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Abstract

The present thesis focuses on the development of efficient methods for modelling the

nonlinear behaviour of fibre reinforced composites in the framework of the Finite

Element Analysis. Two types of composites – fibre reinforced plastics and fibre

reinforced elastomers – are studied with the perspective of structural simulations.

To begin with, delamination in textile laminates is studied by introducing an efficient

modelling strategy. A multi-scale embedding method is employed in order to include a

detailed representation of the textile plies at the delaminating interface, while the rest

of the laminate is modelled with homogenised plies. Except for the cohesive interfaces,

the entire laminate is represented with shell elements only. The developed approach

is employed to study delamination of 2/2 Twill Weave laminate under the Double

Cantilever Beam and Three Point End Notch Flexure test set–up using standard

desktop hardware. Delamination is characterized with load–displacement curves,

energy release rates and evaluation of the process zones in the cohesive interfaces.

The change in the local stiffness at the delamination front due to the laminate’s

topology and the size of the cohesive process zone translates into a quasi-stepwise

reduction of the reaction force, which is in line with the experimental observations

found in the literature. The results highlight the high predictive capabilities and

exceptional efficiency in terms of the computational effort.

Next, the present work focuses on the effective behaviour of fibre reinforced elas-

tomers. Nonlinear homogenisation by the unit cell approach is used to obtain the

effective response of multi-fibre unit cells with random fibre arrangement in the ini-



ABSTRACT VI

tial linearised and finite strain regime. In order to predict the effective behaviour

of the multi-fibre unit cells, the readily available Holzapfel-Gasser-Ogden (HGO)

anisotropic hyperelastic material model is employed. A novel calibration method for

the material parameters is developed here, which takes place at the initial or unde-

formed state of the material. The initial deviatoric elasticity of the HGO model is

used to derive relations between the material parameters and the material properties

of a transversely isotropic material, such as the shear and the Young’s moduli. The

latter are estimated using analytical homogenisation method and therefore the cali-

bration avoids any material parameter fitting or numerical homogenisation schemes.

The proposed method is successfully verified under various load cases for glass fibre

reinforced rubber-like material. The calibrated HGO model is further employed for

predicting the effective response of a symmetrical cross-ply laminate unit cell under

shear deformations. The results expose the HGO model’s limited ability to emulate

fibre rotation at moderate stretches. Moreover, the calibrated HGO model is used to

simulate wrinkling of thin sheets under tensile loads. Linear eigenvalue analysis with

a preload is used to identify the eigenmodes with the smallest positive eigenvalues,

which are used as a geometrical imperfection. This way, the wrinkling is predicted

at the critical loads and upon further tensile loading, the amplitude of the wrinkles

diminishes.
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Kurzfassung

Die vorliegende Arbeit konzentriert sich auf die Entwicklung effizienter Methoden zur

Modellierung des nichtlinearen Verhaltens von Faserverbundwerkstoffen im Rahmen

der Finite-Elemente-Analyse. Zwei Arten von Verbundwerkstoffen - faserverstärkte

Thermo- und Duroplaste und faserverstärkte Elastomere - werden unter dem Ge-

sichtspunkt der Struktursimulation untersucht. Zunächst wird die Delamination in

textilen Laminaten durch Einführung einer effizienten Modellierungsstrategie unter-

sucht. Eine mehrskalige Einbettungsmethode wird verwendet, um eine detaillier-

te Darstellung der textilen Lagen an der Delaminationssgrenzfläche zu erhalten,

während der Rest des Laminats mit homogenisierten Lagen modelliert wird. Mit

Ausnahme der kohäsiven Grenzflächen wird das gesamte Laminat nur durch Schalen-

elemente beschrieben. Der entwickelte Ansatz wird verwendet um die Delamination

von Laminaten mit 2/2 Köperbindung im DCB (Double Cantilever Beam) und Drei-

punkt ENF (End Notch Flexure) Testaufbau mit Standard-Desktop-Hardware zu

untersuchen. Die Delamination wird mit Kraft-Verschiebungs-Kurven, Energiefrei-

setzungsraten und der Bewertung der Prozesszonen in den kohäsiven Grenzflächen

charakterisiert. Die Änderung der lokalen Steifigkeit an der Delaminationsfront auf-

grund der Topologie des Laminats und der Größe der kohäsiven Prozesszone führt zu

einer quasi schrittweisen Verringerung der Reaktionskraft, was mit den experimentel-

len Beobachtungen in der Literatur übereinstimmt. Die Ergebnisse unterstreichen die

hohen Vorhersagefähigkeiten und die außergewöhnliche Effizienz im Bezug auf den

Berechnungsaufwand.
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Als Nächstes konzentriert sich die vorliegende Arbeit auf die effektiven Eigenschaften

von faserverstärkten Elastomeren. Die nichtlineare Homogenisierung mit dem Ein-

heitszellenansatz wird verwendet, um die effektive Materialantwort von Mehrfaser-

Einheitszellen mit zufälliger Faseranordnung mit linearisierten und großen Verzerrun-

gen zu erhalten. Um das effektive Verhalten der Mehrfaser-Einheitszellen vorherzusa-

gen, wird das leicht zugängliche anisotrope hyperelastische Holzapfel-Gasser-Ogden

(HGO) Materialmodell verwendet. Es wird ein neuartiges Kalibrierverfahren für die

Materialparameter entwickelt, das im initialen oder unverformten Zustand des Mate-

rials erfolgt. Die initiale deviatorische Elastizität des HGO-Modells wird verwendet,

um Zusammenhänge zwischen dessen Materialparametern und den Materialeigen-

schaften eines transversal isotropen Materials abzuleiten, wie z.B. den Schub- oder

Elastizitätsmodul. Letztere werden mit Hilfe einer analytischen Homogenisierungs-

methode abgeschätzt, und daher vermeidet die Kalibrierung jegliches “fitten” der

Materialparameter oder numerische Homogenisierungsmethoden. Die vorgeschlage-

ne Methode wird erfolgreich unter verschiedenen Lastfällen für glasfaserverstärktes

gummiartiges Material verifiziert. Das kalibrierte HGO-Modell wird ferner zur Vor-

hersage der effektiven Eigenschaften einer Einheitszelle eines symmetrischen bidirek-

tional Geleges unter einer Schubverformungen verwendet. Die Ergebnisse zeigen die

begrenzte Fähigkeit des HGO-Modells auf, die Faserrotation bei moderaten Dehnun-

gen zu emulieren. Darüber hinaus wird das kalibrierte HGO-Modell zur Simulation

der Faltenbildung bei dünnen Schichten unter Zugbelastung verwendet. Eine lineare

Eigenwertanalyse wird verwendet, um die Eigenmoden mit den kleinsten positiven

Eigenwerten zu identifizieren, die als geometrische Imperfektion aufgebracht werden.

Auf diese Weise wird die Faltenbildung bei den kritischen Belastungen vorhergesagt

und bei weiterer Zugbelastung nimmt die Amplitude der Falten ab.
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Chapter 1

Introduction

Throughout the history of technological advancement, the development and design

of structures have always been restricted with materials and production capabilities.

It is the discovery and invention of new materials that fuelled industrial progress.

In recent decades it is arguably the composite material that had the biggest impact

on how structures can be designed and manufactured. This is certainly true for

lightweight design where laminated composite materials have had the biggest suc-

cess due to their exceptional high stiffness to weight and strength to weight ratio.

Moreover, these materials exhibit good fatigue resistance, are weather-proof and can

be formed and manufactured in complex shapes. Unsurprisingly, composites such

as fibre reinforced plastics (FRP) are being widely used in the aerospace industry.

Considering the latest passenger aeroplanes as e.g. the Airbus 350 series, the share

of composite materials in total aeroplane structural mass is exceeding 50% [2]. More-

over, even the load carrying structural parts such as the wingbox, are made from

laminated FRP composites in the latest generation of commercial aeroplanes. There-

fore, detailed knowledge about nonlinear mechanical behaviour of structures made of

FRPs under various loading scenarios must be obtained in order to successfully design

such components. In particular it is required to determine the load carrying capa-

bilities and often the structural response beyond local material failure. Laminated
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FRP exhibit complex failure modes in the form of fibre rupture, matrix cracking and

debonding of plies. The latter called delamination is the predominant failure mode

in laminates without reinforcement through the thickness [14, 42] and is challenging

to visually identify. Clearly, there is a big interest and need for modelling and pre-

dicting delamination in laminated structures. The state of the art approach uses the

Finite Element Method (FEM), where the main challenge is resolving the complex

topology and material behaviour at appropriate length scales in order to configure

computationally efficient simulations.

Commonly composite materials have been thought as an alternative to metals and

plastics in solid structural applications. However, novel material combinations in

composites lead the way for applications, which can substitute not just structures

but also mechanisms. A common example are the so called ”soft” composites or fibre

reinforced elastomers (FRE), where relatively stiff fibres or particles are reinforcing

a compliant matrix, e.g. a rubber-like material. FRE materials exhibit load carrying

capabilities in specific directions and loading scenarios while being highly flexible

under other configurations, hence enabling large deformation of the structure. Such

composites are commonly used in robotics, where instead of having a robotic arm with

joints and several actuators, a single inflatable structure made from fibre reinforced

rubber is used. Thereby, the movement is actuated only by the internal pressure.

The layout and orientation of the fibres define the movement of the robotic arm and

thereby its operation. FRE material can also be utilized in lightweight deployable

structures. The main objective for such structures, e.g. solar panels, is to take as

little space as possible during transport and once in place be deployed with a simple

actuation. Thereby, FRE material is used for compliant flexure single-piece joints

between the panels. These are just a couple of applications, however, the design

of FRE components is in general highly dependent of its operation. Experimental

characterization of different FRE composite setups with various fibre volume fractions

and fibre positions can be very time and cost consuming. Having the tools to tailor

the response of FRE composites to the required function in a fast and efficient manner
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is essential. FEM simulations provide an established framework for such tasks and

can incorporate the predictions of FRE across different length scales. Thereby, FRE

can be evaluated in a complete cycle from a material to the structural application.

1.1 Scope of the present work

Chapter 2 reviews the literature on modelling delamination in laminated compos-

ites in the framework of FEM, homogenisation of fibre reinforced elastomers, and

wrinkling of thin elastic plates under tensile loads.

In Chapter 3 delamination in textile laminates is studied with multi-scale FEM sim-

ulations. Thereby, the delamination in textile laminates and the complex interaction

between the constituents is studied in order to identify the main mechanisms at work

while keeping the computational effort low enough to utilize standard workstation

computers. A shell-element based approach is used to create the multi-scale model.

Thereby, a microstructure representing textile plies stacked into a laminate is embed-

ded in a conventional composite shell laminate with homogenised material properties.

The multi-scale laminate model is simulated in three point end notched flexure and

double cantilever beam test set-ups. The multi-scale models are compared with an-

alytical predictions and special emphasis is given to the delamination process and

other damage mechanisms within the microstructure.

Chapter 4 studies fibre reinforced elastomers in terms of their macroscopic behaviour.

With multi-fibre unit cells the homogenised response is obtained and studied with

respect to the fibre volume fraction. An anisotropic hyperelastic material law is

employed to predict the homogenised response of the unit cells. Thereby, the material

parameters are calibrated using a micromechanical approach for the initial state of

the material. Consequently the need for material parameter fitting is minimized.

The calibrated material is compared to the effective response of the unit cells under

various load cases.
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Following the work of calibrating the anisotropic hyperelastic material, the approach

is employed in Chapter 5 for predicting the effective behaviour of FRE laminates

under different load cases. A large multi-fibre laminate unit cell is used as the bench-

mark for the behaviour of the homogenised model.

In chapter 6 the focus moves from the homogenisation to the structural response

of FRE components. A thin FRE shell under global tension is investigated, which

upon stretching beyond the critical load exhibits out-of-plane wrinkling. Thereby, the

calibrated material from Chapter 4 is used in the linear eigenvalue analysis with a

preload. The obtained eigenmodes are used as geometrical imperfections to estimate

the post-buckling behaviour.

Last but not least, Chapter 7 summarises the work presented here, exposes the

strengths and weaknesses of the methods employed within, and gives the reader an

outlook on how certain problems could be overcome.
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Chapter 2

Literature review

2.1 Modelling of delamination in laminated com-

posite structures

The state-of-the-art approach for modelling delamination growth in laminated com-

posites is based on the cohesive zone (CZ) formulation. CZ models use the framework

of damage mechanics and fracture mechanics to model the complex damage process

occurring at and in-front of the crack tip in the interface of a bi-material compound.

Thereby, all in-elastic effects that occur around at the crack tip are inherited into

a surface called the cohesive process zone. These models are capable of predicting

both onset and propagation of cracks, and therefore, delamination. The constitutive

behaviour of CZ models is defined by traction-separation laws, where the damage on-

set is set by a specific criterion based on maximum tractions, i.e. interface strengths.

Once the initiation criterion is reached, the degradation of the interface stiffness is

activated. The softening behaviour is controlled by the formulation of the traction-

separation law and the critical energy release rate, which is met at complete stiffness

degradation. Thereby, new crack surfaces are formed and delamination grows.
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Most common CZ formulations are based on the work of Dudgale [30] and Baren-

blatt [5], which can be related to the Griffith’s theory of fracture when the size of

the CZ is negligible compared to the characteristic dimensions of the component. In

Ref. [46] the CZ approach was first implemented in the framework of FEM, which is

able to predict growth of existing crack as well as initiation of new ones. Several earlier

application of CZ models presented in Refs. [3, 41, 70, 90, 93] have been successful at

predicting delamination growth in laminates under single or mixed-mode conditions

and validated with experimental results. There the uni-direction (UD) laminates are

modelled as a stack of homogeneous layers with CZ interfaces in between.

Decohesion elements have been developed by Camanho et al [14, 15] based on the

CZ formulation for modelling steady-state delamination growth under mixed-mode

conditions. Decohesion elements are formulated based on continuum finite elements,

which are placed between solid finite elements and have typically very small or zero

initial thickness. The damage onset criterion in the CZ is based on the quadratic

interaction of interface tractions. Damage onset is followed by softening behaviour

defined by the traction-separation law (bi-linear), critical energy release rate, and

the mixed-mode ratio at damage onset. Mixed-mode loading is evaluated using a

criterion proposed by Benzeggagh and Kenane, cf. [8]. Thereby, the mixed-mode

conditions are constant during the softening behaviour. Therefore, this formulation

should not be used under variable mode loading as this might not satisfy the Clausius-

Duhem inequality. Based on the decohesion elements [14, 15], cohesive elements are

implemented in the FEM code Abaqus (Dassault Systèmes Simulia Corp., Providence,

RI, USA). Thereby, different traction separation laws, damage onset and propagation

criterion, and mixed-mode evaluations can be used.

In Ref. [93] a methodology for predictions of delamination growth under mixed-mode

fracture with cohesive elements is proposed. Thereby, the changes in the local mode

ratio during the evolution of damage under mixed-mode loading are captured. It is

shown that even under loading, which has according to linear elastic fracture mechan-
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ics a constant mode, variations can occur and consequently effects the determination

of the energy dissipation.

In order to obtain mesh-independent results the discretization of the CZ interface

should be fine enough, that the tractions are captured correctly. Thereby, the dis-

cretizing elements should be relatively small compared to the size of the CZ. The

length of the CZ is defined from the crack tip to the point of damage onset, e.g.

where the maximum traction is reached for single mode delamination. An assess-

ment of the cohesive process zone length based on the material properties is given in

Ref. [100]. In Ref. [41] a proposal for the characteristic length of cohesive elements is

given based on the interface properties for mode I and II. Thereby, sufficient number

of elements should be ensured within the cohesive process zone in order to accurately

capture the damage onset and evolution. However, in Ref. [92] it is shown that the

cohesive process zone length can be artificially increased with lowering the interfacial

strength while still accurately predicting the delamination growth when the critical

energy release rate remains the same. In addition, an estimation of minimum initial

stiffness of the CZ interface is given, which ensures that the effects on the global

compliance are negligible.

