-optimal swing-up trajectories with initial states taken

from equidistantly discretized joint configurations in the joint space. Note that the

final state is fixed at the equilibrium state of the complete system. This planner

systematically accounts for the dynamic limitation of the system states and control

inputs. In the second step, a fast trajectory replanner calculates a new swing-up

trajectory from an arbitrary initial state in the feasible range of the robot. To

demonstrate the swing up, a discrete LQR is applied to stabilize the robot on this

trajectory.

The remainder of this section is structured as follows. Section 5.2 deals with the

offline trajectory planner and builds up a trajectory database for the complete

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 84

mechanical system. Section 5.3 is concerned with the design of a fast replanning

algorithm, which chooses the closest swing-up trajectory from the database and

adapts this trajectory via a constrained quadratic program. Simulation and exper-

imental results are shown in Section 5.5. The last section gives some conclusions.

5.2 Offline trajectory optimization

The mathematical model of the complete system consisting of the robot KUKA

LBR iiwa 14 R820 and the spherical pendulum was introduced in Section 2.2.

In this section, the offline trajectory planner is derived to compute a database of

time-optimal swing-up trajectories for the system (2.36) depicted in Fig. 2.5. These

trajectories take into account the full system state xT = [qT, q̇T] and the motor

torques τA. In order to reduce the complexity of the system dynamics and thus

enhance the computational speed, (2.36) is partitioned into an actuated subsystem

qT
A = [q1, q2, . . . , q7] and an unactuated system qT

U = [q8, q9]. Thus, (2.36) can be

written as [] MA MAU

MT
AU MU

]][]q̈A

q̈U

]]+

[]CA CAU

CUA CU

]][]q̇A

q̇U

]]+

[]gA

gU

]]=

[]τA
0

]], (5.1)

where qT = [qT
A,q

T
U]. The acceleration of the unactuated joints q̈U and the motor

torques τA can be calculated from (5.1), resulting in

q̈U = M−1
U (−MT

AU q̈A −CUAq̇A −CU q̇U − gU) (5.2a)

τA = MAq̈A +MAU q̈U +CAq̇A +CAU q̇U + gA . (5.2b)

The acceleration of the actuated joints q̈A directly acts on the unactuated system.

Thus, by considering u = q̈A as the new control input to the system, the state-

space representation of (2.36) reads as

d

dt

[]]]]]]]
qA

qU

q̇A

q̇U

]]]]]]]] =

[]]]]]]]
q̇A

q̇U

u

M−1
U (−MT

AUu−CUAq̇A −CU q̇U − gU)

]]]]]]]]. (5.3)

85 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

In a more compact form, (5.3) is rewritten as

d

dt
x = f(x,u). (5.4)

It is worth noting that the inversion of MU ∈ R2×2 in (5.3) is computationally

much more efficient than an inversion of M ∈ R9×9 in (2.36).

5.2.1 Near time-optimal swing-up trajectory optimization

Similar to (4.1) in Section 4.2.1, the offline optimization scheme, adapted for (5.4),

is formulated using the direct collocation method, see, e.g., [69], by discretizing

the swing-up trajectory into N + 1 grid points and solving the resulting static

optimization problem

min
ξ

J(ξ) = tF +
1

2
h

N∑
k=0

uT
kRuk (5.5a)

s.t. xk+1 − xk =
1

2
h(fk + fk+1) (5.5b)

x0 = xS, xN = xT , g(xT) = 0 (5.5c)

x ≤ xk ≤ x, k = 0, . . . , N , (5.5d)

where the index k indicates the discrete time step t = kh, fk = f(xk,uk) is the

right-hand side of (5.4), and the vector of optimization variables

ξT = [tF ,x
T
0 , . . . ,x

T
N ,u

T
0 , . . . ,u

T
N] (5.6)

is introduced. Note that the final time tF in (5.5a) denotes the time it takes for

the system (5.4) to transition from the starting state xS to the target state xT .

Additionally, h = tF/N is the time step and R is the positive definite weighting

matrix for the control input u. The target state xT for the spherical pendulum

is the upright position, i.e., the unstable equilibrium with [q8, q9] = [180◦, 0]. To
avoid collisions with the surroundings, the target state xT is partly constrained

using

xT = [0, q2F , 0, q4F , 0, q6F , 0, 180
◦, 0]T,

with

g(xT) = q2F − q4F + q6F − 90◦ = 0, (5.7)

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 86

as shown in Fig. 5.1. Note that the target configuration xT is systematically op-

timized by the equality condition (5.7). This could lead to a better and faster

solution than using a fixed target configuration, since the initial condition is cho-

sen randomly.

q2

q4

q6

Figure 5.1: Schematic drawing of an example target configuration. The black circle
and the cross indicate the local z-axis pointing out of and into the plane of the
paper, respectively.

Furthermore, the system dynamics (5.4) are approximated using the trapezoidal

rule in (5.5b). Moreover, x and x denote the symmetric lower and upper bounds of

the state, respectively. Since the accelerations of the actuated joints are considered

as control inputs, i.e. u = q̈A, the motor torque limits have to be incorporated as

additional constraints. By substituting (5.2a) into (5.2b), the motor torque limits

are reformulated as

τA ≤ ~M(qk)uk + ~C(qk, q̇k)q̇k + ~g(qk) ≤ τA , (5.8)

where ~M = MA −MAUM
−1
U MT

AU~C =
[
CA −MAUM

−1
U CUA CAU −MAUM

−1
U CU

]
~g = gA −MAUM

−1
U gU .

(5.9)

87 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

Note that (5.8) is a computationally costly inequality constraint, mainly due to

the large expressions in the Coriolis matrix ~C. In fact, the Coriolis matrix is

often neglected in industrial applications [103]. To account for the effect of the

Coriolis matrix ~C, the value range of ~Cq̇ for the complete system is examined using

a Monte-Carlo simulation. In this simulation, 108 uniformly distributed random

state vectors x are selected from the admissible range, see Tab. 5.1. This simulation

reveals that the values of ~Cq̇ are bounded between cT = [6, 8, 3, 4, 1, 1, 0.1] Nm

and cT = −[6, 7, 3, 4, 1, 1, 0.1] Nm, which is significantly smaller than the motor

torque limits. Although the effect of the Coriolis matrix on the overall system

dynamics is not significant, it is still worth considering the determined bounds in

the optimization scheme to avoid exceeding the motor torque limits. To this end,

the costly inequality constraint (5.8) is replaced by

τA − c ≤ ~M(qk)uk + ~g(qk) ≤ τA − c . (5.10)

The swing-up trajectory is found by solving the static optimization problem (5.5),

(5.7), and (5.10) using the Interior Point OPTimize (IPOPT), which is an open-

source package based on the interior point method (IPM) for large scale nonlinear

programming, see, e.g., [71]. In order to speed up the computation, the gradient

of (5.5a), the Jacobian of the constraints (5.5b-d), (5.7), and (5.10) are computed

analytically. After the optimal values are found at the collocation points, the trajec-

tory of the state x and the input u need to be interpolated. Between two adjacent

collocation points k and k+1, the input u(t) and the state x(t) for t ∈ [kh, (k+1)h]

are a simple linear and quadratic spline similar to (4.12).

