
Bayesian inference for inverse
software performance problems

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Florian Fischer, BSc
Matrikelnummer 01529081

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Wien, 4. Mai 2023
Florian Fischer Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Bayesian inference for inverse
software performance problems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Florian Fischer, BSc
Registration Number 01529081

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Ing. Dr.sc. Jürgen Cito, BSc

Vienna, 4th May, 2023
Florian Fischer Jürgen Cito

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Florian Fischer, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 4. Mai 2023
Florian Fischer

v

Danksagung

In erster Linie möchte ich meinem Betreuer, Jürgen Cito, dafür danken, mir die Themen
“probabilistisches Programmieren” und “Bayes’sche Inferenz” näher zu bringen. Dadurch
wurde definitiv mein Interesse an diesen Themen und am Thema dieser Diplomarbeit
geweckt. Weiters möchte ich ihm für die Richtungsweisung im Bezug auf die dieser
Diplomarbeit zugrundeliegenden Arbeit und auf den schriftlichen Teil dieser Diplomarbeit
danken.

Als nächstes bedanke ich mich bei meiner Familie, meinen Freund*innen und meiner
Partnerin für die geduldige Unterstützung und die wiederholten Fragen nach dem Status
dieser Arbeit, einhergehend mit dem Aufzeigen von “sich gut anbietenden Zeiten”,
um mein Masterstudium abzuschließen. Obwohl diese “sich gut anbietenden Zeiten”
erstaunlich häufig vorkamen, war es dennoch ein guter Weg zur Motivation.

Ein besonderer Dank geht auch an Andreas Lackner, der sichergestellt hat, immer als
Erstes nach dieser Diplomarbeit zu fragen, wenn wir uns trafen.

vii

Acknowledgements

At first, I would like to thank my advisor, Jürgen Cito, firstly for introducing me to the
topic of probabilistic programming and Bayesian inference, this certainly sparked my
interest in these topics and this thesis’s questions. Secondly, I would like to thank him
for the guidance provided on the underlying work of this thesis as well as on the written
part of it.

Further, I would like to thank my family, friends and partner for their long-term support
and repeated check-ins in regards of the status of this thesis, while simultaneously pointing
out good periods of time to finish my studies in. These “good” periods of time seemed to
occur surprisingly often, but nonetheless posed a good motivational tool.

Special thanks also go out to Andreas Lackner, who made sure that asking for the status
of this thesis was almost always the first thing he did whenever we met.

ix

Kurzfassung

Performance, Laufzeiten und Antwortzeiten sind stetig verbesserbare Aspekte von komple-
xen Computersystemen, die nicht nur theoretisch, sondern auch praktisch große Relevanz
zeigen. Durch Methoden wie Tracking, Tracing und Messen von Antwortzeiten lassen sich
Probleme der Performance durchaus rasch bis zur auslösenden Komponente verfolgen,
jedoch sind genau diese Methoden in der Praxis oft nicht anwendbar, da die zusätzliche
Rechenbelastung oder die zusätzlichen Kosten für das Speichern der gesammelten Daten
nicht in jedem Szenario tragbar sind. In solchen Fällen müssen Messungen oft auf das
Überwachen der Antwortzeiten des gesamten Systems beschränkt werden, was die Su-
che nach der auslösenden Komponente im Falle eines Performance-Einbruchs deutlich
erschwert.

Eine mögliche Hilfestellung für die oben genannte Suche könnte Inferenz bieten. Klassi-
sche Inferenz, wie durch “Machine Learning”, benötigt jedoch große Mengen von Daten
im Training der Modelle um verlässliche Ergebnisse zu liefern, was wiederum im oben
genannten Szenario nicht tragbar ist. Eine mögliche Lösung dafür scheint Bayes’sche
Inferenz zu sein, die es erlaubt, anhand von geringen Daten in Kombination mit beste-
hendem Wissen und Annahmen über das modellierte System, verlässliche Inferenz zu
betreiben. Der Bayes’schen Inferenz liegt Bayes’ Theorem zugrunde, was die Inferenz zu
einer probabilistischen Inferenz macht. Um also ein Problem mit Bayes’scher Inferenz zu
lösen, muss es erst probabilistisch modelliert werden.

In dieser Diplomarbeit gehen wir näher auf eine Möglichkeit des probabilistischen Mo-
dellierens von Computersystemen und deren Performance ein und evaluieren daraufhin
Bayes’sche Inferenz an solchen Modellen, um einer möglichen Verwendung als Unter-
stützung in der Suche nach Komponenten nachzugehen, die beobachtete Performance-
Probleme ausgelöst haben könnten. Als erster Schritt wird ein Prozess etabliert, um
den Sourcecode von Systemen in einen Graphen zu übertragen, der die Performance
des Systems und dessen Komponenten widerspiegelt. Dieser Graph wird daraufhin in
ein probabilistisches Modell übersetzt, auf dem die Bayes’sche Inferenz durchgeführt
werden kann. Im zweiten Schritt wird ein Framework beschrieben, das Vorlagen mit
vordefiniertem Verhalten von häufig vorkommenden Komponenten bietet, um in der Mo-
dellierung zu unterstützen, und in weiterer Folge auch die Inferenz mit den resultierenden
Modellen in der Programmiersprache python erlaubt. Der Modellierungsprozess sowie die
Inferenz über das Framework werden daraufhin an drei simulierten Testsystemen und

xi

generierten Daten evaluiert, die repräsentativ für etwaige Strukturen von realen Systemen
gewählt wurden. Weiters wird eine Case-Study an einem echten System durchgeführt, für
welches im lokalen Netzwerk über Benchmarking, gemeinsam mit manuellem Auslösen
von Performance-Last, Daten gesammelt wurden.

Die Ergebnisse der Evaluierung legen die, in gewissen Fällen, potenzielle Anwendbarkeit
von Bayes’scher Inferenz für inverse Software Performance Probleme dar, zeigen jedoch
auch die Empfindlichkeit der Inferenz bezüglich der Definition des Modells und der
Konfiguration der Parameter auf. Desweiteren zeigt die Evaluierung eine Einschränkung
dieser Art von Inferenz, da viele Systeme durch zu ähnliches Performance-Verhalten
der Komponenten nicht mehr für die Inferenz der Performance geeignet sein können.
Softwaresysteme und deren Performance können jedoch mit Hilfe des hier etablierten
Graphen gut von Sourcecode zu probabilistischen Modellen übersetzt werden, was die
Möglichkeit eröffnet diesen Prozess zu automatisieren. Für eine verlässliche Inferenz
mit diesen probabilistischen Modellen wird jedoch Expertise zum tatsächlichen sowie
möglichen Systemverhalten und sorgfältige Konfiguration der Inferenzparameter benötigt.

Abstract

Performance problems of complex computer systems and the resolution of such are an
everlasting topic of improvement in theory as well as in practice. While tracking, tracing
and measuring response times all throughout the system certainly are useful practices
to track down causes of performance issues quickly, once occurred, they are often not
feasible in practice due to the sometimes high overhead and cost introduced by such
measures and the data gathered by them. In such cases it might only be feasible to
monitor the overall performance of the system and then perform thorough analysis and
in-depth search for the cause once an issue is observed.

In this thesis we explore the possible support of such analysis through inference. Classical
inference (e.g. Machine Learning) though, relies on large amounts of data in the training
process to produce reliable results, which again might not be feasible in the above-
mentioned setting. A possible relief for this issue seems to be Bayesian inference,
which allows for inference on little observed data by incorporating prior knowledge and
assumptions on the subject of inference into the inference itself. Bayesian inference is
based on Bayes’ theorem and is, as such, a probabilistic method of inference. Thus, it
poses the need of modelling the problem at hand probabilistically.

This thesis will look into the probabilistic modelling of computer systems and their
performance and then evaluate Bayesian inference on such models to explore a possible
support in solving inverse performance problems. We will do so by introducing a workflow
to transform a system’s source code to a graph reflecting the system’s performance, which
can then be translated into a probabilistic model. Further, a framework is proposed that
provides templates with preconfigured behaviour for common system components, with
which such models can then be easily implemented and inference be performed upon in
python. The modelling workflow, as well as the use of inference through the proposed
framework is then evaluated on three artificial example systems and generated data,
chosen to reflect different possible real-life structures, and one case study of a real-life
system that was benchmarked and manually brought to heavy-load behaviour.

The results of the evaluation show a potential applicability of Bayesian inference for
inverse software performance problems in some cases, although bringing attention to
firstly, the sensibility of the inference regarding the chosen parameters and the defined
model and secondly, the fact that many systems might not be fit for this type of inference.
Using the proposed graph, we are able to easily translate software systems and their

xiii

performance from source code to probabilistic model, which also opens up the possibility
of automating the modelling process for inverse performance problems. Though for
reliable inference using these models, expertise on the system’s actual as well as possible
performance behaviour and careful configuration of the inference itself is needed.

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Problem Definition 1
1.1 Problem space . 1
1.2 Research questions . 3

2 Related Work 5

3 Preliminaries 7
3.1 Bayesian inference . 7
3.2 Probabilistic Programming . 12

4 An Inverse Model for Software Performance Analysis 15
4.1 Formalisation . 15
4.2 Parameters . 16
4.3 Modelling . 17
4.4 Inference . 19
4.5 Framework . 24
4.6 Performance distributions . 27

5 Implementation 31
5.1 Model . 31
5.2 Inference . 33
5.3 Results . 33

6 Evaluation 39
6.1 Systems . 39
6.2 Inference & Results . 45
6.3 Case study: Thumbnails . 53

xv

7 Conclusion 61

List of Figures 63

List of Tables 65

List of Algorithms 67

Bibliography 71

CHAPTER 1
Problem Definition

In this section we will shed some light onto the specific types of problems this thesis
will be relevant to and define the boundaries of what will and will not be considered
(Section 1.1), as well as present the thesis itself and the research questions behind it
(Section 1.2).

This thesis aims to tackle inverse performance problems where only some degree of
information is available about the system under investigation and only higher level
observations can be made regarding its performance. An example of such system may
be a web service with complex underlying components accessed via a given endpoint.
Here one might want to investigate a drop in performance that is only observed on the
outermost level, the response time of the endpoint, but may be caused by a single function
or component that acted behind the endpoint and slowed down the overall performance.
We neither aim to find “bugs” or faulty code causing performance issues, nor do we aim
to pin down performance problems to certain parts of the system. We rather aim to
guide engineers or anyone investigating such an inverse performance problem into the
right direction, helping them find issues, bugs or simply inefficient architecture. This can
be done with the results of Bayesian inference (Section 3.1), the posterior distributions.
As shown in Section 3.1.2, they are formed from prior assumptions and reflect how
these assumptions were adapted during inference for the modelled system to produce the
observed data and thus help in root cause analysis by hinting to the right direction.

1.1 Problem space
We are looking to guide anyone investigating performance problems, so we mainly look
at response times or run times of a system and its components and possible inference
that can be done on them. What can be considered a response time or run time? For
the sake of simplicity, we will use these terms interchangeably. Now, given an arbitrary
computational component C, seen as a “blackbox” that can be invoked to perform some

1

1. Problem Definition

computing steps of arbitrary degree of complexity, we define the response time rC of said
component C to be the time it takes from invoking C to C finishing its computation.

Definition 1.1.1 (response time). Let tstart be the time of invocation of C and tend the
time of completion of its computation, then rC = tend − tstart is the response time of C
with rC , tstart, tend ∈ R+ and tend > tstart.

Further, we define a system S to be a set of components S = {C1 . . . Cn} with n > 0
which itself can be invoked. Although such invocations can be nicely described by a call
graph, we will introduce the notion of a performance dependency graph, to better describe
the performance composition of a system’s invocation and the respective performance
dependencies.

Definition 1.1.2 (Performance dependency graph). Given a system S = {C1 . . . Cn},
a performance dependency graph GS = V, E is a directed, acyclic graph consisting of
nodes v ∈ V with V ⊂ S, representing each component Ci ∈ S involved in the invocation
at hand and edges e ∈ E between said nodes representing a dependency in regards of
performance. Such a performance dependency is given if component Cx invokes any
number of other components Cy, x = y, causing the performance of component Cx to
be a function of the invoked components’ performances. Further, we choose one node
vr ∈ V representing the invocation of the overall system/endpoint, which cannot be a
dependency of any other component, this node is called the root node.

Now given a performance dependency graph as specified in Definition 1.1.2, we define the
run time rS of a system S to be again, the time it takes from invocation to completion
of computation, but more specifically, to be a function of the root node’s components’
performances and some unknown “noise” σ ∈ R+ to incorporate possible computational
overhead and uncertainty.

Definition 1.1.3 (run time of a system). Given a system S = {C1 . . . Cn} and its
performance dependency graph GS = V, E , we define the response time or run time
rS : Sn × σ of the system to be a function rS(rC1 , . . . , rCn , σ), of the response times of
the root node’s (vr ∈ V) dependencies and unknown noise σ ∈ R+.

To define our problem space, we will only consider problems of the following structure:
Assume there is a system S consisting of n different components C1 . . . Cn (with n > 0)
and each of those perform different tasks of different complexity and run time. Further
assume, that the response time of the system as a whole, say rS , as well as the response
time of each function inside, rC1...Cn , can be measured or estimated. Now, given a set
of response times RS = {rS,i | 0 < i ≤ m} of a particular invocation and the respective
performance dependency graph GS of the system, where m is the number of response
times given, what is the expected distribution of the response times rCi of each function
of GS?

