
DOI: 10.1111/cgf.14794 COMPUTER GRAPHICS forum
Volume 0 (2023), number 0 pp. 1–31

Are We There Yet? A Roadmap of Network Visualization from
Surveys to Task Taxonomies

Velitchko Filipov, Alessio Arleo and Silvia Miksch

TU Wien, CVAST, Vienna, Austria
alessio.arleo@tuwien.ac.at,silvia.miksch@tuwien.ac.at

Abstract
Networks are abstract and ubiquitous data structures, defined as a set of data points and relationships between them. Network
visualization provides meaningful representations of these data, supporting researchers in understanding the connections, gath-
ering insights, and detecting and identifying unexpected patterns. Research in this field is focusing on increasingly challenging
problems, such as visualizing dynamic, complex, multivariate, and geospatial networked data. This ever-growing, and widely
varied, body of research led to several surveys being published, each covering one or more disciplines of network visualization.
Despite this effort, the variety and complexity of this research represents an obstacle when surveying the domain and building a
comprehensive overview of the literature. Furthermore, there exists a lack of clarification and uniformity between the terminology
used in each of the surveys, which requires further effort when mapping and categorizing the plethora of different visualization
techniques and approaches. In this paper, we aim at providing researchers and practitioners alike with a “roadmap” detailing
the current research trends in the field of network visualization. We design our contribution as a meta-survey where we discuss,
summarize, and categorize recent surveys and task taxonomies published in the context of network visualization. We identify
more and less saturated disciplines of research and consolidate the terminology used in the surveyed literature. We also survey
the available task taxonomies, providing a comprehensive analysis of their varying support to each network visualization dis-
cipline and by establishing and discussing a classification for the individual tasks. With this combined analysis of surveys and
task taxonomies, we provide an overarching structure of the field, from which we extrapolate the current state of research and
promising directions for future work.

Keywords: information visualization, network visualization, visual analytics

CCS Concepts: • Human-centered computing → Visualization • Visualization techniques • Graph drawings

1. Introduction

A network is an abstract and ubiquitous data structure, defined, in
its simplest form, as the combination of a set of data points and the
relationships between them. Due to its simple yet flexible nature, it
found its way to a wide range of applications in diverse problem do-
mains. Network visualization is a research field concerned with pro-
vidingmeaningful representations of networked data, supporting re-
searchers in understanding the connections, gathering insights, and
detecting and identifying unexpected patterns [BCD*10].

Over the last two decades, the field of network visualization has
been building up momentum and developing rapidly, focusing its
research on increasingly challenging disciplines, such as the visu-
alization of dynamic, complex, multi-variate, geospatial network
data. The variety and diversity of this research represents an ob-

stacle for researchers and practitioners surveying the domain, and,
more specifically, when building a comprehensive overview of the
literature in the field. To address this problem, numerous surveys
have been published on these different disciplines of network visu-
alization, that is, large network visualization [vLKS*11], dynamic
network visualization [BBDW17], multi-variate network visualiza-
tion [NMSL19], and others [SSK14, HSS15, VBW17, NMSL19,
MGM*19, SYPB21]. While immensely helpful in systematically
exploring and categorizing research in their own disciplines, similar
approaches and techniques have been classified by multiple surveys
in different ways and under diverse names, ultimately resulting in a
lack of clarification and uniformity between the terminology used.
For example, the concept of juxtaposition has been referred to as
“small multiples”, “static flipbooks”, or “[visualization of] multiple
timeslices” in the context of dynamic network visualization. This
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requires further effort when mapping and categorizing the plethora
of different visualization techniques and approaches. Within this
context, our motivation is closely aligned to the one expressed by
McNabb et al. [ML17], outlining the need for a “quantum step” in
survey literature to provide an overarching structure of the field, ex-
plore saturated areas of research, and emphasize directions for fu-
ture work. Questions such as “What has already been done?” and
“What areas in the domain have yet to be explored?” are common
occurrences that we aim to address in our work.

In this paper, we present a meta-survey with the goal of pro-
viding a roadmap detailing the different research directions in the
field of network visualization and the relationships between them.
A roadmap is a form of map that provides an overview of the
landscape and details navigational routes, points of interest, roads,
and boundaries. A roadmap can also be defined as a strategic plan
outlining the desired outcome (or goal), the respective challenges,
and defining the necessary steps required to reach it. In the same
way that a map provides navigational routes, we want to support
both newcomers and seasoned explorers of the field with a con-
cise yet accessible view of the research field of network visualiza-
tion, detailing the most relevant research trends and highlighting
more and less conspicuous relationships between different visual-
ization disciplines. Following our roadmap metaphor, we categorize
the research in the field based on two major landmarks: surveys (or
state-of-the-art reports) and task taxonomies. We start by reviewing
the surveys and the proposed categorizations, examining their dif-
ferences and commonalities, cross-cutting challenges and research
trends, and discussing the overlaps and inconsistencies in terminol-
ogy across different publications. Second, we extend our review
to task taxonomies. Task taxonomies are concepts that are widely
used for comparing and evaluating the efficacy of techniques and
approaches [SYPB21]. Several surveys across different disciplines
outline the need for a standardized set of tasks, often in response
to the lack of a task taxonomy sufficiently expressive for their type
of data. We explore the individual task categorizations and outline
their design and evaluation process. We present a classification of
the proposed tasks and evaluate their support for the different vi-
sualization disciplines matching the relationships we identified in
our roadmap metaphor. Within this context, our contributions are as
follows:

• Provide a structured overview of surveys published in the field
of network visualization based on a literature search oriented to-
wards highlighting more and less saturated research directions,
current cross-cutting challenges, and discussing the evolution of
the field (see Sections 3 and 4);

• Outline overlaps, similarities, and inconsistencies in terminology
between the categorizations provided by different surveys in order
to support a common dictionary of the field (see Section 5);

• Explore the landscape of task taxonomies associated with dif-
ferent network visualization disciplines, identify which have a
well-established (generalized or specialized) or missing taxon-
omy, and classify the individual tasks as topology, analysis, or
network facet tasks (see Sections 6 and 7);

• Summarize the open challenges and directions for future research
as a basis for a discussion about future perspectives for the field
of network visualization (see Section 8).

Table 1: A list of the sources and venues we reviewed along with the corre-
sponding number of papers included in our meta-survey. Only venues with
a paper count greater than zero are shown. Venues and journals in “Other”
contribute with only one publication each.

Publication venue Count

TVCG 9
CGF 9
EuroVis 3
VIS 2
Information visualization 3
AVI 2
Other 15

Total 43

2. A Roadmap for Network Visualization

As network visualization significantly expanded over the last two
decades, navigating it might challenge both expert and novice re-
searchers. The difficulty in properly orienting in this field inspired
us with the roadmap metaphor (see Figure 1). In the same way a
map is generally used to plan a journey, our roadmap is designed
to guide and support researchers in finding inspiration, competi-
tion, or the most appropriate tasks for their evaluations. In this sec-
tion, we present our research methodology, discuss our classifica-
tion, and illustrate our roadmap metaphor for network visualiza-
tion. We define the terminology we used to categorize publications,
elaborate on the scope of our literature review, and discuss related
work.

In the context of our work we use the terms network and graph,
nodes and vertices, and links and edges interchangeably. While
there is a semantic difference between graph and network (i.e.
graphs are mathematical concepts, whereas networks are more gen-
eral, often referring to real-world systems), in visualization litera-
ture these two terms are used interchangeably and the keywords as-
sociated with the publications reflect this. For this purpose, we use
graph and network visualization as keywords when conducting the
literature search to retrieve a more extensive set of publications.

2.1. Research methodology

Our literature search is an iterative process made up of a sequence of
refinement cycles, and we incorporate aspects of the PRISMA state-
ment [PMB*21] in our methodology. The scope of our meta-survey
is strongly oriented to both the visualization and graph drawing
communities. We, therefore, reviewed venues more closely related
to this audience, including the IEEEVisualization Conference (VIS),
Eurographics Conference on Visualization (EuroVis), and Interna-
tional Symposium on Graph Drawing and Network Visualization
(GD) proceedings, or journals such as Computer Graphics Forum
(CGF), IEEE Transactions of Visualization and Computer Graph-
ics (TVCG), Journal of Graph Drawing and Algorithms (JGAA).
We then extended our search to include a broader range of venues
and journals about general visualization topics, such as Journal of
Visualization (Springer), Advanced Visual Interfaces (AVI), Visual
Informatics (Elsevier). In Table 1 we report the number of papers
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Figure 1: Our roadmap metaphor shows the individual disciplines as nodes with a title and gray border, and their relationships, identified in
our literature search, as labelled roads connecting them (Section 2.2). Directed arrows represent inheritance relationships between disciplines.
A source discipline can be extended to the target by considering extensions to the data type, depicted by the green road signs.

included in this meta-survey with the corresponding venue where it
was originally published: we grouped as “Other” all venues which
contributed to this survey with a single relevant publication. For the
complete set of literature that we gathered in the scope of this work
we refer to the supplementary material. We take advantage of the
SurVis [BKW15] project to provide readers access to our tagged
database of papers (see our online material [PAP] for more infor-
mation).

Our literature search process started with a small set of surveys
that were previously known to the authors. This initial groupwas ex-
tended by querying search engines, such as Google Scholar [SCH],
IEEE Explore [IEX], ACM Digital Library [ACM], Research-
Gate [RES], or Scopus [SCO] for publications tagged with the fol-
lowing combinations of keywords:

(“Survey” | “State-of-the-Art” | “Taxonomy” | “Design Space”)

&

(“Graph Visualization” | “Network Visualization”).

Our aim was to include as many potential publications as
possible in this step. The publications gathered in this step
were identified as systematic reviews due to their proposed cat-
egorization and thorough survey of state-of-the-art approaches.
We additionally queried for more specialized surveys and tax-
onomies adding specific keywords that we identified from the
literature we found along our search (e.g. “Multi-variate”, “Dy-
namic”, etc.). We verified that all the queried publications fit
our inclusion criteria (see Section 2.2). The resulting publica-
tions were then investigated in more detail, tagged by the co-

authors, and categorized according to our roadmap metaphor (see
Section 2.3).

After this initial step we conducted a forward and reverse lookup
of papers citing or cited by our initial set of selected publications
in order to discover any new reviews that would fit our topic and
to verify that the literature we gathered was extensive and com-
plete. For all the new papers discovered in this second stage, we
again checked them against our inclusion criteria and categorized
them accordingly. Before checking for inclusion, the combination
of these two search steps yield a total of 152 papers. From these,
we excluded systematic reviews of graph algorithms (28), books on
methods and models of graph drawing (8), studies and evaluations
(11), and surveys from other domains not focusing on visualization,
such as, cryptography, biology, sociology (11), related work that
was retrieved due to the generic keywords (39). Others (12) were
excluded as they were out of our time window of interest (2000–
2021). Finally, a total of 43 publications met all our inclusion crite-
ria: we categorize them according to Section 2.3 and describe them
in greater detail in their respective sections (see Sections 3 and 6).

2.2. Meta-survey scope

In the following, we describe the inclusion criteria for surveys and
taxonomies we consider in the scope of our work and present exam-
ples of literature that were included or excluded from our research.
Among all paper publication venues, we prioritize journal papers
over conferences and book chapters. In order to provide a timely
and updated landscape of network visualization, we exclusively fo-
cus on publications ranging from 2000 to 2021.
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Surveys represent a practical and effective way to summarize and
manage the great volume of published papers in a field [ML17]. In
this category, we include papers with the following characteristics:

• SC1: They are a systematic review of literature about a specific
network visualization discipline, providing a categorization of a
broad selection of state-of-the-art approaches;

• SC2: The focus of the survey is strongly oriented towards network
visualization and has a clear contribution in this domain.

A non-exhaustive list of the publications we include in
our meta-survey are the state-of-the-art reports on the topic
of general network visualization [HSS15, GFV13, CGZ*19],
large [vLKS*11], dynamic [BBDW17], multi-variate [NMSL19],
multi-layer [MGM*19] networks, group visualization [VBW17],
and geospatial information in networks [SYPB21].

Computer graphics and graph theory surveys are considered out
of scope. Brockenauer et al. [BC01] survey the literature for cluster
and hierarchical graph drawings. Yu et al. [YFZ*20] review litera-
ture related to network motif discovery and their discussion focuses
on a summary of the most popular algorithms to identify such pat-
terns. While both papers are related to network visualization, their
discussion is limited to discussing the algorithmic and complexity
aspects, rather than their impact on visualization, not fulfilling SC2.
Scientific visualization papers are also outside of our scope. Wang
et al. [WT17] present a survey about graphs in scientific visualiza-
tion; however, the focus is more on how graphs are used as a data
structure to support the presented techniques rather than how they
are used in the final presentation of the data to the user. We also ex-
clude papers that focus only on interaction, such as the survey by
Wybrow et al. [WEF*14] on interaction on multi-variate networks.

Task Taxonomies enable preparing common and shared bench-
mark tasks that guarantee fair evaluations and comparisons between
different visualization techniques [SYPB21]. The papers included
in this meta-survey and considered task taxonomies fulfill the fol-
lowing criteria:

• TC1: The paper provides a selection and categorization of possi-
ble tasks that can be applied for network visualization to extract
information and/or insights;

• TC2: Taxonomies can be obtained empirically (e.g. through inter-
views or user studies) or by extending existing higher-level ones
and adapting them to support data types specific to a network vi-
sualization discipline;

• TC3: The taxonomies are evaluated, either empirically, or
through a theoretical treatment.

Our literature research highlighted a scarce number of task tax-
onomies available for network visualization.We introduced require-
ments TC2 and TC3 to prioritize taxonomies of proven potential
in supporting researchers. We include well-established task tax-
onomies that support research in their own discipline, such as the
papers by Lee et al. [LPP*06] on graph visualization, by Pretorius
et al. [PPS14] on multi-variate networks, and by Ahn et al. [APS14]
on temporal networks. We also include task taxonomies suggested
in the context of evaluations of visualization systems and design
studies (TC3), such as the case of the work by Bach et al. [BPF14].
We exclude higher-level visualization task taxonomies, such as the

work by Valiati et al. [VPF06] on multi-variate data visualiza-
tion (TC1). However, these are often used as a basis for network-
oriented taxonomies: Pretorius et al. [PPS14] extend the Valiati tax-
onomy for multi-variate network visualization (TC2). While out of
our scope, we discuss them briefly in Section 6.1, and in our tax-
onomy coverage discussion (see Section 7.1). We also do not in-
clude task taxonomies proposed in the context of surveys [VBW17,
NMSL19, MGM*19], as they are usually a collection and catego-
rization of tasks gathered from the surveyed papers, therefore, not
fulfilling TC2 and TC3.