5.2.2 Trajectory database

After deriving all ingredients for solving a single swing-up trajectory optimization,

an offline database is built from a discrete joint space. Assuming that the swing-up

trajectory starts from an equilibrium point of the complete system, the two angles

q8 and q9 and the joint velocities q̇ of xS are zero. Thereby, a time-optimal swing-up

trajectory is planned offline from every grid point in this discrete joint space using

(5.5), (5.7), and (5.10). Then, these offline trajectories are stored in a database.

Note that each trajectory in the database is represented by a label which contains

the actuated joint angles qA of the starting state xS. In order to efficiently search

for a suitable trajectory in the database, this labeled data is preprocessed with the

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 88

k-d tree algorithm [74], which is a well-known space-partitioning data structure

for partitioning and organizing points. An example of a 2-D data tree is shown

in Fig. 5.2, where the 2-D data points (blue dots) are partitioned into different

regions. In Fig. 5.2, it is obvious when finding the nearest point in this data tree

to an arbitrary 2-D data point, such as (−35,−25), only data points in region 1❖

are taken into account for the search. A k-d tree data structure is considered to

be efficient with k ≤ 10 because of the so-called “curse of dimensionality” [104].

-40 -20 0 20 40 60

-40

-30

-20

-10

0

10

20

30

40

50

60

1 2 3

4

5

678

Figure 5.2: Example of a k-d tree with k = 2. The leafs of the tree are illustrated
in different color regions, and separate data points (blue dots).

5.3 Fast trajectory replanner

In the previous section, an offline trajectory optimization is used to build a database

of swing-up trajectories for a discrete set of starting states xS of the system (5.4).

89 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

However, the actual starting state of the system x̃S is almost certainly not con-

tained in the database. Therefore, a fast trajectory replanner is proposed in this

section to adapt the precomputed trajectories.

First, the nearest-neighbor search algorithm [76] is applied to find the grid point in

the database closest to x̃S. Using the pre-built k-d tree, the search for the closest

grid point quickly eliminates large portions of the search space. The near time-

optimal swing-up trajectory from the database corresponding to the grid point

closest to x̃S is denoted as

(ξ∗)T = [(t∗F)
T, (x∗

0)
T, ... , (x∗

N)
T, (u∗

0)
T, ... , (u∗

N)
T] . (5.11)

In the second step, ξ∗ is exploited to calculate the swing-up trajectory for the

actual starting state x̄S which deviates from x∗
0. It can be considered that only

small deviations δξ = [δtF , δx0, ..., δxN , δu0, ..., δuN]
T are required to obtain the

adapted swing-up trajectory. Thus, the discrete-time system dynamics (5.5b) are

linearized around ξ∗ in the form

δxk+1 = δxk +
t∗F
2N

(
Γx

kδxk + Γu
kδuk + Γx

k+1δxk+1 + Γu
k+1δuk+1

)
+

δtF
2N

(f∗k + f∗k+1) ,

(5.12)

with

δxk = xk − x∗
k (5.13a)

δuk = uk − u∗
k (5.13b)

δtF = tF − t∗F (5.13c)

f∗k = f(x∗
k,u

∗
k) , (5.13d)

and

Γx
k =

∂f

∂x

||||
x∗
k,u

∗
k

(5.14a)

Γu
k =

∂f

∂u

||||
x∗
k,u

∗
k

(5.14b)

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 90

for k = 0, . . . , N − 1. In addition, the deviations

δx0 = x̃S − x∗
0 (5.15a)

δxN = x̃T − x∗
N = 0 (5.15b)

are fixed due to the given actual system state x̃S and the equilibrium state x∗
N

from the trajectory ξ∗ found in the database. The deviation δξ is obtained as the

solution of a constrained quadratic program (QP) [105]

min
δξ

Jξ =
1

2
δξTQδξ (5.16a)

s.t. Aδξ = b (5.16b)

δξ ≤ δξ ≤ δξ , (5.16c)

with the positive definite weighting matrix

Q = diag(QtF ,Qx0 , . . . ,QxN
,Qu0 , . . . ,QuN

) . (5.17)

The equality constraints (5.16b) are constructed by combining the equations of

the linearized system dynamics (5.12) together with (5.15). The inequality con-

straints (5.16c) correspond to (5.5d) and (5.10), where δξT = [0, δxT, δuT], δξ
T
=

[δtF , δx
T
, δu

T
], with δx = x − x∗, δx = x − x∗, δu = u − u∗, δu = u − u∗, and

the sufficiently large upper bound δtF . The computational efficiency is further im-

proved by implementing a receding horizon scheme which splits the full horizon of

N grid points into s sub-horizons consisting of N/s grid points. Subsequently, the

constrained QP (5.16) is applied to each sub-horizon individually while considering

that the endpoint of one sub-horizon corresponds to the starting point of the next

one.

5.4 Trajectory tracking controller

In order to perform the swing-up trajectory in the experiment, a closed-loop con-

troller is necessary to handle the neglected friction and model uncertainties. Thus,

a discrete time-variant LQR is employed to stabilize the system (5.4) around the

swing-up trajectory from Section 5.3.

91 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

The system (5.4) is linearized around the desired trajectory

(xd,ud) = (x∗ + δx,u∗ + δu) , (5.18)

with (xd)T = [(qd
A)

T, (qd
U)

T, (q̇d
A)

T, (q̇d
U)

T] and (δx, δu) as the solution of the con-

strained QP (5.16). Assuming that the system matrices remain constant for each

discrete time step k, the discrete time-variant system dynamics read as

∆xk+1 = Φk∆xk + Γk∆uk , (5.19)

with
∆xk = xk − xd

k ∆uk = uk − ud
k

Φk = I18 + TsAk Γk = TsBk

Ak =
∂f

∂x

||||
xd
k,u

d
k

Bk =
∂f

∂u

||||
xd
k,u

d
k

,

(5.20)

and the sampling time Ts. The discrete time-variant LQR is applied to stabilize

this error system by minimizing the objective function

J =
Nc−1∑
k=0

(∆xT
kQc∆xk +∆uT

kRc∆uk) +∆xT
NX∆xN , (5.21)

whereQc andRc are the positive definite weighting matrices. Moreover, the matrix

X is chosen as the unique solution of the algebraic Riccati equation, see [106],

X = ΦT
Nc
XΦNc − (ΦT

Nc
XΓNc)(Rc + ΓT

Nc
XΓNc)