In terms of modelling laminated composites, using shell elements for discretization

of plies is a preferable choice due to the typically very small thickness compared to

the other dimensions. The so-called stacked shell approach models laminates with

stacking shell layers with cohesive elements in between, cf. Ref. [83]. Thereby, the

cohesive elements with non-zero geometrical thickness connect the nodes on the shell

reference planes of the shell layers via tie constraints or by sharing the nodes. The

latter results in the same planar discretization of the CZ interface as the shell layers.

The stacked shell approach is beneficial when the plies are modelled as homogeneous

with effective properties.
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Multi-scale modelling

In Ref. [98] a multi-scale finite element analysis of mode I delamination growth in a

fabric laminate has been presented. The detailed meso–scale structure of five har-

ness satin (5HS) weave fabric is embedded at the initial crack tip by a macro–scale

homogeneous model with orthotropic effective properties. The unit cell representing

the 5HS weave fabric geometry at the meso–scale is discretized using continuum fi-

nite elements for yarns and matrix. Contact elements with bilinear CZ law are used

to model the delamination path between the yarns and the matrix. Moreover, CZ

contact elements are planted in a coarse grid around the yarn to represent the cured

matrix and enable separation of yarns in the individual ply. Thereby, the model

predicts weft yarn bridging during delamination which, besides the inter-ply delam-

ination, account for the major toughening mechanism that causes stress relaxation.

However, to keep the model size manageable in terms of computational effort, the

meso–scale model was limited to only 4 warp and 5 weft yarns and a single ply on

each sublaminate, while shorting the whole laminate and applying a correction factor.

2.2 Effective behaviour of fibre reinforced elastomers

FRE composites exhibit complex geometry and interactions between its constituents

at the microscale. In order to bridge the length scales and to predict the effective

macroscopic or effective behaviour of heterogeneous materials, several tools have been

developed. One of such tools are analytical homogenisation models, which can give

useful bounds and estimates of both linear and non-linear composites.

In terms of non-linear composites, important work has been done by Ponte Castañeda

[16, 17], who developed an analytical second-order homogenisation framework for non-

linear isotropic composites. In Ref. [17] a variational formulation gives bounds and

estimation of the effective strain energy density of non-linear composites based on the

properties for linear composites with the same microstructure distribution of phases.
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Based on the second-order homogenisation framework for nonlinear composites incor-

porating field fluctuations [18], Ref. [64] derives analytical estimates for the effective

behaviour of porous elastomers. The method is applicable to a large class of hypere-

lastic composites including reinforced and porous rubber.

The second-order homogenisation framework has been applied for fibre reinforced

rubbers in Ref. [65, 66]. Thereby, the framework accounts for the evolution of the

microstruture, including fibre rotation. The method uses estimates for a compari-

son composite which is defined by linearization of the constitutive behaviour of the

elastomer phases. In Ref. [66] the estimates are applied for elastomer composite re-

inforced with cylindrical fibres with random distribution under finite deformations.

A strong influence of the evolution of the microstructure on the overall behaviour

is reported. Additionally, the microstructure evolution also has implications for the

overall stability of the composite, when a sufficiently large compressive component of

the applied deformation along the axes of the fibres is present. When the fibres are

considered as rigid and the interface between the constituents as perfect, the elas-

tomer composite is prone to ”lock-up” effects due to the stretching of the polymer

chains.

In Ref. [13] homogenisation estimates are proposed for fibre reinforced elastomers

with periodic microstructure based on the second-order homogenisation framework.

The subtle influence of the distribution, volume fraction and stiffness of the fibre

on the effective behaviour and macroscopic instabilities is investigated. Following

the same framework, Ref. [1] presents a constitutive model for the effective response

of incompressible fibre reinforced elastomers with perfectly aligned and randomly

distributed fibres, leading to overall transversely isotropic behaviour. The model

provides a generalization of the results in Ref. [65, 66] for plane-strain loading with

rigid fibres.

A different homogenisation framework for estimating the effective behaviour of a

transversely isotropic fibre reinforced elastomers is derived in Ref. [27]. Thereby, the

effective strain energy density function is expressed in terms of the properties of the
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incompressible neo-Hookean phases and their spatial distribution. At the initial state

of the material, i.e. in the limit of small deformation elasticity, the expression agrees

with the Hashin-Shtrikman bounds. Moreover, for a hexagonal unit cell, the estimates

capture the behaviour given by numerical micromechanical models undergoing finite

deformations under general loading modes.

Another important set of tools are the numerical homogenisation methods, which

model the composite geometry at an appropriate length scale and estimate the effec-

tive response under different loading conditions. Periodic microfield models such as

unit cells with periodic boundary conditions within the framework of FEM have been

successful for obtaining valid estimates of the effective behaviour of fibre reinforced

elastomers with periodic and random fibre distribution.

In general, unit cells representing fibre reinforced composites with random fibre ar-

rangement are not a rigorous representative volume element (RVE), due to the ran-

domness in the fibre distribution, and therefore, are associated with size effects. In

Ref. [56, 57] an elaborate study is presented on the effective response of fibre re-

inforced rubber composites. Using kinematic, static and mixed uniform boundary

conditions, windowing approaches and ensemble averages it is shown that a sufficient

unit cells size depends on the quantity of interest, deformation mode and intensity,

and the mismatch of the phase properties. Therefore, no estimation of a general

sufficient size is given, however, the maximum mismatch in the initial shear modulus

of phases is ten, at which the inclusions cannot be considered as rigid compare to the

matrix.

In the recent Ref. [63], multi fibre unit cells with random fibre distribution and

periodic boundary conditions are utilized to investigate the size effect on the in-

plane direction dependency in the small strain regime, where the composite can be

approximated as linear elastic, and at larger strains across different fibre volume

fractions.
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Ref. [72] studies the in-plane deformation of incompressible elastomers uniaxially re-

inforced with rigid fibres by means of unit cell models. The results of unit cells

are taken as quasi-exact and are used to check the accuracy of the second-order

homogenisation model with field fluctuations [66] and sequentially laminated com-

posite model developed in Ref. [26]. In case of neo-Hookean matrix and fibres with

circular cross-section, both analytical models accurately predicted the behaviour of

these FRE. However, in the case of Gent matrices, lock-up effects occur at lower

values of the applied stretch which the analytical homogenisation model are unable

to predict. In addition, results for the case of elliptical fibres are compared, with the

second-order homogenisation model [66] being in good agreement as fibre rotation is

included in the model. However, numerical simulations also showed the development

of instabilities when all ellipses are oriented with their shortest in-plane axis parallel

to the stretching direction.

Constitutive modelling

FRE composites exhibit hyperelastic anisotropic effective behaviour. Surprisingly,

within the literature, the first anisotropic hyperelastic constitutive models have been

developed with the motivation to model the behaviour of biological tissues such as ar-

terial veins. Thereby, collagen fibres are reinforcing the arterial walls where each layer

is treated as a fibre reinforced material. An overview of the numerous formulations

of constitutive models for arteries is given in Ref. [53].

A three-axial constitutive law for modelling arteries is proposed in Ref. [20], which

is determined from a strain energy function in exponential form. The strain energy

density function, named the generalized Fung’s form, is based on components of

the modified Green strain tensor and a fourth-order tensor of anisotropic material

constants. However, in Ref. [48] it is exposed that the generalized Fung’s form is not

convex for all possible sets of material parameters and therefore strong restrictions

on the parameters must be enforced to avoid material instabilities.
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A phenomenological constitutive law has been developed in Ref. [49], where the strain

energy density function is formulated in terms of invariants of the distortional part

of the Green strain tensor. Named as Holzapfel–Gasser–Ogden (HGO) model, the

strain energy density function consists of the ”isotropic” contribution, defined with

a reduced polynomial form, volumetric part and the fibre contribution. Thereby, the

fibre main orientation and dispersion can be defined. However, due to the physical

nature of collagen fibres, the fibres cannot carry compressive loads, which is imple-

mented in the HGO model. The HGO model incoporates a relatively low number of

material parameters, which is preferable when these parameters are fitted to experi-

mental or numerical results.

While within the literature there are more formulations of the strain energy density

function for anisotropic hyperelastic materials, the generalized Fung’s form and the

HGO model are readily available in the FEM code Abaqus.

2.3 Wrinkling of thin elastic sheets under tensile

loads

Ref. [80] gives an overview on buckling of elastic structures under tensile loads. A

preceding work in Ref. [31] studies the instability of stretched metallic sheets, where

buckling occurs as a result of special boundary conditions. Thereby, the thin elastic

sheet is clamped on the short edges, which prevents the lateral contraction due to

the Poisson’s effect. This leads to lateral compressive stresses at a distance from

the clamped edges, which causes wrinkling. The paper introduced a diagram with

the critical buckling coefficient as a function of the aspect ratio, which allows the

estimation of the critical tensile stress in the same way as used for conventional

buckling problems.

Ref. [45] considers the wrinkling of highly stretched thin sheets. The authors propose

a rational model which accounts for large mid-plane strain. Thereby, a numerical
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bifurcation analysis is performed to identify stable solutions, which are compared

to the Föppl-von Kármán theory of plates. The proposed method shows that the

amplitude of wrinkles decreases towards zero with increasing macroscopic strain.

This is in contrast to the Föppl-von Kármán theory which predicts an ever-increasing

wrinkling amplitude as the macroscopic strain is increased.

In Ref. [62] the stability boundaries are determined for the wrinkling of highly

stretched thin hyperelastic sheets with respect to a given thickness and aspect ratio.

Results are compared for the Föppl-von Kármán plate model, a correction of the

latter and the effective finite elasticity membrane model based on the incompressible

neo-Hookean and the Mooney-Rivlin materials, respectively.

In Ref. [89] a model for finite bending and stretching of thin sheets is derived from

the Koiter’s nonlinear plate theory. The model is used in numerical analyses of

wrinkling in thin sheets under tensile loads and compared to the experimental data.

The proposed approach is applicable to a wide variety of problems without prior

knowledge of the solution, e.g. no eigenmodes are required to obtain the wrinkling

and post-buckling behaviour.

In Ref. [32] a modelling and solution framework is developed for instability prob-

lems such as wrinkling. Thereby, the nonlinear Föppl-von Kármán thin plate models

is extended for the finite membrane strain regime for various hyperelastic materials.

The developed framework combines the asymptotic numerical method and discretiza-

tion by a spectral method. Based on the proposed approach, post-buckling response

is investigated with respect to the effects of different incompressible and compress-

ible hyperelastic constitutive models. It is shown that for compressible materials,

Poisson’s ratio plays a critical role in the onset of wrinkling and disappearance of it.

A study on stretch-induced wrinkling of hyperelastic thin sheets based on nonlinear

FEM is presented in Ref. [75]. A plane stress analysis is used to determine the stress

distribution patterns in the hyperelastic sheet (without wrinkling). Thereby, the

development of compressive stresses in the transverse direction which is necessary
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for wrinkling, depends on the aspect ratio and applied tensile load. An eigenvalue

analysis is performed to obtain potential buckling modes, which are used in the post-

buckling analysis. It is shown that the shell thickness is critical for wrinkling and post-

buckling behaviour, in addition to the aspect ratio and the tensile strains. In general,

the wrinkle wavelength decreases with increasing strain, whereas the amplitude first

increases prior to the critical load and afterwards decreases, eventually flattening out

at a moderately large tensile strain.

Anisotropic hyperelastic material

Stretch-induced wrinkles in thin elastic tapes with isotropic material are widely stud-

ied within the literature. The wrinkles are in general predicted perpendicular to

the stretching direction. However, in anisotropic materials, the wrinkling direction

changes according to the material direction. This topic has only recently been studied

according to the literature search. In Ref. [62], orthotrophy-related wrinkles and their

morphological evolution is studied. A mathematical model is developed by introduc-

ing an orthotropic, elastic constitutive law into the extended Föppl-von Kármán plate

theory. The developed model is used in the framework of the asymptotic numerical

method coupled with the spectral discretization. The authors report that the de-

gree of orthotropy and shear modulus significantly affects the critical buckling strain

and the appearance and disappearance of wrinkling. Furthermore, the orientation of

wrinkles strongly depends on the angle between the orthotropy and the stretching

direction. Based on this work, Ref. [101] reports that stiffer fibres lead to later onset

of wrinkling, lower amplitude and earlier disappearance of wrinkles. The authors

present a phase diagram on stability boundaries, which can guide wrinkle-free design

for membrane structures.

In Ref. [21], a large deformation theory of gradient-elastic membranes has been devel-

oped and applied to predict the wrinkling in thin hyperelastic sheets using the FEM.

The developed formulation is used to predict wrinkling not only in isotropic mate-
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rials, but also anisotropic materials such as pantographic lattices as well as fabric

reinforced materials modelled as gradient-enhanced composite laminae.

In Ref. [88], a two-dimensional model of thin anisotropic incompressible sheets with

wavy fibre reinforcement is presented. Several equilibrium problems involving rectan-

gular sheets reinforced with sinusoidal fibres are solved using the method of dynamic

relaxation. Thereby, a parameter study involving fibre amplitude, wavelength and

orientation results in different wrinkling patters in both the longitudinal and lateral

direction. The study suggest that even small distortions in fibres are significant,

which shows the importance of including the undulation of fibres due to manufactur-

ing process, defects or woven design.
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Chapter 3

Nonlinear multi-scale simulations

of delamination in textile laminates

A modelling strategy for simulating delamination in textile laminates within the

framework of Finite Element Method is presented. An efficient shell element based

modelling approach is employed to resolve the textile microstructure at the region

of interest which is embedded into a conventional laminate model. Thereby, the

model retains high predictive capabilities while being numerically efficient. Double

cantilever beam and three point end notch flexure simulations of a six layer 2/2

Twill Weave laminate are conducted. The multi-scale shell element based models are

compared to the conventional shell model and analytical predictions. Additionally,

locally varying critical energy release rates, damage evolution in the adjacent inter-

faces and the effects of different ply stacking patterns on the delamination process

are investigated.

3.1 Introduction

Composite laminates are widely used in many applications due to their exceptional

mechanical properties. Recent developments in the experimental characterization
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and computational analysis of composite materials lead to improved performance of

complex structures with respect to their load carrying capacity.

In order to further exploit the use of composite laminates, it is necessary to develop

and improve modelling approaches and computational methods which are capable of

predicting their nonlinear mechanical behaviour under various load cases. In partic-

ular this applies to textile laminates which exhibit complex hierarchical structures

and their response is determined by the interaction of constituents at various length

scales. All laminates without any reinforcement in the thickness direction are prone

to interlaminar fracture or delamination which leads to significant degradation of

stiffness and strength of the laminated structure. Such type of failure in laminated

structures is particular challenging as it is in general difficult to visually identify.

While delamination in unidirectional (UD) composite laminates has been studied

thoroughly in the recent decades which led to standardised tests for measuring inter-

laminar fracture toughness under different modes [28, 29], there is less literature to

find on delamination in textile laminates.

