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Abstract— A safe, comfortable and intelligent Lane Keeping 

Assistance System (LKAS) is fundamental on the way to realizing 
full automated driving. In spite of the current high market 
penetration of LKAS, vehicle manufacturers, suppliers and 
researchers are still working on improving the system to reach a 
higher customer acceptance. To achieve this goal more efficiently, 
a systematic and ideally objective assessment procedure of the 
system needs to be established. Till date, a thorough review study 
of the assessment procedures of LKAS does not exist, especially 
of those which also take the subjective impression of the driver 
into consideration. The motivation of this paper is to benchmark 
the state-of-the-art assessment methods of LKAS and identify 
where problems and research potentials lie. The paper 
summarizes the relevant characteristics of LKAS based on 
representative research in the past decades. It also compares the 
characterization of LKAS with the field of steering feel and 
vehicle handling in the aspects of procedure, strategy, as well as 
their advantages and disadvantages. This paper contributes to 
transferring the know-hows and valuable experiences from other 
well-developed fields of vehicle dynamics into the rapid-evolving 
branch of Advanced Driver Assistance System (ADAS), in order 
to help standardizing its assessment procedure and give insights 
on system design from a human-centered perspective in the early 
development phase, thus shortening the ADAS development 
cycles. 
 
Index Terms— ADAS, LKAS, subjective assessment, objective 
assessment, objectification method  

 

I. INTRODUCTION 
SSISTED and automated driving has been identified as 
one of the technologies of the future. According to 
estimates, this market will grow at an annual rate of 

12-14% [1]. In addition, companies from the IT industry, 
which are not traditionally active in the automotive sector, are 
actively investing in research into technologies for assistance 
systems and automated driving (AD). Besides, due to the 
danger of losing touch with technology, a majority of the 
companies in the automotive industry are currently working 
on this topic. According to the classification of Automation 
Levels from Society of Automotive Engineers (SAE) (see 
Table 1), level 2 (partial automation) systems, typically Lane 
Keeping Assistance System (LKAS) and Adaptive Cruise 
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Control (ACC), have reached a high market penetration rate. 
In July 2021, a regulation legalizing vehicles equipped with 
level 3 (high automation) systems up to 60 km/h came into 
force in Germany [2]. The German Original Equipment 
Manufacturer (OEM) Mercedes-Benz has brought the first 
level 3 system Drive Pilot to the market. When upgrading the 
current technology to higher automation levels, a reliable 
lateral guidance function plays a central role. 

LKAS observe the environment, currently mainly using 
vision-based technologies, and detect potential unintended 
departure from the ego lane. They then intervene and help the 
driver to steer the vehicle back into the lane. The series products 
on the market are usually named brand-specifically. Example of 
systems of level 2 are Active Lane Assist of Audi, Autopilot of 
Tesla, Lane Trace Assist of Toyota etc. For a better clarity, we 
will use the term “Lane Keeping Assistance System” with the 
abbreviation “LKAS” in this paper. Here, systems with lateral 
control functions in all automation levels are included. 

 
TABLE I 

LEVELS OF DRIVING AUTOMATION ACCORDING TO [3] 

Level Name Example Features 
 0 No Driving 

Automation 
Automatic Emergency Braking 
(AEB) 

D
riv

er
 S

up
po

rt 1 Driver 
Assistance 

Lane Centering OR ACC 

2 Partial 
Driving 
Automation 

Lane Centering AND ACC at 
the same time 

A
ut

om
at

ed
 D

riv
in

g 

3 Conditional 
Driving 
Automation 

Traffic Jam Chauffeur 

4 High Driving 
Automation 

Local driverless taxi 

5 Full Driving 
Automation 

Same as level 4, but feature can 
drive everywhere in all 
conditions 

 
The current level 2 LKAS on the market, according to the 

subject studies in [4], still does not fully meet the requirements 
of the customers. Though several European as well as 
international standards were introduced in the last two decades 
to test the LKAS, they are to be considered as a legal 
guideline. A universally accepted reference for designing and 
tuning the system has not been systematically established. 
This means, the assessment process of LKAS is still far from 
standardized. To speed up the development cycle and reduce 
the cost while targeting customer needs, more effective and 

A 
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efficient development methods are required throughout the 
whole Product Evolution Process (PEP). Following other 
branches in the automotive industry, the attempt to supplement 
or even replace subjective assessments with objective 
assessments has started in the field of ADAS development. 

This paper reviews current research in assessment methods 
for LKAS and other ADAS for automated driving. It analyzes 
the requirements for ADAS, mainly LKAS, from a human-
centered point of view and provides insight improve future 
ADAS/AD development to enhance customer acceptance. It 
also provides a clear view on the heterogeneous research 
approaches in this field. Furthermore, this paper benchmarks 
the state of the art in the field of classic vehicle dynamics 
characterization, especially considering steering feel and 
handling, with the aim of transferring the experience and 
know-hows into ADAS development and assessment. Based 
on the discussion of current research trends and their results, 
deficiencies and research potentials towards an objective, 
systematic and cross-domain assessment method are 
identified. This paper contributes to standardizing the 
assessment and calibration procedure of LKAS and ADAS in 
order to meet the complex subjective requirements of the 
driver.  

This paper is structured as follows. The second chapter 
gives a brief introduction of LKAS, including its theoretical 
background, classifications and the state-of-the-art 
technologies. The third chapter summarizes the most relevant 
characteristics of LKAS based on previous publications. 
Chapter four gives an overview of different assessment 
methods in vehicle development. Chapter five to eight 
introduce and analyze these methods of assessing the system 
characteristics individually, where literatures from the well-
established fields of steering feel and handling assessment are 
regarded as a reference point for the new territory of ADAS 
and AD. The discovered results, achievements and limitations 
in the previous works, as well as potentials for future 
researches are discussed and summarized in the last chapter. 

II. BACKGROUND OF LKAS 
Due to the increasing technical possibilities, ADAS and AD 

have recently gained increased attention. Today's assistance 
systems can support the driver with information for certain 
parts of the driving task (information systems), relieve them of 
certain subtasks (comfort systems) or help them to cope with 
critical driving situations more safely (safety systems) [5]. In 
this context, the integration of driver assistance and automated 
driving functions has significantly increased the system 
complexity of the vehicle. LKAS is a combination of the three 
functionalities mentioned above. It supports the driver in 
keeping in lane and avoiding unintentional lane departure or 
takes over these tasks during automated driving.  

The introduction of LKAS has on one hand reduced the 
accidents caused by unintentional lane departure. Lane 
departure crashes are mainly made up of 3 major crash types 
related to lateral vehicle movement, namely head-on, single-

vehicle, and overtaking/lane changing crashes. These have 
been identified as one of the most common crash types in 
many countries [6]. The study [7] analyzed the data on fatal 
passenger car crashes in 2014–2016 in Finland. The results 
indicated that LKAS is able to deliver notable road safety 
benefits. This statement could be confirmed by a more current 
study [8], which estimated that LKAS was effective in 
reducing the overall number of target population crashes by 
60% ± 16%. On the other hand, the system is able to relieve 
the driver from certain mundane routine tasks in the road 
traffic, such as keeping in lane in long distance travels or 
during traffic congestions. This aspect is gaining more 
relevance starting from Automation level 3. 

According to the 3-level driver behavior model from 
Donges [9], LKAS takes over the driving tasks on the 
“guidance” and “stabilization” level. A basic lateral controller 
can be designed based on the concept of this driver behavior 
model (see Fig. 1). On the “guidance” level, the system 
derives the target values, normally the target path and/or the 
target velocity of the vehicle, with respect to the 
environmental information such as the previewed road 
curvature. The system then intervenes with an open-loop 
control in an anticipatory way. On the “stabilization” level, the 
system corrects the deviation from the reference values (lateral 
position, heading angle etc.) in a closed-loop manner [5]. 

The LKAS on the market can be divided into Type I and 
Type II according to their intervention strategy. Type I system 
only intervenes when the vehicles are near the lane markings 
and tend to depart the lane. It leaves a corridor around the 
center of the lane where the driver can drive freely without 
any support. It is to be regarded as a lane departure prevention. 
Type II system, on the contrary, supports the driver in keeping 
the vehicle near the center of the lane permanently, as long as 
the vehicle is within the defined Operational Design Domain 
(ODD). Type II system is to be considered as a lane centering 
support or an automated lateral guidance, which is more 
similar to what highly automated driving (HAD) or AD is 
equipped with. 

The state-of-the-art LKAS of commercial vehicles 
nowadays are vision-based, which rely mainly on a camera for 
lane and object detection, potentially combined with Radar 
and Lidar. Research projects also make use of technologies 
like Laser Scanner and digital maps for higher resolution. 
However, the use of camera sensors has several advantages in 
particular in AD applications, e.g. considering the available 
infrastructure for traffic monitoring that is mainly based on 
imaging [5]. 

LKAS collects information of ego vehicle’s relative 
position to the road, including the distance and relative 
orientation to lane markings or road edges. Together with the 
vehicle dynamics signals of the ego vehicle, such as velocity 
and acceleration, the system detects potential lane departure 
by means of Time to Line Crossing (TTLC) and/or Distance to 
Line (D2L). The simplest way to calculate TTLC, denoted tLC, 
is 
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tLC= dLC/v·sin (ψ),   (1) 

 
where v is the vehicle’s velocity and ψ is the vehicle’s heading 
angle relative to the lane marking. 

Based on that, the system determines whether and how 
much of a system intervention is needed. A basic and 
commonly used control algorithm in commercial vehicles is a 
PID controller due to its suitability for the low dynamic lateral 
control problem and real-time integration. Further algorithms, 
e.g. Model Predictive Control (MPC), state control, Neural 
Networks, are also introduced to improve the system 
performance in terms of control accuracy, reaction time, 
adaptability, etc. 

Similar to other industrial sectors, also the development of 
ADAS/AD is shifting towards the virtual world. It is no longer 
feasible to test and validate ADAS and AD functions only 
with real driving tests, due to the complexity of the system, the 
test cases and the required test scope [5]. For higher level of 
automation (SAE level 4-5), it is especially challenging to not 
only thoroughly test hardware such as sensors, control units 
and vehicle components, but also to train and test respective 
AI algorithms. For this purpose, an enormous amount of data 
is required to ensure the function and robustness of the 
algorithms. In the context of traffic vision for ADAS, a bulk of 
labeled data is required for tasks like object detection and 
semantic segmentation. Nowadays, there are many publicly 
accessible datasets obtained from real scenes, such as 
ImageNet [10], KITTI [11], MS COCO [12] and PASCAL 
VOC [13]. Researchers have recently also developed virtual 
datasets and driving scenes, e.g. the ParallelEye [14] [15], to 
complement the disadvantages of real-world dataset such as 
time- and cost-intensity, the lack of flexibility and diversity. 
Validation has proven that the inclusion of virtual datasets 
improved the accuracy of object detection and semantic 

segmentation. 
As the automation level increases, there is a need to bring a 

more systematic approach to ADAS and intelligent vehicle 
testing. Unlike conventional performance tests of vehicles, 
where the test scenarios and the desired final state of the test 
are clearly specified, it is not easy to determine what kind of 
scenarios an intelligent vehicle may encounter [16]. Li et al. 
[17] designed a semantic diagram to define driving 
intelligence in four levels – scenarios, tasks, function atoms 
and functionalities. Based on this, Li et al. [16] then defined 
three kinds of tests: performance test, which emphasizes the 
specific “tasks”; functionality test, which addresses whether 
special “function atoms” can be successfully accomplished; 
intelligence test, which considers all four parts of driving 
intelligence. Here, “scenarios” become essential. The authors 
presented a Probably Approximately Correct (PAC) testing 
framework and showed that the major difficulty of testing lies 
in fathoming the set of scenarios rather than sample scenarios 
when the properties of scenarios set are assumed [16]. In 
addition to system validation, scenarios are also essential in 
system design and verification etc. Zhang et al. [18] did a 
systematic mapping study on finding the critical scenarios for 
AD regarding design and Verification and Validation (V&V).  

