

INSTITUT FÜR ENERGIETECHNIK UND THERMODYNAMIK Institute for Energy Systems and Thermodynamics

Using Reinforcement Learning to Optimize Operational Strategies for Wind Energy Systems

Carlotta Tubeuf Institute of Energy Systems and Thermodynamics, TU Wien

May 26, 2023

www.tuwien.at/mwbw/iet

Advanced optimization methods are needed to find optimal operating strategies for wind energy systems

• **Reinforcement learning** for operational planning

- Potential to handle highly complex environments with multiple objectives
- Optimal solution can be found without prior knowledge
- In combination with a digital twin platform, RL can learn continuously, adapt the operating strategy and interact with the real wind turbine

IMAGES: FLATICON.COM

IMAGES: FLATICON.COM

J. H. LEE, ET AL., "MACHINE LEARNING: OVERVIEW OF THE RECENT PROGRESSES AND IMPLICATIONS FOR THE PROCESS SYSTEMS ENGINEERING FIELD," COMPUT. CHEM. ENG. 114 (2018): 111–121.

- Reinforcement learning agent takes an action that leads to a change in the environment
- The **policy** defines how the agent behaves in a given situation
- Goal = finding the optimal policy that maximizes the cumulative reward by directly interacting with the environment

R. S. SUTTON, ET AL., REINFORCEMENT LEARNING: AN INTRODUCTION, SECOND EDITION. CAMBRIDGE, MASSACHUSETTS; LONDON, ENGLAND: THE MIT PRESS (2018).

TU IET Proof of concept

IMAGES: FLATICON.COM

WESC 2023

WIND

ENERGY

SCIENCE

ENERGY

- Proximal Policy Optimization (PPO) reinforcement learning method
- Uses a value function critic and a stochastic policy actor

Value maximization through service life extension

- Many factors need to be considered when searching for the optimal operating strategy for wind energy systems
- Reinforcement learning is a promising method that can handle complex environments
- The influence of wind makes the problem highly stochastic → actor-critic reinforcement learning algorithms are probably best suitable for problems in wind energy
- RL agent is able to find the same optimal strategy as Requate et al. without any prior knowledge
- With Reinforcement Learning, the same conclusion can be drawn as with mathematical optimization: Effective derating can lead to value maximization through lifetime extension

- Mathematical modelling and optimization will always be necessary to formulate training environments, but RL holds great potential for larger action and state spaces
- Through a digital twin platform, online learning becomes possible

- Future research will use deep reinforcement learning to handle more complex environments:
 - Considering further influences on the damage progression
 - Considering market prices when feeding energy into the grid
 - Considering targeted maintenance periods
 - Etc.

INSTITUT FÜR ENERGIETECHNIK UND THERMODYNAMIK Institute for Energy Systems and Thermodynamics

Carlotta TUBEUF PhD student at research unit industrial energy systems <u>carlotta.tubeuf@tuwien.ac.at</u> | ORCiD: <u>0000-0001-9452-7812</u>

Dr. Felix BIRKELBACH PostDoc researcher at research unit industrial energy systems <u>felix.birkelbach@tuwien.ac.at</u> | ORCiD: <u>0000-0003-4928-6209</u>

Prof. Dr. René HOFMANN Head of institute of energy systems and thermodynamics <u>rene.hofmann@tuwien.ac.at</u> | ORCiD: <u>0000-0001-6580-4913</u>