2.3. The roadmap categorization

To obtain our roadmap metaphor, we group surveys and task tax-
onomies into non-overlapping sets based on their discipline (illus-
trated as large nodes with a heading and gray border in Figure 1).

Disciplines refer to the branches of network visualization that
deal with specific data types. While the networked nature of the data
is common among all disciplines, each one is enriched with other
attributes and dimensions, such as time (dynamic/temporal network
visualization), geographic information (geospatial network visual-
ization), facets, multiple layers, andmultiple attributes. Each branch
of network visualization has matured enough to be referred to as a
network visualization discipline. A multitude of specific techniques
were developed within each discipline to the point that it warranted
the writing of one or more surveys, categorizing the correspond-
ing approaches and summarizing the advancements and open chal-
lenges in literature (see Figure 2 for examples of network visual-
ization disciplines identified in this meta-survey). Summarizing, we
consider a branch of network visualization to be a discipline if the
following criteria are met:

• DC1: The branch of network visualization should have at least
one survey discussing and categorizing techniques specifically
designed for it (criterion of maturity and variety);

• DC2: The data type should have unique properties besides its net-
worked nature (e.g. extra facets, time, multiple attributes or layers
- criterion of specificity).

Visualization of trees, for example, while being of great impor-
tance to the community and having more than one survey [WNF16,
GK10] dedicated to it, is discussed under the general network vi-
sualization discipline, as their data type most closely resembles a
simple networked structure.

Different disciplines can build upon a common theoretical ground
onto diverging directions or one can be a specialization of an-
other. We model these relationships as directed inheritance relation-
ships depicting how the different disciplines are connected. In our
roadmapmetaphor, these can be seen as roads that lead from one net-
work visualization discipline to the other. The green road signs in-
dicate how data changes (i.e. with new features and, therefore, with
added complexity) when travelling from one discipline to the other
(see Figure 1). In the following, we present a high-level discussion
about the different network visualization disciplines that we have
identified and discuss, how and why these are related to each other.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 2: Illustrative examples. From left to right networks from the following network visualization disciplines: general, group structures,
multi-variate, dynamic, geospatial, and multi-layer. Figure (a) courtesy of Hadlak et al. [HSS15], augmented with multi-layer networks (b).

General network visualization entails visualization techniques
devised for generic networked data. Therefore, it can be considered
a generalization of all other disciplines. Large network visualiza-
tion extends previous techniques for general networks to scale up
to large numbers of nodes and edges, and it is shown accordingly
in the green road sign in Figure 1. General network visualization
can be extended by adding individual facets, which are further data
attributes belonging to nodes, edges, or the entire graph itself, that
have to be shown alongside the graph’s topology. Depending on the
type of facet, there are the disciplines of geospatial, multi-variate,
dynamic, or networks with group structures. Techniques devised
for visualizing large groups are extensively discussed in the disci-
pline of large network visualization (e.g. simplification by grouping,
partitioning, or clustering) and can be leveraged in multi-layer net-
work visualization as well [MGM*19]. Visualization techniques for
multi-faceted networks inherit from all the disciplines dealing with
individual facets as it focuses on those situations in which multiple
facets have to be visualized at the same time. Furthermore, some
facets can also be represented as different layers of a network which
is represented in our roadmap as the multi-layer visualization disci-
pline.

2.4. Related work

As previously stated in the introduction, the inspiration for our
work comes from the “Survey of Surveys” by McNabb and
Laramee [ML17]. In their work, they draw a landscape of the in-
formation visualization literature through 86 survey papers, clas-
sified using the “Information Visualization Pipeline” by Card
et al. [CMS99]. Further work on such meta-surveys is proposed
by Chatzimparmpas et al. [CMJK20], where they present a meta-
survey about the use of visualization in the interpretation of machine
learningmodels, cataloging and discussing the surveyed papers, and
proposing a meta-analysis tailored for both newcomers and senior
researchers in the field. Additionally, Alharbi and Laramee [AL18]
present a meta-survey about text visualization, cataloging each sur-
vey into one of five categories, obtained based on the main focus
and themes found in each.

In our meta-survey, we map the landscape of survey papers with
a specific focus on the visualization of graphs and networks in
more detail than McNabb and Laramee [ML17] and this work
is, to our knowledge, the first comprehensive meta-survey in net-
work visualization. We also acknowledge the useful guide by Mc-
Nabb and Laramee [ML19] about writing survey papers in visu-

Table 2: Table reporting the surveys in this paper arranged by discipline
(see Section 2.2) and chronological order. References highlighted in pink
represent literature we reference and include in our discussion but do not
describe in detail in Section 3. All included surveys are part of our terminol-
ogy consolidation (see Section 5).

alization, which gave us suggestions used in the writing of this
paper.

3. Surveys

In this section, we provide an in-depth description of the content
of selected survey papers, organized by discipline, and, within each
discipline, we order the papers by publication date to suggest a sense
of progression over time. We begin each subsection with a short
definition of the specific discipline as depicted in our roadmap (see
Figure 1). To ease the discussion, some less relevant papers in our
scope are referenced and shortly discussed at the beginning of each
subsection to further provide background and context (see Table 2).
Conversely, in-depth surveys are discussed within their respective
discipline using a structured summary and visual cues, to ease read-
ing and comprehension, as follows. The summary is divided in:mo-
tivation ( ), which also includes the goals of the survey; contribu-
tion ( ), which presents an outline of the proposed categorization;
and open challenges and future work ( ).

3.1. General network visualization

A graph G = (V,E ) is a data structure composed of a set of
vertices V = {v1, . . . , vn} (nodes) and a set of edges that are

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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(un-)ordered pairs of vertices e = (vi, v j ) ∈ E ⊆ V ×V represent-
ing their relationships (links). General network visualization refers
to techniques that tackle the problem of visualizing simple net-
worked data, typically focusing on how to produce a layout for
the graph [BBHR*16, CS20], improving visual scalability of the
edges [ZXYQ13], graph drawing aesthetic criteria [BRSG07], and
visualization of trees [GK10]. While in our roadmap (see Sec-
tion 2.3), all these heterogeneous topics fall into this discipline, to
ease reading and comprehension, we further categorize the surveys
into different branches.

High-level network visualization

�Herman et al. [HMM00] publish one of the first surveys on graph
visualization with a perspective more oriented towards information
visualization rather than traditional graph drawing.

Motivation: In the words of the authors, “the traditional con-
cerns of Graph Drawing become less relevant in graph visualiza-
tion” [HMM00, p. 6], since the latter deals with much larger, real-
life graphs.

Contribution: In their survey, the authors review papers re-
garding (i) graph layout, (ii) graph interaction and navigation, and
(iii) complexity reduction. Issues and limitations regarding scalabil-
ity (both computational and visual) are discussed. Concerning the
first category the survey presents an overview of traditional layout
techniques outlining the most widely adopted layout approaches:
tree-based, layered (as in the work by Sugiyama [STT81]), and
energy-based/force-directed layouts. In the second category, the au-
thors present navigation and interaction approaches for graph visu-
alization. The interaction and navigation techniques are classified
as zoom and pan approaches (i.e. geometric and semantic zoom-
ing), focus+context approaches (i.e. fisheye and focus+context lay-
out techniques), and incremental exploration and navigation (i.e.
details-on-demand). Complexity reduction methods, that is, solu-
tions to simplify the graph to improve scalability, are discussed (e.g.
3-D representations, layout with alternative geometries, clustering
methods). The survey also presents a review of available network
visualization systems present at the time of publication.

Open Challenges: In terms of future work, the authors outline
the need for more focus on cognitive aspects of graph visualization
techniques, further research on focus+context layout techniques,
and more attention should be given to clustering and aggregation
to reduce the number of visual elements being displayed.

� Schulz and Schumann [SS06] present a generalized view of
graph visualization.

Motivation: The survey provides a systematic overview of the
problem by combining two perspectives on graph visualization: the
one from the graph drawing community, more focused on optimized
layouts and node-link representations, and the second from the in-

formation visualization community, more focused on larger (hierar-
chical) structures, multiple views, and interactivity.

Contribution: The authors divide the surveyed visualization tech-
niques as follows: (i) hierarchy and (ii) general network represen-
tations. Hierarchy representations are further divided into explicit
and implicit (inclusion relationships are explicitly shown), axes-
oriented, and radial (fixed arrangements of the hierarchy levels ei-
ther line-by-line or in concentric circumferences). General network
representations are categorized similarly, into explicit and implicit,
directed and undirected (whether the vertex pairs are ordered or not),
free layouts (i.e. force-directed layout), styled (i.e. a grid layout), or
fixed where node and edge positions are constrained (i.e. flight route
map and geospatial networks).

Open Challenges: The survey provides indications and general
practices on which of the presented techniques to choose depend-
ing on the user requirements or data characteristics, concepts that
became part of a network visualization framework [SNS06]. The
paper concludes by suggesting extensions to this work, in particu-
lar, to support hypergraphs.

�Chen et al. [CGZ*19] explore visualization for association re-
lationships in static graph data.

Motivation: Exploring relationships in complex datasets is a
challenging task: advancements in visualization approaches that
combine graph drawing theory and human intelligence have the po-
tential to support users in finding insights in these data. This paper
aims at providing a unified model for visual analysis of networked
data, that would encompass topics from graph simplification and
visualization to interaction.

Contribution: The survey proposes a visual analysis model for
networked data, comprised of three stages: (i) relationship mod-
elling, (ii) visualization techniques, and (iii) graph simplification
and interaction. In the first stage, algorithmic pre-processing for
relationship extraction adopting a combination of graph mining,
data modelling, and graph analysis is discussed. Graph analysis
tasks are also reported from the work of Pretorius et al. [PPS14]
and Lee et al. [LPP*06]. The second stage discusses visual tech-
niques to support an intuitive and effective representation of the
graph data, including node-link representations, adjacencymatrices,
hypergraphs, flow diagrams, graphs with geospatial information,
multi-attribute graphs, and space-filling visualization techniques.
The last stage surveys techniques such as graph filtering, node clus-
tering, edge bundling, dimensionality reduction for graph data, and
topology-based graph transformation.

Open Challenges: Major research trends are discussed as direc-
tions for future work, specifically, augmenting visualization tech-
nology with machine learning for pattern mining and discovery,
improving node clustering to tackle visual clutter for large graphs,
multi-view solutions for collaborative analysis, and leveraging 3-D
and virtual reality technologies for network visualization.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies 7

Node-link layouts and aesthetics

� Bennet et al. [BRSG07] focus on the aesthetic principles behind
node-link network representations.

Motivation: The aesthetic principles were introduced to provide
a set of known and (empirically) tested layout criteria to improve
the readability of such diagrams (e.g. limiting the number of edge
crossings [BMRW98, TR05]). The authors collect findings concern-
ing which criteria fit best for each application.

Contribution: The authors survey papers that discuss layout
aesthetic heuristics, first limited to the appearance of nodes and
edges, then applied to the entire graph layout, and finally concerning
domain-specific applications. The surveyed heuristics are grouped
into (i) node and (ii) edge placement, (iii) overall graph layout, and
(iv) domain-specific (e.g. UML diagrams or social network dia-
grams) aesthetics.

Open Challenges: The survey outlines that little work has been
done in applying aesthetic heuristics for graph visualization from
other fields (e.g. cartography, graphical design). Aesthetic criteria
can also conflict with each other: in this context, evaluating the
(application-specific) trade-offs between different metrics can pro-
vide valuable design insights. Finally, more evaluations need to be
performed on readable graph layouts to understand the perceptual
basis of these heuristics.

� Gibson et al. [GFV13] survey 2-D node-link graph layout
techniques for information visualization.

Motivation: The problem of computing a layout of a graph
is still a challenge, even after 50 years after Tutte’s barycentre
method [Tut63]. This process has the burden to provide visual aid
to the analysis and support the understanding of the graph, possibly
highlighting structures and patterns in the data, necessary to dis-
cover insights [HFM07].

Contribution: The paper analyses 30 years of research ori-
ented towards graph layouts. The categorization proposed by the au-
thors divides layout algorithms into three families: (i) force-directed
(energy-based), (ii) algorithmic approaches (dimensionality reduc-
tion), and (iii) multi-level force-directed. In the same context, the
survey discusses common aesthetic criteria, also referencing the
work by Bennet et al. [BRSG07], and evaluation methods for these
techniques. Multi-level approaches are discussed as computational
improvements to address the limited scalability of traditional force-
directed techniques. The paper also discusses how node attributes
(especially in multi-variate or multi-faceted graphs) could be uti-
lized in the graph layout process.

Open Challenges: The survey outlines the current problems with
validating graph layout techniques. One rather fascinating discus-
sion concerns how there is no explicitly known relationship between

Figure 3: The taxonomy of force-directed algorithms presented by
Cheong et al. [CS20]. Classical spring-embedder approaches fall
into the “Accumulated Forces” category.

drawing principles, layout, and user tasks [DS09, SGF11]. Pur-
chase [Pur00] showed that while the effect of individual aesthetics
was undoubtedly significant in graph exploration tasks, the choice
of (force-directed) layout method did not largely affect user perfor-
mance on those same tasks. Even with the introduction of multi-
level algorithms, visual scalability remains a challenge, as layout
quality does not appear to improve significantly over spring em-
bedder techniques [Ead84, FR91], except for regular structures (e.g.
meshes). This suggests that the drawing principles for small graphs
might be different from the ones that could benefit larger graphs,
and, therefore, other approaches that highlight other structural prop-
erties of the graph should be considered (such as LinLog [Noa07])
as well as layout methods that make use of node or edge
attributes.

� Cheong et al. [CS20] aim at providing a comprehensive sum-
mary of the last 50 years of research on force-directed algorithms in
graph drawing (see Figure 3).

Motivation: As force-directed algorithms have been developed
for the last 50 years, they have found their way in several appli-
cation domains. The survey addresses the recent developments and
provides a summary of state-of-the-art force-directed algorithms in
schematic drawings (i.e. representation of elements of a network us-
ing simple schematic symbols) and node placement.