III. CHARACTERIZATION OF LKAS 
Meanwhile, researches are carried out intensively in assessing 

ADAS and AD functions with higher quality and efficiency. The 
most important system characteristics that OEMs and researchers 
focus on are performance, comfort, safety, interaction with 
occupants, driving style, etc. The most investigated characteristics 
are analyzed in the following subsections based on published 
results respectively. 

 

 
Fig. 1. 3-level driver behavior model according to [5]. 
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A. Performance 
The first and most basic aspect to examine on an ADAS is 

its performance, namely whether it fulfills the functional 
requirements of the system well enough. Taking LKAS as an 
example, it is to evaluate if a potential lane departure is 
successfully avoided and if the departing vehicle is guided 
back into the lane center according to the planned trajectory 
accurately and efficiently. This is also the focus of the most 
published standards, e.g. ISO 11270 [19], UN ECE R79 [20], 
EURO NCAP [21]. 

It is not difficult to use objective metrics to define that. 
Typical specifications from the classic control theory can 
often be used, which are stability, rejection of step 
disturbances, time-responses such as rise time, peak overshoot 
and settling time, as well as further requirements such as 
integrated tracking error. For example, Diab et al. [22] has 
developed an LKA system based on a PID controller to 
minimize the yaw error. The controller parameters were tuned 
based on the performance indices of integral square error 
(ISE), integral absolute error (IAE), integral time square error 
(ITSE) and integral time absolute error (ITAE). For example, 
ITAE is calculated by 

      ITAE  = ∫ t|e|dt∞
0 .           (2) 

 
Wang et al. [23] has selected a similar performance index, 

namely the integrated squared lateral deviation over time for 
the human-centered feed-forward control system they 
developed. System responses in frequency domain were used 
to compare the closed-loop system performance of systems 
with various preview times in different frequency ranges in 
[24]. The most common metrics for LKAS are lateral 
deviation from lane center, lateral velocity and acceleration, 
heading angle, yaw rate, etc. In Wang et al. [25], a generic and 
systematic testing and performance evaluation approach for 
autonomous vehicles is proposed. This approach is composed 
of three layers – sensing & perception, decision-making & 
planning, control & execution. For the performance evaluation 
of the latter two layers, metrics such as “response time”, 
“driving efficiency”, “tracking adaptability”, “tracking 

accuracy” and “tracking smoothness” are selected. 
As for driver perception, it is noticeable that most of the 

literatures focus on the sub-aspects of driver perception of 
comfort and safety. The evaluation of system performance is, 
on the other hand, mainly undertaken objectively. 
Nevertheless, some researches strive to create a holistic 
assessment system for ADAS by covering more dimensions of 
the system characteristics. In the developed assessment 
procedures for LKAS [26] [27] [28] [29] [30] the attribute 
performance was included. Most notably in Ref. [26] [27], 
lateral guidance performance was further specified and 
subdivided into “track accuracy”, “lane keeping”, “goodness 
of lane guidance” (position deviation), “quality of lane 
guidance” (angle deviation), “lane usage”, “distance to 
left/right boundary” respectively. In doctoral thesis [30] the 
author included a performance criterion “lane guidance”, 
which was defined as the capability of the vehicle to follow a 
straight or a curved road. It is strongly correlated with metrics 
based on deviation from lane center, lateral acceleration, 
steering angle, yaw angle error etc. 

According to doctoral thesis [31], unlike the criteria comfort 
and safety, the criterion performance is categorized as the 
“assessment of perception”. This means that the test driver 
should function like a “sensor” and evaluate if the perceived 
system performance is “high” or “low”, despite the personal 
preference. 

A list of the reviewed literature that investigated driver 
perception of the performance of LKAS and other ADAS is 
shown in Table II. The test objects and scenarios of each 
reference are illustrated, as well as the specific system 
characteristics that were investigated. As can be seen in the 
table, the driver perception of the same category 
“performance” can be divided into more detailed sub-criteria, 
for example “track accuracy” and “lane guidance”. This means 
that research in this field focused on different levels of detail 
when categorizing and defining driver perception. The main 
category of the characteristic “performance” is shown in bold 
type in the table while the sub-criteria are shown in regular 
type. 

TABLE II 
REVIEWED LITERATURES ON DRIVER PERCEPTION OF SYSTEM PERFORMANCE OF LKAS 

Literature System under Test 
Test Scenario 

Driver Perception – Performance Maneuver Test Track 
2014 - Holzinger [27] LKAS - - track accuracy; 

lane keeping 
2017 - Holzinger [26] LKAS - - goodness of lane guidance; 

quality of lane guidance; 
lane usage; 

distance to left/right boundary 
2018 - Fen [28] LKAS - - performance 
2019 - Oschlies [30] LKAS lane keeping test track (straight, curve) lane guidance 

2019 - Schick [29] LKAS various according to 
maneuver catalogue 

various according to 
maneuver catalogue 

track guidance quality 

2019 - Park [32] LKAS following (hands 
on/off) 

highway lane keeping performance; 
dynamics behavior performance 

2018 - Kidd [33] LKAS, ACC daily driving public roads performance improvement 
2017 - Wang [23] Human-centered following simulator; simulation performance 
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steering system 
2018 - Wang [25] ADAS/AD - - performance 

 

B. Ride Comfort 
Elbanhawi et al. [34] summarized the main factors that 

influence the ride comfort of autonomous vehicles. In the 
context of AD, ride comfort basically refers to passenger 
comfort, since no human driver is involved anymore. Aside 
from the traditional ergonomic comfort factors such as 
vibrations, noise, temperature and air quality in the vehicle, 
the authors listed other factors that play an important role in 
the AD situations where the driver is out of the control loop. 
They are summarized as resulting forces, natural paths, motion 
sickness and apparent safety. Compared to other literatures, 
the ‘ride comfort’ was given a broader meaning in Ref. [34]. 
Ref. [34] studied how these factors can be taken into 
consideration to optimize the autonomous vehicles at the path 
planning phase. To minimize the resulting forces and jerks on 
the passengers while planning the trajectory, a smooth path 
with continuous curvatures is of great relevance. It contributes 
to reducing the motion sickness in autonomous cars as well. 
Previous researches on human control behaviors and 
maneuver characterization can be utilized for ADAS and AD 
to generate natural paths. Apparent safety which can be 
interpreted as the feeling of safety perceived by driver and 
passenger, can be affected, according to the authors, by the 
following factors. a) distance to obstacles or other vehicles; b) 
safe maneuvering time, where a balance between fast enough 
system reactions and driving comfort should be found; c) 
smooth trajectory tracking, where instability and overshooting 
should be avoided. The authors pointed out that most prior 
researches that considered comfort in planning were limited to 
the minimizing the resulting forces and did not take the other 
three factors mentioned above into account. 

Gallep et al. [35] analyzed the path planning of AD 
regarding motion sickness in depth. The authors used a 
multidimensional motion sickness model from Kamiji et al. 
[36], which was validated with the results from Donohew et 
al. [37]. Ref. [35] simulated the Motion Sickness Incidence 
(MSI) with 3 different maneuvers and analyzed the influence 
of different translational and rotational motions on the MSI. 
As it turned out, angular velocities have a much lower 
influence on the MSI in comparison to translational 
accelerations due to the limited inclination angles. The highest 
MSI values occurred in coherence with Ref. [37] at 0.2 Hz. 
They then proposed a path generator based on the model to 
minimize motion sickness. 

The detailed list of the reviewed literature on comfort of 
LKAS and other ADAS is included in Appendix 2. 
 

 

C. Safety 
Safety of ADAS and AD is categorized into cyber security 

and road safety by Ref. [34]. Road safety depends on system 
responsiveness, safe maneuvering and system reliability. The 

first two characteristics can be perceived directly by the 
occupants, which affects the customer acceptance directly. 
Responsiveness can be described as the ratio between the 
product of the vehicle speed v and response time T and the 
sensor look ahead distance d (or vehicle gap for urban 
scenarios) as follows [38]:  

Response Ratio = v∙T/d           (3) 
 

To achieve a high perceived safety, the system is mainly 
required to identify dangerous scenarios accurately and to 
react to them safely. 

The perception of safety varies among individuals and can 
be influenced by physiological factors like personality, gender 
and age. Ping et al. [39] designed an experiment to investigate 
the visual risk perception of drivers from different age group 
with different driving experiences on city roads. The 
participants drove a predefined route and were asked to review 
the videos taken and rate the level of risk they perceived 
afterwards. The researchers extracted the environmental 
features from the videos. Combined with the ego vehicle data, 
they modeled the relation between the environmental factors 
and the risk perception of each individual driver using deep 
learning methods. The different sensitivity to risks were able 
to be identified among different driver categories. It can be 
seen that novice drivers were much less sensitive compared to 
the elderly and the experienced. Furthermore, the strongest 
influential factors which determined the risk perception also 
varied among the driver categories. For example, the 
percentage of important risk factors originating from the 
outside environment of the more experienced drivers is much 
higher than that of the novice driver, even though both groups 
were sensitive to ego speed. The elderly group, however, 
found insufficient distance to the leading vehicle the riskiest 
factor. As for lateral dynamics factors, experienced drivers 
and instructors were less likely to relate lateral acceleration 
and steering to danger than the novice as well as the elderly 
drivers. 

Heiderich et al. [40] studied the influence of vehicle 
motions caused by external disturbances on the perceived 
safety on a driving simulator. The authors then objectified the 
perceived safety by correlating the subjective impression of 
safety with the vehicle motion data. The objective criteria are 
defined in the frequency domain due to the complex 
combination of ride comfort and handling aspects in the 
evaluation of the feeling of safety. The biggest influence on 
the perceived safety was found to be caused by roll rate 
motions in the range of 2-8 Hz and lateral accelerations 
between 0-2 Hz and 2-8 Hz. Jentsch et al. [41] did a validation 
study on safety evaluation in a static driving simulator. The 
authors compared the evaluation results of an autonomous 
emergency braking (AEB) system on a test track and in a 
driving simulator. The results confirmed that the participants 
were able to evaluate the AEB similarly in both test 
environments, thus validating the assessment method of  
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Fig. 2. Shared control loop [5]. 

 
perceived safety in a static driving simulator. However, it 
should be kept in mind that evaluating the safety feeling of a 
more comfort oriented ADAS that does not only intervene in 
emergency situations, such as LKAS, might not necessarily 
yield the same results. 

Similar to section B, the detailed list of the reviewed 
literature considering driver perception of the safety of LKAS 
and other ADAS is included in Appendix 2. 

 
 

D. Driver Interaction 
For lower-level automation, i.e. level 1 to level 3 according 

to SAE, the driver is still an active component in the control 
loop, see Fig. 2. When the system is activated and intervening, 
the driver should be kept in the control loop (level 1-2) or 
ready to take over upon request (level 3). It is important to 
ensure a clear and reproducible driver-vehicle interaction 
without ambiguity. The Human-Machine-Interface (HMI) is 
roughly subdivided into display and operation elements. The 
display elements, from which the driver intake the 
information, trigger the information processing procedure of 
the human brain. The information could be provided optically 
(e.g. Head-up Display), acoustically (e.g. warning tones) or 
haptically (e.g. vibration of the seat). With the operation 
elements, the driver can execute the actions after processing 
the information. [5] For lateral guidance, the steering wheel 
acts as both display and operation element and is therefore the 
focus of the following literature study. 