2

1.2. Research questions

In a more informal way, lets construct an example that acts as an illustration for the
problem of interest. Assume you are the technical manager of a video encoding system.
Your system takes raw video data as input via download from an external source, encodes
it in a given standard and writes the output to a local file, providing a URL the user to
access it. To stand out amongst competitors in the market, you try to optimize your
encoding service regarding its speed and efficiency and monitor its general performance
as a reference. Now imagine, that while monitoring the system, you observe a drop
in performance. Of course you would like to know what caused that drop - did the
download of the input file take longer due to network issues, was the encoding particularly
hard or faulty, or was there something wrong with writing the output? One way to
accomplish that would be through manual analysis - if you only would have kept track of
the performance of the individual components of the system. Since that poses a large
overhead in monitoring and storing all the data you decided to just monitor the overall
performance of the system. Now the question arises: Can you infer some information
about the system’s internal components’ performance just from the overall performance
and general knowledge about the system? For a formal definition of this example, see
Section 4.1.

1.2 Research questions
The main goal of this thesis is to answer the question if one can infer the distribution
of the response times of a system’s internal functions or components and argue what
might have caused a performance drop, given just observations of the system acting as a
whole and general knowledge about the system. Based off of this, we can formulate the
following research questions:

1. How can we model inverse performance problems and what priors could be used?

2. Does Bayesian inference on these models provide reliable results?

In the course of this thesis we will try to answer these questions by analysis and practical
experimentation. The next sections will introduce the general, formal approach to
tackle the above-mentioned problem, along with a proposed solution approach in form
of a framework (Chapter 4), the specific implementation of said framework in python
using Numpyro (Chapter 5) and finally results and evaluation of different test-systems
(Chapter 6).

3

CHAPTER 2
Related Work

Current research on performance problems in computer system revolves around prediction,
which is done via different kinds of performance models spanning analytical methods,
simulation, and machine learning [1]. These models describe the performance of a
given system and thus allow to predict its behaviour under different conditions and
situations. This is in general a great tool while planning and constructing systems and
their requirements on hardware since one can test how a system will behave in predefined
situations and identify causes of performance issues. But in a later phase of the system’s
lifecycle, when the system is already deployed and running for example, performance
issues might still arise and one might need to know what caused it. With the prediction
models one would need to reconstruct the exact situation in which the problem occurred,
which is often not possible due to the system’s complexity and due to missing data. For
this, an inverse approach that allows reasoning starting from the observed behaviour and
not from the given situation seems to be more fitting. As of writing this thesis, literature
on this topic is quite limited.

One approach was presented by Cao et al. [2], where they use a specific type of queueing
network to model the performance of a web server and then estimate its parameters by
log-likelihood maximization. In a more general way, Mohammadi and Salehi-Rad [3] use
Bayesian inference and prediction in the context of a queueing network. Their approach
also allows for re-servicing any task inside the network if needed.

Even more general in the terms of performance modelling and solving performance
problems, but still quite relevant for this thesis is a paper by Sutton and Jordan [4].
They show an approach to reason about queueing networks for internet services and
discuss how to infer missing data for diagnosis of performance problems while considering
different types of queues inside the network.

For a broader overview, a survey presented by Balsamo et al. [1] provides a good overview
on techniques used in performance modelling and prediction, like queueing networks or

5

2. Related Work

simulation based solutions, and gives a full comparison of these different approaches.

Finally, there is also work tackling these performance questions and root-cause analysis
in a non-Bayesian manner. Chow et al. [5] show an approach to automatically construct
a model of internet service request execution by proposing a large amount of hypotheses
and rejecting those that contradict the observed data. A more recent paper by Wu et
al. [6] presents an approach that correlates occurring performance symptoms with the
respective resource utilization to localize the root cause based on a graph modelling the
anomaly propagation within a system’s services. Since we are not aware of any work
looking specifically into Bayesian inference used for inverse performance problems in
general, we aim to tap into that area of research with this thesis.

6

CHAPTER 3
Preliminaries

This thesis presumes that the reader does have some prior knowledge in the field of
computer science along with common programming languages and paradigms, as well as
basic knowledge in statistics. With that in mind, this section will introduce the reader to
some further concepts, which are not assumed to be prior-knowledge but still relevant to
this thesis.

3.1 Bayesian inference
The reader might be familiar with Bayes’ Theorem, nevertheless we will revisit it briefly
since it essentially is the core of Bayesian inference.

3.1.1 Bayes’ theorem
Although not published by himself, Thomas Bayes established an interesting approach
on tackling inverse probability problems through propositions presented in [7]. These
propositions essentially capture conditional probability and thus led to what we now
know as Bayes’ Theorem.

P (A|B) = P (B|A) ∗ P (A)
P (B) (3.1)

Formula 3.1 shows Bayes’ Theorem in its commonly known form, where P (A|B) is read
as the probability of event A occurring, given that event B happened (analogously for
P (B|A)) and P (A), as well as P (B), simply describe the probability of the respective
event, A and B, occurring.

Now to understand the relevance of the theorem for this thesis, let us first look at what
an inverse probability problem is. The more well known probabilistic problems are most

7

3. Preliminaries

likely classical probability problems, such as calculating the chances of winning the lottery
or the probability of a specific series of die rolls or coin tosses to occur. For such problems
we already know the underlying probabilities of each atomic event that influences the
overall probability, so we can simply calculate the resulting chances. Now on the other
hand, imagine a lottery where one would draw a ticket, which upon opening ends up
being either a winning ticket or a losing ticket. Further, assume that we do not have any
information on the total amount of tickets available or on the number of winning/losing
tickets that are in the pool, we can only observe the outcome of the tickets drawn. The
question we would like to ask now is, what is the ratio of winning and losing tickets,
or in other words, whats the probability of winning this lottery? This is an example
of an inverse probability problem, a problem where we do not have access to all the
information needed to exactly compute the probabilities of interest.

Bayes tackled this lottery example in [7]. More specifically, he asked for the probability
that the ratio of winning and losing tickets lies between two values. He goes on to
describe the computation of the probability for the ratio lying between 9:1 and 11:1. The
results show how such problems can be tackled: If one observes 10 losses and 1 win, the
probability for the ratio being within the interval lies at 7.699%, if one observes 40 losses
and 4 wins, the probability is about 15.25% and if one observes 100 losses and 10 wins,
the probability is already at 25.06%. Finally if 10.000 losses and 1.000 wins are observed,
the probability of the ratio lying between 9:1 and 11:1 comes out as being 97.42%. At
the same time, Bayes gives the results for a slightly altered example where the guess is
that the ratio is lower than 9:1. Here we can see an initial probability of 65.89% for 10
losses and 1 win and observe the results gradually decrease to already 44.11% for 100
losses and 10 wins.

These results nicely show that increasing observations of an event happening or not
happening, directly influence the confidence one can have in an initial guess either
positively or negatively, depending on the quality of the initial guess. This principle lies
at the heart of Bayesian inference.

3.1.2 Inference

Even though we assume the concept of inference to be known to some degree by the
reader, we will give a quick overview here to ensure a unified understanding since inference
may be known from different areas of scientific focus. After that introduction, we will
look further into Bayesian inference.

Inference in general, is a part of reasoning about a given context with the goal of gaining
further information from already existing data. For example, deriving conclusions from
given premises can already be seen as inference. More precisely, deriving particular
conclusions from known/assumed-to-be-true premises is called deduction and often known
from the field of logic, while inferring universal conclusions from particular premises is
called induction and often known from formal proofs across different scientific fields. In

8

3.1. Bayesian inference

the context of this thesis, the term inference will be understood in its general form of
deriving further information from given data.

Classically, inference is performed by making use of data analysis and the properties of
the given data to then draw conclusions and gain information about some unknown aspect
of a given problem. So we are presented some amount of data and try to either directly
infer conclusions by deduction and induction or try to make predictions by creating a
model and mathematically training it to produce data that fits the properties of the
already given data (e.g. Machine Learning). Now the Bayesian approach to inference on
the other hand, clearly reflects some of the concepts previously described in Section 3.1.1.
First we start by defining prior beliefs about the probabilistic event of interest in the
form of distributions that describe the underlying parameters. These prior beliefs are of
course subjective and thus depend on whoever is formulating them, but this is expected
and wanted, since it is a core property that comes with the Bayesian mindset, as we will
see in the comparison of the frequentist and Bayesian view in Section 3.1.3. So these
prior beliefs will act as our “initial guess”, similar to the guess in the lottery example
above. As a next step, we update our beliefs with observations, i.e. data that has been
gathered on the actual events that occurred so far. This updating is done using Bayes’
theorem and thus, after updating our prior beliefs with the observed data, we end up with
posterior beliefs (often simply called the posterior), again in the form of distributions.
We can then use this posterior to argue about unknown, underlying parameters of the
probabilistic event of interest or to make predictions about so far unseen data along with
a measure of uncertainty about the prediction.

To further understand the step of updating prior beliefs with given observations, we will
now look at a small, informal example. Assume a friend of yours challenges you to a
small game to decide who has to pay for the next coffee. The game needs each of you to
roll a six-sided die ten times and the one who lands a six more often wins, leaving the
losing party to pay. The chances seem fair and you usually land lots of sixes when playing
board games, so you believe in your luck and agree to play the game. Your friend hands
you a die and you go first, scoring a six in 2 out of 10 rolls. Continuing with the game,
you notice your friend is not using the same die as you were and you remember that they
once told you about owning a “special” die that will roll a six 1

4th the time. Obviously
you get a bit suspicious of them using the biased die now, but since you are not entirely
sure about it you decide to not call them out. Now, let A be the event of the die being
biased, then we assume the probability P (A) = 0.5 to capture the uncertainty about it
being biased as our prior belief. Further let B be the event of your friend rolling a six,
then, since we know how biased the die might be, let P (B|A) = 1

4 be the probability of
rolling a six, given that the die is biased. We can describe the probability of your friend
landing a six as the sum of the probabilities of the die being biased and rolling a six and
the die being fair and rolling a six:

P (B) = P (A and B) + P (¬A and B). (3.2)

For that purpose, lets look at joint probability.

9

3. Preliminaries

Definition 3.1.1 (Joint probability). The probability of two events, A and B, occurring
at the same time is called the joint probability P (A and B), such that

P (A and B) = P (A) ∗ P (B|A). (3.3)

Now from the definition of joint probability, we arrive at the following equation for P (B)

P (B) = P (A) ∗ P (B|A) + P (¬A) ∗ P (B|¬A) (3.4)

and since we know all those probabilities, we arrive at a final value of about 0.2083 for
P (B):

P (B) = 0.5 ∗ 1
4 + 0.5 ∗ 1

6 ≈ 0.2083. (3.5)

Coming back to the die-rolling game, we initially estimated the chance of the die being
biased to 50%, but now you see your friend rolling their first six and you get a bit
more suspicious, although it might still just be luck with a fair die. Let’s look at that
mathematically by updating our initial guess with the newly observed data. We want to
know the probability of the die being biased given that your friend landed a six, which is
P (A|B), and this can be nicely described by Bayes’ theorem:

P (A|B) = P (B|A) ∗ P (A)
P (B) . (3.6)

Filling in the known probabilities

P (A) = 0.5,

P (B) = 0.2083,

P (B|A) = 1
4 ,

(3.7)

we arrive at an updated value, the posterior, of

P (A|B) =
1
4 ∗ 0.5
0.2083 ≈ 0.60. (3.8)

So after observing your friend rolling a six, your updated belief of the die being biased
should now be at 60%. Let’s see what happens if you observe your friend landing more
sixes, in reality you would get more and more suspicious with each additional six observed.
In general, the probability of rolling a six n times, given the die is biased can simply be
described by

P (Bn|A) = 1
4

n

, (3.9)

where Bn denotes event B occurring n times, since multiple rolls are independent of each
other. Now we also need to compute the probability of your friend rolling a six n times
in general, which then is

P (Bn) = P (A) ∗ P (Bn|A) + P (¬A) ∗ P (Bn|¬A)

= 0.5 ∗ 1
4

n

+ 0.5 ∗ 1
6

n

.
(3.10)

10

3.1. Bayesian inference

Lastly, we use the above equations to describe P (A|Bn) by

P (A|Bn) =
0.5 ∗ 1

4
n

0.5 ∗ 1
4

n
+ 0.5 ∗ 1

6
n . (3.11)

Assuming you see your friend roll a six two times, how suspicious should you be about
the die being biased? Using equation 3.11 to get a result of P (A|B2) ≈ 0.6923, we should
be slightly more suspicious. Well, what about them landing a six 3, 4 or even 5 times?
The chance for the die being biased would then be

P (A|B3) ≈ 0.7714,

P (A|B4) ≈ 0.8351,

P (A|B5) ≈ 0.8836.

(3.12)

Upon observing six rolls landing a six, the probability of the die being biased is already
at almost 92%, meaning you can be pretty confident in calling your friend out, if you
haven’t done so earlier anyways.

This small example shows that, thanks to Bayes’ theorem, we can update our prior beliefs
about some event upon receiving new information and act in accordance to the resulting
posterior belief. This is the essence of Bayesian inference.

3.1.3 Frequentist vs Bayesian

When looking into probability, one may encounter different ways to define the “probability”
or “chance” of some event. Traditionally, a common way of thinking about probability
is the frequentist view, which may feel familiar to some coming from studies around
statistics and probability theory. In [8], Wassermann nicely summarizes the frequentist,
as well as the Bayesian view on probability. In its essence, the frequentist view sees
probabilities as relative frequencies. So saying that on a coin toss the chance for tail is
0.6 (i.e. 60%), would mean that for 60 out of 100 times the (seemingly unfair) coin is
flipped, it lands tails up.

In contrast to that stands the Bayesian view on probability, which is also the way we
think about probability in this thesis. When we talk about the probability of an event,
we talk about our subjective beliefs about that event occurring. So for example, claiming
that the probability of the reader drinking a coffee while reading this lies at 0.85 (i.e.
85%) simply means that I personally consider it to be rather likely that you are currently
consuming a hot and caffeinated beverage to get through this text. Of course beliefs
might change, especially upon gaining new information, but as we have seen above,
this is anything but a problem since we can simply update our prior beliefs with new
observations and end up with beliefs that then also reflect this new knowledge.

