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Abstract

Spatial understanding and sensing is a cornerstone of modern computer vision and the
enabler of a vast field of applications in robotics, augmented reality, or self-driving by
providing a geometrically interpretable foundation. However, this comes with a number
of challenges whose two most fundamental ones are the acquisition of range data and
the coherent integration of said data into a reconstruction. These are the main topics
of this work and receive dedicated chapters each.

The first major chapter of this work, Chapter 3, is focused on depth sensing and takes
on the challenge of improving existing structured light principles. By projecting encoded
light onto the measured surfaces and decoding the pattern position from a captured
camera image, simple triangulation can give dense depth values on a per-pixel basis.
Spatial neighborhood encoding, in particular, is a popular structured light approach
for off-the-shelf hardware. However, it suffers from the distortion and fragmentation
of the projected pattern by the scene’s geometry in the vicinity of a pixel. This forces
algorithms to find a delicate balance between depth prediction accuracy and robustness
to pattern fragmentation or appearance change. While stereo matching provides more
robustness at the expense of accuracy, we show that learning to regress a pixel’s position
within the projected pattern is not only more accurate when combined with classification
but can be made equally robust. We propose splitting the regression problem into
smaller classification subproblems in a coarse-to-fine manner with the use of a weight-
adaptive layer that efficiently implements branching per-pixel Multilayer Perceptrons
applied to features extracted by a Convolutional Neural Network. As our approach
requires full supervision, we train our algorithm on a rendered dataset sufficiently close
to the real-world domain. On a separately captured real-world dataset, we show that
our network outperforms state of the art and is significantly more robust than other
regression-based approaches.

The second major topic, presented in Chapter 4, discusses the challenges and benefits
of 3D reconstruction while focusing on the influence of the utilized data structure.
Dense 3D reconstructions generate globally consistent data of the environment suitable
for many robot applications. Current RGB-D-based real-time reconstructions, however,
only maintain the color resolution equal to the depth resolution of the used sensor.
This firmly limits the precision and realism of the generated reconstructions. We
present a real-time approach for creating and maintaining a surface reconstruction in as
high as possible a geometrical fidelity with full sensor resolution for its colorization.By
performing the reconstruction directly on a dense triangle mesh, we overcome the lossy
and inflexible nature of voxel-based reconstructions that, for many purposes, need to
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be transformed to such triangle mesh. A multi-scale memory management process and
a Level of Detail scheme enable equally detailed reconstructions to be generated at
small scales, such as objects, as well as large scales, such as rooms or buildings. We
showcase the benefit of this novel pipeline with a PrimeSense RGB-D camera as well as
by combining the depth channel of this camera with a high resolution global shutter
camera. Further experiments show that our memory management approach allows
us to scale up to larger domains that are not achievable with current state-of-the-art
methods.



Kurzzusammenfassung

Räumliche Wahrnehmung und Analyse sind Fundamente von moderner Computer Vision
und ermöglichen ein breites Feld an Anwendungen in Robotik, autonomen Fahren und
Augmented Reality. Damit einher geht eine Vielzahl an Herausforderungen, wobei die
beiden grundlegendsten die Erfassung von Entfernungsdaten und Kombination dieser
Daten in eine konsistente Rekonstruktion sind. Diese zwei Aufgaben bilden den Kern
dieser Arbeit.

Das erste große Kapitel, Kapitel 3, widmet sich der maschinellen Tiefenwahrnehmung
und Verbesserung existierender “structured light”-Methoden. Bei diesen Methoden wird
codiertes Licht auf die zu messenden Oberflächen projeziert und mit räumlich versetzten
Kameras aufgenommen. Indem man das Signal dieser Pixel entschlüsselt, lassen sich
die ursprünglichen Projektionsrichtungen ableiten und mittels Triangulierung die Tiefe
der einzelnen Pixel errechnen.

In diesem speziellen Fall bedienen wir uns der “spatial neighborhood”-Verschlüsselung,
einem verbreiteten “structured light”-Ansatz, der in kommerzieller Hardware genutzt
wird. Um eine erfolgreiche Dekodierung zu gewährleisten muss das projezierte Muster
in einer räumlichen Nachbarschaft intakt bleiben. Verzerrung, Abdämpfung und Frag-
mentierung aufgrund der Oberflächengeometrie und -beschaffenheit stellen dabei eine
Herausforderung dar. Die verwendeten Dekodierungsalgorithmen müssen deshalb einen
Kompromiss zwischen Präzision der resultierenden Messung und Robustheit gegenüber
den soeben genannten Effekten bieten. Klassische “stereo matching”-Methoden liefern
zuverlässige Resultate, indem das aufgenommene Bild mit einem Referenzbild des
projezierten Musters verglichen wird. Robustheit bezüglich Verzerrungen und akkurate
Ergebnisse sind dabei gegensätzlich, sodass eine Verbesserung in einem Aspekt oft nur
mit Kompromissen in anderen Aspekten möglich ist. Wir zeigen, dass Robustheit und
Genauigkeit entscheidend gesteigert werden können, indem man die Positionen der einzel-
nen Pixel im Referenzmuster direkt schätzt. Der von uns vorgestellte “weight-adaptive
layer” ermöglicht es Informationen zu verarbeiten, die zuvor durch ein “convolutio-
nal neural network” aus den rohen Bilddaten extrahiert worden sind. Dies geschieht
in einem mehrstufigen Klassifikations- und Regressionsmodell: Ein auf “multilayer
perceptrons” basierter Entscheidungsbaum, der den Lösungsraum in kleinerwerdende
Intervalle unterteilt, bis ein finaler Regressionsschritt subpixelgenaue Resultate liefert.
Da unser Ansatz während der Trainingsphase auf absolute “ground-truth”-Tiefendaten
angewiesen ist, führen wir das Training mit Hilfe eines künstlichen Datensatzes aus, der
nahe an der Realität und den Anwendungsfällen eines solchen Sensors liegt. Anhand
eines separaten Datensatzes, der mit einem “structured light”-Sensor und einem pro-
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fessionellen Laserscanner aufgenommen worden ist, zeigen wir auf, dass unser Ansatz
aktuellen konkurrierenden Methoden überlegen ist: Wir demonstrieren starke Unemp-
findlichkeit hinsichtlich des Wechsels von der Trainings- zur Anwendungsdomäne, sowie
hohe Genauigkeit auf subpixel-Niveau.

Das zweite zentrale Kapitel, Kapitel 4, behandelt die Herausforderungen und Vorteile
von 3D-Rekonstruktionen anhand des genutzten, auf Dreiecken basierten Oberflächen-
modells. Dichte 3D-Rekonstruktionen akkumulieren einzelne Aufnahmen in ein global
konsistentes Modell der Umgebung, welches in Anwendungen genutzt werden kann,
wie zum Beispiel der Robotik. Gegenwärtige, auf RGB-D Daten operierende Systeme
sind dabei jedoch eingeschränkt, da die gängigen volumetrischen Datenstrukturen die
Auflösung der Farbinformationen an die geometrische Auflösung koppeln – Dies ist ein
limitierender Faktor dieser Methoden. Wir präsentieren deshalb einen echtzeitfähigen
Algorithmus, der die Erstellung und Aktualisierung dreiecksbasierter Oberflächenre-
konstruktionen ermöglicht. Die vorgestellten Methoden, um Speicherverbrauch und
Detailgrad zu steuern, erlauben sowohl kleinste Details von Objekten akkurat zu rekon-
struieren, als auch große Areale oder Gebäude in Echtzeit zu verwalten und darzustellen.
Um die Vorteile dieses Algorithmus zu demonstrieren, erweitern wir eine handelsübliche
PrimeSense basierte RGB-D Kamera mit einer hochauflösenden “global shutter” RGB
Kamera. Die resultierenden Rekonstruktionen zeigen nicht nur mehr Details, sondern
erfassen auch größere Areale als typische surfel- oder volumenbasierte Rekonstruktionen.
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Chapter 1

Introduction

Long before the industrial revolution, visionaries described machines performing tasks
that previously were the exclusive domain of humans. Automatons were an expression
of this desire and therefore often came in human form to reenact simple movements.
The actions performed by these devices were mechanically encoded and stored onto
drums and gave no room for deviations from simple motion sequences (Figure 1.1a).

Before the dream of truly interactive machinery came to fruition the industrial
revolution brought a cost effective split of tasks between machines, performing small
specialized tasks, and humans operating those machines. These machines, driven by
steam, belts and later electricity often replaced just one operation in a long production
process. Humans were required for operating or feeding these machines as well as
performing tedious work that required adaptability (Figure 1.1b).

While the concept of automatons has accompanied mankind ever since, the complexity
of perceiving the environment and deriving reasonable actions to fulfill the intended
tasks hindered such developments. As a result, production pipelines are organized to
streamline the material flow and make the state of the product known at every point.
This facilitates manufacturing, that is, except for a few human interventions, entirely
based on machines performing simple and repeating operations.

The advancements in sensors, imaging technology, computers and algorithms brought
by the recent decades have sparked hopes of human-like abilities in artificial machines,
but also unearthed the true extent of the challenge. While these artificial systems exceed
human capabilities in isolated tasks, they lack the ability to perform common compound
operations. Humans possess the ability to continuously adapt and refine their motions
during execution, based on multiple senses to cope with uncertainties. Engineered
systems (robots), on the other hand, commonly split up the tasks of estimating the
task-critical states, planning and execution, into discrete steps. This is owed to the fact
that deeply integrating multiple modules into (robotic) systems results in exponentially
growing complexity. In order to address this challenge, the principles of the subsumption
architecture is applied, splitting tasks into low-level components that only consider a
subset of the inputs, and high-level components that rely on those. This hierarchical
scheme commonly extends over multiple layers, reducing the complexity of the entire
system, but bears a loss in flexibility in the integration and communication of modules.

To illustrate the difference between the biological and the engineered approach, we
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2 1 Introduction

(a) Automaton ca. 1770 by
Jaquet-Droz

(b) Weaving machine ca 1840. A belt is distributing
power mechanically.

Figure 1.1: While the automaton by Jaquet-Droz (a) was capable of writing down text,
they did so by executing movements pre-recorded on drums. The mechanism
might be complex and by means of replaceable drums to a limited extent
adjustable, but wide-ranging adoption of machines only came with the
cruder machines of the industrial revolution (b) replacing only few of the
manual actions during production. Machines reacting to their environment
would not surface until the age of computers.

can imagine the task of picking up small objects from a surface. A human will, at least
briefly, slide the fingers across the surface and use tactile feedback to compensate for
inaccuracies in vision and motor skills, and thus, essentially, act on all involved senses
simultaneously. A typical robotic system, on the other hand, will determine the free
space in the environment and the precise pose of the object of interest before computing
and executing a trajectory. While research is ongoing in order to develop systems closer
to humans, the prevalent paradigm strongly depends on a very precise understanding
of the environment surrounding the robot and, in particular, its geometry because
components need to exhibit superhuman performance for the entire system to achieve
human capabilities.

For the purpose of illustrating the importance of geometry and spatial understanding,
we consider a floor-cleaning robot platform system developed by various partners
from academia and industry. Similar to the widespread vacuum-cleaning robots, the
complexity of this task is manageable for current robotic systems, but also illustrates
their limitations. The FLOBOT (Figure 1.2) project demonstrated an autonomous
floor-scrubbing cleaner capable of performing its task without intervention of the
usually required human operator by relying on depth sensing technologies. Contrary
to simpler vacuum-cleaning robots, industrial floor-cleaning systems are significantly
larger and more powerful, making it all the more important to work from an accurate
understanding of the environment to avoid accidents. The utilized sensors allow most
of the behaviors and heuristics to be developed by following geometrical considerations
and thus ensure the reliability of the whole system in complex dynamic environments.
A deeper discussion can be found in the scientific publication [Yan, ISR 13, 2020] ([1]).
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(a) Flobot 2018

(b) Human tracking (LIDAR) (c) Dirt detection (RGB-D)

Figure 1.2: A prototype of FLOBOT, an autonomous scrubber cleaner. Distance sensors
of different types allow it to react to its environment and set its actions
accordingly. Among the sensors are a 3D Light Detection And Ranging
(LIDAR), downward facing RGB-D sensors, a stereo camera, upward facing
RGB-D sensors and a 2D LIDAR.

Navigation and human tracking are operating on highly accurate 3D LIDAR sensors
delivering sparse but robust distance measurements, while a small-obstacle detection
system is relying on dense but short ranged depth data to detect physical objects on
the floor that would interfere with the scrubbing process. While the obstacle detection
aspect can be managed based on the currently observed part of the scene, higher levels
of planning require a more complete knowledge of the scene. This process, known as
mapping, can be performed at a different level of detail depending on the needs, and
will depend on the resolution of the depth sensing. A more complete and accurate
knowledge of the scene is always beneficial to downstream tasks, but comes with many
trade-offs in terms of computational cost and memory. A second challenge arrives in
the form of the complexity to update this representation based on the perception of
dynamic environments. For example, the detection of dirt on the floor is crucial to
guide and optimize the floor-cleaning process, and is performed based on the RGB input



4 1 Introduction

in the described system. This could, however, be achieved by a simple outlier detection
in the RGB input after masking out non-floor pixels by geometrical considerations on
the scene geometry.

1.1 Problem Statement
In the previous section, we introduced perception as the key enabler for intelligent
robotic systems and postulate that sensing and maintaining a consistent scene geometry
will lead to more robust and intuitive algorithms.

Obtaining and maintaining this geometric information does, however, bring its own
set of challenges that necessitate (separate) consideration. We thus, in a first step,
discuss the challenges of depth-estimation while focusing on a structured light sensor
setup. In the second step, we address the challenges of integrating multiple perceptions
into a consistent surface model. Such a split is justified by the analogous separation
found in real-world systems.

1.1.1 Depth Estimation and Acquisition

As stated in the previous section, visual sensing of geometry can facilitate robot
applications and lower the complexity of algorithms by allowing geometric considerations
to flow into control algorithms. We will discuss several challenges faced by these
approaches.

The speed of acquisition (e.g. to support real-time control in dynamic scenes) stands
in direct competition with the accuracy of measurements. This stems from the fact
that the fundamental measurements used to derive distances will feature better signal-
to-noise ratios with longer exposure times. This relationship actually goes further when
considering sensing based on a light emitter, as stronger signal-to-noise ratios also
require more energy to be emitted. Similarly, a higher spatial resolution requires more
bandwidth and measurements leading to even higher power demands.

Factors inherent to the environment will challenge the sensing principle as surface
properties will reflect, refract, absorb, or even outshine the sensor’s light source. Simi-
larly, fast-moving objects could prevent the sensor from collecting enough information
for a sensible measurement and leave ambiguous interpretations.

Considering these challenges and the abundance of different sensing principles, it
is sensible to take a closer look at one specific sensor category that is common in the
robotic context. Structured light depth sensors with spatial neighborhood encoding emit
a pattern into the scene that is captured by an offset camera. By decoding the captured
pattern in the neighborhood of each pixel, the direction of emission is inferred and depth
triangulated. This measurement principle is challenged by the scene geometry distorting
the pattern, scene lighting competing with the pattern intensity, and the surface itself
interacting with the light. Most sensors tackle these challenges by stereo matching the
captured image against a stored reference pattern. Such algorithms can deliver subpixel
accuracy but often lack the ability to cope with the changes induced by the interaction
of the emitted pattern with the scene. On the other hand, modern deep learning-based



1.1 Problem Statement 5

(a) One single depth frame (b) 3 captured frames (c) Full reconstruction

Figure 1.3: With increasing number of observations the reconstruction becomes more
complete, whereas the surfaces gain accuracy.

approaches internalize knowledge about the pattern and the composition of scenes
leading to seemingly complete and dense depth measurements but fail at delivering
accurate results. However, applications require accurate results in conjunction with
robustness and error awareness to drive algorithms. These challenges are not adequately
solved by state-of-the-art approaches that adopt network architectures successful in
similar but decisively different tasks. It requires neural networks tailored to the specifics
of this sensor category to achieve the desired combination of accuracy, completeness,
robustness, and error awareness.

