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Abstract
We introduce and evaluate a novel camera pose estimation framework that uses the human head as a calibration object. The 
proposed method facilitates extrinsic calibration from 2D input images (NIR and/or RGB), while merely relying on the 
detected human head, without the need for depth information. The approach is applicable to single cameras or multi-camera 
networks. Our implementation uses a fine-tuned deep learning-based 2D human facial landmark detector to estimate the 3D 
human head pose by fitting a 3D head model to the detected 2D facial landmarks. Our work focuses on an evaluation of the 
proposed approach on real multi-camera recordings and synthetic renderings to determine the accuracy of the pose estima-
tion results and their applicability. We assess the robustness of our method against different input parameters, such as vary-
ing relative camera positions, variations of head models, face occlusions (by masks, sun glasses, etc.), potential biases and 
variance among humans. Based on the experimental results, we expect our approach to be effective for numerous use cases 
including automotive attention monitoring, robotics, VR/AR and other scenarios where ease of handling outweighs accuracy.

Keywords Evaluation · Camera pose estimation · Camera networks · Head pose estimation · Extrinsic calibration

Introduction

Camera pose estimation or extrinsic calibration refers to the 
calculation of both the translation and rotation of cameras 
relative to a well-defined coordinate system. For a multi-
camera extrinsic calibration, the reference coordinate system 
is usually the coordinate system defined by one of the cam-
eras. Camera pose estimation [1, 2] needs to be frequently 
applied when cameras employed in the context of real-world 

phenomena, as is the case for virtual/augmented reality 
applications [3], various automotive applications [4], rapid 
prototyping [5] and robotics [6]. To estimate the camera 
pose, some known calibration object is usually used to corre-
late the recorded pixels with the corresponding transforma-
tion [7]. Popular calibration objects are rigid planar surfaces 
featuring a checkerboard pattern [8] or a circle grid pattern 
[9]. Problems arise in use cases and scenes where no cali-
bration object is present or none can be conveniently used 
but the pose of a camera still needs to be estimated. To cope 
with such cases, we propose our novel camera pose estima-
tion technique which measures the pose of a single camera 
or multiple cameras using the human head as a reference 
object for calibration. Figure 1 illustrates a proposed applica-
tion of our camera pose estimation approach in a car cockpit, 
in which the camera pose can be estimated via the pose of 
the driver’s head. Our method observes human heads using 
a single NIR/RGB camera or multiple NIR/RGB time-syn-
chronized cameras. For each of the cameras’ 2D projections, 
our approach extracts 2D landmarks using a deep-learning-
based convolutional neural network. By assuming a fixed 
pre-defined 3D human head model (as shown in Fig. 2), we 
can use the facial landmarks to estimate the poses of the 
human heads, as well as the poses of the cameras. Hence, 
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our proposed approach is especially suited for camera setups 
where human heads are common, such as settings within the 
cabin of a vehicle, plane or train, in which the passengers 
are observed by the cameras. We evaluate the usefulness 
and accuracy of our method by performing extensive experi-
ments using a multi-camera setup and synthetic renderings.

There is a serious need for our method in applications 
where ease of calibration has priority over high calibration 
accuracy. Examples of such use cases include region-based 
attention monitoring [4], robot attention tracking [6], auto-
mated shopping systems [10] or rapid-prototyping of new 
camera arrangements. For such systems, it is often imprac-
tical to enforce the calibration of cameras by users with an 
additional calibration target before usage. In contrast, our 
approach is applicable ad-hoc for a variety of extrinsic cam-
era calibration tasks. It is worth noting that extrinsic calibra-
tion of cameras is more fragile than its intrinsic counterpart, 
as stronger vibrations, winds or other external forces might 
invalidate the camera’s extrinsics. Hence, being able to 
calibrate a camera extrinsically without requiring dedicated 
calibration objects is particularly desirable in such situa-
tions, as said object might not always be readily available. 
Furthermore, the defined 3D head model allows our method 
to be independent of additional depth information. Instead, 
our multi-camera pose estimation technique merely depends 
on RGB and/or NIR 2D input data.

The main differences with respect to our previous confer-
ence paper [11] are: In addition to the synthetic data used in 
[11], we created a larger dataset for validation, showing six 
different participants. Each participant was recorded under 
different potentially challenging modalities, including facial 
occlusions (masks, sun glasses), grimacing, different head 
rotations and three camera positions using the Opti-Track 
Motive camera system [12] ( “Evaluation” section). To 
improve camera pose estimation accuracy, we additionally 

implemented a camera pose aggregation over multiple 
frames, which has been shown to significantly improve accu-
racy in “Aggregation Experiment” section and Table 5. In 
the current work, we also fine-tuned and optimized a Stacked 
Hourglass 2D facial landmarks detection model [13] and 
compared it with various state-of-the-art alternatives (“2D 
Facial Landmark Detection” section and Table 2). We per-
formed the experiments from [11] again using the optimized 
Stacked Hourglass 2D facial landmarks detection model and 
the extended dataset (“Core Experiment”, “Checkerboard 
Experiment”, “Impact of Relative Camera Poses”,  “Bias 
Towards Skin Color and Gender”, “Qualitative Evaluation” 
section and Tables 3, 4, 6, 9). The newly added dataset 
allowed us to design and perform additional experiments 
concerning the impact of grimacing (“Impact of Head Model 
Divergence” section and Table 7), the impact of face occlu-
sions (“Impact of Face Occlusions” section and Table 8) 
and the variance among individual participants (“Variance 
Among Individual Participants” section and Table 10). We 
extended “Related Work” section to cover additional related 
work regarding various 2D facial landmarks models and 
non-standard calibration methods.