11

3. Preliminaries

3.2 Probabilistic Programming
In this section, we will briefly look at probabilistic programming, the programming
paradigm used in this thesis, then we continue with Numpyro, a library that allows
for probabilistic programming in python, and conclude with a brief explanation of the
Markov Chain Monte Carlo (MCMC) algorithm.

The various programming paradigms usually differ in their core concepts. For example,
while in object-oriented programming objects are first-class citizens, in functional pro-
gramming its functions and in logic programming its facts and rules which we use to
form our programs. Similarly, in probabilistic programming we use probabilistic models
and distributions to define and reflect real-world scenarios. While in object-oriented
programming a variable might represent an object, in probabilistic programming this
notion extends to probabilistic concepts, and variables represent for example distribu-
tions. The major advantages of this are firstly, that we can use it alongside traditional
programming and secondly, that it allows for branching in probabilistic inference. Thus,
we can incorporate uncertainty into various computations like simulations or inference
to produce predictions and analyses more close to real events that have a multitude
of factors influencing their outcome and, as done in this thesis, perform inference that
requires branching depending on probabilistic variables.

3.2.1 Numpyro

One of the many possibilities of doing probabilistic programming is via the language
python. Even then, there are multiple frameworks and libraries one can use to allow for
easy implementation of probabilistic concepts, like PyroPPL [9], PyMC [10] and Stan [11].
For this thesis, we first explored inference using PyroPPL along with MCMC for inference
and compared it to Stochastic Variational Inference (SVI), since that seemed to provide
faster performance. After further testing and looking into PyroPPL we encountered
Numpyro, a lightweight alternative to PyroPPL backed by the numpy [12] package,
which, in our case, provides a significant speed-up when performing inference via MCMC
compared to PyroPPL. Since MCMC inference also seemed to be a better fit for modelling
performance problems, we settled with Numpyro (version 0.11.0). We use it to define our
model probabilistically with distributions from the package and to perform the Bayesian
inference by running the MCMC algorithm also provided by the package. The exact usage
and syntax of Numpyro can be seen in Chapter 5. Lastly, a small example showcasing
the advantage of branching using numpyro can be seen in Source code 3.1. It showcases
a small game where the prize-pool depends on a random decision made beforehand and
where the prize itself is then sampled from the pool.

3.2.2 Markov Chain Monte Carlo (MCMC)

The term Markov Chain Monte Carlo is composed of two separate, well-known concepts:
Markov Chain and Monte Carlo. Let us briefly explore both concepts separately.

12

3.2. Probabilistic Programming

✞ ☎
1 import numpyro
2 import numpyro . distributions as dist
3 from jax import random
4
5 with numpyro . handlers . seed (rng_seed=random . PRNGKey (1234)) :
6 go_left = numpyro . sample ('go_left' , dist . Bernoulli (0 . 5))
7 if go_left :
8 print ("You went left")
9 prize = numpyro . sample ('prize_left' , dist . Bernoulli (1 0 . 0 , 1 0 0 . 0))

10 else :
11 print ("You went right")
12 prize = numpyro . sample ('prize_left' , dist . Uniform (1 . 0 , 1 0 . 0))
13
14 print ("You won:" , prize)✝ ✆

Source code 3.1: Simple branching in numpyro

Monte Carlo describes a group of randomized algorithms, that, as a trade-off for perfor-
mance, sacrifice correctness of their results within a certain probability. As summarized
by [13] these types of algorithms are used to model and simulate events observed in
the real world, which come with an inherent randomness and can help in optimization
problems or simply help generate samples from given distributions. A Markov Chain
on the other hand, is the concept of generating samples based on each other, with the
specialty that each sample only depends on the one previous sample. In other words, the
generation of a sample within a Markov Chain depends solely on the previously generated
sample and is not influenced by any of the samples before that.

Now the combination of those concepts, Markov Chain Monte Carlo, allows for sampling
from distributions without knowing all properties of a distribution, as explained by
[14]. Meaning through MCMC we can estimate posterior distributions without perfect
knowledge of the priors, which is firstly often difficult to achieve analytically and secondly
exactly what we are trying to achieve with Bayesian inference in this thesis.

13

CHAPTER 4
An Inverse Model for Software

Performance Analysis

In this section, we will introduce the general approach that this thesis proposes for solving
performance problems as described in Chapter 1. To do so, we will use an illustrative
example which we will first formalise, then define the relevant parameters to finally model
it and perform inference on it.

Take into consideration the example we introduced in Section 1.1. We will use the
informal description of the problem scenario as a base for this example.

4.1 Formalisation
Let us define the given problem formally. In the considered scenario, we can easily
encapsulate the system’s structure using three inner components, each performing one
of the key tasks of the system: downloading the asset, encoding the video and writing
the output. Let Cload be the component responsible for retrieving the raw video input,
Cencode be the component performing the encoding, Cwrite be the component writing
the output file. Further, let S = {Cload, Cencode, Cwrite} be a representation of the
system of interest. Note, that we will proceed with a shorthand name for the components
Cload, Cencode, Cwrite, respectively using load, encode and write to keep further definitions
more readable. Now, as defined in Section 1.1, the response time rS of the system can be
interpreted as

rS(rload, rencode, rwrite, σ), (4.1)

with σ ∈ R and rS being a function of the run times of the components of S and the noise
σ describing how the overall system’s run time is composed. Now, looking at the specific
run times rload, rencode, rwrite, this is where the model becomes probabilistic. We define
these run times to be probabilistic variables, each coming from a distribution specific to

15

4. An Inverse Model for Software Performance Analysis

the respective component of the system. Lets simply assume a Normal distribution for
each component, with µload, µencode, µwrite being the average expected run time of each
component and σload, σencode, σwrite the, in the context of the system, plausible variances.
We denote that by

rload ∼ N(µload, σload),
rencode ∼ N(µencode, σencode),
rwrite ∼ N(µwrite, σwrite).

(4.2)

In this manner, we can also further define the function rS , which describes the system’s
run time as a whole. For simplicity, we will assume that the system’s run time can be
described by just the sum of the components’ run times, but with the influence of the
aforementioned noise or rather uncertainty. In practice we aim to gain this information
through expertise on the system’s architecture and complexity. So for now we will define
rS to be:

rS ∼ N(rload + rencode + rwrite, σ), (4.3)

again assuming a Normal distribution for this example, with the previously defined noise
σ as variance. Now, what do we aim to answer? Given the above information and a
series of response times for this system, what do the actual distributions for the run
times rload, rencode, rwrite that produced this observed data look like and can we infer
which component most likely caused the observed performance issue?

4.2 Parameters

To get one step closer to answering the above-mentioned question, we need to define the
parameters for the inference we are going to do. We can see these parameters as the
“bolts and nuts” which we will use to tweak our prior assumptions, bringing them closer
to their actual (i.e. posterior) shape and which will also reflect the result of the inference.

Continuing with our example, what we want to do is guide anyone investigating the
performance problem into the right direction. In other words, we want to know for each
component, what the chance is that it caused (or was part of) the performance problem.
We want to derive the probability of each component being a performance bottleneck.
For this we need to branch our model to consider the case of each component being a
bottleneck. We will introduce a new parameter pC reflecting the probability of component
C being a bottleneck. Based upon this parameter, we will draw the response times of the
respective component during inference from either one of two different distributions: one
representing the (measurable) regular response behaviour and the other one reflecting the
(expected) behaviour as a performance bottleneck. Since we want to maintain a measure
of uncertainty about the results, we will also draw this parameter p from a given prior
distribution. Now formally, we define parameters pload, pencode, pwrite, the chance of each

16

4.3. Modelling

component being the bottleneck, to be:

pload ∼ U(apload
, bpload

),
pencode ∼ U(apencode

, bpencode
),

pwrite ∼ U(apwrite , bpwrite),
(4.4)

where apload
, apencode

, apwrite and bpload
, bpencode

, bpwrite are again, parameters of the infer-
ence, initialized with prior assumptions. Since in our example we do not have any prior
information about the likeliness of each of those components being a bottleneck, we sample
from a Uniform distribution and we will initialize all lower limits a to 0.0 and all upper
limits b to 1.0 to reflect the initial uncertainty. This leaves us with pload, pencode, pwrite

now being:
pload ∼ U(0.0, 1.0),
pencode ∼ U(0.0, 1.0),
pwrite ∼ U(0.0, 1.0).

(4.5)

The drawn values for pload, pencode, pwrite will then be used during modelling to branch
either towards drawing the component’s response time from the distribution representing
regular behaviour or drawing from the distribution representing a bottleneck behaviour,
which directly affects the result of rS and thus acts as an essential tweaking point in fitting
the model to the observed data. Since apload

, apencode
, apwrite and bpload

, bpencode
, bpwrite are

parameters of the inference, those initial values we decided upon above will be tweaked
when running the inference, with the goal of fitting the drawn values to the observed values,
effectively fitting the priors to the unknown posteriors. After the inference, the updated
parameters will reflect the result of the inference and we can look at the distributions
of pload, pencode, pwrite to gain information on the possibility of each component being a
bottleneck along with the corresponding uncertainty regarding that statement.

4.3 Modelling
Now in this section, we will take a look at modelling the whole system while considering
the formalisation and parameters defined in Section 4.1 and Section 4.2. First, we will
establish a brief overview of what we have defined so far.

We are considering a system S, consisting of three components:

S = {load, encode, write}. (4.6)

Then we specified the response time of the system to be a function rs of the components’
response times rload, rencode, rwrite and some estimated noise σ:

rS(rload, rencode, rwrite, σ) ∼ N(rload + rencode + rwrite, σ), (4.7)

with rS drawing from a Normal distribution with the sum of the components’ response
times as mean and the noise as variance. The response times of the components themselves

17

4. An Inverse Model for Software Performance Analysis

are, for simplicity, also drawn from a Normal distribution:

rload ∼ N(µload, σload),
rencode ∼ N(µencode, σencode),
rwrite ∼ N(µwrite, σwrite),

(4.8)

with µload, µencode, µwrite and σload, σencode, σwrite reflecting prior beliefs on the compo-
nents’ behaviour. Next we have defined the parameters of the inference pload, pencode, pwrite

as:
pload ∼ U(apload

, bpload
),

pencode ∼ U(apencode
, bpencode

),
pwrite ∼ U(apwrite , bpwrite),

(4.9)

where apload
, apencode

, apwrite and bpload
, bpencode

, bpwrite are again parameters and will reflect
our prior beliefs on the probability of each component being a bottleneck.

Now to start modelling the system and its behaviour, we need to consider that the
behaviour obviously changes in case a component actually is a bottleneck. So we will now
introduce separate response times rb for that, which initial values will later be estimates
approximated with the help of prior knowledge on the components’ internal structures:

rbload
∼ N(µbload

, σbload
),

rbencode
∼ N(µbencode

, σbencode
),

rbwrite
∼ N(µbwrite

, σbwrite
),

(4.10)

with µbload
, µbencode

, µbwrite
and σbload

, σbencode
, σbwrite

again reflecting our prior beliefs, but
this time on the components’ bottleneck behaviour. Now to actually have the model
represent a real system, we need to apply our prior beliefs to the above definitions. The
core values we need to populate are σ as the noise for the overall system’s response
time, µload, µencode, µwrite and σload, σencode, σwrite for the components’ response times,
as well as µbload

, µbencode
, µbwrite

and σbload
, σbencode

, σbwrite
for the components’ bottleneck

behaviour. Assume that, from prior investigation and existing knowledge, we know
component load has a mean response time of 520ms and might vary by about 15%. So
we will set µload = 520 and σload = 78. Similarly, we investigate the behaviour of encode
and write and result with a mean response time of 1200ms for encode with 9% variation
and a mean of 700ms with 8.7% variation for component write. To reflect that, we set
µencode = 1200, σencode = 110 and µwrite = 700, σwrite = 61. We now arrive at definitions
of rload, rencode, rwrite being:

rload ∼ N(520, 78),
rencode ∼ N(1200, 110),
rwrite ∼ N(700, 61).

(4.11)

In the same manner, we will define the bottleneck behaviour of the components with
µbload

= 780 and σbload
= 80, µbencode

= 2400, σbencode
= 150 and µbwrite

= 1000, σbwrite
=

18

4.4. Inference

100. So for rbload
, rbencode

, rbwrite
we are left with:

rbload
∼ N(780, 80),

rbencode
∼ N(2400, 150),

rbwrite
∼ N(1000, 100).

(4.12)

Given the above-mentioned performance metrics and previous response times of the
whole system, we estimate an additional noise of roughly 100ms, so:

σ = 100. (4.13)

Finally, we still have to apply our beliefs of each component being a bottleneck to
µbload

, µbencode
, µbwrite

and σbload
, σbencode

, σbwrite
. We can do this with the help of historical

data on the components’ behaviour or by using the actual beliefs of human experts on
the system. In this example we will assume we have access to neither of those, so we will
initialize the ap values to 0.0 and the bp values to 1.0 to incorporate the indifference with
a Uniform distribution across the whole range:

pload ∼ U(0.0, 1.0),
pencode ∼ U(0.0, 1.0),
pwrite ∼ U(0.0, 1.0).

(4.14)

With the above defined equations 4.6, 4.7 as well as the initialized parameters from
equations 4.11, 4.12, 4.13 and 4.14, we have specified the probabilistic model for our
example system. In the next section, we will look at the actual inference.