Experimental work on delamination in textile laminates, e.g. [4, 47, 52, 55, 58, 77],

shows that the measured interlaminar fracture toughness depends on the weaving

pattern of plies, their stacking configuration at the delamination plane and orien-

tation. Thereby, the delamination process is commonly studied by examining the

delaminated area and surfaces at the debonded plies while performing standardised

tests for measuring interlaminar fracture toughness in UD laminates. Compared to

UD ply laminates, the textile laminates made from similar constituents exhibit in

general higher interlaminar fracture toughness [47]. In some specimens the authors

in Refs. [4, 6] have observed damage in several interfaces, delamination migration [52],

and even broken fibres from fibre bridging [12] when conducting the double cantilever

beam (DCB) and three point end notch flexure (ENF) tests on textile laminates. Ob-

servations from experiments indicate that the delamination in textile laminates is a

complex process, which is difficult to measure and study since there are numerous

mechanisms at work.
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In terms of numerical predictions of the nonlinear behaviour, the recent research focus

is on interface modelling, e.g. [14, 90, 91], delamination in UD laminates, e.g. [41, 82],

and impact simulations, e.g. [83, 84]. Finite Element Method (FEM) simulations

of damage and failure in laminates require considerable computational power, in

particular when material and interface nonlinearities are to be taken into account

with high resolution. Additional complexity is added, when attempting to resolve the

fabric topology of plies. Conventional modelling strategies make use of continuum

finite elements for the plies and zero-thickness interfaces which are applied between

them, cf. [41]. The paper [98] presents a multiscale finite element analysis of mode I

delamination growth in a DCB specimen. The meso–scale structure of a 5HS weave

fabric is embedded at the initial crack tip into a macro–scale homogeneous model.

The unit cell at the meso–scale is created using continuum elements for the yarns

and CZ contact elements that can model delamination paths within the matrix and

between the matrix and the yarns. The outcome of the paper is the identification

of two major toughening mechanisms during delamination: the inter-yarn locking

ahead of the delamination front causing stress redistribution and formation of intra-

ply delamination. Thereby, the inter-yarn locking is identified as the main source of

toughening in mode I delamination of fabric composites.

However, continuum element modelling has its limitations when it comes to mod-

elling of textile topologies on a larger scale, where the number of degrees of freedom

(DOF) quickly rises above a manageable number with respect to the computational

cost. Therefore, the present work proposes a multi-scale shell element based mod-

elling approach for simulating delamination of adjacent plies in a textile laminate

component with special emphasis on numerical efficiency while retaining high predic-

tive capabilities. The approach is applied to model a six layer laminate of 2/2 Twill

Weave plies and is compared with a conventional laminate model. The simulations

are conducted using the commercial FEM solver Abaqus/Standard 2017 (Dassault

Systèmes Simulia Corp., Providence, RI, USA).
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3.2 Multi-scale FEM modelling

Textile composite laminates exhibit a highly hierarchical structure where different

modes of failure can occur at various length scales. In general, failure mechanisms in

laminates can be characterized as inter- and intra-laminar, respectively. The latter

includes mechanisms within individual plies such as fibre rupture, matrix cracking

and plasticity while the inter-laminar one describes the debonding of adjacent plies.

Commonly referred as delamination, it is the predominant failure mode in any lam-

inate without reinforcements through the thickness. In order to account for these

mechanisms an appropriately resolved model is needed.

In this work, a composite laminate is studied at the following length scales. At the

smallest scale the bundles of fibres impregnated with matrix are represented by a

homogeneous material referred to as tows (yarns). Consequently, this length scale is

denoted as the tow-scale. Non-linearities at the tow-scale are modelled using appro-

priate constitutive laws. A level higher, the topology of interwoven tows embedded

in a matrix, i.e. a textile ply or lamina, is resolved at the so called ply-scale. The

largest scale is denoted as the component-scale and at this scale the textile laminate

at the ply-scale as well as the entire component is represented.

A multi-scale shell element based modelling strategy for textile laminates is adopted,

which resolves the textile topology in a detailed way in the region of interest. Fig-

ure 3.1 illustrates a multi-scale textile laminate with initial delamination in the middle

interface from the left side. A domain with a detailed representation of the textile

laminate at the ply-scale is embedded into conventional shell layers at the component-

scale. At the latter, a textile composite laminate is represented by a stack of plies with

homogenised orthotropic linear elastic material properties. Such an approach serves

as the basis for a numerically efficient model, where the nonlinearities are captured

within the tow and ply-scale domain while the embedding at the component-scale

provides the global response with low computational effort. However, such an ap-

proach does require prior knowledge about the failure in the component as well as
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about the limitations imposed by the embedding, e.g. perturbation effects, to be

utilized successfully.

At the ply-scale, the textile microstructure is resolved with the shell element based

approach developed in [35] for single textile plies and extended to laminates in [36, 85].

Thereby, the two main constituents in a fabric layer, i.e. the tows and the unrein-

forced matrix pockets, are modelled by shell elements only, cf. Fig. 3.2. Geometrical

idealisations are assumed such as perfectly periodic weaving pattern, piecewise lin-

ear tow undulation and rectangular tow cross-section that is uniform along the tow

undulation path. The tows are resin impregnated bundles of UD fibres and modelled

with shell elements. Their reference planes are defined at the tow mid-surfaces and

the tow’s undulation path follows the assigned weaving pattern, e.g. Twill Weave

or eight harness satin (8HS). The unreinforced matrix, i.e. the matrix pockets, are

also modelled by shell elements. For modelling reasons, outside tow surfaces are cov-

ered with zero thickness matrix layers, too. The shell reference surfaces are placed

at the top and bottom surfaces of the ply. To fill the matrix pockets according to

Figure 3.1: Multi-scale shell element based laminate model with conventional shell
layers embedding the textile structure at the initial delamination front.
The shell layer above the resolved microstructure has been removed to
illustrate the embedded woven topology.
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the local geometry, a variable shell thickness is applied. The interfaces between the

individual overlaying tows and between the tows and matrix are modelled by cohesive

elements [14, 23] and tie constraints, respectively. Textile plies can be stacked on top

of each other with or without some horizontal shift, resulting in different stacking

patterns, cf. Fig. 3.3 for in-phase, mid-phase shift and out-of-phase stacking of a

four textile ply laminate. Between the textile plies, zero-thickness cohesive elements

are tied to the matrix layers from each adjacent ply, utilizing a surface-to-surface tie

constraints.

The ply-scale domain and the shell layers from the component-scale domain are cou-

pled by tie constraints. Figure 3.4 illustrates the coupling techniques used in the

present work. At the boundary between the two domains throughout the width of

the laminate, the so called edge surface based tie constraint is used, cf. [23]. The def-

inition is based on node to surface formulation, where the slave nodes are projected

onto the master surface and their motion is coupled to the motion of the correspond-

ing projected point on the master surface. Through the thickness of a laminate, the

ply-scale domain and the shell layers from the component-scale domain are coupled

by surface to surface tie constraints, cf. [23]. The surface to surface approach en-

forces the coupling in an average way over a finite region rather than in a discrete

Tows Matrix pockets

xy z

Figure 3.2: Shell element based 2/2 Twill Weave ply assembled (bottom) and dis-
assembled into tow reference planes (left) and matrix reference planes
(right) [36].
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Figure 3.3: Schematic of different stacking patterns. In-phase (left), half-phase shift
(middle) and out-of-phase stacking (right) in a four 2/2 Twill Weave
ply laminate.

way. Consequently, this approach is advantageous for coupling non-conformal meshes

as it minimizes the numerical noise due to averaged kinematic relations between the

tied nodes [23].

Between the ply-scale domains, different interface regions are defined by the topolo-

gies of adjacent plies. Depending on the weaving pattern, stacking pattern and the

orientation of plies, interface properties can be assigned locally for different types of

interfaces. In Fig. 3.5 an interface between two in-phase stacked 2/2 Twill Weave

plies is illustrated with regions of the interface which locally connect either tows,

matrix or combinations of both from adjacent plies. Thereby, tow-tow, tow-matrix,

and matrix-matrix interfaces are identified based on the adjacent topology of plies.

In case of the 2/2 Twill Weave plies with in-phase stacking, tow-tow interfaces are

always between either 0◦/90◦ or 90◦/0◦ oriented tows.

slave nodes

master nodes

surface-to-surface ties

node-to-surface ties

Figure 3.4: Schematic of the coupling between the textile structure and the con-
ventional shell layers. The matrix, cohesive interfaces and some shell
layers have been removed in order to illustrate the different coupling
techniques.
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tow-tow
tow-matrix

matrix-matrix

Figure 3.5: Expanded schematic view of different regions in the interface between
two in-phase stacked 2/2 Twill Weave plies. Matrix pockets are hidden.

3.3 Application - delamination test set-ups

Simulations of the test set-up for determination of interlaminar fracture toughness

energy for mode I, i.e. the double cantilever beam (DCB) [28], and for mode II, i.e

the three point end notched flexure (ENF) [29], are performed. Thereby, the multi-

scale models of the laminate, cf. Fig. 3.1, are employed. The laminate consists of six

layers of 2/2 Twill Weave plies. The dimensions of the complete laminate component

are 150 mm in length, 19.68 mm in width and 2.53 mm in thickness. The initial

delamination length is 38.68 mm and 53.68 mm for DCB and ENF test simulation,

respectively.

Cohesive interfaces between plies and individual tows feature a bi-linear traction

separation law with a quadratic nominal stress criterion for damage initiation and

an energy based damage evolution. To account for the mode-mix the Benzeggagh–

Kenane fracture criterion [9] with a BK parameter of 2 is used.

At first, three different modelling strategies are compared. The conventional shell

model (CSM) consists of two sublaminates which are connected by cohesive elements.

Each sublaminate is represented by a single composite shell at its mid-plane and

is discretized with four-node linear thin shell elements with full integration. The

sublaminates are assigned with homogenised material properties for carbon/epoxy
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plies, see Tab. 3.1, and thickness of three plies. The homogenised properties are

obtained using a numerical homogenisation approach for textile composites based on

shell element discretization [35]. Between the sublaminate’s mid-planes sits cohesive

interface with parameters from Tab. 3.2. The initial stiffness is chosen to approximate

quasi-rigid connection between adjacent plies or tows. The nominal strengths for pure

mode II and III are taken from a corresponding material data sheet [85]. The nominal

strength for mode I is assumed. The critical energy release rates are estimates based

on the values published in [40].

Given the proposed modelling in Section 3.2, the multi-scale laminate model, denoted

as MSM, embeds a detailed representation of a textile laminate around the initial

delamination front. The embedded domain consists of four 2/2 Twill Weave plies

which are based on the shell modelling approach from [35]. Within the textile plies

at the tow-scale the tow (yarn) width is 1.81 mm, the tow thickness is 0.2018 mm

and the spacing between tows is 0.65 mm in both planar directions. The resolved

plies at the ply-scale are 19.68 mm in width and length with thickness of 0.4216 mm.

The plies are stacked in-phase, cf. Fig. 3.3. At the ply-scale domain, the tows and

unreinforced matrix are assigned with properties from Tab. 3.3, while the interfaces

between plies are treated as homogeneous and assigned with uniform parameters,

cf. Tab. 3.2. The composite shells at the component-scale domain that embed the

microstructure are assigned with material properties found in Tab. 3.1.

Motivated by the experimental observations from [4], where authors report that crack

propagation along the warp yarns is associated with less resistance than propagation

along the weft yarns in a 5HS weave laminate, the MSM model is enhanced with

heterogeneous cohesive interfaces and denoted as MSMI model. Thereby, the different

regions in the interface, cf. Fig. 3.5, are assigned with modified material parameters.

Table 3.1: Material properties assigned to the homogenised carbon/epoxy plies.

E1 E2 ν12 G12

56.589 GPa 56.589 GPa 0.045 4.186 GPa
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Table 3.2: Bi-linear traction-separation parameters describing the initial stiffness
and the damage initiation and propagation of cohesive interfaces.

Mode I Mode II Mode III

initial stiffness 105 N/mm3 105 N/mm3 105 N/mm3

interlaminar strength 60 MPa 79.289 MPa 79.289 MPa

crit. energy release rate 0.9 N/mm 2.0 N/mm 2.0 N/mm

Table 3.3: Elastic material parameters of the constituent’s in carbon/epoxy plies.
The subscript 1 and 2 denote the fibre and transverse directions of tows,
respectively.

tow E1 E2 ν12 G12

properties 142.177 GPa 13.820 GPa 0.23 6.252 GPa

matrix EM νM

properties 3.25 GPa 0.37

In the case of tow–tow interfaces, the strength values and the critical energy release

rates for all modes are increased by 30% from the values in Tab. 3.2. For the matrix–

matrix and tow–matrix regions these interface properties are decreased by 24.2%.

This way, the interface properties weighted by the area are the same as in the models

with uniform properties. In both multi-scale models the initial delamination reaches

one and a half tow width, i.e. 3.68 mm, into the ply-scale domain in order to reduce

the perturbation effects from the embedding of the microstructure.

The influence of the stacking pattern is studied by utilizing the MSM model where

the plies in the embedded microstructure are stacked in-phase, out-of-phase and mid-

phase shift, cf. Fig. 3.3. Other mechanical and geometrical properties, such as e.g.

the position of the initial delamination front, remain exactly the same as defined for

the MSM model.

An additional insight in the local mechanisms involved during delamination can be

obtained when damage modelling is included also for tows in the textile ply lay-

ers. In the following case tows are equipped with an anisotropic damage model for
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fibre-reinforced material developed by [59], which is readily available in Abaqus. This

constitutive model considers four different failure modes - fibre tension, fibre compres-

sion, matrix tension, and matrix compression - for composite materials which show

no significant plastic deformation before failure. Damage onset is predicted using

Hashin’s initiation criteria [43, 44] and the evolution of damage is based on fracture

energy dissipation, where the increase in damage is governed by linear softening with

respect to equivalent displacements. In fact, the evolution law is a generalization of

the approach used in cohesive zone modelling [15]. The model in this work that incor-

porates the constitutive law with tow damage is denoted as MSMID. Table 3.4 lists

the nominal strengths and critical energy release rates for all failures modes under

Hashin’s theory. The values are taken from [85].

Nodal displacement boundary conditions are assigned in both the DCB and the ENF

set-ups. Tip displacement, δI, of 16 mm is applied for the DCB simulations on both

arms and central displacement, δII, of 18 mm for the ENF setup. At the delami-

nated area, contact constraints are utilized between the adjacent plies using the gen-

eral contact algorithm in Abaqus/Standard, which is based on the penalty stiffness

method. Frictionless contact is defined at both the ply and the component-scale do-

main. Moreover, as the delamination progresses in the middle interface, contact can

be established between plies from either domain. A line search algorithm [23] is used

with increased maximum allowed number of iterations (20) and cutbacks (8) within

each increment. Viscous regularization with a damping coefficient of ξ = 10−6 s is

Table 3.4: Nominal strengths and critical energy release rates for the tow’s damage
initiation and evolution law. The subscripts denote the failure modes
where 1 and 2 corresponds to tow’s fibre and matrix damage, respectively,
under tension (+) and compression (-). S12 denote the damage initiation
strength under shear loading.

nominal X1+ X1− X2+ X2− S12

strengths 2116.320 MPa 1610.270 MPa 86.138 MPa 333.380 MPa 159.022 MPa

crit. energy G 1+
Ic G 1−

Ic G 2+
Ic G 2−

Ic

release rates 123.290 N/mm 107.500 N/mm 0.275 N/mm 1.043 N/mm
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prescribed for the cohesive elements. The loading rate for the DCB and ENF simu-

lation is 16mm/s and 18mm/s, respectively.

In terms of the problem size the MSMI model contains 245000 elements with approx-

imately one million degrees of freedom. All simulations are performed on a standard

workstation.

3.4 Results and discussion

3.4.1 ENF simulations

Figure 3.6 shows the load-displacement curves of the ENF simulations where the

CSM, MSM and MSMI models are compared. Additionally to the numerical predic-

tions, an analytical solution is given by the Corrected Beam Theory (CBT) [97] for

the material properties that describe the homogenised behaviour, cf. Tab. 3.1 and

3.2. The enlarged area in Fig. 3.6 shows the reduction of the reaction force during

delamination. While the overall response of the CSM agrees well with the analytical

prediction, the MSM show lower peak reaction forces and both multi-scale models

exhibit a distinct quasi-stepwise delamination progression.

The delamination progress in the middle interface is shown on Fig. 3.7 (left) for the

same models. The central displacement is plotted against the average delamination

length in the x direction, where the quasi-stepwise delamination length growth for the

multi-scale models is illustrated. The shaded rectangles in the background illustrate

the weft pattern, i.e. tows which are oriented transversely to the delamination length

growth. This helps to visualise the position of the average delamination front at

any given point. Annotation points are added to the response of the MSM model.