−1(ΓT
Nc
XΦNc) +Qc . (5.22)

The LQR control law reads as, see, e.g., [107],

∆uk = Kk∆xk , (5.23)

with the controller feedback gain matrix Kk. The gain matrix is computed by

iterating the discrete-time Riccati-equation

Kk = −(Rc + ΓT
kPk+1Γk)

−1(ΓT
kPk+1Φk) (5.24a)

Pk = (Qc +ΦT
kPk+1Φk)−ΦT

kPk+1Γk(Rc + ΓT
kPk+1Γk)

−1ΓT
kPk+1Φk

backwards from k = Nc−1, . . . , 1 with PNc = X. With this approach, no switching

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 92

of the controller is required. Finally, by substituting

q̈A = u = ud +∆uk ,

with ∆uk from (5.23), into (5.2b), an expression for the motor torque τA is found,

reading as, see also (5.8) and (5.9)

τA,k = ~M(qk)(u
d +Kk∆xk) + ~C(qk, q̇k)q̇k + ~g(qk) . (5.25)

5.5 Simulation and experimental results

The offline and online trajectory optimization is implemented in MATLAB/

SIMULINK R2019b using a standard computer equipped with a 1.8 GHz In-

tel Core i7-8550K and 16 GB RAM. The nonlinear optimization problem (5.5) is

solved using the state-of-the-art interior-point solver IPOPT together with the lin-

ear solver MA57, see, e.g., [71], [108]. In order to enhance the computational speed,

automatic differentiation (AD) of the cost function and the constraint functions is

implemented with the CasADi package [77].

The experimental setup, shown in Fig. 5.3, comprises three main components,

i.e. the ceiling-mounted robot KUKA LBR iiwa 14 R820, the PC running Mat-

lab/Simulink modules inside the real-time automation software BECKHOFF

TwinCAT, and the spherical pendulum tool. The PC communicates with the robot

and the spherical pendulum tool via two network interface cards (NIC) using the

EtherCAT protocol.

Each trajectory is discretized into N = 100 collocation points, yielding a total

of 2501 optimization variables. For safety reasons, the constraints on the joint

velocities and motor torques according to Tab. 5.1 are reduced by 50%. Without

loss of generality and to avoid collisions with the surroundings, the angles of four

joints q1, q2, q4, and q6 of the starting state xS are discretized equidistantly in the

ranges q1 ∈ [−60◦, 45◦], q2 ∈ [−30◦, 30◦], q4 ∈ [−120◦,−60◦], and q6 ∈ [−60◦, 60◦].
The remaining joint angles are fixed at 0. In each admissible range, four grid

points are used. Thus, the number of offline planned swing-up trajectories in the

database is 256. The total computing time for the offline database is about 43min,

which results in an average computing time for one trajectory of 10 s. In order to

verify the efficiency of the fast trajectory replanner, a Monte Carlo simulation

93 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

MATLAB/Simulink

NIC 2

TwinCAT

EtherCAT

KUKA LBR iiwa 14 R820

NIC 1

EtherCAT

PC

spherical pendulum
tool

Figure 5.3: Overview of the experimental setup.

is performed by randomly selecting 104 initial states x̃S from a uniform random

distribution in the admissible ranges. Even though the offline database is built

using a very coarse grid, all 104 test cases in the Monte Carlo simulation provide

feasible solutions and adhere to the input and state constraints. The computing

time for a fast trajectory replanning is approximate 200ms on average, which is

50 times faster than the offline trajectory optimization.

Figure 5.4 illustrates the simulation results of the fast trajectory replanner from

the starting state x̃T
S = [−15◦,−15◦, 0,−95◦, 0, 10◦, 0, 0, 0] in solid lines, which

deviates from the closest grid point in the database, i.e. the starting state xT
S =

[0, 0, 0,−90◦, 0, 0, 0, 0, 0] shown as dashed lines. The trajectories in Fig. 5.4 are

demonstrated in simulation without the closed-loop control from Section 5.4. Note

that for both, the offline trajectory optimization and the fast trajectory replanner,

a straight line from the starting state to the target state is used as an initial guess.

Both trajectories are feasible with respect to the dynamical constraints (5.5b) as

well as the limits of the robot (5.5d), (5.10), and (5.7).

In the experiment, the joint velocities of the complete system cannot be measured

directly. Therefore, differential filters with a time constant of T1 = 12ms are used

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 94

−1

−0.5

0

0.5

1

joint 1 joint 2 joint 3

−1

−0.5

0

0.5

1

joint 4 joint 5

joint 6

0 1 2
−1

−0.5

0

0.5

1

time (s)

joint 7

0 1 2

time (s)

joint 8

0 1 2

time (s)

joint 9

qi/q̄i q̇i/¯̇qi τA,i/τA,i

Figure 5.4: Time evolution of the offline and the replanned trajectory optimization.
The dashed lines are the scaled offline trajectory from the database in Section 5.2,
and the solid lines represent the scaled replanned trajectory from Section 5.3. For
safety reasons, the limits for the joint velocities and the motor torques are 50%
lower than the limits in Tab. 5.1.

95 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

−1

−0.5

0

0.5

1

joint 1 joint 2 joint 3

−1

−0.5

0

0.5

1

joint 4 joint 5

joint 6

0 1 2 3
−1

−0.5

0

0.5

1

time (s)

joint 7

0 1 2 3

time (s)

joint 8

0 1 2 3

time (s)

joint 9

qi/q̄i q̇i/¯̇qi τA,i/τA,i

Figure 5.5: Experimental results for the swing-up and stabilization of the spher-
ical pendulum with the fast trajectory replanner. The colored solid lines present
the scaled measurement data, and the corresponding black dashed lines show the
desired trajectory from Section 5.3.

5 Swing-up trajectory optimization of a pendulum on a collaborative robot 96

Table 5.1: Kinematic and dynamic limits of the compete system consisting of the
robot KUKA LBR iiwa 14 R820 and the spherical pendulum in Fig. 2.5.

