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Abstract

Humans employ gaze to coordinate their actions in joint attention scenarios. Collabo-
rative service robots must leverage this communicative modality to fluently interact
with humans during joint action tasks. They must signal their own attentional focus,
thus communicating their intentions and goals, and process social cues relating to the
collaborator’s attentional focus and goal.

This opens up a multifaceted problem space and psychological research has revealed
several distinct constituting components of joint attention. Various behavioral and
cognitive aspects are categorized on different temporal resolution levels, from short-term
behaviors such as gaze aversion, up to long-term cognitive capabilities such as Theory of
Mind. For these phenomena, different scientific and technological research approaches
are applicable. The respective findings must be integrated to arrive at a working
implementation on a robotic system.

This thesis presents findings for multiple aspects of joint attention in human-robot
interaction. It discusses their interrelation with respect to temporal resolution, concep-
tual challenges, mappings between human and technological cognitive capabilities, and
how to leverage technological approaches to emulate human joint attention capabilities.

Empirical human-robot interaction research is performed to determine whether devi-
ations from human-inspired gaze parameters are viable for robots without deteriorating
the interaction with a human. A subsequent review of psychological research informs
the design of a stochastic gaze controller derived from human-human interaction data
during successful joint action tasks.

Through a novel algorithmic approach, plan recognition from video data in manipulation-
heavy task domains is made possible while only relying on standard robotic systems
such as object detection and classical planning. A virtual reality simulator and dataset
provide samples of complex, long time-horizon object manipulation tasks with detailed
annotation, including multiple image sequences, object poses, and logical predicates.

Our novel algorithmic approach to an expanded setting of the assistive multi-armed
bandit problem improves human-robot team performance when the human acts according
to an empirically documented systematic irrational bias.

We discuss the interrelation of the different contributions and propose methods for
their integration. Throughout the thesis, we show how ongoing concerns about the
robotic research setting, the use-case scenario cannot be disregarded. Design assumptions
and interaction aspects outside of the given research setting must be critically evaluated
in order to emulate the breadth and depth of human social interactions.
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Kurzzusammenfassung

Menschen benutzen ihr Blickverhalten, um ihre Handlungen in Joint Attention Szenarien
zu koordinieren. Kollaborative Serviceroboter sollen diese kommunikative Modalität
ebenfalls nutzen, um mit Menschen während gemeinsamer Aufgaben flüssig zu intera-
gieren. Sie müssen ihren eigenen Aufmerksamkeitsfokus signalisieren um ihre Absichten
und Ziele zu kommunizieren. Gleichermaßen müssen Roboter auch soziale Hinweise der
interagierenden Person wahrnehmen um ihren Aufmerksamkeitsfokus und ihre Ziele
daraus abzuleiten.

Dies eröffnet ein vielschichtiges Problemfeld, und die psychologische Forschung hat
mehrere Komponenten der Joint Attention beschrieben. Verschiedene verhaltensbezo-
gene und kognitive Aspekte werden auf unterschiedlichen zeitlichen Auflösungsebenen
kategorisiert, von kurzfristigen Verhaltensweisen wie Blickabwendung bis hin zu lang-
fristigen kognitiven Fähigkeiten wie Theory of Mind. Für diese Phänomene sind
unterschiedliche wissenschaftliche und technologische Forschungsansätze anwendbar.
Die jeweiligen Erkenntnisse müssen integriert werden, um zu einer funktionierenden
Roboterimplementierung zu gelangen.

In dieser Arbeit werden Erkenntnisse zu verschiedenen Aspekten der Joint Attention in
der Mensch-Roboter-Interaktion vorgestellt. Es werden deren Zusammenhänge erörtert
in Bezug auf die zeitliche Auflösung, konzeptionelle Herausforderungen, Abbildungen
zwischenmenschlichen und technologischen kognitiven Fähigkeiten sowie die Nutzung
technologischer Ansätze zur Nachahmung menschlicher Joint Attention-Fähigkeiten.

Wir führen empirische Forschung zur Mensch-Roboter-Interaktion durch um fest-
zustellen, ob Abweichungen von den vom Menschen inspirierten Blickparametern für
Roboter anwendbar sind, ohne die Interaktion mit dem Menschen zu beeinträchtigen.
Eine anschließende Analyse der psychologischen Forschung dient als Grundlage für
die Entwicklung einer stochastischen Blicksteuerung, die aus Interaktionen zwischen
Menschen während gemeinsamer Aktionen abgeleitet wurde.

Durch einen neuartigen algorithmischen Ansatz wird die Planerkennung aus Vide-
odaten in manipulationslastigen Aufgabenbereichen ermöglicht, wobei lediglich auf
Standard-Robotersysteme wie Objekterkennung und klassische Planung zurückgegriffen
wird. Ein Virtual-Reality-Simulator und ein Datensatz liefern Daten für komplexe
Objektmanipulationsaufgaben mit langem Zeithorizont und detaillierter Annotation,
einschließlich mehrerer Bildsequenzen, Objektposen und logischer Prädikate.

Unser neuartiger algorithmischer Ansatz für eine erweiterte Variante des assistiven
mehrarmigen Banditen verbessert die Leistung des Mensch-Roboter-Teams, wenn der
Mensch gemäß einer systematischen irrationalen Verzerrung aus der Literatur handelt.
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Wir erörtern die Wechselbeziehung zwischen den verschiedenen Beiträgen und schlagen
Methoden zu deren Integration vor. In dieser Arbeit wird aufgezeigt, dass Bedenken
bezüglich des robotischen Anwendungsszenarios in wissenschaftlichen Studien und
im echten Einsatz nicht außer Acht gelassen werden dürfen. Die Entwurfsannahmen
und Interaktionsaspekte abseits der Forschungsfrage müssen ebenso kritisch betrachtet
werden, um die Breite und Tiefe menschlicher sozialer Interaktionen zu emulieren.
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Chapter 1

Introduction

“The simple act of paying attention
can take you a long way.”

Keanu Reeves

The field of social robotics is growing quickly [1], [2], and one of its core visions
is to equip artificial physical agents with the capability of interacting naturally with
humans, their surrounding, and among themselves [3]. In deliberate, intentional human
behavior, attention to relevant aspects of the environment is a ubiquitous phenomenon.
Psychological research has yielded several different theoretical models of attention, e.g.,
the spotlight model [4], the bottleneck model [5], the filter theory [6], and many more.

When two persons decide to work together on a physical task, they need to be able
to coordinate their actions [7]. Coordination is necessary for both independent and
joint actions. On the one hand, independent actions can be performed by a single actor,
but often there must be a convention or negotiation about who performs which action.
Joint actions, on the other hand, involve both actors. Throughout the whole action,
they must coordinate their individual efforts. Most coordination efforts will include a
third external locus of attention, e.g., the object used to perform a specific independent
action or the object used throughout a joint action.

One necessary cognitive mechanism for such interactions is called joint attention [8],
[9]. Successful joint attention leads to correct belief updates between the actors (e.g.,
negotiating who does what) and enables joint actions. Joint attention depends on
the fluent interplay of many conceptual components. Actors must be able to initiate
(IJA), respond to (RJA), and ensure joint attention (EJA) [10], [11]. Joint attention
is embedded in a hierarchy of different levels of cognitive complexity. This hierarchy
starts with the recognition of eyes, faces, gaze direction, and motion. It culminates in
the cognitive ability to ascribe beliefs and intentions to other actors, formulated in the
Theory of Mind (ToM) [12].

Another important aspect of joint attention is the communication modality. Joint
attention is not only achieved through speech but also (both referential and mutual)
gaze and gestures. The necessity to constantly coordinate joint attention in short
intervals makes verbal communication relatively intrusive and cumbersome. In [13], the

1



2 1 Introduction

Figure 1.1: From [13]: Overview of mechanisms leading to joint action in a cognitive
robot.

authors argue that fluent collaboration channels are non-verbal (e.g., gaze) and implicit
(e.g., manipulation gestures that an observer interprets). Similar to structural models
of attention in psychological research [14], there are structural models of joint action in
human-robot interaction (HRI) [13] (Figure 1.1).

The ubiquity of attention processes in everyday human life necessitates the develop-
ment of joint attention capabilities in social robots. This thesis focuses specifically on
joint attention. We argue that in order to be perceived as social actors with agency,
social service robots in domestic settings must be able to engage with humans by
signaling their attention and to understand human attentional cues.

So far, commercially available social robots have failed to provide a sustainable
long-term benefit to their owners and were shortly after purchase reduced to party
tricks and expensive toys [15].1 Arguably, one factor of the failure of these robots is the
broken promise of social interaction with humans. Service robots that fulfill a practical
function in a household, like cleaning the floor, struggle less with human acceptance
than social robots [16].

However, as service robots fulfill more and more complex household tasks, the HRI
aspect will also be more pronounced. Universal household service robots cannot act
purely with a task-based rationale (e.g., a floor cleaning robot like Roomba2), but
must be able to fluently interact with humans, e.g., in a table setting scenario. This is
only possible when robots possess a functional equivalent of the human joint attention
cognitive mechanism. Although there has been a vast array of fruitful work, robotic
joint attention in HRI scenarios remains a milestone to be conquererd in the robotic
research community.