Aside from the warning functions of LKAS, the information 
that is being exchanged through the steering wheel is steering 
wheel movement, such as steering wheel angle, velocity and 
acceleration, and steering wheel torque. For level 2 systems, 
the drivers are supposed to keep their hands on the steering 
wheel permanently and only be assisted when necessary. 
There should be therefore no abrupt changes to the above-
mentioned variables to guarantee a natural and comfortable 
interaction between the driver and the automated vehicle. For 
level 3 systems, the drivers could be freed from the driving 
task when the system is in control and are supposed to take 
over when being requested. The “driver interaction” here 

mainly concerns the take-over scenarios. Furthermore, the 
movement of the steering wheel should be reproducible under 
similar situations, for example the timing and intensity of 
intervention on the roads with similar curvatures. Thus, the 
driver would know what to expect from the system under 
certain situations and react accordingly. 

The assessment system in Ref. [30] has included a 
subjective criterion “dynamics”, which could be categorized 
as “driver interaction” according to the definition of this 
review paper. The criterion “dynamics” is defined as the 
quickness and the intensity of the steering intervention. Schick 
et al. [29] defined “driver-vehicle interaction” and “HMI” as 
two relevant attributes in LKAS development. Park et al. [32] 
attempted to model the intrusive feelings of the driver while 
using LKAS. The authors have specified the intrusive feelings 
in four types and derived four performance indicators for 
LKAS based on those. Two of the four indicators, “steering 
stability performance” and “non-interference performance”, 
could be interpreted as the criteria of “driver interaction”. 
They are defined as “the ability to minimize the vibration of 
steering due to the high-frequency intervention” and “the 
ability to minimize the LKAS torque in the opposite direction 
to the driver’s intention” respectively. In the last decades, 
haptic shared control has gained more and more attention as a 
solution of improving driver’s satisfaction with the interaction 
with semi-autonomy by sharing the control task [42]. Shared 
control is described as a continuous spectrum lying between 
manual control and full automation. By allocating the 
authority according to driver’s state, driver’s satisfaction with 
the system is found to be improved even when engaging in a 
demanding secondary task [43]. 

Another way to investigate the “driver interaction” is to 
conduct Naturalistic Driving Studies (NDS), where large-scale 
real-world driving data are collected for analyzing the 
complex interaction between drivers and automation, for 
example in Ref. [44]. Compared with conventional test drives, 
NDS has the advantages of the immense amount of data and 
the minimized effect of observation. On top of that, more 
sophisticated Machine Learning (ML) algorithms could be 
applied in the analysis. Thus, this method is believed to have 
huge potentials in analyzing human-automation-interaction, 
which could also have a much broader meaning than the 
definition in this paper. 

The detailed list of the reviewed literature on driver 
interaction with LKAS and other ADAS is included in 
Appendix 2. 

 

E. Driving Style 
After the basic requirements on the aspects such as system 

safety, performance and comfort have been covered, the 
optimization and adaptation of the driving style of ADAS and 
AD drew the researchers’ interest. Traditionally, driving style 
concerns the way individuals choose to drive or driving habits 
that have become established over a period of years. It 
includes choice of driving speed, threshold for overtaking, 
headway, and propensity to commit traffic violations [45]. 

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3269156

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



           7 
T-IV-24032023 

Customers would want the automated vehicle or vehicle 
equipped with ADAS to still drive naturally with minimized 
sense of the robotic operation. Ideally, the automated function 
could even adapt the driving mode to customers’ personal 
preferences. This could be done implicitly by learning the 
driver preference from manual driving data in advance, or 
explicitly by learning via the interactions between drivers and 
automation, or a combination of both [46]. 

Griesche et al. [46] conducted a two-step study on the 
driver preference of the style of the overtaking maneuver on a 
highway. In the first step, the participants were asked to 
overtake the slower leading vehicle in three different 
situations in a dynamic driving simulator. The driving data 
were then clustered into four different driving style clusters 
per situation using a pattern recognition and image processing 
tool. The vehicle state data used for the identification of 
driving style are lateral deviation, longitudinal and lateral 
acceleration, ego velocity, longitudinal and lateral jerk. Three 
months later, in the second step, the same participants were 
instructed to evaluate the four driving styles as well as their 
ego driving style in each situation when being automatically 
“driven” in the simulator. It is found out that most drivers did 
prefer their own style or a similar style in automated mode in 
general. However, the inter-individual difference in 
preferences was also situation dependent. For example, all 
drivers showed similar overtaking strategies in the more 
safety-critical scenario. Also overtaking strategies with 
smaller safety margins and higher accelerations were disliked 
by all participants. The authors also mentioned that a perfect 
matching between manual driving data and the preferred 
automated driving style is challenging, since not all drivers 

preferred their own style when being driven automatically in 
all situations. Therefore, a possibility for the driver to interact 
and configure the automated functions would be beneficial. 

Bellem et al. [47] agreed that manual driving data are good 
indicators for configuring the automated driving styles and 
took the same approach. The researchers designed a study to 
distinguish three driving styles – comfortable, dynamic and 
everyday driving. Participants were instructed to drive a 
course manually and conduct four main maneuvers with these 
three styles in a randomized order on rural and urban roads as 
well as on highways. They focused on the metrics which 
cannot be manipulated in an automated system but can be 
perceived by the human vestibular system. For instance, 
accelerations and jerks were selected instead of velocity, 
because human vestibular system is not able to perceive speed 
itself but its changes. The researchers were able to identify 
objective metrics to distinguish the three driving styles under 
both rural and urban as well as highway conditions. The 
results also showed that it was necessary to carry out 
maneuver-specific analysis, for different maneuvers differ in 
their primary goals and the interpretation of the driving styles 
varies accordingly. 

The detailed list of the reviewed literature on driving styles 
of LKAS and other ADAS is included in Appendix 2. 

 
Further specific characteristics other than these five were 

also mentioned in the literatures, which were not easy to 
categorize due to the lack of detailed definition of the 
terminologies. Examples of those are acceptance, driving 
pleasure, degree of relief and so on. Fig.3 summarizes the five 
main categories of LKAS characteristics and their sub-aspects

 
Fig. 3. Categorization of LKAS characteristics 
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reviewed in this chapter as well as further characteristics that 
do not fall in any of these. This overview shall give an 
impression of the current heterogeneity in ADAS assessment 
procedures from the perspective of characteristic definitions. 
In addition, the test scenarios and conditions are often project-
specific, if documented at all, as shown in Table II and 
Appendix 2. This makes it difficult to reproduce, compare and 
extrapolate the research results from different projects and to 
develop further based on these results.  

It should be taken into consideration that human’s 
requirements for the vehicle or certain subsystems are 
multidimensional, subtle and complicated, sometimes even 
contradictory. As can be seen from the researches cited in this 
chapter, the investigated system characteristics of ADAS and 
AD – e.g. comfort, safety, and driving style – have some 
overlap in definition and they correlate to some extent. For 
example, the term ride comfort can have a broader meaning 
and can be certainly influenced, as illustrated in Ref. [34], by 
the perceived safety or the personal preferred driving style. 
Therefore, it is recommended that future researches define the 
system characteristics under investigation as clear and detailed 
as possible. 

It should also be noted that the relations of the identified 
metrics to the driver perceptions in these researches are not 
necessarily statistically proven. Moreover, the collected 
subjective assessment data from the participants cannot 
necessarily represent the whole population due to the small 
sample size and the nature of the study. Nevertheless, they 
build a solid foundation for gaining a holistic understanding of 
drivers’ impression of the system and for developing a 
systematic objective development method for ADAS and AD. 

IV. ASSESSMENT METHODS 
Literatures [49] [50] [51] mentioned that the assessment 

methods could be classified in different ways:  
1) virtual and real testing according to how tests are 

performed;  
2) open-loop and closed-loop testing according to how the 

vehicle is controlled; 

3) subjective and objective assessment according to how 
the behavior is assessed.  

 
These divisions could be combined: open-/closed-loop 

maneuvers could be evaluated objectively and/or subjectively 
[50]. Objective assessment could be conducted in both virtual 
and real environment, i.e. simulation and driving test. While 
without a proper objectification tool, subjective assessment is 
mainly carried out in real world. 

For LKAS, however, it is not precise to classify the tests 
into open- and closed-loop tests. Because the lateral guidance 
controller is always in the control loop, as shown in the Fig. 2. 
In this paper, we are going to denote the two categories as 
“driver-out-of-the-loop” and “driver-in-the-loop” depending 
on if the upper control loop is closed in the figure. 

In the automobile industry, the PEP of vehicles can be 
roughly divided in 3 phases (see Fig. 4), namely initial phase, 
concept phase and series development phase. In the initial 
phase, the project plan including the technical and economical 
feasibility is clarified. Then the goals and targets are 
concretized in the concept phase. Finally in the series 
development phase the concept is realized and the vehicle is 
prepared for manufacture [48]. Numerical simulation and 
simulator experiments are applied in the initial and the concept 
phase, which contribute to a time- and cost-efficient 
conception in the early phase of development. Driving tests 
are mainly employed in the series development phase [52]. 
Generally, it could be stated that increasing objective 
assessment based on measurement and simulation is being 
applied in the design and basic tuning stage. However, the 
final fine tuning is still done by subjective assessment of test 
drivers, mainly through closed-loop driving tests [51]. 

The driving tests in the classic vehicle dynamics have 
reached a certain level of maturity after decades of 
development. Despite the fact that the functionality of LKAS 
is rapidly iterating and that emergency LKAS are mandatory 
in all new vehicles starting from 2022 [53], the assessment 
process of LKAS is far from standardized. The testing 
procedure is highly dependent on the manufacturer, which is 
heterogeneous and not transparent due to confidentiality 

 
Fig. 4. Main phases of a vehicle development project [48]. 
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agreements. Researchers have been attempting to develop a 
generic methodology to describe and evaluate the holistic 
system characteristics of LKAS, mainly regarding the major 
attributes mentioned in the previous chapter. Since the 
assessment of classic vehicle dynamics is well established to 
date, we are also going to review the assessment methods of 
lateral dynamics without ADAS, especially steering feel and 
vehicle handling. The experience in those fields will provide 
valuable insights and could be seen as a reference point for 
ADAS and AD assessment. In the following chapters, the 
state-of-the-art assessment methods in the automobile industry 
as well as the newly developed methods utilized in researches 
are classified into objective assessment, subjective assessment, 
objectification methods, Machine Learning methods and 
manual driving analysis. Fig. 5 gives an overview on the 
classification of the methods analyzed in this paper. 

V. OBJECTIVE ASSESSMENT 
Open-loop tests are dominant in the objective assessment 

procedures because of the minimized human influences. Here, 
the system under test is “vehicle-environment” and the driver 
is out of the control loop. Open-loop test maneuvers define 
only the input to the vehicle or the initial condition and 
environment of the vehicle. After the initial input, the driver 
cannot influence the reaction of the vehicle and thus the driver 
is kept out of the control loop.  

During closed-loop test maneuvers, on the contrary, the 
driver is asked to follow a predefined route/velocity profile or 
to drive freely. In this case, the complete “driver-vehicle-
environment” control loop is being investigated. The driver is 
involved as part of the control loop, which makes it possible to 
test the relevant custom-oriented scenarios. However, despite 
the strict definition of the test procedures, closed-loop tests 
show a larger variance in the measurements. This could be 

influenced by driver’s driving strategy, competence, 
adaptation to a certain vehicle etc. [49] Due to this problem, 
closed-loop tests are not used in objective assessment alone. 
As described in ISO 3888-2, a complete and accurate 
description of the behavior of the road vehicle must 
necessarily involve information obtained from a number of 
different tests [54]. 

Objective assessment is usually carried out according to 
predefined test procedures on a proving ground. Relevant 
vehicle dynamics data are collected during the process, with 
which various predefined characteristic values are then 
calculated as the test results. However, there is little agreement 
in how to interpret the results or what to do with them in order 
to derive the greatest benefit [55]. 