1.1.2 3D Reconstruction
By fusing dense depth measurements from multiple views into a consistent representation,
a 3D reconstruction can support numerous operations commonly found in robotics
and augmented reality. Motion planning, as applied in a robotic context, requires
scene geometry to ensure the trajectories do not cause collisions. Augmented reality
applications commonly rely on synthesized views from novel perspectives to aid user
interaction.

The representation can be volumetric (e.g., describing some form of occupancy by
a 3D grid or function) or a description of the scene’s surfaces. The latter model the
surface with a set of small primitives, such as disks in the case of surfels, or even model
their connectivity as is the case with triangle meshes. Each of these solutions comes
with different advantages and drawbacks.

The fundamental purpose is the same for all reconstruction methods, irrespective of
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(a) Occupancy grid of surface
captured from one side.

(b) Occupancy after capture
from other side.

(c) Intersecting measurements
(dashed lines).

Figure 1.4: Capturing thin objects is a challenge. As occupancy grids are updated not
only in the free space observable by the sensor but also in the space behind
the observed surface, the first observation leads to a shadow making the
surface appear thicker (a). With the second observation, the contradictory
measurements will cut holes in this observation and reduce the occupancy
in most grid positions as each cell is smaller than the object’s thickness (b).
As shown in (c), this is a general problem not only for coarse occupancy
grids, but any surface reconstruction attempting to reconstruct objects with
a thickness lower than the sensor’s noise level.

the underlying data structure. All methods seek to integrate multiple measurements
into representations that show maximum agreement with the available data (Figure 1.3).
Sensor noise, inaccurate odometry, and other partially unknown sensor characteristics
make this a complex task. In practice, the data structure plays a significant role in
approaching this challenge. It is sufficient to update a volume’s observed empty/occupied
elements to integrate new measurements because the surfaces are implicitly defined as the
interface between unoccupied and occupied space. With surface-based reconstructions,
the algorithm needs to make deliberate decisions about where to instantiate a surface
and when and how to attribute new measurements to existing surfaces to perform
updates. These design decisions have implications for an algorithm’s performance when
handling, e.g., the capture of thin objects as seen in Figure 1.4 or dynamic scenes as
seen in Figure 1.5.

A major challenge for all systems performing Simultaneous Localization And Mapping
(SLAM) is the detection and handling of loops illustrated in Figure 1.6. As the error of
the odometry system accumulates, and parts of the scene are revisited during normal
operations, geometry that should belong to the same surfaces will not align and appear
offset and duplicated. Restoring the integrity of the reconstruction requires updates to
vast portions of the geometry and, thus, is the most expensive process of a reconstruction
pipeline.

Considering the challenges outlined above, it becomes clear that the underlying
representation determines the performance of a reconstruction algorithm. The prevalent
voxel grid has several disadvantages, such as its inability to scale the resolution depending
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(a) Full reconstruction. (b) Moving one object. (c) Updated reconstruction
with surface artifact.

Figure 1.5: After completely reconstructing a scene (a), one of the objects is moved,
triggering an update (b). The space formerly inhabited by the moved object
is now observed to be free, leading to the deletion of the corresponding
surfaces (red scratch trough). This, however, does not apply to the parts of
the old surface that now reside within the object. Sensors cannot observe
this volume and thus not trigger the deletion of the according surface (c).

on the geometric complexity or its fixed coupling of geometrical and color resolution.
Performing geometrical transformations (e.g., translation, scale, rotation) to maintain
consistency is similarly expensive and introduces losses due to re-sampling. Surface
representations such as triangle meshes, on the other hand, provide variable-scale
resolution, decoupled geometry and texture resolution, and cost-efficient means of
transforming the geometry by operating on the positions of primitives. However, they
come with different significant algorithmic challenges.

Some of those challenges stem from the specifics of established rendering architectures,
e.g., textures cannot be generated at an arbitrarily small (e.g., triangle-level) granularity
due to the involved GPU-driver overhead. Still, they can only be performed for part of
the mesh at once, as mapping is an incremental process. Commonplace operations such
as removing geometry from a mesh will lead to memory fragmentation if no effort is
made to keep the geometry primitives contiguous. During update steps, vertex positions
of mapped geometry need to be updated, leading to potential self-intersection of the
triangle mesh. Precautions must be taken to detect and prevent these cases. Finally, an
efficient strategy to cheaply find which vertices should be used to attach newly mapped
surfaces is required to maintain a complete and accurate surface reconstruction.
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(a) The beginning of the recon-
struction process. Camera
tracking exhibits no visi-
ble drift.

(b) After a full loop, the pose
estimation has drifted sig-
nificantly.

(c) Moving all the surfaces to
make the surfaces at the
beginning and ending of
the loop meet.

Figure 1.6: When simultaneously mapping the scene (straight lines) while tracking the
sensor position, errors accumulate (a-b) due to various factors. Revisiting
already captured surfaces (red), the positions do not overlap indicating
tracking drift (b). As the observations at the endpoints are required to
overlap, the whole trajectory together with the captured surfaces between
these points need to be transformed to achieve consistency (c). Note that
while the reconstruction can achieve consistency, it does not necessarily
align with the environment, as seen in the bottom part of (c).

1.2 Contribution and Outline
This work aims to extend the capabilities of spatial sensing and reconstruction geared
towards real-time applications such as robotics and augmented reality. To this end, we
focus on the improvement of existing structured light-based depth sensors in Chapter 3
and the introduction of a reconstruction algorithm that is both lightweight and versatile
in Chapter 4. But first, Chapter 2 will discuss state-of-the-art methods to provide the
reader with the broader context for both tasks. Chapter 5 will summarize the results,
discuss their relevance and provide several paths for future improvements.

1.2.1 GigaDepth: Learning Depth from Structured Light with
Branching Neural Networks

To tackle the challenge outlined in Section 1.1.1 and provide robust real-time depth
measurement in challenging environments, many robotic applications have adopted
structured light-based sensors. With the projectors employed by these sensors capable
of covering surfaces of the observed scenes with encoded light, it is possible to derive
the shape of surfaces that would lack the necessary features in a passive multi-view
approach.

After capturing the reflected pattern with a camera, the challenge becomes algorith-
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mic as decoding the projected information reveals the angle of emission, facilitating
triangulation. In the case of spatial neighborhood encoding, this means that the pattern
position needs to be derived for each pixel by processing the information captured in
the adjacent pixels, provided that enough of the pattern/information is captured by
the camera after it was bounced back by the scene.

GigaDepth, the algorithm discussed in Chapter 3, takes on exactly this task, aiming
for superior accuracy and robustness. While the commonly available hardware employs
stereo matching against a stored reference pattern to solve this encoding task, we
show with our work that directly regressing a pixel’s position can be made more
accurate and equally robust. Regression has been the underlying principle used by
other algorithms, that receive extensive analysis in our experiments section. However,
the method we propose uses a novel combination of classification and neural networks
to split the regression problem into smaller subproblems in a coarse-to-fine manner. A
decision tree based on Multilayer Perceptrons (MLPs) processes features extracted by a
Convolutional Neural Network (CNN) in a per-pixel manner. The leaf nodes of this tree
feature MLPs specialized for small pattern regions each and demonstrate the ability to
regress subpixel-accurate pattern-positions. As our approach requires full supervision,
we train our algorithm on a rendered dataset sufficiently close to the real-world domain.
We evaluate on a separately captured real-world dataset and confirm that our network
outperforms state-of-the-art and is significantly more robust than other regression-based
approaches.

1.2.2 ScalableFusion: High-resolution mesh-based real-time
3D reconstruction

Dense 3D reconstructions generate globally consistent data of the environment suitable
for a diverse set of applications from augmented reality to robotics. However, current
RGB-D-based real-time reconstructions only maintain the color resolution equal to the
depth resolution of the used sensor. This firmly limits the precision and realism of the
generated reconstructions. Chapter 4 presents a real-time approach for creating and
maintaining a surface reconstruction that matches both the depth sensor’s resolution
in its geometry representation and that of the RGB camera in the form of textures
attached to this geometry. A multi-scale memory management process and a Level of
Detail scheme enable equally detailed reconstructions to be generated at small scales,
such as objects, as well as large scales, such as rooms or buildings. We showcase the
benefit of this novel pipeline with a PrimeSense RGB-D camera as well as combining
the depth channel of this camera with a high resolution global shutter camera. Further
experiments show that our memory management approach allows us to scale up to
larger domains that are not achievable with current state-of-the-art methods.
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Chapter 2

Related Work

The contributions in this work take inspiration from existing research and are in a
sense children of their time. As the contribution to depth-sensing is more recent, it is
e.g. leveraging deep learning-based algorithms. The discussed 3D reconstruction, on
the other hand, is mostly relying on hand-crafted heuristics, as it was less common to
integrate learning-based methods into reconstruction pipelines. Here we, nonetheless,
strive to give an account of current developments non-withstanding their lack of influence
on our method.

2.1 Depth Estimation
To motivate the work in Chapter 3 and the choice of sensors, we have to take a
wider view at depth perception methods applied in computer vision. With different
approaches to depth-sensing delivering different mixes of accuracy, robustness and
complexity, it is important to select algorithms developed to the requirements of the
intended applications. Current research on depth sensing thus is split into multiple
tracks that only show limited overlap but, nonetheless, often produce findings applicable
to different concepts. For passive methods such as stereoscopic or multi-view depth
sensing, one of the major challenges (Figure 2.1) lies in featureless ill-lit surfaces which
demand coping mechanisms that follow sensible assumptions for said regions. In order
to still achieve dense depth maps with most pixels containing sensible depth data,
Hirschmüller et al. [2] demonstrated that a semi-global optimization approach can
efficiently enforce smoothness along featureless regions in a stereo setting. Kuschk et al.
[3] showed that fully global optimization can be achieved with variational optimization
techniques that further generalize to multi-view approaches. Some modern CNN-based
approaches still resort to similar techniques in their training phase but have the capacity
to incorporate domain knowledge into their estimates improving performance. The
applications of neural networks reach from stereo matching [4]–[6], multi-view geometry
[7]–[10], to depth completion [11]–[13] where sparse sets of depth points are used in
tandem with an intensity image to generate dense depth maps. Works such as [14]
even showcase high-level reasoning as depth can be extracted from single views without
using any conventional principle like triangulation. While the results of CNN-based
approaches indeed are impressive with respect to their handling of featureless regions

11
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(a) Curved object edges, (b) Specular highlights. (c) Untextured surface

Figure 2.1: Some of the challenges of stereo sensing. Silhouettes along curved surfaces
lead to strong but wrong matching results (red). In actuality, the edges
perceived by both cameras do not belong to the same part of the surface
(a). Specular reflections lead to false depth estimates (red) as they are not
fixed at the surface of objects as they are dependant on the positions of
observer as well as the light source (b). Surfaces without texture (blue
tinted bar) lead to ambiguous depth estimates (red) that could lie anywhere
in a volume (c).

and challenging surfaces/lighting conditions, obtaining high-resolution depth estimates
with sharp and accurate object boundaries still poses a significant challenge. For
some multi-view and stereo approaches this is a property of the used cost-volumes,
modeling different depth levels in a tensor that is significantly downsampled for memory
consumption and execution time purposes.

In cases where reliability is a greater concern and cost, space, and power budget
permits the use of active sensor components, methods like Time of Flight (ToF), laser
ranging and structured light can alleviate some of the challenges that come with passive
methods. Low-cost ToF sensors, e.g., flood the scene with strong modulated infrared
light while capturing the reflected light with intensity sensors of modulated sensitivity
or switchable filters. This allows for phase demodulation but requires multiple captures
at different frequencies to eliminate ambiguities for the signal run time. Although these
sensors offer individual depth measurements for each pixel by only a few captures, they
suffer from multi-path artifacts, low depth resolution and are susceptible to motion
artifacts caused by fast movements. LIDAR, on the other hand, sweeps the scene with
fewer rays and thus yields stronger signals in fewer directions, resulting in reliable, highly
accurate, long range measurements while greatly reducing the chance for multi-path
artifacts. An advantage that is offset by the relative sparsity of depth measurements
that requires elaborate depth-completion algorithms to achieve dense depth maps.

Going back to the idea of triangulation, structured light-based depth projects encoded
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(a) Temporal multiplexing (b) Direct encoding (c) Spatial neighborhood en-
coding

Figure 2.2: Different encoding methods for the light emitted by the projector (red
cylinder on the right of each image). The camera (blue, left) picks up
the light reflected off the surface to decode the emitted direction and
facilitate triangulation. Temporal multiplexing (a) as, e.g., binary encoding
utilizes multiple patterns encoding the projected projection on a per-pixel
and time-slice basis. Similarly, direct encoding (b) as, e.g., color-coding
allows for per-pixel evaluation of depth but on single frames and greater
sensitivity to surface and lighting conditions. Spatial neighborhood encoding
(c) encodes the projected position in the pattern found in the vicinity of
each pixel enabling robust single-capture measurements at the expense of
added susceptibility against distortion, fragmentation, and occlusion.

light onto the scene that is reflected and picked up by an imaging sensor. The encoding
needs to be robust enough to recover the direction each ray is emitted at, after being
subject to the scene’s geometry, surface, and lighting conditions. The three major
coding strategies cater to different tasks, depending on accuracy and time constraints
and are displayed in Figure 2.2.

• Temporal multiplexing changes the projected pattern over multiple images
(multi-shot) and allows decoding on a per-pixel basis. While the encoding of the
image can be as simple as binary or Gray-coding as demonstrated by Altschuler
et al. [15], the temporal aspect can be combined with other encoding methods to,
e.g., achieve similar resolution with fewer captures.

• Direct encoding embeds information about the pattern position in the form of
intensity, first demonstrated by Carrihill et al. [16], or color but is challenged by
factors within the scene that change the appearance of the pattern. Additional
patterns/captures are often required to retrieve influences like surface colors,
multi-path reflections and ambient light (multi-shot).

• Spatial neighborhood encoding enables the extraction of depth maps from
singular images by encoding the position in a narrow pixel neighborhood. The
decoding process is more elaborate than the often simple decoding schemes utilized
for the direct or temporal variant as scene geometry and surface parameters
strongly influence the patterns appearance.

To tackle the problems unique to the structured light principle, researchers have
approached the problem from multiple directions. Given the hardware to adjust the
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projected pattern, approaches presented in e.g. [17], [18] demonstrate performance
improvements by selecting patterns according to an optimality criterion. In a similar
track, the work in [19] describes the design of Hamiltonian encodings to either improve
quality or drastically reduce the amount of required images. This is a stark improvement
from the beginnings of temporal multiplexing by Altschuler et al. [15] who applied
binary/Gray-coding or the direct encoding by Carrihill et al. [16] where position is
encoded in the intensity.