Related Work

Due to its high practical relevance in computer vision, robot-
ics and augmented/virtual reality, multi-camera pose esti-
mation has become a relatively intensively studied research 
topic [1, 2]. A well-established technique of camera pose 
estimation was proposed by Zhang [14]. The technique 
extracts the poses from a plane with an unknown orienta-
tion. Later, Zhang [8] extended his technique to use a pla-
nar surface with squares, resembling a checkerboard pattern. 
Further, Abad et al. [9] added to the planar projection board 
approach by implementing the detection of concentric cir-
cles instead of squares. Adnan et al. [15] proposed a method 
using both point and line correspondences for camera pose 
estimation. Later, Manolis et al. [16] applied a model-based 
approach to this problem by using a rigid 3D model instead 
of a planar calibration object. Other non-planar 3D calibra-
tion objects include wands with multiple collinear points 
[17] or point-like objects [18]. In more recent years, Cam-
poseco et al. [19] proposed to leverage both structure-less 
(2D-3D) and structure-based (2D-2D) correlations. Finally, 
Noll et al. [20] presented a comprehensive overview of 
PnP-based, RANSAC-based and other more traditional 
camera pose estimation techniques. In summary, perform-
ing extrinsic camera calibration while exclusively relying on 
the human head as a calibration target is a novel approach to 
the problem of multi-camera pose estimation.

Our method relies on the accurate estimation of the 
human head pose in 3D from a 2D input image [21]. 

Fig. 1  Application of proposed camera pose estimation method. The 
left 3-axes represent the XYZ directions of the estimated head pose. 
The right XYZ-axes represent the XYZ directions of the calculated 
camera pose
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Before the advent of deep-learning-based computer vision, 
head pose estimation was often performed by using mani-
folds [22–24]. Many proposed methods [25–30] also used 
random forests with RGB and depth images. Deep-learn-
ing-based approaches have since largely replaced the tra-
ditional computer-vision-based methods for both RGB and 
depth input images [31–38]. For in-car automotive appli-
cations, convolutional neural networks (CNNs) in com-
bination with depth cameras have shown to be successful 
[31]. Regressing the head pose directly using CNNs has 
also proven to be effective [32]. Wu et al. [33] combined 
face detection and head pose estimation within the same 
network. Xia et al. [39] built an efficient multitask archi-
tecture for face alignment, head pose estimation and face 
tracking. Deep-learning-based head pose estimation often 
suffers from too little training data - synthetic data has 
shown to be an effective solution to this problem [34]. 
Furthermore, Patacchiola et al. [35] investigated multiple 
CNN architectures for head pose estimation. Recently, Liu 
et al. [37] proposed to handle pose errors in the ground 
truth distribution and to leverage asymmetric relation cues 
by assigning different weights on the yaw- and pitch rota-
tion direction. Moreover, graph CNNs have been applied 
successfully to head pose estimation from 3D point clouds 
[36]. The visual transformer architecture (ViT) [40] has 
also shown to be promising for many computer vision 
tasks including head pose estimation. Hu et al. [41] intro-
duced a spatiotemporal vision transformer enabled head 
tracker. Dhingra [42] proposed an architecture for head 
pose estimation consisting of a mixture of depthwise sepa-
rable convolutional layers and transformer encoder.

Oftentimes convolutional neural networks are applied 
for facial landmarks extraction, which is commonly part of 
a head pose estimation model [34, 35]. In general, CNNs 
consist of two main components: the feature extractor and 
the discriminator. In the following, we provide a selection 
of relevant state-of-the-art feature extractors for 2D facial 
landmarks extraction. HRNet [43] maintains high-resolution 
representations throughout the whole feature extraction pro-
cess by gradually adding high-to-low-resolution convolu-
tion streams into the network. MobileNet [44] is tailored 
for embedded applications focused on leveraging depthwise 
convolutions. Stacked Hourglass networks [13] process fea-
tures across multiple scales and have been shown to capture 
spatial relationships relatively well. The ResNet [45] archi-
tecture extends deep neural networks with skip connections 
and enables much deeper neural networks. SCNet [46] intro-
duces the use of self-calibrating convolutions. Continuing 
with the success of ViT architectures [40], Li et al. [38] 
exploit temporal contexts using strided transformers. Our 
approach uses an optimized model derived from a Stacked 
Hourglass architecture [13]. Our evaluation in “2D Facial 
Landmark Detection” section shows that in our context the 

fine-tuned model performs better than off-the-shelf 2D facial 
landmarks detectors.

The need for multi-camera pose estimation in the absence 
of a dedicated calibration object is widespread in computer 
vision. Bleser et al. [47] propose to use a model created with 
CAD software to estimate the camera pose. Rodrigues et al. 
[48] attain the camera pose by detecting planar mirror reflec-
tions in the scene. Hödlmoser et al. utilize pedestrians on 
zebra crossings to calculate the camera poses [49]. The pro-
posed methods by Puwein et al. [50], Takashi et al. [51] and 
Moliner et al. [52] are similar to our approach and usually 
expect the full human body to be detectable by the cameras. 
While the aforementioned methods are suited for camera set-
ups in surveillance or studio-like environments, they are not 
readily applicable to use cases where primarily the human 
head is visible (and other body parts are possibly occluded). 
In contrast to our method, those techniques rely on finding 
pixel correspondences using the entire human body pose. 
Instead, our approach exploits merely the human head pose 
estimated independently from each camera without requir-
ing pixel correspondences between different camera images.

Camera Pose Estimation

In the following subsections, we describe the entire calibra-
tion pipeline of our multi-camera pose estimation technique 
using head pose estimation. Each synchronized camera 
within the camera network captures an image of the current 
scene, on which we then perform human head pose estima-
tion. After that, we derive the camera poses from the com-
puted head pose transformations, allowing us to transform 
the shared coordinate system into the respective camera 
coordinate systems and vice versa.

General Workflow

Camera pose estimation is a common problem in computer 
vision and can be time-consuming to perform. Tradition-
ally, it is first necessary to physically prepare and print some 
calibration object, for example an adequate checkerboard, 
and then validate that the calibration object satisfies certain 
conditions, such as being rigid and unbendable. Normally, 
the calibration process must then be carried out, in particular 
the parametrization of the calibration algorithm is required. 
Finally, the camera pose estimation itself can be performed 
by capturing the calibration data from the calibration object, 
which needs to be visible to all cameras. In contrast to this 
procedure, our approach only requires a single person to be 
present in the scene to calculate the head-pose-based camera 
pose estimation. This condition is inherently met in many 
use cases. From the computational point of view, estimating 
the head pose is more complex than finding a checkerboard 
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pattern in the recorded images. We counteract this problem 
by running the head pose estimation algorithm on a graphi-
cal processing unit (GPU), resulting in comparable execu-
tion times. Table 1 gives an overview of the runtimes on dif-
ferent numbers of cores. It shows that the computation time 
needed for head pose estimation is approximately inversely 
proportional to the number of cores.