 

A. Standards for Objective Assessment 
For classic lateral dynamics tests, open-loop tests which are 

defined in ISO standards are mostly used. For example, 
Steady-State Circular Test (ISO 4138), Step Input Test (ISO 
7401) and Weave Test (ISO 13674-1) are commonly used. 
One example of standardized closed-loop tests is Double Lane 
Change (ISO 3888-1). To minimize the environmental 
influences on the results, these standard tests usually have to 
be carried out on a proving ground. Using a steering robot can 
increase the quality of the measurement data noticeably, as 
proven in doctoral thesis [56]. However, only a few of the 
previous publications have utilized a steering robot –  Ref. 
[57] [58] [59] [60] [61]. It is also recommended for the 
objective driving test of lateral guidance functions, if 
condition allows, to use a steering robot for a better data 
quality by executing the maneuvers more precisely and 
reproducibly. It has already been realized in various industrial 
projects. However, most publications on LKAS assessment 
either did not document the test maneuvers or logged the data  

 
Fig. 5. Classification of the assessment methods of LKAS 
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TABLE III 
COMPARISON OF THREE EUROPEAN LKAS TEST STANDARDS 

Standard Test Scenario Passing Criteria 

IS
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Procedure on a 
Straight 

Travel along the straight road with constant speed 
20 m/s - 22 m/s and steer to gently depart from 
the lane to the left/right at the rate of departure 0.4 
± 0.2 m/s. 

1. LKAS_Offset_max = 0.4m for light vehicles 
2. LKAS_Offset_max = 1.1m for heavy vehicles 

Procedure in a Curve 
Drive along the straight with constant speed 20 
m/s - 22 m/s and set free the steering wheel before 
entering the left/right curve. 

1. LKAS_Offset_max = 0.4 m for light vehicles 
2. LKAS_Offset_max = 1.1 m for heavy vehicles 
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Road Edge Tests Start at a constant speed of 72 km/h and 
accelerate and steer to the driver/front passenger 
side to achieve the target lateral velocity of 0.2 - 
0.5m/s (0.1 m/s increments). 

Distance to Lane Edge (DTLE) <= - 0.1m 

Dashed Line Tests 
DTLE <= -0.3m 
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Lane Keeping 
Functional Test 

Follow a curved road with a constant speed within 
range V_smin - V_smax; for each speed range* 

1. The vehicle does not cross any lane marking; 
2. The moving average over half a second of the 
lateral jerk <= 5 m/s³. 

Maximum Lateral 
Acceleration Test 

1. The recorded acceleration is within the limits 
specified in paragraph 5.6.2.1.3. of this 
Regulation. 
2. The moving average over half a second of the 
lateral jerk <= 5 m/s³. 

… … … 

 

 
Fig. 6. EURO NCAP Lane Keeping Assist tests [21]. 

 
during the subjective test drives simultaneously, for example 
Ref. [29] and [30]. 

Since the beginning of this century, several European and 
international standards have been introduced for testing 
LKAS. These standards prescribe the system limits, define the 
standard test maneuvers as well as the fundamental conditions 
in order to test the functionality concerning safety, driver 
interaction and robustness. ISO-standards ISO 17361 [62] and 

ISO 11270 [19] set the minimal requirements on the 
functionality of Lane Departure Warning (LDW) and LKAS 
respectively in passenger cars, commercial vehicles and buses. 
Fundamental Human-Machine-Interface (HMI) elements and 
test methods were defined for the systems. Within the scope of 
[19], the two system types LKAS Type I and II are not 
distinguished. In the regulation UN ECE R79 [20] published 
by the United Nations, on the contrary, LKA functions are 
categorized into corrective and automatic steering functions, 
which correspond to Type II and I respectively. The Test 
Protocol [21] and Assessment Protocol [63] of EURO NCAP 
adapted the global NCAP tests to the European standards. The 
test scenarios and assessment criteria were prescribed for 
Emergency Lane Keeping (ELK), LKA and LDW. Unlike 
other standardized tests, different types of lane markings are 
taken into consideration in the EURO NCAP tests and are also 
assessed differently. An illustration of the EURO NCAP LKA 
test scenarios is shown in the following Fig. 6. The test 
scenarios and passing criteria of the main European standards 
are summarized in Table III. 

Other international organizations have enforced various 
standardized test procedures under specific road conditions as 
well. Ministry of Land, Infrastructure, Transport and Tourism 
(MLIT) in Japan published a Technical Guideline [64] for 
LKA in motor vehicles. National Highway Traffic Safety 
Administration (NHTSA) in the USA specified tests for LDW 
and LKA systems under North American road conditions, 
while the tests for LKA solely serve the purpose of 
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information collection [65]. A detailed comparison of the 
standards is listed in Appendix 1. 

However, the test scenarios defined in the standards are 
limited. The specified KPIs are mostly reaction time, intensity 
of the system intervention and extreme values of the vehicle 
dynamics parameters such as lateral position, acceleration and 
jerk. Although in most cases, there is a lack of theoretical 
and/or practical justification for the target values. Taking the 
standards in Table III as an example, the test scenarios are 
limited to straight and curved road with specified curvatures 
and the test executions of different standards are 
heterogeneously defined. The passing criteria for different 
standards are defined in a seemingly random and inconsistent 
manner, from the definition of the KPIs (e.g. 
LKAS_Offset_max and DTLE) to their target values. Due to 
the lack of theoretical and/or practical justification for the 
passing criteria and the consideration of aspects such as safety, 
comfort and complex interaction with the driver, they can only 
be considered as minimum legal requirements for the systems. 
Therefore, the target value of the KPIs under realistic 
conditions with the aim of achieving a well-rounded LKAS 
often cannot refer to the specified criteria for passing the 
standardized tests and requires more in-depth research. 

 

B. Selection of Key Performance Indicators (KPI) 
The relevant basic channels for analysis of lateral dynamics, 

such as steering feel and handling, are roughly summarized as 
vehicle speed and acceleration in longitudinal as well as lateral 
direction, yaw rate, roll angle and/or roll rate, side slip angle, 
steering wheel angle and steering wheel torque [55]. For LKAS 
analysis, the additional measurement channels, namely system 
activation status, Distance to Line Crossing (DLC), heading 
angle of the vehicle (with reference to lane markings), lane-
keeping controller torque, lateral jerk, steering wheel velocity are 
also important. 

After appropriate pre-processing, such as elimination of 
outliers and filtering, secondary data can be calculated using 
descriptive statistics. Secondary data can be derived either from 
primary data in time domain or those transformed in frequency 
domain. Typical secondary data to describe the central tendency 
are mean values, median. Standard deviation, variance, extrema 
etc. are suitable for describing the dispersion or variability of the 
measurement data. Relevant secondary data that can describe the 
system characteristics will be selected as KPIs. Other specific 
values, for example gradient, overshoot and settling time, are 
interesting for specific maneuvers and can also be selected. 

Fen [28] analyzed the general requirements on the definition of 
KPIs for evaluating a comfort-orientated ADAS. According to 
the author, the KPIs should not be vehicle-specific, but should 
have a high degree of general validity. This means that the 
variables, from which KPIs are derived, should be at the overall 
vehicle level. The author listed some possible KPIs to take into 
consideration based on the general requirements. Ref. [28] also 
suggested appropriate algorithms, for example Goertzel-
Algorithm instead of Discrete Fourier Transformation (DFT) for 
a shorter calculation time, since in most cases only a specific 
frequency band is of interest. It is also discussed that the 
redundancy of KPIs should generally be avoided, while their 
different physical effects on the driver should be taken into 

consideration in the meantime. For example, even though lateral 
acceleration and lateral jerk correlate, they should still both be 
used as KPIs for their different effects on driver’s sense of 
comfort. The developed KPIs in this paper were categorized into 
three groups, i.e. performance, comfort and sense of security. 

VI. SUBJECTIVE ASSESSMENT 
With standardized objective test maneuvers, diverse aspects of 

the vehicle or subsystem characteristics can be extracted with 
high accuracy and reproducibility. However, since in the end it is 
the driving behavior as a whole that has an effect on people, the 
subjective assessment method cannot be replaced so far [51]. 
The subjective assessment is based on the human ability to 
integrally assess dynamic system characteristics, which are 
composed of complex multidimensional stimuli [56]. The 
driving test for subjective assessment is carried out exclusively 
based on the vehicle reaction variables induced and processed by 
the driver. These are first perceived by the sensory organs of the 
test engineer and set in relation to internal model conceptions in 
parallel [31].  

Subjective assessment may not be completely reproducible due 
to the nature of the principle. The difference in the result of 
subjective assessment may be caused by the characteristics of the 
vehicle, or by the different competencies and/or personal 
preference of the drivers. Harrer [56] pointed out that there are 
two kinds of differences of test drivers that influence the 
assessment result – inter-individual and intra-individual 
difference. They refer to differences between individuals and 
within an individual respectively. Inter-individually, for 
example, the judgements of test drivers from different 
manufacturers are not necessarily the same because test drivers 
from different development areas, such as different model series 
or different brand philosophies, incorporate additional metrics 
into the rating model. Intra-individual differences occur because 
the intrinsic assessment scheme is supported by the experience 
of the driver, which evolves over time. To keep this inner model 
up to date, the test drivers have to be permanently in training to 
keep the comparative databank precise and make reliable 
judgements. Also, the fluctuation of the personal performance 
adds to the uncertainty and inconsistency of the judgements [49]. 
Therefore, the requirements on the competence of the test driver 
are fairly high. They need to sense the minor differences among 
models or setups and minimize the personal influence at the 
same time. That requires the ability to accomplish multiple 
complicated tasks with a high level of concentration throughout 
the driving test. This is also the reason why the number of 
professional test drivers is limited and the cost is fairly 
expensive. 

In addition, the unstandardized test procedure of subjective 
assessment can lead to procedure-dependent results [55]. For 
example, there has been a discussion about the use of reference 
vehicles. There is by far no clear conclusion if the use of 
reference vehicles improves the quality of subjective assessment. 
Some argue that it makes it easier for the test driver to build the 
internal model for assessment. However, this can also falsify the 
results, as it makes the assessment relative. It is especially 
problematic when using the subjective assessment for correlation 
analysis, where the measurement data is absolute. For example,  
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trainings and pair comparisons were carried out in Ref. [30] 
before and after the test drives respectively to ensure the quality 
of the subjective assessments. But many other publications [26] 
[27] [29] decided against it. On top of that, even in the field of 
steering feel and handling, where the assessment procedure is 
relatively mature, the assessment criteria and the terminology are 
not standardized or universally accepted. Thus, they might be 
interpreted differently by drivers with bias.  

To ensure the validity and reliability of the subjective 
assessment, researchers have applied various procedures and 
strategies, from the selection of test maneuvers and the design of 
questionnaires, the recruiting of test drivers, etc. These 
procedures and strategies will be discussed in the following 
subsections. 

 

A. Subjective Driving Maneuvers 
In the previous studies on the subjective assessment of 

conventional lateral dynamics without LKAS, closed-loop 
tests were mainly carried out. Both predefined maneuvers [66] 
and free driving [67] [56] could be found. Gómez [55] 
compared the assessment results of predefined maneuver with 
free driving. It shows that the predefined maneuver, which is 
considerably less time-consuming than the free driving, 
delivered very similar subjective assessments results. 

On the contrary, open-loop test maneuvers are usually used 
in objective assessment procedures. However, for assessing 
ADAS functions with an SAE automation level 2 or higher, 
maneuvers without driver interventions could be considered. 
In this case, test drivers/assessors do not interact with the 
vehicle through steering wheel and/or pedals and assess the 
system from the perspective of a passenger. In this way, the 
uncertain influences of the drivers on the vehicle/system 
reaction can be eliminated, while the driver could still 
perceive and evaluate the vehicle reaction. Ref. [29] 
developed a comprehensive road catalogue as well as 
maneuver catalogue to cover the test scenarios of LKAS 
functions. Driver-out-of-the-loop maneuvers such as free ride, 
step steer, and closed-loop maneuvers such as lane change test 
are both included.  In other researches on subjectively 
assessing ADAS functions, such as Ref. [26] [27] [28] [30], 

the test maneuvers are not always documented. But it can be 
interpreted that for testing LKAS, free ride with and/or 
without driver intervention on various tracks, including public 
road traffic and proving ground, is mostly used. An example 
of the test maneuver for LKAS designed in Ref. [29] is shown 
in Fig. 7. 