Contribution: First, the survey presents a comprehensive de-
scription of all typologies of force-directed algorithms, divided into
(i) classical force-directed algorithms (which include the method-
ologies presented in previous surveys [HMM00, GFV13]), and (ii)
hybrid approaches, specifically pointing at advanced computing
methodologies to speed up the layout computation process (i.e.
multi-level approaches and parallel, distributed, and GPU imple-
mentations). Second, the survey lists and categorizes papers ac-
cording to the application domain where force-directed approaches
were adopted. These are (i) aesthetic drawings for general networks,
(ii) component placement and scheduling in high-level synthesis of
VLSI circuit design, (iii) information visualization, (iv) biological

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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8 V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies

network visualization, and (v) node placement and localization in
sensor networks.

Open Challenges: While the survey does not clearly outline fu-
ture work opportunities, the scope of the paper is to establish a tax-
onomy of the plethora of force-directed techniques which have been
presented over the years and introduce them as valuable tools to
solve a wide variety of visualization problems in several applica-
tion domains.

Edge bundling

� Zhou et al. [ZXYQ13] survey the topic of edge bundling which
is a common technique in information visualization to reduce visual
clutter occurring with the depiction of a large number of edges.

Motivation: Different from graph simplification techniques such
as clustering, filtering, and sampling [ED07] , edges are deformed
and grouped into bundles. The surveyed techniques are presented
in the context of remediating the visual clutter problem on graphs,
parallel coordinate plots, and flow maps.

Contribution: The presented taxonomy includes three
edge-bundling categories: cost-based (e.g. ink [PNK10] or en-
ergy [HVW09] minimization), geometry-based, and image-based
techniques. In the second category, bundling is computed along a
geometry that is either derived from the hierarchical clustering of
the graph [Hol06] or a grid [QZW06] (when such a clustering is not
present). Image-based edge bundling approaches are also discussed,
which require the edge clusters to be computed beforehand and
then rendered using image-enhancement tools (e.g. silhouettes,
shadows, halo effects, faded histograms, and splatting).

Open Challenges: The authors of the survey identify notable di-
rections for future work, such as the readability of the bundled dia-
grams, algorithm complexity, interactions (i.e. intuitive navigation),
and research on geometry-based bundling techniques.Moreover, the
survey points out that only a few works present a systematic evalu-
ation of edge bundling approaches.

� Lhuillier et al. [LHT17] expand the previous survey by Zhou
et al. [ZXYQ13] on edge bundling.

Motivation: The survey by Zhou et al. [ZXYQ13] did not cover
some critical elements for understanding bundling (e.g. bundling at-
tributed and time-oriented data, interaction techniques). This survey
aims at introducing comprehensive taxonomy of bundling methods,
a framework that would precisely define what bundling is, and a
formal platform for comparing the different solutions from a tech-
nical perspective.

Contribution: The survey introduces a comprehensive taxon-
omy of bundling methods for both graphs and trail sets (i.e. ori-
ented curves in R

d , usually used to describe the motion of objects
in space), a framework for comparing these algorithms from a tech-

Figure 4: Different matrix reorderings can reveal different patterns
in network topology. Courtesy of Behirsch et al. [BBHR*16].

nical perspective, and an extended discussion on what bundling is,
which tasks it supports, and how it compares with other simplifica-
tion techniques. The design space of edge bundling for graph draw-
ings is divided into techniques for static and dynamic graphs. The
survey categorizes papers that propose edge bundling techniques
for (i) hierarchical and compound graphs, (ii) directed graphs, flow
maps, (iii) confluent drawings, and (iv) 3-D graph visualization
techniques. For trail-sets, the survey proposes a similar classifica-
tion as the one proposed for edge bundling, dividing the techniques
into static and dynamic trail-sets.

Open Challenges: As there are no objective or well-defined cri-
teria to determine what a good bundling is, research is required
on a standardized assessment of the visual quality of the bundling.
Moreover, bundling faithfulness, defined as the amount of infor-
mation lost or altered by the bundling process, is a concept that is
typically overlooked when discussing bundling techniques. Finally,
user-controlled edge bundling is another hot topic in the field (i.e.
parameter tuning and interactive bundling).

Matrix reordering

� Behirsch et al. [BBHR*16] survey algorithms that reorder the
rows and columns of adjacency matrices or tabular representations
of networks.

Motivation: Adjacency matrix reordering (i.e. finding a proper
order for the rows and columns comprising a visual matrix) has
been historically done manually. Recently, several automatic meth-
ods have been presented, which guarantee fast results and can high-
light clusters and higher-order patterns (see Figure 4).

Contribution: The authors provide a comprehensive overview of
matrix reordering algorithms that are widely used in different fields,
e.g. statistics, bioinformatics, and graph theory. The surveyed tech-
niques are grouped into seven algorithmic families and the classi-
fication of each is tailored toward the goal of providing guidance
on which algorithm to employ based on the size and structure of
the data. The categories are the following: (i) statistical (Robinso-
nian) approaches, (ii) spectral methods, (iii) dimension reduction,
(iv) heuristic approaches, (v) graph-theoretic approaches, (vi) bi-
clustering algorithms, and (vii) interactive and user-controlled ap-
proaches. The survey also presents suggestions and guidelines on
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V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies 9

which algorithm to select in typical usage scenarios, based on the
authors’ observations, analysis, and empirical knowledge.

Open Challenges: Improving on global and local algorithms,
leveraging human and computer skills in interactive approaches,
and developing quantitative measures to evaluate the quality of the
patterns resulting from the ordering is outlined as the most promi-
nent directions for future research. Hybrid graph representation ap-
proaches (see, e.g. [HFM07, ADM*19]) are also pointed out as an
interesting direction.

Tree visualization

�Graham et al. [GK10] survey the topic of multiple tree visualiza-
tion, that is the logical structures formed by merging multiple trees.

Motivation: Multiple tree visualization is relevant in several ap-
plication domains. Tree visualization is a prominent field in graph
drawing; however, multiple tree visualization has not received as
much attention. Therefore, this motivated the authors to gather and
categorize visualization research done in this field.

Contribution: First, single tree visualization techniques are dis-
cussed, as in the survey byWang et al. [WNF16] on 2-D tree visual-
ization, and this mostly covers well-known approaches (node-link,
radial, etc.). Building on that, the survey presents visualization tech-
niques for the combination of two trees. In this context, papers are
categorized as to whether they resort to (i) linking separate tree rep-
resentations, (ii) sharing the colour space between multiple trees,
(iii) use animation (temporal separation), (iv) matrix comparison,
or (v) spatial agglomeration of the two tree structures. Multiple tree
visualizations mostly extend the previous approaches, and the sur-
vey applies the same categorization – with the addition of 3-D and
atomic representations. Atomic representations show the individ-
ual trees in the collection as atomic items in a details-on-demand
fashion designed for very large collections of trees. The survey also
collects high-level tasks for multiple tree visualization.

Open Challenges: Future work directions include focusing on
more conclusive user studies on this topic, as the current ones had
a narrow scope or few participants. Moreover, as more and more
trees are merged together, the complexity of the resulting structure
presents a significant challenge, with layered graph drawing being
considered as a potential starting point to address this challenge.

3.2. Large network visualization

Large network visualization extends the classical general network
visualization techniques to accommodate a much larger number of
nodes and edges. The size of graphs of commercial and scientific in-
terest has grown exponentially over the years: networks with thou-
sands of nodes and edges were considered to be large in the early
2000s, with recent research tackling graphs with millions of nodes
and edges [Hu05, HJ07, ADLM18]. Large networks can also lever-
age aggregations, such as grouping strategies that simplify and rep-

resent a more abstract view of these networks, which is why it is
also connected to group network visualization (see Figure 1).

� Von Landesberger et al. [vLKS*11] describe the field of
large network visualization according to the information visualiza-
tion reference model by Card et al. [CMS99].

Motivation: The visual analysis of large graphs is gathering more
and more attention, as we enter the big data era. Effective analysis
requires more than just visualization, and this survey aims at review-
ing a range of techniques including algorithmic analysis, visualiza-
tion, and interaction, that together form the basis of effective visual
exploration of large graphs.

Contribution: The pipeline is comprised of four stages: (i) algo-
rithmic pre-processing (for simplifying the network structure and
removing noise), (ii) visual representation, (iii) user interaction,
and (iv) visual analysis. The research surveyed in this paper is dis-
cussed on a per-stage basis. Algorithmic pre-processing surveys
techniques for graph complexity reduction, such as graph filtering
and aggregation. Visual representation discusses visualization ap-
proaches for a broad range of graph types, with a distinction be-
tween static and dynamic graphs, preceding the categorization by
Beck et al. [BBDW17]. User interactions are categorized based on
the stages of the information visualization reference model of Card
et al. [CMS99] , depending on whether the user affects the cur-
rent view, the displayed data, or their visual abstraction. View in-
teractions entail panning and zooming or the use of magic lenses,
which locally distort the data visualization on a single focus or mul-
tiple foci point(s) [EDG*08]. Visual abstraction interactions include
highlighting, brushing, and semantic zooming, as in an overview
+ details-on-demand approach [EDG*08, WWZ*18]. Interactions
on the data include filtering and changing graph aggregations. Con-
cerning the fourth and final stage, graph analysis, its techniques are
categorized depending on whether the target of the analysis is graph
structure (e.g. identification of important nodes) or the examination
of similarities and differences between multiple graphs.

Open Challenges: Discussion on future work is divided into
graph visualization and interaction, visual analysis systems, and
conceptual issues. Concerning visualization, for large graphs tack-
ling visual scalability represents one of its main challenges. This
could be addressed through a more visual analytics-oriented ap-
proach, where users can be increasingly involved in the graph lay-
out process to improve its readability, as with the use of interactive
filtering and aggregation techniques. Another challenge lies in the
growing number of different graph types, from more known and
studied categories, such as dynamic graphs to compound graphs
and hypergraphs. Uncertainty is another emerging challenge in this
discipline, as it has been proven how it affects analytical deci-
sions [GS*06]. Uncertainty for node and edge attributes might be
conveyed by using techniques frommulti-variate data visualization,
while visualization for structural uncertainty is still in its infancy,
with few approaches dedicated to this topic. Perception and graph
interaction are also outlined as important scientific challenges in the
field of large graph visualization. Finally, the survey discusses that
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10 V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies

appropriate evaluation methods for graph analytics are still an argu-
ment of debate in the community, to surpass traditional metrics such
as completion time and error rates.

� Pienta et al. [PAKC15] survey graph exploration and visual-
ization techniques in the context of sense-making for large graphs.

Motivation: The term graph sense-making refers to the iterative
process of understanding graph data. It is a complex and abstract
task that depends on both domain and data. This survey aims at re-
viewing graph sense-making literature focusing on scalability and
interaction techniques that support such cognitive processes.

Contribution: The authors present a graph sense-making hierar-
chy, which they also use to categorize the different techniques. This
hierarchy identifies two main sense-making paradigms: (i) global
and (ii) local views, which broadly represent top-down and bottom-
up exploration. Local view approaches are further divided into tar-
geted (where the user has a data-centric goal) and free (or open-
ended) discovery. The papers surveyed in this review were chosen
and discussed to understand their potential in supporting a scal-
able sense-making process. Global view approaches include tech-
niques based on filtering, sampling, partitioning, and clustering of
the data. Free discovery includes graph exploration and networkmo-
tifs (i.e. patterns of subgraphs which appear unusually often in a
network [MSOI*02]), with targeted discovery including subgraph
pattern matching and navigation techniques (i.e. exploration with a
known objective or destination).

Open Challenges: The authors argue that most techniques are
extremely expensive from a computational standpoint, outlining op-
portunities for techniques based on approximated solutions (i.e.
heuristics) that can be used in an interactive environment. For sub-
graph matching, future work includes further investigation on both
visual query construction and results representation. Moreover, it is
discussed how network motifs could be used to improve the visual
scalability of graph representations. Finally, multi-touch approaches
and gestures, nowadays extremely common, could represent an op-
portunity to create innovative exploration methods but present also
several challenges, such as which gestures are appropriate for each
task and graph type. Research on these advanced interaction tech-
niques has recently obtained significant interest [TSS18, SSS20].

3.3. Group network visualization

Group network visualization is defined as a graph G = (V,E ),
where group structures are a family of subsets of vertices S =
{S1, . . . , Sk}, with each Si ⊆ V [VBW17]. Basic definitions include
disjoint or overlapping groups, whether a vertex can only belong
to one set or many, and unstructured (flat) or structured, depend-
ing on if the grouping further defines a hierarchy between members
of the same group. Group network visualization is strongly related
to both large network visualization, utilizing grouping as an aggre-
gation strategy, and, multi-layer network visualization as a way to
group multiple layers together or to present different groups within
each layer (see Figure 1). Furthermore, it is also defined as a facet

in the scope of multi-faceted network visualization [HSS15] that is
depicted alongside other facets (i.e. time or multiple attributes).

� Schulz et al. [SHS10] survey the topic of implicit hierar-
chy visualization, where the connections between the elements of
the hierarchy are not explicitly represented, as, for example, in
Treemaps [Shn92] and Icicle Plots [KL83].

Motivation: There exists a robust body of knowledge about im-
plicit group visualization techniques, inspired bymore than 25 years
of research. Instead of directly exploring this plethora of techniques,
the paper identifies four dimensions based on common visualization
principles in the discipline. The aim of the paper is to present a de-
sign space, built along these dimensions, comprehensive enough to
classify the existing techniques but also able to suggest and explore
new ones.

Contribution: This survey describes a design space with four
dimensions: (i) design dimensionality (2-D or 3-D), (ii) graphical
primitives for node representation, (iii) edge representation (through
inclusion, overlap, and adjacency), and (iv) layout (space subdivi-
sion and packing). Other than using it to survey the existing tech-
niques, the paper presents an implementation of the proposed de-
sign space, to enable access and ease of experimenting with new
design combinations.

Open Challenges: Summarizing, the survey discusses promis-
ing opportunities for further research, including, investigating sub-
tler design aspects, such as parametrization and mixing of the de-
sign choices and layout techniques. These innovative combinations
could yield unique visual representations that are more effective in
expressing the hierarchical characteristics of the data.

� Vehlow et al. [VBW17] in their survey propose a taxonomy
focused on explicit visualizations of group structures in networks,
complementing the survey by Schulz et al. [SHS10].