Camera Pose Estimation With Human Head Pose 
Estimation

Our method assumes camera intrinsics to be available. The 
first step of our camera pose estimation technique consists 
of extracting the human head pose. In principle, any head 
pose estimator that returns a proper translation and orienta-
tion for a human head can be used for our method. For our 
implementation, we focus on facial-landmarks-based head 
pose estimation. Our approach is particularly motivated by 
driver cabin applications (e.g. cars, trains, planes), where 
the assumption that the driver’s face is visible to the camera 
usually holds. After detecting the face with an off-the-shelf 
face detector, we apply a CNN-based deep learning facial 
landmarks detector on the recorded and cropped 2D image 
from each camera. More traditional approaches not based 
on deep learning are applicable as well, but are not state-of-
the-art anymore [21]. In “2D Facial Landmark Detection” 
section, we perform a comparison of various facial land-
mark detectors. We evaluate our custom trained fine-tuned 
Stacked Hourglass [13] based model in comparison to sev-
eral off-the-shelf models and observe that the custom model 
outperforms the off-the-shelf models. Our modifications 
and re-training of the 2D facial landmarks detector can be 
summarized as follows: We fine-tuned the hyperparameters 
(learning rate, data augmentation, regularization, etc.) of the 
Stacked Hourglass [13] model and trained it on the COCO 
2014 dataset [53] with grayscale pre-processing. The predic-
tion framework of Stacked Hourglasses by Newell et al. [13] 
provides a flexible approach for training image-dependent 
spatially-aware models, while supporting long-range feature 
dependencies for the detected facial landmarks. In the origi-
nal publication, the authors applied their model architecture 
for general human pose estimation but as we will show in 
our evaluation in “Evaluation” section, it can also be fine-
tuned for the task of camera pose estimation. We increased 
the accuracy of 2D facial landmark detection by achieving a 

more accurate detection of the bounding box of the detected 
faces by using a CNN-based off-the-shelf face detector.

Using the extracted 2D facial landmarks, we then fit 
an independently measured static 3D head model. We use 
iterative Perspective-n-Point (PnP) to fit the estimated 2D 
points to the assumed 3D head model [54]. Figure 2 visu-
alizes the correspondence of the 2D facial landmarks and 
their corresponding 3D head model points. We define the 
origin of the shared coordinate system (Refer ��� in Fig. 3) 
as the tip of the nose of the 3D head model (refer to 3D 
head model illustration in Fig. 2), but other locations are 
equally applicable and could be chosen instead. Next, we 
use the estimated head pose to calculate the transformation 
from the head coordinate system into the camera coordinate 
system. The accuracy of this transformation mainly depends 
on (1) the quality of the facial landmarks and (2) the simi-
larity between the actual head and the presumed 3D head 
model. A key factor for (1) are occlusions. More occluded 
2D facial landmarks result in fewer points to use for the PnP-
step, leading to less optimal estimations. For example, in the 
presence of rotations or occluding objects (hair, sunglasses, 
etc.) noses are visible more often than ears. In “Impact of 
Face Occlusions” section, we find that the trained Stacked 
Hourglass [13] model can cope relatively well with such 
scenarios and estimates a reasonable location for occluded 
facial landmarks. Regarding (2), we assume a pre-defined 
3D head model, so if the actual head shape diverges sig-
nificantly from the assumed model, the PnP-step might find 
a suboptimal solution, which has negative impact on the 
camera pose estimation. Nonetheless, our experiments show 
empirically that a generic head model is applicable to a wide 
scope of different head types.

In the following, we discuss how to construct the multi-
camera network. Figure 3 visualizes the multi-camera set-
ups with the corresponding coordinate systems and trans-
formations. Figure 3a depicts a general camera network of 
our approach and Fig. 3b shows the camera network for the 

Table 1  Runtime of head pose estimation on ARM Cortex A57 
(2.035 GHz) per camera (From [11])

No. Cores: 1 2 3 4

Runtime 25.1 ms 14.9 ms 12.1 ms 9.9 ms

Fig. 2  Correspondence of 2D facial landmarks and the 3D head 
model. Left: 2D facial landmarks on 3D head. Right: 3D head model 
fitted according to facial landmarks. (From [11])
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stereo-camera setup we use for experiments in “Evaluation” 
section. Limitations of the camera network are primarily of 
physical nature and depend on the specific installed hard-
ware. In particular, limitations stem from camera synchroni-
zation, placement conditions and bandwidth of the network. 
Our test setup consists of three time-synchronized cameras 
and is capable of capturing full HD resolution images while 
simultaneously performing camera pose estimation.

A head pose consists of a 3x3 rotation matrix � and a 1x3 
translation matrix t and transforms from a camera coordinate 
system’s origin to the head coordinate system’s origin. We 
construct a corresponding 4x3 transformation matrix � as 
defined in Eq. 1. Equation 2 defines the inverse transforma-
tion from the head coordinate system’s origin into a camera 
coordinate system’s origin.

We denote a camera as ���
�
 and the shared coordinate sys-

tem defined by the head pose as ��� . We perform the trans-
formation from the shared coordinate system ��� into ���

�
 

by constructing �i using the estimated head pose defined by 
the rotation matrix �

�
 and translation matrix �

�
 for camera 

i. Conversely, in order to transform from ���
�
 into ��� , we 

perform the inverse transformation �−1
i

.
To apply the estimated camera pose, we show how to 

transform both points and rotations within the camera 

(1)� = [� | t]

(2)�
−1 = [�T | − �

T ∗ t]

network’s camera coordinate systems into the shared coor-
dinate system.