On the other hand, many works improve upon the decoding step while adhering to
patterns that are easy to generate. Recent work in profilometry uses CNNs to regress
the topography of a surface from only a single exposure with one standard sinusoidal
fringe pattern [20], [21]. This is especially noteworthy as the employed high-frequency
pattern might be well suited to resolve small details but does not feature an absolute
encoding as the utilized fringes are repetitive.

Although the use of neural networks can enable certain applications to cope without
absolute encoding, adequate encoding still plays a crucial role for achieving robustness.
Spatial neighborhood encoding like the dot pattern used with popular sensors as the
Kinect v1 allow to derive pattern positions from only small patches of the pattern. In
the case of the Kinect v1 and other PrimeSense-based sensors, simple block matching is
executed between a captured frame and a stored reference pattern [22]. Learning-based
methods can internalize knowledge about the pattern and the effects of the scene on
its appearance to directly regress pattern positions or depth without look-ups in a
reference pattern. This is demonstrated in the work of Fanello et al. [23] where random
forests are employed to directly regress the pattern position without a matching step
by traversing trees based on intensity values in a small neighborhood around each pixel.
Similarly, Riegler et al. [24] as well as Johari et al. [25] used CNNs to directly regress
disparity without searching in a reference pattern at run-time.

Albeit Chapter 3 and [26] mainly focus on the decoding of spatial neighborhood
patterns, the sensor used in the test-bed features infrared stereo cameras together with
a dot-projector. It thus is suitable to compare structured light methods relying on
only one IR camera + dot-projector with active stereo methods like [27]. Zhang et
al. [27] optimized a CNN-based stereo algorithm [6] for active stereo and demonstrated
improved performance on Intel RealSense hardware which, by default, uses Semi-Global
Matching (SGM) [2].

2.2 3D Reconstruction
Similar to the depth estimation, the type of 3D reconstruction vastly depends on the
intended application, sensors and other requirements such as real-time capabilities,
ability to capture dynamic scenes, resolution as well as the physical extent of the
reconstruction. This has implications not only for the underlying data structures but
also for the methods required to maintain and integrate new measurements into them.

Geometrical primitives known from the computer graphics domain like points, vertices,
triangles and voxels were the first to be adopted by the reconstruction domain as they
benefit from decades of research and established methods for rendering and manipulation.
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Uniform grids of voxels (voxel grids) storing some form of occupancy, color and often
weight or another form of certainty measure can easily be rendered by e.g. ray marching
or transformation to triangle meshes. One algorithm building a voxel grid from input
from RGB-D sensors was introduced by Newcombe et al. as KinectFusion [28] and
tackled the main questions of maintenance, rendering and pose estimation. Each voxel
contains color, weight (as a measure of confidence), and an estimate for the signed
distance to the next surface. By aligning camera poses to the reconstruction via the
projective Iterative Closest Point (ICP) algorithm, updates can be applied to the
confidence, distance, and color of voxels according to the measurements. As most of the
processing, like the ICP computation and updating of the volume, is already executed
on the GPU, the rendering can easily make use of the rasterization hardware by first
transforming the volume into a triangle mesh via the marching cubes algorithm [29].
The initial implementation is only able to map volumes of fixed position, size, and
resolution by maintaining this Truncated Signed Distance Field (TSDF). By dynamically
changing the position of the active reconstruction volume, Kintinuous [30] extends
the base algorithm and enables the reconstruction of larger scenes. The use of voxel
hashing [31] allows for larger and higher-resolution reconstructions by reducing the
memory footprint required for the reconstruction volume. KinectFusion spawned further
notable expansions such as DynamicFusion [32] which introduced a warp-able volume
to reconstruct non-rigid objects.

While the RGB-D methods above require depth inputs and operate in real-time,
optimization-based methods can optimize whole volumes in unison taking a multi-
view approach. By combining photometric consistency formulations with regularization
constraints, Kolev et al. [33] demonstrated how reconstructions can be performed without
explicit depth measurements, albeit at the cost of computational complexity. Operating
on volumes does provide the advantage of not only maintaining surfaces but also the
empty space around those. However, they provide challenges when updating large
surfaces and volumes as is required when keeping larger scans globally consistent. When,
e.g., encountering a loop by revisiting an already mapped space, the reconstruction
based on drifted sensor-poses must be corrected so the geometry stays consistent.
The mechanisms to update the geometry potentially are compute intensive and lossy,
especially when directly applied to the reconstruction volume itself. Imagining the
most naive approach of re-sampling the volume according to a transformation derived
from a bundle-adjustment algorithm, one can see why this is true. An algorithm
acting on this idea would need to attribute each voxel of the volume to sensor-frames,
solve a bundle-adjustment optimization problem and re-sample each voxel according to
updated sensor poses. Especially the process or re-sampling will introduce losses by
washing out details as the sampling at sub-voxel positions will blend together values
of the initial voxels. Whelan et al. [34] showed that connecting a pose-graph with a
deformable mesh generated from the TSDF can handle loop closures. It is notable
that the necessary transformations are applied only after the type of representation has
been transformed into one that is less costly to manipulate than raw volumes. Other
algorithms such as [35] subdivide the reconstruction volume into smaller, overlapping
voxel grids that can be translated and rotated to achieve consistency defined by surface
alignment constraints. Closest to the idea of re-sampling a volume is the approach of
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de-integration older depth-measurements at their old pose and re-integration at their
updated, bundle-adjusted sensor poses as described by Dai et al. [36]. This approach
only performs updates on voxels belonging to updated keyframes and does not exhibit
the same information loss as re-sampling, but requires older frames to be stored and
still is compute-intensive.

Accumulating and maintaining loose points in a point cloud is another suitable 3D
reconstruction for certain applications. These points can, e.g., be considered keypoints
when augmented with feature vectors delivering distinctive descriptions for SLAM
(e.g. ORB-SLAM [37]). Instead, when a surface representation is required, it is not
sufficient to maintain sparse point clouds containing only keypoints meaningful to
localization and tracking algorithms. A much denser point cloud is required to achieve
the appearance of a dense surface model as, e.g., introduced in a work by Keller et
al. [38] that maintains a reconstruction comprised of points augmented with physical
extent and color, but also manages to reconstruct dynamic elements. By replacing
points with discs (surfels) described by size, orientation, position and color, Whelan et
al. introduced a sufficiently dense surface reconstruction (ElasticFusion [39]). Together
with several heuristics generating, deleting and updating these surfels, the authors
described an RGB-D reconstruction system that set itself apart from the volumetric
approaches at that time.

While the RGB-D reconstructions mentioned above track color for each primitive
(voxel, point, and surfel), this also means that any color information captured at
resolutions higher than the geometrical resolution will be lost. This holds true for
point-based but also surfel-based reconstructions as augmenting these with higher
resolution color information is impractical. For triangle meshes, texturing has been the
long-serving solution for augmenting low-resolution geometry with high-resolution detail
such that reconstructions operating on compatible data-structures can benefit from
existing rasterization techniques as demonstrated in offline methods as e.g. [40]–[42].

The approach by Fu et al. [40], e.g., enhances a volumetric reconstruction with
textures. Following a TSDF-based reconstruction phase, a mesh is exported from the
reconstruction volume. This mesh is partitioned into regions that are textured by
RGB frames, which have been collected during the capture phase. This operation by
itself would introduce stitching artifacts into the regions boundaries. Therefore, the
presented algorithm ensures that all of these textured regions contain overlapping color
information for their bordering regions. A global optimization step then aligns these
overlaps by adjusting the intrinsic and extrinsic parameters of the keyframes. Since
photoconsistency cannot be fully achieved due to the limited knowledge of the scene
geometry and other factors, a second local optimization step is required to optimize
texture coordinates. This combination of global and local optimization generates
high-fidelity results but comes at the cost of an extensive offline optimization phase.

Most of the works mentioned above contributed concepts that were either applied
in, or served as inspiration for the algorithm described in Chapter 4. The time frame
of the developments behind Chapter 4 was dominated by reconstructions footing on
rather classic, heuristics-driven computer vision and rendering solutions. With the
advent of machine learning, neural networks, and deep learning, a new paradigm was
introduced into the field of reconstruction, leading to a shift of focus in reconstruction
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research in the time after we concluded our work. Early examples of generating views
with neural networks, e.g., with the Generative Adversarial Network (GAN) introduced
by Goodfellow et al. [43], showed that neural networks can generate artificial images
to mimic the training data. These GANs are, for example, also applied to augment a
dataset with additional samples [44], [45], or in an auxiliary view generation task for
pose estimation (Park et al. [46]). While these generative networks learn to generate
views similar to the training data, they exhibit a tendency to generating spatially
infeasible/irrational output. However, Eslami et al. [47] demonstrated just that, albeit
only for rather simplistic scenes and low resolutions. The introduced Generative Query
Networks show the ability to generate condensed scene representations from just a few
images, as well as the capacity to render novel views from pose queries.

With the introduction of Neural Radiance Fields (NeRF), Midenhall et al. [48]
demonstrated how current commodity GPU hardware was capable of ray marching
volumes whose density and color is entirely defined by MLPs. The MLPs take position
and viewing direction as inputs to compute density and color. By evaluating these MLPs
along view rays originating from pixels and blending their results, images are rendered for
novel views. Training these MLPs on a scene and rendering frames at a decent resolution
did not reach acceptable speeds initially, but the quality of the resulting appearance
models sparked further developments. Neural Reflectance Decompositions (NeRDs)
introduced by Boss et al. [49] extended the pipeline by the Bidirectional Reflectance
Distribution Function (BRDF) to explicitly model the surface properties and a spherical
Gaussian illumination model. Instead of just learning the appearance of a point from the
captured directions, the BRDF model allows for optimizing physical surface parameters
and thus enables renderings of the model in different lighting conditions. Hedman et
al. [50] drastically reduced the number of points sampled for each ray by baking a trained
NeRF into a sparse voxel grid, thereby facilitating real-time rendering. Mueller et al.
demonstrated a similar real-time capability with instant neural graphics primitives [51]
by employing voxel hashing at multiple resolutions to attribute features to spatial
locations. Decoding said features, the MLP can be smaller and thus fit into the on-chip
GPU cache, but must resolve hash conflicts. Effectively, this allows to train appearance
models with similar quality as NeRFs within seconds and to render them at a high
frame-rate. But it is not only volumetric approaches that achieve impressive results,
as proven by Ruckert et al. [52], demonstrating that the combination of point clouds
augmented with additional features and neural image completion can achieve impressive
scene representation.



Chapter 3

GigaDepth: Learning Depth from
Structured Light with Branching Neural

Networks

Depth sensing is essential for safe interactions in augmented and virtual reality applica-
tions as well as mobile robotics. Structured light sensors are a particularly appealing
solution for these indoor applications. These sensors predict depth from the alterations
of the light patterns they project in the scene rather than the scene appearance, thus
overcoming the issue of featureless areas. Spatial neighborhood encoding (which encodes
the pattern position of every pixel by creating identifiable structures in the neighborhood
of the pixel of interest) provides a valuable trade-off between accuracy, cost, and power
consumption among structured light methods. The projector only needs to project a
fixed sparse dot pattern once on the scene rather than encode every captured pixel
separately (Figure 2.2c), or require multiple acquisitions like temporal multiplexing.

Such approaches are, however, very sensitive to pattern distortion, fragmentation
and attenuation. In practice, the correspondence problem between the captured image
and the projected pattern is solved by stereo matching to a pre-stored reference pattern
as used in the Kinect v1 or PrimeSense Carmine [22], trading some robustness and
accuracy with the simplicity of matching algorithms. More modern machine learning-
based approaches spark the hope to directly, robustly and accurately decode these
spatial encodings, but currently only deliver either accurate (e.g. [23]) or dense (e.g. [24],
[25]) depth maps.

With GigaDepth, this work contributes a novel neural network architecture that
decodes spatial neighborhood encodings even if the projected pattern is distorted,
fragmented or attenuated by the scene’s geometry and surface properties. By combining
the strengths of CNNs for feature encoding with those of regression trees, we are able
to extract pattern positions from captured images with higher accuracy and produce
much denser output. Regression trees are implemented with MLPs in a novel, weight-
selective layer for which we provide an efficient CUDA implementation. Novel datasets
for training and testing this approach are artificially rendered and captured with the
Occipital Structure Core (Figure 3.1) as well as an industrial-grade 3D Scanner for
ground-truth. Our method outperforms state-of-the-art structured light approaches
and active stereo in applications where disparity in subpixel accuracy is required.

18
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(a) Occipital Structure
Core (b) Left IR image (c) Default disparity (d) GigaDepth (ours)

Figure 3.1: The proposed algorithm (d) is capable of deriving depth by only considering
one infrared image (b) and knowledge about the projected pattern. The
sensor’s (a) internal processing on the other hand uses both cameras, but
often fails to pick up the pattern and densify its output (c). The non-
repeating nature of the pattern and the availability of two cameras makes
it an ideal testbed to contrast active stereo matching with structured light
depth sensing.

3.1 Method
Precise depth estimates rely on determining pattern positions at subpixel accuracy for
the entire pattern. While it is possible to solve this problem by means of a similarity
search within a reference pattern, it is more suitable to use a priori knowledge about
the pattern’s structure to directly derive the pattern position.

Given a rectified image I(x) and pattern P (x) intensities along a given epipolar line,
it is possible to extract the pattern position xP , where the projected pattern P (xP )
resembles the captured intensities I(xI) around pixel region xI . The difference between
these two positions (along the horizontal axis x) d = xP − xI is called disparity and
can express depth z = fb/d given the baseline b and focal length f .

To estimate depth for a given pixel I(xI), both estimating the disparity d or the
position xP suffices. However, directly regressing the position xP poses a challenge for
pure CNNs as they exhibit too much noise over such a large output range. This is a
motivating factor for [24] to limit the output range to 128 pixel and estimate disparity d
instead. If, however, short-ranged depth estimates are needed, it is necessary to increase
the range of disparity, which leads to the same aforementioned challenge. Another
approach of splitting the range of pattern positions xP into classes leads, together with
our requirement of subpixel accuracy, to thousands of classes. While it is unmanageable
to use one-hot encoded outputs, as typically done in CNNs for every pixel, it is a task
gracefully managed by the decision trees employed in [23].

Our approach, GigaDepth, first introduced in [26] thus employs a similar hierarchical
principle of splitting the output range into smaller, easier to regress regions. Instead
of directly deriving decisions for tree-traversal from intensity differences as in [23], we
employ a CNN to extract features allowing for more robust decision functions based on
MLPs. Figure 3.2 shows an overview of our architecture.

To accentuate the features of the projected pattern as well as dampen any low
frequency signal, we add the option to employ Local Contrast Normalization (LCN)
seen in Figure 3.3 as a pre-processing step (see Figure 3.2). The works of Riegler et
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Figure 3.2: The proposed network architecture: While the backbone is a relatively
shallow CNN, the regressor is a hierarchy of adaptive MLPs operating on
individual pixels. The stage 1 MLP features one set of weights for each
line and splits it up into 16 classes. Stage 2 has 16 sets of weights for each
line to classify into 12 subclasses. Stage 3 further splits these up into 10
categories. Only at the last stage, one of 1920 weights/regressors is selected
to perform the regression.

(a) IR input (b) LCN

Figure 3.3: Local Contrast Normalization (LCN) is used to accentuate the pattern of
the IR projector.

al. [24], Johari et al. [25], and Zhang et al. [27] employ this technique to emphasize the
utilized dot pattern during both training and runtime. The intensity I of the input
image is adjusted around the mean µi(x) at each pixel position x and then normalized
by the standard deviation σI(x).