Joint i Angle limits Velocity limits Torque limits
qi (

◦) q̇i (
◦/s) τA,i (N)

1 170 85 320
2 120 85 320
3 170 100 176
4 120 75 176
5 170 130 110
6 120 135 40
7 175 135 40
8 180 180 –
9 45 180 –

for each joint. The weighting matrices in (5.21) are chosen as

QT
c = diag([QT

c,q,Q
T
c,q̇]) ,

with
QT

c,q = [1 1 1 1 1 1 1 10−3 10−2] ,

QT
c,q̇ = 10−1[1 1 1 1 1 1 1 10−2 10−1] ,

and Rc = 10−1I7. The weights of the pendulum velocities q̇8 and q̇9 in Qc are

reduced to avoid oscillations during the swing-up. Note that the sampling time

for the controller is Ts = 125 ➭s, while the time step h = tF/N ≈ 300ms of the

trajectory is significantly larger. Therefore, the desired trajectory from the fast

replanner has to be interpolated using (4.12). The torque input τA is calculated

from (5.25) with the time-variant feedback matrix Kk from (5.24). The experi-

mental results of the swing-up of the spherical pendulum from the initial state

x̃T
S = [0,−15◦, 0,−95◦, 0, 10◦, 0, 0, 0] are presented in Fig. 5.5. The measured sig-

nals are shown as colored solid lines, and the desired trajectories are drawn as

black dashed lines. Note that the discrete time-variant LQR is able to stabilize

the swing-up trajectory and the upright position of the spherical pendulum using

the KUKA LBR iiwa 14 R820. The small oscillations around the trajectory in

Fig. 5.5 can be attributed to the parameter and model uncertainties and to the

measurement noise present in the velocity signals. In addition, a video of several

demonstrations of the swing-up and stabilization from random starting states x̃S

97 5 Swing-up trajectory optimization of a pendulum on a collaborative robot

is provided at www.acin.tuwien.ac.at/8c60.

5.6 Conclusions

In this section, the fast trajectory optimization for the swing-up of a spherical

pendulum on a 7-axis robot is presented and experimentally validated. First, the

swing-up trajectories are computed offline using the direct collocation trajectory

optimization approach and are stored in a k-d tree database. The offline trajectory

optimization employed the state-of-the-art nonlinear solver IPOPT and takes into

account the system constraints of the complete system to conclude the swing-up

motion in approximately 10 s on average. For an arbitrary initial configuration

of the system, a nearest neighbor search algorithm is applied to find the nearest

configuration in the k-d tree database. This trajectory is adapted by solving a

constrained quadratic optimization, which takes on average 200ms even if the grid

in the database is relatively coarse. Finally, the experimental demonstration shows

the successful swing-up and stabilization of a spherical pendulum tool mounted on

the robot KUKA LBR iiwa 14 R820.

www.acin.tuwien.ac.at/8c60

6

Conclusions and Outlook

The main focus of this thesis is the development of a fast trajectory planning

framework that can be used for repetitive motion planning tasks of robotic systems,

e.g., moving goods in factories, warehouses, and ports. In particular, the following

scenario is considered. A lab-scale 3D gantry crane has to move goods or material

from one specific place (starting space) to another place (target space) in a static

environment with known obstacles. The task is to plan a time-optimal trajectory

from a given starting point to a given target point in real time, which systematically

accounts for both the obstacles and the dynamic constraints on the state variables

and control inputs. In these tasks, the starting and target states are changed

only slightly, however, state-of-the-art trajectory planning approaches require long

computation times to calculate the entire trajectory from scratch. This results in a

waste of computational resources and makes it impossible to handle targets that are

moving. The lack of a viable approach in the literature provides the motivation for

this work: Is there a trajectory planning framework that can generate collision-free

trajectories in real time, taking into account system constraints and a dynamically

moving target?.

In Section 3, a novel sampling-based trajectory planning method, named flat

informed-optimal rapid exploring random tree (RRT*), was proposed. With the

99

6 Conclusions and Outlook 100

given information, such as the dimension of the workspace and the location of the

obstacles, the proposed flat informed RRT* creates a trajectory tree that serves

as a basis for the replanning process when the target state changes. Different from

other motion planning approaches in the literature, the proposed flat informed

RRT* incorporates a local planner based on a linear quadratic minimum-time

(LQMT) solver. The smoothness of the computed trajectories is ensured by the

local planner. Additionally, the informed set is used to eliminate points in the tree.

This helps to reduce the memory consumption and computational complexity of

the proposed algorithm. Simulation studies for different scenarios show the feasi-

bility of the proposed sampling-based algorithm. The computing time, statically

measured via Monte Carlo simulations, of the online replanning that reuses the

computed trajectory tree, is less than 75ms. Although the proposed algorithm is

applicable to other robotic systems, such as unmanned aerial vehicles, the compu-

tation time is not yet sufficient for real-time applications.

To address this deficiency, a novel two-step optimization-based trajectory frame-

work was proposed in Section 4. This proposed algorithm computes a collision-free,

dynamically feasible trajectory that directs the 3D gantry crane from an initial

state to a target state (a moving truck) in an environment with static obstacles.

Moreover, this algorithm enables online replanning when the target state moves.

A model predictive controller (MPC)-based trajectory tracking controller was fur-

ther implemented to account for model uncertainties and disturbances. In the first

step of the proposed algorithm, a collision-free offline trajectory database was

built using the direct optimization method. The computation time for one offline

trajectory in the offline database is about 50ms on average on a standard PC.

Using the offline database, the online trajectory planner minimizes the deviation

from a suitably selected trajectory in the database considering the current speed

of the gantry crane and the moving target. The simulation results show that the

online trajectory replanner provides a feasible trajectory within an average com-

putation time of 2.5ms, which is 25 faster than the offline trajectory optimization.

Moreover, Monte Carlo simulations demonstrate the effectiveness of the proposed

approach with a success rate of over 97% in two scenarios, i.e., the stationary

target scenario and the moving target scenario. In the experiments, the proposed

trajectory planning framework and the MPC-based tracking controller were im-

plemented on the dSPACE MicroLabBox 1202 with a sampling time of 15ms

and 1ms, respectively. The online replanner successfully generates collision-free

101 6 Conclusions and Outlook

and dynamically feasible trajectories for the moving truck. The trajectory track-

ing controller exhibits a good tracking performance. While the deviations of the

sway angles from the desired trajectory are visible, they are limited in the range

[−4◦ , 4◦]. To reduce the complexity of the lab experiment, an OptiTrack system

was used to detect the truck position. For real-world applications in a larger or

more complex environment, we need to use other methods, such as GPS and/or

visual methods for obstacle detection and tracking.

In Section 5, the two-step trajectory planning framework was applied to swing up

a spherical pendulum with a 7-axis robot. Again, in the first step, an offline trajec-

tory database for swinging up the spherical pendulum was built. The computation

time of an offline trajectory in the database is approximately 10 s, which out-

performs recent works in the literature. Next, an online trajectory replanner was

presented which allows to quickly compute a dynamically feasible trajectory from

an arbitrary initial configuration to an upswing position. The computation time of

one trajectory with the online trajectory replanner is approximately 200ms. Using

a discrete time-variant linear quadratic regulator (LQR), experimental demonstra-

tions show the successful swing-up and stabilization of the spherical pendulum on

the 7-DoF KUKA LBR iiwa 14 R820.