1.1 Problem Statement
First, since joint attention, and attention processes in general, are fundamental to all
conscious acting, we want to thematically distance the work presented in this thesis from
artificial general intelligence (AGI) and general cognitive frameworks (e.g., SOAR [17]
or ACT-R [18]) at this point. In the approaches above, the hope is that complex
processes like joint attention are emergent. However, this thesis focuses on more mature
approaches and their integrability on a robotic platform.

Second, we found that a useful perspective on the multifaceted problem of joint
1https://spectrum.ieee.org/anki-jibo-and-kuri-what-we-can-learn-from-social-robotics-failures
2https://www.irobot.com/en_US/roomba.html



1.1 Problem Statement 3

Figure 1.2: The four time resolutions of joint attention HRI scenarios in this thesis. Top
left: Gaze aversion in the time resolution of up to ten seconds. Top right:
Gaze sequence planning in the time resolution of up to one minute. Bottom
left: Plan recognition in the time resolution of up to ten minutes. Bottom
right: Preferences and biases in the time resolution ten minutes and above.

Figure 1.3: Three anthropomorphic service robots capable of object manipulation. Left:
Toyota Human Support Robot (HSR). Middle: Baxter by rethink robotics.
Right: PR2 by WillowGarage.

attention in social robotics is to regard the contributing mechanisms with respect to
their time horizon. This abstraction allows the different aspects of attention to be
broadly organized on a time resolution scale (Figure 1.2). The time resolution is high
for the faster, low-level processes and concerns short time spans. In our case, this
includes single atomic actions or observational events in the different communication
modalities, like single gaze actions and utterances. The time resolution is low for the
slower, high-level processes, which have a long duration. In our case, this includes
intentions, beliefs, and preferences that take some time to form and change through
repeated interactions.

Our robot scenario is a domestic service robot that interacts with humans during
one of their intended tasks, such as setting the table, cleaning a space, and preparing
food. This is in accordance with a commonly shared vision in the robotic research
community [19], where robots are cooperating with us in our daily (personal) lives.

Many service robots possess some degree of anthropomorphism, e.g., Toyota HSR,
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rethink robotics Baxter, or Willow Garage PR2, through the fact that most optical
sensors are mounted in a head-like camera mount on top of the robot torso (Figure 1.3).
In line with [20], we argue that such robots should have the same limitations as a
human if the embodiment is humanoid in order not to betray the trust of the human
collaborator. E.g., if a humanoid robot moves its head and eyes in a specific direction,
the implication for lay people is that the robot pays attention to something in the
general direction of the gaze. However, a robot could have more cameras mounted in
its torso or back of the head to monitor its whole surrounding. This would betray the
expectations of the human collaborator if they are not yet familiar with such a robot.

Future domestic service robots are intended for long-term deployment, which leads
to additional challenges, such as identifying the start and end of relevant tasks that
humans perform in the surroundings of the robot in order to offer help for some tasks
conveniently. Another opportunity in long-term deployment is the estimation of the
preferences of the co-inhabiting humans in order to have helpful priors when determining
how the robot will offer help. In contrast to industrial settings, households are a more
dynamic, unstructured environment where robots must be able to adapt to new task
instances, settings, and people. We believe that the capability of robots to follow and
respect social norms during interactions will improve their efficiency and acceptance
co-inhabiting humans.

1.2 Research Questions
One of the visions in the field of robotics is the development of a service robot that
interacts naturally and efficiently with humans during a task in an unstructured social
environment [19]. One essential ability of such a robot is to react and coordinate with
other agents, such as humans, through a joint attention mechanism. In the attempt
to realize this vision, as argued above, there are many possible approaches. In this
thesis, we examine specifically which challenges arise when gaze-related joint attention
is examined at different levels of temporal resolution. Therefore, the following research
questions arise for this thesis:

• RQ 1: Which HRI challenges can be identified by examining gaze-related joint
attention through the lens of different temporal resolutions?

• RQ 2: What are the relevant robotic capabilities for gaze-related joint attention
in the context of different temporal resolutions in comparison to humans?

• RQ 3: Which existing technologies and approaches can be extended, modified,
and used to improve gaze-related joint attention in different temporal resolutions?

We pose additional research questions in Chapter 2 about gaze behavior (RQ 4 a-c),
other interaction behavior (RQ 5 a, b), and attitudes towards a robot (RQ 6 a-c) in
conversational settings, and in Chapter 6 about whether a human-robot team can
improve the performance of a biased human in scenarios when risky behavior is justified
(RQ 7) and when risk-averse behavior is justified (RQ 8). These research questions are
specific to the chapter and answered therein.
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1.3 Contributions and Outline
We present in the following chapters our contributions of joint attention-enabling
mechanisms in different time resolutions in HRI settings. The highest time resolution
relevant for HRI in the context of joint attention in this thesis lies in the range of
seconds. This includes single utterances, glances, and atomic manipulation actions,
among others. The lowest time resolution for joint attention in HRI settings is as long
as hours, days, or more generally a time frame in which beliefs about another actor
can change throughout repeated interactions. The first and second time resolutions are
meant to depict parts of an interaction, i.e., the specified time frame occurs multiple
times during a task. The third time resolution is meant to represent the whole task
duration. The last time resolution regards repeated interactions. Our contributions are
thus grouped into four discrete time resolutions (Figure 1.2)

• up to 10 seconds: single gaze actions,

• up to 60 seconds: short sequences of gaze actions,

• up to 10 minutes: recognition of intentions and goals,

• 10 minutes and above: identification of preferences and biases.

This grouping serves as a structure for this thesis and is chosen with regard to
the duration of different and diverse cognitive and physical actions and processes
during a joint attention process. The fast processes in the high time resolution include
phenomenons such as gaze following, visual object search, whereas slow processes include
the formation and change of beliefs and attitudes.

The key point of this ordering is that the level of abstraction in joint attention
scenarios between these time resolutions varies. Thus, the individual research questions,
methods, and insights of the following chapters will apply to different time frames.

Krämer et al. [21] argue that the width and depth of human coordination capabilities
in social contexts will be out of reach for the foreseeable future for technological
systems and propose to restrict problem domains, simplify problems, and manage user
expectations, among other strategies. We apply this recommendation by contextualizing
different research problems in the relevant time resolution.

1.3.1 Gaze Aversion
In the time resolution of one to ten seconds (Figure 1.2, top left), single glances and
head movements are suitable units of study. Similar to human-human interaction, gaze
is an essential modality in conversational human-robot interaction settings [22]. Gaze
aversion serves social purposes, e.g., intimacy regulation and turn yielding. Thus, one of
the resulting descriptive parameters of an interaction is the so-called gaze aversion ratio.
It describes the average amount of time spent averting the gaze from the interaction
partner during an interaction.

Previously, human-inspired gaze parameters have been used to implement gaze behav-
ior for humanoid robots in conversational settings and improve the user experience [23].
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Other robotic gaze implementations disregard social aspects of gaze behavior and pursue
a technical goal, e.g., face tracking [24]. However, it is unclear how deviating from
human-inspired gaze parameters affects the user experience.

In Chapter 2, we report the results of an empirical HRI study, where eye-tracking,
interaction duration, and self-reported attitudinal measures were used to study the
impact of non-human inspired gaze timings on the user experience of the participants
in a conversational setting. We show the results for systematically varying the gaze
aversion ratio of a humanoid robot over a broad parameter range from almost always
gazing at the human conversation partner to almost always averting the gaze.

1.3.2 Gaze Sequences

In the time resolution of about one minute (Figure 1.2, top right), the sequence of
gaze targets in a joint action HRI scenario is a complex phenomenon and contains
information about the actors’ beliefs and intentions [25]. Gaze has more than one
function in such a context. First, a humanoid robot uses the gaze to collect sensory
data concerning the state of the task at hand, e.g., monitoring the state of blocks on a
table during a block stacking task or the tabletop when setting the table. Second, a
humanoid robot can use the gaze for social interaction, including mutual and referential
gaze at objects.

We imagine that service robots must collaborate with humans in physical object
manipulation tasks to assist in everyday scenarios. This collaboration requires joint
attention to smoothly accomplish a shared goal smoothly. In Chapter 3, we discuss the
human gaze in physical tasks and its underlying cognitive mechanisms. We present a
novel probabilistic robotic gaze controller in object-centered collaborative physical tasks
that allows a robot to signal its current belief state through gaze behavior for a given
goal and its inclusion in a well-known joint action human-robot interaction benchmark.

1.3.3 Intentions and Goals - Plan Recognition

In the time resolution of several minutes (Figure 1.2, bottom left), complex tasks can
be performed. In our case, this includes assembly tasks, or domestic tasks, such as
food preparation. In this time horizon, the goals and intentions of actors are adequate
units of study. In Chapter 3, we establish how a robot signals its current belief state
through gaze behavior, but only if it has decided on the current goal for collaboration.
In Chapter 4, we apply the same limitations, namely that no explicit action recognition,
but only object detection is available, and we derive an algorithm that allows an observer
to estimate an actor’s current goal in a given task domain and goal set.