Motivation: The paper describes a two-layered design space and
uses it to classify a large number (110) of group visualization tech-
niques.

Contribution: The proposed categorization has two dimensions:
(i) the group structure and (ii) the group visualization taxonomy.
The group structure is divided into four classes, depending on the
structure itself (flat or hierarchical), and whether overlapping be-
tween sets is allowed or not. Specific algorithms also present either
crisp (one element fully belongs to one or more groups) or fuzzy
groupings (one element can belong to different sets to different ex-
tents). The taxonomy of the group visual encodings includes (see
Figure 5): (i) use of visual node attributes (colour, glyphs), (ii) jux-
taposition (separate, attached), (iii) superimposition (line overlay,
contour overlay, partitioning), and (iv) embedded (node-link, hy-
brid). The survey also discusses approaches that deal with dynamic
graphs having both static and dynamic groupings. Concerning edge
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V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies 11

Figure 5: Groups in networks. From left to right, attached juxta-
position (hierarchy as red bars), superimposed (contouring), and
embedded (hybrid approach). Courtesy of Vehlow et al. [VBW17].

group visualization (which can be defined in the sameway as groups
of vertices), the survey proposes a similar visual encoding taxon-
omy,with visual edge attributes, juxtaposition, superimposition, and
embedded visualization techniques.

Open Challenges: The survey points out how group structure vi-
sualization is only partially supported by general tasks in existing
taxonomies (see Table 3 in Section 7.1). The survey, therefore, pro-
poses a task taxonomy for the discipline by collecting tasks from
existing technique and evaluation papers to support a future gener-
ation of a taxonomy specific for this discipline. Moreover, the visu-
alization of dynamic graphs and groupings is an under-investigated
direction.While some initial attempts have beenmade, such as in the
work of Vehlow et al. [VBAW15] for time-varying groups in a dy-
namic graph, they only cover disjoint flat or hierarchical group struc-
ture, leaving gaps in the proposed design space. Visual analytics
methods could be a promising research direction to tackle overlap-
ping and fuzzy groupings in larger graphs. These approaches com-
bine data mining techniques with the visualization of group struc-
tures in an interactive approach.

3.4. Dynamic network visualization

Dynamic network visualization is defined as the discipline that in-
vestigates the visualization of networks that change over time. Tra-
ditionally, dynamic networks are described as a series of timeslices,
that is graph evolution is portrayed as a sequence of graph snapshots,
one for each time unit [BBDW17]. Dynamic network visualization
can be considered by adding the time (temporal) facet to approaches
for general network visualization. The temporal facet is also consid-
ered in multi-faceted network visualization alongside other facets.
In the scope of multi-layer network visualization, the temporal in-
formation associated with a graph can be represented as a set of lay-
ers (one for each time slice), modelling the dynamics or evolution
of a network (see Figure 1). Shaobo et al. [SL17] present a survey
of available tools and technologies available for the visualization of
dynamic networks.

�Moody et al. [MMB05] survey graph and visualization princi-
ples, in the context of temporal representations of social networks.

Motivation: The goal of the paper is to investigate how the
changes and temporal developments of a network can be reflected

in its graphical form. Specifically, the paper addresses theoretical
questions about temporal representations of social networks and
how to present the changes to the user.

Contribution: The authors categorize papers based on the repre-
sentation of time, either as (i) discrete (using timeslices) or (ii) con-
tinuous. In discrete time analysts can focus on identifying changes
from one network state to the other. To visualize continuous net-
work data the authors characterize a network by using a time win-
dow that spans an interval aggregating events within it, which can
either be overlapping (i.e. a moving average) or non-overlapping
(i.e. time windows are separate or distinct). Based on the encod-
ing of time, the authors survey graph layout algorithms categorizing
them in two classes, namely, static flipbooks and dynamic network
movies. In flip books, network dynamics are represented as appear-
ing and disappearing social relationships, with each “page” repre-
senting a timeslice. In dynamic network movies, nodes move freely
through time and update the resulting layout according to the social-
relational changes that happen in the network similar to event-based
networks (see, e.g. [SAK18, AMA22]).

Open Challenges: The authors suggest extending dynamic net-
work movies from an exploratory data analysis stage to a confirma-
tory analytic modelling stage, by linking dynamic network movies
to statistical models describing the network’s change. A closer con-
nection between the two would support building better statistical
tools to model dynamic network changes.

� Kerracher et al. [KKC14] map the design space of temporal
graph visualization.

Motivation: This paper presents a wider look at visualiza-
tion techniques to represent temporal graph data, considering the
conceptual tasks required to make sense of graph changes over
time.

Contribution: The survey identifies two independent dimen-
sions for temporal graph visualization: (i) the graph structural and
(ii) temporal encoding. The former describes how to represent the
graph structure, with the most common options being space-filling,
node-link, and matrix approaches. Based on Javed and Elmqvist’s
[JE12] design patterns and Gleicher et al.’s [GAW*11] comparative
designs, this survey identifies seven temporal encoding strategies,
including sequential views, juxtaposition, additional spatial dimen-
sion, superimposition, merged views, nested views, and time as a
node in the graph.

Open Challenges: The authors suggest investigating further the
use of adjacency matrices and space-filling techniques, specifically,
in the context of dynamic network representations. Furthermore,
they also identify juxtaposition and sequential views as being the
more common options when encoding temporal data in networks
and encourage the investigation of less popular approaches from
their proposed design space.
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12 V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies

Figure 6: The design space of dynamic network visualization broadly categorizes approaches as “time-to-time” (animation) or “time-to-
space” (timeline). As the brightness of the table background encodes the number of techniques, it is possible to evaluate at a glance more or
less saturated categories. Courtesy of Beck et al. [BBDW17].

� Beck et al. [BBDW17] present one of the most influential and
comprehensive characterizations of the dynamic network visualiza-
tion discipline.

Motivation: With the increased availability of time-varying net-
work data, dynamic network visualization quickly became a mature
and thriving research field. As more various and novel approaches
continuously developed, a clear need for a comprehensive review
emerged. This survey aims at addressing this gap in visualization lit-
erature.

Contribution: The authors collected and tagged 162 publications,
categorizing them by the type of publication, the visual representa-
tion of time, the visualization paradigm, the type of evaluation that
was conducted, and the target application domain. This multi-level
taxonomy has become the standard way to categorize technique pa-
pers related to this discipline (see Figure 6). It divides the design
space into (i) animation- (time-to-time mapping) and (ii) timeline-
based (time-to-spacemapping) techniques. Only very few of the sur-
veyed approaches (e.g. Animatrix [RM14]), adopt a matrix-based
representation of the network. A section of the survey categorizes
evaluation papers, dividing them into evaluation frameworks, algo-
rithmic evaluations, and user studies. Specifically, in the first cat-
egory, task taxonomies and papers related to aesthetic criteria are
discussed, as they are the foundations for fair and reproducible user
and experimental studies.

Open Challenges: First, there is a lack of guidelines and di-
rection regarding which technique to choose based on the appli-
cation. Second, investigating the effect of a user’s cognitive load
when watching animations [BLIC20, LPP*21] is an open challenge.
Moreover, visual scalability is still a major concern in the design of
most dynamic network visualization methods. Hybrid combinations
of timeline and animation approaches are under-explored. Finally,
multiple (dynamic) data dimensions, interaction methods, and con-
tinuous (event-based) representations are also a topic that presents
research directions with significant potential for this discipline.

3.5. Multi-variate network visualization

Multi-variate networks are defined by Kerren et al. [KPW14] as
an underlying graph G plus n additional attributes attached to

the nodes and/or edges. The main challenge in visualizing multi-
variate networks is showing both the underlying network topology
and its associated attributes at the same time [NMSL19]. Multi-
variate network visualization is the result of augmenting general
network visualization techniques with n additional variables con-
nected to the nodes and/or edges of the graph. It is also considered
a facet by the multi-faceted network visualization discipline, typ-
ically represented alongside other facets. In the context of multi-
layer networks, the multi-variate aspect is also discussed, as a
way to model each attribute of the network as distinct layers (see
Figure 1).

�Archambault et al. [AAK*14] formalize the concept of multi-
variate temporal networks, which, in terms of our categorization, is
borderline between dynamic and multi-variate visualization; how-
ever, the focus is leaning more on the co-representation of time with
other dimensions.

Motivation: While time can be considered as yet another di-
mension in a multi-variate network, it is perceived differently by
humans. Therefore, this fact should be exploited when time is rep-
resented alongside other dimensions. The paper, therefore, defines,
characterizes, and summarizes the data and visualization techniques
related to this field, outlining the use of these techniques in software
engineering and other application domains.

Contribution: Time is introduced as a further dimension, that
can both affect the topology of the network and the state of all
other attributes. The papers surveyed cover aspects specific to static
and dynamic graph visualization and analytics. The survey analyzes
the relationship between the discussed temporal multi-variate net-
work framework with respect to the problems coming from software
engineering, including aspects like data size, attributes, dynamics,
and time modelling. The survey also covers orthogonal concepts
from static and dynamic network visualization and analytics, such
as static layout algorithms and dynamic network visualization.

Open Challenges: The first challenge identified by the survey is
related to attribute dimensionality. Existing visualization techniques
can show up to three attributes per graph element (e.g. shape, size,
texture, colour, and shading). However, it can easily get cluttered
as the size of the graph increases, compromising the readability.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies 13

Figure 7: Typology of layouts and operations in multivariate network visualization as presented by Nobre et al. [NMSL19]. Approaches are
classified according to the layout and operations supporting the views, layout, or data. Courtesy of Nobre et al. [NMSL19].

Parallel coordinate plots and dimensionality reduction methods are
discussed as ways to address this challenge; however, no meth-
ods fully enable users to correlate the underlying graph structure
to its attributes and between the attributes themselves. The second
challenge discussed is capturing patterns. The sole depiction of the
graph’s changes is often insufficient compared to the importance of
locating patterns in a multi-variate graph. The third, and last, chal-
lenge identified in the survey is scalability with respect to the graph’s
size and its associated variables.

� Nobre et al. [NMSL19] survey papers on multi-variate net-
work visualization.

Motivation: Most real-world networks have attributes that char-
acterize their nodes or edges. When the topology of the network has
to be displayed along these extra attributes, several challenges arise.
The developed techniques tackle these differently: the paper intro-
duces new typologies for multi-variate network tasks and visualiza-
tion methods, surveying the literature to classify them according to
their formal typology.

Contribution: The survey includes 210 publications on multi-
variate network visualization and reports a typology of tasks, visu-
alization techniques, and evaluation methods for multi-variate net-
work visualization. The presented typology of tasks inherits and
simplifies the one from Pretorius et al. [PPS14] (see Section 6), and
its purpose in the scope of the survey is to characterize and recom-
mend techniques based on their suitability for specific tasks. The pa-
per categorizes the surveyed techniques by layout (further divided
into node-link, tabular, and implicit) and by the supported opera-
tions, specifically, if they act on the views, layout, or data (such
as aggregation or querying) (see Figure 7). The survey also pro-
vides explicit guidelines and recommendations for the usage of each
technique, considering the network and attribute types. The evalu-
ation methods used throughout the corpus of surveyed papers are
discussed, outlining that the majority of techniques were evaluated
through use cases (i.e. informal evaluations without any quantitative

measure of the tool’s validity), followed by controlled experiments,
and user and usability studies.

Open Challenges: While node-link techniques have received a
lot of attention, tabular techniques (i.e. adjacency matrices) present
significant potential for multi-variate network visualization. Simi-
larly, a limited number of techniques investigate the visualization of
edge attributes: tabular and integrated approaches could be potential
areas where this challenge can be tackled [SSE16, VABK20]. The
evaluation analysis shows that very few studies rigorously investi-
gated the trade-offs and benefits of different multi-variate visualiza-
tion techniques – task taxonomies have the potential and purpose to
drive more formal evaluations.

3.6. Geospatial network visualization

Geospatial networks are a subgroup of spatial networks whose
nodes and links can be associated with geographic locations either
on Earth or other planets [SYPB21]. These are among themost com-
monly known network visualizations: they are used, for example to
portray trade and financial connections between countries and re-
gions [ATL*22] or to display flight connections [Rod05]. Layout
and visualization of metro maps, which can be seen in every subway
station, is a thriving field of research (see, e.g. [HMdN06, Wol07,
WC11, Nöl14, Wu16]). However, it does not fit this discipline as
metro map layout is more focused on the topology of the under-
lying network rather than its geographical information. Geospatial
networks are considered to be specialized in representing the geo-
graphical aspect of the data discussed in multi-faceted network vi-
sualization (see Figure 1).

� Schöttler et al. [SYPB21] present a systematic review of
geospatial network visualization approaches.

Motivation: Numerous techniques have been devised for the vi-
sualization of networks with a geographical facet. The survey aims
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14 V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies

Figure 8: The design space for geospatial networks as presented by Schöttler et al. [SYPB21]. The dimensions include representation of
the geographical facet, as well as, of nodes and edges, composition technique, and use of interaction. Lines represent techniques that are
aggregated into bands. The number of techniques is encoded in the circle width and shown in brackets. Courtesy of Schöttler et al. [SYPB21].

at providing a structured review of these techniques by propos-
ing a consolidation of the different terminologies used and estab-
lishing a design space that would support designers in building a
balanced and purposeful visualization for this type of networked
data.

Contribution: The dimensions of the proposed design space are
as follows: (i) geographical facet representation, (ii) network rep-
resentation (for both nodes and edges), (iii) composition (how the
topology and geography are combined in the visualization), and
(iv) use of interaction (see Figure 8). The survey spans 95 pub-
lications and outlines a design space for visualizing and interact-
ing with geospatial networks. The geographical representation is
concerned with how geospatial information is encoded and ranges
from explicit (representations that use a cartographic map), to dis-
torted (representations that use displacement of spatial positions ac-
cording to some property of the network), to abstract (representa-
tions that use encodings not based on map projections). The cate-
gorization has several overlaps with the multi-faceted visualization
survey by Hadlak [HSS15], in the section about the geographical
facet. It is noteworthy how the interaction is discussed, that is to
what extent a technique requires user input for exploring the vi-
sualization. It can either be (i) not required, (ii) required, or (iii)
an interaction technique in its own right (i.e. the scope of a pa-
per in this category is not a visualization, but rather an interaction
technique).