They are correlated to images in Fig. 3.7 (right), which show the damage initiation

criterion, i.e. the quadratic nominal stress criterion, of the cohesive interface in

the middle of the laminate. Interface regions where the damage initiation criterion

is equal to one and the damage evolution criterion is less than one, is referred as
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Figure 3.6: Predicted load displacement curves of the ENF setup by the corrected
beam theory (CBT), the conventional shell model (CSM), the multi-
scale model (MSM) and the multi-scale model with alternating interface
properties (MSMI). The enlarged view shows reduction of the reaction
force during delamination.

the process zone. Completely damaged elements, i.e. where the damage evolution

criterion is equal to one in all of the element’s integration points, are removed to

illustrate the delamination front.

Figure 3.7 (right) shows the process zone spanning across approximately one and a

half tow width and is retarded at regions of the interface which show matrix pockets at

either ply. These regions have lower local stiffness compared to the regions reinforced

with tows at both plies. Correspondingly, the delamination initiation front forms a

distinct shape. From point (a) to (b) the average delamination length increases only

marginally compared to the jump between (b) and (c). The sequence in Fig. 3.7

(right) indicates clearly that the shape and the propagation of the process zone is

governed by the fabric topology and consequently the alternating local ply stiffness

in the vicinity of the delaminating interface.
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Figure 3.7: Delamination progression for the ENF simulations in terms of the cen-
tral displacement vs. the average delamination length (left). The dam-
age initiation criterion in the interface (right) is captured at the corre-
sponding annotation points of the response for the MSM model (left).
Completely damaged elements are removed to illustrate the delamina-
tion front and the process zone, see text for explanation. From the
underlying ply only tows are shown.

Note that the delamination front also has a slight angle in Fig. 3.7, right (c). As the

delamination front propagates along the interface this angle is alternating due to the

twill weave pattern in the plies.

Figure 3.8 show the damage initiation criterion (left) and the damage evolution cri-

terion (right) for all cohesive interfaces between the plies in the MSM model. The

images are taken when the delamination front in the middle interface reaches point

(c) in Fig. 3.7. Damage initiates in a localized pattern in both the top and the bot-

tom cohesive interfaces. However, the damage evolution is limited and the damaged

regions do not connect and no delamination is predicted.

Figure 3.9 compares the energy release rates for all models obtained by the modified

compliance calibration method (CCM) [25, 54]. The CCM method is chosen because

the evaluation of the energy release is based on the compliance of the whole laminate,

whereas the CBT relies on the ply and interface material constants. The dashed line
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Figure 3.8: Expanded view on damage initiation criterion (left) and damage evo-
lution criterion (right) in the cohesive interfaces of the MSM model for
the ENF simulation at load point (c), cf. Fig.3.7.
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Figure 3.9: Energy release rate evaluated by the CCM method from the ENF sim-
ulations and the critical energy release rate (dashed line).

represents the critical energy release rate, GIIc, used in uniform cohesive interfaces

in the CSM and MSM model. The evaluated energy release rate from the MSMI

model is approx. 5% larger compared to the MSM model. Note that the initial
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delamination front in the multi-scale models is placed one and a half tow width into

the embedded microstructure. Consequently, the initial front is placed in the middle

of a tow that is oriented along the delamination front at both adjacent plies. There a

locally increased fracture toughness is modelled for the MSMI model. In agreement to

the delamination length growth jumps, cf. Fig. 3.7, an unstable delamination length

growth in terms of ∂G
∂a

< 0 is observed locally for both multi-scale models.

Figure 3.10 shows the delamination growth during the ENF simulation of the MSM

models with in-phase, half-phase shift, and out-of-phase stacking pattern, cf. Fig. 3.3.

The delamination length growth in the case of out-of-phase stacking has approxi-

mately twice the size but half as many quasi-steps compared to in-phase stacking.

The predicted delamination growth in the laminate with half-phase shift is roughly

between the other two stacking patterns. For a 2/2 Twill Weave in-phase stacked

laminate, the tows from neighbouring plies are always transverse to each other. Con-

sequently the tow-tow interface regions form a chequerboard-like pattern, cf. Fig. 3.5.

However, in an out-phase stacked laminate, the tow-tow interface regions form a pat-

tern that resembles the 2/2 Twill Weave. Therefore the process zone propagates in

a more stable way and with bigger steps in terms of the delamination length growth

compared to the other configurations. In terms of the evaluated energy release rate,

cf. Fig. 3.11, the out-of-phase stacking exhibits higher energy release rate compared

to the rest of stacking sequences.

Figure 3.12 illustrates tow matrix tensile damage initiation criterion in the MSMID

which is most present in the ply layer above the middle delaminating interface. The

damage initiation is most present on the weft yarns where tows are tied to the co-

hesive interface, which is depicted with the enlarged view in Fig. 3.12. Note that

the overlaying warp yarn have been removed in the enlarged view. Except for the

elements at the initial delamination front, the tensile damage variable in the tow ma-

trix does not evolve to complete failure, i.e. the dissipated energy of the elements do

not reach the critical values. Note that the shell-based modelling approach used for

the microstructure is arguably over-constrained due to the ties between the matrix,
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Figure 3.10: Delamination length growth in MSM models with in-phase, half-phase
shift, and out-of-phase stacking patterns for the ENF simulations.
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Figure 3.11: Energy release rate evaluated by the CCM method for the MSM mod-
els with in-phase, half-phase shift, and out-of-phase stacking.

tows and intra-ply cohesive interfaces. Thereby, tow damage with intra-ply delam-

ination is limited as cohesive interface elements are placed only between overlying



CHAPTER 3. DELAMINATION IN TEXTILE LAMINATES 33

tows. The remaining part of tows is tied directly to the matrix pockets which have

varying thickness to fill the gaps. The rest of the Hashin’s damage modes, i.e. tow

matrix under compression and fibres under both tensile and compressive stresses, are

not present in any layer. Compared to the damage dissipation energy in the cohesive

interfaces, the dissipated energy in the tows is negligible, cf. Fig. 3.13 (left). On the

right, the dissipated energy due to viscous regularization in the model is shown to

be insignificant compared to the recoverable strain energy and damage dissipation

energy, which is the case also for other variants of the multi-scale models both in the

ENF and DCB test simulations.

Figure 3.12: Exploded view on the tow matrix tensile damage initiation criterion
in the textile layers of the embedded microstructure in the MSMID
model. In the middle, damage initiation criterion in the cohesive in-
terface is depicting the current position of the delamination front.
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Figure 3.13: Energy allocation in the MSM model during ENF simulation. On the
left, damage dissipation energy is compared between the cohesive in-
terfaces and tows, the latter being insignificant to the dissipated energy
in the whole model. On the right, the viscous dissipation energy due
to viscous regularization is negligible compared to recoverable strain
and damage dissipation energy.
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3.4.2 DCB simulations

Figure 3.14 shows the load displacement curves of the CSM, MSM and MSMI models

with in-phase stacking pattern for the DCB simulations. In all models, the reaction

force towards the critical value does not follow the CBT prediction due to the creation

of the process zone in the cohesive interfaces. The CSM model agrees well with the

CBT prediction. The multi-scale models predict higher peak reaction force and the

quasi-stepwise reduction of the reaction force is more pronounced compared to the

ENF simulations. The MSMI model predicts smaller but twice as many steps in the

reduction of the reaction force compared to the MSM model.

Figure 3.15 shows the delamination progress for the DCB simulations. In the same

way as for the ENF simulations in Fig. 3.7, the annotation points on the left graph are

presented with contour plots of the process zone in the MSM model on the right. The

process zone width is approximately half the tow width and is significantly smaller

compared to mode II delamination due to the lower critical energy release rate for

mode I. The local ply topology has only small influence on the shape of the process

zone, however, the delamination progression is strongly influenced by it. From point

(a) to (b) the delamination length growth is very subtle. In this phase the process

zone is quasi stationary over the region of tows (from both plies) and he damage

initiation front borders with the region of matrix pockets. Looking at the damage

initiation front, cf. Fig. 3.15 (right), the jump in the delamination length from point

(b) to (c) takes place from one trailing edge of tows to the next one.

In contrast to the MSM, the delamination length growth rate in the MSMI does reduce

at matrix pockets. This is seen as the additional steps in the response in Fig. 3.15

(left). A possible explanation for this is the fact that the MSMI model has weaker

interfaces at the matrix pockets and stronger interfaces at tows from both plies.

This can be observed on Fig. 3.16 where the position of weft yarns are shown and

consequently the space in between where the matrix pockets are positioned. Thereby,

the additional steps in the delamination growth is a consequence of varying interface
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Figure 3.14: Load displacement curves of the DCB simulations. The enlarged view
shows the reduction of the reaction force during delamination. CBT
denotes the solution given by the corrected beam theory, CSM the
conventional shell model, MSM the multi-scale model and MSMI the
multi-scale model with alternating interface properties and in-phase
stacking.

properties and relatively small process zone in the interface. However, this result

only showcases the abilities of the model, since the interface properties of stronger

and weaker regions are set without any experimental references and are assumed only

from an observation made in other studies, cf. [4].

The energy release rate for the CSM, MSM and MSMI model in the DCB simulation is

shown of Fig. 3.16. The energy release rates are obtain using the modified compliance

calibration method. Both multi-scale models overshoots the energy release rate by

some percent in average and the stepwise response corresponds to the reduction in

the reaction force, cf. Fig. 3.14.
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Figure 3.15: Delamination progression for the DCB simulations in terms of the tip
displacement vs. the average delamination length (left). The shaded
rectangles illustrate the weft yarns. The damage initiation criterion
in the interface (right) is captured at the corresponding annotation
points of the response for the MSM model.
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Figure 3.16: Energy release rate evaluated by the CCM method from the DCB
simulations and compared to the critical energy release rate (dashed
line).
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3.5 Summary

A modelling strategy for simulation of delamination in textile laminates by means

of the FEM is presented. A multi-scale embedding approach is utilized to include

the highly resolved structure of the fabric plies at the region of interest while the

rest of the laminate is modelled by a conventional laminate approach. Except for

the cohesive interfaces, the model is completely represented by shell elements at

all length scales. Such an approach proves to be an efficient modelling strategy that

exhibits high predictive capabilities while the computational effort is kept low enough

to utilize the simulations using standard desktop hardware. The present modelling

approach is used to study delamination in a 2/2 Twill Weave carbon reinforced epoxy

laminate. To demonstrate the application, several multi-scale models are simulated

for standardised interlaminar fracture test set-ups. Detailed insight into the governing

mechanisms at work are obtained by studying the evolution of the process zone at the

delaminating interface. A clear relation between the local stiffness of the textile plies

and the delamination progress is observed as expected from experimental work in the

literature. Furthermore the size of the process zone compared to the width of the

yarns in the resolved textile plies has a strong influence on the delamination growth.

This causes the delamination growth in the textile microstructure to progress in a

quasi step-wise manner, which is clearly seen in the load displacement curves and

the evaluated energy release rates. In the multi-scale models, interfaces parallel to

the middle one are also prone to delamination. There, damage initiation is recorded

in isolated regions, however, the modelling approach limits the separation of tows in

the ply domain (intra-ply delamination) which prevents delamination migration to

another interface.

In addition, the multi-scale models are equipped with heterogeneous interfaces, where

the different interface properties are assigned according to the local topology. Despite

the difficulties of obtaining relevant properties from interface characterization, the

influence of varying interface is shown to be greater with smaller process zone. In the
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DCB simulations, where the process zone is much smaller than the tow width, the

weaker interfaces at the matrix pockets retard the delamination growth compared to

the model with homogenous interface. The main challenge is the determination of

the interface properties, for which extensive experimental studies are required and by

our knowledge have not been conducted in the literature. Therefore, this results serve

only as a demonstration of the modelling approach and are of qualitative character.

Given that several experimental studies observe some damage in the tows, the multi-

scale model is extended with a damage constitutive law for fibre reinforced polymers

at the tow-scale. In the ENF simulation, tow’s matrix tensile damage initiation

is recorded in the ply above the delamination plane. Such damage mode would

physically result in separation of bundle of fibres within the tows, which could lead to

delamination migration as reported in some studies. However, the tows in the model

are constrained by ties to the matrix, which limits the damage of intra-ply cohesive

elements and consequently of tows. A possible way to overcome this limitation is to

place cohesive elements between each of the constituents in the textile plies. This

would significantly increase the problem domain, but ultimately determination of the

interface properties for each local region is still the biggest challenge.
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Chapter 4

Material calibration framework for

fibre reinforced elastomers based

on a micromechanical approach

Material models employed to predict the effective behaviour of fibre reinforced elas-

tomers (FRE) often rely on non-trivial material parameter fitting to experimental or

numerical results. A calibration method is presented in this work which minimises

the need for fitting of material parameters. The method is applied for the Holzapfel–

Gasser–Ogden (HGO) anisotropic hyperelastic strain energy density function in order

to prescribe the effective behaviour of composites with linear elastic unidirectional

fibres with random fibre arrangement and nearly incompressible hyperelastic matrix

material for various fibre volume fractions. The calibration of material parameters

is based on the initial behaviour of FRE, which is approximated as linear elastic.

Thereby, analytical micromechanical methods can be applied to obtain the initial be-

haviour and calibrate the material parameters. The response of the calibrated HGO

model is compared to multi-fibre unit cell models for a scope of fibre volume frac-

tions for different load cases. The presented method is limited to composites where

unidirectional fibres can be considered as rigid compared to the matrix.



CHAPTER 4. FIBRE REINFORCED ELASTOMERS 41

4.1 Introduction

Fibre reinforced composite materials are useful for many applications due to their

exceptional mechanical properties, such as high stiffness-to-weight and strength-to-

weight ratios. Recent developments in the experimental characterisation and compu-

tational analysis of composite materials can lead to improved performance of complex

structures with respect to their load carrying capacity.

In recent years, fibre reinforcements are being used in combination with elastomers

and other rubber-like materials in order to exploit the mechanics of highly flexible

structures which can serve as alternatives for conventional mechanisms. With this

interest, fibre reinforced elastomers (FRE) are commonly used in pneumatic soft

composite actuators [37, 74, 79, 87, 95], as lightweight mechanisms in deployable

structures [24, 69, 81], and as shape memory composites [39, 67].

FRE composites exhibit complex geometry and interactions between its constituents

at the microscale. In order to bridge the length scales and to predict the effective

macroscopic behaviour several analytical and numerical methods and tools have been

developed. Ponte Castañeda [16] has developed an analytical second-order homogeni-

sation framework for non-linear isotropic composites. Thereby, the effective mechani-

cal properties are obtained from bounds and estimates of a linear comparison compos-

ite. Based on this framework analytical homogenisation schemes have been further

developed for particle reinforced composites [64–66] and unidirectional fibre rein-

forced composites with periodic arrangement [13] and random distributions [1]. An

expression for the effective strain energy density function of a transversely isotropic

hyperelastic fibre-reinforced composite in terms of the properties of the two incom-

pressible neo-Hookean phases and their spatial distribution has been developed by

deBottom [27]. The analytical homogenisation schemes are generally successful, how-

ever, their estimates are typically limited to certain microstructural geometries, de-

formation modes and constituent’s material properties and contrast.
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Numerical homogenisation schemes are based on modelling discrete microgeometries.

Among them, periodic microfield models such as the unit cell approaches are a com-

mon choice for numerical homogenisation of FRE materials with periodic or random

fibre distribution. Moralada et al [72] compare predictions of unit cell models with

analytical homogenisation schemes such as the second-order homogenisation esti-

mates [66] and approximations by a sequentially laminated composite model [26] for

in-plane finite deformations of random FREs. The authors show that both analyt-

ical models are able to capture unit cell’s response when Neo-Hookean matrix and

circular fibre cross section are used. However, in case of Gent matrices the analyti-

cal models overestimate the lock-up stretch, which exposes the difficulties associated

with modelling local phenomena by means of homogenisation strategies.