Plan recognition as planning is an approach that uses domain knowledge and domain-
independent solvers to estimate the most likely goal in a goal set given an observation
trace of atomic actions [26]. This trace is typically generated by an activity recognition
procedure to determine the atomic actions within the observation trace. We propose a
method that uses no explicit activity recognition but instead instantiates actions by
comparing properties of interacting objects to static preconditions in planning operators.
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1.3.4 Intentions and Goals - VR Dataset
In the previous chapter, [27] provided annotated samples for our plan recognition
algorithm. However, their detailed annotation process was only applied to a few samples
of a larger existing dataset since detailed human annotation is highly time-consuming.

To alleviate this problem, we present the Virtual Annotated Cooking Environment
(VACE), a new open-source virtual reality dataset (https://sites.google.com/view/
vacedataset, doi:10.48436/r5d7q-bdn48, doi:10.48436/9y2x1-q4n71) and simulator
(https://github.com/michaelkoller/vacesimulator) for object interaction tasks
in a rich kitchen environment in Chapter 5. We use the Unity-based VR simulator to
create thoroughly annotated video sequences of a virtual human avatar performing food
preparation activities.

1.3.5 Preferences and Biases
In the previous two chapters, our contributions aim at improving the capability of
estimating an observed actor’s current goal in a given domain. However, plan recognition
over a given goal set incorporates a prior distribution over the goal set [26]. This
distribution can be uniform if no information is available or shaped to depict the base
preferences of an actor more accurately, e.g., learned through repeated prior observation
of an actor. These repeated interactions are best understood in the time resolution of
ten minutes and above, possibly days and months. In this time resolution (Figure 1.2,
bottom right), multiple completed tasks are the adequate unit of study with a focus on
the goals which were chosen within the task. As an example of such repeated tasks,
one can imagine that the robot observes a human multiple times doing a specific task
and noting the task outcome, e.g., which dish was prepared in the kitchen or how the
table was specifically set up.

In Chapter 6, we study the assistive multi-armed bandit problem [28]. It formalizes
an autonomous system that observes and intercepts the repeated actions of a human,
estimates the true utility of the different actions, and potentially chooses a different
action than the human to improve the overall return. This setting models team situations
between a human and an autonomous system like a domestic service robot. Previous
work deals with human policies in human-robot teams that are (noisily) rational or
in some way communicative about the rewards. However, empirically shown human
biases such as the risk-aversion described in the Cumulative Prospect Theory [29] shifts
the perceived action utilities so that previous methods will only learn to repeat the
bias. In this chapter, we expand the assistive multi-armed bandit setting, and derive an
algorithmic approach to improve the team performance for challenging human policies.

https://sites.google.com/view/vacedataset
https://sites.google.com/view/vacedataset
https://github.com/michaelkoller/vacesimulator
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This thesis is structured in the following way. The next five chapters describe our
contributions in the order presented in the outline above. In the discussion, we answer
our overarching research questions and discuss and integrate the findings in the context
of the thesis. We conclude this thesis with a summary, limitations, and future work.



Chapter 2

Gaze Aversion

In HRI settings, such as visual joint attention tasks or human-robot conversations, both
robotic and human gaze guide the attention of the interaction partner, influence the
attitude towards them, and provide and shape the rhythm of the interaction. Therefore,
how engineers integrate robotic gaze into HRI settings is an impactful design decision.

Successful joint attention depends on all involved actors’ capability to signal their
own and detect the other’s locus of attention. Signaling and detecting occur in a loop
throughout the interaction, and one iteration of this loop usually lasts a few seconds [30]
(Figure 2.1). Thus, much time in a joint attention task is spent gazing at the other actor
to determine their current locus of attention, as well as designing one’s gaze behavior
in a way that is readable to the other. Humans exceed in this task to such a degree
that an observer can gain relevant information even from the natural task-related gaze
of the other [31].

Figure 2.1: In the conversational HRI setting, in the time resolution of up to ten seconds,
robotic gaze aversion has an effect on the human interaction partner.

Additionally, humans actively modify their gaze behavior as a signal to a collaborator,
so it carries enough task-related information, e.g., referentially gazing at the next
task-related object until the other actor realizes this is an important object. The
robotic task-related gaze in current HRI scenarios is often designed to achieve the
given task goals. In joint action tabletop scenarios involving a humanoid service robot
and a human, the robot’s gaze is usually statically directed at the task space, i.e.,
the table with all relevant objects [32]. This robot behavior maximizes the image
processing capabilities of the tested system but neglects the gaze-related joint attention
communication between the two actors. Neither does the robot react to the human

9
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gaze nor does it signal any intentions through its gaze. 1

On the one hand, using the robot gaze to maximize the image processing of the joint
action task and, on the other hand, using the robot gaze to signal and detect joint
attention are conflicting goals. They can be reconciled by improving either aspect on a
technological basis or finding the right balance between the time spent gazing at the
task space and the other actor. However, if these processes are sufficiently fast, the
underlying question of how to split the gaze between targets for an optimal human
interaction experience will remain relevant.

Furthermore, the right gaze timing that feels comfortable to the human action
partner and the optimal robot gaze timings could differ from usual human-inspired
gaze timings [22]. Also, human-inspired gaze timings can not be transferred precisely to
humanoid robots since their embodiments have different constraints than human bodies.
For example, there might be too few degrees of freedom and motor restrictions. However,
even if currently available robots might not succeed in imitating human movement,
this might also not be necessary in the first place since humans can also interpret and
feel comfortable with non-human-inspired motions [34]. The optimal gaze parameter
settings for a humanoid robot could be close to human parameters, but not necessarily.

Previous work has yet to examine this balance between social signaling and task-
specific gaze. Robot designers will profit from knowing how much freedom they have in
the design of an interaction when they need to balance the face-directed or task-directed
gaze. To focus on the social aspect of that balance, we reformulate the research questions
in the context of social conversational settings, i.e., settings where there is no joint
action task. In such a setting, gazing away from the interaction partner has different
meanings, e.g., inattentiveness or focus on something in the surroundings. Even for this
setting, it still needs to be determined whether human-inspired gaze timings are the
best choice for humanoid robots.

Previous work often compares one well-designed gaze behavior against one inten-
tionally poorly designed one or a neutral one. This method is valid to arrive at a
high-performing gaze behavior that results in high human comfort and other trust-
related measures [22, Section 5] (e.g., [23]).

However, in these previous studies, the high-performing gaze behavior is usually
modeled as closely as possible to the previously determined human gaze parameters. This
means that there is a knowledge gap: How far can the gaze behavior of a humanoid robot
diverge from human-inspired gaze parameters and still have an acceptable performance?
This question must be posed for all gaze parameters. In the context of the second-to-
second joint attention interactions, the gaze aversion ratio is an important parameter.

Gaze behavior is specified by low-level parameters, such as animation curves of head
and eye movements, specific gaze targets or directions, and frequency and duration of
fixations. Similarly, gaze is dependent on the current context, such as the interaction
partner [35]. Previous works report a relationship between one high-level gaze behavior

1A common way of executing robotic grasping is to apply the following steps sequentially: Process
sensor data, plan grasp trajectory, then perform grasp, and finally check if the grasp attempt was
successful. Sensor input, in this case, is often only used in the first processing step. This operational
schema would allow the robotic head to be used for signaling purposes when the sensor input is not
needed. However, this approach is neither very robust (cfg. active vision [33]) nor human-like.
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parameter, namely the gaze aversion ratio (GAR), and the perceived user experience
(UX) [36]. A positive UX is central for accepting social robots into our everyday
lives [37]. In current studies with social humanoid robots such as Pepper2, the GAR
for a positive UX is often determined through a human-inspired (e.g., [23]) approach:
Gaze timings in Human-Human Interaction (HHI) are recorded and replicated as best
as possible in robotic systems.

We consider GAR a central parameter in conversational HRI settings since it is a
good representation of the overall gaze behavior of a robot. Even if the robot behavior
designer does not explicitly model the behavior around a chosen GAR, the GAR of a
behavior can always be computed. Gaze aversion is also a social interaction parameter
for which a broad body of HRI work exists [22]. A common approach is to create
a human-inspired gaze behavior. Thus, deviating from such human-inspired gaze
parameters produces relevant complementary findings to the human-inspired approach.

Additionally, deviating from human gaze behavior is necessary if the robotic gaze has
specific additional goals and limitations. This includes movement restrictions imposed
by the robot embodiment or sensor limitations that impose minimum observation times
for detecting certain objects [24] if the robot’s gaze coincides with the camera view. This
problem is relevant if design principles of honest anthropomorphism are followed, e.g.,
that the camera is installed in the head of the robot in its assumed gaze direction [20].
This ethical consideration is reinforced by practical limitations of purely animated
robotic eye movement. In [38] the authors report that humans are less accurate in
interpreting the gaze direction through eye movement of animated robotic faces in
contrast to real human faces.

The effects of deviating from such HHI-inspired GAR have not yet been systematically
studied, and there are unexplored assumptions: (1) Is the human-inspired parameter
setting optimal for a specific robot embodiment and scenario? Other parameter settings
might be equally or more appropriate for a specific robot embodiment, and these will
never be identified when adhering to human-inspired parameters as closely as possible.
(2) Assuming the HHI parameter setting is optimal, how much does a deviation from
that optimum degrade the UX? Insights to these questions benefit robot designers who
need to balance social and technical aspects of robotic gaze behavior.