The proposed two-stage trajectory planning was also successfully applied to a task

for dynamically grasping a 3D object with a collaborative robot [109]. Here, the

proposed algorithm plays an important role in iteratively computing online trajec-

tories of the robot while approaching the object. In future work, extensions of the

proposed two-step trajectory planning will be investigated for dynamically chang-

ing obstacles. Furthermore, in a mid-term perspective, the real-time trajectory

planning framework will be combined with environment detection and vision-based

object tracking.

A

Parameters

A.1 Parameters of the lab-scale 3D gantry crane

Name Value Unit Name Value Unit

Ix 39.99 kg cm2 Rx 38 mm
Iy 32.89 kg cm2 Ry 38 mm
Iz 41.71 kg cm2 Rz 13.25 mm
Iα 86.52 kg cm2 b1 43.5 mm
Iβ 71.72 kg cm2 h1 61 mm
sx,0 215 mm mx 4.43 kg
sy,0 275 mm my 1.62 kg
sz,0 95 mm mz 2.16 kg

sz,max 1000 mm g 9.81 ms−2

Table A.1: System parameters of the lab-scale 3D gantry crane.

103

A Parameters 104

A.2 Parameters of the 7-axis KUKA LBR iiwa

14 R820 and the spherical pendulum.

Name Value Unit Name Value Unit

d1 0.1525 m d5 0.2175 m
d2 0.2025 m d6 0.1825 m
d3 0.2325 m d7 0.081 m
d4 0.1825 m d8 0.155 m
d9 0.073 m m1 6.495 kg
m2 8.807 kg m5 1.889 kg
m3 2.8 kg m6 2.32 kg
m4 5.283 kg m7 1.56 kg
m8 0.23 kg m9 0.186 kg
I1,xx 0.069 kgm2 I1,yy 0.071 kgm2

I1,zz 0.02 kgm2 I2,xx 0.082 kgm2

I2,yy 0.016 kgm2 I2,zz 0.087 kgm2

I3,xx 0.023 kgm2 I3,yy 0.022 kgm2

I3,zz 0.055 kgm2 I4,xx 0.047 kgm2

I4,yy 0.009 kgm2 I4,zz 0.046 kgm2

I5,xx 0.014 kgm2 I5,yy 0.011 kgm2

I5,zz 0.0057 kgm2 I6,xx 0.007 kgm2

I6,yy 0.004 kgm2 I6,zz 0.006 kgm2

I7,xx 0.003 kgm2 I7,yy 0.002 kgm2

I7,zz 0.0021 kgm2 I8,xx 0.003 kgm2

I8,yy 0.000027 kgm2 I8,zz 0.0035 kgm2

I9,xx 0.013 kgm2 I9,yy 0.012 kgm2

I9,zz 0.008 kgm2 g -9.81 ms−2

Table A.2: Parameters of the 7-axis KUKA LBR iiwa 14 R820 and the spherical
pendulum.

Bibliography

[1] M. Shariatee, A. Akbarzadeh, A. Mousavi, and S. Alimardani, “Design of

an economical scara robot for industrial applications,” Proceedings of the

RSI/ISM International Conference on Robotics and Mechatronics, pp. 534–

539, 2014.

[2] L. Rey and R. Clavel, The delta parallel robot. Springer: London, United

Kingdom, 1999.

[3] C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano, and A. De Luca, “Dynamic

identification of the franka emika panda robot with retrieval of feasible pa-

rameters using penalty-based optimization,” IEEE Robotics and Automation

Letters, vol. 4, no. 4, pp. 4147–4154, 2019.

[4] P. Aivaliotis, S. Aivaliotis, C. Gkournelos, K. Kokkalis, G. Michalos, and

S. Makris, “Power and force limiting on industrial robots for human-robot

collaboration,” Robotics and Computer-Integrated Manufacturing, vol. 59,

pp. 346–360, 2019.

[5] O. Sawodny, H. Aschemann, and S. Lahres, “An automated gantry crane as

a large workspace robot,” Control Engineering Practice, vol. 10, no. 12, pp.

1323–1338, 2002.

[6] M. Al-Hussein, M. A. Niaz, H. Yu, and H. Kim, “Integrating 3d visualization

and simulation for tower crane operations on construction sites,” Automation

in construction, vol. 15, no. 5, pp. 554–562, 2006.

[7] J. Kalmari, J. Backman, and A. Visala, “Nonlinear model predictive control

of hydraulic forestry crane with automatic sway damping,” Computers and

1

Bibliography 2

Electronics in Agriculture, vol. 109, pp. 36–45, 2014.

[8] R. Mueller, M. Vette, and A. Geenen, “Skill-based dynamic task allocation in

human-robot-cooperation with the example of welding application,” Procedia

Manufacturing, vol. 11, pp. 13–21, 2017.

[9] B. Wang, S. J. Hu, L. Sun, and T. Freiheit, “Intelligent welding system tech-

nologies: State-of-the-art review and perspectives,” Journal of Manufacturing

Systems, vol. 56, pp. 373–391, 2020.

[10] S. Zhang, H. Huang, D. Huang, L. Yao, J. Wei, and Q. Fan, “Subtask-learning

based for robot self-assembly in flexible collaborative assembly in manufac-

turing,” The International Journal of Advanced Manufacturing Technology,

vol. 120, no. 9-10, pp. 6807–6819, 2022.

[11] T. Weingartshofer, B. Bischof, M. Meiringer, C. Hartl-Nesic, and A. Kugi,

“Optimization-based path planning framework for industrial manufacturing

processes with complex continuous paths,” Robotics and Computer-Integrated

Manufacturing, vol. 82, p. 102516, 2023.

[12] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime mo-

tion planning using the RRT,” Proceedings of the International Conference

on Robotics and Automation, pp. 1478–1483, 2011.

[13] M. P. Strub and J. D. Gammell, “Adaptively Informed Trees (AIT): Fast

asymptotically optimal path planning through adaptive heuristics,” Proceed-

ings of the International Conference on Robotics and Automation, pp. 3191–

3198, 2020.

[14] S. M. La Valle, “Motion planning,” IEEE Robotics & Automation Magazine,

vol. 18, no. 2, pp. 108–118, 2011.

[15] A. V. Rao, Trajectory optimization: a survey. Springer: Cham, Switzerland,

2014.