Open Challenges: Geospatial network visualization shares sev-
eral similarities with multi-variate visualization, which can be used
to design specific visualizations for this field. Handling co-located
nodes (a challenge specific to nodes representing locations) and link
density are two other under-investigated directions that are essential
to addressing the challenges of visualizing dense networks. While
no concrete techniques were found in the survey specifically for vi-
sualizing uncertain topologies for geolocations, the typology for un-
certainty in geospatial graphs by von Landesberger et al. [vLBW17]
could provide useful directions. Finally, little is known about dy-
namic (uncertain) geospatial networks.

3.7. Multi-faceted network visualization

Kehrer and Hauser [KH12] introduce the concept of multi-faceted
scientific data, where a facet is considered an aspect of the data at
hand (e.g. spatio-temporal, multi-variate, multi-modal, etc.).Multi-
faceted network visualization introduces specialized techniques for
scenarios where one or more facets need to be displayed con-
currently with the graph topology, incorporating together data as-
pects that are commonly considered distinct and non-overlapping in
other network visualization disciplines. This discipline extends gen-
eral network visualization with specialized techniques for encod-
ing multiple facets in the final representation (see Figure 1). Multi-
faceted network visualization inherits strongly from the disciplines
of dynamic, multi-variate, and group network visualization by con-
sidering these as possible facets to be represented together alongside
the graph’s topology.

�Hadlak et al. [HSS15] present a high-level overview of multi-
faceted network visualization (see Figure 2 for facet examples).

Motivation: Data often comes with different aspects, whose in-
terplay might provide useful insights during the visual exploration
process. Considering the great amount of research in this field, the
survey is compiled following three principles: (i) focus on the fi-
nal visual result (rather than on the algorithmic means to obtain it),
(ii) separate the base representation of the graph from the overly-
ing facets and discuss their composition instead, (iii) describe a few
representative examples of each composition in detail rather than
providing an exhaustive list of approaches.

Contribution: The proposed categorization separates the base
representation (i.e. the primary graph facet that governs the cen-
tral aspects of the composed visualization) from the composition
modality (in space or time), which instead denotes how these dif-
ferent facets are combined together. With this categorization, the
survey presents approaches for graph representation with (i) one
facet, (ii) multiple facets, and (iii) multiple instances of the same
facet. The survey also discusses cases of balanced representation,
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V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies 15

that is with no clearly defined base representation. When only one
facet is shown along with the graph structure, several of the dis-
cussed approaches can be mapped to techniques discussed in other
surveys, like dynamic network visualization for the temporal facet,
group visualization for the partition facet, and multi-variate network
visualization for the attributes facet. For this reason, the survey con-
textualizes each facet with its relation to existing surveys, trying to
provide a common terminology similar to what we do, on a larger
scale, in Section 5.

Open Challenges: The authors point out that some of the cate-
gories identified by their survey appear largely under-investigated.
These include most of the temporal and balanced spatial compo-
sitions. At the time of the publication, there was no survey on
geospatial network visualization published, a gap now filled by the
survey from Schöttler et al. [SYPB21]. The survey also acknowl-
edges the absence of a task taxonomy specifically oriented toward
multi-faceted graphs. Finally, hardly any visualization approaches
exist for some data facets, such as provenance, uncertainty, and
text.

3.8. Multi-layer network visualization

Multi-layer networks are defined by McGee et al. [MGM*19] as
follows: starting from a graph as G = (V,E ), a multi-layer net-
work is a triple GL = (VM,EM,L), where L is the set of layers,
VM ⊆ V × L is the set of vertices, and EM ⊆ VM ×VM the set of
edges. This implies that each vertex can belong to one or more
layers, and edges can either be inter- or intralayer depending on
whether they connect vertices from different or the same layer, re-
spectively. The semantics of the layers depends on the structure the
multi-layer network is designed to represent. Kivelä et al. [KAB*14]
discuss in detail the theory behind multi-layer networks and present
a general framework that allows to compare and relate similar net-
work types, such as multiplex, networks of networks, and multi-
modal networks. Schurov et al. [SM16] introduce a simple tax-
onomy of multi-layer networks characterizing them according to
their structural properties. Xitao et al. [XLSP17] present a short
review of existing challenges in multi-layer network visualization
with some examples taken from literature. Essentially, the prob-
lem of having to visualize the dynamics, multiple attributes, and
group information associated with the nodes or edges of a graph
can be converted to a problem of multi-layer network visualization,
where each node or edge would be assigned to a given layer de-
pending on the facets being depicted in its current context. There-
fore, in our roadmap, all these individual facets are represented
as roads converging into multi-layer network visualization (see
Figure 1).

�McGee et al. [MGM*19] provide a recent review of the state-
of-the-art in the multi-layer network visualization discipline.

Motivation: Systems dealing with data having several character-
istics in common with multi-layer networks refer to their data under
different terms, such as multiplex, multi-modal, heterogeneous, and
the like. This survey aims at consolidating the work and terminol-

ogy both within the field of information visualization and across
application domains.

Contribution: The proposed design space formulti-layer network
visualization techniques presents five dimensions: (i) task and anal-
ysis, (ii) data definition, (iii) visualization techniques, (iv) interac-
tion approaches, and (v) empirical evaluation. The survey proposes
a task taxonomy extending the previous work by Lee et al. [LPP*06]
(general tasks for graphs) and Pretorius et al. [PPS14] (tasks on
multi-variate networks), citing systems exposing tasks not fitting in
previous work. The data definition dimension refers to the nomen-
clature used in literature for techniques expressed on networks that
present multi-layer characteristics. The visualization approaches
are categorized based on their awareness of the notion of a layer
and are organized based on the visual encoding: from 1-D to 3-
D node-link representations, also discussing matrix-based and hy-
brid approaches. Interaction techniques are discussed depending
on whether the targets of analysis are individual network elements
(nodes or edges) or entire layers or groups thereof.

Open Challenges: First, a definition of a task taxonomy specific
for multi-layer networks is missing, to motivate further research in
the field. Second, the paper discusses and presents methodologies
for modelling data in the form of multi-layer networks in order to
expand the potential application of its techniques to multiple do-
mains. In terms of visualization approaches, hybrid visualization
techniques are somewhat less represented in the design space and
are considered an interesting direction for future work, along with
novel interaction techniques and methods to encode different at-
tributes of nodes and edges along with layer information.

4. Surveys Discussion

In the following section, we discuss and summarize the major open
points and challenges we identified from the surveys reported in
Section 3, with a specific focus on problems that crosscut and af-
fect different disciplines. We also outline, whenever possible, their
progression over time, that is if they were tackled or solved or if they
still represent an open and unsolved challenge. We provide a more
comprehensive overview of the major takeaways from our literature
survey in Section 8.2, which also considers our task taxonomies sur-
vey and discussion.

The first surveys on graph visualization [HMM00, SS06] clearly
describe the change in perspective from graph drawing to visual-
ization, with a strong focus on visual and computational scalabil-
ity, novel interaction techniques, support for hierarchies and new
types of graphs. The topic of large network visualization, depicted
as an open challenge in the early 2000s, became a mature discipline
on its own [vLKS*11, PAKC15]: this time, with visualization re-
garded as a system, able to tackle large graphs through a series of
consecutive processing stages, rather than as a monolithic layout
process. Visual and computational scalability is as of today a major
challenge in numerous disciplines [vLKS*11, AAK*14, BBDW17,
SL17, SYPB21]. On the other hand, the more technical aspects of
general network visualization also receive considerable attention to
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16 V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies

this day, individually focusing on layout algorithms, scalability, and
aesthetic principles [GFV13, CGZ*19, CS20].

Other than using more sophisticated layout techniques, algo-
rithms for graph simplification have been investigated to address
the issue of visual clarity with larger graphs [HMM00, vLKS*11,
GFV13, CGZ*19]. In this category, edge bundling has been pro-
posed and thoroughly investigated as a potential solution; however,
its readability and a standardized assessment of the bundling qual-
ity are still discussed as open challenges [ZXYQ13, LHT17]. An-
other aspect of graph simplification strategies is node clustering
and aggregation [HMM00, GK10, CGZ*19]. This is an open chal-
lenge that has been exclusively discussed in the context of general
network visualization; however, we see this problem extending to
large, group, as well as, multi-variate network visualization, as cer-
tain properties of the network can be leveraged in order to improve
the quality of the clustering algorithms [AAK*14, VBW17].

Exploring the disciplines’ design spaces beyond node-link
layouts is a recurring point that comes up in multiple sur-
veys and we consider this to be a cross-cutting challenge
identified in dynamic [KKC14, BBDW17], group [SS06],
multi-variate [NMSL19], and multi-layer network visualiza-
tion [MGM*19]. These surveys outline and suggest exploring new
combinations of visualization techniques as well as some of the
under-investigated categories from their respective design spaces.

Evaluating the cognitive load on the user during the insight-
generation process is a challenge that crosscuts general, large, and
dynamic network visualization [HMM00, vLKS*11, BBDW17].
This challenge, however, has been recently investigated mostly in
the context of dynamic networks [BLIC20, LPP*21], evaluating
animation-based and small multiples approaches. Alternative ways
to represent a graph’s temporal dynamics other than discrete time,
such as continuous or event-based representations, also play a ma-
jor role in this intersection as performing traditional time-slicing
may hide or obscure significant behaviours and patterns that oc-
cur in the network or any of its attributes. This research direction
has been formulated in the context of dynamic network visualiza-
tion [BBDW17] and received increased attention recently [SAK18,
AMA22]. This topic can still be explored in more detail considering
how these changes can be represented in other facets of the network.
Finally, it has been suggested that visualization of dynamic graphs
might move towards a confirmatory analytical modelling stage,
with the use of statistical models of network change [MMB05].
Change centrality [FPA*12] is proposed as a statistical model to per-
form a pairwise comparison between subsequent states of an evolv-
ing network in the discrete-time domain for dynamic network vi-
sualization; however, more research can be conducted on this prob-
lem targeting continuous networks and intersections of different dis-
ciplines exhibiting multiple facets of the network (e.g. geospatial,
group, and multi-variate changes over time).

The problem of visualizing multiple dynamic data dimensions
presents a bridge between general, dynamic, and multi-variate net-
work visualization [AAK*14, BBDW17]. These have been tack-
led through research on attribute-based layouts [GFV13, NMSL19],
which exploit the underlying node and/or edge variables (or charac-
teristics) to produce a layout of the network. Another cross-cutting
challenge between these disciplines focuses on the topic of detect-

ing and conveying patterns in networks. Such patterns can be cap-
tured and depicted in matrix-based approaches by applying reorder-
ing algorithms. Reordering the rows and columns of matrix-based
representations to highlight such structures, either automatically
using algorithms or leveraging interaction and human knowledge,
to detect and convey these patterns is discussed as an open chal-
lenge [BBHR*16]. This same problem is also presented as a future
research direction in the context of multi-variate network visualiza-
tion [AAK*14]; however, the focus here is more on node-link repre-
sentations and patterns or network motifs concerning the network’s
topology and its node or edge attributes.

Over time, visualization techniques specialized for new graph
types, as well as combinations of these, were introduced, a
topic that is still frequently discussed in many disciplines [SS06,
vLKS*11, HSS15, BBDW17, SYPB21]. Approaches for hyper-
graphs and compound dynamic graphs are still considered as
an under-investigated open topic [vLKS*11, CGZ*19]. This con-
cept is generalized in the context of multi-faceted network visual-
ization [HSS15]. In this case, the network can exhibit one or more
facets simultaneously and the composition of the structural aspect
along with the facets in order to effectively convey this information
is considered a nontrivial problem. For multi-faceted network vi-
sualization, specifically, a direction for future research is that some
facets are still under-investigated in literature with no dedicated ap-
proaches to representing this type of data, such as text, uncertainty,
and provenance [HSS15].

Finally, task taxonomies are a major open challenge that is
common among multiple surveys spanning numerous disciplines
(e.g. [HSS15, MGM*19, SYPB21]). For this reason, we survey and
discuss publications on this topic in Sections 6 and 7, respectively.

5. Consolidating Terminology

Throughout the surveys we investigated in this paper, we found sev-
eral instances of similar techniques categorized over and over often
using different terminology and potentially generating confusion.
This poses a challenge to provide an overarching and comprehen-
sive overview of the field. In this section, we describe our termi-
nology consolidation with the goal of establishing a common dic-
tionary across the different disciplines by unifying the terminology
used in the surveyed literature as follows. We classify tags and key-
words from each of the surveys discussed in Section 3 and group
these into several categories. We look for terms referring to simi-
lar concepts (e.g. the terms static flip books, small multiples, refer
to juxtaposition techniques) and the use of different wording that
refers to the same concept (e.g. network movies to refer to anima-
tion techniques). We further group the categories and identify six
higher-level groups. These are: (i) facet composition, (ii) network
representation, (iii) entity encoding, (iv) dimensionality, (v) Lay-
out, and (vi) aesthetic criteria. In Table 5 we map each survey to
the consolidated categories, effectively providing a heatmap of the
most (and least) discussed concepts in recent visualization research.
We discuss it in Section 8.1. The terminology consolidation and
the entire list of terms is available as supplemental material and as
an interactive Miro board [MIR]. Papers in our SurVis project are
tagged according to our terminology consolidation and previously
discussed taxonomy coverage (see our onlinematerial [PAP]). In the
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following, we present some relevant examples of the more popular
and inconsistent categories, within their respective group. Please re-
fer to the supplementary material for a more extensive glossary of
terms and definitions [MIR].

Network representation. Node-Link diagrams visualize a network
using circles for the nodes, with line segments connecting them rep-
resenting the edges. In the majority of the surveys, the drawing is
laid out on a 2-D plane with straight edges. They are extremely com-
mon, widely studied, and employed, but are not ideal for all types
of tasks and suffer from visual scalability issues [vLKS*11].

Matrix approaches visualize a graphs as a table with n× n cells,
where n is the number of vertices. Each of the n2 cells represents
an edge between the nodes of the corresponding row and column if
there is a non-zero value present. Vertex ordering in rows/columns
can be arbitrary or computed [BBHR*16]. Matrices do not suffer
from visual clutter; however, they are not as effective on some tasks
compared to node-link representations (e.g. path following).