In this chapter, we explore a broad range of values for the robotic GAR for the
Pepper robot and whether there are systematic effects on the different dependent
interaction measures. We chose this parameter because it is a high-level gaze behavior
descriptor and can be derived for every robotic social gaze behavior. Thus, we argue
that the findings of this chapter are relevant to many different experimental settings.
There are different implications for future robot-centered and human-centered research,
depending on the outcome: If there is indeed only one high-performing setting that
can be interpreted as “close to the human behavior”, it might be reasonable to only
inspect settings close to this behavior in the future. Otherwise, if we observe several
high-performing settings or negligible differences, robot designers will have more freedom
in their choices. For technology-focused approaches, if there is knowledge about more
lenient acceptable gaze timings, it is easier for robot designers to approach the range of

2https://www.softbankrobotics.com/emea/en/pepper
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acceptable parameters in their implementation.
We created an experimental design to determine the GAR that enables a positive

UX without being derived from HHI. As measures for UX, we chose feeling of being
attended, feeling of comfort within the interaction and perceived interaction capabilities
of the robot [39]. Furthermore, we recorded the gaze behavior of the participants as
an implicit measure of UX since human gaze behavior (including gaze aversion [40])
is closely linked to affect and emotion. We additionally measure other interaction
parameters, namely the interaction duration and word count uttered by the human
participants, as these variables have been linked to affective, emotional, and attentional
states [41]. We found that the robot gaze behavior shapes human behavior. Broadly,
humans mimicked the gaze aversion ratio of the robot but did not do so through mere
gaze following. However, we did not find that different gaze aversion parameter settings
resulted in significant differences in self-reported attitudes toward the robot. This
means that humans - at least consciously - did not find any interaction scenarios more
or less comfortable than the other. This result allows robot designers to consider the
balance between task-related and social gaze for joint attention more freely than before
in the second-to-second time scale of a social interaction.

In this chapter we present the following contributions:

1. We introduce an experimental design to vary one parameter of robot behavior,
namely the GAR, in a wide range of possible values for a specific anthropomorphic
robot, namely Pepper, without assuming that human behavior is optimal.

2. We implement a minimal-animacy robot behavior that isolates the effect of the
mere ratio of gazing at the human conversation partner vs. averting the gaze to
the side.

3. We conducted a user study (n = 101) in which we recorded, evaluated, and
interpreted a rich dataset (doi:10.48436/frswc-4dn44) composed of gaze-tracking
records over the whole duration of the interaction, other behavioral measures,
such as spoken word count and interaction duration, and self-reported attitudes
toward a social robot.

4. We discuss guidelines for implementing robot behavior that adheres less strictly
to human-derived parameters.

The remainder of this chapter is organized as follows: Related work about gaze and
eye-tracking in previous HRI experiments is presented in Chapter 2.1. In Chapter 2.2,
the research questions are posed, followed by the used methods in Chapter 2.3. Next,
results are presented in Chapter 2.4 and discussed and transferred into guidelines in
Chapter 2.5. We finish with a conclusion in Chapter 2.6. This chapter’s content is
based on previously published work in [42]–[44].

2.1 Related Work
In this chapter, we first present related work in both human and robotic gaze behavior
research. We review different forms of social gaze and why it is a crucial nonverbal social
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modality for humans. Then we review how social gaze behavior has been implemented
in previous HRI studies with different experimental designs. Next, we review relevant
user studies incorporating eye-tracking devices and different ways of extracting empirical
findings from eye gaze data. Human eye gaze reveals latent variables such as emotional
and cognitive attributions towards the robot. These measures have been used in HHI,
but also in HRI studies.

2.1.1 Robotic and Human Gaze Behavior in HRI

The GAR is a high-level descriptor of gaze, however, gaze aversion can occur in different
circumstances with varying goals: In [45], gaze as a social cue is discussed as an
evolutionary phenomenon that allows humans to interpret complex social scenarios in
the following taxonomy: (1) Mutual gaze describes a setting, where two interaction
partners are looking at each others’ faces. (2) Averted gaze occurs when one partner
looks away from the other. (3) Gaze following occurs when one partner notices the
averted gaze of the other and then follows their line of sight to a point in space. (4) Joint
attention is similar to gaze following, except that the person averting the gaze has a
specific object as gaze target, and the other person also attends to that object. (5) Shared
attention is a bidirectional process, where both partners simultaneously perform a mix
of mutual gaze and joint attention on the same object. Thus, both know that the other
is looking at the target object. (6) Theroy of Mind (ToM) uses higher-order cognitive
strategies and performs a mental state attribution to the interaction partner. Thus
one partner can determine that the other intends to interact with an object or react
to a stimulus because they intend to achieve a goal by doing so or have a particular
belief about it that leads to a specific action. This classification does not separate gaze
aversion into a separate category. Gaze aversion can occur in the averted gaze, but
also gaze following, joint attention, and shared attention. However, the GAR is still an
objective, condensed descriptor of gaze behavior.

Like above, the GAR can also differ in the context of its social function and occur
through different gaze acts: Five functions of social gaze and six types of gaze acts have
been identified [46]. The five functions are establishing social agency (reinforce presence
and aliveness), communicating social attention (show interest in human), regulating the
interaction process (manage participation and turn taking) , manifesting interaction
content (looking at object of interest), and projecting mental state (express emotions and
intentions). The six gaze acts fixation (at target object or person), short glance, gaze
aversion (away from a person), concurrence (repetitive horizontal or vertical movement
to interrupt fixations), confusion (signified by consecutive rapid gaze shifts back and
forth), and scan (several short glances to random points in space) have been identified.

Specifically for conversational settings, gaze aversion has additional functions [23]:
floor management, intimacy regulation, and indication of cognitive effort. Floor man-
agement gaze behavior consists of gaze aversions during speech pauses to indicate
that the conversational floor is being held and an interruption of the speaker is not
desired. Intimacy regulation between two conversation partners is achieved by different
degrees of gaze aversion, depending on the relationship of the conversation partners,
the conversation topic, and scenario properties like the physical distance of the two
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speakers. Cognitive effort can lead to more gaze aversions of the speaker, as they can
better focus on the planning and delivery of the following utterances.

We summarize that gaze aversion behavior is highly dependent on the conversation
setting, the two interaction partners, and dynamic aspects during the flow of conversation.
However, there have been attempts to derive empirical average percentages for gaze
at the interaction partner and mutual gaze: [47], [48] report that one person in a
conversational dyad spends about 60% of the time looking at the conversation partner.
30% of the interaction time is spent in mutual gaze. While listening, people gaze more
often at the conversation partner (71%) than while speaking (41%). The authors report
high interpersonal variance for gaze aversion. In our experimental setting, the robot
takes on the role of the listener in a dyadic conversational setting. A GAR value of 0.3
(corresponding to gazing at the partner about 70% of the time) thus constitutes the
HHI standard.

Rightly, previous work focused on determining robotic gaze behavior that improves
the interaction [22, Section 5]. However, the complexity of the implementation and
other test-theoretic design demands would have led to an infeasibly large sample size
for more fine-grained experimental setups. Thus, in the different test conditions, the
presumed high-performing implementation is often compared against a deliberately
poorly performing or neutral condition. This type of research question is valid for
verifying specific implementations. Our work aims to answer the complementary
question of which insights can be generated for future robot behavior designs when
there is no explicit split between different performance groups. This is also motivated
by [22, p. 37]: “It is tempting to assume that perfectly matching robot gaze behaviors
to human gaze behaviors will elicit identical responses from people, but this is not
always the case,” as was shown in [49].

2.1.2 Eyetracking in HRI
Eyetracking in HRI research produces detailed and rich data samples during interactions
and provides task-specific sensory data to robotic learning algorithms. Given the
inaccuracy of other gaze estimation methods such as head pose estimation [50], including
eye tracking as dependent variable into experimental designs studying conversational
HRI settings is a common technique. This practice has yielded several insights into the
connection between gaze behavior and UX:

[51] operationalize eye-tracking measures for the feelings and attitudes of participants
over time towards different robot embodiments in a conversational HRI scenario. They
found that human gaze aversion in a social chat is an indicator for the uncanniness
of a robot. Similarly, in a joint task, the more a participant gazed at the robot, the
worse they performed. Liking of the robot and mutual gaze develops congruently over
the course of multiple interactions. Specifically, the reported uncanniness decreased,
while mutual gaze by the participants increased. Also, the authors argue that later
interactions represent a more stable gaze pattern after the novelty effect has worn out.

Additionally to pure conversational settings, mutual gaze has also been used to
estimate social engagement of participants in joint task settings [52], [53].

[54] interpret the freely chosen interaction duration of their participants with a social
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robot as an implicit measure for interest in engagement with the robot. The amount
of looking at the robot is a measure for attention towards the robot. They found that
in both experimental conditions (talking/gesturing robot) of a conversational object
reference game, participants spent about 70% of the time looking at the robot in both
conditions with no differences in the self-reported likability of the robot.