LCN(I, x) = I(x) − µI(x)
σI(x) + ϵ

(3.1)

Mean and standard deviation (µI(x), σI(x)) are calculated in a small neighborhood
with an 11 pixel radius around the center x, and thus local measures that reflect the
diverse lighting situations that appear within frames.

In Section 3.2.4, we demonstrate that the influence of the ablation is not essential
but measurable and almost without a cost in execution time.
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In Out
k 5 3 3 3 3 5 3 3
s 2 1 1 1 1 1 1 1

Cin 2 16 24 32 40 64 64 96
Cout 16 24 32 40 64 64 96 160

Table 3.1: The layers of the used backbone CNN. Layers are described by their kernel
sizes k, stride s and in/output channels Cin and Cout. Each layer is combined
with BatchNorm and ReLU.

stage Cin [start, stop] layers [in, hidden, c/o]
class1 [0, 64] [64, 64, 32, 16]
class2 [16, 80] [64, 32, 12/2]
class3 [80, 144] [64, 32, 10/3]

reg(out) [128, 160] [32, 32, 1/1]

Table 3.2: The used regression tree structure. The classification stages of our MLP
tree split the output region into ever smaller subregions until specialized
MLP regressors take over. The classifiers have multiple layers with the
one-hot encoded output being split in output classes c and overlap o to the
neighboring group of classes

3.1.1 Backbone CNN

The first step in our pipeline is to condense the local image data such that the features
concerning the pattern and the scene can be efficiently processed by the MLP tree.
Compared to current CNNs, this backbone is implemented as a shallow CNN (Table 3.1)
with a receptive field radius of only 21 pixel, which makes the number of considered pixels
similar to [23] ( (21 · 2 + 1)2 = 1849 vs. 322 = 1024 for [23]). Other networks (e.g. [14],
[24]) employed in similar scenarios are multiple times deeper and use a U-shaped
structure such that their receptive field spans the entire image and high-level perception
of the scene can be learned. For this pattern detection task, however, we found it
sufficient to only consider regions large enough to capture uniquely identifiable pattern
segments and to detect cues about depth discontinuities around object boundaries.

Furthermore, we halve the resolution of our feature maps (1216 × 896 → 608 × 448)
by convolution with a stride of two early in the network as high-resolution depth maps
are impractical for real-time purposes.

3.1.2 MLP Tree

For every line of our output image we maintain one specialized tree consisting of one-hot
encoding decision MLPs at each node and specialized regression MLPs at each leaf. In
contrast to [23], directly comparing two intensity values for a binary decision function,
the MLPs constitute much more expressive but also heavier decision functions leading
to more robust performance. However, as even the minimally feasible perceptrons are
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relatively compute intensive, we are forced to use a much shallower tree (10 − 15 for [23]
vs. 3) with each node splitting into more branches to reach similar width.

Each of these trees is evaluated on a per-pixel basis, meaning that the root node
processes the features of one individual pixel to split the output range xP,x into c1 = 16
consecutive, equally spaced regions Xi1 . These are further split by consecutive nodes
into c2 = 12 regions Xi1,i2 each. A third stage follows, splitting each of these regions
into c3 = 10 regions Xi1,i2,i3 , yielding a total of c = c1c2c3 classes/regions. Finally, at
the leaves of this tree structure sit specialized regressors that are tuned to estimate xP,x

in the small regions Xi1,i2,i3 .
A few modifications are employed that deviate from this simplified description: We

share the trees for two consecutive rows to reduce the overall parameter count. For the
same purpose, we have regressor MLPs share weights for four consecutive classes while
having per-class weights for the final regression. We also allow some overlap between
the classification results of the classifiers of stage 2 and 3 as the preceding classifications
might be inaccurate at the boundaries between neighboring classes/regions e.g. Xi1 ,
Xi1+1. Given e.g. c2 = 14 with an overlap of o2 = 1 means that the MLPs at stage
2 has 16 raw output classes with indices i′

2 = i2 + o2. In our example, raw results as
i′
2 = 0 or i′

2 = 15 mean that the previous classification result will likely fall in one of
the neighboring regions X ′

i′
1,0 ≡ X ′

i′
1−1,14, X ′

i′
1,15 ≡ X ′

i′
1+1,0. Similarly, the regressors are

trained to cover for their neighbors. See Table 3.2 for a detailed account of the involved
MLPs.

The described structure requires branching on a per-pixel basis and thus is ill-suited
for an efficient implementation on the basis of high-level functionality of popular deep
learning frameworks. Therefore, we provide a CUDA implementation of a weight-
selective layer for pytorch to keep execution time and, more importantly, the memory
footprint of our architecture manageable.

3.1.3 Training

(a) Projector off (b) Projector on (rectangle) (c) Resulting mask

Figure 3.4: We mask all pixels that show enough of the pattern to reasonably attempt
depth estimation. This is done by comparing two images: one taken with
an active IR illuminator and one without thresholding.

When traversing the MLP tree to reach a leaf, each node takes in the features extracted
by the backbone to derive a decision about the path to be taken. If we only apply a loss
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(a) Simulated IR (b) Depth (c) Edge mask

Figure 3.5: Starting with the ground-truth depth, we use a Sobel filter followed by
thresholding and dilation to extract masks for depth discontinuities. We
use those to emphasize the loss on the edges, which increases sharpness at
object boundaries and depth discontinuities.

on the regression predicted by a leaf MLP and apply backpropagation starting there,
we would not be able to update the weights of the non-leaf node MLPs. The class
indices i1, i2, i3 stemming from these only act to select weights of the corresponding
MLPs and do not allow for the gradient to propagate back, making supervision based
on principles, such as photoconsistency, a serious challenge.

Thus, we employ a training modality that allows full supervision for each of the
tree’s nodes individually, shifting the focus away from elegant means of self-supervision
towards the benefits of our branching architecture. We design our system around the
availability of complete ground-truth data which is provided in the form of a novel
artificial dataset simulating the sensor. The classification stages of the MLP trees are
supervised by class indices i1, i2, i3 generated by discretizing the horizontal position x
of the dot pattern into hierarchical regions Xi1 , Xi1,i2 , Xi1,i2,i3 that are equally sized at
each level. We utilize the cross entropy loss

Lclass(x, i1, i2 . . . il) =
il∈1...cl

−Ci1,i2...il−1
(x, il)log(δ(il − il)) (3.2)

with the classifiers C0, Ci1 , Ci1,i2 at the 3 stages estimating probabilities for a given
class index il at stage l and pixel x. Note that the ground-truth indices are dependent
on the pixel position x and are written il instead of il(x) for the sake of brevity. As
the classifiers are less reliable at the edges between adjacent regions, we strengthen the
MLPs of stages 2, 3, and our leaf nodes for the cases where the preceding classifier is off
by one index by additionally applying the cross-entropy loss for these regions as well:

L∗
class(x, i1, i2 . . . il) =

i∈{−1,0,1}
Lclass(x, i1, i2 . . . il−1 + i, i

(i)
l ) (3.3)

Here, the index i
(i)
l denotes the ground-truth class index in case the preceding classifica-

tion is off by i whereby the corresponding regions are still identical (X
i1,i2,...,il−1+i,i

(i)
l

=
Xi1,i2,...,il

).
To train the regressor MLPs at the leaves, we use the L1 loss and further employ the

same strategy as before to let each regressor Ri1,i2,i3 cover for its neighbors:
Lreg(x, i1, i2, i3, xP,x) = |Ri1,i2,i3(x) − xP,x| (3.4)
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L∗
reg(x, i1, i2, i3, xP,x) =

i∈{−1,0,1}
Lreg(x, i1, i2, i3 + i, xP,x)) (3.5)

In order to mix and weigh these losses, we further utilize an edge mask medge

(Figure 3.5) that marks regions around depth discontinuities to emphasize sharpness
around edges by increased loss. Another mask mvis is used to remove the loss where
the training signal is too ambiguous for spatial neighborhood encodings (Figure 3.4).
This mask covers pixels whose surface do not sufficiently reflect the projector’s light
due to albedo, distance, or occlusion.

Weighing the edge mask with λedge and the regression with λreg, we can now combine
our loss functions to a combined loss function

L(x, i1, i2, i3, xP,x) =

L∗

class(x, i1) + L∗
class(x, i1, i2) + L∗

class(x, i1, i2, i3)+

λregL∗
reg(x, i1, i2, i3, xP,x)


mvis(1 + λedgemedge)

(3.6)

The gradients for this loss are propagated all the way back to the backbone CNN and
used to update weights via classical Stochastic Gradient Descent using a curriculum
outlined in Table 3.3. Training the whole system on our artificial dataset takes ∼ 10h
utilizing an NVIDIA RTX 3090 graphics card.

Augmentation of the data with noise and a slight vertical jitter of 4 pixel are used to
introduce robustness against slight changes of the sensor geometry and intrinsics that
occur when the sensor is objected to temperature changes and mechanical manipulation.
The impact of this strategy is measured and discussed in Section 3.2.4.

epoch lr. λreg. λedge

1-2 4 500 0
3-4 2 1000 1
5-6 1 2000 2
7-8 0.5 2000 4
8-12 0.25 2000 20

Table 3.3: The training of the network focuses on the classification stages initially
before increasing the emphasis on the regressor stages and sharpness on edges
and corners by increasing λreg. and λedge. The learning rate (lr.) steadily
decreases, resulting in shorter steps towards an optimum.

3.1.4 Invalidation Network
As we seek to employ our approach in reconstruction applications, it is vital to develop
the means to predict the validity of our depth estimations. For this purpose, we utilize
a network estimating a (binary) mask minv flagging potentially invalid pixels in our
disparity estimates. This is very similar to our backbone CNN but differing in the layer
count and the total lack of strided convolutions (Table 3.4). As seen in Figure 3.6,
the input for this network is comprised of a concatenation of the raw disparity from
our main network and the probability outputs of its classification stages. By forgoing
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GigaDepth
Invalidation CNN

Mask (black = invalid)

DisparityIR

LCN

Classification Probabilities

Figure 3.6: The proposed invalidation network processes the output of GigaDepth to
generate a mask indicating invalid pixels. By concatenating the raw output
disparity and the classification probabilities of the three classification stages
in our MLP tree, we enable the network to operate without relying on
GigaDepths latent feature-maps.

the use of raw image data or directly extracted features, the network is capable of
predicting invalid pixels while harnessing any domain agnosticism exhibited by the
main predictor. It can also be expected that this network is agnostic to retraining or
smaller changes to the GigaDepth network and thus would not need to be retrained
each time the architecture changes. We use the binary cross entropy loss

Linv(minv, minv) = log(minv) + (1 − minv) log(1 − minv) (3.7)

to supervise and train the network while keeping weights of the main GigaDepth network
constant. The ground-truth mask minv is generated by thresholding (0.5 pixel) the
difference between the estimation and rendered ground-truth disparity. To further
emphasize a more conservative strategy, we weigh the loss of invalid pixels with a factor
of λinv = 5 compared to valid pixels.

L∗
inv(minv, minv) = Linv(minv, minv)

λinv, if minv

1, otherwise
(3.8)

It is noteworthy that GigaDepth does overfit on the ground-truth data and thus not
exhibit all possible failure cases on its training dataset. Training for the invalidation
network thus has to be performed on another dataset that has to be distinct enough.



26 3 GigaDepth

In Out
k 5 5 5 5
s 1 1 1 1

Cin 4 8 32 32
Cout 8 32 32 1

Table 3.4: The invalidation network. Layers are described by their kernel sizes k,
stride s and in/output channels Cin and Cout. Each layer is combined with
BatchNorm and ReLU.

3.2 Experiments
Real-world applications require accurate disparity in a subpixel range as well as depth
measurements that cover challenging surfaces. Similar to [24], we report the outlier
ratio o(th), describing the ratio between the number of pixels that feature a disparity
error higher than a given threshold th and the overall number of pixels.

We also present the Root Mean Square Error (RMSE) of the depth measurements
derived by the different algorithms on the Occipital Structure Core. Pixels with a
disparity error greater than one pixel are excluded as errors of this magnitude will lead
to problematic depth measurements. Including outliers of this kind would also distort
the evaluation in favor of algorithms capable of filling in for regions where little to
no pattern could be captured as strong outliers have disproportional influence on the
RMSE.

A thorough performance comparison to existing methods is conducted using an
artificial dataset. The rendering process provides ground-truth, which allows us to
investigate the upper limits of the evaluated algorithms. Finally, we compare on
real-world data with ground-truth captured by an industrial grade 3D scanner.

3.2.1 Baseline Methods
The main reference points for our method are HyperDepth [23], Connecting The
Dots [24], and DepthInSpace [25], all of which directly regress a pixel’s position within
the pattern or the disparity. To contrast with these methods that need a reference image
to operate, we also compare to ActiveStereoNet [27] which extends [6] by modifying the
loss to emphasize the dot pattern. It is expected that the usage of the second IR camera
gives ActiveStereoNet an advantage wherever the pattern is too weak and classical
stereo matching can pick up scene features. Fittingly, all of these methods operate
at similar execution times when tested on our RTX 2070 Max-Q with HyperDepth
20 − 70ms, Connecting The Dots 40ms, DepthInSpace 20ms, ActiveStereoNet 45ms
and ours 60ms.

While our rendered dataset enables training of these methods, we deviated from the
original methods in a few aspects:

• Resolution: For the purpose of comparability, we upscale the results of algo-
rithms operating on a lower resolution than the input resolution. The algorithms
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(a) Training image (b) Test image

Figure 3.7: Images for training as well as testing use different objects, textures and
lighting conditions.

themselves operate at or close to their intended resolution.

• Jitter: As our sensor hardware exhibits vertical drift (Section 3.2.4), we train all
approaches with the appropriately jittered inputs.

• HyperDepth: Unlike the original authors [23], Riegler et al. [24] published an
implementation of HyperDepth that was used for their baseline comparison. We
ported their implementation to CUDA for faster experiments and added k-means
clustering to improve the regression accuracy at the leaf nodes. We further utilize
deeper trees (16 vs. 14 levels) for improved results.

• Connecting The Dots: The original approach of matching with the reference
pattern did not converge on our dataset. We therefore use the image captured/ren-
dered by the right camera to have a stereo matching approach during training
time. During runtime, we operate the algorithm as intended by the authors,
not utilizing the second camera. Despite these efforts, we are unable to bring
Connecting The Dots to the same performance levels as on the originally intended
dataset. Hence, we also include a comparison of our method on the dataset
presented in the original publication [24].

• DepthInSpace: As this method is similar to Connecting The Dots in many
aspects and thus faces similar challenges during training, we adopt the same
adjustments, which leads to good success. The training requires optical flow [53],
which is why only 241 of our captured sequences can be utilized as only those
have additional captures with a disabled IR-projector. This is more than the 148
training sequences used in the original work [25], but puts it at a disadvantage to
the other baseline methods trained on 967 sequences.

3.2.2 Dataset
The Structure Core allows us to run the algorithms of [23]–[25] and [27], thus we render
a new dataset based on this sensor. The artificial data is rendered via Unity3D using the
High Definition Rendering Pipeline and free assets found on the asset store. Unlike the
methods in [24], [25] that rely on ShapeNet [54] objects without textures, our objects are
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(a) IR projector on (b) IR projector off

Figure 3.8: For 241 of 967 images our dataset provides an “ambient” image. Images
taken with the same camera at the same pose but with deactivated IR
projector.