 

B. Various Subjective Assessment Strategies 
The subjective assessment procedure in the industry and in 

published academic works shows a big variety in the 
strategies. To begin with, the selection of criteria and the 
design of questionnaires are not standardized. There is by far 
no common agreement on many design details, for example 
the number of questions to include, if the term explanation 
should be included, and the assessment scale, which affects 
the result interpretation or correlation analysis directly. Harrer 
[56] classified the assessment scales into open scale and 
closed scale, both of which could be bi-polar or uni-polar. 
Other than the metrical scale, some questionnaires also 
included supplementary descriptive assessment to explain 
each score given. Ref. [56] claims this to improve the quality 
of the subjective assessments. 

Decker [31] distinguished subjective assessment as the 
assessment of perception, which is the quasi-objective 
assessment, and the assessment of preference, which is the 
subjective assessment. Gómez [55] defined them as 
‘evaluation’ assessment (good – bad) and ‘calculation’ 
assessment (light – heavy). The former one can be used to 
correlate to the objective assessments to find the preferred 
range of the characteristics. While the latter one can help 
identify how well the characteristics can be felt by the drivers. 

Another long-lasting discussion is the selection of test 
driver type. The use of normal drivers has advantages in terms 
of cost and feasibility, which means it is easier to collect 
larger quantity of subjective assessment data. Most of the 
works on assessing LKAS functions used normal drivers 
because it is more feasible in large amount. Moreover, the test 
maneuvers regarding LKAS are mostly in low dynamic 
ranges, so the requirement on driver execution is not as high  

 
Fig. 7. Example of an LKAS test maneuver in [29]. 
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Fig. 8. Multi-Level assessment schema [56]. 

 
as for example for handling. However, their ability to perform 
and assess the tests consistently or to distinguish the fine 
differences among different setups cannot compete with 
professional test drivers. For example, they might not be able 
to interpret the assessment criteria or the assessment scale 
fully because of the lack of experience in the specific field. 
While recruiting professional test drivers is usually not easy, 
they offer in return high quality and more reproducible 
assessments. Professional test drivers took part in the driving 
tests in Ref. [29] [56] [68]. The selection of test drivers also 
has an influence on the design of the questionnaire or even of 
the whole procedure. For example, different levels of 
assessment should be carried out for different driver 
qualification. This is illustrated in Fig. 8 using steering feel as 
an example. 

Schick et al. [29] subdivided the assessment criteria into 
subjective customer level and subjective expert level to 
evaluate LKAS. The subjective customer level consists of key 
criteria such as track guidance quality, driver-vehicle 
interaction, vehicle reaction, sense of safety, HMI and so on. 
These criteria are broken down into more detailed criteria in 
the subjective expert level. For example, the criterion “track 
guidance quality” can be divided into driving line, track 
precision, drifting and so on. The subjective criteria which 
Oschlies [30] selected, namely dynamics, lane guidance, 
driving comfort, security, driving style, comprehensibility and 
attractivity, are similar to the customer level of the Level-
Model in Ref. [29].  

Ref. [52] pointed out the importance of proper samples of 
drivers. Because the goal of the road tests usually is to make 
general statements, which goes beyond the description of the 
examined samples and can be applied to the population [52]. 
The samples should therefore represent either the global or 
specific attributes of the population as well as possible. An 
adequate number of test drivers also ensure the 
representability of the samples. Ref. [55] calculated the 
minimum number of test drivers needed to represent the whole 
population of drivers. To achieve a typical confidence level of 
95.5% with a margin of error of 5%, at least 400 samples 
would be needed. However, the number of test drivers 
involved in the previous researches and projects is far below 
this theoretical requirement. 

 
From the literature reviewed above, it can be concluded that 

the subjective assessment procedures are rather diverse and 
project-dependent. Researchers have used a variety of 

approaches to guarantee the quality of the subjective 
assessment data and to minimize potential biases. However, 
there has been little conclusion on which method is superior to 
others. The above-mentioned discussion on the use of 
reference vehicles, the selection of test drivers, and the 
necessity of predefined maneuvers are all examples. 
Nevertheless, there are still some general rules that almost all 
publications follow: 1) ensuring the largest possible number of 
test drivers; 2) eliminating incomplete ratings; 3) manually 
going through the questionnaires and comparing the ratings 
with verbatim comments, if included, to eliminate erroneous 
or inconsistent data points. 

VII. OBJECTIFICATION METHODS 
It is clear that the state-of-the-art development and testing 

process in the automotive industry, i.e. the objective and 
subjective assessment, may be improved. To conclude, 
objective assessment, in particular open-loop tests, have the 
advantage of small variance in characteristic values due to the 
highly reproducible test conditions and maneuvers. Moreover, 
they are time and cost efficient. However, most predefined test 
scenarios do not represent regular driving tasks (especially 
open-loop tests). Most importantly, objective assessment does 
not take into account complex human perception. Subjective 
assessment, on the other hand, is a straightforward 
representation of human perception in customer-relevant 
scenarios that cannot yet be replaced by objective 
measurement. However, it is time-consuming, costly, not fully 
reproducible, non-transparent and, as discussed in the previous 
chapter, mostly brand-dependent. In addition, subjective 
assessment methods can only be applied in real test drives, i.e. 
in the very last stages of the development process. 

These problems cannot be ignored in the new field of 
ADAS evaluation. In addition, in contrast to classical vehicle 
dynamics tests, there are not many test standards with 
sophisticated assessment criteria. Results often cannot be 
extrapolated to other situations/conditions. Furthermore, there 
are more environmental influences involved in the assessment 
process when testing in public traffic. 

Because of all the above-mentioned drawbacks of the 
traditional assessment methods, the objectification of the 
assessment process is helpful and imperative for a more 
efficient and target-oriented development process. With a 
proper objectification model, it is possible to derive the target 
value of parameters and determine the driver preferences more 
systematically. In particular in the new field of ADAS and 
AD, the consistent use of a systematic objective evaluation 
method in various phases of the product development process 
shortens the development cycle time and reduces costs.  

Decker [31] elaborated that the human perception of vehicle 
dynamics is very complex. When developing an 
objectification method, several features of human perception 
need to be taken into consideration: a) variance: the perception 
varies among different persons, different physical and mental 
states as well as different duration of the perception 
(adaption). b) interconnected perception: physically uniquely 
defined variables are often redundantly perceived. For 
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example, yaw rate is perceived simultaneously via the sense of 
sight and the vestibular organ. c) reference values: also the 
relations of stimuli from different sensory channels to each 
other serve as reference values when processing sensory 
impressions. d) motion patterns: by exclusively reading the 
measured time series signals, the connection and the 
interaction of the individual variables to the perceived 
complex motion pattern of the vehicle is lost. 

In general terms, the objectification of assessments is 
always about finding a connection in order to link different 
characteristics of a system and its assessments with a human 
judgement [69]. The doctoral thesis [49] summarized the 
general methods for objectification in the field of vehicle 
dynamics and classified them into three categories – driver-
model-based, vehicle-model-based and KPI-based. The three 
kinds of methods were benchmarked from the perspective of 
usability as well as fulfillment of the requirements on 
objectification, which were specified previously in the thesis. 
Since the first two of the objectification approaches are not 
commonly used or especially suitable for LKAS assessment, 
only the KPI-based method will be analyzed in this paper. 

KPI-based method is a classic approach and is mostly used 
in publications. KPIs are calculated based on the measurement 
of the driving tests, which are mostly open-loop maneuvers. 
Subsequently, the correlation between KPIs and subjective 
assessment is investigated. The goal here is to predict the 
subjective assessment based on KPIs, for example already in 
the early development phase where only simulation data is 
available. Furthermore, researchers strived to determine the 
optimal range of KPIs that are preferred by the drivers or that 
represent certain brand attributes.  This approach theoretically 
provides a more comprehensive understanding of the relations 
between subjective and objective assessment and serve as a 
powerful tool throughout the whole ADAS development 
process.  

The main advantages of this approach are its universal 
applicability, since the required parameters are available in 
both simulation and test drives, and the highly reproducible 
test maneuvers. However, the causality of the found 
correlations does not necessarily exist. Moreover, this method 
requires a moderate amount of training data and has no 
indicators for successful training of algorithm. 

 

A. Data Preparation 
As already mentioned before, the small sample size of the 

subjective assessment data is a general problem of the 
objectification of vehicle dynamics characteristics. Therefore, 
the data quality needs to be checked and optimized before the 
correlation analysis to guarantee statistically reliable results. 

In some of the previous publications, the data were first 
processed with different kinds of data reduction techniques 
before being used for regression analysis. Käppler et al. [70] 
for example applied Principal Component Analysis (PCA) to 
the objective assessment to reduce the dimension of the data. 
The PCA generates synthetical secondary variables, a 
Principal Component, which correlates with all the primary 

variables as highly as possible [52]. Thus, the original 
variables are replaced by one or more independent factors, 
whose number determines the dimensionality of the data. The 
drawback is, however, that the physical meaning of the factors 
becomes difficult to understand. A similar method of data 
reduction is factor analysis, which Ref. [30] used to reduce the 
large number of KPIs derived from the measurement. The 
purpose of factor analysis is to combine many different 
variables into a few underlying latent variables based on the 
correlation matrices. In this process, the common issues of 
multi-collinearity can also be minimized. Other data reduction 
techniques include Ridge Regression Plots [67] and 
Correlation Analysis. Correlation Analysis can be applied to 
both subjective and objective assessment to check the 
redundancy of the criteria. Thus, only the essential variables 
will be included in the regression analysis. 

In the next step, the generalizability of the results from a 
relatively small sample size should be checked. Here the 
inferential statistical methods are usually utilized to examine 
the reliability of the collected data. The variances and 
differences between groups of data can be determined by uni- 
and multi-variate Analysis of Variance (ANOVA). Their 
statistical significance can be checked by F-tests. 

Another frequently used tactics is data normalization. On 
one hand, normal distribution is the prerequisite of many 
statistical analysis, for example t-test and ANOVA as well as 
the following regression analysis. One the other hand, 
normalization of subjective assessments can eliminate the 
personal influences of the driver to a certain degree. Ref. [30] 
normalized the subjective assessments and subsequently 
performed reverse transformation based on the total variance 
and the expected value of the samples, so that all the 
subjective assessments share the identical assessment scale. 
Harrer [56] designed a special transformation function for his 
subjective assessment system, which is designed intentionally 
with positive and negative sign, to prepare the data for further 
analysis. However, if not performed properly, normalization 
might cause random changes to the data due to the small 
sample size. 

 

B. Classic Regression Analysis 
Regression analysis is usually utilized to investigate the 

relationship between dependent and independent variables, 
which refer to the objective and subjective assessment in our 
case. It is used to describe and explain the relationships 
between objective and subjective assessment quantitatively, 
and/or to estimate as well as to forecast the values of the 
subjective assessment [71]. With sufficient experience and 
prior knowledge about vehicle dynamics and the system under 
test, this concept is straightforward, since no vehicle or driver 
model is required. 

Simple Linear Regression (SLR) is commonly used by 
many of the researchers, which models the relationship 
between the dependent variable (subjective assessment) and 
one independent variable (objective assessment). Harrer [56] 
pointed out that the sample size has a direct impact on the 
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statistical power and the valid generalization of a regression 
model. For the limited sample size, which is usually the case 
in vehicle road tests, it is recommended to choose a single 
independent variable and utilize simple linear regression to 
avoid overfitting. The commonly used correlation coefficient r 
is a dimensionless measure for the strength of the correlation 
ranging from -1 to +1. Ref. [59] chose a lower threshold of 0.7 
and Ref. [56] 0.8054 for |r| to indicate a reliable relationship 
between the variables. 