Space-Filling techniques utilize the entire drawing area and im-
plicitly encode relationships between entities by employing the
principle of enclosure and proximity. These techniques are designed
to visualize networks presenting a non-overlapping hierarchy be-
tween their nodes. This type of network visualization offers benefits
similar to matrix or list representations, in that, by design there is
no overlap or visual clutter in the resulting visualization. However,
this approach is also limited to the display of hierarchical data.

Hybrid approaches are defined as a mixture of techniques, com-
bining the strengths of multiple network representations to mitigate
weaknesses associated with individual approaches [vLKS*11,
BBDW17]. Combinations, such as Nodetrix (node-link with
matrix) [HFM07], group-in-a-box layouts (node-link with
treemap) [ZMC05], and matrix and tree visualization [SZEAC19]
are quite popular. A number of surveys categorize these as a hybrid.

Alternative representations are other approaches that do not fall
into the categories we outline before to visually depict networked
data. Approaches in this category are usually very custom imple-
mentations of network visualization techniques typically designed
with specific analytical tasks, datasets, or user groups in mind.

Facet composition. Superimposition is an approach, where two or
more visual representations of the network’s facets are overlaid on
top of each other [JE12]. The resulting visualization combines each
of the facets, often needing a form of explicit encoding to distin-
guish between them [GAW*11] (the use of colour or other visual
variables).

Juxtaposition is the most popular approach to depict multiple
facets of networked data (e.g. temporal or multi-variate). With jux-
taposition, each of the values of a facet has a dedicated display space
and the multiple visualizations are then arranged in a side-by-side
manner, possibly ordered according to some criteria (i.e. time).

Animation is a dynamic representation that utilizes the physi-
cal dimension of time to convey the time-oriented nature of the
data [AMST23]. This approach is also referred to as a time-to-time
(dynamic) mapping where the temporal facet of the data is mapped

to simulated (animation) time [BBDW17]. Animation can be ef-
fective in conveying an overview of the evolution of a network and
facilitating high-level behaviour and pattern identification [BBL12].

Timeline is a representation that visualizes the time-oriented na-
ture of networked data in still images [AMST23]. Timelines utilize
space to convey changes occurring to the data and are a form of
time-to-space mapping [BBDW17] that depicts the entire evolution
of a network in one or more still images [TMB02].

Integration is defined as placing visualizations of a network’s dif-
ferent facets in the same view and visually linking the elements of
these together [JE12]. This approach is similar to juxtaposition, with
the exception that integration explicitly links the elements in each of
the visualizations together relating data items from different facets
(e.g. in the form of graphical lines connecting the entities).

Nesting is a composition where the contents of a facet’s visual
representation are nested inside another visualization [JE12] (also
referred to as client and host visualizations). NodeTrix [HFM07] is
an example of this approach, where the dense communities’ topol-
ogy, represented as an adjacency matrix, is nested into the node-link
visualization representing the inter-community relationships.

Overloading is a form of nested visualization where a client vi-
sualization is rendered inside of a host visualization using the same
spatial mapping as the host [JE12]. The client is laid over the host,
as in superimposition, but there is no one-to-one spatial linking be-
tween the two visualizations.

Multiple Views refers to a composition modality describing the
use of multiple (coordinated) views [Rob07]. Each window is dedi-
cated to depicting (with its own visual representation and encoding)
a specific facet of the network. Typically, this term broadly applies to
multiple coordinated views, where interacting with one view would
also provoke changes in other views during exploratory analysis.

Layout. Energy-based layouts refer to algorithms that minimize
an energy function in order to draw the network in an aesthetically
pleasing fashion. The intricacies of the layout algorithms falling into
this category vary widely, most notably in their implementation of
what the energy function to be minimized is.

Heuristic approaches for network layout involve algorithms that
use a number of measurements to improve the current candidate so-
lution (often optimizing certain aesthetic criteria) [CS20]. Such ap-
proaches query the solution space iteratively and evaluate the results
of the graph layout problem optimizing for certain constraints.

Embedding/Dimensionality Reduction includes techniques where
a high-dimensional embedding of the network is projected into a
lower-dimensional space.

Tabular layouts are primarily intended for matrix network visu-
alizations and concern the problem of finding an ordering of the
rows/columns to highlight specific patterns in the data [BBHR*16]
(see Section 3.1).

Geometrical approaches refer to techniques whose network rep-
resentations satisfy specific geometrical constraints. Such tech-
niques are tightly coupled with the structure and properties of
the networked data and elicit visual representations of the graph

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 9: Distribution of surveys (green) in relation to task taxonomies (yellow) over the years on the topic of network visualization. The
surrounding bars (gray) accumulate the total count of both task taxonomies and surveys. See [PAP] for an interactive version.

emphasizing a certain topology (i.e. planar graphs, trees, or hier-
archies [SSK14]).

Special-Purpose visualization techniques have been applied to
different types of networks to support specific tasks, e.g. represent
time in a dynamic graph [SL17, BBDW17], represent the value of
an attribute of the node [NMSL19], or the geospatial position of a
node [SYPB21].

6. Task Taxonomies

In this section, we propose an in-depth description of the task tax-
onomies we found during our literature search. For each one of
them, we highlight its motivation, outline the taxonomy structure,
and briefly discuss its evaluation and overall contribution to the field
using the same structure as we did with surveys in Section 3. Fig-
ure 9 depicts the distribution of taxonomy papers over time in rela-
tion to the number of surveys published.

6.1. Higher level visualization taxonomies

Several of the task taxonomies relevant to thismeta-survey are based
on general task taxonomies for visualization. While not strictly in
our survey scope, we shortly summarize their concepts to ease the
reading of the following sections.

� Amar et al. [AES05] presents a set of low-level analysis tasks
that describe users’ activities when faced with information visual-
ization tools to better understand data. These tasks are abstract and
can be considered agnostic of the visualization techniques and the
data characteristics. The paper presents ten component tasks: (i)
retrieve value, (ii) filter, (iii) compute derived value, (iv) find ex-
tremum, (v) sort, (vi) determine range, (vii) characterize distribu-
tion, (viii) find anomalies, (ix) cluster, and (x) correlate.

� Adrienko and Adrienko [AA06] introduce the concepts of
referrer, to describe data that indicates context (the value of the
referrer is called a reference), and attribute for data representing
measurements (the value of the attributes is called a characteris-
tic). With this definition, a dataset consists of a set of references,
a set of characteristics, and a data function defining the relation-
ship between them. The task taxonomy proposes to divide the tasks
into elementary and synoptic tasks. Elementary tasks are centred
around individual elements and include (i) lookup, (ii) comparison,
and (iii) relation-seeking operations. Synoptic tasks involve (sub-
)sets of references and can be further subdivided into descriptive

(lookup, comparison, and relation seeking) and connectional (sup-
port understanding relationships between the data characteristics).

� Brehmer andMunzner [BM13] present a more abstract visu-
alization task taxonomy, centred around three questions: (i) why is
the task performed, as a combination of action and targets (e.g. con-
sume, produce, search, and query), (ii) how is the task performed
(e.g. manipulate, select, introduce), and (iii) what are the task in-
put(s) and output(s). This structure supports analysts in performing
complex visualization tasks as a sequence of intermediate low-level
operations and can model dependencies between them by using the
output of a prior task as the input for subsequent ones.

� Valiati et al. [VPF06] propose a taxonomy of high-level vi-
sualization tasks to support exploratory or statistical analysis in
multi-dimensional (multi-variate, in this context) visualizations. It
is based on previous work in this domain [WL90, SBM92] as well
as the results obtained by an internal user study. The proposed tax-
onomy classifies tasks into seven high-level categories: (i) identify,
(ii) determine, (iii) visualize, (iv) compare, (v) infer, (vi) configure,
and (vii) locate. The first five tasks express analytical goals, that is
analysing some statistical properties of the dataset, with the other
two being intermediate-level tasks that support them.

� Roth [Rot13] presents an empirically derived task taxonomy
for geovisualization and interactive cartography. The paper pro-
poses tasks that can be expressed through the following interaction
primitives [Nor88]: (i) the goal (procure, predict, prescribe), (ii) the
objective (identify, compare, rank, associate, delineate), and (iii) the
operator (function to support the objective). A task can be consid-
ered a combination of goal+objective+operator to be applied on an
operand, which can be individual geographic components or charac-
teristics of geographic phenomena in space or over time. Operators
can be enabling (e.g. import, save, edit), such that they prepare or
clean up for a work operator (e.g. sequence, arrange, search) that
actually accomplishes the objective.

6.2. General network visualization

� Lee et al. [LPP*06] present a task taxonomy for graph visualiza-
tion to support designers and evaluators in creating and comparing
techniques on a standardized set of tasks.

Motivation: At the time this taxonomywas published, only a lim-
ited number of techniques had been tested through user studies. To
motivate and support comparative evaluations, the paper proposes a

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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task taxonomy with the aim of allowing researchers to draw gener-
alizable conclusions from their experiments.

Contribution: The proposed tasks, commonly encountered
when analysing graph data, can be classified as compound tasks
made up of the low-level tasks proposed by Amar et al. [AES05],
which have been expanded to include graph-specific objects. The
proposed taxonomy breaks down the tasks into four main cate-
gories: (i) topology-based, (ii) attribute-based, (iii) browsing, and
(iv) overview. The topology-based task category includes low-level
graph tasks such as adjacency (finding the set of nodes adjacent to
a node), accessibility (find the set of nodes accessible from a node),
connectivity (find the shortest path between two nodes), and com-
mon connection (given nodes, find the set of nodes that are con-
nected to all of them). Attribute-based tasks can be performed on
either the nodes or links of a network, such as finding nodes hav-
ing a specific attribute value, finding nodes connected only by a
certain type of link, or finding nodes connected by links having
low/high value. Browsing tasks are more of a compound task as they
involve multiple lower-level tasks, such as, following paths or scan-
ning a set of nodes and tracing their paths to find adjacent nodes
and structures. Finally, the overview task category is described as a
compound exploratory task with the goal of estimating the size of a
network or different entities (such as clusters, groups, or connected
components).

Despite not presenting an evaluation, this general taxonomywith-
stood the test of time, inspiring several other taxonomies [BDA*17,
SSK14] and providing a solid base for controlled experiments on
graph visualization systems (see, e.g. the eye-tracking experiment
by Pohl et al. [PSD09]).

Open Challenges: The paper recommends the definition of
benchmark datasets would be helpful in supporting evaluations and
generalizing their results. Moreover, it describes the need for further
classification of network visualization approaches, based on which
properties of the graph they visualize (i.e. directed graphs, dense or
sparse graphs). This was actually achieved in the following years,
as research in network visualization branched into different disci-
plines, each focused on a specific type of networked data as we de-
scribe in this survey.

Tree visualization

� Pandey et al. [PSS*21] propose a task taxonomy for tree visual-
ization.

Motivation: The absence of a task taxonomy dedicated to the
visualization of trees presents a significant challenge when devel-
oping and creating novel visualization techniques for this data type,
as there are no tasks to guide the design. Furthermore, evaluating
the proposed approaches in terms of the effectiveness of the visual
encodings and interaction techniques also becomes an obstacle due
to the lack of a well-defined task taxonomy.

Contribution: The task taxonomy is presented as an extension
of the multi-level task typology by Brehmer and Munzner [BM13]

(see Section 6.1) with new elements in the why category. The why
is extended with analyse, search, and query actions alongside a hi-
erarchical classification of targets. The highest level of this task tar-
get hierarchy can refer to either the tree’s topology or attributes.
Mid-level specific targets identify which tree structure is the tar-
get, ranging from larger parts of the tree down to specific elements
(i.e. tree, subtree, path, nodes). Finally, for each specific target, dis-
tinct attributes are specified. The final result is a flexible taxonomy,
that easily allows for classifying tasks on trees, for example “Find
the height of the tree” would be classified as topology target, tree
as a specific target, height as the attribute. The paper also describes
the creation of curated datasets for researchers and practitioners and
use case scenarios, including the design of an evaluation study and
the exploration of visual encodings that are suitable for the tasks in
the taxonomy.

Open Challenges: The paper describes research opportuni-
ties for tree visualization systems, highlighting the lack of crowd-
sourced studies, and discussing underrepresented tasks and dia-
grams in the proposed design space. Future work in task research
for trees includes, first and foremost, addressing the inconsisten-
cies in task phrasing, similar to what drove us in consolidating
the terminology in our work. Second, introducing task abstrac-
tion guidelines would enable the comparison of tasks from a wide
range of papers through a standardized vocabulary. Finally, artifi-
cial intelligence might help practitioners to validate task abstraction
designs.

6.3. Group structures visualization

� Saket et al. [SSK14] introduce a task taxonomy for the visual-
ization of group structures in networks.

Motivation: The paper addresses the lack of a taxonomy for ap-
proaches that specifically tackle the visualization of groupings and
hierarchies within networks.

Contribution: The paper presents a task taxonomy for graphs
with additional grouping information. Previous work by Amar
et al. [AES05], Lee et al. [LPP*06], and Brehmer and Mun-
zner [BM13] provide the basic framework and terminology for this
taxonomy. The paper lists 29 tasks, obtained from both studies on
user interaction with visualization and from interviews with experts
in the field. These are divided into four categories according to
the information required to solve them: (i) group-only tasks require
only group information (“Which group has the maximum number of
neighbouring groups?”); (ii) group-node require group and node in-
formation (“Count the number of nodes in a group”); (iii) group-link
require group and edge information (“Count the number of links in
a group”); and (iv) group-network require group, node, and edge in-
formation (“Find a group that has the node with the lowest/highest
degree”). Graphs are assumed as simple and undirected, but most of
the presented tasks can be easily generalized to both weighted and
directed graphs. Low-level tasks can also be combined to describe
more complex, higher-level tasks. The taxonomy is not evaluated;
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however, the paper presents some considerations on how these tasks
can be used in evaluation studies.

Open Challenges: In terms of future work the paper discusses
the possibility of extending the proposed task taxonomy and further
specializing it for more specific data types. A specific example is
to expand it to consider more complex grouping structures, such as
overlapping groups or multi-level clustering.

6.4. Dynamic network visualization

�Ahn et al. [APS14] introduce a task taxonomy for the analysis of
network evolution.

Motivation: The paper proposes a task taxonomy aimed at sup-
porting research in the visualization of temporal networks. This tax-
onomy addresses the lack of suitable analysis methods to guide the
development and design of visualization approaches for depicting
the network’s evolution.