4.4 Inference
As described in Section 3.1.2, the Bayesian approach to inference is to formulate prior
beliefs and then update those beliefs upon observation of new information. We formulated
our prior beliefs in Section 4.3 in the form of probability distributions for the response
times of the system’s components and for the additional parameters we specified. So as a
next step we need to gather information and update our beliefs accordingly. Since we
have constructed an artificial example, we will also use artificial data. So assume that
we observe the set D of response times, with |D| = 100 as seen in 4.15, that reflect a
performance dip caused by one of the components.

D =

2701.30 2623.47 2767.75 2924.82 2575.98 2514.98 2917.04 2630.05 2655.33 2775.37
2711.42 2667.82 2874.87 2529.96 2499.32 2787.52 2701.09 2442.00 2687.62 2798.60
2704.09 2807.58 2863.89 2925.59 2677.72 2702.99 2685.61 2445.80 2476.92 3026.57
2818.25 2566.54 2618.43 2645.32 2608.02 2721.08 2843.06 2691.85 2652.01 2577.47
2672.22 2810.54 2691.33 2384.59 2678.48 2672.20 2764.34 2411.14 2970.18 2774.16
2751.16 2798.44 2773.11 2618.21 2535.41 2610.33 2732.65 2785.11 2747.65 2654.94
2785.24 2633.07 2358.42 2922.41 2456.58 2753.29 2761.24 2719.73 2707.35 2830.13
2403.19 2799.95 2412.42 2787.04 2601.00 3026.41 2453.55 2616.57 2794.98 2690.81
2632.55 2685.23 2949.13 2541.15 2887.59 2836.84 2779.09 2844.90 2593.76 3068.61
2744.90 2657.41 2646.53 2810.41 2542.58 2878.71 2890.39 2728.12 2744.13 2672.38

(4.15)

We have generated this “observed” data by first sampling rload, rencode and rbwrite
from

the above defined distributions to reflect a scenario where the write component behaved

19

4. An Inverse Model for Software Performance Analysis

as a bottleneck, so
rload ∼ N(520, 78),
rencode ∼ N(1200, 110),
rbwrite

∼ N(1000, 100).
(4.16)

As specified in the model, we then sampled the overall response time rS from the sum of
these response times along with a slight variance σ = 100:

rS ∼ N(rload + rencode + rbwrite
, σ). (4.17)

This composed sampling was performed 100 times to generate the data shown in 4.15.
Now we can actually perform inference as we have seen in Section 3.1.2. For the sake of
readability we will perform inference for one component fully, to demonstrate the process,
and later show the results for each component for comparison. Initially, we are indifferent
about which components might be bottlenecks, so we will use a probability of 0.5 for
each:

pload = 0.5,

pencode = 0.5,

pwrite = 0.5.

(4.18)

From now on though, we will only be looking at the output component write. First, let
us recapitulate the goal of the inference. We want to know the probability of component
write being slow, given the observed data. Let Awrite be the event of component write
being a bottleneck and B be the event of us observing a given value x as the system’s
response time rS , P (Awrite|B) is the probability of component write being a bottleneck,
given rS was observed to be x (with a variance of σ = 100). We know P (Awrite|B) is
defined as

P (Awrite|B) = P (B|Awrite) ∗ P (Awrite)
P (B) . (4.19)

So what remains to fill in are the probabilities P (B|Awrite), P (Awrite) and P (B). We do
have an initial assumption about the probability of A, so

P (Awrite) = 0.5. (4.20)

Further, we can describe P (B) as the combined probability of Awrite and B occurring
together and the inverse of Awrite occurring together with B, so

P (B) = P (Awrite and B) + P (¬Awrite and B). (4.21)

Which, with the definition of joint probability (see Definition 3.1.1), can be rewritten as

P (B) = 0.5 ∗ P (B|Awrite) + 0.5 ∗ P (B|¬Awrite). (4.22)

Now as a last step we need to find P (B|Awrite), which is the probability of observing rS

as the value x (with variance σ = 100) given that component write is a bottleneck. Given
our estimates for regular and bottleneck behaviour of the components, we can formulate

20

4.4. Inference

a term to reflect the variance in the response time rS while considering a component to
be a bottleneck:

P (B|Awrite) = 1 − 1 −
obs
min + obs

max

2 . (4.23)

Here we take the mean of the relative difference of the observed value compared to
the minimum and maximum expected rS considering the variances of the components’
response times as well as of the system’s response times. So since we are considering the
case of component write possibly being a bottleneck, we have minimum and maximum
expected values for rS of µload−σload+µencode−σencode+µbwrite

−σbwrite
= 2432−σ = 2332

and µload + σload + µencode + σencode + µbwrite
+ σbwrite

= 3008 + σ = 3108. So considering
the first observation in D we result in:

P (B|Awrite) = 1 − 1 −
2701.3
2332 + 2701.3

3108
2 = 0.9862. (4.24)

Analogously for P (B|¬Awrite) we result in

P (B|¬Awrite) = 1 − 1 −
2701.3
2071 + 2701.3

2769
2 = 0.8601. (4.25)

Filling the above result into the equation for P (B) leaves us with

P (B) = 0.5 ∗ 0.9862 + 0.5 ∗ 0.8601 = 0.9232 (4.26)

and we can continue with our inference by using these results in computation of
P (Awrite|B):

P (Awrite|B) = 0.9862 ∗ 0.5
0.9232 = 0.5341. (4.27)

The result of P (Awrite|B) = 0.5341 shows that after observing the first response time in
D, we already see the probability of component write being a bottleneck as increasing.
Updating the formula of P (B|Awrite) to allow for more than one observed value, will
help us consider the whole observed dataset D:

P (BD|Awrite) =
n

i=1
1 − 1 −

di
min + di

max

2 , (4.28)

where n = |D| and di represents the i-th element of D. Using this, we can easily calculate
the value of P (Awrite|BD) after observing all 100 of response times within D:

P (Awrite|B) = 0.99997841. (4.29)

As we can see, the result leads us to being quite certain that component write might have
been a bottleneck while observing the data D. Figure 4.1 shows a plot of the intermediate
results while the considered observed data increases and nicely shows how the confidence
in component write being a bottleneck rises along with the observed evidence.

21

4. An Inverse Model for Software Performance Analysis

Figure 4.1: Intermediate results of inference on component write with increasing number
of considered observations.

Lastly, as a comparison, we will look at the results of the inference on the other two
components:

P (Aload|B) = 0.99996476,

P (Aencode|B) = 2.92578413 ∗ 10−6.
(4.30)

Figures 4.2 and 4.3 show the plots of the intermediate results of inference for component
load and encode respectively.

As we can see, the result for component encode clearly shows confidence in encode not
being a bottleneck while observing data D, which is true in our artificial scenario. On
the other hand the result for component load shows confidence in load being a bottleneck
during observation, which we know is not true, but upon further inspection of the regular
as well as bottleneck behaviour of the true bottleneck write and the hereby inferred
bottleneck component load we can see why this result still is reasonable for the inference.
Both components show a similar behaviour in the regular and bottleneck case. The
difference in behaviour might be marginal, but we can still also see a difference in the
results of components load and write, with P (Awrite|B) = 0.99997841 showing slightly
more confidence than P (Aload|B) = 0.99996476 although the difference is ever so slightly.
If we plot the results for load and write next to each other, as we can see in Figure 4.4,
the difference in the results gets a bit more clear, showing load resulting in values slightly
lower than those for write throughout the process and especially dipping further down
when observing values that lead against the prior assumption.

22

4.4. Inference

Figure 4.2: Intermediate results of inference on component load with increasing number
of considered observations.

Figure 4.3: Intermediate results of inference on component encode with increasing number
of considered observations.

23

4. An Inverse Model for Software Performance Analysis

Figure 4.4: Intermediate results of inference on component load along with the results of
inference on component write.

4.5 Framework
Now to make the use of Bayesian inference for inverse performance problems more
accessible, we propose a framework [15] that aids in modelling the problem and performing
the inference. In this section, we will first look at the concept of this framework and
then showcase the modelling of an example system. Chapter 5 will then show the
implementation and actual usage.

Figure 4.5 shows the conceptual usage of the framework with an example system as input
to showcase a possible model structure. It takes as input the observed data (i.e. the
observed response times of the system/endpoint) and the system/endpoint itself. The
latter is defined by a tree-like structure with nodes representing the system components
and the edges representing performance dependencies between them. Each node specifies
their response time behaviour either by sampling from a distribution or as a function of
their child-nodes’ response times. The nodes themselves are defined by a name, their
behaviour function and possibly a list of child nodes. Additionally each node maintains
an is_slow flag representing the state of it being a bottleneck or not. One core part of
the framework, besides the inference, is that it provides templates for common computer
system’s components, that exhibit predefined regular and bottleneck behaviour. These
templates are based on performance behaviour observed in relevant literature and can
be tweaked to allow for specific modelling. We provide these predefined node templates
for common components such as CPU, network, database, memory and queue, which all

24

4.5. Framework

Component Distribution References
CPU LogNormal [16], [17]

Network LogNormal, Pareto [18]
Database LogNormal [19]
Memory LogNormal, Weibull [20], [21]
Queue Exponential [20]

Table 4.1: Common components and the respective distributions describing their be-
haviour.

Figure 4.5: Overview of the inference framework with an example system as input.

take a tuple of mean response times as parameter and exhibit the predefined behaviour
based on said means, the first one representing regular behaviour, while the second one
represents behaviour under heavy-load. Table 4.1 shows these common components
and the respective distributions describing their behaviour, along with the literature
references used to define it. The framework takes the input and performs an MCMC
inference to generate posteriors for each component. The resulting posterior distributions
then reflect the probability of each component exhibiting bottleneck behaviour. We will
look at specific examples and their results in Chapter 6.

25

4. An Inverse Model for Software Performance Analysis

4.5.1 Example
We continue with the video encoding example we used in previous chapters. First, lets
specify our system more thoroughly by defining some pseudocode for the endpoint.

Algorithm 4.1: Encode endpoint
Input: A URL to the raw video file
Output: A URL to the encoded video

1 url ← read_url_from_request();
2 file ← load_video_asset(url);
3 data ← read_metadata(file);
4 configure_encoding();
5 output_url ← create_output();
6 while segment ← encode() do
7 write_to_output(segment);
8 end
9 return output_url;

Algorithm 4.1 shows the pseudocode for our Encode example system. It takes as an
input a URL to a raw video file, which on Line 1 gets extracted from the request and is
then downloaded on Line 2. Following that, lines 3 to 5 gather some data on the video
and prepare configurations needed for the encoding and the output. Finally, lines 6 to 9
perform the actual encoding, writing the encoded video segments to the output as they
get generated and finishing the whole process by returning a URL to the encoded video.
Now, since we know the algorithm of our endpoint of interest, we can start formulating
the components. We will do so by looking closer at each line and categorizing them by
the level at which their performance influences the overall performance of the endpoint.
We start at the top-level, with the performance of Line 1 adding directly to the overall
performance of the endpoint. Line 2 on the other hand already invokes the load component
and thus depends on the second-level performance of the component. The next lines, 3, 4
and 5 are again top-level and add to the overall performance of the endpoint. Continuing
with lines 6 and 7, we invoke the remaining components encode and write accordingly,
each contributing to the response time via second-level performance. The algorithm
invokes both components in a loop, but as neither one of the components’ possible slower
response times influences the response time of the other component within itself, there
is no performance dependency between the components themselves. Finally, Line 9
concludes the process by returning the URL leading to the encoded video. We can now
specify the system’s components and performance dependencies using our categorization,
by simply specifying one node for the top-level performance and one node for each
component on the second-level. Since we only have dependencies from second-level
to top-level, we simply add edges from each second-level node to the top-level node.
Figure 4.6 showcases this basic performance dependency graph.
Finally, we can use the templates provided in the framework to actually model the system

26

4.6. Performance distributions

Figure 4.6: Performance dependency graph of the encoding example.

and its behaviour by simply translating the nodes of the performance dependency graph
to components within the framework. We will do so in pseudocode. For a model specified
using the actual implementation of the framework refer to Chapter 5.

Algorithm 4.2: Modelling Encode
1 load ← Network("load", (520, 780));
2 encode ← CPU("encode", (1200, 2400));
3 write ← ReadWrite("write", (700, 1000));
4 endpoint ← Generic("endpoint",

component_times → N(sum(component_times), 100),
[load, encode, write])

Algorithm 4.2 shows the definition of our model within the framework. Lines 1 to 3
specify each component and their behaviour using the templates Network, CPU and
ReadWrite and providing a name and the tuple of mean response times respectively.
Line 4 then instantiates the overall system “endpoint” and defines its behaviour as a
function of its component response times, which samples from a Normal distribution at
the sum of the components’ response times and the previously estimated uncertainty.
Lastly, we specify the list of components that “endpoint” depends on.

4.6 Performance distributions
To acquire realistic data for testing the implementation and to gain insight on the
performance behaviour of different common component besides literature, we set up
a test system that would allow us to generate data under semi-controlled conditions.
Semi-controlled, since we wanted the data to resemble real data as closely as possible
and we purposely let various factors like heat, computational power, caching and any
computational overhead play a role during generation of the data. The system under
test here was chosen to be a simple web-service that would expose different endpoints,

27

4. An Inverse Model for Software Performance Analysis

performing either a high CPU-load task, a high network-load task, a high I/O (i.e. file
read/write) task or a combination of those. This service was then run on a Raspberry
Pi Model 4 in a local network and put to test from another machine using the Apache
Benchmark Tool [22].

Using this setup, the system was put to test for one day, sending a request to the
endpoints every few seconds and measuring their response times. In parallel, we put load
on the system coming from other sources than the requests or the web-service itself. In
the case of CPU load, we gradually forced the CPU cores to maximum load by starting
yes processes and redirecting them to /dev/null, which causes the process to use up all
available resources from a single CPU core. Network load was generated on the one side
by downloading large files via the internet and on the other by uploading files to the test
system from the other machine executing the tests via the local network. Generating
I/O load then was done by copying large files from and to external storage devices via
USB. We also generated load on all those components by performing real life tasks on the
system in the form of updating and installing software. This was performed to get a sense
of “real” data, the difference in performance of each of those components’ performance
under regular and heavy load and to gather testing data for the inference.