Equation 3 defines the transformation of an arbitrary trans-
lation ti from the coordinate system of camera i ���

�
 into 

the shared coordinate system defined by the head pose ��� , 
resulting in the transformed translation tSCS . It can be seen 
that we can transform from the ��� into ���

�
 by applying 

the transformation �i . Equation 4 shows how to transform 
an arbitrary rotation �

�
 from the coordinate system of the 

camera i ���
�
 into the shared coordinate system defined by 

the head pose ��� , resulting in the transformed rotation �SCS . 
The function rot(�) returns the 3x3 rotation matrix � of the 
transformation � (see Eq. 5).

We propose a relatively simple way to improve the cam-
era pose estimation accuracy by exploiting temporal coher-
ence typically present in video sequences. More precisely, we 
aggregate multiple head poses over time into the transforma-
tion matrix � . This technique reduces the impact of head pose 
estimation outliers. In our current implementation, we choose 
to calculate the mean over all translations and rotations. Cal-
culating such mean over rotations is an instance of the single 
rotation averaging problem [55], which we address by applying 
the technique of the Geodesic L

2
 mean [55]. In “Aggregation 

Experiment” section, we show that aggregation performs well 
but with the added constraint that multiple image frames are 
required for camera pose estimation.

(3)tSCS =�
−1

i
∗ ti

(4)�
���

=rot(�i)
−1 ∗ �

�
∗ rot(�i)

(5)rot([� | t]) =�

Fig. 3  Schematic visualization 
of camera networks supported 
by our camera pose estimation 
method with the correspond-
ing camera coordinate systems 
( ��� ), a shared coordinate sys-
tem ( ��� ), and the correspond-
ing transformations between 
them. (From [11])
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Evaluation

In this section, we investigate the performance of our 
novel camera pose estimation method from various points 
of view. We define and illustrate the setup we use through-
out our evaluation in ’Experiment Setups” section. In “2D 
Facial Landmark Detection” section, we draw comparisons 
between several state-of-the-art 2D facial landmark detec-
tors and our custom fine-tuned and optimized model. In the 
core experiment presented in “Core Experiment” section, 
we explore and compare the overall accuracy of our cam-
era pose estimation technique using a dataset containing 
a sample of all our recordings featuring six participants, 
filmed from three different camera poses (0◦ , 45◦ and 90◦ ), 
including face occlusions, head rotations (pitch, yaw and 
roll) and grimaces. In “Checkerboard Experiment” sec-
tion, we perform a baseline comparison with camera pose 
estimation using a checkerboard pattern. In “Aggregation 
Experiment” section, we evaluate the effects of aggregat-
ing multiple head poses over time on the estimation of 
the camera poses. In “Impact of Relative Camera Poses” 
section, we compare how different camera poses impact 
the estimation accuracy. In “Impact of Head Model Diver-
gence” section, we evaluate the impact of head model 
divergence by comparing the results of the generic head 
model against the true head model using synthetic data. 
In the same section, we also analyze how grimaces impact 
estimation accuracy. We analyze the impact of face occlu-
sions caused by masks, sunglasses and manual drop-out 
in “Impact of Face Occlusions” section. We then investi-
gate potential biases towards gender or skin color using 
real and synthetic data in “Bias Towards Skin Color and 
Gender” section. We further perform an analysis focus-
ing on the variance of our camera pose estimation results 
derived from individual participants in “Variance Among 
Individual Participants” section. Finally, we provide addi-
tional qualitative evaluation results in “Qualitative Evalu-
ation” section.

Experiment Setups

We performed most experiments using real near infrared 
(NIR) cameras. Additionally, some experiments were per-
formed or augmented using rendered images of simulated 
NIR cameras. To distinguish between real and synthetic 
data, we explicitly denote the use of synthetic data in our 
experiments. Using a mixture of mainly real and some 
synthetic images allows us to evaluate our method from 
several viewpoints, which would not be possible with just 
a single data source. NIR cameras are often used in cock-
pit-like environments. In these scenarios it is normally 

possible to emit near-infrared light from a custom light 
source, resulting in NIR cameras not being dependent on 
external illumination. Our method is not limited to NIR 
images, as our 2D facial landmark extraction model is 
capable of handling color RGB images as well. To evalu-
ate the accuracy of the estimated camera poses, we need 
ground truth camera poses. For the synthetic data, we 
compute the ground truth camera poses from the scene 
graph of the render engine. For the real data, we use the 
Opti-Track Motive camera system [12]. According to the 
manufacturer, this camera system returns the ground truth 
camera pose with less than 0.2 mm error.

Our experiment setup consists of a stereo camera inside 
a cabin-like environment mimicking a car. Each experiment 
is set up with a front and a side camera. Refer to Fig. 3b for 
an illustration of the camera setup. Assuming the person sits 
neutrally straight and is looking forward, the front camera is 
placed roughly one meter in front of that person. The pose 
of the side camera varies between the experiments. For most 
experiments, the camera is positioned roughly 90 degrees to 
the right relative to the person. In some of the experiments, 
we test our approach with other camera positions as well. 
Using the estimated pose and the ground truth, we establish 
evaluation metrics that facilitate intuitive comparison and 
are designed to reflect the accuracy of our camera pose esti-
mation method. To this end, we evaluate the error of trans-
formation between two cameras within the camera network. 
In “Camera Pose Estimation” section, we describe how to 
insert new cameras into the camera network. We perform 
the camera pose estimation independently for each camera. 
Hence, there is no positive nor negative impact of adding 
more cameras. We split the transformation evaluation metric 
into its translational and rotational components.

Given a point in the shared coordinate system SCS, we 
transform the point pSCS into CCS

1
 to p

1
 and CCS

2
 to p

2
 

using corresponding ground truth camera pose data. Then 
we transform the point p

1
 using the estimated camera pose 

�
−1
1

 for camera 1 into SCS resulting in pSCS from 1
 . Analo-

gously, we transform p
2
 using the estimated camera pose 

�
−1
2

 for camera 2 into SCS resulting in pSCS from 2
 . If the esti-

mated camera poses match the ground truth camera poses 
exactly, pSCS from 1

= pSCS from 2
= pSCS holds, meaning that 

both points transform to the same position in the shared 
coordinate system SCS. Comparing the two transformed 
points pSCS from 1

 and pSCS from 2
 with each other allows us to 

measure the degree of inaccuracy introduced by the camera 
pose transformation. We then compare the mean Euclidean 
distance (Eq. 6) of the two points.