ICP Clustering +  
Gauss. Blur

Figure 3.9: While the center of the dot pattern is captured via the Structure Core, the
peripheral regions are captured with a RealSense (D415) camera (left). Each
of these images is accompanied by a hand-drawn mask, marking the region
of interest. Accumulating the dots on the image plane of the dot-projector
(center), and finally clustering them allows us to reconstruct the pattern
(right). To increase the variety of the resulting texture, we generate the
textures with different speckle sizes defined by the radius of a Gaussian
filter.

textured with partial randomization for selected surfaces1. Aside from the ground-truth
depth/disparity, we render stereo images as well as pixel-level masks corresponding to
areas where the pattern projector does not have enough influence. 15k sequences of
four frames each are rendered this way. The test set features a different set of objects
and textures and offers 9k frames.

To extract a texture for the pattern, we point the Structure Core as well as a RealSense
sensor with disabled projector towards a wall and capture multiple IR frames. While
the center of the pattern is covered by the Structure Core itself, the RealSense captures
the fringes as seen in Figure 3.9. In the processing phase, we manually match three
points between each pair of Realsense and Structure Core IR frames, and create a mask
to cut out all parts of the image that either are too distorted, not properly lit, or do
show a non-planar surface. From these images, we extract the center points for all valid
speckles, calculate a rough alignment based on the manually selected correspondences

1Randomly selected textures on planes used in walls as well as cube, sphere, cylinder and pill shapes.
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Figure 3.10: Outlier ratios over different thresholds (a) and RMSE over different
distances (b) evaluated on synthetic data. For the RMSE, only pixels
with a disparity error smaller than 1 pixel are evaluated.

and perform ICP alignment in the three dimensional space. The resulting point clouds
are projected onto the image plane of the projector where the measurements for the
individual speckles are clustered together and averaged. In a final step, we generate a
set of textures from these center points with varying degrees of blur. This allows for
greater variety in our rendered dataset.

We further captured a real-world dataset consisting of 967 scenes with four frames
each to finetune the baseline algorithms. 241 of these scenes have a second set of
images with the dot-projector disabled. This is essential to train the edge detector
required by Connecting The Dots [24] and precompute the optical flow required by
DepthInSpace [25]. To evaluate the performance, we collect 11 scenes with ground-
truth data captured by a Photoneo MotionCam-3D M in scanning mode. With an
accuracy stated as < 0.250mm at a distance of 0.65m, this sensor is magnitudes more
accurate than the Structure Core. Translating these accuracy numbers to the geometry
and intrinsics of the Structure Core, results in disparity errors of ∼ 0.05 pixel. Provided
the alignment between both sensors via the ICP algorithm is similarly accurate, we can
expect ground-truth disparity adequate for our evaluations.

3.2.3 Results
The experiments on rendered and real data show that we have a real-time method
capable of capturing dense and highly accurate disparity maps. In addition to the
increased accuracy and sensitivity to comparable methods, we show that our approach
bridges the domain gap much more gracefully.

3.2.3.1 Rendered Data

The synthetic data allows us to assess each method in terms of accuracy by measuring
RMSE and outlier ratios, robustness against signal attenuation and, at last, by their
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Figure 3.11: The outlier ratio with a 1 pixel
threshold o(1) over distance per-
formed on our synthetic dataset.
While these results will not trans-
late to a real-world applica-
tion, they demonstrate the al-
gorithm’s relative sensitivity to
the dot pattern. ActiveStere-
oNet performs better at higher
distances as the stereo modality
can triangulate features that are
indigenous to the scene.

ability to handle sudden changes in depth. To further magnify the focus on the model
architectures themselves as opposed to the training strategy, we train versions of
ActiveStereoNet [27] and Connecting The Dots [24] with full supervision by utilizing
the L1 loss.

As presented in Figure 3.10 as well as the qualitative results in Figures 3.13 and 3.24,
it is evident that the branching approaches of HyperDepth [23] and GigaDepth can
deliver more precise results but cannot always reach the level of completeness of the
CNN-based ActiveStereoNet [27] and DepthInSpace [25]. Plotting the outlier ratios
with a 1 pixel threshold over distances in Figure 3.11, we can infer that our algorithm
has a higher sensitivity towards the dot pattern than any of the baseline methods.
ActiveStereoNet [27], which utilizes the second camera, performs stereo matching and
therefore shows better performance at higher distances that are otherwise insufficiently
lit by the projector.

To substantiate the claim about our algorithm’s robustness in situations of a frag-
mented pattern, we evaluate its performance in regions around depth discontinuities.
After extracting the depth discontinuities from the ground-truth, we increasingly dilate
these edges to obtain regions of different proximity. In Figure 3.12, we plot the outliers
in these regions along the a range of radii around edges. It becomes evident that our
method exceeds the remaining methods when high pixel accuracy is needed. If accuracy
is not of utmost importance, ActiveStereoNet [27] can achieve a lower outlier ratio as
it actually benefits from the strong intensity gradients that often coincide with object
boundaries.

As reflected in Figures 3.10 to 3.12, it is challenging to achieve acceptable results
for the Connecting The Dots [24] algorithm on our dataset. To still include a truthful
comparison, we perform a comparison of HyperDepth [23], Connecting The Dots [24],
and our algorithm on the dataset provided by Riegler et al. [24] in Section 3.2.3.3.



3.2 Experiments 31

0.4

0.5

0.6

0.7

0.8

0.9

1.0

o
(0

.5
)

GigaDepth

GigaDepth (UNet)

GigaDepth (Line)

DepthInSpace-FTSF

ActiveStereoNet

ActiveStereoNet (full)

ConnectingTheDots

HyperDepth

0.4

0.5

0.6

0.7

0.8

0.9

1.0

o
(1

)

5 10 15 20 25 30

edge radius

0.4

0.5

0.6

0.7

0.8

0.9

1.0

o
(2

)

Figure 3.12: Outlier ratios on regions around
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rendered dataset. Evaluated for
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(a) IR + GT (b) HD (c) ASN (d) CTD (e) DIS (f) GD (ours)

Figure 3.13: Disparities (top b - f) of different algorithms applied on a scene rendered
with Unity3D. Color-coding is applied for disparity errors (bottom b -
f) of 0-5 pixel with outliers (> 5 pixel) being black. Algorithms are:
HyperDepth (b, HD), ActiveStereoNet (c, ASN), Connecting The Dots
(d, CTD), DepthInSpace (e, DIS) and GigaDepth (e, GD). (more in
Figure 3.24)
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3.2.3.2 Real-world Data
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Figure 3.14: Experiments on real-world data. Outlier ratios over different thresholds
(a) and RMSE over different distances (b) evaluated on captured data.
For the RMSE, only pixels with a disparity error smaller than 1 pixel are
evaluated.

For our real-world evaluation, we align the data from the Photoneo MotionCam-3D M
and the point clouds derived from each algorithm using ICP. Projecting the ground-truth
point cloud to the respective camera frames yields the disparity maps we compare
against (Figure 3.16). We plot the outlier ratios for our set of algorithms in Figure 3.14a
and show favorable results compared to all baselines. Only ActiveStereoNet [27] achieves
superior outlier ratios above thresholds of ∼3 pixel, which we attribute to this method’s
ability to fall back to its stereo matching roots when the pattern is absent. Evaluating
the RMSE in line with the experiment on artificial data is challenging as not all
methods produce enough usable depth samples at the full depth range. Compared
to the remaining methods (HyperDepth [23], DepthInSpace [25] and SGM [2]), we
demonstrate equivalent to favorable performance for our method (Figure 3.14b). Note
that basing a comparison on the depth RMSE leads to a distorted view due to the
influence of errors in rectification/calibration and (mis)alignment between the captured
frame and ground-truth data. It is advisable to focus on the pixel-metrics as they
depend less on sensor geometry and, to some extent, even allow to compare algorithms
across sensors.

We also include a comparison to HyperDepth [23] when trained on artificial data
(marked as XDomain) and a variant trained on SGM [2] to eliminate the influence of
the different training strategies. Similar to the results on the synthetic data, the results
cannot convince and further demonstrate that, for these approaches, the sim-to-real
domain gap can only be crossed with semi-supervised fine-tuning on the target domain.

A qualitative assessment in Figures 3.15 and 3.25 reveals that GigaDepth delivers
notably lower disparity errors compared to the baseline methods, with measurements
mostly being omitted at object fringes and pixels that are shadowed from the pattern
projector. Despite these positive results, the domain transfer remains challenging and
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(a) IR + GT (b) HD (c) ASN (d) CTD (e) DIS (f) GD (ours)

Figure 3.15: Disparities (top b - f) of different algorithms applied on scenes captured
by the Occipital Structure Core with ground-truth (GT) captured by a
Photoneo MotionCam-3D M. Color-coding is applied for disparity errors
(bottom b - f) of 0-5 pixel with outliers (> 5 pixel) being black. Algorithms
are: HyperDepth (b, HD), ActiveStereoNet (c, ASN), Connecting The
Dots (d, CTD), DepthInSpace (e, DIS) and GigaDepth (e, GD). (more in
Figure 3.25)

(a) HyperDepth (b) HyperDepthXDomain (c) ActiveStereoNet

(d) Connecting The Dots (e) DepthInSpace-FTSF (f) GigaDepth (ours)

Figure 3.16: The point cloud captured with the Photoneo Scanner (greyscale) aligned
with the cloud captured by the Structure Core (blue). The point clouds
resulting from the algorithms (blue) are aligned with the ground-truth
(greyscale) via ICP.

leads to artifacts in otherwise non-challenging situations. Surfaces that are comparable
between the synthetic and real-world domains lead to slightly different results by our
algorithm. While synthetic data would almost always result in a dense and smooth
estimate, an equivalent scene captured by our sensor would lead to depth estimates
with small, infrequent, and arbitrary holes.
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(a) IR + GT (b) Connecting The Dots (c) GigaDepth (ours)

Figure 3.17: Disparities (left b, c) of the different algorithms on an artificial dataset
based on models from [54]. Color-coding is applied for disparity errors
(right b, c) of 0-5 pixel with outliers (> 5 pixel) being black. (a) shows the
input infrared image (IR) and ground-truth (GT).

3.2.3.3 Isolated Comarisons on Native Baseline Datasets

While the datasets used in [24], [25] are perfectly suitable to demonstrate the respective
abilities for semi-supervision, they are not well suited to prepare our fully supervised
method for the simulation-to-real domain gap. To prepare our algorithm for real-world
application we rely on cluttered renderings, with textures and diverse lighting conditions
that seem to be too challenging for the training strategies of [24], [25]. This is despite
our attempts of adapting the cost function, fully supervised pre-training or capturing
the ambient images (Figure 3.8) required by [24], [25]. We thus also train and test our
method on the datasets native to [24], [25].

Connecting The Dots: Riegler et al. [24] use a synthetic as well as a captured
dataset to train and test their method. The synthetic dataset is comprised of 9216
scenes featuring 4 frames each (640 × 480) and objects of the “chair” class taken from
ShapeNet [54]. These objects are put in front of a single untextured plane and are
lit by environment light and a projector that emits a crop of a pattern that is used
by a Microsoft Kinect v1 or PrimeSense Carmine (see Figure 3.18a). In the original
publication, these renders are used to train (index 1024 to 9216) as well as validate/test
(index 0 to 1024) the algorithm.

Instead of the full (Kinect/PrimeSense) pattern with a resolution of 1280 × 1024,
a 640 × 480 pixel crop is used. This preserves the pixel density compared to data
captured by the original sensor as the raw frames are captured at 1280 × 1024 while
the renderings happen at 640 × 480. For the real-world experiments, it is not entirely
clear which training data is used as the training regime requires some captures with
deactivated projector to train the edge-detection network. This makes recreating the
results in [24] challenging even though the testing is conducted on a PrimeSense-based
dataset provided in [55]. Training seems to happen on this dataset as well as additional
captured, unpublished data. It is noteworthy that these images are downsampled from
1280 × 1024 to 640 × 480 leading to an input with different pattern density compared
to the cropping approach used during rendering.

While we cannot train our algorithm for the real-world data provided in [55] due
to a lack of precise ground-truth and low sample-count, we do provide a comparison
on synthetic data in Section 3.2.3.1. However, we deviate from [24] by rendering a
test set consisting of 1024 scenes with objects of the “airplane”, “car” and “watercraft”
to reduce the similarity to the data the algorithm is trained on. We also modify our
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backbone CNN for this experiment to not downsample but to operate at the full input
resolution.

(a) CTD (b) DIS default (c) DIS Kinect (d) DIS real (e) DIS

Figure 3.18: The training datasets of Connecting The Dots (CTD) compared to the
one of Depth In Space (DIS). The rendered data (a - d) completely relies
on textureless models drawn from the “chair” class of the ShapeNet [54].
The used Kinect pattern is a crop of the original pattern (a, d) to achieve
a speckles per pixel ratio similar to the original sensor. The completely
artificial pattern (b), as well as the captured real pattern (d, e) in com-
parison show a lower density of speckles. Real-world data captured with
the real hardware (e) only capture few sequences, and do not strictly split
between training, validation and test set. See the last row of Figure 3.19
for a frame of the test set.

DepthInSpace: The synthetic datasets used in [25] uses the same methodology of [24]
but differs in the aspect ratio of the images (512 × 432 vs. 640 × 480) and the used
patterns (see Figure 3.18). In comparison to [24], the authors have been more clear
about the data used to train the real-world variant of their network. The public dataset
contains 148 sequences, each consisting of 4 frames, that have been sampled from 4
longer continuous video captures mostly showing close-range masks and simple scenes.
Unfortunately, the sampling for the validation data is the same as the one for testing
and consists of every 8th frame in those sequences. As a result, the training data is very
similar to the target/test domain. We further note that the utilized patterns are sparser
and more regular than the ones used in our dataset or the one used in [24]. We thus
modify our backbone network to not downsample and increase the receptive field to
compensate for the lower pattern density. For HyperDepth [23], whose random forests
operate on a hardcoded window of 32 × 32 pixels, this might be a factor contributing
to decreased performance.