The simple linear regression model can be extended to 
multiple independent variables. Multiple Regression Analysis 
introduces more explanatory variables in the function and 
reveals the correlation between subjective assessment and 
multiple objective metrics (KPIs). The subjective assessment 
can be generally described by the objective metrics as follows: 

  yi= b0+ ∑ bj
k
j=1 ∙xij+ ui,           (4) 

 
where y refers to the subjective assessment and x to the 
objective metrics. Here, b is the regression coefficient, k is the 
number of objective metrics and u is the stochastic 
unobservable disturbance. 

The regression parameters are obtained by minimizing the 
sum of the squared residuals. After that, the quality of the 
regression function needs to be checked, which can be divided 
into two parts: global checking of the function (goodness of 
fit) and the checking of the regression coefficients. Global 
measures for testing the regression function are the coefficient 
of determination (𝑅𝑅2), F-statistics and the standard error of the 
estimation. Measures for testing the regression coefficients are 
the t-value and the beta-value [71]. The coefficient of 
determination expresses how well the regression function 
adapts to the observed data [71]. However, for multi 
regression analysis, each inclusion of an independent variable 
will increase the coefficient of determination. To avoid 
excessive model complexity, Ref. [30] used the adjusted 
coefficient of determination additionally. 

Gómez [55] mentioned that problems might arise if the 
number of regressors excesses the available sample amount of 
objective assessments, i.e. the number of test vehicles/settings. 
A general rule is that the ratio should never fall below 5:1, 
meaning that there should be five observations for each 
independent variable [72]. Otherwise the results tend to 
become sample-specific and thus cannot be generalized. Other 
than the statistical validation of the regression function, the 
selection of meaningful combination of assessment criterion, 
objective parameter and test configuration shall be guaranteed 
[56].  

An assessment procedure for steering feel using KPI-based 
approach was proposed in Ref. [56]. Various strong 
correlations between the derived KPIs and the subjective 
assessments were determined using both simple and multi 
linear regression methods. Moreover, the target ranges of the 
KPIs were identified. It was noted that some of the found 
correlations are dependent on vehicle segments, while others 
show general validity. Other authors who have performed 
multi regression analysis are [73], [74] and [58] [59].  

It is clear that the relationship between subjective and 
objective assessment is not necessarily linear. Many 
researchers have taken the non-linearity into account in their 
studies. However, previous works in vehicle dynamics using 
second and third order regression functions with one 
independent variable have not shown further results [56]. For 
this reason, Ref. [56] handled the non-linear relationship 
between the subjective and objective assessment using 
transformation of the subjective assessment (Transformed 
Assessment Index). Thus, the non-linearity is included in the 
TAI and the linear regression formulae can therefore be 
applied, with the TAI representing the independent variable of 
the SLR. 

The KPI-based objectification methodology was transferred 
to the field of ADAS development in Pawellek et al. [75]. The 
authors investigated the Adaptive Cruise Control (ACC) 
regarding the column braking maneuver in both city and on 
highway scenarios, with low and high criticality respectively. 
Three KPIs derived from the longitudinal deceleration were 
adopted to characterize the intervention strategies of the ACC. 
They were correlated with the subjective assessment 
concerning comfort and dynamics, evaluated by expert and 
normal drivers, using regression analysis. As a result, the 
predicted objective ratings calculated by the objectification 
model showed a very high correlation with the subjective 
ratings. The series status ACC was optimized based on the 
objectification model. The improvement was then proven by 
both expert and normal drivers in a post study on public roads. 

Inspired by Ref. [75], a methodology to virtually calibrate 
LKAS was developed in the doctoral thesis [30]. The models 
of objective scores were created to illustrate the mathematical 
relationship between subjective and objective assessment of 
LKAS. 29 normal drivers assessed the test vehicle with 4 
controller variations regarding dynamics, lane guidance, 
driving comfort, security and further criteria on two specified 
tracks. The median, the absolute mean, the standard deviation 
and the mean squared error of the recorded vehicle dynamics 
data were calculated as universal KPIs. Besides that, specific 
KPIs were calculated for each vehicle dynamics parameter. 
The correlation matrices between the KPIs and the subjective 
assessment criteria were created by means of linear regression 
methods. Based on that, factor analysis was conducted to 
reduce the dimension of the model and to eliminate 
multicollinearity of the KPIs. Lastly, the models of objective 
scores based on factors were developed with reference to the 
two specified tracks. It could be determined that the models of 
objective scores show “strong” up to “very strong” relations to 
all subjective assessments. Subsequently, a model predictive 
controller was designed for vehicle lateral control, which was 
then optimized with the help of the created models of 
objective scores. The thesis presented a complete process for 
virtual optimization of the lateral guidance function and 
showed the potential of applying the model of objective scores 
in the development phase. However, solely linear correlations 
were inspected in this work. There is therefore still a great 
potential for optimization and further development of the 
models. Furthermore, the created models of objective ratings 
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in Ref. [75] and [30] were limited to the specified test 
scenarios, for which reason the robustness and generality of 
the models is still to be proven in further researches. 

It has also drawn the researchers' attention that how the 
level of automation influences the assessment of the driving 
function. The conference paper [76] concerning objectification 
of a combined longitudinal and lateral guidance system 
introduced a tuning method for ADAS and Highly Automated 
Driving (HAD) system based on a similar objectification 
approach to Ref. [75]. An ADAS of SAE level 2, which 
consist of an ACC and an LKAS, and a SAE level 3 
automated driving function operated by a distracted driver was 
investigated on the highway. A variation scheme of the KPIs 
was defined during the research, according to which the 
controller behavior could be varied in representative 
maneuvers. In the following evaluation study, the assistant and 
the automated driving function of a prototype with different 
controller calibrations was subjectively evaluated. The vehicle 
was assessed regarding sense of security, comfort, dynamics 
and perceived situation criticality. The assessment results in a 
column braking maneuver of a basic and an optimized 
controller, which brakes harder with a larger minimum 
distance to the vehicle in front, were displayed. It was found 
out that the optimized controller of the ADAS function was 
assessed better in sense of security, dynamics and maneuver 
criticality. In contrast, the assessment of the HAD function 
with these two controllers does not distinguish from each 
other. This means that the level of automation of the assistance 
function should be taken into consideration when assessing as 
well as objectifying the system. Because the driver involves as 
a different role in assisted and automated driving and therefore 
perceives the system characteristics differently. 

The following papers have proposed many relationships 
between subjective assessment and KPIs based on professional 
experience but have not explicitly proved the relationships 
with mathematical models. These could be seen as preparation 
works for objectification in ADAS development. In Ref. [28], 
a Congestion Assistant with SAE level 2 was investigated, 
which consists of a Full Speed Range ACC with Stop-and-Go 
function and an LKAS. It was discussed in this work how a 
comfort orientated ADAS should be evaluated with KPIs. 
General requirements on the definition of KPIs were analyzed. 

Schick et al. [29] introduced a generic procedure model for 
an attribute-based ADAS/HAD development. A Level-Model 
of the assessment criteria, which is subdivided into subjective 
customer level, subjective expert level and objective level, 
was introduced to evaluate the LKAS. Relevant subjective 
assessment criteria, i.e. desired brand attributes, and KPIs 
were developed in expert workshops, benchmark tests and 
measurement campaigns. The subjective customer criteria 
cover the aspects of system dynamics, precision, safety and 
comfort, and are then broken down into detailed expert 
criteria. Finally, the subjective expert criteria are linked to 
KPIs in the objective level based on expert knowledge. The 
strengths of the links are rated as high, moderate, low, none or 
unknown. The desired brand attributes can thus be translated  

 
Fig. 9. An example of an NN structure [55]. 

 
into objective targets using the Level-Model. A modular 
simulation environment was built and a maneuver catalogue as 
well as algorithm for KPI-calculation were implemented to 
produce comparable results throughout the whole 
development process. Note that the significance and statistical 
power of the linkages between subjective expert assessments 
and KPIs still need to be validated in further researches. 
Although not yet statistically proven, this Level-Model offered 
great insights from the experts, which could be used as a 
roadmap for further researches in exploring the correlations of 
subjective and objective assessment of LKAS or other ADAS 
functions. 

 
C. Artificial Neural Networks 

Other than the classic regression analysis, Artificial 
Intelligence (AI) algorithms offer promising solutions for 
revealing especially the non-linear relationships between 
subjective and objective assessment. Algorithms such as 
Artificial Neural Networks (ANN or NN) have been often 
used in previous research. 

Using NN to explore the correlation is of great benefit, 
since the user does not necessarily have to make a 
presumption about the relationship between variables in the 
analysis procedures. Furthermore, NN can also process 
variables with different scales. The construction principle of 
NN is based on the processes in the nervous system of humans 
and animals and tries to reproduce "biological learning" by 
means of suitable mathematical operations. The basic structure 
of a Multi-Layer Perceptron (MLP) NN usually consists of 
one input layer, one or more hidden layers and an output layer. 
Similar to a biological neuron, a cell can receive a variety of 
input signals from the preceding cells. It combines these input 
signals according to their weights into a uniform input value 
of the neuron. The so-called activation function then 
determines whether the neuron is activated and sends out a 
signal or not. In the hidden layer, non-linear transformations 
are carried out, allowing the neural network to map non-linear  
relationships between input and output values [77] [71]. 

In the modelling, objective metrics calculated from 
measurements are often used as input signals and the 
subjective assessments are the outputs. The most often used 
transfer functions are linear, hard-limit and tan-sigmoid. An 
example of the NN structure used in doctoral thesis [55] is 
shown in Fig. 9. The data usually need to be preprocessed 
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before being used in NN. For example, multicollinearity of the 
input data, i.e. the objective metrics, should be checked. All 
the objective metrics also need to be normalized to a mean of 
zero and a standard deviation of one. 

Ash [67] and King et al. [78] recycled the data of Crolla et 
al. [79] and attempted to conduct non-linear analysis using 
NN. However, it is found out that the requirements for the data 
suitable for NN is not necessarily the same as those for linear 
analysis. Large networks were not possible due to the limited 
subjective and objective data. As a result, they decided on a 
simple NN with one input and one output. King et al. [78] also 
tried to investigate the combinatory effects of the subjective 
and objective assessment by applying a dual-input NN with 
one hidden neuron with a tan-sigmoid transfer function. 
Because of the limited data available, however, this attempt 
led to problems such as overfitting. Furthermore, the 
relationships found were not evident across different drivers 
and questions. It showed that attempting to fit more than one 
objective assessment to a set of subjective ratings using non-
linear methods only served to cloud relationships already 
found through single input networks [78]. Nybacka et al. [59] 
and Gómez [55] were based on the same KPI-based approach 
to objectify subjective assessment of steering feel and 
broadened the scope of Ref. [56]. They applied ML methods 
such as NN besides the linear regression methods to analyze 
the correlations. Ref. [59] chose a single-input NN with 3 
hidden neurons to model the correlation of one subjective 
assessment and one KPI. As in Ref. [78], the authors also 
chose a partition fraction of 0.75 for the training and test data 
to ensure adequate training and generalization given the 
limited nature of the data. An r-value larger than 0.7 and a 
mean squared error (MSE) lower than 0.5 was selected for 
adequate fit. In order to determine the full range of subjective 
driver preference, a sufficient spread range of objective 
assessment, i.e. a sufficient amount of test 
vehicles/configurations, is required. Based upon Ref. [59], 
further AI methods were utilized in the doctoral thesis [55], in 
order to explore the non-linear relations and tackle the 
problem of the small sample size. The author utilized a SISO 
NN with one hidden layer consisting of only two sigmoidal 
hidden neurons (Fig. 9) to avoid overfitting and the 
requirement on large quantity of data for training the model. 
Based on the preliminary results, Ref. [55] later introduced a 
new method using two NNs built upon each other to model the 
relationship between 27 objective metrics and one single 
subjective assessment of 51 vehicles. The authors 
implemented a Self-Organizing Map (SOM) to classify the 
tested vehicles based on merely objective assessment. A 
General Regression Neural Network (GRNN) of subjective 
assessment was then implemented on top to extend the SOM. 
The map was finally complemented by word-clouds from 
interviewing the test drivers, which describe the vehicle 
attributes in natural language. The advantage of this method is 
that it is completely based on objective assessments, which do 
not change over time. The superimposed subjective 
assessment surface is on the other hand highly flexible, which 
means it would be possible to extend the map by connecting to 

new subjective assessment surfaces.  
Monsma [50] applied three methods to explore the vehicle 

handling characteristics preferred by the driver under the 
influence of different tires – KPI-based objectification, 
workload measures and driver model method. By using the 
objectification method, the author built a model for each of the 
two test drivers and an average of the two to predict their 
subjective assessment in 9 aspects based on objective metrics. 
To bypass the common drawbacks of regression analysis, such 
as the risk of choosing an inappropriate model based on 
limited knowledge, the author chose GRNN to model the 
relationships between subjective assessment and objective 
metrics. GRNN is a radial basis neural network. The value of 
the radial basis activation function is dependent on the 
distance r of a data point x to a certain center point c, which is 
defined as  

       r(x, c)= ‖x - c‖.           (5) 