[55] employ a data collection procedure including video recording and eye-tracking
of human participants in an HRI scenario, where participants taught object names
to either a robot or another confederate participant. They report differences in the
amount of time spent gazing at the face of another human or a robot interaction partner.
Intimacy regulation [56] in a conversation is achieved by averting the gaze from the
other person. Inanimate characters such as persons on TV, and social robots who
exhibit limited sociability, receive more gaze than physically present human interaction
partners. This result is an indication against the human-inspired gaze design approach.

[57] interpret the direction and timing of a human’s gaze over time towards a robot
while interacting by comparing different gaze metrics derived from temporally split
interaction thirds. They notice a decrease in gaze at the robot’s head over time and thus
propose this measure as a proxy for engagement in the interaction and the perceived
social agency of the robot.

In [58], human eye gaze acts as an implicit measure of engagement to determine
whether an anthropomorphic conversational robot is gazed upon as if it was a com-
municative agent or a technological tool. The robot performed the task of reading a
newspaper article out loud. Participants exhibited a high level of gaze toward the face
of the robot. This is regarded as evidence for the communicative agent hypothesis,
confirming the media equation hypothesis [59]. There was a dynamic change in gaze
targets: At the beginning of an interaction, the participants exhibited more gaze behav-
ior toward the head of the robot than at the end, although the small sample size limits
the validity of this observation.

Eye gaze behavior has also been linked to persistent personality traits [60]. Analyses
of HHI and HRI conversations revealed that participants gaze more at the partner’s
body in HRI than in HHI, more at the partner’s face in HHI than in HRI, and a positive
correlation between the character trait openness and the average duration of gazing
toward partner’s body in HRI. This interpersonal effect is modulated by the situational
effect of intimacy regulation during a conversation.

[61] report a temporal effect in their conversational HRI setting, namely that people
who spend more time with the robot have less favorable attitudes towards it. Partici-
pants spent, on average, 50% of the time looking at the face of the robot, with large
interpersonal differences. They confirmed previous findings that the maximal pupil
diameter correlates with cognitive load, and concluded that telling a story constitutes a
measurable cognitive load.

[36] report that a prolonged stare of a robot at the participants increased their
arousal. In their interactive gaze experimental condition, a prolonged mutual gaze of
the participant at the robot correlated positively with a higher rating in fluency, fun,
and connectedness.

Similarly, [62] found in HHI conversations that gaze aversions and mutual gaze
are highly dependent on both interaction partners. They report a positive correlation
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between mutual gaze and the combined person’s agreeableness, as well as their familiarity.
Concerning gaze dynamics between the two interaction partners, they report correlations
implying that mutual gaze cannot be increased by only one of the two participants by
simply looking at their opposite for a longer amount of time.

In summary, eye-tracking has several favorable properties for HRI research: It
produces more objective data than self-report measures. The resulting data is richer
and more granular than questionnaire results. Eye-tracking data reveals behavior,
attitudes, and emotional states that escape the conscious verbalization of participants
when filling out questionnaires. Previous studies allow us to link gaze behavior with
emotional states and attitudes.

2.2 Research Qestions
As our work aimed to determine whether viable parameter ranges for HRI behavior
implementations can be found without adhering to previously determined HHI parame-
ters, we varied one gaze behavior factor, namely the Gaze Aversion Ratio (GAR). It
is defined as the ratio of time averting the gaze from the interaction partner to the
gaze cycle time. A GAR of 1.0 relates to always averting the gaze from the interaction
partner, whereas a GAR of 0.0 relates to always gazing at the interaction partner.

Different robot behaviors can implement the same GAR since different movement
profiles and gaze cycle lengths can average the same amount of time gazing at and away
from the interaction partner. In our study, we wanted to establish whether the mere
ratio of time spent gazing at the interaction partner’s face and the time spent averting
the gaze is already a significant factor for how the users experience the behavior of the
robotfg, without varying different dynamics such as animation curves.

The Softbank Pepper3 robot was chosen as the robot embodiment. The humanoid
shape allows a natural implementation of gaze aversion, while the unactuated face of
the robot (except for LED lit eyes) does not signal a false affordance to participants, i.e.,
participants do not expect elaborate facial animation during the interaction. Pepper
robots are currently a widespread social robotics research platform, and thus findings
can be incorporated in future research for the same platform (and similar platforms
like the Softbank NAO robot 4). Lastly, these robot platforms adhere to the honest
anthropomorphism design principle, i.e., the robot only gathers visual information in a
visual field where the anthropomorphic head is pointed. Designing robot behavior for
robot embodiments that do not violate the users’ trust poses additional challenges but
is necessary for a trustworthy relationship.

Our main research interest in this chapter was to determine to what degree the GAR
influences the behavior and attitudes of the human interaction partners. To opera-
tionalize this we derived research questions that can be grouped into three categories:
1) gaze behavior of participants; 2) interaction behavior; and 3) attitudes.

3https://www.softbankrobotics.com/emea/en/pepper
4https://www.softbankrobotics.com/emea/en/nao
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1) Gaze behavior:

• RQ 4a Does the GAR have an effect on the fixation durations of the participants?

• RQ 4b Does the effect of the GAR on the fixation durations change during the
interaction?

• RQ 4c Does the GAR influence the fixation sequence behavior of the participants?

2) Interaction behavior:

• RQ 5a Does the GAR have an effect on the amount of words spoken by the
participants?

• RQ 5b Does the GAR have an effect on the interaction duration?

3) Attitudes:

• RQ 6a Does the GAR have an effect on the participants’ perception of the robot’s
attention towards them?

• RQ 6b Does the GAR have an effect on the participants’ own feeling of comfort
during the interaction with the robot?

• RQ 6c Does the GAR have an effect on the participants’ perception of the robot’s
interaction capabilities?

2.3 Methods
We designed an experiment in a conversational interaction setting and validated it in a
pilot study [43]. During the interaction, the robot greets a human participant and asks
about their favorite movie. Then it listens to their statement. When the human stops
talking, the robot thanks the participant and says goodbye to conclude the interaction.
In the categorization scheme of [63], the experiment was a lab-based, Wizard-of-Oz
style study where a real robot and convenience-sampled participants interacted a single
time.

The gaze aversion of the robot was the main behavior of the robot while the participant
was talking. It was manipulated as the independent variable. The gaze aversion behavior
cycled every 10 s. During a cycle, the robot acted according to a specific gaze aversion
ratio (GAR) and a predetermined gaze dynamic. Figure 2.2 shows the operationalization
of the independent variable GAR across five conditions (0.1, 0.3, 0.5, 0.7, 0.9).

We added additional animacy behavior since gaze aversion head shifts occur only
every few seconds to avoid the robot to appear as “turned off” during the listening phase
of an experiment trial. [64] report twelve animation principles which were derived from
animation practices found in animated movies. These principles have also found use in
the animation of robots [65] to improve aspects such as readability or likeability. There
are several typically used animation profiles in HRI experiments to convey animacy.
[66] implemented the following idle movements on a Baxter robot in an HRI scenario:
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Figure 2.2: Timing of gaze focus transitions for the five conditions. At 0° Pepper looks
at the human. The movement time of 0.5s is included in the gaze aversion
time. At 9.5 s, all GAR conditions return to 0°. Pepper’s different gaze
angles are -25°, 0°, and +25°.

eye blinking and gazing, opening and closing grippers, and arm movements. For our
experimental design, we iteratively arrived at the following animacy behavior: eye
blinking behavior through Pepper’s LED eyes, “breathing” behavior through subtle
body movements, and short, randomized head movements that are added to the explicit
gaze shifts. Moreover, for the experiment, homogeneous interaction length among the
participants was desirable. We conducted several HHI pre-trials where a human played
the role of the robot. The participants rated a duration of two to three minutes as a
comfortable interaction length.

During the greeting and farewell part of the interaction, the robot performed several
utterances and gestures (see Appendix A.1). If a participant stopped talking for more
than three seconds, the robot made an utterance to ask for more input from the
user (“Was that all?”) without an additional gesture. The experimenter triggered
the beginning of the experiment, i.e., the robot greeting, the robot utterance after a
human speaking pause, and the robot farewell utterance manually in the Wizard-of-Oz
(WoZ) style [67]. In the pilot study [43], we conducted the main experiment without
eye-tracking and only three GAR scenarios 0.1, 0.5, and 0.9 (n = 10). These trials
were used for wizarding training, and the first author acted as the only wizard for all
experiments. The wizard knew the research questions of the experiment, but there were
no hypotheses as to which group comparisons were likely to be significant. With respect
to the guidelines elaborated in [68], the only wizard recognition and production variables
were detecting speech pauses of three seconds and then triggering the next phase of
the experiment. If the duration was less than two minutes, the robot asked “Was that
all?” to encourage the participants to talk longer. When a three-second speech pause
occurred after two minutes or after the robot had already asked to elaborate once, the
farewell utterance was triggered.