Despite these circumstances, diminishing the significance of these comparisons, we
extend table 1 of [25] to demonstrate our algorithm’s competitive performance for
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(a) IR + GT (b) DepthInSpace (c) GigaDepth (ours)

Figure 3.19: Disparity (left b, c) estimates by DepthInSpace and GigaDepth applied
on the different test datasets native to DepthInSpace. Color-coding is
applied for disparity errors (right b, c) of 0-5 pixel with outliers (> 5
pixel) being black. The top row shows the results on rendered data based
on the captured pattern. The bottom row shows the results on captured
real-world data.

applications where accuracy better than 0.5 pixel is required and ground-truth training
data can be supplied (Table 3.5). Qualitative results in Figure 3.19 show that GigaDepth
performs well on captured data, even though we do not perform any fine-tuning. On
the left side of the captured images, however, we register a decline in performance. We
assume this is because the synthetic training data is barely showing this region of the
pattern, mainly because the objects are rendered in a narrow range of distances.
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data method o(0.5) o(1) o(2) o(5)

Sy
nt

he
tic

K
in

ec
t

SGM 10.36 9.13 8.76 2.45
HD 4.38 3.22 2.69 2.39

CTD 2.74 1.45 0.77 0.24
DIS-SF 2.11 1.13 0.59 0.16

DIS-FTSF 1.92 1.00 0.51 0.14
DIS-MF 1.59 0.72 0.33 0.10

GD (ours) 1.88 1.63 1.39 0.82

Sy
nt

he
tic

de
fa

ul
t

SGM 12.93 11.64 11.22 4.06
HD 7.35 6.48 6.11 5.86

CTD 3.38 1.71 0.85 0.28
DIS-SF 2.31 1.24 0.62 0.19

DIS-FTSF 1.96 0.95 0.45 0.12
DIS-MF 1.58 0.71 0.32 0.10

GD (ours) 1.75 1.48 1.20 0.82

Sy
nt

he
tic

ca
pt

ur
ed

SGM 12.45 10.37 9.55 4.83
HD 6.13 4.92 4.34 4.00

CTD 3.76 2.25 1.03 0.37
DIS-SF 3.66 2.16 1.00 0.23

DIS-FTSF 2.87 1.48 0.66 0.17
DIS-MF 2.46 1.24 0.54 0.14

GD (ours) 2.41 2.82 1.24 0.86

re
al

SGM 25.54 19.23 17.75 16.96
HD 34.62 25.09 22.49 21.77

CTD 22.74 9.26 3.79 1.00
DIS-SF 17.95 7.93 3.59 1.14

DIS-FTSF 17.06 7.48 3.47 1.11
DIS-MF 16.07 7.14 3.41 1.09

GD (ours) 18.59 12.06 10.34 8.80

Table 3.5: We extended table
1 of [25] with our evaluation.
Three of the datasets are ren-
dered with a completely arti-
ficial pattern (default), a pat-
tern captured from a Microsoft
Kinect v1 (Kinect) and one cap-
tured from the intended sensor
(captured). The last set of ex-
periments is based on real data.
The compared methods are:
semi-global matching (SGM),
HyperDepth (HD), Connecting
The Dots (CTD), Depth In
Space for single frames (DIS-
SF), Depth In Space on sin-
gle frames with fine-tuning
by its multi-frame variant(DIS-
FTSF), Depth In Space with a
spatial network capable of con-
solidating the results of multi-
ple single-frame results (DIS-
MF) and finally our GigaDepth
(GD). The best single-frame re-
sults are presented in bold.

3.2.4 Ablation

Architecture
To corroborate our choice of network architecture we benchmark different combina-

tions of feature extractors and regressors on our synthetic dataset and report outlier
ratios in Table 3.6. The first set of experiments is based on a relatively powerful and
compute-intensive UNet that takes an order of magnitude more time to execute than
all the other baseline methods (1s compared to ∼ 50ms).

Fully supervising the UNet on our regression task without any additional network
does not yield any usable behavior. The same can be concluded when supplying output
layers with per-line weights. Using the network as a backbone for our regression network,
however, gives superior performance even to our own backbone, albeit it being at much
higher cost. Looking at the outlier ratio for low thresholds (o(0.1)), we do not see much
improvement, but the overall amount of valid pixels (o(1)) seems to have increased. We
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BB Reg. o(0.1) o(0.5) o(1) params c1 c2, o2 c3, o3 w. sharing
U

N
et none 89.55 54.78 33.41 81M

lines 94.27 72.39 50.23 105M
1920/2 34.01 14.32 12.74 446M 16 12, 2 10, 3 4

O
ur

Ba
ck

bo
ne

288/2 51.86 19.88 17.16 134M 8 6, 1 6, 1 1
384/2 60.49 18.64 16.29 217M 16 6, 1 4, 2 2
640/1 44.50 19.05 17.39 131M 16 10, 3 4, 2 2
640/2 44.37 17.53 16.02 275M 16 10, 3 4, 2 2
640/3 38.49 18.11 16.62 359M 16 10, 3 4, 2 2
1280/2 34.91 16.97 15.72 379M 16 10, 3 8, 4 3

1920a/2 41.27 17.20 15.97 388M 16 12, 2 10, 3 4
1920/2 38.08 17.20 15.97 388M 16 12, 2 10, 3 4
2688/2 44.59 17.26 15.93 429M 16 14, 1 12, 2 6

Table 3.6: Different configurations of our architecture tested on synthetic data. We test
two backbones, ours as well as a full UNet network both of which dominate
execution time with ∼ 70ms and ∼ 1s, respectively (RTX 2070 Max-Q).
Regressors are specified as c/l with the number of classes c and MLP layers
l. All networks take IR + LCN as input (superscript a omits the LCN).
Note that with increasing class count, we more aggressively apply our weight
sharing scheme for hidden layers of the regressor stage. The right half of the
table details the used classes (c1, c2, c3) at each stage of the classification
tree and the overlap (o1, o2, o3) between the raw classification output of
neighboring nodes. We utilize a strategy of weight sharing in final regression
MLP that allows to share the weights of hidden layers between neighboring
classes.

can attribute this to the capacity of the network to incorporate high-level information
without sacrificing the ability to encode local features. Regarding quality, we find in
Figure 3.20 that the UNet-based version will output disparity measurements that might
not be invalid but seem to be crude and erroneous interpolations.

The second set of experiments operates with the backbone we tailored for this task
and aims at analyzing the influence of the MLP tree structure. Varying the amount of
output classes between 288 and 2688, we see the return of investment diminishing after
1280 classes. While the runtime is almost unaffected by the class count, the increasing
amount of parameters is a cause for concern. Note that the parameter count would rise
even more steeply if we were not increasingly aggressive with our strategy of sharing
weights between consecutive output classes in the latent regressor layers. The influence
of the depth of the MLPs is shown in three variations of the 640 class version, showing
diminishing returns for MLPs deeper than two layers. By adding/removing one of
the latent 32 channel layers from the classification MLPs described in Table 3.2, we
demonstrate that the increased amount of weights that coincide with the added layers is
not justified by the increased performance. Finally, we evaluate for possible performance
regressions that stem from omitting the LCN filter with a variation (superscript a) of
our 1920 class experiment. While the measured degradation is small, it is still notable
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(a) IR + GT (b) GD + UNet (c) GD (ours)

Figure 3.20: Disparities (left b, c) of our algorithm applied on scenes rendered with
Unity3D. Color-coding is applied for disparity errors (right b, c) of 0-5
pixel with outliers (> 5 pixel) being black. While our algorithm with a
heavier UNet backbone (b) produces more complete results, it requires
1s for computation. Our backbone (c) achieves a better trade-off with an
execution time of 60ms.

enough to keep the relatively cheap LCN filter as part of this pipeline. For MLPs with
a layer count of one (l = 1), we do not have hidden layers, and for two layers MLPs
(l = 2), we use the network described in Table 3.2 that, despite the difference for the
other layers, uses a 3-layer-MLPs at the root nodes. For l = 3, MLPs would feature
[64, 64, 32, 32, c/o] channels in the root nodes and [64, 32, 32, c/o] in the remaining ones
([in, hidden, c/o] notation). The structure of the regressor MLPs was kept the same in
all experiments [32, 32, 1/1].
Vertical jitter In Figure 3.21, we explore the effect of omitting the jittering augmenta-
tion during training. It shows shifting regions of failing depth estimation even within
short sequences. This is an indication that the sensor geometry and components are
not entirely rigid or susceptible to temperature. Randomly shifting the training images
by just a few vertical pixels robustifies the algorithm.
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(a) IR-input (b) Artifacts (c) Jitter (d) IR-input (e) Artifacts (f) Jitter

Figure 3.21: Two frames captured in the same sequence. The captured images (a, d)
seem to change their vertical alignment with the projector causing the
algorithm to fail in shifting regions (b, e). Applying vertical jitter of 4 pixel
during the training phase makes the network agnostic to this variability (c,
f).

(a) IR + GT (b) GD + UNet (c) GD (ours)

Figure 3.22: Disparities (left b, c) of our algorithm applied on scenes captured with
the Occipital Structure Core. Color-coding is applied for disparity errors
(right b, c) of 0-5 pixel with outliers (> 5 pixel) being black. While our
algorithm with a heavier UNet backbone (b) produces more complete
results, it requires 1s for computation. Our backbone (c) achieves a better
trade-off with an execution time of 60ms.

3.2.5 Invalidation Network

We train the invalidation network presented in Section 3.1.4 on the synthetic training
data as the main network did show signs of over-fitting to the training-set. This is
a pragmatic decision after a dataset distinct enough from the training dataset was
required to avoid overestimating the quality of disparity maps. However, this diminishes
the significance of tests performed on synthetic data leading to this isolated comparison
here. The previous experiments thus did not employ the invalidation network. In
Figure 3.23 we employ the invalidation network on captured data unseen during the
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(a) IR (b) Raw disparity (c) Mask (d) Valid disparity

Figure 3.23: Gigadepth applied to real-world IR images. Input (a) is computed to a raw
disparity output (b) by GigaDepth. The mask by our invalidation network
(c) can be used to remove/invalidate questionable pixels/estimates leading
to a sparser but more reliable result (d). Note the exaggerated borders
around objects in (d) compared to (b). The left edge of the raw disparity
maps yields estimates that make the invalidation network overly optimistic
leaving undetected errors.

training processes of both, the main network and this invalidation network. The results
demonstrate that while most of the obvious outliers are masked out, some otherwise
sensible pixels around the edges of objects become invalidated too. Furthermore, it is
notable that GigaDepth itself fails to correctly interpret the pattern on the left side of
the image (also pronounced in Figure 3.19) as these are pixels that are underrepresented
in the training set. Our invalidation network in turn fails to separate out all the error
cases.

3.3 Discussion
This chapter introduced HyperDepth, an algorithm that outperforms the state of the
art on extracting depth from structured light. Benchmarks on artificial as well as real
data show precision and sensitivity superior to comparable methods. It is shown that,
while pure CNN-based methods struggle to deliver high accuracy for these regression
tasks, combining a CNN-based backbone with a regressor consisting of weight-adaptive
layers can overcome this challenge. These weight-adaptive layers enable us to implement
a neural decision tree with small specialized regressors at the leaf nodes. While the
comparable HyperDepth [23] follows a branching approach similar to our regression
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stage, the decision functions on each node are comparably trivial and thus struggle
to model the different influences of scene and surface compositions. The focus on dot
patterns and the strategy of keeping the receptive field small allows our large set of small
neural networks to specialize for their respective regions within the pattern. Despite the
necessity for accurate ground-truth to train the classification part, most easily obtained
using artificial data, our approach’s resilience to domain shift is demonstrated by the
good performance on real-world data.
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(a) IR + GT (b) HD (c) ASN (d) CTD (e) DIS (f) GD (ours)

Figure 3.24: Disparities (top b - f) of different algorithms applied on scenes rendered
with Unity3D. Color-coding is applied for disparity errors (bottom b -
f) of 0-5 pixel with outliers (> 5 pixel) being black. Algorithms are:
HyperDepth (b, HD), ActiveStereoNet (c, ASN), Connecting The Dots (d,
CTD), DepthInSpace (e, DIS) and GigaDepth (e, GD).
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(a) IR + GT (b) HD (c) ASN (d) CTD (e) DIS (f) GD (ours)

Figure 3.25: Disparities (top b - f) of different algorithms applied on scenes captured
by the Occipital Structure Core. The ground-truth (GT) is captured
with the Photoneo MotionCam-3D M and compared to other algorithms.
Color-coding is applied for disparity errors (bottom b - f) of 0-5 pixel with
outliers (> 5 pixel) being black. Algorithms are: HyperDepth (b, HD),
ActiveStereoNet (c, ASN), Connecting The Dots (d, CTD), DepthInSpace
(e, DIS) and GigaDepth (e, GD).



Chapter 4

ScalableFusion: High-resolution
Mesh-based Real-time 3D Reconstruction

Sensors similar to the one discussed in the previous chapter have begun flooding the
market in the form of affordable RGB-D sensors for the entertainment industry in 2010.
The Microsoft Kinect (v1) was meant to be an input device to engage games employing
a player’s entire body, and due to its low price and availability encouraged a wide
adoption of these sensors in the computer vision community. Most notably, the fusion of
multiple frames into one consistent 3D reconstruction of scenes has fueled expectations
for a large variety of applications. Robotics as well as Augmented Reality, just to name
two examples, benefit greatly from a complete representation of environments.

Generating consistent 3D reconstructions based on these sensors is challenging because
of two main reasons. Firstly, geometrical consistency is not provided by the depth sensor
due to distortions and incorrect depth values, noise and other effects caused by rolling
shutter sensors. Secondly, photometric consistency can not be achieved by the RGB
sensor owing to limited geometrical resolution of the reconstruction, the dependence of
perceived intensity on the camera and object position as well as lighting conditions.

While future sensors may mitigate these problems, present sensors all suffer from the
same problems [56], [57]. Therefore, it is the task of RGB-D reconstruction algorithms
and the supporting hardware to cope with the challenges. The most common approaches
are based on KinectFusion ([28], [32], [30]) and ElasticFusion ([39], [58], [59]). The first
class of methods utilize TSDFs to carve out the free space of a regular voxel grid of
uniform resolution. The second class of methods stores the geometrical information
in Surfels which are small unconnected discs of different size and color. Essentially,
both methods attempt to achieve geometrical and photometric consistency by averaging
measurements from multiple perspectives. The averaging schemes achieve pleasing
results for geometry but they are unsatisfactory for the color. This is, firstly, due to the
widespread practice of ignoring exposure and gain information of the sensors [60]. But
more importantly, the limitation is due to the underlying data structures that enforce a
one-to-one relationship between color and geometric resolution, which leads to a loss of
color information. It is also common for these algorithms to steadily aggregate new
data on the GPU until it runs out of memory. This disqualifies their use for serious
applications in robotics.

45
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(a) ElasticFusion. Surfels are color coded by
normal vectors with additional outlines in
black for the borders.

(b) ScaleableFusion (direct mesh-based recon-
struction) with outlined triangles.

Figure 4.1: A meshed set of three apples (zoomed in from Figure 4.2). Due to not
relying on excessive overlapping of surfels to achieve a tight surface model,
mesh reconstructions allow surfaces to be described more precisely and
efficiently.

Our solution to the described shortcomings is a third paradigm for 3D reconstruction
to work directly on meshes. Our contribution is the introduction of ScaleableFusion:
A triangulated mesh, as shown in Figure 4.1, represents surfaces more accurately by
breaking up the direct coupling of geometry and color resolution. This requires extra
effort to maintain in comparison to surfels or TSDFs, but it comes with several benefits.
(1) The vertices making up the geometry do not need to be evenly spaced, like the voxels
in a TSDF, and the triangles spanning the vertices still sufficiently describe tight surfaces
unlike unconnected surfels. (2) The ability to handle textures allows the progression
from averaging colors of unconnected surface elements to selecting fitting keyframes
for entire surface regions. These keyframes are selected with awareness of exposure
time [60] and corrected for vignetting [61] to further improve photometric consistency.
Real-time performance is achieved through our Level of Detail (LOD) system (example
in Figure 4.2) that is novel to RGB-D reconstruction. This scheme offloads the geometry
from the GPU to the CPU memory to enable large scale reconstructions.