 
Here, x and c can be one or multidimensional. The activation 
of the neuron is then given as follows: 

a = φ(r · b),           (6) 

 
with the radial basis activation function φ and bias value b. 

To construct a GRNN, no a-priori knowledge about the 
model structure is required. Thus, one does not have to 
presume the relationships between predictors and targets when 
they are unknown. Furthermore, it is suitable for prediction 
based on very limited datasets. GRNN has a one-pass learning 
phase, which means no iterations are done. And no division 
between the training and validation set is required. Unlike the 
multilayer feedforward NN with backpropagation, who needs 
large amount of data for proper learning. [50] Since limited 
datasets and insufficient knowledge about the relationships 
between the metrics and the subjective impressions remain 
two major problems for LKAS assessment, GRNN could have 
good potential in this research field. 

In Ref. [27] and [26], ACC, LKAS and Lane Change Assist 
(LCA) were investigated regarding objectifying the subjective 
assessment using NN. The systems were evaluated from the 
point of view of the driver as well as of the front passenger. 
The subjective assessment of LKAS regarding track accuracy, 
lane keeping and driving line selection was correlated with 
KPIs lateral deviation, angle deviation, lane utilization and 
distance to lane boundaries. The center line of the lane was 
assumed to be the target trajectory, to which the calculation of 
lateral deviation and angle deviation refers. It was mentioned 
that NN were utilized in order to create the correlation model. 
Yet no detailed information about the algorithm was 
documented. It was for example determined in these papers 
that the sense of security of the driver depends on the 
difference between the expected and the driven trajectory. 
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VIII. FURTHER ASSESSMENT METHODS 

A. Other Machine Learning Algorithms 
There were also researchers who took a different path and 

explored other ML algorithms like pattern recognition. Instead 
of using characteristic objective metrics, a clustering method 
was used in Ref. [46] to cluster the driving data into different 
styles. Moser et al. [68] pointed out the limitations of the 
state-of-the-art correlation and regression methods, which 
includes the variance of the subjective perceptions, high 
impact of the system designers, and the information loss due 
to the reduction of time series data to a characteristic value. 
The application of NN like in Ref. [27] can also cause 
problems because the model is often a black box and hard to 
interpret. The authors therefore implemented a new 
assessment method based on time series classification to 
overcome the limitations of the conventional methods. A lane 
keeping and a lane change driving scenario was conducted on 
a test ground and on a highway respectively. The ride comfort 
was rated by the drivers on a scale of 1-7, which were used as 
the training dataset. After each test, a small expert driving test 
was conducted to create a test dataset. The vehicle data were 
analyzed using the proposed k-Nearest Neighbors Classifier 
and Kernel-Density-Estimation Classifier based on Uni-
/Multivariate Dynamic Time Warping (MDTW) and 
compared with the estimation results from a Multiple Linear 
Regression (MLR) and a simple NN model. As a result, in the 
lane keeping test, the time series classifier method 
outperformed both MLR and NN. In the lane change test, the 
proposed approach lacked the robustness of MLR, especially 
with sparse data. However, the MDTW approach recognized 
boarder/extreme cases much better than MLR (limitation of 
linearity). The authors summarized that the MDTW method 
has the advantage of easier data generation since no 
hypothesis needs to be made before the test, and the better 
ability to recognize extreme cases compared to MLR. It is 
recommended to apply the method in combination with MLR 
for the ADAS assessment to complement each other. The test 
set in the study, however, was relatively small. With 
increasing database, the proposed method would have a great 
potential. 

 

B. Manual Driving Data Analysis 
Some researches explore the optimal or natural driving 

characteristics by drivers first, then tried to describe the ideal 
system setting using objective metrics. These researches gave a 
great insight into drivers’ requirements for ADAS and AD. Ref. 
[46] and [47] analyzed manual driving data on driving simulator 
and in the real traffic as a reference for future ADAS and AD. 
They both objectively characterized different driving styles in 
specific driving scenarios. Griesche et al. [46] implemented a 
pattern recognition method on the transformed images of 
vehicle state data snippets to cluster the overtaking maneuver 
into different styles. The participants were then asked to 
evaluate those styles using Best-Worst-Scaling. Bellem et al. 
[47] identified maneuver specific KPIs which can characterize 
different driving styles in four common driving scenarios. The 
manual driving data were analyzed using ANOVA and 
Bonferroni-corrected post-hoc tests, in order to identify if the 

selected KPIs distinguish between different styles. The above-
mentioned publication [68] also made use of data collected from 
synthetic oscillation in lane keeping scenario and manual lane 
change maneuver.  

Gordon and Srinivasan [80] used two sets of Naturalistic 
Driving Data (NDD) to validate a well-known linear steering 
model under low-workload conditions. It was found that the 
closed-loop behavior of the fitted model is instable. 
Additionally, it does not represent the steering rate reversals in 
realistic steering behaviors. The authors proposed an alternative 
Pulse Control Model to represent the intermittent pulse-like 
steering in real-world scenarios. Based on this concept, Zhang 
et al. [81] analyzed and decomposed the steering angle 
measurement into a combination of trend, integrated sine 
components and sine components. The study validated the Pulse 
Control Model for vehicle lane keeping proposed in Ref. [80], 
which benchmarked the normal driver behaviors and could be 
used for identifying abnormal driver conditions such as 
tiredness and distraction. The pulse behavior on the other hand 
could be used for evaluating the lane keeping naturality of 
ADAS and AD. Benderius and Markkula [82] analyzed a large 
number of manual driving data exceeding a total length of 1000 
hours, collected from various projects. The dataset includes 
three driving simulator studies, one test track study and a field 
operational test (FOT), some of which were not designed 
originally for the purpose of this research. According to the 
authors, it is believed that the nature of this work is general and 
independent of any specific data properties or purposes [82]. 
The results showed that the steering corrections can be 
generally explained by bell-shaped steering wheel rate profiles. 
Since a strong relationship between the maximum steering 
wheel rate and steering wheel deflection was found, a constant 
correction duration could be expected. For corrections that 
could not be described by a single bell-shaped rate profile, it 
was found that they could be described by a superposition of at 
most four motor primitives. These findings are expected to offer 
a fresh perspective for the driver modeling and LKAS 
development, because the work indicated that natural steering 
might rather be composed of intermittent open-loop bursts than 
pure closed-loop continuous control action [82]. 

Naturalistic Driving Studies (NDS) also gained a lot of 
interest in the last decades as a promising approach to study 
natural driver behavior. Video cameras and a suite of sensors 
are installed on participants own vehicles and are used to 
continuously record the driver, the vehicle, and the environment 
over an extended period of time [83]. NDS makes it possible to 
observe the drivers in naturalistic settings (during their regular, 
everyday driving) in an unobtrusive way [84]. It was mainly 
utilized for investigation in driver behavior that leads to safety-
critical events to begin with, mainly related to crashes. 
However, NDSs are also an effective tool for the design, testing, 
and evaluation of driver assistance systems [83]. For example, a 
running project conducted by Massachusetts Institute of 
Technology (MIT) aims to gain a holistic understanding of how 
human beings interact with vehicle automation. Fridman et al. 
[44] outlined the methodology and underlying principles 
governing the design and operation of the study vehicle 
instrumentation, data collection, and the use of deep learning 
methods for automated analysis.  
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IX. CONCLUSION AND DISCUSSION 
This paper reviewed the assessment of LKAS regardless of 

the automation levels from the publications in the last decades. 
We firstly summarized the most relevant characteristics of the 
system, as well as of HAD and AD, namely performance, 
comfort, safety, driver interaction and driving style. The exact 
scope of the individual characteristics in different literatures 
and the discovered results are analyzed. It is noticeable that 
the definitions of the attributes have not reached a common 
agreement in the field (see Appendix 2). The levels of 
assessment criteria are heterogeneous, for example “quality of 
lane guidance” is more detailed and could be included in 
“performance”. Many characteristics overlap to a certain 
degree and influence each other, for example “perceived 
safety” is hugely influenced and more or less implicitly 
implied by many other factors such as “performance”, 
“comfort” and “driver interaction”. These ambiguities will 
directly influence the quality of the objectification based on 
the fundamental definition. Therefore, it is recommended for 
future research to subdivide the assessment criteria into 
different detail levels according to the competence of the test 
drivers in the subjective studies and define the characteristics 
as clear as possible to avoid divergent interpretations. 

We then discussed how the relevant characteristics can be 
evaluated – objectively, subjectively, using objectification 
tools or other methodologies. The assessment of classic lateral 
dynamics without ADAS, more specifically steering feel and 
vehicle handling, is also benchmarked here. Rich experiences 
in this field can be taken as a reference for the development of 
a systematic evaluation tool for LKAS or other ADAS 
functions such as ACC. Each method is introduced and 
analyzed in detail with examples from representative 
literatures. In the new territory of ADAS assessment, the 
major drawbacks in the conventional vehicle dynamics 
assessment still exist. For example, the limited number of test 
drivers, the unstandardized test maneuvers and subjective 
assessment strategies, the weak causality in the objectification. 
Other than these, there are some other specific problems and 
potentials regarding LKAS assessment within the scope of 
each assessment method such as the following points: 1) 
objective – the available international standards are not as 
well-established as in vehicle dynamics. It can be seen that the 
bare minimal safety and functional requirements are not 
suitable for characterizing an LKAS. The research projects by 
far are not able to deliver robust target values for KPIs for 
LKAS design due to various reasons. For example, the test 
scenarios were limited, or the concrete results were not made 
public due to confidentiality agreement. 2) subjective – due to 
the ODD (Operational Design Domain) of the system and the 
more limited availability of suitable proving ground for lateral 
guidance assessment, most of the test drives are conducted on 
public roads. This on one hand represents customer-oriented 
scenarios, on the other hand introduces more uncertain 
environmental factors into the assessment. Another influence 
factor that may arise is the automation level. Human 
driver/passenger might have very different requirements on 
the system of different automation levels. 3) objectification 
with regression – the explanatory power of the single objective 
metrics is not strong enough to correlate to a customer-leveled 

subjective assessment. For example, we cannot simply 
correlate the characteristic values of lateral 
deviation/velocity/acceleration with “perceived safety” and 
expect a robust causal relationship of the model. This could be 
solved with a) more complicated models with more predictors, 
individually or using factor analysis, which might however be 
hard to interpret as a result; b) using more detailed subjective 
criteria on expert-level as targets of the model; c) using other 
ML algorithms such as pattern recognition [46] or time series 
classification [68] which preserves more information in the 
objective data than just the characteristic values. 4) other ML 
algorithms and manual driving analysis – these models 
normally require more data for training, but with an extensive 
database they still have great potentials. Manual driving 
analysis serves as a meaningful reference for developing 
ADAS and AD. For example, examining human steering 
characteristics offers a great insight into the naturality of 
lateral guidance systems. However, it cannot be assumed that 
human would like to be driven in the same way as they would 
drive, especially in higher level automations, as reported in 
previous literatures. 