Periodic microfield models where the reinforcement phase is quasi randomly dis-

tributed are associated with size effects. Elaborate studies on the representative

volume elements (RVE) of fibre reinforced soft composites by Khiseava and Os-

toja [56, 57] report that a sufficient RVE size depends on the quantity of interest, e.g.

the maximum stretch ratio, the deformation mode or the mismatch of properties of

constituents. Thereby, windowing approaches, kinematic, static and mixed uniform

boundary conditions and ensemble averages have been used to study the influence

of size and material properties. However, the maximum contrast between the ini-

tial shear modulus of the constituents is ten, which is too low for FRE composites

where fibres can be treated as rigid compared to the matrix. More recently, Lopez

Jimenez [63] studies the effects of unit cell size and fibre volume fraction on the di-

rection dependency of the initial shear modulus in the linear regime and effective

strain energy density in the non-linear regime for fibre reinforced silicone composites

with initial shear modulus contrast of 104 between the fibres and matrix. Thereby,

a correlation between the variation of the initial shear modulus and the variation of

the normalized strain energy in the non-linear regime is reported which enables to

predict the direction dependency at large stretches from the initial properties.
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Homogenisation frameworks are useful tools for predicting the effective response to

given load cases of FRE composites. However, structural simulations require consti-

tutive models which can be employed in the framework of the Finite Element Method

(FEM) for structures under arbitrary load cases. Constitutive models for FREs in

finite elasticity are in general derived as anisotropic hyperelastic strain energy density

functions. The strain-based Fung’s form [20, 33] and the invariant based Holzapfel–

Gasser–Ogden (HGO) form [38, 49] have been initially developed for arterial walls

with collagen fibres. Both are purely phenomenological models and have been suc-

cessfully employed also for other applications.

Conventionally, fitting material parameters of models relies on experimental data

from several load cases such as uniaxial, biaxial and planar tests. The fitting proce-

dure often relies on mathematical methods such as the Gauss-Newton algorithm and

the standard non-linear Levenberg-Marquardt algorithm [50].

In applications where the material properties are tailored to specific loading configu-

rations there is a need to avoid the fitting procedure based on experiments, especially

if novel material combinations in a composite are of interest. Therefore, this work

presents an approach where the fitting of material parameters is minimized by cali-

bration based on micromechanical methods and mechanics of linear elastic materials.

Thereby, initial values are obtained which give good approximation for arbitrary load

cases. For the non-linear behaviour under larger strains, only a few parameters are

required which can be deduced from the constituents properties. Such an approach

shows potential for engineering applications where FRE material is employed in a

structure and the influence of constituents properties is of interest.

All FEM simulations are conducted using the commercial FEM package Abaqus 2019

(Dassault Systèmes Simulia Corp., Providence, RI, USA).
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4.2 Homogenisation by the unit cell approach

Periodic microfield approaches are an established method to numerically analyse the

macroscale and microscale behaviour of composite materials by studying periodic

microstructures [11]. A common strategy for analysing strain and stress fields is

based on subdividing the micro geometry into periodically repeating unit cells. Unit

cells must be used with appropriate boundary conditions in order to generate valid

deformed states, i.e. the unit cell must exhibit periodicity of geometry, material, loads

and displacements in every state [10]. In manufacturing of fibre reinforced composites

the position of fibres is generally difficult to control and often in applications the fibres

are assumed to be arranged randomly. The effective behaviour of such composites

can be approximated by periodic multi-fibre unit cells that employ quasi-random fibre

positions. The estimates provided by multi-fibre unit cells can strongly depend on

the size, number of fibres, material mismatch and loading conditions, especially in

the non-linear regime. However, this work does not aim to study such effects which

have been investigated before but instead to study the effective properties of the unit

cells that are utilized and compare the response to a calibrated material model.

4.2.1 Material properties

The unit cells consist of two phases, where linear elastic glass fibres are reinforcing

a hyperelastic rubber-like matrix material defined with the Ogden type of the strain

energy density function [78], defined as

U =
N�
i=1

2µi

α2
i



λ̄αi
1 + λ̄αi

2 + λ̄αi
3 − 3

�
+

N�
i=1

1

Di



Jel − 1

�2i
, (4.1)

where λ̄i = J
1
3λi are the deviatoric principal stretches , λi are the principal stretches,

Jel is the non-thermal volume change and µi, αi and Di are material parameters. The

Ogden strain energy density function is defined with a set, N , of material parameters.
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Table 4.1 lists the material parameters for both constituents. The interface between

constituents is assumed to be perfect.

4.2.2 Geometry and fibre arrangement

The geometry of unit cells are generated with Digimat-FE 2017(e-Xstream engineer-

ing SA., Hautcharage, Luxembourg). The multi-fibre unit cells are three dimensional

models with dimensions lx = ly and lz, which form an idealized composite reinforced

with fibres with circular cross section of radius r which are perfectly aligned in the z

direction. The fibre distribution is generated using a random seed technique, where

the placement of each fibre results from the convergence of an iterative process. The

fibre position is accepted if all the constraints are verified, i.e. the minimum distance

from other fibres and minimum relative cut-off volume of fibres intersecting the unit

cell faces. This is repeated until the criterion for the assigned fibre volume fraction

is met or the constraints cannot be fulfilled in maximum number of iterations. Any

fibre intersecting one of the unit cell faces has its complement placed on the opposite

edge, generating a periodic topology on all sides. The constraints of the fibre plac-

ing are necessary to avoid very narrow bands of matrix material between the fibres,

which are difficult to discretise and high strain localisation can occur there already

at relatively small loads. The minimum cut-off relative volume of fibres placed at the

Table 4.1: Material parameters of constituents in the FRE composite. Initial shear
and bulk modulus for the matrix material are denoted as µ

(m)
0 and K

(m)
0 ,

respectively.

Constituent Material parameters Initial properties [MPa]

Matrix – Ogden type N = 1

µ
(m)
1 = 3.490 · 10−1 MPa

α
(m)
1 = 2.163

D
(m)
1 = 9.961 · 10−3 1/MPa

µ
(m)
0 = 3.49 · 10−1

K
(m)
0 = 2.01 · 102

Fibres - linear elastic E(f) = 8 · 104 MPa

ν(f) = 0.2
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faces is also enforced to improve mesh discretisation. Figure 4.1 illustrates the fibre

arrangement of the multi-fibre unit cells with a size of 2r/lx = 0.15 for 10.6, 19.4,

30.0, and 40.6% fibre volume fraction. This corresponds to 6, 11, 17, and 23 fibres

within each unit cell, respectively.

4.2.3 Model properties and periodic boundary conditions

The unit cells are discretized using eight node continuum elements with linear in-

terpolation functions and hybrid or mixed formulation. Hybrid elements are used to

cope with the nearly incompressible material, where the deviatoric and volumetric

stress response is treated separately. Thereby, the hydrostatic stress is formulated

as a Lagrange multiplier imposing the condition of hydrostatic stress to be zero.

Figure 4.1: Cross section of periodic multi-fibre unit cells with 10.6, 19.4, 30.0,
and 40.6% fibre volume fraction (approximately) and the unit cell with
hexagonal fibre arrangement (HEX) with 20% fibre volume fraction.
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The multi-fibre unit cells are equipped with spatial periodic boundary conditions

which ensure valid deformation states under arbitrary load cases. The use of periodic

boundary conditions requires conforming meshes on all opposite pairs of surfaces, i.e.

the nodes must be positioned at identical face coordinates, s̃j. Thereby, the displace-

ment of node pairs can be directly constrained. The periodic boundary conditions

are summarized as a set of linear constraints

ui
Γ+
x
(s̃j)− ui

Γ−
x
(s̃j)− ui

SEB = 0 (4.2)

ui
Γ+
y
(s̃j)− ui

Γ−
y
(s̃j)− ui

NWB = 0 (4.3)

ui
Γ+
z
(s̃j)− ui

Γ−
z
(s̃j)− ui

SWT = 0 , (4.4)

where i is the degree of freedom, Γ+
( ) and Γ−

( ) denote the opposite faces of the unit

cell and s̃j are the matching nodes on opposite faces, cf. Fig. 4.2. Displacements of

master nodes are denoted as ui
( ), where SEB, NWB and SWT represent the master nodes

at (lx, 0, 0), (0, ly, 0) and (0, 0, lz), respectively, cf. Fig. 4.2. The displacements of the

SEB master node at (0, 0, 0) are fixed.

Far field stresses and strains can be applied to unit cell’s faces via concentrated nodal

forces and displacements at the master nodes, respectively. The effective response

Figure 4.2: Dimensions of the multi fibre unit cell with randomly placed unidirec-
tional fibres. Master nodes are denoted with SWB, SWT, SEB and
NWB. Opposite surface pairs are denoted with Γ+

( ) and Γ−
( ).
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is obtained by evaluating the master node displacements and forces. This approach

was termed ”the method of macroscopic degrees of freedom” by Michel et al. [10, 71].

The non-linear homogenisation approach used in this work follows the method of

macroscopic degrees of freedom at each increment, where the displacements and forces

of the master nodes are extracted. Thereby, the effective strain energy density and

the macroscopic deformation gradient are obtained and different stress and strain

measures are derived.

4.2.4 Effective behaviour

The response in the fibre direction is dominated by the fibre properties. For fibre

materials such as glass the longitudinal stretch is limited by the strength. In this

work the focus is on the response transverse to the fibre direction in the non-linear

regime where stretches up to λ = 1.5 are applied. Also treated is the linearised elastic

response with respect to the undeformed configuration.

Initial linearised response. The effective behaviour of FRE unit cells in the

linear regime can be obtained with the standard linear homogenisation approach,

where six independent load cases are applied. Thereby, the effective elasticity or

compliance tensor is obtained [10]. A measure for the anisotropy of orthotropic

materials is given by the Zener parameters [103]. For the plane transverse to fibre

direction the following parameter is used

Z1 =
2E44

E11 − E12

, (4.5)

which in case of ideal transverse isotropy is equal to unity. If the elasticity tensor is

rotated around the fibre axis by an angle, θ, the Zener parameter, Z1, can be obtained

as a periodic function of θ, which is a general property of anisotropic elasticity. Results

on Fig. 4.3 shows the Zener anisotropy measure as a function of the in-plane direction

for four unit cell realisation with fibre volume fraction ranging from 10.6 to 40.6%.

The Zener parameter increases with the fibre volume fraction reaching almost 15%
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Figure 4.3: Zener anisotropy parameter for the in-plane initial elasticity of four
multi fibre unit cells with random unidirection fibre distribution and
fibre volume fraction from 10.6 to 40.6%.

deviation for the 40% fibre volume fraction with π/2 periodicity. Equivalent results

were obtained in [63] where the initial shear modulus was obtained by explicitly

applying the load in a range of directions. The in-plane anisotropy is an effect of the

quasi random fibre placement and unit cell size. The initial response of the particular

multi-fibre unit cells does not yield strictly true representative volume elements for

a transversely isotropic material. However, for the purpose of this work, their initial

effective behaviour can be approximated as such.

Behaviour in the finite strain regime. In-plane direction dependency in the

non-linear regime is demonstrated with a specific load case. The stretch, λ, is applied

in the direction, θ, as depicted on the Fig. 4.4. All deformations in the fibre direction,

i.e. out-of-plane deformations, are fixed. The load case is set as isochoric which

directly determines all principal stretches as λ, 1/λ and 1 for maximum, minimum

and middle with corresponding principal directions nmax = (cos θ, sin θ, 0), nmin =

(− sin θ, cos θ, 0) and nmid = (0, 0, 1), respectively. By varying the angle from zero

to π radians one can compare each response in the principal stretch direction and

observe the in-plane direction dependency of the unit cell. Figure 4.5 shows the

direction dependent response in the plane perpendicular to the fibre direction for
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Figure 4.4: Load case for investigating the direction dependency in the plane trans-
verse to the fibre direction.

a multi fibre unit cell with 11 fibres, fibre volume fraction of 19.4%. A stretch of

λ = 1.5 is applied in directions from zero to π radians with a step of π/180 radians.

Thereby, on the left the lowest and the highest value of the strain energy density,

�U�, are shown with respect to the applied stretch, λ. On the right the strain energy

is shown with respect to the direction, φ, at several values of the applied stretch λ.

The coefficient of variation of the strain energy, i.e. the standard deviation of the

effective strain energy across all directions normalized by its mean value, increases

with the load by 35% from 1.1 to 1.5 stretch. The relative dispersion of the effective

response is not only dependent on the direction but also on the magnitude of the

applied load.

For comparison Fig. 4.6 shows the periodic response of a unit cell with hexagonal

fibre arrangement and 20% fibre volume fraction. Same material is used, cf. Tab. 4.1.

Note that hexagonal fibre arrangement in linear-elastic elasticity yields transversely

isotropic effective properties. With large strains and hyperelastic matrix, the effective

response is strongly dependent on the direction, seen as much larger variation of the

effective strain energy. The response is periodic with π/3 periodicity caused by the

initial hexagonal fibre arrangement.

Figure 4.7 show the direction dependency of multi fibre unit cells with 10.6, 19.4,

30.0, and 40.6% fibre volume fraction, cf. Fig. 4.1. The variation of the strain energy
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Figure 4.5: Direction dependency of a multi fibre unit cell with 19.4% fibre volume
fraction, 11 fibres: (left) the highest and the lowest values of the effective
strain energy, �U�, versus the applied stretch, λ; (right) the effective
strain energy at several stretches λ, with respect to the direction θ.

1.0 1.1 1.2 1.3 1.4 1.5

λ [/]

0.00

0.05

0.10

0.15

0.20

�U
�[
m
J]

0
π
4

π
2

3π
4 π

θ [rad]

0.00

0.05

0.10

0.15

0.20

�U
�[
m
J]

1.10

1.20

1.30

1.40

1.50
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of the effective strain energy, �U�, versus the applied stretch, λ; (right)
the effective strain energy at several stretches λ, with respect to the
direction θ.
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increases significantly with higher fibre volume fraction. At 40% fibre volume fraction

the multi-fibre unit cells exhibit severe element distortion already at moderate stretch

values, e.g. at λ = 1.2 as seen in Fig. 4.7 as discontinuity in the lines. Thereby, larger

unit cells, finer discretization, and re-meshing techniques would be necessary to obtain

valid results for high stretches.

4.3 Anisotropic hyperelastic material model

The effective response of the multi fibre unit cells is approximated with an anisotropic

hyperelasic material model. Readily available in Abaqus are the invariant-based

Holzapfel-Gasser-Ogden (HGO) model [38, 49] and the strain-based Fung’s model [20,

33]. Both models have been initially developed to model biological tissues. A com-

prehensive comparison between the two models is given in [48], where it is reported

that the Fung’s model is not convex for all possible sets of material parameters and

the model has severe restrictions when strong ellipticity is imposed [96]. In fact,

for the composite material considered in this work, cf. Tab. 4.1, suitable material

parameters cannot be identified without exhibiting material instabilities. Therefore,

only the HGO model is used to demonstrate the approach.