[16] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees

(BIT*): Sampling-based optimal planning via the heuristically guided search

of implicit random geometric graphs,” Proceedings of the International Con-

ference on Robotics and Automation, pp. 3067–3074, 2015.

[17] M. Böck and A. Kugi, “Real-time nonlinear model predictive path-following

control of a laboratory tower crane,” IEEE Transactions on Control Systems

3 Bibliography

Technology, vol. 22, no. 4, pp. 1461–1473, 2013.

[18] Y. R. Stürz, L. M. Affolter, and R. S. Smith, “Parameter identification of

the kuka lbr iiwa robot including constraints on physical feasibility,” IFAC-

PapersOnLine, vol. 50, no. 1, pp. 6863–6868, 2017.

[19] M. N. Vu, P. Zips, A. Lobe, F. Beck, W. Kemmetmüller, and A. Kugi,

“Fast motion planning for a laboratory 3d gantry crane in the presence of

obstacles,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9508–9514, 2020.

[20] M. N. Vu, C. Hartl-Nesic, and A. Kugi, “Fast swing-up trajectory optimiza-

tion for a spherical pendulum on a 7-dof collaborative robot,” Proceedings of

the International Conference on Robotics and Automation, pp. 10 114–10 120,

2021.

[21] M. N. Vu, A. Lobe, F. Beck, T. Weingartshofer, C. Hartl-Nesic, and A. Kugi,

“Fast trajectory planning and control of a lab-scale 3d gantry crane for a mov-

ing target in an environment with obstacles,” Control Engineering Practice,

vol. 126, p. 105255, 2022.

[22] M. N. Vu, M. Schwegel, C. Hartl-Nesic, and A. Kugi, “Sampling-based tra-

jectory (re)planning for differentially flat systems: Application to a 3d gantry

crane,” IFAC-PapersOnLine, vol. 55, no. 38, pp. 33–40, 2022.

[23] F. Beck, M. N. Vu, C. Hartl-Nesic, and A. Kugi, “Singlularity avoidance

with application to online trajectory optimization for serial manipulators,”

IFAC-PapersOnLine, [Accepted for IFAC World Congress], 2023.

[24] M. Zimmermann, M. N. Vu, F. Beck, C. Hartl-Nesic, and A. Kugi, “Two-

step online trajectory planning of a quadcopter in indoor environments with

obstacles,” IFAC-PapersOnLine, [Accepted for IFAC World Congress], 2023.

[25] M. Vu, F. Beck, M. Schwegel, C. Hartl-Nesic, A. Nguyen, and A. Kugi, “Ma-

chine learning-based framework for optimally solving the analytical inverse

kinematics for redundant manipulators,” Mechatronics, vol. 91, p. 102970,

2023.

[26] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control.

Wiley: New Jersey, USA, 2005.

[27] A. Lobe, A. Ettl, A. Steinböck, and A. Kugi, “Flatness-based nonlinear

control of a three-dimensional gantry crane,” IFAC-PapersOnLine, vol. 51,

Bibliography 4

no. 22, pp. 331–336, 2018.

[28] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-

linear systems: Introductory theory and examples,” International Journal of

Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[29] B. Kolar, H. Rams, and K. Schlacher, “Time-optimal flatness based control

of a gantry crane,” Control Engineering Practice, vol. 60, pp. 18–27, 2017.

[30] J. Kretschmer, “Swing-up and stabilization of a spherical inverted pendulum

on a robot,” Master’s thesis, Automation and Control Institute (ACIN), TU

Wien, 2021.

[31] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,

Principles of robot motion: theory, algorithms, and implementations. MIT

press: Cambridge, USA, 2005.

[32] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuris-

tic determination of minimum cost paths,” IEEE Transactions on Systems

Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[33] D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-based path

planning,” Proceedings of the International Workshop on Planning under

Uncertainty for Autonomous Systems, pp. 9–18, 2005.

[34] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artificial

Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[35] D. Ferguson and A. Stentz, “The delayed D* algorithm for efficient path

replanning,” Proceedings of the International Conference on Robotics and

Automation, pp. 2045–2050, 2005.

[36] S. Koenig and M. Likhachev, “Improved fast replanning for robot navigation

in unknown terrain,” Proceedings of the International Conference on Robotics

and Automation, pp. 968–975, 2002.

[37] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with prov-

able bounds on sub-optimality,” Advances in Neural Information Processing

Systems, vol. 16, pp. 767–774, 2003.

[38] B. R. Donald, “A search algorithm for motion planning with six degrees of

freedom,” Artificial Intelligence, vol. 31, no. 3, pp. 295–353, 1987.

5 Bibliography

[39] K. Kondo, “Motion planning with six degrees of freedom by multistrate-

gic bidirectional heuristic free-space enumeration,” IEEE Transactions on

Robotics and Automation, vol. 7, no. 3, pp. 267–277, 1991.

[40] M. Cherif, “Kinodynamic motion planning for all-terrain wheeled vehicles,”

Proceedings of the International Conference on Robotics and Automation,

pp. 317–322, 1999.

[41] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” The International Journal of Robotics Research, vol. 30, no. 7,

pp. 846–894, 2011.

[42] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[43] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” Proceedings

of the International Conference on Robotics and Automation, pp. 521–528,

2000.

[44] J. Nasir, F. Islam, U. Malik, Y. Ayaz, O. Hasan, M. Khan, and M. S. Muham-

mad, “RRT*-SMART: A rapid convergence implementation of RRT,” Inter-

national Journal of Advanced Robotic Systems, vol. 10, no. 7, p. 299, 2013.

[45] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal

sampling-based path planning focused via direct sampling of an admissible

ellipsoidal heuristic,” Proceedings of the International Conference on Intelli-

gent Robots and Systems, pp. 2997–3004, 2014.

[46] M. P. Strub and J. D. Gammell, “Advanced BIT*(ABIT*): Sampling-based

planning with advanced graph-search techniques,” Proceedings of the Inter-

national Conference on Robotics and Automation, pp. 130–136, 2020.

[47] C. Xie, J. van den Berg, S. Patil, and P. Abbeel, “Toward asymptotically

optimal motion planning for kinodynamic systems using a two-point bound-

ary value problem solver,” Proceedings of the International Conference on

Robotics and Automation, pp. 4187–4194, 2015.

[48] H. B. Keller, Numerical methods for two-point boundary-value problems.

Courier Dover Publications: New York, USA, 2018.

[49] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically

Bibliography 6

optimal motion planning for robots with linear dynamics,” Proceedings of

the International Conference on Robotics and Automation, pp. 5054–5061,

2013.

[50] E. Verriest and F. Lewis, “On the linear quadratic minimum-time problem,”

IEEE Transactions on Automatic Control, vol. 36, no. 7, pp. 859–863, 1991.