Contribution: The taxonomy proposes a comprehensive frame-
work of tasks to visualize dynamic networks. To build the taxonomy,
the authors collected, reviewed, and categorized tasks from exist-
ing temporal visualization systems. The taxonomy develops over
three dimensions: first, the Entities, that define the object of inter-
est, ranging from individual nodes and edges to groups, to the en-
tire network. Second, the Temporal Features, that define how to ob-
serve, identify, or compare the entities’ status over time and can be
related to individual events (e.g. single occurrences, replacements,
(dis-)appearances) or aggregated events (e.g. the shape or rate of
changes). Third, the Properties, that are associated with entities,
can be either structural properties (attributes from the topology of
the network) or domain-specific properties (attributes independent
of the network structure). The taxonomy was validated by means of
an expert evaluation with 12 participants.

Open Challenges: The design process behind this taxonomy
unveiled several research opportunities and lessons learned. When
mapping the reviewed visualization systems to the task design
space, it shows that while domain properties prevail (i.e. almost all
proposed tasks incorporated domain properties), the rate of changes
is scarcely explored. Individual events are preferred over aggregated
events, except for simpler ones, like growth and contraction. Simi-
larly, compound tasks were not as explored as low-level tasks. Fi-
nally, few studies provide means to control the visual analysis gran-
ularity, for example node/link, group, and network level.

� Bach et al. [BPF14] propose a task taxonomy for dynamic
networks in the context of their work GraphDiaries.

Motivation: The authors discuss related task taxonomies, such as
the work byAmar et al. [AES05], Lee et al. [LPP*06], Adrienko and
Adrienko [AA06], and Ahn et al. [APS14]; however, for their prob-
lem and context these were considered too complex and focused on

analysis of networks. Therefore, motivating the need for a simple,
systematic taxonomy to understand changes happening and support
temporal navigation in dynamic network visualization.

Contribution: The proposed taxonomy is inspired by the work of
Lee et al. [LPP*06] combined with a framework for geo-temporal
tasks by Peuquet [Peu94]. Peuquet mentions three dimensions:
when, what, and where. In this taxonomy, the tasks are centred
around finding the value of the third dimension (e.g. “when”) at the
intersection of the other two dimensions (e.g. “what” and “where”).
As Peuquet’s taxonomy is developed with fixed geographical lo-
cations in mind, to adapt it for dynamic networks (i.e. where the
position of the nodes can change over time), the where and what di-
mensions have been slightly redefined. Specifically, the geograph-
ical where definition is replaced by nodes, edges, and higher-level
topological structures as described by Lee et al. [LPP*06]. Thewhat
dimension has been redefined to capture the type of change (e.g. ap-
pear/disappear) and the behaviour of network elements. With this
definition of low-level tasks, it is straightforward to combine them
and form compound and higher-level tasks.

Open Challenges: With regards to the proposed task taxonomy
the authors do not elaborate on any new directions for future re-
search. However, they state that this task taxonomy can guide the
development and design of interfaces for temporal exploration and
navigation in dynamic networks. Future work is centred around the
extension of their approach, GraphDiaries, to consider evolving
multi-variate and hierarchical graphs and effectively visualizing the
evolution of nodes and edge attributes.

� Kerracher et al. [KKC15] present a taxonomy for dynamic
(temporal in the paper) graph visualization.

Motivation: It is not always possible to know the users’ tasks a
priori; therefore, designers and developers should provide generic
approaches supporting a wider range of tasks, which is the main
motivation behind the proposed taxonomy. The authors consider the
task framework from Adrienko and Adrienko [AA06] in the context
of temporal graph visualization, as it offers a flexible structure and
a wide range of tasks.

Contribution: The authors extend both the data model and the
task framework from previous work [AA06] to account for graph
data. The data model is augmented with graph as a new referrer
(see Section 6.1) and nodes as its members. A new type of relation-
ship, linking, is introduced to encode the edges between the nodes
in the graph. Linking relationships can change over time in terms of
their existence and domain properties. This requires two new con-
cepts to capture the variations in the graph structure: structural be-
haviour and structural pattern. They represent graph objects (paths,
subgraphs, etc.) and notable graph structures (clusters, cliques, etc.),
respectively. The task framework is extended with attribute-based
and structural tasks, to support investigating these new structural
behaviours. Each category follows the elementary and synoptic task
distinction of the original framework [AA06]. The authors further
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categorize temporal graph data, resulting in a two-dimensional tax-
onomy of synoptic tasks, with the first dimension being the time
duration (instant or interval) and the second being the scope of
the graph structure (single element or sets of elements). Kerracher
et al. [KKC15] also introduce connection discovery tasks, aimed at
finding indications of relations between parts of a single or multiple
phenomena. These tasks support investigating what effect the graph
structure has on its attribute values and how some structural pat-
terns affect others at different points in time. Both the methodology
and the coverage of the proposed task taxonomy were evaluated by
means of comparing them with similar existing work, such as the
taxonomies by Bach et al. [BPF14] and Ahn et al. [APS14].

Open Challenges: For future work the authors propose conduct-
ing user studies assessing the most important tasks in the proposed
taxonomy, as well as, categorizing visualization techniques accord-
ing to their task support. The latter has already been investigated in
follow-up work by the authors [KKCG15].

6.5. Multi-variate network visualization

� Pretorius et al. [PPS14] suggest a set of tasks for multi-variate
network analysis.

Motivation: Constructing a frame of reference for multi-variate
network visualization as well as describing user tasks in this domain
presents the motivation behind the proposed task taxonomy. The in-
tent of this work is to model tasks with the goal of gaining insights
and conducting multi-variate network analysis, not solely focusing
on the visual representation of such networks.

Contribution: The authors describe tasks as analytic processes
carried out by users and applied to a specific entity’s property. The
presented taxonomy is built upon the work by Lee et al. [LPP*06]
and heavily based on the work by Valiati et al. [VPF06]. The
proposed taxonomy mirrors the structure by Lee et al. [LPP*06],
categorizing tasks in topology-, attribute-based, browsing, and
overview. Small changes of terminology are applied, such as
topology-based tasks becoming structure-based and overview tasks
becoming estimation. The proposed tasks can be considered as
compositions of lower-level tasks from the taxonomy of Valiati
et al. [VPF06] (see Section 6.1). Examples of tasks from this taxon-
omy include finding a node (or cluster) with specific attribute values
or characterizing the set of nodes as belonging to different groups
based on link attributes. This task taxonomy, therefore, comes up as
a synthesis of existing frameworks. A limitation of this approach is
that it has not been designed with the user’s prior domain knowledge
of the target attributes in mind.

Open Challenges: Future work is mostly concerned with the
implication of prior knowledge (i.e. how existing knowledge on
node, edge, or group properties affects the execution of tasks) on the
resulting task taxonomy. Including more semantic and situational
analysis of multi-variate networks can potentially change the way
that the tasks are conducted and how the results are interpreted. Fi-

nally, the authors propose to evaluate this taxonomy and determine
its suitability for multi-variate network analysis.

7. Taxonomies Discussion

In Section 6 we survey and describe each of the existing task tax-
onomies on network visualization in the scope of our meta-survey
according to our inclusion rules (see Section 2.2). In this section,
we examine this body of research focusing on a more high-level
perspective of the current literature. Specifically, we aim at map-
ping and outlining the most and least supported disciplines by ex-
isting task taxonomies, providing potential directions on what has
yet to be done in this direction. To do so, we introduce the notion of
taxonomy coverage in Section 7.1 and use it to describe saturated
network visualization disciplines as well as to outline how to lever-
age existing research to build a taxonomy for the disciplines that
are currently lacking one. We conclude the section by compiling a
more granular classification of tasks across all taxonomies, clearly
showing the most and least targeted aspects from the available tasks
across different disciplines (Section 7.2).

7.1. Taxonomy coverage

In our literature search, we found surveys that explicitly acknowl-
edge the lack of a taxonomy for their discipline and consider this an
open challenge, whereas others argue how existing taxonomies can
be adapted and extended to fit the analytical tasks in their domain.
We investigate this matter to precisely identify the gaps in related
literature and, therefore, introduce the concepts of specialized and
generalized taxonomy support, which we use in the following to
categorize, as shown in Table 3, the papers presented in Section 6.

Specialized taxonomy support indicates that they are designed to
include tasks that target specific data properties of their correspond-
ing network visualization discipline. In this case, we conclude that
a taxonomy provides “specialized” support for a specific discipline.
Such taxonomies might not be as relevant for applications outside of
their intended discipline (e.g. specific dynamic network tasks might
not be applicable to general network visualization). In this category
the task taxonomies are well-established and highly cited publica-
tions that have been or that can readily be used in formal evaluation
settings or design studies. The majority of taxonomies we discuss in
Section 6 are specialized to support their own discipline: for exam-
ple, the works by Ahn et al. [APS14] and Kerracher et al. [KKC15]
(see Section 6.4) offer specialized support for dynamic network vi-
sualization. Similarly, the taxonomy by Pretorius et al. [PPS14] of-
fers specialized support for multi-variate networks.

Generalized taxonomy support includes more abstract visualiza-
tion tasks, intended to cover a broader range of data types and char-
acteristics or ones whose tasks abstract or overlap with other dis-
ciplines. Therefore, a taxonomy that offers generalized support for
a discipline might not provide a comprehensive and fully expres-
sive set of tasks for that specific data type, but can be used as a
basis for deriving new tasks or adapting existing ones. We mapped
the generalized taxonomy support to each discipline based on two
criteria: (i) if a taxonomy, offering specialized support for a disci-
pline, extends or takes inspiration from another, the latter provides
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Table 3: Task taxonomies are classified according to their related network visualization discipline and type of support provided.

Discipline General Large Group Dynamic Multi-variate Geospatial Multi-faceted Multi-layer

Coverage Specialized [LPP*06] – [SSK14] [BPF14],
[APS14],
[KKC15]

[PPS14] – – –

Generalized [AES05],
[BM13],
[PSS*21]

[LPP*06] [LPP*06],
[APS14],
[SSK14]

[LPP*06],
[AA06]

[AES05],
[LPP*06],
[AA06],
[VPF06],
[BM13]

[LPP*06],
[AA06],
[Rot13],
[BPF14]

[LPP*06],
[AES05]

[AES05],
[LPP*06],
[BM13],
[PPS14],
[APS14]

generalized support for the same discipline; (ii) if a survey refer-
ences a taxonomy as a potential source of tasks for the discipline (as
typically happens with higher-level taxonomies, see Section 6.1),
this reference is considered to offer generalized support.

Within this context, themost widely used taxonomies are the ones
by Amar et al. [AES05] and Lee et al. [LPP*06]. These were of-
ten used as building blocks and inspiration for the development of
other task taxonomies. Therefore, they offer generalized support
for a wide range of disciplines, including general, multi-faceted,
group, dynamic, multi-variate, geospatial, and multi-layer network
visualization. Adrienko and Adrienko [AA06] propose a general-
ized taxonomy for the disciplines of dynamic, multi-variate, and
geospatial network visualization. The work of Ahn et al. [APS14]
is referenced by Hadlak et al. [HSS15] as a generalized taxonomy
supporting multi-faceted network visualization. Similarly, McGee
et al. [MGM*19] reference the work by Ahn et al. [APS14] and Pre-
torius et al. [PPS14] in the scope of multi-layer network visualiza-
tion. Valiati et al.’s [VPF06] taxonomy is used in multi-variate net-
work visualization [NMSL19] as a starting point for multi-variate
network analysis tasks. Brehmer and Munzner [BM13] comple-
ment existing task taxonomies and their work has been an inspira-
tion for developing taxonomies in the disciplines of general, multi-
variate, and multi-layer network visualization. Finally, the work
proposed by Roth [Rot13] for geovisualization and interactive car-
tography can be used as a basis for developing a well-established
task taxonomy for geospatial networks [SYPB21]. These rela-
tionships match and contribute to the roadmap we presented in
Section 2.2.

7.2. Task classification

In this section we provide a classification of individual tasks from
the taxonomies and structure these into three categories identified
from our literature search. For a more detailed view of how all the
tasks can be related and their overlaps, we refer to the miro board
available as supplemental material [MIR]. From our set of surveyed
task taxonomies (see Section 6) we could identify three main types
of tasks that are common amongst all of the taxonomies and used
in designing evaluations and studies. We discuss these categories
in more detail in the following, excluding the higher-level visual-
ization taxonomies introduced in Section 6.1 as they are not in our
meta-survey scope (see Section 2.2).

Topology tasks are concerned with operations that can be per-
formed on individual entities of a graph, including nodes (e.g. “Find
adjacent nodes”), links (e.g. “Find the shortest path between two
nodes”, “Follow a given path”), sub-networks, such as groups, par-
titions, clusters, cliques (e.g. “Identify clusters”, “Are the given
two groups neighbours”), and the entire network (e.g. “Estimate
the size of the network”). Most tasks in this category involve adja-
cency, accessibility, identifying common connections, and connec-
tivity [LPP*06, PPS14]. The tasks described in this category are
low-level tasks conducted on specific entities in the network.

Analytic activity tasks can be considered as higher-level tasks
and subdivided into analytical tasks, operational tasks, and cogni-
tive tasks [VPF06, PPS14]. Analytical tasks describe goals that in-
volve visually exploring or analysing a dataset using statistics and
metrics (e.g. “Find/discover/estimate properties, categories, or char-
acteristics”, “Calculate and derive statistical properties and scores”,
“Compare and analyse data, items, and values”). Operational tasks
are intermediate tasks that support the analysis through operations
such as visualizing a dataset or re-configuring and tuning parameters
or visualization properties (e.g. “Configure parameters of the clas-
sification”, “Reorder rows and columns of a matrix”, “Select graph-
ical primitives”, “Re-encode the network”), and operations that can
be performed on the visual representation (e.g. “Manipulation”,
“Search/Query”, “Produce/Introduce”). Cognitive tasks involve ex-
tracting knowledge and insights from the network itself in terms of
identifying patterns, describing changes, and inferring causal rela-
tionships (e.g. “Describe the change in behaviour”, “Analyse depen-
dencies between changes”, “Find/Describe trends”, “Validate hy-
potheses”, and “Infer cause and effect relationships”).