Our approach, ScalableFusion, is described in more detail in the next section (Sec-
tion 4.1). Section 4.2 discusses some of the intricacies of implementing the LOD
system on current hardware, as well as how some of the mentioned heuristics map
onto OpenGL and CUDA programming APIs. Section 4.3 gives a detailed comparison
between KinectFusion, ElasticFusion and our approach to highlight where and why
ScalableFusion generates higher quality reconstructions. We additionally collect data
with a higher resolution RGB sensor to demonstrate the improvements over the classic
VGA-resolution RGB-D sensor as well as the benefits of a higher resolution RGB sensor
in the high resolution pipeline. Our experiments also establish the limits up to which
current methods can reconstruct scenes before running out of GPU memory while
demonstrating that our system efficiently offloads unused data to the system memory.
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Figure 4.2: Demonstration of the Level of Detail system. The younger part of the
reconstruction (right) resides in the memory of the GPU and is processed
and displayed at full detail, while the older part (left) is downloaded to
system memory and displayed with a low detail replacement. The apples
shown in Figure 4.1 are taken from this reconstruction (red circle) and are
meant to demonstrate the dynamic range of detail.

4.1 Method
Our approach to 3D reconstruction, initially presented in [62], directly utilizes triangle
meshes which, as is their nature, maintain point neighborhoods and have several textures
attached. Incoming points are first partitioned into smaller patches. These are then
meshed and finally stitched together at their borders. The patches are then enhanced
with textures that store geometrical standard deviation and color. To update the
reconstruction on the fly, keyframes are selected to donate textures to surface segments.
The possible misalignment between segments prior to stitching (as a result of no costly
global optimization step) is minimized by processing the captured images with exposure
time awareness and vignetting correction.

In the following, we describe the key steps of our framework. We outline the geometry
refinement updates, map expansion, meshing and segment stitching.

4.1.1 Geometry Refinement Update
The noise characteristics of depth sensors make it impossible to attain precise geometry
at large distances when accumulating multiple measurements. After a certain amount
of measurements at a large distance, high quality results can only be achieved by
positioning the sensor closer to the surface. This is made possible using current methods
by employing a scheme that allows close range measurements to overrule long range
measurements, no matter how many samples are taken at long range.
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(a) Frame 1. (b) Frame 4. (c) Frame 23.

Figure 4.3: A typical geometry update procedure. Displayed are the geometry with
RGB (top), rendered surface normals (middle), and an uncertainty measure
(bottom). The uncertainty is encoded in the green channel of the geometry
texture. After the first frame (a), the geometry shows strong noise and
heavy quantization stemming from the Asus Xtion PRO LIVE depth sensor,
while the uncertainty is correctly marked as being large (bright green). With
additional measurements (b), the geometry is smoothed out reducing the
quantization noise and the estimate for uncertainty (indicated by darker
green colors). Finally (c), after more frames, the surface is considerably
smoothed out and forms a stark constrast to the newly added geometry.

ElasticFusion [39] implicitly handles this problem by introducing a “weight” property
for surfels. The weight of a surfel is increased with each observation while position,
color and orientation of the surfel are updated. An increasing weight for a surfel implies
that it becomes progressively and eventually static while the influence of additional
measurements vanishes. Static surfels are not moved but replaced with a denser set of
lighter (in terms of weight) surfels when the sensor makes observations from a closer
range.

Our approach is seen in Figure 4.3 and takes inspiration from these weights, but
instead of spawning new geometry when the sensor approaches a surface, we only do
this when it benefits the reconstruction. For example, when approaching a planar
surface, ElasticFusion would spawn new surfels just to accommodate the additional
color information, whereas our approach directly updates the texture and existing mesh.

This behavior is achieved by storing additional textures containing values for every
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sampled surface point p. The values contained for each texture pixel (texel) are:

µk The average deviation of the k measurements from the actual surface. This is
used to indicate where the meshed surface deviates from the sensor’s perception.

σk An estimate of the noise level that decreases with every additional measurement.
The smaller the value, the less influence new measurements have on the geometry.
Additionally, σs,k defines the estimated noise level of the sensor measurement k
projected onto the surface point p.

σm,k The estimated minimal noise level achievable with all measurements until step
k. This assumes quantization is the only limiting factor. Similar to beforehand,
σm,s,k refers to the projected value of the sensor. Opposed to σs,k, the noise level
of a single measurement, σm,s,k indicates the minimum expected error that can be
achieved with infinite captures from the sensor’s perspective.

The estimated noise level and minimal noise level are updated according to

σm,k+1 = min(σm,k, σm,s,k), (4.1)
σk+1 = σ′

k+1 + σm,k+1, (4.2)
(4.3)

where

σ′
k+1 =

σ′
kσ′

s,k

σ′
k + σ′

s,k

, (4.4)

σ′
s,k = σs,k − σm,k+1, (4.5)
σ′

k = σk − σm,k+1. (4.6)

Note that σ′
k+1 is smaller than σ′

k and σ′
s,k, which implies the assumption that every

further measurement improves the result. This system guarantees that σk approaches
σm,k with increasing iteration count k, yet never falls below it. The resulting values
σ′

s,k and σ′
k+1 are used to update µ by

µk+1 =


µk

σ′
k

+ ds,k − dk

σ′
s,k

σ′
k+1, (4.7)

where ds,k is the distance of the surface point perceived by the sensor and dk is the
distance between the reconstructed point/texel and the sensor. Transcriptions of the
texture updates to the vertices are performed by shifting the vertex positions along the
view rays such that µk+1 is equal to 0 wherever possible.

These updates do not necessarily need to occur every time new sensor values are
available for surface pixels. When the estimated noise level of the sensor data σk is
higher than σs,k on the surface, no update needs to be conducted. The same applies
when the perceived depth values significantly differ from the mapped values. This would
indicate either unmapped geometry of an already reconstructed surface or an invalid
surface.
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The sensor characteristics σs,k and σm,s,k are derived from the work of Halmetschlager-
Funek et al. [57] that measures various error metrics over distance. We approximate
the error over distance in [57] with a polynomial and extended it with a term that -
similar to [39] - attributes a higher standard deviation to measurements in peripheral
regions of the depth frame.

4.1.2 Expand Update
As soon as the sensor generates a new frame from a new position, the formerly mapped
surface elements are used to render a depth map for the current sensor position. The
artificial depth map is compared to the depth values currently perceived by the sensor.
Depth values that are in close proximity to the mapped values result in updates to
the already existing surfaces. If the captured surface leaves this proximity towards the
camera, it is added (meshed) to the current reconstruction. The thresholds for these
operations as well as σs,k depend on depth, pixel position and the sensor itself.

4.1.3 Meshing
After identifying the novel parts of the captured depth map, 3D points are created by
applying the pinhole model to project the depth pixels. These points are segmented into
smaller blocks, based on their distance to each other and the estimated normal vector.
The neighborhood information derived from the organized point cloud is directly used
for this operation and also for spanning triangles between each neighboring set of 3
points. During this process, it is ensured that no triangles are created where neighboring
depth values are within the thresholds mentioned in Section 4.1.2. An example of the
output from this segmentation and meshing process is shown in Figure 4.4.

4.1.4 Stitching
Generating a mesh on a single organized depth map is computationally undemanding
due to the presence of neighborhood information in the 2D image plane. The situation
changes, however, as soon as new sensor data is to be integrated into an existing
reconstruction.

To address this problem, all visible triangles captured prior to the current frame are
searched for open edges. This refers to every edge where a triangle does not border
another. The open edges are projected to the pixel space of the current frame’s depth
map. After this process, finding a potential neighbor for a reconstructed triangle within
the set of novel triangles is a simple lookup in the current image plane. The result of
expanding the reconstruction is shown in Figure 4.5.

Despite the simple premise leading to the efficient stitching algorithms, the fact that
the existing geometry would generally not fit the pixel-grid of the new geometry remains
and justifies a deeper discussion. Any movement of the camera will shift the center of
reconstructed geometry and its vertices away from the pixel centers of the image plane
such that, for example, a reconstructed surface will appear less dense in consecutive
frames when the sensor comes closer. In case the sensor increases the distance to the
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(a) Geometry of a single capture (b) Close-up

Figure 4.4: Start of the meshing process: The depth data is segmented into smaller
patches (a). These meshlets are then meshed into grids that are regular
on the image plane of the sensor. Shown in (b) is a closeup of the mesh
after its vertices have been refined and thus smoothed by additional depth
measurements.

reconstructed surface, multiple vertices will end up occupying the same pixel. Due to
more complex sensor movements occurring in real-world applications, hybrids of both
cases are expected.

Figure 4.6 shows a projection of pre-existing geometry onto the image plane of the
current frame to be of lower vertex density than the newly created mesh. Thus, the
strategy is to rasterize along the edge of this pre-existing geometry with the Bresenham
algorithm and search within the eight neighboring pixels for newly introduced vertices.
In case a neighbor was found, and a stitching triangle would meet a set of geometrical
criteria, a stitching process is performed, progressing along the edges of existing and
new geometry simultaneously. For instances where the existing geometry would project
onto the image plane and cause multiple edges to fall into the same pixel, the process
looks slightly different. In these cases, we can traverse the edge vertex by vertex as seen
in Figure 4.7, while taking proper precautions to not generate self-intersections.
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(a) The already existing geometry rendered
with open edges outlined in black.

(b) The novel geometry that is not overlapping
with the existing geometry.

(c) The coarse segmentation of the novel ge-
ometry with smaller regions not being
mapped.

(d) The novel and still rough geometry (right)
is stitched to the existing geometry.

Figure 4.5: Connecting novel data to existing geometry: Open edges (a) outlined in
black are connected to the coarse segmentation (c). The result (d) shows a
tight seam of triangles between the denoised old mesh and the noisy new
geometry.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4.6: The stitching process attaching newly introduced geometry (right of each
image) with vertices in the center of pixels (grey grid) and pre-existing
geometry (left). Until detecting the first new vertex the edges of pre-existing
geometry is followed pixel by pixel without creating new triangles (a-b).
Upon detection of the first vertex in the 8-neighborhood (b), triangles are
introduced beginning with the closest to the starting vertex (c). Progressing
with the rasterization, more triangles are added (d) until the end of the
edge is reached (e) continuing with the next edge (on the same pixel) allows
for more triangles to be added (f). Following these principles, we end up
with a completed stitch (g-h).

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.7: The stitching process attaching newly introduced geometry (right of each
image) with vertices in the center of pixels (grey grid) and pre-existing
geometry (left). In case that the pre-existing mesh is of higher resolution
than the newly introduced depth, the algorithm will encounter many more
cases where creating a new triangle would lead to self-intersection (e).
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Figure 4.8: The employed threading system. Black arrows depict the flow of data.
Colored stripes present actual processing.

4.2 Implementation
Modern desktop hardware distinguishes between memory bound to the GPU and system
memory that is bound to the CPU. Access cannot occur across memory spaces without
performing expensive data transfers over the PCI-E bus. Therefore, our data structures
are designed to mirror the data between CPU and GPU, and are only synchronized
when necessary.

Modifications of the geometry occur on either the GPU or the CPU, depending on
which processor is better suited for the operation. This has implications on the data
structure. While data stored on the CPU is excessively cross-referencing, the structures
on the GPU only store very few references between elements.

We introduce a threading system to simultaneously process tasks that are not fully
interdependent. For example, while the geometry of one frame is updating the mesh,
data not needed can be simultaneously transferred from the GPU to the system memory
(download). The odometry, likewise, is not explicitly reliant on the most current version
of geometry. The pose estimation of a new frame can therefore be performed while the
last frame is still being integrated. An exemplary timeline of this system is shown in
Figure 4.8.

4.2.1 Lookup Texture

For every texture attached to a meshlet storing information (color, standard deviation),
we also store a texture of equal size pointing to the surface positions of each texel. This
surface position is encoded as a triangle-ID as well as barycentric coordinates defining
the position of the texel on the triangle.

When we e.g. want to update one texel of a standard deviation texture as shown
in Figure 4.9, we look up the triangle by its ID and mix its vertices weighted by the
barycentric coordinates to reach a surface position. By projecting this position onto the
imaging plane of the sensor we can drive the update strategy defined in Section 4.1.1. To
detect occlusions by already reconstructed surfaces a depth check has to be performed
against the Z-Buffer of the rendered reconstruction.
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Figure 4.9: When updating the geometry of a mesh patch (green rectangle), each pixel
of the geometry texture containing mean and a confidence measure needs
to be updated before passing the update to the vertices. To query new
measurements for the texels of this texture, the lookup-texture contains
references to the triangle ID and the position of each triangle. This enables
the calculation of the associated point on the reconstructed surface and, in
turn, read out the measurements on the depth sensor after projecting into
the sensor frame and testing for occlusion.

To generate this lookup texture we rasterize the UV coordinates as triangles writing
out triangle index and barycentric coordinates whenever a texture (color, standard
deviation) is initialized or changed in resolution. Padding is performed on pixels
bordering on invalid pixels by repeating indices and coordinates and prevents errors
when textures are sampled in rendering steps.

4.2.2 Texture Atlas and Driver Overhead

We employ texture atlases as seen in Figure 4.10 to manage the textures associated
with the thousands of meshlets. In these atlases, each texture is split up in order to
support the surface of multiple meshlets. Primarily, this is a measure to minimize the
driver overhead by OpenGL and CUDA, as creating these textures takes ∼ 1ms each.
Creating smaller individual textures instead of sharing and splitting bigger ones would
make real-time mapping with potentially hundreds to thousands of new meshlets during
a frame impossible.

We use the NVIDIA bindless texture extension during rendering to avoid the inherent
efficiencies of OpenGL in situations with many textures. In fact, this extension allows
us to attach references directly to our geometry data structures and draw the entire
geometry with a single draw call.
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(a) Color textures (b) Geometry lookup textures (c) Uncertainty textures

Figure 4.10: Texture atlas for different types of texture. As the creation of textures
causes significant driver overhead, they need to be batched together in
bigger textures. The uncertainty textures (c) store uncertainty in the green
color channel and the estimate for mean deviation in the blue channel.

Note that modern graphics APIs such as DirectX 12 or Vulkan would offer multi-
ple advantages over the combination of OpenGL and CUDA and potentially reduce
complexity. These new APIs are e.g. capable of maintaining and referencing pools of
resources with low overhead. This would remove the need for a vendor-specific extension
and might even make the use of texture atlases redundant.

4.3 Evaluation
A comparison of 3D reconstruction pipelines is traditionally done by either comparing
the reconstructed point cloud with a ground-truth mesh or by comparing the odometry
with the ground-truth trajectory. A ground-truth mesh is inherent to rendered data
sets [63], while a trajectory can either be input for the rendering process or captured
with external cameras and markers [64].

These benchmarks mainly reflect the quality of odometry instead of the perceived
quality. To showcase photometric quality instead of tracking quality, we capture selected
scenes with a combination of an Xtion Live Pro and a rigidly attached IDS global
shutter camera that delivers a resolution of 1600 × 1200 pixel. While recording depth
and color from the Xtion sensor at 30Hz, we also capture high resolution data from
the IDS sensor at 60Hz. We evaluate the quality of our texturing algorithm against
the output of ElasticFusion in a similar manner as the work on high fidelity texturing
presented by Fu et al. [40].

4.3.1 Geometry Comparison

The weighting scheme used by ElasticFusion and our standard deviation-based approach
are similar. The results do not differ significantly as underlined by the images in
Figure 4.11. It is, however, apparent that the surfels of ElasticFusion are of lower
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(a) ElasticFusion. (b) ScaleableFusion.

Figure 4.11: Normals acquired from ElasticFusion and ScaleableFusion. While both
methods deliver similar results, it is notable that our method retains
sharper features.