The microphone integrated into the Pepper robot was not reliable enough for the
automatic detection of human speech. In other HRI experiments, this difficulty was
solved by providing a hand-held or head-mounted external microphone to the human
participant, e.g., [69]. In our experiment, however, this would have made the experiment
for the participants too cumbersome, as they already wore a head-mounted eye-tracker.
Information about the degree of wizarding was given to the participants only after
they filled in the questionnaire. [67] argue that a clear specification of the scenario
for the participants is important as well. This was achieved by providing a written
instruction of the experiment before consenting, and another verbal instruction provided
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Figure 2.3: Schematic layout of the experiment room (4m×3.5m). Participant with eye
tracker (P), experimenter (E), robot (R), cameras (C1, C2), room separator
(S).

by the experimenter. Concerning the eye-tracking procedure, the following steps were
performed: 1) explanation of the eye-tracking hardware, 2) fitting of the eye-tracker, 3)
adjusting the eye-tracking camera for robust pupil detection, 4) performing the single
marker calibration choreography, 5) confirming eye-tracking quality, and 5) recording.
Then the robot started the interaction with a greeting, which the experimenter triggered
(see Appendix A.1). The experiment design and data processing procedure were
peer-reviewed by the TU Wien Pilot Research Ethics Committee.

For the main experiment, all participants (n = 101) were recruited from the premises
of TU Wien on the fly. Most of them were students. The participants were asked
to give written consent after reading a short introduction to the experiment. After
the experiment each participant received 10 € as compensation. We performed the
experiment in a room of the TU Wien library. To achieve consistent lighting conditions,
the room was only illuminated with artificial ceiling lights while the window shades
were closed. There was no sound, except the fans of the robot and the computer the
experimenter used.

The room was split in two sides by an opaque room separator (Figure 2.3). On
one side, the participant sat on a chair in front of the Pepper robot at a distance of
110 cm between the chair and the base of the robot. Two cameras were positioned near
the robot and the participant. On the other side of the separator, the experimenter
executed the robot interaction script from a desktop. The WoZ controller was able to
see the camera feed of the pepper robot and listen to the participant.

COVID-19 hygiene measures were taken in all sessions. Pencils and the eye-tracking
device were disinfected before every trial, and the room was ventilated between trials.
The experimenter wore an FFP2/N95 mask at all times, while the participants were
asked to remove their mask to accommodate the eye-tracker.

To measure behavioral differences between GAR conditions, we record the eye
gaze behavior, the interaction duration, and the word count during the interaction
as objective measures. To measure attitudes of the participants toward the robot,
we compiled sections from validated questionnaire series, namely Godspeed [70] and
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BEHAVE-II [71]. We chose scales that are appropriate for the interaction setting
and research questions. Each section consists of four 5-point Likert-type scales, each
with two positively and two negatively connoted terms, with an additional “I don’t
know” option. The aggregated scale of attention consisted of the ratings responsive,
interactive, ignorant, and unconscious. The aggregated scale of comfort consisted of the
ratings creepy, feeling nervous, warm, and pleasant. The aggregated scale of interaction
capabilities consisted of the ratings artificial, incompetent, intelligent, and sensible
(Appendix A.5). To avoid misunderstandings, we provided the participants with a
glossary for the terms of the questionnaire (Appendix A.6).

Additionally, we posed three open-ended interview questions after participants com-
pleted the questionnaire to detect problems during the experiment and to get qualitative
impressions: “How did it feel to talk to the robot?”, “Do you have additional thoughts
about the robot?”, and “Do you have any other thoughts about the experiment?”.

The resulting dataset is securely and confidentially stored at the TU Wien research
data repository (doi:10.48436/frswc-4dn44).

2.4 Results
The data analysis is performed for human gaze behavior (i.e., gaze fixations on a specific
Region of Interest (ROI) and pupil measures), interaction behavior (i.e., word count and
duration), and attitudinal measures (i.e., self-reported measures). The human gaze data
is analyzed in different ways: 1) aggregated statistical measures of the whole interaction,
2) aggregated statistical measures for each interaction, 3) human gaze sequences, and
4) temporal correlation of robot and human gaze shifts.

2.4.1 Data Preparation and Descriptive Statistics

A total of 101 participants took part in the experiment. Of these 101 participants, 4
had to be excluded due to technical problems with the experimental procedure, and 1
participant due to misunderstanding the instructions, resulting in a sample size of 96
for the self-reported measures and interaction behavior measures of word count and
duration (n=96, Age: mean = 24.26, SD=4.02). A total of 43 participants identified
as female and 53 as male. Every participant reported daily computer use. Regarding
experience with robots, the participants either never (61), once (12), or a few times (23)
interacted with a robot before. No one has interacted with robots on a regular basis
until the time of the experiment.

For the analysis, the negatively formulated scales ignorant, unconscious, creepy,
nervous, artificial, and incompetent were inverted. Items answered with “I don’t know”
were treated as missing values and occurred with the following frequencies: responsive:
1, interactive: 2, ignorant: 4, unconscious: 5, creepy: 0, feeling nervous: 0, warm: 0,
pleasant: 0, artificial: 0, incompetent: 5, intelligent: 6, sensible: 3.

The aggregated scale of attention is composed of the items responsive, interactive,
ignorant (inverted), unconscious (inverted). The composite scale of comfort is composed
of the items creepy (inverted), nervous (inverted), warm, pleasant. The composite
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GAR 0.1 0.3 0.5 0.7 0.9
n 19 19 21 17 20
Age mean (SD) 26.7 (6.4) 23.4 (2.6) 23.6 (2.5) 22.8 (2.2) 24.3 (3.8)
Gender 9 f/ 10 m 8 f/ 11 m 10 f/ 11m 8 f/ 9 m 8 f/ 12 m
n 19 17 19 16 17
Age mean (SD) 26.7 (6.4) 23.4 (2.6) 23.4 (2.4) 23.1 (2.5) 24.6 (3.8)
Gender 9 f/ 10 m 6 f/ 11 m 9 f/ 10m 7 f/ 9 m 6 f/ 11 m

Table 2.1: Top: Descriptive statistics of participants (n = 96) for attitudinal and
interaction behavior measures. Bottom: Descriptive statistics of participants
(n = 88) for gaze-related measures.

scale of capability is composed of the items artificial (inverted), incompetent (inverted),
intelligent, sensible. Cronbach’s alpha tests for the aggregated scales attention (α =
0.84), comfort (α = 0.62), and interaction capabilities (α = 0.73) were performed.

For the attitudinal and behavioral measure tests, descriptive statistics per test
condition are presented in the top of Table 2.1. Discrepancies in the group sizes arose
because we also tried to have similar group sizes for valid eye-tracking data, where
additional errors occurred that led to the exclusion of some participants.

For the eye-tracking analysis, from the 96 participants who completed the self-report
questionnaire, 8 more needed to be excluded due to poor average pupil detection
confidence (< 0.6) (n = 88, Age: mean = 24.22, SD = 4.07, Gender: 51 m, 37 f)
(bottom of Table 2.1).

Gaze data during the interaction period were recorded with a Pupil Labs Core
eye-tracking device. The gaze data was aggregated as follows: From the gaze data
per recorded frame, fixations were detected through the Pupil Labs fixation detection
algorithm5. Thus, each fixation is described by a duration and a gaze coordinate, which
can be mapped into world space and, more specifically, onto a specific ROI in the world
space. On the most granular level, the following ROIs are defined, as depicted in Figure
2.4: Robot head (H), robot body (B), top left of head (TLH), top of head (TH), top
right of head (TRH), left of head (LH), right of head (RH), top left of body (TLB),
top right of body (TRB), bottom left of body (BLB), bottom right of body (BRB),
bottom left (BotL), bottom (Bot), bottom right (BotR). Gaze at the head is defined
as gaze at ROI head, gaze at the robot body is congruent with ROI body, whereas the
gaze at any of the remaining ROIs is coded as ROI gaze averted. These individual
ROIs constituting the ROI gaze averted can further be grouped to distinguish between
fixations on top and bottom.

Gaze fixations that do not fall into any of the defined ROIs are coded with no ROI.
These fixations have been added to the general gaze averted ROI, but have not been
used when splitting gaze aversions into top and bottom. The relevant time span of an
interaction started at the end of the greeting utterance of the robot up to the start of

5The chosen parameter settings for the fixation classifier are: dispersion duration, maximum dispersion
= 3◦, minimum duration = 100 ms, maximum duration = 4000 ms, single marker calibration
choreography in Pupil Player v3.3.0.
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Figure 2.4: Regions of interest (ROI) relative to the Pepper robot as seen from the
world view camera of the eye-tracking device from top left to bottom right:
Top left head (TLH), top head (TH), top right head (TRH), left head (LH),
head (H), right head (RH), top left body (TLB), body (B), top right body
(TRB), bottom left body (BLB), bottom right body (BRB), bottom left
(BotL), bottom (Bot), bottom right (BotR).

the farewell message or the utterance of the invitation to speak more.

2.4.2 Power Analysis

G*Power [72] was used to compute the power of the study design and the compromise
of α and power. For a sufficiently sized sample, the preferred test statistic would be
the one-way ANOVA, since normal distribution is expected in the dependent variables.
Therefore we computed the a-priori sample sizes using Cohen’s f as effect size (f = 0.1:
small, f = 0.25: medium, f = 0.4: large). With α = 0.05, power (1 − β) = 0.8, and 5
groups, the required sample sizes are n = 80 for a large effect, and n = 200 for a medium
effect. The actual sample size of n = 100 is suitable for an effect size of f = 0.355.