Figures 4.7, 4.8 and 4.9 show the response times of each tested endpoint as histograms
respectively. Among a few outliers, one can clearly see the difference in response time
between regular use and heavy-load (i.e. slowed down) use of the system. In case of
the CPU component the distribution of response times under regular load as well as
under heavy-load resembles a Normal distribution although slightly long-tailed. The
distribution of the response times under normal load of the I/O and Network endpoints
both seem to fit a LogNormal distribution, with their peak at the lower values and
gradually declining density towards the longer tail in the higher response times. Also
for both these endpoints, the distributions of response times under heavy load seem to
follow the same type of distribution, namely a Normal distribution. These results seem
fitting when considering that in regular use, firstly, it is hard for systems and components
to perform below a certain minimal threshold and secondly, there can obviously be
worse performance outliers forming a tail to the right, both nicely represented by a
LogNormal distribution. On the other hand, under heavy-load it is reasonable that some
executions/runs perform better and not just worse than the average performance, since
the load might lessen and performance slightly shift towards regular load performance
again, resulting in a Normal distribution.

Chen et. al [16] took a look at the performance distribution of computer systems,
especially taking into account the traditional use of Normal distributions to model
performance and testing its validity via benchmarks. They came to the conclusion
that Normal distributions might not be fitting in general and they propose the use of
LogNormal distributions to represent computer system’s performance. Coming from a
different approach, Khoshkbarforoushha and Ranjan [17] looked into predicting CPU
performance distribution for Hive queries and their results coincide with those suggested
by [16], predicting mainly Normal-like distributions with a longer tail. Based on these

28

4.6. Performance distributions

Figure 4.7: Histogram of response times of calls to the CPU endpoint.

Figure 4.8: Histogram of response times of calls to the I/O endpoint.

Figure 4.9: Histogram of response times of calls to the network endpoint.

29

4. An Inverse Model for Software Performance Analysis

papers, as well as our own observations, we presume a LogNormal distribution represents
CPU performance behaviour. Looking at the performance of network components, Paxson
[18] tested various analytical models to describe network connections and concluded
that while modelling wide-area traffic exactly in a statistical way may not be possible,
analytical models provide a good approximation. Further, they summarized their findings
of analytical models best suited to describe various types of traffic, with LogNormal and
Pareto distributions seemingly suiting best.

30

CHAPTER 5
Implementation

The implementation was done in Python 3.8.10 using the package Numpyro (version
0.11.0). The approach to the implementation was done in the same manner as described
in Section 4, with the inference being automated by the Numpyro package. In this
section, we will take a look at the actual model that was written and the inference that
was performed on it. For the code discussed in the following subsections, these module
imports are needed:✞ ☎

1 import numpyro
2 import numpyro . distributions as dist✝ ✆

Further, for reproducibility and consistency in our results, we will use a fixed key as the
seed for the random number generator and split further keys off of that as needed.

5.1 Model
In this section, we will look at the actual implemented model and the respective code. In
general, the model reflects the model described in Section 4.3, differing just in details
regarding the usage of the framework in python. So first, to recapitulate, we are again
considering the system S, consisting of three components:

S = {load, encode, write}. (5.1)

Now, as previously done in the example of the formal framework definition in Section 4.5.1,
we specify our system via nodes and with the help of the framework’s templates. We will
define the model in the same manner as the pseudocode in Algorithm 4.2, again with
slight adaptation for the python and numpyro specific implementation. Source code 5.1
shows the implementation, using python’s lambda function to provide the behaviour
of the components. For each of the sub-components load, encode and write, we specify

31

5. Implementation

their behaviour simply by returning a tuple of mean response times from the lambda
function. The first element of the tuple is the mean response time of the component’s
regular behaviour, while the second element specifies the (estimated) mean response
time under heavy-load. Lastly, the behaviour of the endpoint itself is captured via the
Generic node, where we specify the list of sub-components and define the behaviour
by using the sub-components’ response times to define a Normal distribution in the
lambda, which will be sampled from during inference. Further we set the flag exclude
to True on this component since we do not want to consider it as a possible cause for the
drop. The component templates can, in general, be further refined by specific arguments
depending on which template is used. We will not go in detail on these arguments, as
they can be seen in the implementation of the framework [15] itself.

✞ ☎
1 from components import CPU , Generic , Network , Queue , ReadWrite
2
3 def encoding_endpoint () :
4 load = Network ('load' , lambda _ : (520 , 780))
5 encode = CPU ('encode' , lambda _ : (1200 , 2400))
6 write = ReadWrite ('write' , lambda _ : (700 , 1000))
7 return Generic ('encoding_endpoint' ,
8 lambda comp_times : dist . Normal (sum (comp_times) , 100) ,
9 components=[load , encode , write] ,

10 exclude=True)✝ ✆
Source code 5.1: Model definition of Encode

We continue by preparing the model and the input data for the framework as seen in
Source code 5.2. We simply get the root_node of the system we set up in Source
code 5.1 and specify an input file containing the observed data. We make use of the
pandas [23] package to read the .csv file and finally convert the retrieved data to a
numpy array on Line 11.

✞ ☎
1 import numpy as np
2 import pandas as pd
3 from mcmc import InversePerformanceInference
4
5 def main () :
6 root_node = encoding_endpoint ()
7 inputfile = "./encoding_endpoint_data.csv"
8
9 print ("Reading file" , inputfile)

10 data = pd . read_csv (f'{inputfile}' , delimiter=',' , dtype=np . float32 , header
=None)

11 observed_times = np . array (data . values [0])✝ ✆
Source code 5.2: Model setup and input preparation

32

5.2. Inference

5.2 Inference
In this brief section, we will run the actual inference on our model above, given the
observed response times described in Section 4.4 and using the framework as introduced
in Section 4.5. For this, we will extend Source code 5.2 as follows. As shown in Source✞ ☎

1 import numpy as np
2 import pandas as pd
3 from mcmc import InversePerformanceInference
4
5 def main () :
6 root_node = encoding_endpoint ()
7 inputfile = "./encoding_endpoint_data.csv"
8
9 print ("Reading file" , inputfile)

10 data = pd . read_csv (f'{inputfile}' , delimiter=',' , dtype=np . float32 , header
=None)

11 observed_times = np . array (data . values [0])
12
13 num_steps = 300
14 num_chains = 3
15 num_warmup = 100
16
17 ipi = InversePerformanceInference (root_node , observed_times)
18 ipi . train (num_steps , num_warmup , num_chains)
19 ipi . get_results (plot=True , title=inputfile)✝ ✆

Source code 5.3: Framework setup and inference invocation

code 5.3, we import the framework and add lines 13 to 15 to define arguments for
the MCMC inference, where num_samples refers to the number of samples generated
within one Markov Chain and num_chains specifies the number of Markov Chains to
be generated. Lastly, num_warmup refers to the number of warmup steps to be taken by
the sampler, which is the amount of samples generated and then discarded before starting
the actual inference. Next, we instantiate the framework itself, passing the root_node
representing our model as first argument and the observed data observed_times
as second argument on Line 17. With everything set up, we can then simply call the
train method of the framework on Line 18 and pass in the arguments we defined for
the inference. Once we have conditioned the model, we retrieve the results via the
get_results method, where we can toggle plotting, specify a title for the plots and
pass in a list of sites (i.e. components) we want to retrieve the results for. For the
latter argument, we do not specify such list, since the default behaviour is to retrieve
results for all components, which is want to do here anyways.

5.3 Results
Similar to the dataset previewed in Section 4.4, we have generated data for the system’s
behaviour while each of the remaining components display bottleneck behaviour to
further test our model. We have run the inference with each dataset, looking to infer the

33

5. Implementation

probability of each component being a bottleneck. The mean and standard deviation of
each component’s chance of being the bottleneck (e.g. load_slow_chance) is displayed
in Table 5.1 and their respective median is depicted in Table 5.2.

slow_chance mean slow_chance stddev
dataset load encode write load encode write

load 0.4380 0.3418 0.5595 0.2805 0.2384 0.2865
encode 0.5498 0.6735 0.3418 0.2859 0.2457 0.2357
write 0.5528 0.3327 0.4484 0.2906 0.2421 0.2827

Table 5.1: Mean and standard deviation of each component’s slow_chance

slow_chance median
dataset load encode write

load 0.4084 0.3001 0.5924
encode 0.5678 0.7327 0.3015
write 0.5726 0.2823 0.4232

Table 5.2: Median of each component’s slow_chance

To further visualise the results and observe their development across the inference, we
can plot a histogram for each component’s slow_chance and the trace of it during the
inference. The figures Figure 5.1, Figure 5.2 and Figure 5.3 display these plots respectively
for component load, encode and write each demonstrating bottleneck behaviour.

Looking at the histograms we can see the results reflected pretty clearly. The histograms
of the results of load itself being a bottleneck, in Figure 5.1, show that the inference
tends towards write being the cause of the performance drop, but with a notable amount
of uncertainty represented by the gradual increase instead of a steep incline towards the
right of the plot. We can also see some uncertainty in the low probability of load having
caused the drop, compared to the certainty in the encode-histogram with a steep decline.
In the next group of histograms in Figure 5.2, for encode acting as the bottleneck, we can
clearly see the inference predicting encode as the possible cause, but we can also see the
possibility of load having caused the performance drop, although with the uncertainty
dampening that result as well. The third histogram triple, seen in Figure 5.3, displays
the results obtained while write exhibits bottleneck behaviour and does in fact reflect the
inference’s wrong result of load being the cause, but again with quite some uncertainty.
Also, similar to the histograms for the first dataset, we can see uncertainty in the low
probability of write being cause.

So the inference predicts load and write as exhibiting heavy-load behaviour on the wrong
dataset each. Why would that be the case? As mentioned earlier in Chapter 4, the
response times for load and write, and thus also its datasets, lie very close to each
other, so it makes sense that the difference between those two components gets blurry,

34

5.3. Results

Figure 5.1: Histograms and traces of each component’s slow_chance for component
load showing bottleneck behaviour.

35

5. Implementation

Figure 5.2: Histograms and traces of each component’s slow_chance for component
encode showing bottleneck behaviour.

36

5.3. Results

Figure 5.3: Histograms and traces of each component’s slow_chance for component
write showing bottleneck behaviour.

37

5. Implementation

especially considering the additional noise coming from sampling and from the endpoint’s
performance.

For further insight we can take a look at the traces, which depict the development of
each component’s slow_chance as the inference progresses along the Markov chains. In
Figure 5.1 we can see the traces for the run in which load exhibited bottleneck behaviour.
The trace of component encode is not too interesting, with the trace remaining steadily
below 0.5, but the traces for load and write give interesting insight into why the results
are uncertain. Looking at the trace of load, in the second chain the probability increases
drastically and jumps above 0.5, although it then drops again in the third chain. Quite
contrary, the trace for write starts high and then drops drastically below 0.5 in the second
chain, just to increase again in the third. This might just be related to the number of
chains generated and in fact, running the inference with five or even seven chains, results
in the traces continuing to increase and decrease drastically, leaving the probabilities to
converge around 0.5 for both components, indicating indifference in these cases. Now
in the second set of traces, we can clearly see encode steadily above 0.5 and again load
experiencing the jump in the second chain, this time maintaining it across the third,
which also explains the positive skew of the histogram. Lastly in the third trace, showing
the development of write_slow_chance, we can observe quite the opposite of the
behaviour seen in the traces of the load dataset. The trace of the load component starts
at a higher value and drops below 0.5 for the third chain, while the trace of the write
component mainly remains in the lower half until it drastically increases to values above
0.5 in the third chain. And in fact, also increasing the number of chains for inference
on this dataset results in the same convergence at around 0.5 we observed for the load
dataset.

38

CHAPTER 6
Evaluation

This chapter will, in Section 6.1, look into three artificial test systems and their different
characteristics regarding performance distribution as well as structure and finally propose
models for each of them, formulated using the framework. These models will then be
implemented in Section 6.2, where we will also present the setup of the inference and the
results in terms of run time as well as correctness for each system. Lastly, we will look
into a case study of a real service, evaluating the modelling process and the inference
using data gathered from benchmarking the service in the local network.

6.1 Systems
6.1.1 System 1: Encode
The first system is Encode, the system we constructed during the course of this thesis.
Although, we already explored this system, we will use it to illustrate the whole modelling
process and to enhance it to a model that represents real behaviour by assuming more
realistic response time behaviour. As an overview, Figure 6.1 shows how the code of the
endpoint is translated to a graph representing performance dependencies and Figure 6.2
shows how said graph is then mapped to a model within the framework. As mentioned
previously, the system consists of three components, load, encode and write, which
each exhibit different performance behaviour. Component load transfers a (possibly
large) video file via wide area network, encode is a CPU-heavy process that encodes
a raw video into segments, and write writes those segments to a predefined output
storage, meaning it exhibits I/O performance behaviour.

So for modelling the system, we identify groups of lines in the code that contribute to
either each of the components or to the overall performance of the endpoint. As we
can see in Figure 6.1, we mainly have one line per component, invoking the respective
process of loading, encoding or writing, while the remaining lines of code contribute solely

39

6. Evaluation

Figure 6.1: Translating the Encode endpoint’s code to a performance dependency graph.

Figure 6.2: Mapping the performance dependency graph of Encode to a probabilistic
model.

to the overall performance and do not invoke any sub-behaviour. From these groups
we can formulate the nodes for the performance dependency graph and insert edges
representing the performance dependencies. Now the last step is to translate this graph
into a model within the framework. For that we simply choose a template or create a
custom Generic node for every node on the graph as seen in Figure 6.2. Finally we
make sure the dependencies (i.e. edges between nodes) are correctly set by passing the
list of sub-components to the respective parent component.