(a) ElasticFusion surfels colorized by number
of observations (blue, few vs. red, many).

(b) Our reconstruction colorized by normals.

Figure 4.12: Reconstruction conducted with ElasticFusion and ScalableFusion. (a)
Shows how younger surfels (blue) are partially layered on top of older
(red) surfaces. Our reconstruction (b) on the other hand maintains smooth
non-redundant surfaces.

density than the triangles in our reconstruction. Furthermore, these surfels are intended
to overlap, resulting in a gapless surface. A strategy that also leads to redundant and
duplicated versions of the surfaces as seen in Figure 4.12.

Methods that directly operate on surfaces are sensitive to tracking errors in a different
way. If it is not possible to attribute a captured surface to a reconstructed surface, a
duplicate will be mapped. Volumetric approaches, such as KinectFusion, are suitable to
handle these situations because they update a reconstruction volume allowing them to
derive a correct surface model. We mitigate this problem through our noise-dependent
thresholding scheme to achieve more consistent maps than traditional surface-based
methods. Despite this effort, these artifacts can sometimes still arise when depth and
tracking errors exceed the given thresholds.
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(a) ElasticFusion with Xtion-
based RGB data.

(b) ScalableFusion with Xtion-
based RGB data.

(c) ScalableFusion with high
resolution RGB camera.

Figure 4.13: Most methods average the color observations, leading to washed out and
speckled results (a). Our texturing-based approach ((b), (c)) samples the
color patchwise, therefore, retaining sharper detail. This enables the use
of higher resolution cameras (c).

4.3.2 Texture Comparison
Figure 4.13 demonstrates that our method makes better use of the RGB sensors
than ElasticFusion which, like other methods, only features one color per geometrical
primitive. Given that there is only space for 9 million surfels as seen in Figure 4.14,
the entire reconstruction can only store as much color detail as a 9 megapixel image.
Furthermore, the averaging schemes for color, together with tracking inaccuracies and
no consideration of photometric sensor characteristics leads to washed out and speckled
reconstructions. Our texturing approach overcomes many of these shortcomings: The
texel density is no longer coupled to the vertex density anymore, but instead taken
from optimal camera frames to advance the reconstruction batch-wise. This enables
the usage of high resolution cameras as seen in Figure 4.13c. We also handle exposure
times and vignetting according to [60] and [61] to reduce seams along segment borders.

The images of our approach in Figure 4.13 still display texture misalignments along
segment borders, which is due to tracking inaccuracies. Offline optimization schemes
such as presented in [40] yield more consistent results, but suffer from heavy computation
and are unusable for real-time reconstruction.

4.3.3 Memory Consumption and Computational Performance
The implementations of TSDF and surfel-based approaches do not offload irrelevant
geometry from the GPU to CPU memory. This becomes a limiting factor when
reconstructing large scenes. We therefore benchmark our system against ElasticFusion
in two large scale scenes.

The first experiment is a live and continuous reconstruction of a large office space
consisting of multiple rooms (Figure 4.15). Data is offloaded to the CPU memory and
only the currently observed region is maintained on the GPU for immediate processing.
This is indicated by the different LOD of the bottom right of the reconstruction in
Figure 4.15b. Our scheme vastly reduces the memory consumption for large scale
reconstructions because it is regulated by the current demand. As such, the vertex



4.4 Discussion 59

0 500 1000 1500 2000 2500 3000 3500
0

0.5

1

1.5

2

V
er

te
x 

C
ou

nt

106 Office

ElasticFusion
ScalableFusion

0 500 1000 1500 2000 2500
Frame Count

0

2

4

6

8

10

V
er

te
x 

C
ou

nt

106 Repeating Rooms

ElasticFusion
ScalableFusion

Figure 4.14: Count of vertices residing on the GPU. Top: Reconstruction of the office in
Figure 4.15. Bottom: Dataset repeating the same room with pose offsets.
ScalableFusion stays below 1 million active vertices, while ElasticFusion
accumulates data in correlation to the size of the environment.

count residing on the GPU is constant on average, only fluctuating depending on the
complexity of the reconstructed frames (Figure 4.14). In comparison to ElasticFusion,
the surfel count growth is correlated with the overall size of the captured scene.

The second experiment is an extreme stress test for both systems. We repeatedly
reconstruct a room dataset [63] while offsetting the pose by 5 m to artificially create a
large environment. In this test, ElasticFusion halts at 2200 frames after accumulating
9 million surfels because the capacity of the GPU memory is reached. Our system, on
the other hand, seamlessly continues to operate with a constant demand on the same
memory.

On our system (Intel Core i7-7700K, Geforce GTX 1070), we achieve a constant
framerate of 30 Hz for our texturing and geometry refinement tasks while still allowing
the geometry to be expanded, meshed and stitched at 5 Hz. This is independent of the
overall reconstruction size.

4.4 Discussion
In this chapter, we introduced ScalableFusion, a novel reconstruction approach for
directly texturing triangles and vertices that significantly improves the quality of 3D
reconstruction. While the use of a triangulated mesh imposes an overhead in terms of
data management, the benefits vastly outweigh the downsides of increased computational
effort. This particularly applies to real-world environments that feature very small
objects. A mesh-based approach describes these elements with an outstanding level of
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detail. ScaleableFusion performs the entire meshing process in the pixel space of the
camera frame to eliminate the expensive neighborhood search. This method proves to be
superior to colorized geometrical primitives because the camera resolution is utilized to
its full potential. We also provide a sophisticated memory management scheme to enable
real-time operation using a Level of Detail approach. A detailed comparison shows that
ScaleableFusion creates better reconstruction for robotic applications. It creates sharper
features (Figure 4.13), alleviates the issue of generating double planes (Figure 4.12),
maintains the full resolution of color cameras (Figure 4.2) and overcomes memory limits
of present methods (Figure 4.14). While results show significant improvements over
state-of-the-art methods, the high resolution of the textures exposes shortcomings in the
alignment between color and geometry. The overly simplistic color and surface model,
inaccurate odometry, poor timestamping/synchronization, and rolling shutter effects of
the depth sensor lead to visible transitions at meshlet boundaries and misalignment
with the geometry. Such effects are, albeit not hindering for most robot applications,
visually displeasing.
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(a) ElasticFusion renders all the surfels.

(b) Whereas our system renders the same scene more efficiently.

Figure 4.15: Partial reconstruction of a large office space.



Chapter 5

Conclusion

Despite building depth-sensors capable of delivering super-human accuracy, we still
struggle to deliver human-level performance on vision-dependant tasks. Unfortunately,
we cannot easily imitate human-like strategies/policies/control laws that commonly
involve other sensing modalities but also exhibit variability undesired in certain applica-
tions. An alternative to the extremely challenging and uncertain task of imitating these
organic mechanisms/strategies is to improve the building blocks of our current systems.

The main contribution of this thesis is the improvement of raw depth-sensing based
on structured light and the integration of these depth-measurements into a coherent
3D reconstruction. These two building blocks are typical for computer vision pipelines
and can greatly influence the utility of AR and robotic systems.

5.1 Summary
In Chapter 3 we briefly discuss the prevalent depth-sensing modalities before enlarging
upon the spatial neighborhood encoding-based structured light sensors and finally
introducing GigaDepth, our machine learning-based solution to improve the performance
on these devices. It is established early on that the sensors operating on this principle
are held back by the used algorithms in order to achieve high framerates in tight
compute envelopes. More compute intensive approaches like e.g. machine learning-
based algorithms thus seem to receive limited attention during development of these
products, leaving potential untapped. The discussed publications in 2.1 tap into the
possibilities of increased compute resources and modern machine learning approaches
that serve as inspiration to GigaDepth. We describe how the combination of multiple of
these ideas can lead to an efficient algorithm with outstanding performance. Utilizing a
shallow CNN in an initial step allows us to extract a condensed feature vector describing
the spatial neighborhood around each captured pixel. Parts of the pattern that retained
enough intensity after traveling to the scene surface, being reflected and traveling
back to the sensor are described in this condensed representation. This also applies
to additional perceptions like sharp edges or shading cues that help guide the surface
reconstruction in small gaps left by the pattern. Starting from these features, trees of
MLPs will derive highly accurate pattern positions that consequently lead to highly
accurate depth estimates. Finally we demonstrate the performance of our algorithms on

62
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two newly assembled datasets. One synthetic dataset required for training due to our
methods dependence on perfectly accurate ground-truth. The second dataset captured
with actual hardware and with ground-truth provided by an industrial laser-scanner. In
our experiments we demonstrate superior performance compared to all baseline methods
in both domains despite our approach lacking training mechanism for real-world data.

Chapter 4 describes ScalableFusion, a fusion mechanism for depth data that directly
generates and operates on a triangulated and textured surface. By being able to
decouple the resolution and density of color and geometry as well as scaling the density
of the representation according to the provided data, it is able to provide a significant
quality upgrade compared to contemporary solutions. While the use of a triangulated
mesh imposes an overhead in terms of data management, the benefits vastly outweigh
the downsides of increased computational effort. A series of algorithms and heuristics
help keep the computation cost low and facilitate real-time operation. ScalableFusion
performs the entire meshing process in the pixel space of the camera frame to eliminate
the expensive neighborhood search. This method proves to be superior to colorized
geometrical primitives because the camera resolution is utilized to its full potential.
We also provide a sophisticated memory management scheme to enable real-time
operation using a Level of Detail approach. A qualitative comparison shows that
ScalableFusion creates better reconstruction for robotic applications. It creates sharper
features (Figure 4.13), overcomes the issue of generating double planes (Figure 4.12),
maintains the full resolution of color cameras (Figure 4.2) and overcomes memory limits
of present methods (Figure 4.14).

5.2 Outlook
Although related and potentially applied in field in the same work package, the two main
themes in this work are vastly different in terms of the paradigms applied. While our
depth-estimation is benefiting from, as of the time of writing, almost fashionable CNNs,
it is a collection of heuristics driving our 3D reconstruction. Especially the development
of the latter has to be seen in the context of the time it has been created in. Scalable
Fusion originated approximately 3 years prior to GigaDepth and, if developed later,
might have employed a vastly different approach or replaced some of the hand-crafted
heuristics with learning-based algorithms.

5.2.1 GigaDepth: Learning Depth from Structured Light with
Branching Neural Networks

While other depth estimation algorithms manage to cope without explicit supervision by
utilizing consistency-based loss functions, our method depends on precise ground-truth.
This is because the control for traversing the decision tree is discretized and therefore
forfeits the ability to back-propagate the gradients for paths not taken. Generating
meaningful update steps for the classification stages by means of photometric consistency
would allow for easier adoption to the real-world domain. This might also create the
opportunity to find more optimal decision boundaries similar to the random forest
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approach of HyperDepth.
In a recent work on Switch Transformers, Fedus et al. [65] train a model that routes

tokens to experts but, unlike classical transformers, does not need to evaluate for not
selected experts during training. A load balancing loss ensures equal distribution to
the individual experts and enables training without full supervision of the intermediate
decisions while only evaluating the experts contributing to the output. Considering
this and the popularity of other recent work on Mixture-of-Expert models as e.g. [65],
[66] with trillions of parameters and layers being sparsely activated, it can be assumed
that the training of branching architectures similar to ours will stay a research topic
in the future. The method extracting invalidation maps presented in Section 3.1.4
proves that we can efficiently identify and discard most invalid disparity estimates.
However, the resulting binary invalidation mask is rather pragmatic and deserves tuning.
Furthermore, a confidence measure such as standard deviation with continuous values
and a statistical interpretation would benefit tasks like 3d reconstructions.

Different architectures that started to replace, complement or augment CNNs in other
tasks should be employed. E.g. a transformer-based architecture would better map onto
current hardware than our MLP decision tree. It could revive the idea of a reference
feature map of the emitted pattern: A hierarchical (cross-)attention mechanism could
match features between the captured frame and a reference map of keys and values.
This way, the knowledge about the reference pattern is not stored in such a hideously
rigid decision tree. The current implementation for the MLP tree could receive a
dramatic speedup by performing the whole traversal in one fused CUDA kernel. Similar
to the works by Müller et al. [51], [67] that is used to cache raytracing results in a
neural representation, this would allow to keep the intermediate results in the cache
and minimize memory access.

Finally, incorporating deeper networks into our pipeline e.g. for post-processing can
help fill gaps left around depth discontinuities and on challenging surfaces to create
more complete depth maps.

5.2.2 Scalablefusion: High-resolution mesh-based real-time 3D
reconstruction

Despite some compelling results generated by our ScalableFusion method, we have
identified several shortcomings. Each of these opening multiple avenues for potential
solutions and improvements.

The odometry method used, inherited from ElasticFusion, was selected to minimize
the (geometric) dissent coming from different camera frames. Augmenting or even
replacing the projective ICP approach with one leaning onto an RGB-based Visual
Inertial Odometry system (e.g. Direct Sparse Odometry [68]) would make the integration
and alignment of new geometry more challenging, but potentially handle a greater
variety of edge cases.

When handling noisy or even contradicting depth-measurements, purely surface-based
methods cannot easily maintain volumes of possible surfaces. Deciding which surface a
specific measurement should be attributed to or when to instantiate new surfaces are
central factors for reconstruction quality. Our algorithm has shown to rarely instantiate
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new surfaces when clearly observing an already mapped surface or keep updating an
existing surface when the scene has changed. Better heuristics, acting also on color
information instead of depth alone, should be employed. With enough reconstructions
performed and some manual annotation, a learning-based approach could be pursued.

Our current pipeline does not feature bundle adjustment and thus does not handle
loop closures. Augmenting the pipeline with loop detection found in full SLAM systems
(e.g. ORB SLAM [37]) and maintaining a pose-graph, an optimization step could
generate updates for the meshlets and improve consistency in challenging situations.
The updating transformations for the dense geometry could be cached, accumulated
and would only need to be applied when meshlets are visible.

The textures of surfaces are updated by applying data from keyframes with unob-
structed view. Heuristics better controlling exposure and keyframe selection can greatly
improve the appearance of the reconstruction. Learning-based methods, inspired by
neural radiance fields as e.g. [49], could also be used to extract a more flexible surface
parametrization such as a Bidirectional Reflectance Distribution Functions (BRDF) [69]
to decouple lighting from our surface representation.

Due to issues in calibration and synchronization between Depth and RGB-sensor,
textures will not perfectly overlap with the geometry. By finding/employing a geometry
to texture alignment metric and a metric quantifying the alignment between textures
of neighboring meshlets, may they be learning-based or not, it would be possible to
adjust the textures and provide visually appealing results.

As ScalableFusion allows for multiple layers of textures to be attached to the surfaces,
it is possible to extend the reconstruction with additional information such as semantic,
or object labels. Going further than using such information as an overlay over existing
geometry, the work of Herb et al. [70] describes a method where semantic labels guide
the meshing process and enable persistently labelled mesh-reconstructions. While the
geometry generated by [70] is much sparser, the ideas provide a glimpse of what can be
achieved when image-level analysis via neural networks flows into the mesh-creation
process.

Finally, we want to emphasize that our plans for online optimization of the geometry
were more ambitious than shown in this paper. The textures used to keep account of
standard deviations on the surfaces are intended to be used to detect surfaces/meshlets
that we seek to densify. In a similar fashion, we planned to select planar triangles with
low standard deviation to sparsify meshlets and (on occasion) combine those into bigger,
less expensive blocks. Implementing these features would allow long-term management
of reconstructions enabling applications in robotics and spatial computing.
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