4.3.1 Holzapfel–Gasser–Ogden model

The HGO model has been developed for modelling arterial layers with distributed

collagen fibres [49]. The HGO form of the strain energy density function is defined

in terms of the invariants of the right Cauchy-Green stretch tensor and the fibre

directions based on the continuum theory of fibre-reinforced composites [86]. Due

to the nature of collagen fibres the model assumes that the fibres cannot sustain

any compressible loads, which is a strong limitation for modelling fibre reinforced

elastomers. For this reason we consider only load cases where the fibres are either
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Figure 4.7: Direction dependency of multi fibre unit cells with 10.6, 19.4, 30.0,
and 40.6% fibre volume fraction. All unit cells are the same size of
2r/lx = 0.15. At 40% fibre volume fraction excessive element distortion
is present at higher stretches resulting in failed simulation and discon-
tinued lines.

in tension or are ”unloaded”. The HGO model is defined as a strain energy density

function. For unidirectional fibres the model simplifies to

U = C10(Ī1 − 3) +
1

D

�
(Jel)2 − 1

2
− ln Jel

�
+

k1
2k2

�
exp

�
k2�E1�2

�
− 1

�
, (4.6)
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where C10, D, k1 and k2 are the material parameters, Ī1 is the first invariant of the

deviatoric part of the right Cauchy-Green stretch tensor C̄ = J− 2
3C and Jel is the

elastic volume ratio. In the exponential function the E1 is defined as

E1 = Ī4(11) − 1 , (4.7)

where the Ī4(11) is the pseudo-invariant of C̄ and the fibre direction a1 defined as

Ī4(11) = a1 · C̄ · a1 . (4.8)

The Macaulay brackets in Eq. (4.6) denote that only positive values of E1 contribute

to the strain energy density. Thereby, the assumption that fibres only act in tension

is enforced. Consequently the HGO model with compression in the fibre direction

simplifies to a Neo–Hookean form for the isotropic deviatoric part of the strain energy

density function, i.e. C10(Ī1 − 3). For the general formulation of the HGO strain

energy function refer to [22, 48].

Calibration of material parameters. In the present work, it is proposed to

start calibration of the material parameters for the HGO model at the initial state or

the unloaded configuration of the material. At this state the initial linear elastic be-

haviour can be obtained by taking the second derivative of the strain energy density

function, U , with respect to the right Cauchy-Green stretch tensor, C. Hyperelastic

incompressible material models only have energy contributions of distortional defor-

mations. For that reason, the calibration only considers the deviatoric behaviour. At

the initial state it is characterized by the initial deviatoric elasticity tensor, which is

defined as

D̄0 = 4
∂U2

dev

∂C̄∂C̄
(4.9)

where Udev = U − Uvol. For the HGO model with unidirectional fibres, the initial

deviatoric elasticity tensor reads as [22]

D̄0 = 4C10J + 2k1 H(E1) a1 ⊗ a1 ⊗ a1 ⊗ a1 , (4.10)
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where J is the fourth-order unit tensor and H(x) is the Heaviside unit step func-

tion, which ensures the contribution from the fibres only in tension. Similar as in the

strain energy density function the isotropic part and the contribution of the fibres

are decoupled. The deviatoric part of the elasticity tensor with arbitrary material

symmetry can be obtained with projection tensors for spherical and deviatoric decom-

position of stress and strain tensors, see the Appendix A. The identity fourth order

tensor, J , can be split into symmetrical and asymmetrical parts as J = J s+J a.

The symmetrical part of the identity fourth order tensor can be further decomposed

into the spherical and deviatoric projection tensors, P1 and P2 respectively, as

J s = P1 + P2. The projection tensors are defined as

P1 =
1

3
I⊗ I , (4.11)

P2 = J s − P1 , (4.12)

and are used to decompose the stress and the strain tensors into volumetric and

deviatoric parts

σσσ = J s : σσσ

= (P1 + P2) : σσσ

= σσσV + sss

(4.13)

and

εεε = J s : εεε

= (P1 + P2) : εεε

= εεεV + eee ,

(4.14)
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where σσσV, εεεV and sss, eee denote the volumetric and deviatoric stress and strain, respec-

tively. A deviatoric elasticity tensor, D̄, maps the strain, εεε, to deviatoric stress, sss.

From Hooke’s law, σσσ = E : εεε, it follows

sss = E : eee

= E : P2 : εεε

= D̄ : εεε ,

(4.15)

where the deviatoric elasticity tensor is defined in index notation as

D̄ijmn = Eijkl P2(klmn) . (4.16)

The initial behaviour of FRE composite with unidirectional fibres can be approx-

imated as linear elastic with transversely isotropic symmetry. The transversely

isotropic elasticity tensor can be defined with the Hill parameters [94]. For isotropy

in the 1-2 plane the elasticity tensor reads in Voigt-Nye notation as

Etriso =



k +m k −m l 0 0 0

k −m k +m l 0 0 0

l l n 0 0 0

0 0 0 m 0 0

0 0 0 0 p 0

0 0 0 0 0 p


, (4.17)
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with the Hill parameters

n = E33 + 4k12ν
2
13 , (4.18)

l = 2k12ν13 , (4.19)

k =
E33

2(1− ν12)(E33/E11)− 4ν2
13

= k12 , (4.20)

m = G12 , (4.21)

p = G13 , (4.22)

where E33 and E11 denote the axial and transverse Young’s modulus, G13 and G12 the

axial and transverse shear modulus and ν13 and ν12 the axial and transverse Poisson

ratio.

Individual components of the initial deviatoric tensor, D̄0, Eq. (4.10) can be compared

to the corresponding components in the deviatoric part of a transversely isotropic

elasticity tensor, D̄triso. Thereby the material parameters C10 and k1 are calibrated

with the effective properties of a transversely isotropic linear elastic composite. Note

that this approach is only valid when the composite exhibits a very high contrast

between the shear modulus of fibres and the matrix, for example when fibres can be

considered as rigid compared to the matrix. In such case, the following assumptions

can be made for the effective properties of the initial behaviour. First, the effective

axial and transverse shear moduli are approximately equal, G12 ≈ G13 → m ≈ p.

Thereby, the C10 parameter can be calibrated via the transverse shear component,

i.e. 1212 component, in both deviatoric tensors as

D̄0(1212) ≡ D̄triso(1212) (4.23)

D̄0(1212) = Etriso(12ij)P2(ij12) (4.24)

4C10 = 2m (4.25)

C10 =
1

2
G12 (4.26)
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In the same way the k1 parameter is calibrated via the axial component. In this case

via the 3333 component where it follows

D̄0(3333) ≡ D̄triso(3333) (4.27)

D̄0(3333) = Etriso(33ij)P2(ij33) (4.28)

2k1 + 4C10 =
2

3
(n− l) (4.29)

k1 =
1

3
(E33 + 4k12ν13(ν13 − 0.5))−G12 (4.30)

At this point further simplifications are made. Assuming that the effective axial

Young’s modulus, E33, is several orders of magnitude higher than the effective shear

modulus, G12, and that E33 >> 4�k12ν13(ν13 − 0.5) we can set the k1 simply with the

effective Young’s modulus as

k1 ≈ 1

3
E33 . (4.31)

The material parameters D and k2 are not included in the initial deviatoric elasticity

as D relates to the volumetric part of the strain energy and parameter k2 is elimi-

nated during the derivation of the initial deviatoric elasticity and therefore acts as

a parameter which influences the fibre contribution at larger strains. The material

parameters C10 and k1 are evaluated at the initial state, therefore the linearised be-

haviour at the initial state of the anisotropic hyperelastic composite material must

be obtained. For this purpose, the initial linearised response of the isotropic hyper-

elastic matrix material and the linear elastic fibre properties is taken, which gives

a combination of linear elastic constituents in a composite. This enables the use of

homogenisation schemes such as microfield models and mean field methods to predict

the effective material properties.
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4.4 Results and discussion

The predictions from the multi-fibre unit cells (MFUC) with material properties in

Tab. 4.1 are compared to the single element simulations utilizing the HGO material

model with calibrated material parameters for transverse, axial and combined load

cases. Fibre volume fractions of 10, 20, 30 and 40% are investigated for each load

case. The HGO material is calibrated based on the initial behaviour estimated by

the Mori-Tanaka method [73]. The estimates for different fibre volume fraction are

listed in Tab. 4.2. The effective properties are obtained for constituent materials in

Tab. 4.1, with the initial properties for the matrix and fibres. With the effective es-

timates, the material parameters of the HGO model are set based on the calibration

method Eq. (4.26) and Eq.(4.31) as C10 =
1
2
G12, k1 =

1
3
E33. The parameter D is set

to 104 1/MPa to approximate nearly incompressible behaviour while the parameter

k2 is set to 1 as no fitting at higher stretches is conducted. At each fibre volume frac-

tion a single realization of the multi-fibre unit cell is considered. In single element

simulations an eight node hexahedral continuum element with linear interpolation

functions is used. Note that the material parameters of the HGO model have not

been fitted to responses of the unit cells and are purely derived with the calibration

approach described in the previous section. All load cases are isochoric and displace-

ment controlled. Volume is preserved throughout the simulations, cf. Appendix B.

Nonlinear homogenisation is done with built-in scripts in Medtool (Dr. Pahr Inge-

nieurs e.U., Pfaffstätten, Austria) which are used to evaluate the effective response

by the incremental method of macroscopic degrees of freedom.

Table 4.2: Mori-Tanaka estimates for effective linear elastic moduli.

f [%] 10 20 30 40

E33 [MPa] 8 · 103 16 · 103 24 · 103 32 · 103
G12 [MPa] 4.266 · 10−1 5.235 · 10−1 6.481 · 10−1 8.143 · 10−1
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4.4.1 Transverse load

The transverse load case prescribes deformations in the plane transverse to the fibre

direction. All deformations out of this plane are zero. The displacement loading is

derived from the isochoric macroscopic deformation gradient

Ftrv =


1 0.5 0

0 1 0

0 0 1

 , (4.32)

Figure 4.8: Proportional load for the
transverse load case.

which describes the final deformation state. Effectively this is simple shear loading,

cf. proportional loading on Fig. 4.8. The maximum principal stretch is λmax = 1.28.

Figure 4.9 shows the normal components and the in-plane shear component of the

second Piola-Kirchoff stress deviator, Sdev, in relation to the in-plane shear Green

strain, E12. The dashed lines depict the predictions from the single element with

calibrated HGO model. The solid lines with shaded area between them are the

results given by the unit cell models. The range of the unit cell results is obtained

by applying the transverse case, Eq. (4.32), in range of directions φ from zero to

π radians, see Fig. 4.4, with an increment of π/36. For fibre volume fractions up

to 30% the calibrated HGO model is in very good agreement with the unit cell

predictions for all stress components. With higher volume fraction the scatter of the

unit cell response is higher, a consequence of the non representativeness of the unit

cells. At all fibre volume fractions in Fig. 4.9, the calibrated HGO model response

is toward the lower values of the unit cell’s stress response. At 40% fibre volume

fraction, the calibrated HGO model is unable to match the unit cell’s response, even

at small stretches. Note that in the HGO model only the ”isotropic” part is activated,
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where a simplified matrix-fibre interaction is contained within the C10 parameter,

which is calibrated using Mori-Tanaka estimates for the initial behaviour. At higher

fibre volume fraction and nearly incompressible matrix material, it is unclear if such

configurations exceed the limitations of the Mori-Tanaka method.

In Ref. [19] it is reported that for a composite with spherical inclusions, incompress-

ible matrix, contrast between the shear modulus of inclusions and matrix of 102 and

fibre volume fraction of 40% the Mori-Tanaka estimates deviate from the generalised

self-consistent method for approximately 30%. Alternatively, the HGO material pa-

rameters can be calibrated using the initial effective properties given by the numerical

linear homogenisation method. In this case, the effective shear modulus for the unit

cell with 40% fibre volume fraction is approximately 22% higher than estimate given

by the Mori-Tanaka method, cf. Tab 4.3. Figure 4.10 shows the response of the single

element test of the HGO model, which has been calibrated with the initial linearised

properties of the multi-fibre unit cell for 40% fibre volume fraction. Thereby, the

HGO model gives results which are within the bounds of the unit-cell response.

Table 4.3: Initial effective shear modulus, �G12, across fibre volume fractions, f ,
predicted by the Mori-Tanaka method (MTM) and linear homogenisation
approach with the multi-fibre unit cells (MFUC).

f [%] �GMTM
12 [MPa] �GMFUC

12 [MPa] δ [%]

10 0.427 0.441 +3.4

20 0.524 0.545 +4.1

30 0.648 0.740 +14.2

40 0.814 0.997 +22.4
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Figure 4.9: Predictions for the FRE material behaviour under transverse load given
by multi-fibre unit cell (MFUC) simulation and single element simula-
tions with the calibrated HGO model. Components of the second Piola-
Kirchoff stress deviator, Sdev

ij , are plotted versus the in-plane component
of the Green strain, E12, for different fibre volume fractions.
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Figure 4.10: Single elements result of the HGO model calibrated with the initial
properties of the multi-fibre unit cell with 40.6% fibre volume fraction.

4.4.2 Axial load

The axial load case applies shear in the fibre direction which is combined with small

fibre extension to ensure tensile loads in the fibre direction. To maintain an isochoric

state, the necessary contraction in the 2 direction is applied. Displacement boundary

conditions are prescribed to obtain the final macroscopic deformation gradient

Faxi =


1 0 0.5

0 0.999 0

0 0 1.001

 , (4.33)

Figure 4.11: Proportional load for the
axial load case.

where the maximum principal stretch is λmax = 1.31. Figure 4.12 compares the
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Figure 4.12: Predictions of the FRE material behaviour under axial load given
by multi-fibre unit cell (MFUC) simulation and the calibrated HGO
model for different fibre volume fractions, f . Components of the sec-
ond Piola-Kirchoff stress deviator, Sdev

ij are plotted versus the in-plane
shear component of the Green strain, E13.

response of multi-fibre unit cells and single elements with the calibrated HGO model.

Results of the unit cells are given for a single direction of zero radians. Predictions



CHAPTER 4. FIBRE REINFORCED ELASTOMERS 65

from the calibrated HGO model are in a very good agreement with the effective

response from the unit cell throughout the load and fibre volume fractions. Overall

the calibrated HGO model overpredicts the effective deviatoric stresses obtained by

the multi-fibre unit cells.

4.4.3 Combined load

The combined load effectively combines the previous load cases together, resulting

in in-plane shear, out-of-plane shear and axial extension in the fibre direction. The

displacement boundary conditions are derived from an isochoric macroscopic defor-

mation gradient

Fcomb =


1 0.5 0.5

0 0.999 0

0 0 1.001

 , (4.34)

Figure 4.13: Proportional load for the
combined load case.

where the maximum principal stretch is λmax = 1.41. Figure 4.14 compares the

response of the multi-fibre unit cell and the calibrated HGO material model under

the combined load for different fibre volume fractions. Predictions for the deviatoric

shear stress, Sdev
13 , by the HGO model captures well the progressive response of multi-

fibre unit cells.
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Figure 4.14: Predictions of the FRE material behaviour under combined load given
by multi-fibre unit cell (MFUC) simulation and the calibrated HGO
material model for different fibre volume fraction, f . Components of
the second Piola-Kirchoff stress deviator, Sdev

ij are plotted versus the
in-plane shear component of the Green strain, E13.
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4.5 Summary

Fibre reinforced elastomers are studied in the perspective of structural simulations

for which a suitable material model is needed. This work uses the readily available

Holzapfel-Gasser-Ogden form of the strain energy density function, where a simple

but successful calibration method for the material parameters is presented. The ef-

fective behaviour of fibre reinforced elastomers is first estimated using multi-fibre

unit cells with periodic boundary conditions and quasi random unidirectional fibre

arrangements. The behaviour in the plane transverse to the fibres is shown in the

initial linearised and in the finite strain regime to assess the direction dependency of

the unit cells. Instead of fitting material parameters of the HGO model to obtain a

good agreement with the effective behaviour of unit cells, the material parameters

are calibrated based on the initial behaviour, which is approximated as linear elas-

tic with transversely isotropic material symmetry. The initial deviatoric elasticity

tensor is obtained for both the HGO model and the multi-fibre unit cell prediction.