[51] D. J. Evans, “Iterative methods for solving non-linear two point boundary

value problems,” International Journal of Computer Mathematics, vol. 72,

no. 3, pp. 395–401, 1999.

[52] Q. Chen, Y. Zhang, S. Liao, and F. Wan, “Newton–

kantorovich/pseudospectral solution to perturbed astrodynamic two-point

boundary-value problems,” Journal of Guidance, Control, and Dynamics,

vol. 36, no. 2, pp. 485–498, 2013.

[53] E. Delaleau and J. Rudolph, “Decoupling and linearization by quasi-static

feedback of generalized states,” Proceedings of the European Control Confer-

ence, pp. 1069–1074, 1995.

[54] B. Kolar and K. Schlacher, “Flatness based control of a gantry crane,” Pro-

ceedings of the 9th IFAC Symposium on Nonlinear Control Systems, pp.

487–492, 2013.

[55] D. C. Kozen, The Design and Analysis of Algorithms. Springer: New York,

USA, 1992.

[56] C. R. Maurer, R. Qi, and V. Raghavan, “A linear time algorithm for com-

puting exact euclidean distance transforms of binary images in arbitrary

dimensions,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 25, no. 2, pp. 265–270, 2003.

[57] J. T. Betts, “Survey of Numerical Methods for Trajectory Optimization,”

Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207,

1998.

[58] A. V. Rao, “A survey of numerical methods for optimal control,” Advances

in the Astronautical Sciences, vol. 135, no. 1, pp. 497–528, 2009.

[59] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M.

Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant hamiltonian

optimization for motion planning,” The International Journal of Robotics

7 Bibliography

Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[60] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,

S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential con-

vex optimization and convex collision checking,” The International Journal

of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[61] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for com-

puting the distance between complex objects in three-dimensional space,”

IEEE Journal on Robotics and Automation, vol. 4, no. 2, pp. 193–203, 1988.

[62] S. Iftikhar, O. J. Faqir, and E. C. Kemgan, “Nonlinear model predictive con-

trol of an overhead laboratory-scale gantry crane with obstacle avoidance,”

Proceedings of the Conference on Control Technology and Applications, pp.

382–387, 2019.

[63] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoid-

ance,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp.

972–983, 2020.

[64] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement Imitation with Non-

linear Dynamical Systems in Humanoid Robots,” Proceedings of the IEEE

Conference on Robotics and Automation, pp. 1398–1403, 2002.

[65] S. M. Khansari-Zadeh and A. Billard, “Learning Stable Nonlinear Dynamical

Systems with Gaussian Mixture Models,” IEEE Transactions on Robotics,

vol. 27, no. 5, pp. 943–957, 2011.

[66] A. Abdullahi, Z. Mohamed, H. Selamat, H. Pota, M. Z. Abidin, and S. Fasih,

“Efficient control of a 3D overhead crane with simultaneous payload hoist-

ing and wind disturbance: design, simulation and experiment,” Mechanical

Systems and Signal Processing, vol. 145, p. 106893, 2020.

[67] X. Wang, J. Liu, Y. Zhang, B. Shi, D. Jiang, and H. Peng, “A unified sym-

plectic pseudospectral method for motion planning and tracking control of 3d

underactuated overhead cranes,” International Journal of Robust and Non-

linear Control, vol. 29, no. 7, pp. 2236–2253, 2019.

[68] W. Zhang, H. Chen, H. Chen, and W. Liu, “A time optimal trajectory plan-

ning method for double-pendulum crane systems with obstacle avoidance,”

IEEE Access, vol. 9, pp. 13 022–13 030, 2021.

Bibliography 8

[69] J. T. Betts, Practical methods for optimal control and estimation using non-

linear programming. Siam: Philadelphia, USA, 2010.

[70] M. Kelly, “An introduction to trajectory optimization: how to do your own

direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

[71] A. Wächter and L. T. Biegler, “On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming,” Mathe-

matical Programming, vol. 106, no. 1, pp. 25–57, 2006.

[72] N. T. An, D. Giles, N. M. Nam, and R. B. Rector, “The log-exponential

smoothing technique and nesterov’s accelerated gradient method for gener-

alized sylvester problems,” Journal of Optimization Theory and Applications,

vol. 168, no. 2, pp. 559–583, 2016.

[73] F. Nielsen and K. Sun, “Guaranteed bounds on information-theoretic mea-

sures of univariate mixtures using piecewise log-sum-exp inequalities,” En-

tropy, vol. 18, no. 12, p. 442, 2016.

[74] J. L. Bentley, “Multidimensional binary search trees used for associative

searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[75] R. Pinkham, S. Zeng, and Z. Zhang, “Quicknn: Memory and performance

optimization of kd tree based nearest neighbor search for 3d point clouds,”

Proceedings of the International Symposium on High Performance Computer

Architecture, pp. 180–192, 2020.

[76] M. Soleymani and S. Morgera, “An efficient nearest neighbor search method,”

IEEE Transactions on Communications, vol. 35, no. 6, pp. 677–679, 1987.

[77] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “Casadi: a

software framework for nonlinear optimization and optimal control,” Math-

ematical Programming Computation, vol. 11, no. 1, pp. 1–36, 2019.

[78] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large

scale optimization,” Mathematical Programming, vol. 45, no. 1-3, pp. 503–

528, 1989.

[79] J. Mattingley and S. Boyd, “CVXGEN: A code generator for embedded

convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp. 1–

27, 2012.

9 Bibliography

[80] K. H. Lundberg and T. W. Barton, “History of Inverted-pendulum Systems,”

IFAC Proceedings Volumes, vol. 42, no. 24, pp. 131–135, 2010.

[81] Y. Xu, M. Iwase, and K. Furuta, “Time Optimal Swing-up Control of Single

Pendulum,” Journal of Dynamic Systems, Measurement, and Control, vol.

123, no. 3, pp. 518–527, 2001.

[82] M. Yamakita, M. Iwashiro, Y. Sugahara, and K. Furuta, “Robust Swing Up

Control of Double Pendulum,” Proceedings of the American Control Confer-

ence, vol. 1, pp. 290–295, 1995.

[83] T. Glück, A. Eder, and A. Kugi, “Swing-up control of a triple pendulum on a

cart with experimental validation,” Automatica, vol. 49, no. 3, pp. 801–808,

2013.

[84] J. Shen, A. K. Sanyal, N. A. Chaturvedi, D. Bernstein, and H. McClamroch,

“Dynamics and control of a 3D pendulum,” Proceedings of the International

Conference on Decision and Control, vol. 1, pp. 323–328, 2004.

[85] R. H. Cannon, Dynamics of physical systems. McGraw-Hill: California,

USA, 1967.