As mentioned before, we will update the behaviour of this model to be more representative
of a real system. We do so mainly by updating the mean response times that are passed
to the component templates. The resulting model now looks as shown in Source code 6.1.
Now that we have defined our model, we still need some observed data that we can use
for testing. We will generate multiple datasets containing the system’s overall response
times, one for each inner component exhibiting heavy-load behaviour. The generation of
those response times is done by explicitly setting one of the components’ is_slow flag to

40

6.1. Systems

✞ ☎
1 def system1_encode () :
2 asset_download = Network ('download' , lambda _ : (720 , 1100))
3 encoding = CPU ('encoding' , lambda _ : (1200 , 2400))
4 output_write = ReadWrite ('write' , lambda _ : (300 , 600))
5 return Generic ('encode_endpoint' ,
6 lambda comp_times : dist . Normal (sum (comp_times) , 33) ,
7 components=[asset_download , encoding , output_write] ,
8 exclude=True)✝ ✆

Source code 6.1: Implemented model of system Encode

True and then generating n ∈ N samples by sampling from the root node’s distribution.
Source code 6.2 shows the (simplified) process of generating the “observed” data.✞ ☎

1 def set_slow_components (node : Generic , slow_components : List [str] , visited :
List [Generic] = []) -> None :

2 if node not in visited and node . exclude == False :
3 node . set_slow (node . name in slow_components)
4 visited . append (node)
5 for comp in node . components :
6 set_slow_components (comp , slow_components , visited)
7
8 num_samples = 1000
9 times = []

10 set_slow_components (system1_encode () , ['write'])
11 for _ in range (0 , num_samples) :
12 time = numpyro . sample ('response_time' , root . get_dist ())
13 times . append (time . item ())✝ ✆

Source code 6.2: Generating response time data for the system Encode

6.1.2 System 2: Pop
The next system is representative of a service that works with the dependency of a queue.
The system itself receives a task from the queue, populates the task according to a related
file which is read from the system storage and finally computes the task in a CPU heavy
computation.

Let us first take a look at the pseudocode for system Pop. We can see the code of Pop in

Algorithm 6.1: Pop
1 task ← get_task();
2 context ← read_file(task.file);
3 populate_task(task, context);
4 return this.compute(task);

Algorithm 6.1. Line 1 already is a blocking call to a sub-component, namely a queue,
from which the system gets its next task once it has arrived in the queue. The next line,

41

6. Evaluation

Figure 6.3: Translating the Pop endpoint’s code to a performance dependency graph.

Line 2, again invokes a sub-component, this time for reading a file related to the task
and containing contextual data needed to compute the task. This file is stored within the
system. Continuing, Line 3 populates the task with the relevant context read from the
file, which can be considered a rather trivial computation, not invoking a sub-component.
Lastly, Line 4 finally computes the task and resolves the request, although not invoking
another sub-component but performing the CPU-heavy computation as the endpoint
itself. From the general knowledge of the system and its code, we can now proceed by
grouping and drawing the performance dependency graph. The resulting graph, along
with the respective lines of code that relate to the nodes is shown in Figure 6.3. We
can see how this system differs in its performance dependencies to the system describe
in Section 6.1.1 due to a third layer that gets aggregated on the second, roughly by a
Normal distribution, and additionally due the overall endpoint also behaving like a CPU
component.

Now finally, let us model the system in python using the framework. We, again, use
templates to translate the graph nodes into nodes of the framework. We can identify
the performance groups’ behaviour as Queue and ReadWrite, with both of these
getting aggregated within a Normal distribution and lastly we can identify the endpoints
behaviour as CPU. Putting this to code leaves us with the model displayed in Source
code 6.3. We use the response times of queue and readfile in the setup component
to sample from a Normal distribution around the sum of the sub-components’ response
times. Lastly we specify the pop_endpoint component with CPU behaviour and the
base provided by the response time of setup.

Again, we generated “observed” data for this system and each of the components (including
the root component) exhibiting heavy-load behaviour.

42

6.1. Systems

✞ ☎
1 def system2_pop () :
2 task_queue = Queue ('queue' , lambda _ : (100 , 200))
3 file_read = ReadWrite ('readfile' , lambda _ : (600 , 1000))
4 setup = Generic ('setup' ,
5 lambda comp_samples : dist . Normal (comp_samples [0] +

comp_samples [1] , 100) ,
6 components=[task_queue , file_read] ,
7 exclude=True)
8 return CPU ('pop_endpoint' , lambda comp_samples : (comp_samples [0] ,

comp_samples [0] ∗ 2 . 0) , components=[setup])✝ ✆
Source code 6.3: Implemented model of system Pop

6.1.3 System 3: Convert
The last system that we will define, called Convert, will incorporate the use of a shared
service twice within one execution of the endpoint and will also offer a more interesting
dependency graph. The service first reads a file from the filesystem, converts said file
into a different format and then writes the new file onto the filesystem again. This
incorporates two invocations of a fileservice and one other component doing the
conversion.

Again, let us start by looking at the pseudocode. Looking at the code of Convert in

Algorithm 6.2: Convert
Input: Filename of the file to be converted
Output: Name of the converted file

1 file ← fileservice.read_file(filename);
2 convert_file ← convert(file);
3 output_filename ← fileservice.write_file(converted_file);
4 return output_filename;

Algorithm 6.2, we can see more clearly its dual use of the fileservice, once on Line 1
for reading and once on Line 3 for writing. In between that, on Line 2, the endpoint
invokes a CPU-heavy conversion component to perform the actual file conversion. Finally,
Line 4 concludes the endpoint’s execution by returning the filename of the converted
file. Now since we use fileservice twice and we only want to infer its slow_chance
once, we cannot define two separate nodes to represent this component, meaning we
define it once and then make use of it twice (similar to instantiation and usage of a service
in object-oriented programming). So for the performance dependency graph, we first
create the fileservice node and then two separate nodes, one for read and write
each, which depend on the fileservice node for their performance. Further, there
is a second dependency for the write node, namely the conversion, so we introduce
another convert node as a dependency for write. Lastly, we combine it all via the
endpoint node, which depends on both, the write and read node. The resulting
graph along with the mapped lines of code can be seen in Figure 6.4.

43

6. Evaluation

Figure 6.4: Translating the Convert endpoint’s code to a performance dependency graph.

As a final step, we again convert the graph to an actual model within the framework
by using the templates and defining the nodes of the system. We use the ReadWrite
template for the fileservice node and the CPU template for the convert node.
For write, read and endpoint we make use of the Generic node to define custom
behaviour and since those components simply aggregate the performances of their sub-
components, we will describe their behaviour with Normal distributions and exclude
them from slow_chance inference. The resulting model implementation can be seen in
Source code 6.4. In the same manner as for the systems above, we generated “observed”

✞ ☎
1 def system3_convert () :
2 fileservice = ReadWrite ('fileservice' , lambda _ : (500 , 700))
3 convert = CPU ('convert' , lambda _ : (200 , 400))
4
5 read_file = Generic ('read' ,
6 lambda comp_times : dist . Normal (comp_times [0] , 10) ,
7 components=[fileservice] ,
8 exclude=True)
9 write_file = Generic ('write' ,

10 lambda comp_times : dist . Normal (sum (comp_times) 10) ,
11 components=[convert , fileservice] ,
12 exclude=True)
13
14 return Generic ('endpoint' ,
15 lambda comp_times : dist . Normal (sum (comp_times) , 25) ,
16 components=[read_file , write_file] ,
17 exclude=True)✝ ✆

Source code 6.4: Implemented model of system Convert

data that will be used for testing the inference.

44

6.2. Inference & Results

6.2 Inference & Results
Now that we have defined our test systems and models in Section 6.1, we can start with
the inference and evaluate its quality and run time. This section will cover each system
separately by presenting the inference parameters used and then evaluating the inference
and its results. Inference is implemented as shown in Source code 6.5. Since we are also
measuring the run time of the inference, we will not plot the graphs immediately after
completion of the inference but rather manually trigger the plotting once the run time
was measured to avoid blocking the process until user interaction. For each system, we
will adapt the values num_samples, num_warmup and num_chains to find the best
results. The inference was performed on a laptop with an AMD Ryzen 9 5900X (3.3
GHz) CPU and 16 GB of RAM.✞ ☎

1 start = datetime . now ()
2
3 ipi = InversePerformanceInference (root_node , observed_times)
4 ipi . train (num_samples , num_warmup , num_chains)
5 samples , _ , sites = ipi . get_results (plot=False)
6
7 end = datetime . now ()
8 print ("Runtime:" , (end -start))
9

10 ipi . plot_samples_for_sites (samples , sites , f"{inputfile} Histograms")
11 ipi . plot_traces_for_sites (samples , sites , f"{inputfile} Traces")✝ ✆

Source code 6.5: Inference of each system

6.2.1 System 1: Encode
Starting inference on this system, we will use a similar structure to define the parameters
for the inference algorithm as for the example in Section 4.5.1, but since we also have a
larger number of observed response times (n = 1000) we will also increase our number of
samples and warmup samples generated during inference. We define the parameters for
this inference to be:

root_node = system1_encode()

num_samples = 3000

num_chains = 3

num_warmup = 1000

(6.1)

Performing the inference for each of the datasets generated in Section 6.1, produced the
mean and standard deviations shown in Table 6.1 with the respective median shown in
Table 6.2. The run time of the inference for each dataset is shown in Table 6.3

In an optimal result, we would see the highest mean and median values at the diagonal
of the table. As we can see from the results, dataset download breaks this proposal, as

45

6. Evaluation

slow_chance mean slow_chance stddev
dataset download encoding write download encoding write

download 0.4408 0.3345 0.5530 0.2835 0.2417 0.2873
encoding 0.5549 0.6658 0.4429 0.2821 0.2361 0.2825
write 0.4426 0.3318 0.5527 0.2801 0.2349 0.2840

Table 6.1: Mean and standard deviation of each component’s slow_chance of system
Encode.

slow_chance median
dataset download encoding write

download 0.4091 0.2874 0.5786
encoding 0.5793 0.7016 0.4144
write 0.4197 0.2893 0.5733

Table 6.2: Median of each component’s slow_chance of system Encode

dataset
download encoding write

runtime [hh:mm:ss:SSS] 0:03:36.206 0:03:51.682 0:04:00.840

Table 6.3: Run time of the inference on each dataset for system Encode.

for that dataset the inference suggests a higher probability for the write component
to have caused the observed data, instead of the download component. We tested
increasing the number of chains to 5, 7 and 10 to observe any change in convergence,
which produced mixed results. The prediction of encoding for the encoding dataset
stayed at roughly the same percentage across all number of chains while the probabilities
of download and write on their respective datasets seemed to converge towards the
same value at roughly 0.47 with 7 chains. From there on they started diverging again in
runs with 10 chains, moving towards the same values that were produced when running
3 chains. With increasing number of chains the run times also significantly increased, the
specific times for each inference can be seen in Table 6.4.

run time of dataset [hh:mm:ss:SSS]
num_chains download encoding write

5 chains 0:07:09.889 0:08:21.400 0:08:49.685
7 chains 0:10:11.032 0:10:51.323 0:11:03.942
10 chains 0:14:02.140 0:17:32.782 0:13:26.351

Table 6.4: Run time of the inference performed with 5, 7 and 10 Markov chains on each
dataset for system Encode.

On the other hand, what does seem to improve the results for this system is increasing

46

6.2. Inference & Results

the target acceptance probability of the MCMC inference from 0.8 to 0.9, which can be
done via the framework’s train call as seen in Source code 6.6. Although the results
for the encoding and write datasets remain the same, it no longer clearly predicts the
write component on the download dataset, unfortunately it also does not correctly
infer the download component but rather states the roughly same probability of 0.44
for each of the two components to have caused the data seen in the download dataset.

We can see some clear indifference between the download and write components,
while on the other hand a performance drop caused by the encoding component seems
to be reliably inferred. One explanation for this might be the large difference in the
mean response time of the CPU-heavy encoding component compared to the response
time means of the network and I/O heavy components, making a performance shift
of the CPU-heavy component more easily detectable among the data. Another reason
could stem from the fact that when looking at the mean and standard deviation of the
observed data, one notices quite a high standard deviation, around four to six hundred,
on the download and write datasets. This is more than the difference of the actual mean
response times of these components and could cause indifference when trying to infer
if either of these components’ exhibited heavy-load behaviour. We tested the latter by
decreasing the estimated behaviour of the write component to (200, 400), for regular
and heavy-load behaviour respectively, and ran the inference with adapted “observed”
data, which resulted in seeing the same behaviour as observed in Section 5.3, with the
results of download and write converging towards indifference.✞ ☎

1 ipi . train (num_samples , num_warmup , num_chains , target_accept_prob=0.9)✝ ✆
Source code 6.6: Setting target_accept_prob for the inference.

6.2.2 System 2: Pop
For comparability and considering the size of the datasets for this system is again
n = 1000, we will start with the same inference parameters as in Section 6.2.1. So we
will use the following parameters:

root_node = system2_pop()

num_samples = 3000

num_chains = 3

num_warmup = 1000

(6.2)

Again, in the same manner as in Section 6.2.1, we executed the inference and measured
its run time. The mean and standard deviation can be seen in Table 6.5 and the median
in Table 6.6. Run times are presented in Table 6.7.