Similarly, for the rotation errors, given a rotation in the 
shared coordinate system SCS, we transform the rotation 

(6)L
2
(pSCS from 1

− pSCS from 2
)
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�SCS into CCS
1
 to �

1
 and CCS

2
 to �

2
 using ground truth cam-

era pose data. Then we transform the rotation �
1
 using the 

estimated camera pose �−1
1

 for camera 1 into SCS resulting in 
�SCS from 1

 . Analogously, we transform �
2
 using the estimated 

camera pose �−1
2

 for camera 2 into SCS resulting in �SCS from 2
 . 

As in the previous point transformation, if the estimated 
camera poses match the ground truth camera pose exactly, 
�SCS from 1

= �SCS from 2
= �SCS holds, meaning that the rota-

tions transform to the same rotation in the shared coordinate 
system SCS. Afterwards, we convert the rotation matrices 
into pitch, yaw and roll Euler angles in degrees, as they are 
intuitive to understand for humans. We then calculate the 
mean absolute circle difference of all Euler angles [56].

Our method is tailored for applications where quick 
and easy camera pose estimation without the need for a 
dedicated calibration object is more important than higher 
estimation accuracy. In these applications, the acceptable 
accuracy trade-off depends on the actual use case. For exam-
ple, for non-safety critical attention monitoring within car 
cockpits, we consider a mean Euler difference of below 15 
degrees and a mean distance of up to 20 cm to be acceptable.

2D Facial Landmark Detection

In this section, we explore the impact of various state-of-
the-art facial landmark detectors and compare them to our 
fine-tuned Stacked Hourglass [13] model. We chose vari-
ous pre-trained state-of-the-art 2D facial landmarks detector 
models, trained with different publicly available datasets. 
The models explored are HRNet v2 [43], MobileNet v2 [44], 
Stacked Hourglass [13], ResNet [45] and SCNet [46]. The 
datasets selected for training are 300W [57], AFLW [58], 
COCO-WholeBody-Face [59] and WFLW [60]. Some mod-
els use DarkPose [61] or Adaptive Wingloss [62]. We sam-
ple 1500 images from the core experiment validation dataset 

(refer to “Core Experiment” section) for this facial landmark 
detection evaluation. Table 2 shows the evaluated pre-trained 
models and compares them to our Stacked Hourglass [13] 
based fine-tuned model. We find that our Stacked Hourglass 
approach outperforms the pre-trained models in each of the 
applied evaluation metrics. Hence, we perform all further 
experiments using the fine-tuned model.

Core Experiment

The core experiment evaluates the overall performance of 
our camera pose estimation method by randomly sampling 
from every recording available of our participants. Addition-
ally, we also compare results of our method being applied 
on various synthetic 3D renderings. The synthetic data is 
described in more detail in “Experiment Setups” section. 
It consists of six 3D models of different humans turning 
their head by 90 degrees (see Fig. 7) captured from vari-
ous camera angles (refer to Fig. 5) within a simulated car 
cockpit. We call this experiment “Synthetic experiment”. 
In Table 3 we see the results of our camera pose estimation 
technique for the core- and synthetic experiment. The core 
experiment contains some challenging scenarios including 
six different people, occluded faces, grimaces and relatively 
extreme camera angles in relation to the recorded persons’ 
faces. Refer to Fig. 4 for an overview of the different modal-
ities contained within our dataset. Nonetheless, the mean 
distance is 18 cm and the mean Euler difference is 5.17◦ , 
which indicates that our approach for camera pose estima-
tion using human head pose estimation is of sufficient accu-
racy for selected use cases where ease of calibration out-
weighs estimation accuracy. For the synthetic experiment, 
we observe a translational error of 10 cm and a rotational 
error or 5.12◦ . The aggregation experiment in “Aggrega-
tion Experiment” section shows that there are circumstances 

Table 2  Comparison of 2D 
facial landmark detection 
models

Mean Mean Std. Std.
Model Dist. Euler Dist. Euler

[m] [deg] [m] [deg]

Stacked Hourglass + COCO WholeBody Face 0.37 13.90 0.48 12.13
HRNet v2 + WFLW + DarkPose 1.12 41.05 0.43 20.30
HRNet v2 + COCO WholeBody Face 0.37 13.93 0.43 12.33
HRNet v2 + WFLW + Adaptive Wingloss 1.13 40.71 0.46 20.55
HRNet v2 + WFLW 1.11 40.77 0.41 20.47
HRNet v2 + AFLW 0.75 23.42 1.91 26.50
HRNet v2 + 300W 0.68 21.46 1.88 25.02
HRNet v2 + COCO WholeBody Face + DarkPose 0.36 13.74 0.32 11.85
SCNet + COCO WholeBody Face 0.36 13.67 0.31 12.03
ResNet50 + COCO WholeBody Face 0.36 13.74 0.41 12.19
MobileNet v2 + COCO WholeBody Face 0.36 13.93 0.28 12.06
Our (Stacked Hourglass + COCO 14) 0.13 5.02 0.20 7.06
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in which our approach performs even more closely to the 
checkerboard-based approach in terms of accuracy. In sum-
mary, the observed accuracy is below the thresholds we 
consider acceptable (see “Experiment Setups” section). The 
impact of the previously mentioned challenging scenarios 
on the accuracy will be explored in more detail in the fol-
lowing sections.

Checkerboard Experiment

In this subsection, we compare our camera pose estima-
tion technique with the traditional method introduced by 
Zhang [8], which we implement using a rigid planar surface 
imprinted with a checkerboard pattern. To the best of our 
knowledge, there is no pre-existing method for camera pose 
estimation using a human head which could be compared 
to our approach in a meaningful way. Thus, we selected the 
following approach to establish a baseline for accuracy.