[86] K. Ogata and Y. Yang, Modern control engineering. Prentice Hall: New

Jersey, USA, 1970.

[87] S. Mori, H. Nishihara, and K. Furuta, “Control of unstable mechanical system

control of pendulum,” International Journal of Control, vol. 23, no. 5, pp.

673–692, 1976.

[88] A. Mills, A. Wills, and B. Ninness, “Nonlinear model predictive control of an

inverted pendulum,” Proceedings of the American Control Conference, pp.

2335–2340, 2009.

[89] E. Derner, J. Kubalík, and R. Babuška, “Reinforcement learning with sym-

bolic input-output models,” Proceedings of the International Conference on

Intelligent Robots and Systems, pp. 3004–3009, 2018.

[90] T. Chen and B. Goodwinel, “A simple approach on global control of a class of

underactuated mechanical robotic systems,” Proceedings of the International

Conference on Intelligent Robots and Systems, pp. 5139–5145, 2019.

[91] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of inverted

Bibliography 10

pendulum using pseudo-state feedback,” Proceedings of the Institution of

Mechanical Engineers, Part I: Journal of Systems and Control Engineering,

vol. 206, no. 4, pp. 263–269, 1992.

[92] K. Graichen and M. Zeitz, “Feedforward control design for finite-time transi-

tion problems of nonlinear systems with input and output constraints,” IEEE

Transactions on Automatic Control, vol. 53, no. 5, pp. 1273–1278, 2008.

[93] A. Winkler and J. Suchỳ, “Erecting and balancing of the inverted pendulum

by an industrial robot,” IFAC Proceedings Volumes, vol. 42, no. 16, pp. 323–

328, 2009.

[94] A. Marco, P. Hennig, J. Bohg, S. Schaal, and S. Trimpe, “Automatic LQR

tuning based on gaussian process global optimization,” Proceedings of the

International Conference on Robotics and Automation, pp. 270–277, 2016.

[95] A. Doerr, D. Nguyen-Tuong, A. Marco, S. Schaal, and S. Trimpe, “Model-

based policy search for automatic tuning of multivariate PID controllers,”

Proceedings of the International Conference on Robotics and Automation,

pp. 5295–5301, 2017.

[96] G. Schreiber, C. Ott, and G. Hirzinger, “Interactive redundant robotics: Con-

trol of the inverted pendulum with nullspace motion,” Proceedings of the

International Conference on Intelligent Robots and Systems, vol. 1, pp. 158–

164, 2001.

[97] C. Hartl-Nesic, J. Kretschmer, M. Schwegel, T. Glück, and A. Kugi,

“Swing-up of a spherical pendulum on a 7-axis industrial robot,” IFAC-

PapersOnLine, vol. 52, no. 15, pp. 346–351, 2019.

[98] S. Farzan, A.-P. Hu, E. Davies, and J. Rogers, “Modeling and control of

brachiating robots traversing flexible cables,” Proceedings of the Interna-

tional Conference on Robotics and Automation, pp. 1645–1652, 2018.

[99] K.-D. Nguyen and D. Liu, “Robust control of a brachiating robot,” Proceed-

ings of the International Conference on Intelligent Robots and Systems, pp.

6555–6560, 2017.

[100] S. Farzan, A.-P. Hu, E. Davies, and J. Rogers, “Feedback motion planning

and control of brachiating robots traversing flexible cables,” Proceedings of

the American Control Conference, pp. 1323–1329, 2019.

11 Bibliography

[101] P. Reist, P. Preiswerk, and R. Tedrake, “Feedback-motion-planning with

simulation-based LQR-trees,” The International Journal of Robotics Re-

search, vol. 35, no. 11, pp. 1393–1416, 2016.

[102] C. Liu and C. G. Atkeson, “Standing balance control using a trajectory

library,” Proceedings of the International Conference on Intelligent Robots

and Systems, pp. 3031–3036, 2009.

[103] E. E. Binder and J. H. Herzog, “Distributed computer architecture and fast

parallel algorithms in real-time robot control,” IEEE Transactions on Sys-

tems, Man, and Cybernetics, vol. 16, no. 4, pp. 543–549, 1986.

[104] R. Marimont and M. Shapiro, “Nearest neighbour searches and the curse of

dimensionality,” IMA Journal of Applied Mathematics, vol. 24, no. 1, pp.

59–70, 1979.

[105] J. J. Moré and G. Toraldo, “Algorithms for bound constrained quadratic

programming problems,” Numerische Mathematik, vol. 55, no. 4, pp. 377–

400, 1989.

[106] S. Bittanti, A. J. Laub, and J. C. Willems, The Riccati Equation. Springer:

Berlin, Heidelberg, 2012.

[107] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell, Feedback

control of dynamic systems. Prentice Hall, 2002.

[108] I. S. Duff, “MA57—A Code for the Solution of Sparse Symmetric Definite and

Indefinite Systems,” ACM Transactions on Mathematical Software, vol. 30,

no. 2, pp. 118–144, 2004.

[109] F. Grander, “Dynamisches Greifen von 3D-Objekten mittels robotischem

System,” Master’s thesis, in German, Automation and Control Institute

(ACIN), TU Wien, 2021.

	Titlepage
	Vorwort
	Kurzzusammenfassung
	Abstract
	Contents
	Introduction
	Motivation
	Objectives and approaches presented in this work
	Outline of the thesis

	Mathematical modeling
	Lab-scale 3D gantry crane
	Equations of motion
	Differential flatness

	Collaborative 7-axis robot with a spherical pendulum
	Forward kinematics
	Dynamics

	Sampling-based trajectory planning for a 3D gantry crane
	Introduction
	Flat-informed RRT* trajectory planning
	Overview of the trajectory planning scenario
	Local planner
	Flat-Informed RRT* trajectory planning algorithm

	Simulation results
	Conclusions

	Optimization-based trajectory planning for a 3D gantry crane
	Introduction
	Two-step trajectory planning
	Offline trajectory optimization
	Collision avoidance
	Trajectory database
	Online trajectory replanner

	Trajectory tracking controller design
	Simulation and experimental results
	Simulation results
	Experimental results

	Conclusions

	Swing-up trajectory optimization of a pendulum on a collaborative robot
	Introduction
	Offline trajectory optimization
	Near time-optimal swing-up trajectory optimization
	Trajectory database

	Fast trajectory replanner
	Trajectory tracking controller
	Simulation and experimental results
	Conclusions

	Conclusions and Outlook
	Parameters
	Parameters of the lab-scale 3D gantry crane
	Parameters of the 7-axis KUKA LBR iiwa 14 R820 and the spherical pendulum.

	Bibliography