We can see the inference mainly predicting the pop_endpoint component as the cause
for the observed data across all datasets, while being more uncertain on the queue and

47

6. Evaluation

slow_chance mean slow_chance stddev
dataset pop_endpoint queue readfile pop_endpoint queue readfile

pop_endpoint 0.6659 0.4423 0.4449 0.2337 0.2828 0.2818
queue 0.5585 0.3306 0.3317 0.2816 0.2321 0.2367
readfile 0.5554 0.4434 0.4429 0.2815 0.2807 0.2828

Table 6.5: Mean and standard deviation of each component’s slow_chance of system
Pop.

slow_chance median
dataset pop_endpoint queue readfile

pop_endpoint 0.7044 0.4125 0.4198
queue 0.5896 0.2894 0.2901
readfile 0.5862 0.4127 0.4209

Table 6.6: Median of each component’s slow_chance of system Pop.

run time of dataset [hh:mm:ss:SSS]
num_chains download encoding write

3 chains 0:03:41.640 0:03:47.575 0:03:52.348
5 chains 0:08:31.580 0:07:19.964 0:07:55.242
7 chains 0:10:03.141 0:06:51.236 0:08:44.625

Table 6.7: Run times of the inference on each dataset for system Pop

readfile dataset. The histograms in Figure 6.5 reflect these results respectively, with
the broader curves showing uncertainty. Now the traces for this run, as seen in Figure 6.6
do not provide any further insight and rather simply reflect the results, so we increased
the number of chains and performed the inference again. We ran the inference again with
5, 7 and 10 chains, getting the best results with 5 chains. The run times for these runs
can also be seen in Table 6.7. When looking at the histograms of the run with 5 chains,
shown in Figure 6.7, one can clearly see more confindence in all results, but with more
involvement of queue on each dataset. The exact probabilities are shown in Table 6.8
with the means displayed in Table 6.9.

slow_chance mean slow_chance stddev
dataset pop_endpoint queue readfile pop_endpoint queue readfile

pop_endpoint 0.6695 0.5984 0.3340 0.2368 0.2715 0.2359
queue 0.4681 0.5343 0.3306 0.2892 0.2864 0.2343
readfile 0.4680 0.5999 0.5330 0.2876 0.2700 0.2848

Table 6.8: Mean and standard deviation of each component’s slow_chance of system
Pop for inference with 5 chains.

48

6.2. Inference & Results

Figure 6.5: Histograms for inference on system Pop using 3 chains.

As we can see, the prediction for dataset pop_endpoint is rather confident and correct,
most likely due to the high impact on performance of that component, similar to the result
of Section 6.2.1. For the second dataset, with component queue having shown heavy-load
behaviour, the inference does result in the right component having the highest probability,
but with a significant uncertainty as seen in Figure 6.7, resulting in a probability of
just 0.55. For the last dataset, in which readfile had exhibited heavy-load behaviour,
the results suggest queue as the culprit again, this time even with more confidence
at 0.63, but also open the possibility of readfile being the cause, although with
uncertainty and at just 0.54. Interestingly, when running the inference with 10 chains on
the readfile dataset, the results for each component seem to converge at around 0.5,
suggesting that a performance drop caused by component readfile might hardly be
inferrable in this setting. We again, tested some slightly different variations of defined
performance behaviour for this system on respectively generated datasets, which all
amounted to roughly the same results, varying just in the exact probabilities but not

49

6. Evaluation

Figure 6.6: Traces of the inference on system Pop using 3 chains.

slow_chance median
dataset pop_endpoint queue readfile

pop_endpoint 0.7135 0.6355 0.2938
queue 0.4492 0.5508 0.2910
readfile 0.4520 0.6358 0.5465

Table 6.9: Median of each component’s slow_chance of system Pop for inference with
5 chains.

much in the gained information.

50

6.2. Inference & Results

Figure 6.7: Histograms for inference on system Pop using 5 chains.

6.2.3 System 3: Convert
In the same manner as before, we start inference with the following parameters:

root_node = system3_convert()

num_samples = 3000

num_chains = 3

num_warmup = 1000

(6.3)

This yields the mean, standard deviation and medians seen in tables 6.10 and 6.11, with
the run times displayed in Table 6.12. These initial results seem to not provide any
useful information since the result of the inference on each dataset is essentially the same,
but as we will see, these results are a nice showcase of the importance of tweaking the
inference’s parameters.

51

6. Evaluation

slow_chance mean slow_chance stddev
dataset fileservice convert fileservice convert

fileservice 0.5510 0.4506 0.2821 0.2875
convert 0.5541 0.4502 0.2825 0.2844

Table 6.10: Mean and standard deviation of each component’s slow_chance of system
Convert.

slow_chance median
dataset fileservice convert

fileservice 0.5747 0.4258
convert 0.5793 0.4241

Table 6.11: Median of each component’s slow_chance of system Convert.

run time of dataset [hh:mm:ss:SSS]
num_chains fileservice convert

3 chains 0:14:08.869 0:13:48.346
5 chains 0:18:45.354 0:17:43.022
7 chains 0:35:59.408 0:34:03.561

Table 6.12: Run times of the inference on each dataset for system Convert

We again, tested the inference with 5 and 7 chains, unfortunately without getting any
clear improvement on the results, instead only increasing run time. Now to reduce run
time, we started decreasing the number of samples and warmup samples generated. We
started seeing an improvement at 1000 samples which settled at 300. Further improvement
was then gained by reducing the number of warmup samples, getting the best results
at num_warmup=100. Even further decrease resulted in less reliable results. Now the
drastic decrease in sampling allowed us to increase the number of chains again, although
we stopped seeing improvement in the results already at 12 chains, getting the best results
with 10 chains. These results can be seen in Table 6.13, with the respective medians in
Table 6.14 and the run times for 10 chains in Table 6.15.

This test system acts as a nice example showcasing the importance of parameter tweaking
for the inference, also showcasing that a mindful reduction of generated samples can still

slow_chance mean slow_chance stddev
dataset fileservice convert fileservice convert

fileservice 0.5859 0.5380 0.2773 0.2830
convert 0.4653 0.5351 0.2868 0.2877

Table 6.13: Mean and standard deviation of each component’s slow_chance of system
Convert with 10 chains, 300 samples and 100 warmup samples.

52

6.3. Case study: Thumbnails

slow_chance median
dataset fileservice convert

fileservice 0.6196 0.5587
convert 0.4503 0.5529

Table 6.14: Median of each component’s slow_chance of system Convert with 10
chains, 300 samples and 100 warmup samples.

run time of dataset [hh:mm:ss:SSS]
num_chains, num_samples fileservice convert

10 chains, 1000 samples 0:12:10.621 0:11:19.283
10 chains, 300 samples 0:04:53.213 0:04:58.018

Table 6.15: Run times of the inference on each dataset for system Convert with 10 chains,
using 1000 and 300 samples with 100 warmup samples.

increase the quality of results.

Revisiting systems Encode and Pop and reducing the number of samples and warmup
samples generated did not produce any improvement of the results, but helped reduce
the run times of the inference without loss of result quality.

6.3 Case study: Thumbnails
This section is a case study evaluating the modelling process and inference with data
obtained from benchmarking a real-life system. The system is a service for generating
thumbnails, and to efficiently gather data while being able to manually inflict heavy-load
on each component, we used the web-service described in Section 4.6, configured to
represent this system and its components performing real CPU, I/O and network tasks.
Similar to the data gathering of Section 4.6, we let the service run on a Raspberry Pi
Model 4 and probed the composed endpoint using the Apache Benchmark Tool [22]. We
gathered response times reflecting performance issues by purposefully triggering heavy
load on each respective component through occupying CPU cores, copying files from and
to the filesystem and by transferring large files via the network and benchmarking the
endpoint simultaneously.

Following the same procedure as before, we will first look at the system’s code, cre-
ate a performance dependency graph and model the system within the framework in
Section 6.3.1 and then perform inference and evaluate the results in Section 6.3.2.

6.3.1 Definition & Modelling
Let us first look at the general behaviour of the system. Upon request to the endpoint,
the system reads a video file from the filesystem and loads another file containing multiple

53

6. Evaluation

Figure 6.8: Translating the Thumbnails endpoint’s code to a performance dependency
graph.

timestamps via network, then proceeds by getting the data of each frame specified by
the timestamps and finishes by writing it to an image file and uploading all files to a
network storage. We can see the simplified pseudocode of this system in Algorithm 6.3.

Algorithm 6.3: Thumbnails
Input: request

1 video ← fs.read_file(request.filename);
2 timestamps ← ns.load_file(request.url);
3 frames ← [];
4 while timestamp ← timestamps.pop() do
5 framedata ← get_frame(video, timestamp);
6 frame ← fs.write_frame(framedata));
7 frames.append(frame);
8 end
9 ns.upload_frames(frames);

Starting with Line 1, the system reads the video file using the filename given in the
request, to continue on Line 2 with downloading the file containing the timestamps from
the URL also specified in the request. Both lines use a respective service, fs for the
filesystem service and ns for the network service. The loop on Line 4 then retrieves, for
each timestamp given, the data of a single frame, invoking a CPU-heavy computation
(Line 5), and writes the framedata to an image file on Line 6, again using the fs
service. Finally, Line 9 concludes the process by uploading the generated frames via
the network service ns. Lines 3 and 7 do not invoke any component exhibiting certain
behaviour and contribute solely to the endpoint’s overall performance.

54

6.3. Case study: Thumbnails

We can again, easily translate this system to a performance dependency graph as shown
in Figure 6.8. As we have previously seen with the system Pop in Section 6.1.2, Lines 1
and 6 warrant a separate node for the service fs, which is then used in nodes read and
write and similarly, Lines 2 and 9 pose the need for node ns representing the service
ns and being a dependency of nodes load and upload. Lastly, from Line 5 we create
node compute to represent the computation of the framedata at the given timestamp.

In the same manner as before, we implement the model in python using the framework’s
templates. The resulting model can be seen in Source code 6.7. We use the templates

✞ ☎
1 def case_study () :
2 fileservice = ReadWrite ('fs' , lambda _ : (245 , 650))
3 networkservice = Network ('ns' , lambda _ : (530 , 1660))
4 compute = CPU ('compute' , lambda _ : (240 , 360))
5
6 read_file = Generic ('read' ,
7 lambda comp_times : dist . Normal (comp_times [0] , 10) ,
8 components=[fileservice] ,
9 exclude=True)

10 write_file = Generic ('write' ,
11 lambda comp_times : dist . Normal (comp_times [0] , 25) ,
12 components=[fileservice] ,
13 exclude=True)
14
15 download = Generic ('load' ,
16 lambda comp_times : dist . Normal (comp_times [0] , 10) ,
17 components=[networkservice] ,
18 exclude=True)
19 upload = Generic ('upload' ,
20 lambda comp_times : dist . Normal (comp_times [0] , 25) ,
21 components=[networkservice] ,
22 exclude=True)
23
24 return Generic ('case_study' ,
25 lambda comp_times : dist . Normal (sum (comp_times) , 50) ,
26 components=[read_file , download , compute , upload ,

write_file] ,
27 exclude=True)✝ ✆

Source code 6.7: Implemented model of system Thumbnails

ReadWrite, Network and CPU for the services fs, ns and the compute endpoint
respectively, while describing the dual usage of each of the services with a Generic
node, sampling from a Normal distribution with an estimated noise around the service’s
performance. Finally, we compose the performance behaviour by, again, using a Generic
node with the mean at the sum of the components’ response times and a given noise
as variance. The components described by Generic nodes are all excluded from being
a possible cause for the performance issue since they all do not exhibit any impactful
behaviour.

55

6. Evaluation

6.3.2 Inference & Evaluation

Now let us look into performing inference on the Thumbnails system using actual, observed
data gathered as described in Section 6.3. Due to the data coming from a real system
and being gathered by benchmarking this system in realtime, the size of the observed
data is n = 500 for this inference. Thus, the initial parameters chosen for this inference
are:

root_node = case_study()

num_samples = 500

num_chains = 3

num_warmup = 100

(6.4)

We present the results of this inference in the same manner as before, with the mean and
standard deviation displayed in Table 6.16 and the medians displayed in Table 6.17. The
run times of each dataset and parameter configuration used are shown in Table 6.18.

slow_chance mean slow_chance stddev
dataset files. networks. compute files. networks. compute

fileservice 0.4414 0.4473 0.5548 0.2838 0.2866 0.2821
networkservice 0.5256 0.4461 0.6669 0.2893 0.2863 0.2289
compute 0.4912 0.4604 0.3899 0.3155 0.2744 0.2974

Table 6.16: Mean and standard deviation of each component’s slow_chance of system
Thumbnails.

slow_chance median
dataset fileservice networkservice compute

fileservice 0.4288 0.4163 0.5844
networkservice 0.5386 0.4297 0.6998
compute 0.4864 0.4394 0.3298

Table 6.17: Median of each component’s slow_chance of system Thumbnails

run time of dataset [hh:mm:ss:SSS]
num_chains, num_samples fileservice networkservice compute

3 chains 500 samples 0:02:02.304 0:01:46.993 0:01:07.273
3 chains, 1000 samples 0:03:50.693 0:04:16.116 0:02:32.601
5 chains, 1000 samples 0:04:41.882 0:06:29.370 0:03:44.998
7 chains, 1000 samples 0:07:25.706 0:09:02.567 0:05:28.094
10 chains, 1000 samples 0:10:15.584 0:13:01.872 0:07:48.065

Table 6.18: Run times of the inferences on each dataset for system Thumbnails

56

6.3. Case study: Thumbnails

As we can see from the results, inference with the initial parameters does not yield useful
results, in fact, on the run itself, the acceptance probability of the different chains is varying
a lot and often not hitting the default target acceptance probability of 0.8, indicating
that more samples are needed during inference. Thus, we increased the num_samples
to 1000 and num_warmup to 300, leading to the acceptance probability always hitting
the target of at least 80%. The results for this inference run are shown in Table 6.19
and Table 6.20 respectively. Although the results for the datasets fileservice and
networkservice do not differ much to the previous run, we can see an improvement
in the result for dataset compute, with the inference actually yielding a probability
of roughly 55% for component compute being the cause of the performance issue, as
opposed to strong indifference and compute being the component with the lowest chance
on the previous result.