The used η2 effect size can be transformed into f using f =
�

η2/(1 − η2) [73], which
results in η2 = 0.0828, f = 0.3 for the sensible item in the self-reported data.

A compromise power analysis of q = β/α = 4 (since α = 0.5, and test power
1 − β = 0.8), N = 100 and 5 groups resulted in a compromise value of α = 0.10 and
test power of (1 − β) = 0.60. With this insight, the hypothesis test results that fall
into the range of 0.05 < α < 0.1 can serve as indicators for future studies, e.g., the
capability scale in the self-reported data analysis.
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2.4.3 Effect of Gender

We did a preliminary check on the effect of gender, as gender has been reported to
have an effect on eye gaze behavior (e.g., [74]). Since the t-test assumptions for a
t-test between attention, comfort, capability, duration, and word count as dependent
variable and gender (f/m) as independent variable were not met, we performed a
Mann-Whitney-U test on these dependent variables, without any significant results.
The same applies to the main dependent eye gaze variables, namely the normalized
summed-up fixation durations of the ROIs head, body, and gaze averted. These results,
together with the gender stratification in the GAR conditions, lead us to exclude gender
as a covariate from further analysis.

2.4.4 “Was that all?” - Robot Asked For More Information

Among the 96 participants, the robot asked 44 of them to continue talking about their
chosen movie because otherwise, the interaction duration would have been shorter than
two minutes; the other 52 participants were not asked to elaborate further. This does
not influence the eye gaze measures, since the gaze behavior is only evaluated for the
interval between the end of the robot greeting utterance and the next robot utterance
after that, i.e., query for more information or farewell. However, the participants filled
in the questionnaire after the end of the interaction. Thus, the possibility that the
additional question posed by the robot influenced the perception of the participants
must be investigated.

We tested for significant group differences for the attitudinal and behavioral measures
using a Kruskal-Wallis test (Appendix A.2.1 and A.2.2). There were no significant
differences for the self-report data. Thus, we conclude that the additional question by
the robot did not influence the attitudinal measures. However, as expected, there were
significant differences in the interaction duration and word count. Participants, who
were queried for more information, talked for a shorter amount of time.

2.4.5 Human Gaze Data Evaluation

The 88 participants with valid eye-tracking produced a total of 23529 fixations. The
average fixation count per participant was 247 (SD = 158). The average fixation
duration per participant was mean = 404 ms (SD = 215 ms). In total, 913 fixations
were categorized as no ROI. The descriptive statistics per GAR condition are shown in
Appendix A.3.3.

2.4.5.1 Fixation Duration

We investigate whether the fixation durations differ between the groups per ROI, when
aggregated over the whole interaction. We normalized the fixation duration sums per
participant and averaged them per condition for the three ROIs head, body, and gaze
averted between the GAR conditions. The ANOVA test assumptions are met for the
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Figure 2.5: Normalized gaze duration on ROIs head, body, gaze averted for each GAR
condition.

gaze duration at the head but not for the body and the averted ROI.6
We performed an ANOVA on the head ROI (Appendix A.3.4) between GAR conditions

(F (4) = 2.704, p = 0.036, η2 = 0.117). We performed a Kruskal-Wallis test on
the ROI body (χ2(4) = 6.4074, p = 0.1707, η2 = 0.0294) and the ROI gaze averted
(χ2(4) = 3.15, p = 0.533, η2 = −0.0104). These results indicate that the GAR has an
effect on ROI head but not body and gaze averted. However, a Tukey HSD post-hoc
test to find pairwise differences in the fixation duration of the head ROI revealed no
significant group differences. The lowest adjusted p-value occurred between the two
groups GAR 0.3 and 0.9 (p = 0.065).

Figure 2.5 motivated a correlation and linear regression analysis between GAR
conditions and fixation duration on ROI head. GAR is an interval scale regarding its
implementation on the robot. We performed a Pearson correlation (r = −0.2981547,
t(85) = −2.8798, p = 0.005). The linear regression resulted in an intercept of 0.71
(Std.Err = 0.04, t = 16.98, p < 0.000) and slope (i.e., the effect of the condition) of
−0.21 (Std.Err= 0.07, t = −2.88, p = 0.005). The multiple R-squared value of the linear
regression is 0.089. Visual inspection of the residuals (Figure 2.6) does not suggest
higher order functional relations between GAR and fixation duration at ROI head and
also, a quadratic regression analysis was non-significant.

The regression and correlation indicate that the lower the robot GAR (i.e., the more
the robot gazes at the human) the more the human gazes at the face of the robot.
Conversely, the more the robot gazes away from the human, the more the human gazes
at the body of the robot.

2.4.5.2 Fixation Duration - Temporal Split

Until now, we inspected gaze metrics that are temporally aggregated across the whole
interaction duration. In this section, we analyze the influence of time on gaze behavior
in the different GAR conditions. Therefore, we split each individual interaction into
thirds, similar to [57] and [75].

6The results of the analysis of the fixation counts yield largely the same results, but using the summed
fixation duration is more widely used and more principled.
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Figure 2.6: Left: Linear regression model between GAR and fixation duration at ROI
head. Right: The residuals of the linear regression.

Figure 2.7: Normalized fixation durations for variable ROI head (left), body (middle),
and gaze averted (right) for the between-factor GAR condition and the
within-factor interaction third.

For each third, the gaze metrics are calculated. The ANOVA assumptions are met
for the ROI head, but not for the other two ROIs body and gaze averted. Thus, we
performed a MANOVA on the ROI head with the within-factor time and the between-
factor condition (Table 2.2, Figure 2.7), which revealed significant main effects, as well
as a significant interaction effect, all with a small effect size.

To determine where the interaction effect lies, we performed two groups of one-way
ANOVAs: First, we examined the effect of the condition in the separate interaction
thirds (middle of Table 2.2). The condition has a significant and large effect in the last
interaction third.

Second, we examined the effect of time in the different conditions via another group
of ANOVAs (bottom of Table 2.2). There was a significant difference in the time spent
gazing at the robot head (medium effect) between the interaction thirds in the GAR
condition 0.5. This finding emphasizes the visual result of Figure 2.7, where the gaze
at the head in the 0.5 GAR condition occurs for a longer duration in the first third
than in the other two thirds. Summarizing the interaction effect, an inspection of the
median values in Figure 2.7 suggests that the gaze durations form a “∧” shape in the
first third, whereas this is transformed into a downward slope “
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F df1 df2 p p.adj η2

Condition 2.54 4 80 0.046* 0.093
Time 4.64 2 160 0.011* 0.011
Interaction 2.13 8 160 0.035* 0.020
Time F df1 df2 p p.adj η2

1st third 1.98 4 82 0.106 0.110 0.088
2nd third 2.42 4 82 0.055 0.112 0.105
3rd third 3.38 4 80 0.013 0.039* 0.145
Condition F df1 df2 p p.adj η2

0.1 0.512 2 36 0.604 1.000 0.007
0.3 0.985 2 28 0.386 1.000 0.016
0.5 12.781 2 34 <0.000 <0.000* 0.070
0.7 4.424 2 30 0.021 0.084 0.043
0.9 0.348 2 23 1.000 1.000 0.017

Table 2.2: Top: MANOVA for the within-factor Time and the between-factor condition
(α = 0.05(*)). Middle: ANOVA with the factor condition on the normalized
fixation duration of the ROI head for each interaction third. Bottom: ANOVA
with the factor Time on the normalized fixation duration of the ROI head
for each condition.

” in the last third over time.

Finally, for the ROI head, Tukey HSD post-hoc tests for the interaction effect revealed
no significant comparisons, however this can be explained by the unusually high number
of group comparisons when both interaction third and condition are examined. For
the other two ROIs body and gaze averted, the ANOVA assumptions were not met.
Therefore the multivariate non-parametric Scheirer-Ray-Hare test was chosen and
performed on ROI body (GAR condition: H(4) = 16.4, p = 0.002, time: H(2) = 0.55, p
= 0.76, interaction H(8) = 3.60, p = 0.89) (Figure 2.7). Only the GAR condition had a
significant effect, and Dunn post-hoc tests revealed the two different GAR groups (GAR
0.3, 0.5 and GAR 0.7, 0.9), with the second group exhibiting a higher amount of gazing
at the body. GAR 0.1 almost met the significance level for being significantly different
from GAR 0.7 and 0.9. The significant group comparisons are 0.1-0.7 (adjusted p (p
adj.) = 0.06), 0.1-0.9 (p adj. = 0.06), 0.3-0.7 (p adj. = 0.03), 0.3-0.9 (p adj. = 0.02),
0.5-0.7 (p adj. = 0.02), and 0.5-0.9 (p adj. = 0.01). This reinforces the linear regression
result of the ROI head: People looked at the body of the robot - and not at the robot
face - more often when the robot displayed a high GAR.

