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M@l Introduction

Advanced optimization methods are needed to find optimal operating strategies for
wind energy systems

) Reinforcement learning for operational planning

m Potential to handle highly complex environments with multiple objectives

= Optimal solution can be found without prior knowledge
= In combination with a digital twin platform, RL can learn continuously, adapt
the operating strategy and interact with the real wind turbine
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Bt Gl Reinforcement learning
AN

Machine Learning

Supervised
Learning

Unsupervised Reinforcement
Learning Learning

| |

Learning from static data sets Learning from direct interaction with
the environment

|

Classification, diagnostics, Game Al, planning and scheduling,
predictive analytics, ... process control, dynamic optimization

IMAGES: FLATICON.COM
J. H. LEE, ET AL., “MACHINE LEARNING: OVERVIEW OF THE RECENT PROGRESSES AND IMPLICATIONS FOR THE PROCESS SYSTEMS ENGINEERING FIELD,” COMPUT. CHEM. ENG. 114 (2018): 111-121.

26 May 2023 WESC 2023




Bt Gl Reinforcement learning
S

Action
s Reinforcement learning agent takes an b /\
action that leads to a change in the
environment °
m The policy defines how the agent Aa
behaves in a given situation —
m Goal = finding the optimal policy that W

maximizes the cumulative reward by Reward
directly interacting with the environment
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R. S. SUTTON, ET AL., REINFORCEMENT LEARNING: AN INTRODUCTION, SECOND EDITION. CAMBRIDGE, MASSACHUSETTS; LONDON, ENGLAND: THE MIT PRESS (2018).
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G Proof of concept
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[ g ] From wind conditions to operational strategy: Optimal planning of

wind turbine damage progression over its lifetime
Niklas Requatc', Tobias Meyer', and René Hofmann®

"Fraunhofer IWES, Bremerhaven, Germany
2TU Wien, Vienna, Austria

Abstract. Renewable encrgics have an catirely different cost structure than fossil fucl-based electricity gencration. This is
‘mainly duc to the operation at zero marginal cost, whereas for fossil fucl plants, the fucl itsclfis a major driver of the catire
cost of cnergy. For a wind turbine. most of the materials and resources are spent up front. Over ts lifetime, this initial capital

. . . Therefore, it
5 matcrials for cach individual turbine over its entire operating lifetime. Matcrial usage is closely linked (o individual damage
‘Within this work, we present a novel approach for an optimal loag-term planning of the operation of wind encrgy systems
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e uctlon 0 allla e b s
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the selection of optimal planning sirstegies is based on an economic evaluation. The method is applied (o an example for
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15 turbulence of ncighbouring sper
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Meeting the rising demand for cnergy withou using fossil fucls is probably one of the greatest challenges of our time. Wind
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M Calculation environment
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Mﬁ RL problem formulation

m Proximal Policy Optimization (PPO) reinforcement learning method
m Uses a value function critic and a stochastic policy actor

Ri |

Damage progression Spet |
model

Actor

Action: power State: turbine
output reduction health

Reinforcement learning
algorithm
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M@.‘ Training progress

N

[ RL policy after 100 000 training episodes }

Optimal reward = 2.8 * 104 "
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M@T‘ Value maximization through service life extension
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M@l Summary
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Many factors need to be considered when searching for the optimal operating strategy
for wind energy systems

Reinforcement learning is a promising method that can handle complex
environments

The influence of wind makes the problem highly stochastic - actor-critic reinforcement
learning algorithms are probably best suitable for problems in wind energy

RL agent is able to find the same optimal strategy as Requate et al. without any prior
knowledge

With Reinforcement Learning, the same conclusion can be drawn as with mathematical
optimization: Effective derating can lead to value maximization through lifetime
extension
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B Gl Discussion

= Mathematical modelling and optimization will always be necessary to formulate
training environments, but RL holds great potential for larger action and state spaces

m Through a digital twin platform, online learning becomes possible

Traditional
optimization
methods

Reinforcement
learning

Adapting to actual behaviour

OPTIMAL

m Future research will use deep reinforcement learning to handle more complex
environments:
m Considering further influences on the damage progression

Considering market prices when feeding energy into the grid

Considering targeted maintenance periods

Etc.
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