slow_chance mean slow_chance stddev
dataset files. networks. compute files. networks. compute

fileservice 0.4470 0.4434 0.5554 0.2857 0.2829 0.2828
networkservice 0.5464 0.4516 0.6554 0.2825 0.2814 0.2367
compute 0.3310 0.4412 0.5557 0.2352 0.2837 0.2826

Table 6.19: Mean and standard deviation of each component’s slow_chance of system
Thumbnails.

slow_chance median
dataset fileservice networkservice compute

fileservice 0.4272 0.4227 0.5733
networkservice 0.5689 0.4277 0.7000
compute 0.2896 0.4143 0.5850

Table 6.20: Median of each component’s slow_chance of system Thumbnails

Testing a further increase of num_samples and num_warmup did not provide any more
improvement on the results. So the next parameter we tweaked was num_chains, the
number of Markov chains generated. We increased the number of chains to 5, 7 and 10
while keeping the improved parameters of num_samples=1000 and num_warmup=300
for the inference. Using 5 chains worsened the results, with the results heavily predicting
networkservice on every dataset. The results for inference on 7 chains start to
shift away from these predictions and reather improve again, although still predicting
networkservice wrongly on the fileservice and compute dataset. The run
with 10 chains, again, yields results indicating networkservice as being the cause,
although with less probability, but unfortunately not increasing the probability of the
other components either.
Looking at the traces for the runs with 7 and 10 chains in Figure 6.9 and Figure 6.10,
we can see that the slow_chance of compute and networkservice takes a sudden
and drastic increase or decrease quite often, while the trace of fileservice seems

57

6. Evaluation

to remain stable on most datasets. Similar to the result of Section 6.2.2 the sudden
increase and decrease suggests that these traces might not converge at all and, in fact,
testing with 15 and even 20 chains backs this assumption with the results varying back
and forth and the traces showing more and more “jumps”. Further, looking at the
model and the defined behaviour of the components, we can see very similar response
times between components in regular behaviour (see components fs and compute)
and overlapping ranges of response times between components across their regular and
heavy-load behaviour (see components ns and fs), which could be the reason for being
unfit for inference and is a similar conclusion as drawn on one of the artificial examples,
in Section 6.2.1. As a final tweak, increasing the target acceptance probability to 0.9
instead of 0.8 did not improve, but slightly worsened the results across all configurations.

Figure 6.9: Traces of the inference on system Thumbnails using 7 chains.

This case study acts as a negative result, showcasing that systems as they appear and
behave in real scenarios, might not be fit for reliable Bayesian inference regarding their
performance. The success of such an application depends heavily on the components
present in the system and the difference of the ranges of response times produced by the
behaviour of these components.

58

6.3. Case study: Thumbnails

Figure 6.10: Traces of the inference on system Thumbnails using 10 chains.

59

CHAPTER 7
Conclusion

We proposed a method of modelling systems and their performance in Chapter 4 along
with a way to aid in tackling inverse performance problems probabilistically through
Bayesian inference and the framework described in Section 4.5. In Chapter 6 we tested
this way of system modelling and evaluated inference through the framework by looking
at correctness and run time of the inference, performed on three artificial systems with
generated data and one actual system with gathered data.

During evaluation, the proposed method of modelling and performance representation
provided a rather simple workflow of translating between code, graph and model with
which, given some prior knowledge on the system’s structure and behaviour, inference
using the framework was quickly set up and configured. This opens the possibility of
automating such a code-to-model translation with the help of, for example, static code
analysis augmented by prior knowledge, although further research would be needed
towards this approach. The results and information gained when running the inference
on the other hand, depend highly on the system’s structure and performance behaviour
as well as on the number of samples and chains generated during MCMC inference. As
we have seen in the evaluation of system Encode (Section 6.2.1), if multiple components
within the system exhibit similar performance behaviour and response times, the inference
of which of these components might have produced some given data becomes unreliable,
with uncertainty in predictions increasing. Further, in Section 6.2.2 we could see the
importance of the number of Markov chains, also observing how the quality of results
decreases again with too many chains. The evaluation of system Convert in Section 6.2.3
showed firstly, the impact of the system’s internal structure on run time, with surprisingly
high run times compared to the other two systems and secondly, again the importance of
tweaking the inference parameters since we could observe an increase in quality of the
results when decreasing the number of samples generated, simultaneously improving run
time as well. Lastly, the case study of an actual system Thumbnails with real, gathered
data, from the system running in local network, showed that not all real systems might

61

7. Conclusion

be fit for inference regarding their performance, especially systems with components
producing similar values of response times.

In conclusion, we have shown that, given prior knowledge on computer systems and their
behaviour, it is possible to rather easily translate the system and its performance into
probabilistic models that can then be used in Bayesian inference, but on the other hand
we could see that the inference itself needs careful configuration and in-depth testing
with artificial data before being able to possibly support in solving performance problems
on unseen data and even then, many systems might not even be fit for this type of
inference in general. While the former observation can be used to drive research towards
automation of the modelling process, the latter possibly shows the need for further
refinement in the implementation of specialized inference tools such as the proposed
framework and represents a major limitation of this approach.

62

List of Figures

4.1 Intermediate results of inference on component write with increasing number
of considered observations. 22

4.2 Intermediate results of inference on component load with increasing number
of considered observations. 23

4.3 Intermediate results of inference on component encode with increasing number
of considered observations. 23

4.4 Intermediate results of inference on component load along with the results of
inference on component write. 24

4.5 Overview of the inference framework with an example system as input. . . 25
4.6 Performance dependency graph of the encoding example. 27
4.7 Histogram of response times of calls to the CPU endpoint. 29
4.8 Histogram of response times of calls to the I/O endpoint. 29
4.9 Histogram of response times of calls to the network endpoint. 29

5.1 Histograms and traces of each component’s slow_chance for component
load showing bottleneck behaviour. 35

5.2 Histograms and traces of each component’s slow_chance for component
encode showing bottleneck behaviour. 36

5.3 Histograms and traces of each component’s slow_chance for component
write showing bottleneck behaviour. 37

6.1 Translating the Encode endpoint’s code to a performance dependency graph. 40
6.2 Mapping the performance dependency graph of Encode to a probabilistic

model. 40
6.3 Translating the Pop endpoint’s code to a performance dependency graph. 42
6.4 Translating the Convert endpoint’s code to a performance dependency graph. 44
6.5 Histograms for inference on system Pop using 3 chains. 49
6.6 Traces of the inference on system Pop using 3 chains. 50
6.7 Histograms for inference on system Pop using 5 chains. 51
6.8 Translating the Thumbnails endpoint’s code to a performance dependency

graph. 54
6.9 Traces of the inference on system Thumbnails using 7 chains. 58
6.10 Traces of the inference on system Thumbnails using 10 chains. 59

63

List of Tables

4.1 Common components and the respective distributions describing their be-
haviour. 25

5.1 Mean and standard deviation of each component’s slow_chance 34
5.2 Median of each component’s slow_chance 34

6.1 Mean and standard deviation of each component’s slow_chance of system
Encode. 46

6.2 Median of each component’s slow_chance of system Encode 46
6.3 Run time of the inference on each dataset for system Encode. 46
6.4 Run time of the inference performed with 5, 7 and 10 Markov chains on each

dataset for system Encode. 46
6.5 Mean and standard deviation of each component’s slow_chance of system

Pop. 48
6.6 Median of each component’s slow_chance of system Pop. 48
6.7 Run times of the inference on each dataset for system Pop 48
6.8 Mean and standard deviation of each component’s slow_chance of system

Pop for inference with 5 chains. 48
6.9 Median of each component’s slow_chance of system Pop for inference with

5 chains. 50
6.10 Mean and standard deviation of each component’s slow_chance of system

Convert. 52
6.11 Median of each component’s slow_chance of system Convert. 52
6.12 Run times of the inference on each dataset for system Convert 52
6.13 Mean and standard deviation of each component’s slow_chance of system

Convert with 10 chains, 300 samples and 100 warmup samples. 52
6.14 Median of each component’s slow_chance of system Convert with 10 chains,

300 samples and 100 warmup samples. 53
6.15 Run times of the inference on each dataset for system Convert with 10 chains,

using 1000 and 300 samples with 100 warmup samples. 53
6.16 Mean and standard deviation of each component’s slow_chance of system

Thumbnails. 56
6.17 Median of each component’s slow_chance of system Thumbnails 56
6.18 Run times of the inferences on each dataset for system Thumbnails 56

65

6.19 Mean and standard deviation of each component’s slow_chance of system
Thumbnails. 57

6.20 Median of each component’s slow_chance of system Thumbnails 57

66

List of Algorithms

4.1 Encode endpoint . 26

4.2 Modelling Encode . 27

6.1 Pop . 41

6.2 Convert . 43

6.3 Thumbnails . 54

67

List of source codes

3.1 Simple branching in numpyro . 13
5.1 Model definition of Encode . 32
5.2 Model setup and input preparation . 32
5.3 Framework setup and inference invocation 33
6.1 Implemented model of system Encode 41
6.2 Generating response time data for the system Encode 41
6.3 Implemented model of system Pop . 43
6.4 Implemented model of system Convert 44
6.5 Inference of each system . 45
6.6 Setting target_accept_prob for the inference. 47
6.7 Implemented model of system Thumbnails 55

69

Bibliography

[1] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based performance
prediction in software development: a survey,” IEEE Transactions on Software
Engineering, vol. 30, p. 295–310, May 2004.

[2] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web server performance modeling
using an m/g/1/k*ps queue,” in 10th International Conference on Telecommunica-
tions, 2003. ICT 2003., vol. 2, p. 1501–1506 vol.2, Feb 2003.

[3] A. Mohammadi and M. R. Salehi-Rad, “Bayesian inference and prediction in an
m/g/1 with optional second service,” Communications in Statistics - Simulation
and Computation, vol. 41, p. 419–435, Mar 2012.

[4] C. Sutton and M. I. Jordan, “Bayesian inference for queueing networks and modeling
of internet services,” The Annals of Applied Statistics, vol. 5, no. 1, p. 254–282, 2011.

[5] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mystery machine:
End-to-end performance analysis of large-scale internet services,” in Proceedings of
the 11th USENIX Conference on Operating Systems Design and Implementation,
OSDI’14, (USA), p. 217–231, USENIX Association, 2014.

[6] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “Microrca: Root cause localization of
performance issues in microservices,” in NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, pp. 1–9, Apr 2020.

[7] T. Bayes, “Lii. an essay towards solving a problem in the doctrine of chances. by the
late rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfr
s,” Philosophical transactions of the Royal Society of London, no. 53, pp. 370–418,
1763.

[8] L. Wasserman, Bayesian Inference, pp. 175–192. New York, NY: Springer New York,
2004.

[9] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos,
R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep universal
probabilistic programming,” J. Mach. Learn. Res., vol. 20, pp. 28:1–28:6, 2019.

71

[10] T. Wiecki, “pymc-devs/pymc: v5.3.0,” Zenodo, 4 2023.

[11] S. D. Team, “Stan modeling language users guide and reference manual.” https:
//mc-stan.org, 2023.

[12] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
and T. E. Oliphant, “Array programming with numpy,” Nature, vol. 585, pp. 357–362,
sep 2020.

[13] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the monte carlo method
is so important today,” WIREs Computational Statistics, vol. 6, no. 6, p. 386–392,
2014.

[14] D. van Ravenzwaaij, P. Cassey, and S. D. Brown, “A simple introduction to markov
chain monte–carlo sampling,” Psychonomic Bulletin & Review, vol. 25, pp. 143–154,
feb 2018.

[15] F. Fischer, “Inverse performance inference.” https://gitlab.com/
flofischer/inverse-performance-inference, 2023. Accessed:
03.05.2023.

[16] T. Chen, Y. Chen, Q. Guo, O. Temam, Y. Wu, and W. Hu, “Statistical performance
comparisons of computers,” in IEEE International Symposium on High-Performance
Comp Architecture, pp. 1–12, 2012.

[17] A. Khoshkbarforoushha and R. Ranjan, “Resource and performance distribution
prediction for large scale analytics queries,” in Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering, ICPE ’16, (New York,
NY, USA), p. 49–54, Association for Computing Machinery, 2016.

[18] V. Paxson, “Empirically derived analytic models of wide-area tcp connections,”
IEEE/ACM Transactions on Networking, vol. 2, no. 4, pp. 316–336, 1994.

[19] D. G. Feitelson, Case Studies, p. 399–489. Cambridge University Press, 2015.

[20] D. G. Feitelson, Statistical Distributions, p. 73–129. Cambridge University Press,
2015.

[21] G. R. and B. R., “Weibull cumulative distribution based real-time response and
performance capacity modeling of cyber–physical systems through software defined
networking,” Computer Communications, vol. 150, pp. 235–244, 2020.

[22] T. A. S. Foundation, “ab - apache http server benchmarking tool.” https://httpd.
apache.org/docs/2.4/programs/ab.html.

[23] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.

72

https://mc-stan.org
https://mc-stan.org
https://gitlab.com/flofischer/inverse-performance-inference
https://gitlab.com/flofischer/inverse-performance-inference
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

	Kurzfassung
	Abstract
	Contents
	Problem Definition
	Problem space
	Research questions

	Related Work
	Preliminaries
	Bayesian inference
	Probabilistic Programming

	An Inverse Model for Software Performance Analysis
	Formalisation
	Parameters
	Modelling
	Inference
	Framework
	Performance distributions

	Implementation
	Model
	Inference
	Results

	Evaluation
	Systems
	Inference & Results
	Case study: Thumbnails

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