We asked each of the participants to assume a neutral 
sitting posture and turn their head from the neutral forward 

position to looking towards their right side. We call this 
motion “Neutral”. In each recorded frame, the person 
moves their head slightly towards the final head rotation. 
Afterwards, we capture a similar motion, but this time we 
replace the human head with a checkerboard which we rotate 
from facing forward to facing 90 degrees to the right. As the 
motion and camera setup are essentially the same, we can 
compare the accuracy of these two approaches meaningfully. 
We calculate the metrics described in “Experiment Setups” 
section for both the head-pose-based and the checkerboard-
based approach. In Table 4, we can see the mean distance 
of the checkerboard-based camera pose estimation, which 
is 2 cm, and the mean Euler angle, which is 0.01 degrees, 
as well as the mean distance and mean Euler angle for our 
approach, which are 10 cm and 2.81 degrees, respectively. 
When comparing the results, it is important to note that the 
checkerboard method requires a special calibration object to 
be visible to all cameras, whereas our approach takes advan-
tage of human faces, which are usually omnipresent in our 
envisioned applications.

Fig. 4  Overview of dataset used 
for evaluation

Table 3  Comparison of core experiment and experiment with syn-
thetic data

Mean Mean Std. Std.
Experiment Dist. Euler Dist. Euler

[m] [deg] [m] [deg]

Core experiment 0.18 5.17 0.97 9.96
Synthetic experiment 0.10 5.23 0.11 8.78

Table 4  Comparison of our camera pose estimation approach with 
the checkerboard pattern approach

Mean Mean Std. Std.
Experiment Dist. Euler Dist Euler

[m] [deg] [m] [deg]

Our approach (Neutral) 0.10 2.81 0.05 2.12
Checkerboard 0.02 0.17 0.01 0.04
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Aggregation Experiment

In this subsection, we explore ways to further improve the 
estimation accuracy by exploiting temporal coherence pre-
sent in video sequences by averaging over multiple frames. 
Our camera pose estimation framework has shown to esti-
mate poses with relatively low translational and rotational 
errors using the “Neutral” recordings from “Checkerboard 
Experiment” section. Next, we aggregate by calculating the 
mean translation and rotation (as described “Camera Pose 
Estimation” section) for the “Neutral” recordings. For the 
purpose of comparability, we do the same for the images of 
the core- and synthetic experiment (refer to ’Core Experi-
ment” section). In Table 5, we see considerable improve-
ments in scenarios with aggregated neutral head poses. 
The accuracy in such cases is approximately 3 cm mean 
Euclidean distance and 1.33◦ mean Euler angle difference. In 
each of the performed experiments, we observe an improve-
ment when comparing the aggregated results with their 
non-aggregated counterparts. For further comparison with 
a well-known baseline, we also provide results for camera 
pose estimation using a checkerboard pattern. We observe 
that the translational error difference is 1 cm and the rota-
tional error difference is slightly above 1 degree. In sum-
mary, we find that aggregation improves our pose estimation 
results consistently.

Impact of Relative Camera Poses

Camera pose estimation should be robust against a wide 
range of relative camera poses in relation to the calibra-
tion object. For this experiment, we created a dataset of 
several recordings with different relative rotations between 
the human face and the recording cameras. We placed three 
NIR cameras into the scene: one directly in the front, another 
approximately 45◦ to the right side and the last one approxi-
mately 90◦ to the right side of the recorded participants. 
To increase the variance of relative rotations between the 

cameras and the human heads within the dataset camera 
poses, we asked the test subjects to rotate their heads around 
the pitch, yaw and roll axes, separately. In addition, we use 
a synthetic dataset containing renderings of a car cockpit 
from different camera poses relative to the driver. Figure 5 
indicates the relative positions of the cameras within our 
synthetic dataset. The results in Table 6 show that the cam-
era pose estimation from different relative camera poses is 
relatively stable. The core experiment’s translational error 
is 18 cm, while the errors from different camera poses are 
11 cm and 12 cm, respectively. Similarly, we obtain a mean 
Euler angle difference of 5.17◦ for the core experiment and 
3.69◦ and 3.91◦ for the rotational error metrics of the differ-
ent camera poses. We observe similar results for the syn-
thetic case, apart from an outlier for the “Synthetic near 
relative camera pose” configuration. In this case, we found 
that the 2D facial landmarks detector returned inaccurate 2D 
locations, which might be caused by missing training data of 
faces in close proximity. In summary, our method has proven 
robust against a wide range of relative rotations, but small 

Table 5  Comparing the technique of camera pose aggregation by 
using a single frame for each estimation of the camera pose

Mean Mean Std. Std.
Experiment Dist. Euler Dist Euler

[m] [deg] [m] [deg]

Neutral, aggregation 0.03 1.33 0.01 0.44
Neutral, no aggregation 0.10 2.81 0.05 2.12
Core experiment, aggregation 0.11 4.24 0.11 4.05
Core experiment, no aggregation 0.18 5.17 0.97 9.96
Synthetic experiment, aggregation 0.08 3.32 0.06 2.83
Synthetic experiment, no aggregation 0.10 5.23 0.11 8.78
Checkerboard 0.02 0.17 0.01 0.04

Table 6  Estimation accuracy resulting from different relative camera 
poses. Synthetic camera poses correspond with the camera positions 
of Fig. 5: Camera 1 is used for the camera pose with label Side, cam-
era 2 for Far Side and camera 3 for Near 

Mean Mean Std. Std.
Experiment Dist. Euler Dist. Euler

[m] [deg] [m] [deg]

Relative camera pose 45◦ 0.11 3.69 0.12 5.21
Relative camera pose 90◦ 0.12 3.91 0.11 4.90
Synthetic Far Side relative camera pose 0.11 3.60 0.08 4.17
Synthetic Near relative camera pose 0.31 19.61 0.19 20.68
Synthetic Side relative camera pose 0.06 2.69 0.08 3.77
Core experiment 0.18 5.17 0.97 9.96
Synthetic experiment 0.10 5.23 0.11 8.78

Fig. 5  Visualization of the virtual camera positions for the synthetic 
camera poses experiments. Camera numbers are used for reference 
within Table 6



 SN Computer Science           (2023) 4:301   301  Page 10 of 15

SN Computer Science

distances between the camera and the observed human face 
may require special consideration.