Facet tasks describe operations that can be performed on the dif-
ferent facets of a network (as discussed by Hadlak et al. [HSS15]),
such as, the temporal (e.g. “Observe if an entity appears or dis-
appears”, “Find if and when an edge direction changes”), geospa-
tial, multi-variate (e.g. “Identify nodes/links with a specific attribute
value”, “Which node is connected by a link having largest/smallest
value”), and group facets (e.g. “Given two groups find the set of
common group neighbours”). In the taxonomies, we surveyed there
were no mentions of tasks relating to the geospatial facet and in the
previous section, this gap was also discussed (see Section 7.1).

In Table 4 we map task taxonomies to the aforementioned cat-
egories. All task taxonomies extensively cover topology-centred
tasks on nodes and links, whereas the tasks that can be performed on
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Table 4: Our proposed task classification. Each dot (cell) represents a taxonomy (column) presenting tasks belonging to a category (row).

Tasks Taxonomies

[LPP*06] [APS14] [PPS14] [SSK14] [BPF14] [KKC15] [PSS*21]

Topology Nodes • • • • • • •
Links • • • • • • •
Sub-networks • • • • • •
Network • • • • •

Analytic activity Operational •
Analytical • • • • • • •
Cognitive • • • •

Facet Time • • •
Space
Multi-variate • • • • •
Groups • •

sub-networks (e.g. clusters, groups) and on the entire network did
not receive the same widespread support. The taxonomy by Preto-
rius et al. [PPS14] is the only one to introduce operational tasks.
We conjecture this is due to the specific representation of a task
as an analytical process introduced in the paper: as such, it is rea-
sonable to introduce a set of operations that do not achieve a re-
sult in the analysis process, but rather support other tasks. Con-
versely, all taxonomies present tasks belonging to the analytic cate-
gory, confirming this category to be the most prominent and consid-
ered the most important across the board. Cognitive tasks are high-
level tasks that are only partially covered by the literature we sur-
vey. Concerning facet-related tasks, several taxonomies do cover the
multi-variate category, as it includes general tasks involving graph
attributes. Temporal facets are also more populated, compared to
the group and geospatial ones, as the temporal facet (i.e. dynamic
networks) received substantially more interest than the geospatial
or groups facet. The complete lack of a task taxonomy for geospa-
tial networks was identified as an open challenge by the recent sur-
vey by Schöttler et al. [SYPB21]. Group facet tasks, included in
the taxonomies by Saket et al. [SSK14] and Kerracher [KKC15]
et al., focus on the relationships and identification of groups and
their attributes at different granularities (i.e. single node, clique/
cluster).

Finally, most task taxonomies consider and discuss compound
tasks as well, defined as combinations of multiple low-level tasks
forming more complex paths of interaction and analysis. In the cat-
egorization proposed in this section, we do not consider any of the
categories in Table 4 to be mutually exclusive. Therefore, in the
context of creating complex, high-level, and cross-discipline tasks,
these categories can be combined with each other (e.g. combining
topological tasks on nodes with the multi-variate facet for an ana-
lytical activity to cluster similar nodes together).

8. Discussion

In this section, we provide a high-level discussion about the consol-
idation, report and discuss the most prominent takeaways, and we
review the limitations of our survey.

8.1. Terminology consolidation

In Section 5 we discuss how we produce the heatmap in Table 5,
which provides insights about the research landscape in the field of
network visualization. This provides a high-level indicator of the
most researched concepts in literature according to the surveys in-
cluded in this paper. If a survey is present in the table, then it in-
cludes papers that introduce terms we use in our consolidation. In
turn, grey cells do not represent a lack of research in that direction,
but rather indicate that in our literature review, there are no surveys
whose terms fall into that category.

A quick, visual analysis of the table shows that the discipline of
general network visualization, which is also the most dated, com-
prises the majority of the available research. Within this discipline,
2-D node-link representations, drawn using an energy-based algo-
rithm, appear to be the most discussed topics. Conversely, few pa-
pers discuss facet composition, which is expected as general net-
work visualization does not encompass the representation of fur-
ther dimensions.

Dynamic network visualization is the second discipline, in terms
of number of surveys. The majority of research focuses on the
temporal facet composition, specifically on techniques ranging
from juxtaposition to animation. Other methods have been ex-
plored [KKC14], with the exception of “multiple views” that has
not been investigated, in this context, as a composition method for
the time facet. Concerning the network representation, there is more
balance between node-link and matrix representations. In terms of
layout, energy-based is still the most popular, possibly due to the
fact that many techniques extend visualization approaches for static
graphs. We also note that the mental map category is also the most
researched aesthetic criterion in this field.

Another observation that we can make, based on the surveyed re-
search, is that network visualization disciplines tend to experiment
differently with facet composition methods. This can be seen by the
non-uniform distribution of grey cells within the facet composition
category across different disciplines. It is also clear that very lit-
tle research is done on aesthetic criteria in the multi-faceted, multi-
variate, and multi-layer disciplines. We argue this to be due to the

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14794 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [11/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



24 V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies
Ta

bl
e
5:

O
ur
pr
op
os
ed

te
rm
in
ol
og
y
co
ns
ol
id
at
io
n.
In
ea
ch

ce
ll
,
w
e
gr
ou
p
re
fe
re
nc
es
to
su
rv
ey
s
th
at
pr
es
en
t
co
nc
ep
ts
of
th
e
co
ns
ol
id
at
ed

te
rm
in
ol
og
y
(r
ow
s)
ap
pl
ie
d
ea
ch

di
sc
ip
li
ne

(c
ol
um
ns
).
C
el
ls

co
lo
ur
s
en
co
de

th
e
am
ou
nt
of
pa
pe
rs
fo
r
ea
ch
di
sc
ip
li
ne

an
d
te
rm

(f
ro
m
ye
ll
ow

to
re
d)
.G

ra
y
de
no
te
s
em
pt
y
ce
ll
s,
w
hi
ch
m
ea
ns
th
at
no
ne

of
th
e
su
rv
ey
s
li
st
ed

in
Ta
bl
e
2
di
sc
us
se
s
th
at
co
m
bi
na
ti
on

of
te
rm
in
ol
og
y/
di
sc
ip
li
ne
.

© 2023 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14794 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [11/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



V. Filipov et al. / Are We There Yet? A Roadmap of Network Visualization from Surveys to Task Taxonomies 25

fact that research on disciplines other than general network visual-
ization is more application-oriented, and therefore, can be harder to
extract concepts that can be generalized in terms of readability and
human perception. Moreover, it is also possible that as the other dis-
ciplines stem from general network visualization, its concepts about
aesthetics are still valid also in other disciplines.

8.2. Takeaways

With our comprehensive analysis of the field of network visualiza-
tion, from surveys to task taxonomies, we could identify some take-
aways that represent promising opportunities for further research.
For a comprehensive list we refer to our online material [MIR].

Potential of matrices. Several surveys point out how tabular tech-
niques present an interesting yet underdeveloped potential for net-
work visualization. As matrix-based representations of networks
present several advantages compared to the more popular node-link
approaches, they have been highlighted as promising future research
directions for the visualization of dynamic and multi-variate net-
works [KKC14, BBDW17, NMSL19]. The use of this representa-
tion has not been experimented with in all network visualization
disciplines (see Table 5), leaving several future work opportunities,
especially considering the use of existing reordering techniques.

Hybrid and alternative approaches for complex data. The size,
heterogeneity, and dimensionality of networked data are on the rise.
However, this complexity also presents opportunities for novel con-
tributions, specifically, hybrid and alternate representations for such
complex networked data should be investigated, to overcome the
limitations of standard approaches (e.g. scalability). Research on al-
ternate visualization methods also renewed the drive and motivation
for recent developments in immersive network analytics [FP19]. In-
novative metaphors to visualize networked data have been pointed
out by selected surveys as an interesting direction for future re-
search [SHS10, BBDW17,MGM*19]. Furthermore, the approaches
that we have grouped together as “Alternative” in our consolidation
table (see Table 5) are not an exhaustive list, meaning that the de-
sign space of hybrid and alternative network representations has not
been explored to its full potential.

Task taxonomies and evaluations. Our meta-survey shows that
while extensive research has been done on task taxonomies, there
are still several disciplines that lack a set of tasks specifically de-
signed for them [HSS15, MGM*19, SYPB21] (see Section 7.1 and
Table 3). Filling these gaps would facilitate the formal evaluation
and comparison of network visualization techniques. Specifically, as
network visualization systems become more complex, several sur-
veys push for surpassing the traditional performance metrics (time
and accuracy) and instead focus on the evaluation of cognitive as-
pects, perception issues, and user engagement [HMM00, Rod05,
GK10, ZXYQ13, LHT17, BBDW17].

Interaction techniques. Approaches to facilitate navigation, ex-
ploration, and interaction with the network and its elements are
highlighted by a number of reports as a promising direction for fu-
ture work [vLKS*11, PAKC15, BBDW17, MGM*19]. They are a

central point of discussion that spans multiple disciplines ranging
from general [BBHR*16], to large [vLKS*11, PAKC15], to dy-
namic [BBDW17], to multi-layer [MGM*19] network visualiza-
tion. Specifically, techniques that enable interactive graph simpli-
fication and layouts have been mentioned multiple times in our sur-
veyed literature [vLKS*11, LHT17]. Moreover, there is growing in-
terest in systems that implement novel interaction techniques for
network exploration on large [LAN20] and small tactile displays
(e.g. [DLDBI10, HL07]), including real-time collaboration dur-
ing the network analysis process [CGZ*19]. Additionally, human-
assisted approaches to combine the knowledge of domain experts
with automated analysis and visualization of networked data are
considered to be an increasingly important yet under-investigated
research direction [BBHR*16, VBW17]. We believe this still to be
an open and unresolved issue with great potential for future work,
as there is no well-defined taxonomy or survey on interactions for
network visualization with few exceptions, such as the work by
Wybrow et al. [WEF*14] on interactions on multi-variate networks.
These play a very important role in collaborative network analysis,
a topic that has been recently gaining traction [LAN20].

Restructuring and unifying. Our meta-survey shows the signifi-
cant breadth of concepts, terminology, and research related to net-
work visualization. Several concepts span multiple disciplines and
we also experienced how small changes (or overlaps) of terminology
might confuse and mislead. With this large body of knowledge, we
believe we have reached a point in network visualization research,
where we should consider taking a step back and reassessing the
problem from a broader perspective. As this field begins to face the
challenges offered by machine learning and immersive analytics,
“de-fragmenting” and unifying the existing research would increase
the awareness and knowledge of the available technologies and the-
ory. Our roadmap is intended as a first step in this direction.

Uncertainty of networks. Uncertainty is an inherent property of
the data, due to errors, noise, or unreliable sources. It propagates
throughout the analytical process, ultimately affecting the decision-
making. Addressing and visualizing uncertainty in network visual-
ization is a topic of major interest among and across several dis-
ciplines and is a research field rapidly gaining traction [vLKS*11,
HSS15, SYPB21]. Specifically, visualizing uncertainty associated
with the network topology [vLKS*11, SYPB21], the attributes of its
entities [vLKS*11], the temporal information [SYPB21], dynami-
cally changing groups [VBAW15] is still a challenging topic and
opportunity for future research. In the context of group network vi-
sualization [VBW17], the effective depiction of fuzzy and overlap-
ping group structures is outlined as a challenge and is still not ex-
haustively explored in literature [VRW13].

Hypergraph visualization. Several surveys identify that limited
research has been done on the topic of hypergraph visualiza-
tion [SS06, vLKS*11, MGM*19]. This type of network structure,
where an edge can connect more than two vertices, has been used
in biology and image retrieval using machine learning [FFKS21].
Hypergraphs better capture group structures and many-to-many re-
lationships and preserve the ability to encode other attributes (i.e.
directed or weighted edges). Interest in this topic is on the rise, with
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the foundations of a survey in this discipline already laid out by Fis-
cher et al. [FFKS21].

8.3. Limitations

Although we provide a detailed overview of the available surveys
on network visualization, there are also inherent limitations of this
work that must be considered. The number of surveys is relatively
small, especially when compared to McNabb and Laramee meta-
survey [ML17]. However, that work surveyed the much broader
field of Information Visualization, while we have a specific focus
on networks only. In our meta-survey, we excluded most algorith-
mic and theoretical contributions which would require a survey pa-
per on their own. Graph theory is a huge topic and our focus on
visualization-specific aspects allowed us to provide a descriptive
overview of the aspects of the field that we believe to be of the most
interest to the intended audience of this journal.

Our classification is based on network visualization disciplines
and their definitions are based on the respective data type. This
proved to be a reasonable approach, as the majority of papers could
be assigned unambiguously to each category. However, this resulted
in the general network discipline being the largest one (in terms of
assigned papers), and made some classifications problematic. A no-
table example is the paper by Schulz et al. [SHS10] about implicit
hierarchy visualization. Hierarchies can be represented as trees and,
therefore, tree visualization techniques can be applied in this con-
text as well. However, we believe group visualization is a more ap-
propriate category for this survey as the semantic (i.e. inclusion)
of the edges in hierarchies is not as general as the one intended
for trees. Future extensions of this work might address this ambi-
guity, and other potential biases introduced during the paper se-
lection and classification, by categorizing papers differently. We
envision a further analysis of research in this field from a tech-
nique perspective (rather than from a survey basis), where each
is discussed and classified based on their extensions and applica-
bility to different disciplines, possibly building upon our work in
Table 5.

9. Summary and Conclusion

In this work, we presented our meta-survey of the field of network
visualization with the goal of providing a roadmap detailing and
structuring the different research directions that network visualiza-
tion has branched into. We examined both state-of-the-art reports
and task taxonomies related to the field in order to provide a broad
overview, highlighting more and less saturated research directions,
and outlining disciplines of network visualization that do not have
well-established task taxonomies to guide evaluations and compar-
isons of techniques. Furthermore, we discussed the inconsistencies
of the terminology used throughout the surveys and consolidated
these with the intention of supporting a common dictionary for the
field of network visualization. Finally, we proposed a summary of
the ongoing challenges and directions for promising research oppor-
tunities. Based on the results of our meta-survey, we found that the
field of network visualization is still rapidly expanding and branch-
ing into different domains. We can state that there is still much to be
done in terms of novel visualization metaphors, evaluation method-

ologies, interaction techniques, and collaborative analysis. The an-
swer to the overarching question of this work “Are we there yet?”
being “For the last time no… and stop asking.”.
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