By correlating individual components, material parameters of the HGO model are

calibrated with the effective initial shear and Young’s modulus of the composite at

the ”undeformed” state of the material. The initial behaviour is approximated with

the Mori-Tanaka method and consequently the calibration avoids the numerical ho-

mogenisation schemes altogether. Results show very good agreement between the

predictions of the calibrated HGO model and the effective behaviour of multi-fibre

unit cells under various load cases and for a range of fibre volume fractions. Nev-

ertheless, the calibration method is limited to composites with very high contrast

between the initial shear modulus of fibres and matrix, which justifies the assump-

tions of equal initial shear modulus in the axial and transverse direction. However,

the advantage is the simplicity of the calibration method, which is shown to work

well for the presented load cases. In engineering applications where tailoring the

material to specific loads is important, such method can help to substantially reduce

the optimisation process due to its simplicity and accuracy.
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Chapter 5

Nonlinear homogenisation of a

FRE laminated unit cell

5.1 Introduction

The effective response of a cross-ply FRE laminate with four plies assembled in a

[90/0]s layup is studied with the nonlinear homogenisation framework used in Chap-

ter 4. The effective response of a laminated multi-fibre unit cell is compared to a

homogenised model under two load cases, i.e. pure shear and simple shear loading.

The homogenised model is equipped with the anisotropic hyperplastic HGO material

and material parameter calibration given in Chapter 4.

5.2 Modelling

5.2.1 Laminate unit cell model

The laminate unit cell is created by taking two multi-fibre unit cells, assembling them

in a [90/0] sublaminate, which is mirrored over the top surface and hence creating a

symmetric [90/0]s laminate layup as depicted in Fig. 5.1, where the fibres are oriented
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in the 1 and 2 axis. The fibre distribution for the multi-fibre unit cells is generated

using Digimat FE.

The fibres account for 40,91% volume fraction in each ply. The fibre arrangements

are generated using Digimat-FE. Thereby, cut-off fibres are only allowed on one pair

of surfaces, as the plies exhibit plane periodicity only (1–2 plane), cf. Fig. 5.1. In

addition, a thin layer (with the width of a fibre) of pure matrix material is placed

between the plies where large shear deformation is expected. Consequently, this

reduces the need for a very fine discretization in the region between the plies, making

the model more computationally efficient. Overall, the fibres represent 38.88% of the

total volume of the laminate unit cell. The material properties of the constituents are

the same as in the previous Chapter, cf. Tab. 4.1. The interface between the fibres

and the matrix is assumed to be perfect. Continuum eight and six node elements

are used for discretization. The average element size in the laminate unit cell is 0.01

mm, which results in approximately one and a half million elements and six million

variables (degrees of freedom plus number of Lagrange multiplier variables) for the

whole model. The model is equipped with planar periodic boundary conditions in

the 1-2 plane.

5.2.2 Homogenised model

Following the approach from Chapter 4, where single element test results are com-

pared to the effective response of the multi-fibre unit cell, a so called homogeneous

unit cell is used here, which represents the laminate using continuum element based

model equipped with the calibrated HGO material and periodic boundary condi-

tions. Each ply in the model is discretizied using eight node continuum elements

and assigned with the corresponding local coordinate system to create the [90/0]s

material orientation. Note that the non-hybrid finite elements have to be used for

anisotropic hyperelastic materials [23]. The HGO material parameters for 40% fibre

volume fraction are used, see Tab. 4.2 and Eqs. (4.31) and (4.26).
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Figure 5.1: Cross ply laminate unit cell with [90/0]s ply layup. The dimensions are
in millimetres.

5.3 Results and discussion

5.3.1 Pure shear loading

The pure shear loading in the 1-2 plane is defined with the isochoric macroscopic

deformation gradient in the end state

F =


1.25 0.75 0

0.75 1.25 0

0 0 1

 , (5.1)

Figure 5.2: Proportional load for pure
shear loading.
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from which the displacements of master nodes are derived and prescribed in the

simulation. Throughout the loading the volume is preserved, which requires non-

linear displacement increase for selected displacement direction on master nodes,

cf. Appendix B.

Effective strain energy density is evaluated for the multi-fibre unit cell and the ho-

mogenised model in Fig. 5.3. On the bottom, deformation state of the laminate unit

cell is depicted at λ12 = 0.4 and λ12 ≈ 0.75, respectively. Up to λ12 = 0.4 both

the homogenised model and the laminate unit cell models are in good agreement.

Upon further loading, the homogenised model exhibits larger exponential increase in

the effective strain energy density. Pure shear is a non-rotational strain, hence the

material orientations in the homogenised model do not change during the loading

and remain co-aligned with the global coordinate system. The fibre directions in the

HGO model are defined in terms of the local material coordinate system. Conse-

quently, the material orientation in the HGO model remain aligned with the global

coordinate system. However, it is clear that fibres do rotate in the microstructure

as seen in the Fig. 5.3 (right) and in fact are parallel to unit cell faces. The HGO

model is unable to model fibre rotation in this case, which leads to a ”lock-up” effect

at higher stretches, which is a results of extensive fibre extension compared to the

laminate unit cell.

As the unit cell is expanding in 1 and 2 direction, the strain energy density in both

models is mainly attributed to the contribution from the fibres. At relatively low

stretch, where the fibre rotation is small, the homogenised model predicts the effective

behaviour of the laminate unit cell with good agreement. This is also shown on

Figs. 5.5 and 5.4 which depict the deviatoric PK2 stress components, Sdev
12 and Sdev

11 ,

in relation to the stretch λ12, respectively. On the right side of the figure, the stress

response is compared at lower stretches that indicate more clearly at which point the

homogenised model predictions start to deviate from the laminate unit cell.
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Figure 5.3: Effective strain energy density comparison between the homogenized
model with calibrated HGO material and the laminate unit cell model
under pure shear loading. On the bottom the deformation states are
shown at depicted stretch λ12.
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Figure 5.4: Deviatoric PK2 stress component, Sdev
12 , versus the stretch component

λ12.

Figure 5.5: Deviatoric PK2 stress component, Sdev
11 , versus the stretch component

λ12.

5.3.2 Simple shear loading

The second load case is a simple shear loading in the 1-2 plane. Note that the

deformation gradient is the same as in the transverse load case for the FRE material

in Chapter 4, but the fibre directions are different in this case, therefore for a single

ply, this load case is similar to the axial load case, cf. Eq. (4.33). The displacement

of the master nodes are derived from the macroscopic deformation gradient
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F =


1 0.5 0

0 1 0

0 0 1

 , (5.2)

Figure 5.6: Proportional load for pure
simple loading.

Compared to the pure shear load case, simple shear is a rotational strain. Therefore,

rotation of the material orientation is expected in the homogenised model.

Figure 5.7 compares the effective strain energy density of the laminate unit cell model

with the homogenised model. In Chapter 4 it has been shown that for 40% fibre vol-

ume fraction the estimates for the initial effective shear modulus is 22% higher when

obtained with the linear homogenisation unit cell method (MFUC) compared to the

Mori-Tanaka method (MTM). In Fig. 5.7 both cases are included in the homogenised

model. In the case of simple shear loading, fibre extension is much less present, re-

sulting in overall much lower effective strain energy densities compared to the pure

shear load case. The prediction of the homogenised model with material parameters

calibrated by the Mori-Tanaka method shows lower strain energy density compared

to the laminate unit cell, as expected from the results in the previous Chapter for 40%

fibre volume fraction. The homogenised model with material parameters calibrated

by the initial multi-fibre unit cell response gives a higher prediction of the strain

energy density and is in very good agreement with the laminate unit cell results. In

general the homogenised model gives a good prediction of the strain energy density

under the simple shear loading, since in this case the material orientation does rotate

as depicted on the Fig. 5.8 (right). Thereby, the fibre directions in the homogenised

model are still orthogonal, but are closer to the fibre orientation in the laminate unit

cell model, cf. Fig. 5.8 (right).
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Figure 5.7: Effective strain energy density comparison between the homogenised
models with calibrated HGO material and the laminate unit cell model
under simple shear loading.

Figure 5.8: Local material direction in the homogenised model (left) compared to
the fibre direction in the laminate unit cell (right).
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5.4 Summary

The effective behaviour of cross-ply FRE laminate is studied using the nonlinear

homogenisation unit cell approach. In the homogenised model, the HGO material is

used and the calibration of the material parameters is given in Chapter 4. Therefore,

no material parameter fitting is conducted and the homogenised model represents

real predictions of the effective behaviour of the laminate unit cell. The effective

response of both models are compared under pure shear and simple shear load cases

The shear deformation is applied in the 1-2 plane, with fibres oriented in the 1

and 2 axis, respectively. The fibre contribution in the HGO model relies on the

local material orientation, which in pure shear does not rotate. Consequently, the

homogenised model overpredicts the effective strain energy density of the laminate

unit cell model due to excessive contribution of the fibre component in the HGO

strain energy density function. Simple shear on the other hand is a rotational strain.

In this case the local material coordinate system remains orthogonal, however, it does

rotate which somewhat better approximates the fibre orientation in the laminate unit

cell. Thereby, the homogenised model is able to predict the effective response of the

laminated unit cell with good agreement for moderate stretches.
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Chapter 6

Wrinkling of thin FRE shells under

tensile load

6.1 Introduction

Instabilities such as buckling or snap-through phenomena are typically associated to

compressive loads. However, in lightweight structures it is common that instabilities

can occur for elastic structures under global tensile loads, for which the Ref. [80] gives

a comprehensive review. A particular case of such instability is wrinkling of thin shells

under tensile load, which has received considerable interest within the literature, in

particular for isotropic materials [31, 32, 45, 60, 75]. More recently, wrinkling of

thin fibre reinforced anisotropic shells has been addressed in Ref. [62, 99], where the

orientation of the wrinkle is studied with respect to the material and loading direction.

Wrinkling of thin shells can be used to realize structures with multiple functions such

as measuring of material properties [51], tunable optical transmittance [61], highly

electroactive surface [34], and respiration sensors [102].

In this work, an analysis on wrinkling of thin FRE shells under tensile load is pre-

sented using standard computational methods such as the Newthon-Raphson iterative

method and the linear buckling analysis as implemented in the FEM package Abaqus.
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6.2 Modelling

The rectangular shell measures 1000 mm in length (L), 500 mm in width (B) and

0.5 mm in thickness (t), thus having an aspect ratio L/B = 2, cf. Fig. 6.1. The

calibrated HGO material is used with 10% fibre volume fraction from Chapter 4,

cf. Tab. 4.2 and Eqs. (4.31) and (4.26). Two models are considered, a single ply

model with fibres oriented under -45 degrees and a laminate model with a [+45/-45]

ply layup. The short edges are clamped which prevents the lateral displacement due

to Poisson’s contraction. Tension in the plate is introduced by displacing one of the

clamped edges along the longitudinal axis, x, see Fig. 6.1. The plate is discretized

using four node thin shell elements with reduced integration at the mid-surface. The

element size is 10 mm and three integration points are used through the thickness of

a ply.

Figure 6.1: The geometry and boundary conditions of a confined FRE tape under
tension.

6.3 Linear eigenvalue analysis

Wrinkling of the thin shell under global tensile loads is predicted by the linear eigen-

value analysis. In order to find positive eigenvalues, a preload close to the critical load

is necessary. Otherwise, the linear eigenvalue analysis predicts the lowest eigenval-
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ues to be negative which would describe the buckling under compressive loads. The

preload analysis is conducted with a restart capability, which enables the analysis to

be restarted from any increment. This is used to conduct the linear buckling analysis

and to estimate the critical load for wrinkling as

F ∗ = Fpre + λFbuckle , (6.1)

where Fpre is the reaction force in the preload step, λ the eigenvalue and Fbuckle is

the force applied in the linear eigenvalue analysis. If the Fpre approaches the critical

load, the lowest eigenvalue approaches zero.

The linear eigenvalue analysis always predicts the eigenvalues with the smallest mag-

nitude and sorts them with increasing magnitude. If the preload is far from the

critical point the eigenvalue with the smallest magnitude could be negative, and so

might be also the consecutive eigenvalues. Only when the preload is close to the

critical load the magnitudes of the lowest positive eigenvalues become smaller than

the negative ones. In this work, the linear eigenvalue analysis is run at selected in-

crements of the preload and the first two eigenmodes are extracted. Consequently,

the critical load is estimated only when the lowest eigenvalue is a positive one.

When the critical load is exceeded, negative eigenvalue warning is issued by the

Abaqus implicit solver and the linear eigenvalue analysis finds either negative eigen-

values or fails to converge. The linear eigenvalue analysis uses the subspace iteration

algorithm as implemented in Abaqus [7, 23].

Single -45 ply model

Figure 6.2 depicts the load displacement response (top left) with estimated criti-

cal loads for the first two eigenmodes from the linear eigenvalue analysis. On the

top right, the minimal principal stress is illustrated at the estimated critical load,

showing the compressive stresses influenced by the fibre orientation (local material

orientation) at the shell’s mid surface. The minimal principal stress is used, since the
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stress distribution transverse to the fibres, σ22, includes contributions from the global

tension due to the fibre direction. Consequently, stresses transverse to the fibres are

positive throughout the model. At the bottom, the first two positive eigenmodes are

depicted. The eigenmodes exhibit wrinkles between the two regions with the highest

amplitude of compressive stress in Fig. 6.2 top right. Thereby, the wrinkles appear

under a slight angle relative to the material orientation. Higher eigenmodes exhibit

larger number of wrinkles.

Laminate [+45/-45] model

Figure 6.3 shows the linear eigenvalue analysis with a preload of the cross ply lami-

nate. On the top right, the minimum principal stresses in the -45 ply are illustrated

(the stress distribution is similar in both plies). Thereby, a clear pattern from the

cross ply layup is shown, with a rectangular area of compressive stress at the centre

of the shell. In the bottom of the Fig. 6.3 the first two positive eigenmodes are shown.

The wrinkles are aligned with the longitudinal direction and are symmetric with re-

spect to the lateral plane y-z at the middle of the shell. In contrast to the single ply,

the first positive eigenmode exhibits a higher number of wrinkles compared to the

second mode.

6.4 Post-buckling analysis

A geometrical imperfection is introduced on the shell mid-surface in the undeformed

configuration (initial state) by using the eigenmodes from the linear eigenvalue anal-

ysis. The predicted post-buckling behaviour in general may depend on the number of

eigenmodes and their amplitude that are used as the imperfection. An imperfection

sensitivity analysis can be used to determine this influence, in particular for bifur-

cation behaviour under compressive loads. In the case of wrinkling of shells under

tension, the imposed imperfection can have a strong influence on the convergence of

the solution.
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Figure 6.2: Linear eigenvalue analysis with a preload of a single ply FRE tape with
-45 fibre orientation. The minimum principal stresses at the critical load
are depicted on the top right. The first two eigenmodes are depicted
on the bottom.

In this work, only the eigenforms corresponding to the first two positive eigenvalues

from the linear eigenvalue analysis at the critical load are used as imperfection. For

both single ply and laminate models the imperfection is mapped on the shell mid-
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Figure 6.3: Linear eigenvalue analysis with a preload of the cross ply laminate FRE
shell with a [+45/-45] ply layup. The minimum pricipal stresses in the
-45 ply at the critical load is depicted on the top right. The first two
eigenmodes are illustrated at the bottom.

surface as a superposition of the first two corresponding eigenmodes. The first eigen-

mode is scaled with 0.1% of the shell thickness and the second mode with 0.05%. A

displacement controlled Newton-Raphson iterative method as implemented in Abaqus

is employed for the post-buckling simulations.
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Figure 6.4 shows the evolution of the stretch-induced wrinkles for the single -45

ply FRE shell. At three different load points, cf. Fig. 6.4 (top left), the lateral cross

sections at the middle of the shell are depicted on the Fig. 6.4 (top right). Prior to the

critical load, i.e. point (1) in Fig. 6.4, the wrinkling develops from the imperfection

in an exponential way, with the largest wrinkling amplitude at the critical load.