Impact of Head Model Divergence

Our camera pose estimation approach relies on iterative 
Perspective-n-Point (PnP) [54]. Hence, our method assumes 
a static pre-defined head model, as described in “Camera 
Pose Estimation” section. Refer to Fig. 2 for a visualiza-
tion of the correspondence between the 2D facial landmarks 
and the 3D head model. In this subsection, we explore to 
what degree the static head model impacts the estimation 
accuracy and how different facial expressions, especially 
in the form of grimaces, affect the performance of camera 
pose estimation. We investigate the impact of the static pre-
defined head model by evaluating the performance using 
synthetically rendered 3D data. We can access the true 3D 
head model via the 3D mesh of the human we use for ren-
dering the scene. Hence, we can directly measure the impact 
of diverging 3D head models. In the synthetic experiments, 
we see improvements for the translational error of 1 cm, 
and 0.72 degrees for the rotational error, if we use the exact 
head model instead of the generic default head model. We 
consider the observed slightly negative impact of diverging 
head models an acceptable trade-off for our camera pose 
estimation technique.

Further, related to head model divergence, we compare 
recordings of grimaces with recordings where the partici-
pants show a neutral facial expression while turning their 
head 90 degrees to their side. Refer to Fig. 6 for a selection 
of facial expressions contained within the grimacing experi-
ment. Table 7 contains the evaluation results of this experi-
ment, and the estimation accuracy of several modalities 
relating to facial expressions are compared. We observe that 
facial expressions impact the mean Euler difference signifi-
cantly with a difference relative to the neutral baseline of 1.2 
degrees for the stationary case and a mean Euler angle differ-
ence of over 1.8 degrees for the non-stationary turning case. 
The translation is similar when comparing the baseline with 
the grimace recordings. For our approach, it seems to be 
more difficult to estimate the translation if participants make 
grimaces while also turning their heads. In such cases, we 
observe a translational error of 5 cm. Future research could 
elaborate on that observation and customize the assumed 

head model or use camera pose estimation techniques that 
do not rely on such a model. Nonetheless, we interpret these 
results as acceptable for the previously proposed use cases 
of our camera pose estimation method.

Impact of Face Occlusions

In this subsection, we evaluate how our camera pose estima-
tion method handles face occlusions. For this purpose, we 
created three validation datasets containing real NIR images. 
The first validation dataset of this experiment consists of 
recordings where the test subjects’ mouths are occluded by 
FFP2 masks. The second validation dataset contains record-
ings where the participants wear eye-occluding sunglasses. 
Finally, we perform several experiments where we deliber-
ately ignore the detection of certain facial regions, to iden-
tify the facial regions that are more significant for accurate 
camera pose estimation than others. In particular, we selec-
tively exclude the following facial regions: left and right 
ear, left and right eye, left and right side of the face, mouth 
and nose. The experiment contains recordings of all six par-
ticipants from three different camera angles (90◦ , 45◦ and 
0 ◦ ) relative to the test subject. Refer to Table 8 for detailed 
experiment results. Masks are a considerable challenge for 
our approach, as the mean distance increases to over 0.5 m 
and the mean Euler angle is also relatively high. Occlusions 
of the entire left or right side of the faces also affect the 
camera pose estimation negatively. Contrarily, occlusions 
of the eyes, ears, mouth and nose seem to have a relatively 
low impact on the estimation accuracy. These experiments 
indicate that our approach is stable against the majority of 

Fig. 6  Various face expressions of the grimacing experiment

Table 7  Comparison of head model divergence experiments

Mean Mean Std. Std.
Experiment Dist. Euler Dist. Euler

[m] [deg] [m] [deg]

Synthetic default head model 0.09 4.14 0.08 4.48
Synthetic exact head model 0.08 3.42 0.05 2.65
Stationary Grimacing 0.10 4.01 0.04 3.10
Grimacing and Turning 0.15 4.67 0.56 6.80
Baseline (Neutral) 0.10 2.81 0.05 2.12
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tested occlusion types but there is room for improvement 
regarding occlusion handling in certain cases.

Bias Towards Skin Color and Gender

Deep neural networks are known to have certain biases [63]. 
In this subsection, we explore the potential presence of bias 
towards skin color and gender. We compare the estimation 
accuracy of all recordings of participants that identify as 
female and male. Additionally, we perform the same analysis 
for the synthetic data. Figure 7 visualizes the 3D models we 
use for rendering the synthetic data. Within the real dataset, 
there is only a single type of skin color present. However, the 
synthetic validation dataset contains recordings of humans 
with different skin colors. We do not observe any significant 
bias towards gender or skin color in Table 9. When compar-
ing the Real female and Real male recordings, the differ-
ence in translational error is 1 cm, while the rotational error 
measured in mean Euler difference is 0.08 degrees. The skin 
color experiments Synthetic lighter skin color and Synthetic 
darker skin color do not demonstrate a noticeable bias. In 
this case, the translational error difference is 1 cm and the 

rotational error difference is approximately 0.5 degrees. For 
the synthetic cases Synthetic female and Synthetic male, we 
observe a more noticeable difference of 3 cm for the transla-
tional error and around 1 degree difference in rotation. These 
error differences are put into perspective by the respective 
standard deviations of up to 9 cm for the translational error 
and up to 4.66 degrees for the rotational error.