It can be concluded that, despite the considerable progress 
that has been made, there is still a lot of potential for further 
development of LKAS or ADAS/AD in general, particularly 
with a focus on human needs. With more advanced AI 
algorithms, it may be expected that the future LKAS will be 
able to adapt to human habits and preferences. With the rapid 
development of 5G, V2X technologies and other 
infrastructure, the information available for intelligent vehicles 
and traffic, and the ability to process this information, will 
increase further. 

However, attention may be drawn to the current drawbacks 
of AI algorithms, e.g. Ref. [85]. Researchers have suggested 
that the current AI needs to evolve from feature engineering to 
scenario engineering. The theoretical framework of scenario 
engineering, which aims to address the challenges of 
interpretability and reliability of AI, and thus to build more 
trustworthy AI systems as well as foundation models in 
metaverse in general, is presented in Ref. [86] [87]. 
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APPENDIX 
Appendix 1 – Comparison of international standards on LKAS 

St
an

da
rd

 Test Scenario 

Test Execution Passing Criteria Test Track Lane Markings 

Test Speed 

Longitudinal Lateral 

IS
O

 1
12

70
 

Procedure on a 
Straight 

Straight depending on 
the applicable 
regulations for 
highway like 
roads 

20 m/s - 22 m/s 0.4 ± 0.2 m/s Travel along the straight road and 
steer to gently depart from the lane 
to the left/right at the rate of 
departure. 

the outer edges of the tires do not exceed the lane boundary 
more than LKAS_Offset_max during the test, where 
1. LKAS_Offset_max = 0.4m for light vehicles 
2. LKAS_Offset_max = 1.1m for heavy vehicles 

Procedure in a 
Curve 

Straight 
entering a 
curve* 

- Drive along the straight and set 
free the steering wheel before 
entering the left/right curve. 

the outer edges of the tires do not exceed the lane boundary 
more than LKAS_Offset_max during the test, where   
1. LKAS_Offset_max = 0.4 m for light vehicles 
2. LKAS_Offset_max = 1.1 m for heavy vehicles 

E
U

R
O

 N
C

A
P 

Road Edge Tests 

Straight Road edge only 72 km/h 0.2 - 0.5m/s (0.1 
m/s increments) 

Accelerate and steer to the 
driver/front passenger side to 
achieve the lateral velocity.  

Distance to Lane Edge (DTLE) <= - 0.1m 

Road edge with 
dashed 
centerline 

Road edge with 
solid centerline 

Dashed Line 
Tests 

Straight Dashed line 
only 

DTLE <= -0.3m 

Dashed line 
with solid 
centerline 

Solid Line Tests 

Straight Solid line only 

Dashed line 
with solid 
centerline 

N
H

ST
A

  
(fo

r 
in

fo
rm

at
io

n 
co

lle
ct

io
n 

on
ly

) 

Low Lateral 
Velocity Tests 

Straight Solid white lines 72 km/h 0.1 to 0.6 m/s 
with a target 
lateral velocity 
of 0.5 m/s 

Pass the entrance gate and steer to 
depart to the left/right with the 
target lateral velocity until the 
vehicle has crossed at least 0.5m 
over the lane edge boundary. 

No performance requirements, results are for informative 
purposes only. 
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Threshold 
Determination 
Tests 

Straight Solid white lines iteratively 
increased by 0.5 
– 0.6 m/s 
starting from 0.5 
m/s 

Pass the entrance gate and steer to 
depart to the left/right with the 
target lateral velocity until the 
vehicle has crossed at least 0.5m 
over the lane edge boundary. 
Increase the lateral velocity by 0.5 
- 0.6 m/s until the LKA system can 
no longer prevent a lane departure. 

U
N

 E
C

E
 R

79
 

C
or

re
ct

iv
e 

St
ee

ri
ng

 F
un

ct
io

n 
(C

SF
) 

Warning Test 

- Lane markings 
on both sides 

Within the 
operating range 
of the system 

- attempt to leave the lane and cause 
CSF intervention to be maintained 
for a period longer than 10s (for 
M1, N1) or 30s (for M2, M3, N2, 
N3) without distinguishing the 
directions. 

The acoustic warning is provided no later than 10 s (for M1, 
N1) or 30 s (for M2, M3, N2, N3) after the beginning of the 
intervention… 

Overriding 
Force Test 

- Lane markings 
on both sides 

- 1. attempt to leave the lane and 
cause CSF intervention2. the 
driver shall apply a force on the 
steering control to override the 
intervention 

Force applied by the driver on the steering control to 
override the intervention <= 50 N. 

A
ut

om
at

ic
al

ly
 C

om
m

an
de

d 
St

ee
ri

ng
 F

un
ct

io
n 

(A
C

SF
) 

Lane Keeping 
Functional Test 

Curved 
track 

Lane markings 
on both sides 

Constant speed 
within range 
V_smin - 
V_smax; for 
each speed 
range* 

- follow road 1. The vehicle does not cross any lane marking; 
2. The moving average over half a second of the lateral jerk 
<= 5 m/s³. 

Maximum 
Lateral 
Acceleration 
Test 

Curved 
track 

Lane markings 
on both sides 

- follow road 1. The recorded acceleration is within the limits specified in 
paragraph 5.6.2.1.3. of this Regulation. 
2. The moving average over half a second of the lateral jerk 
<= 5 m/s³. 

Overriding 
Force Test 

Curved 
track 

Lane markings 
on both sides 

Constant speed 
within range 
V_smin - 
V_smax 

- Follow the curve without driver 
intervention, and the driver shall 
then apply a force on the steering 
wheel to override the system 
intervention and leave the lane. 

The force applied by the driver < 50N 

Transition Test; 
Hands-on Test 

Curved 
track 

Lane markings 
on both sides 

between V_smin 
+ 10 km/h and 
V_smin + 20 
km/h; between 
Vsmax - 20 
km/h and 
Vsmax - 10 
km/h or 130 

- The driver shall release the 
steering control and continue to 
drive until the ACSF is deactivated 
by the system. 

* Acoustic warning assessment criteria omitted here 

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3269156

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



           22 
T-IV-24032023 

km/h whichever 
is lower 
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Appendix 2 – List of literature on ADAS/AD assessment 

TABLE A 
LITERATURE ON DRIVER PERCEPTION OF RIDE COMFORT OF LKAS 

Literature System under Test 
Test Scenario 

Driver Perception – Ride Comfort Maneuver Test Track 
2014 – Siebert [88] ACC following simulator comfort 
2015 - Elbanhawi [34] ADAS/AD - - resulting forces; 

natural paths; 
motion sickness; 
apparent safety 

2016 - Scherer [89] highly automated driving 
functions in longitudinal 

direction 

startup, braking barricaded area of public road comfort 

2016 - Pawellek [75] ACC column braking proving ground comfort 
2017 - Krauns [76] LKAS and ACC (ADAS 

vs HAD) 

  
comfort 

2018 - Gallep [35] AD sinus steering, sinus accelerating simulation motion sickness 

2018 - Fen [28] LKAS - - comfort 

2018 - Kidd [33] ACC, LKAS daily driving public roads comfort 

2019 - Oschlies [30] LKAS lane keeping test track (straight, curve) comfort 

2019 - Moser [68] manual driving synthetic lane keeping with 
oscillations; synthetic lane change 

lane keeping - proving ground; lane change 
- highway 

comfort 

2019 - Schöggl [90] ADAS - - comfort 

 

TABLE B 
LITERATURE ON DRIVER PERCEPTION OF PERCEIVED SAFETY OF LKAS 

Literature System under Test 
Test Scenario 

Driver Perception – Perceived Safety Maneuver Test Track 
2014 - Jentsch [41] EBS - simulator; 

test track 
perceived safety 

2014 – Siebert [88] ACC following simulator risk; 
criticality 

2015 - Elbanhawi [34] ADAS/AD - - system responsiveness; 
safe maneuvering; 
system reliability 

2016 - Pawellek [75] ACC column braking proving ground perceived safety (implicit) 

2017 - Krauns [76] LKAS and ACC (ADAS vs 
HAD) 

- - perceived safety 

2018 - Heiderich [40] manual driving road surface excitations simulator perceived safety 

2018 - Fen [28] LKAS - - perceived safety 
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2019 - Oschlies [30] LKAS lane keeping test track (straight, curve) perceived safety 

2019 - Schick [29] LKAS various according to maneuver 
catalogue 

various according to maneuver 
catalogue 

perceived safety 

2019 - Schöggl [90] ADAS - - perceived safety 

2018 – Ping [28] manual driving - city roads risk perception 

 

TABLE C 
LITERATURE ON DRIVER PERCEPTION OF INTERACTION OF LKAS 

Literature System under Test 
Test Scenario 

Driver Perception – Interaction Maneuver Test Track 
2019 - Schick [29] LKAS various according to maneuver 

catalogue 
various according to maneuver 

catalogue 
interaction 

2019 - Fridman [44] ADAS NDS NDS interaction 

2019 - Park [32] LKAS following (hands on/off) highway steering stability performance; 
non-interference performance 

2018 - Ran [91] LKAS - simulator intervention timing 

2018 - Naujoks [92] AD/HAD take over - interaction 

 
TABLE D 

LITERATURE ON DRIVER PERCEPTION OF DRIVING STYLE OF LKAS 

Literature system under test 
test scenario 

driver perception – driving style maneuver test track 
2014 - Benderius [82] manual driving 

 
driving simulator; test tracks; field 

operational test 
naturality 

2014 - Gordon [80] manual driving lane keeping while steady 
driving 

highway naturality 

2014 - Holzinger [27] LKA - - driving line selection 

2016 - Griesche [46] AD overtaking simulator driving style 

2016 - Bellem [47] manual driving accelerating; decelerating; 
following; lane change 

rural road/urban 
highway 

driving style 

2018 - Zhang [81] manual driving lane keeping 
 

naturality 

2019 - Oschlies [30] LKAS lane keeping test track (straight, curve) driving style 

 
TABLE E 

LITERATURE ON DRIVER PERCEPTION OF OTHER CRITERIA OF LKAS 

Literature system under test 
test scenario 

driver perception – others maneuver test track 
2014 – Siebert [88] ACC following simulator task difficulty; 

effort 
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2015 - Huang [93] LDW 

 
fixed based driving simulator acceptance; 

effectiveness 
2016 - Scherer [89] highly automated driving 

functions in longitudinal 
direction 

startup, braking barricaded area of public road driving pleasure 

2016 - Pawellek [75] ACC column braking proving ground dynamics 

2017 - Krauns [76] LKAS and ACC (ADAS vs 
HAD) 

  
dynamics 

2017 - Wang [23] Human-centered steering 
system 

following simulator; simulation degree of relief 

2018 - Kidd [33] ACC, LKAS daily driving public roads acceptance 

2019 - Oschlies [30] LKAS lane keeping test track (straight, curve) dynamics; 
comprehensibility; 

attractivity 
2019 - Schick [29] LKAS various according to maneuver 

catalogue 
various according to maneuver 

catalogue 
vehicle reaction; 

availability; 
degree of relief 

2019 - Park [32] LKAS following (hands on/off) highway summarized as intrusive feeling 
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