Beyond the critical load, the wrinkling amplitude is decreasing. In addition, the

analysis shows a change in the wrinkling pattern. At the critical load, i.e. point (1)

in Fig. 6.4, the wrinkles are formed according to the first eigenmode, cf. Fig. 6.2,

with an amplitude of 2.5% of the shell thickness. At point (2), the wrinkling pattern

gradually switches to the second positive eigenmode from the buckling analysis with

lower amplitude. This pattern continues with increasing load where at point (3) a

higher number of wrinkles is predicted but with very low amplitude. At the bottom of

the Fig. 6.4 the out-of-plane deformation of the whole shell is shown at corresponding

loading points. The dashed line at the middle indicate the lateral cross sections in

Fig. 6.4 (top right).

Figure 6.5 shows the post-buckling analysis of the [+45/-45] laminate shell. On the

top left, the out-of-plane displacement, uz, of the point in the centre of the shell is

depicted versus the longitudinal displacement of the clamped edge. The out-of-plane

displacement of the central point is increasing towards the critical load, i.e. point

(1), and one increment before a snap-through phenomenon occurs, resulting in a

wrinkling pattern that is a mirrored shape of the first eigenform predicted by the

linear buckling analysis. The exact reason for this behaviour is unknown and needs

further investigation. However, there are several possible reasons which may lead or

contribute to this behaviour:

(i) The eigenforms computed from the linear eigenvalue analysis might not be the

correct ones, since the buckling analysis as implemented in Abaqus linearises

the material behaviour. Consequently the post-buckling behavior might not be

estimated correctly.
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Figure 6.4: Post buckling analysis of a single -45 ply FRE shell. On the top left, the
load displacement response with the imperfection is depicted with the
critial loads for the first two eigenmodes. On the top right, the lateral
cross sections at the middle of the shell are illustrated at load points
annotated on the load displacement curve. In the bottom, the out-of-
plane deformation of the whole shell is shown for the corresponding load
points.

(ii) The HGO material model is formulated such that the fibres do not contribute

to the compressive stress state. This causes a different material behaviour

under tension and compression, which may lead to significant stiffness increase

in regions which were under compression prior to buckling and under tension

after buckling. The formulation of the HGO model may also lead to issues in

the prediction of the eigenforms so this point is closely related to point (i).

(iii) The unsymmetrical ply layup of the laminate produces out-of-plane deformation

on its own, which might in combination with the wrinkling lead to the snap-
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through behaviour. However, the snap-through behaviour still occurs if the

eigenforms are mapped with negative amplitudes as imperfection.

At the critical load, point (1), the wrinkles reach the maximum amplitude of ap-

proximately 30% of the shell’s thickness, followed by a sharp decrease in amplitude.

The deformation shape at the lateral cross section in the centre retains the shape of

the first positive eigenmode, cf. Fig. 6.5 (top right). At the bottom of Fig. 6.5 the

out-of-plane deformation of the whole shell is depicted at the corresponding loads.

At the critical load, i.e. point (1), the out-of-plane deformation resembles the first

eigenmode from the buckling analysis, cf. Fig 6.3. However, the deformation is point

symmetric with respect to the centre whereas the first eigenmode is symmetric with

respect to the lateral plane y-z at the middle of the shell, cf. Fig. 6.3. The un-

symmetrical ply layout results in out-of-plane deformation at the free edges which

is increasing with load. The total out-of-plane deformation is a superposition of the

wrinkling caused by the compressive loads around the centre of the shell and the

deformation due to unsymmetric layup. At load point (3) the wrinkle in the middle

of the shell almost flattens out. At the same time, the out-of-plane deformations

increase at the free edges of the shell due to the unsymmetrical ply layup, and the

point symmetric out-of-plane deformation with respect to the centre point remains

throughout the longitudinal stretching.
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Figure 6.5: Post buckling analysis of a [+45/-45] laminate FRE shell. On the top
left, the out-of-plane displacement, uz, of the point in the centre of
the shell versus the longitudinal displacement of the clamped edge is
depicted. On the top right, the lateral cross section at the middle
of the shell is illustrated at corresponding load points. The out-of-
plane displacement of the whole shell at the corresponding load points
is shown at the bottom.
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6.5 Summary

The behaviour of thin FRE shells under tensile loads is studied by means of FEM

simulations. A small aspect ratio shell is clamped on short edges and stretched in the

longitudinal direction by displacing one of the clamped edges. The calibrated HGO

material with 10% fibre volume fraction from Chapter 4 is employed in a single -45 ply

model as well as in a cross-ply [+45/-45] laminate model. A linear eigenvalue analysis

is conducted to find the positive eigenvalues close to the critical buckling load. The

compressive stress distribution in the shell is influenced by the material orientation,

which in the case of the single -45 ply model results in wrinkles that are aligned with

the fibre direction. The cross-ply laminate model exhibits symmetric compressive

stress distribution at the critical load which yields symmetric eigenmodes. In both the

single ply and the laminate model, the first two eigenmodes are used as imperfection.

The post-buckling analysis of the single -45 ply model is in agreement with the

observations from the literature, which report appearance of wrinkles around the

critical load with their disappearance at larger global tensile loads. Moreover, the

results indicate mode change of wrinkling as the amplitude of the wrinkles decreases

whilst the number of wrinkles increases. In contrast, the wrinkling of the [+45/-45]

laminate model follows the first eigenmode with increasing tensile load. However, the

post-buckling analysis predicts a snap-through behaviour, which could be a result of

multiple reasons and would require further investigation to identify if such behaviour

is representative or an artefact. One of the main reasons could be the fact that in

the HGO model the fibre contribution is excluded in the compressive stress state,

which could result in significant stiffness increase or decrease in regions which switch

from compression to tension and vice versa. Beyond the critical load the amplitude

of wrinkles is decreasing and the out-of-plane deformation is a superposition of the

wrinkles and the out-of-plane deformation caused by the unsymmetrical ply layup.
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Chapter 7

Conclusion

In this work, two types of fibre reinforced composites are considered with the per-

spective of nonlinear FEM simulations.

First, an efficient multi-scale embedding approach for simulation of delamination

in textile laminates is presented. Thereby, a detailed representation of the textile

plies at the delaminating interface is embedded by a homogenised laminate, which is

modelled by the conventional laminate approach. Except for the cohesive interfaces,

the entire model is represented by shell elements, making it exceptionally efficient in

terms of the computational effort. Moreover, the embedded textile structure offers

high predictive capabilities with a resolution that captures the effects during the

delamination at the length scales of individual tows. The modelling approach is

employed for simulation of delamination in 2/2 Twill Weave carbon reinforced epoxy

laminates under the DCB and ENF test set-ups using standard desktop hardware. A

clear relation between the local ply stiffness and the size of the process zone in the

cohesive interface is obtained, which manifests in a quasi step-wise force reduction

in ongoing delamination. This is in agreement with experimental observations in the

literature. However, the shell based modelling restricts intra-ply delamination, i.e.

separation of individual tows, due to the kinematic constraints between the tows and

the matrix. Therefore, modelling phenomena such as delamination migration is very
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limited. A possible improvement would be to use cohesive elements to tie the tows to

the matrix instead of the ”direct” kinematic constrains. In general, the validation of

cohesive interfaces is non-trivial since an interface is a structural property rather than

a material itself. Nevertheless, the modelling approach recognizes different types of

interfaces based on the laminate’s topology and has the potential to study in-depth

the effects of interface properties.

The second type of composites that are studied within this work are fibre reinforced

elastomers, which are used in very different applications compared to fibre reinforced

polymers. The advantage of FRE is the rubber-like matrix which allows for large

deformations, while the fibres carry loads and dictate the direction dependent re-

sponse. The combination of both makes FRE suitable not only for structures but

also complete mechanisms such as robotic arms or deployable structures. In order

to study FRE in such structures an appropriate material model that can accurately

predict the effective behaviour is required. A unit cell homogenisation approach is

employed in order to estimate the effective behaviour of FRE across different fibre

volume fractions. The response of multi-fibre unit cells with quasi random fibre ar-

rangement is studied in the initial linearised and finite strain regime to evaluate the

direction dependency of the unit cells. Within this work, the readily available HGO

material model is used to predict the effective response of the multi-fibre unit cells.

The main contribution is a simple calibration method for the material parameters of

the HGO model, which takes place at the initial or undeformed state of the material.

The calibration method takes the deviatoric part of the initial linearised elasticity

and derives relations between the material parameters and the material properties

such as the shear modulus and Young’s modulus of a transversely isotropic material.

In order to estimate the initial shear and Young’s modulus of the FRE material, the

analytical Mori-Tanaka method is employed. Thereby, the calibration method en-

tirely omits any numerical homogenisation schemes. Predictions for FRE with high

contrast between the initial shear modulus of fibres and matrix are made for various

load cases, which do not exhibit compressive stresses in the fibre direction, as the
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HGO model cannot model fibre compression. The results show very good agreement

between the calibrated HGO model and the effective multi-fibre unit cells for fibre

volume fraction up to 40%. The comparison is extended to cross-ply FRE laminates

under shear deformations. The HGO model relies only on the material orientation

for the fibre contribution in the strain energy density. Consequently, the HGO model

is unable to model fibre rotation under moderate shear deformations. This is most

evident in the case of pure shear deformation, where the material orientation does not

change. Clearly, there is a need for a more suitable anisotropic hyperelastic material

model, which would include fibre orientation during deformation. Within the same

funding scheme as the present work, such material model has been recently developed

by Mansouri et al. [68].

Finally, the calibrated HGO model is employed in a structure. The wrinkling be-

haviour of thin FRE shells under tensile loads is studied by means of linear eigenvalue

analyses with a preload and post buckling analyses. The single ply and the laminate

shell model used in this work show the dependency of the wrinkling direction on the

material orientation in the shell. The highest amplitude of wrinkles is observed at

the critical load and upon further global tension load, the amplitude decreases to the

point where no more wrinkling is observed. The post-buckling analysis exposes the

limitation of the HGO model, where the lack of fibre contribution under compres-

sive state could lead to non-representative post-buckling behaviour, however, that

requires further investigation.
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Appendix A

Spherical and deviatoric projection

tensors

Fourth order projection tensor can be used to obtain spherical and deviatoric parts

(projections) of stress, strain and consequently the elasticity tensor.

The identity fourth order tensor

J = δikδjl ei ⊗ ej ⊗ ek ⊗ el , (A.1)

where δ is the Kronecker delta component and e are the orthogonal basis vectors. The

identity fourth order tensor can be split up into its symmetrical and antisymmetrical

parts as

J = J s + J a . (A.2)

The symmetrical part of the identity fourth order tensor is defined as

J s =
1

2
(δikδjl + δilδjk) ei ⊗ ej ⊗ ek ⊗ el . (A.3)
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The symmetrical identity tensor can be decomposed into the spherical and the devi-

atoric projection tensors as

J s = P1 + P2 , (A.4)

where P1 is the spherical projection tensor defined as

P1 =
1

3
I⊗ I =

1

3
δijδkl ei ⊗ ej ⊗ ek ⊗ el , (A.5)

where I is the identity second order tensor. The deviatoric projection tensor, P2, is

defined as

P2 = J s − P1 (A.6)

=

�
1

2
(δikδjl + δilδjk)− 1

3
δijδkl

�
ei ⊗ ej ⊗ ek ⊗ el . (A.7)

With the projection tensors, the elasticity tensor, E, can be decomposed into the

spherical part as

Evol = E : P1 (A.8)

or in index notation

Evol
ijmn = Eijkl P1(klmn) (A.9)

=
1

3
Eijkl δklδmn . (A.10)

Deviatoric projection of the elasticity tensor is

D̄ = E : P2 (A.11)
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or in index notation

D̄ijmn = Eijkl P2(klmn) (A.12)

= Eijkl

�
1

2
(δkmδln + δknδlm)− 1

3
δklδmn

�
. (A.13)
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Appendix B

Isochoric load application

The load application for unit cells with periodic boundary conditions is derived from

the prescribed final deformation gradient. Thereby, the displacements of master nodes

are determine for each increment of the simulation. For this purpose a python script

is used, which is explained here in a descriptive manner.

The load case definition starts with a deformation gradient, F, which describes the

deformation state of the unit cell in the final state. The displacements of the master

nodes are simply derived from the deformation gradient and the size of the unit cell

as

uSWB =

����
0

0

0

���� , uSEB =

����
(F11 − 1) lx

F12 ly

F13 lz

���� , uNWB =

����
F21 lx

(F22 − 1) ly

F23 lz

���� , uSWT =

����
F31 lx

F32 ly

(F33 − 1) lz

���� .

(B.1)

In the first step, the volume change J = det(F) of the deformation gradient is checked.

If the volume is not preserved, each master node displacement is assigned with linear

amplitude increase of the deformation gradient components.

If the prescribed deformation gradient is isochoric, the amplitude increase of the

master node displacements are set dependently of each other in a way, that the volume
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is preserved in each increment of the simulation. The increment size, number, and

distribution is defined by the user.

The amplitude increase of the master node displacements are defined in the following

way. The deformation gradient, F, can be expressed as the product of the rotation

altensor, R, and the right stretch tensor, U, using polar decomposition. Inherently,

the principal stretches, λα, and the principal directions, nα, are obtained from the

eigenvalues and eigenvectors of the right Cauchy-Green tensor as

C = UTU (B.2)

=
3�

α=1

λ2
αnα ⊗ nα . (B.3)

Once the stretch tensor, U, is known, the rotation tensor can be obtained as R =

FU−1.

In general, a rotational matrix can be defined as a rotation by angle, θ, around a unit

vector, u, as

R =


u2
x (1− cos (θ)) + cos (θ) uxuy (1− cos (θ))− uz sin (θ) uxuz (1− cos (θ)) + uy sin (θ)

uxuy (1− cos (θ)) + uz sin (θ) u2
y (1− cos (θ)) + cos (θ) −ux sin (θ) + uyuz (1− cos (θ))

uxuz (1− cos (θ))− uy sin (θ) ux sin (θ) + uyuz (1− cos (θ)) u2
z (1− cos (θ)) + cos (θ)


(B.4)

Thereby, a unit vector, u, and rotation angle, θ, are solved for the rotational tensor,

R, obtained from the polar decomposition.

Next, the right stretch tensor, U, is defined for each increment. If one of the principal

stretches is equal to one, than the remaining two stretches are codependent. For

example:
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if λ1 = 1 : λ2 = 1/λ3 (B.5)

if λ2 = 1 : λ1 = 1/λ3 (B.6)

if λ3 = 1 : λ1 = 1/λ2 (B.7)

In such case, linear amplitude increase is set to one of the codependent principal

stretches, which inherently defines the amplitude of the second principal stretch.

If none of the principal stretches is equal to one, than the amplitudes of the first two

principal stretches, i.e. λ1 and λ2, are set with linear increase, while the amplitude

increase of the third principal stretch is defined from the relation

λ3 =
1

λ1 λ2

. (B.8)

Thereby, principal stretches are defined for each increment and consequently the

incremental right stretch tensor as

U(n) =
3�

α=1

λ(n)
α nα ⊗ nα , (B.9)

where (n) denotes the increment. By adding the rotation of the stretch in an incre-

mental way, i.e. by linear incremental increase of the angle from zero to θ around the

unit vector u, the incremental deformation gradient is obtained as

F(n) = R(n)U(n) . (B.10)

The incremental deformation gradient is than used to define displacements of the

master nodes, Eq. (B.1) for each increment. Note that if the increment is changed

(decreased) by the automatic simulation control, than the displacements are linearly
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interpolated between the closest known values. For this reason it is important to set

a high enough number of increments.
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[64] O. Lopez-Pamies and P. P. Castañeda. Second-order estimates for the macro-

scopic response and loss of ellipticity in porous rubbers at large deformations.

Journal of Elasticity, 76(3):247–287, sep 2004.

[65] O. Lopez-Pamies and P. P. Castañeda. On the overall behavior, microstructure

evolution, and macroscopic stability in reinforced rubbers at large deformations:

II - Application to cylindrical fibers. Journal of the Mechanics and Physics of

Solids, 54(4):831–863, 2006.
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