Variance Among Individual Participants

Another important factor we want to investigate is the vari-
ance of estimation accuracy across different people. We 
explore this question by analyzing the estimation results for 
each recorded participant. The setup was the same for all 
participants as in the other experiments. During the record-
ing, the participants were instructed to perform several 
actions: turning their heads, grimacing, wearing masks and 
wearing sunglasses. Table 10 shows that, in general, our 
method is relatively stable across different participants. The 
translational error ranges usually from 10 cm to 14 cm, the 
rotational error from 3.52◦ to 5.76◦ . However, participant 
3 and, to a certain degree, participant 6 seem to be outli-
ers. After analyzing their recordings, we conclude that this 
observation is most likely explained by their performed gri-
maces. The recordings show exceptionally pronounced facial 
expressions, which lead to a significant decrease in estima-
tion accuracy. Nevertheless, for almost all participants the 

Table 8  Comparison of the impact of several occlusion modalities

Mean Mean Std Std.
Occlusion Experiment Dist Euler Dist Euler

[m] [deg] [m] [deg]

Mask 0.52 11.85 2.58 21.86
Sun Glasses 0.14 4.61 0.21 7.12
Left Ear 0.16 5.60 0.18 7.94
Right Ear 0.19 6.16 0.23 7.03
Left Eye 0.15 5.32 0.21 7.24
Right Eye 0.15 5.34 0.21 8.08
Left Side 0.33 11.45 0.26 11.31
Right Side 0.26 8.07 0.29 9.68
Mouth 0.15 5.39 0.28 8.70
Nose 0.15 5.52 0.18 6.79
Core experiment 0.18 5.17 0.97 9.96

Fig. 7  Rendering of the six different 3D models we use for data generation within our synthetic data generation pipeline. We try to cover a broad 
range of different appearances of humans and their facial land marks with these models. (From [11])

Table 9  Comparison of potential bias towards gender or skin-color

Mean Mean Std Std.
Bias Experiment Dist Euler Dist Euler

[m] [deg] [m] [deg]

Real female 0.12 4.73 0.06 6.47
Real male 0.11 4.65 0.10 7.29
Synthetic female 0.10 4.49 0.07 4.18
Synthetic male 0.07 3.59 0.09 4.66
Synthetic lighter skin color 0.09 4.78 0.07 4.54
Synthetic darker skin color 0.10 4.26 0.08 4.67
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thresholds we defined in “Experiment Setups” section are 
not exceeded.

Qualitative Evaluation

In this subsection, we explore the accuracy of our camera 
pose estimation technique qualitatively. We visually selected 
two result sets from the core experiment outlined in “Core 
Experiment” section. One set contains examples of accu-
rately estimated camera poses and the other set contains 

inaccurate examples. We evaluate our method based on the 
visually perceived overlapping of the estimated and ground 
truth camera pose transformation. The more the 2D pro-
jected transformation axes visibly overlap the ground truth 
2D projected transformation axes, the better we consider the 
estimated pose to be. Figure 8 and Fig. 9 visualize the pose 
estimation results of cameras from 0 ◦ and 90◦ , respectively. 
We notice in Figs. 9a and 9b that even uncommon head rota-
tions can result in accurate camera pose estimations. This 
observation matches our quantitative results from “Impact 
of Relative Camera Poses” section, where we also did not 
notice any significant degradation of estimation accuracy as 
a consequence of different relative camera angles. Figure 9c 
shows that our camera pose estimation method handles face 
occlusions in certain situations relatively well. Contrarily, 
there are also situations where occlusions of the face can 
lead to inaccurate camera pose estimations. In Fig. 8a, the 
head pose estimation fails due to face occlusions. In Fig. 8b, 
we see how face masks may negatively impact camera pose 
estimation accuracy. These observations also match the 
insights of “Impact of Face Occlusions” section. In conclu-
sion, our camera pose estimation method has shown to pro-
vide qualitatively satisfactory results and the observations 
match with our quantitative results of previous sections.

Table 10  Comparison of our camera pose estimation method across 
different participants

Mean Mean Std Std.
Participant Experiment Dist Euler Dist Euler

[m] [deg] [m] [deg]

Participant 1 0.14 4.64 0.18 6.70
Participant 2 0.14 5.76 0.09 4.68
Participant 3 0.25 5.98 0.70 12.59
Participant 4 0.10 3.52 0.05 2.63
Participant 5 0.11 4.65 0.10 7.29
Participant 6 0.19 6.09 0.45 13.52

Fig. 8  Examples of inaccu-
rate camera pose estimations. 
XYZ-Axes located in front of 
the participants’ noses represent 
their estimated head pose. High-
lighted XYZ-axes correspond to 
the ground truth camera pose. 
Remaining XYZ-axes show the 
estimated camera pose
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Conclusion and Future Work

In our paper, we have established and evaluated the use-
fulness of a novel application of human head pose esti-
mation for single- and multi-camera pose estimation. We 
determine the accuracy of our calibration approach by 
performing a broad range of experiments on real multi-
camera recordings and synthetic renderings. We present 
the results of using various state-of-the-art 2D facial land-
mark detectors, and a comparison with a conventional 

checkerboard-based method. We determine the impact 
of aggregation over time, the robustness against different 
input parameters, such as varying relative camera posi-
tions, variations of head models, and face occlusions. 
We further explore potential biases and variance among 
people. Our analysis on real multi-camera data shows an 
average aggregated translational and rotational error of 
around 3 cm and less than 1.33 degrees, respectively. Our 
proposed approach is tailored to scenarios where reduced 
estimation accuracy in comparison to more traditional 

Fig. 9  Examples of accurate 
camera pose estimations. XYZ-
Axes located in front of the 
participants’ noses represent 
their estimated head pose. High-
lighted XYZ-axes correspond to 
the ground truth camera pose. 
Further XYZ-axes show the 
estimated camera pose
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approaches, is acceptable in favor of easy, natural and 
flexible handling of head-pose-based camera pose estima-
tion. Use cases where such a trade-off may be desirable 
include human analysis (e.g. attention monitoring) within 
the cabin of a vehicle, plane or train, where the passengers 
are the focus of the cameras. Other situations where our 
method is applicable include customer interest monitor-
ing in automated stores, robot attention tracking or rapid 
prototyping.

Subsequent research could generalize our method to 
also estimate camera intrinsics. The 2D facial landmarks 
and symmetries typically present in human faces can be 
potentially leveraged to estimate the camera intrinsics. 
Combining both the extrinsics from the camera pose 
estimation and the intrinsics would result in full cam-
era calibration from human faces. At the moment, our 
method estimates the head pose by detecting 2D facial 
landmarks. Future work might investigate solutions for 
settings in which the human face is significantly occluded 
due to more extreme viewing conditions or when no face is 
detectable. Our approach to head pose estimation aggrega-
tion over time might be further explored. To improve the 
handling of head pose estimation outliers, the camera pose 
estimation could be modified by weighting each head pose 
with the inverse of the mean projection error.
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