The procedure was repeated for ROI gaze averted (GAR condition: H(4) = 8.79, p =
0.06, time: H(2) = 0.50, p = 0.77, interaction H(8) = 2.98, p = 0.93) (see Figure 2.7)
without any significant effects.
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2.4.5.3 Analysis of Gaze Sequences

Similar to [55], [62], [76] we are interested in whether the different GAR conditions
lead to different dynamic gaze patterns in the participants. The gaze directions of the
human participants are categorized into ROIs (Figure 2.4). Thus, every participant
produced a sequence of fixations on the ROIs, similar to [77] and [78]. For this section,
we group the ROIs into the following gaze directions (Figure 2.4): Head (H = {H}),
Body (B = {B}), Up (U = {TH}), Up-Left (UL = {TLH, LH}), Down-Left(DL =
{TLB, BLB}), Up-Right (UR = {TRH, RH}), Down-Right (DR = {TRB, BRB}),
Down (D = {BotL, Bot, BotR}). Therefore each participant i, (i ∈ {1, . . . , N}) pro-
duces a sequence Si = {Si1, Si2..., SiTi

}, with Sit ∈ D = {H, B, U, UL, DL, UR, DR, D}
and t ∈ {1, . . . , Ti}, with Ti as the length of the fixation sequence of participant i. For
each participant, a sequence of fixation transitions is constructed. They can be used to
create a stochastic model of the gaze behavior of a single participant in the form of a
Discrete-Time Markov Chain (DTMC) [79]. For these models, the Markov property
assumption dictates that the gaze direction probability depends only on the previous
gaze direction. This assumption is expressed as

Pr(St+1 = st+1 | S1 = s1, S2 = s2, . . . , St = st) = Pr(St+1 = st+1 | St = st), (2.1)

where the single fixation directions are random variables with the domain D, thus
st ∈ D. Additionally assuming time-invariance across an interaction, the stationary
distribution is represented as a |D| × |D| transition matrix M , where an element mij,
i, j ∈ {1, . . . , |D|}, describes the probability of transitioning from direction i to direction
j, with 


j∈{1,...,|D|} mij = 1 for all i ∈ {1, . . . , |D|}. Transitions include loops, which
result from starting and ending in the same ROI. This can occur, when a participant
has two consecutive fixations in the same ROI.

Subsequently, the transition matrix for each participant is created. To aggregate
them, the single participant transition matrices are summed up and normalized row-wise.
This way, the gaze behavior of each participant influences the outcome with the same
weighting, independent of the interaction duration.

For each GAR condition, there is a different DTMC model. Each DTMC is a 14 × 14
transition matrix. Visual inspection of the differences between these matrices can
reveal how the gaze transitions differ. However, to determine whether the models differ
from each other in a statistically significant way, each of the five 14 × 14 matrices is
flattened into a vector of length 196. Then, these five vectors can be stacked into a
5 × 196 matrix. In this representation, each column describes one fixation transition,
e.g., head → body. Considering the non-normalized fixation counts, each row describes
the categorical distribution of fixation shifts. This matrix is very sparse, containing
many zero values for unlikely transitions. To interpret the results and to perform a χ2

test of independence, we aggregated the fixation shifts into the transitions between the
previously defined ROI regions head, body, and gaze averted. This transformation yields
a 5 × 9 matrix, with all cell values > 5 (Table 2.3).

For this matrix we performed a χ2 test of independence (χ2(32) = 973.57, p < 2.2e−16,
Cramer’s V = 0.108 (weak effect)). To determine which cells lead to this significant
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GAR b-b b-h b-a h-b h-h h-a a-b a-h a-a
0.1 205 153 67 160 1870 313 56 324 488
0.3 225 161 79 161 1517 380 77 374 585
0.5 249 150 67 144 2298 537 77 530 1116
0.7 481 248 131 268 1322 394 103 409 749
0.9 510 267 133 267 1263 401 134 378 941
0.1 -87∗∗∗ −18 −17 −15 422∗∗∗ −42 −22 −29 -191∗∗∗

0.3 -61∗∗ −7 −3 −10 99∗∗ 33 0 29 -80∗∗

0.5 -167∗∗∗ -94∗∗∗ -52∗∗∗ -105∗∗∗ 239∗∗∗ 33 -34∗∗ 28 150∗∗∗

0.7 151∗∗∗ 54∗∗∗ 37∗∗∗ 70∗∗∗ -313∗∗∗ −6 15 11 −18
0.9 165∗∗∗ 65∗∗∗ 34∗∗ 60∗∗∗ -447∗∗∗ −18 42∗∗∗ −39 139∗∗∗

Table 2.3: Top: Observed transition counts between the ROIs body (b), head (h),
and gaze averted (a). Bottom: Differences of transition counts (observed -
expected) for the transitions between the ROIs body (b), head (h), and gaze
averted (a) per GAR condition. The adjusted α level is 0.001̇ (∗), 0.0002̇ (∗∗),
and 0.00002̇ (∗∗∗). Colored cells highlight comparisons made in section 2.4.

result, the z-scores for the cells were calculated (where a z < −1.96 or z > 1.96
would represent a significant deviation without Type I error correction). Then, the χ2

values were calculated using the z-scores. For each one of the χ2 values, the p-value
was compared against a χ2 distribution (df = 1, one-sided) [80], [81]. The adjusted
significance level α = 0.5/(5 · 9) = 0.001̇ was used to check which cells differ significantly
from the expected distribution (Table 2.3). For example, all entries in the body-to-
body transitions column are significant. Negative cell entries indicate that less gaze
transitions than expected have occurred, while positive cell entries indicate that more
transitions than expected occurred. Figure 2.8 visualizes all significant deviations
from expected gaze transition frequencies. In that figure, blue solid arrows indicate a
significant positive result (i.e., more transitions than expected), while orange dashed
lines indicate significant negative results (i.e., fewer transitions than expected). This
graphic only indicates significant deviations from expectation and not the absolute
number of transitions. For example, comparing the two columns h-b and h-a (marked
in red color) in Table 2.3 reveals that h-a transitions occurred more frequently than
h-b transitions among all groups. This means, in general after gazing at the head,
participants averted their gaze, rather than look at the robot’s body.

However, we are interested in differences between the GAR conditions, and thus we
proceed to cluster the significant cell entries in Table 2.3 to interpret them on a higher
level. The three self-loop columns in Table 2.3 for h-h, b-b, and a-a (cells colored in
blue) confirm the findings of the gaze behavior with respect to the total time spent
gazing at a particular ROI. All entries in column h-h display significant differences from
the expected occurrences, namely a higher count for the low GAR conditions 0.1, 0.3,
and 0.5, and a lower than expected count for the conditions 0.7 and 0.9. Comparable
results are visible in the columns b-b and a-a, where the relationship is reversed for the
GAR conditions. This means that when the robot gazed at the participants for a longer



2.4 Results 29

Figure 2.8: Visualization of significant deviations from the expected gaze transition
frequencies in the 5 GAR conditions. Top: ROIs head, body, gaze averted.
Bottom: ROIs head, body, top, bottom.

time, the participants reciprocated the robot’s mutual gaze.
Regarding true fixation shifts, i.e., transitions between different ROIs, a large pattern

of significant results can be observed in the submatrix GAR 0.5, 0.7, 0.9 and transition
b-h, h-b, b-a, and a-b (cells colored in orange). These transitions occur less frequently for
the 0.5 GAR condition and more frequently for the GAR conditions 0.7 and 0.9. This
means, in the 0.5 GAR condition, participants shifted their gaze less frequently between
the body and the head, and less frequently between the body and the gaze averted ROI
(while in this GAR condition, gazing at the head was more frequent). For the conditions
0.7 and 0.9 the relationship is reversed: There is more fixation shifting between head
and body, with less frequent gazing at the head. Similarly, there are more transitions
between the body to the gaze averted ROI. This means, the gaze pattern in the 0.7 and
0.9 conditions centers more around the body of the robot, while in the 0.5 condition,
gaze at the body occurs less frequently. In short, in the 0.5 GAR condition there
occurred significantly fewer fixation shifts between different ROIs, while in condition
0.7 and 0.9, there occurred significantly more fixation shifts between different ROIs.

The gaze transition a-b happened less frequently in the 0.5 condition and more
frequently in the 0.9 condition. Interestingly, there are no differences for the gaze shifts
h-a and a-h. This means that there is no difference between the GAR conditions for
looking at the robot’s head after averting the gaze, however, this is the gaze shift the
robot performed.

In summary, these results confirm that robotic GAR influences human gaze behavior,
but not in a direct way. Otherwise, the frequency deviations in the gaze shifts between
the ROIs head and gaze averted would be significant since the robot gaze aversion
pattern consists solely of shifts between the ROIs head and gaze averted. Participants
reacted with more gaze aversion to a high gaze aversion pattern of the robot. However,
the participants seemed not to perform mere gaze following. Deviations from the
expected frequencies occurred in the gaze pattern that centered around the robot body
to then shift the gaze to the robot head or averting the gaze.

Gaze aversions in different directions have been associated with different conversational
goals. [23] report that people in conversations more often avert their gaze upwards
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GAR b-t b-bot h-t h-bot t-b t-h t-t t-bot bot-b bot-h bot-t bot-bot
0.1 22 45 254 59 19 263 369 24 37 61 30 65
0.3 27 52 353 27 35 336 454 27 42 38 24 80
0.5 17 50 467 70 23 447 824 41 54 83 27 224
0.7 56 75 343 51 38 346 595 39 65 63 36 79
0.9 35 98 318 83 41 294 688 28 93 84 25 200
0.1 −5 −11 −50 8 −8 −32 -144∗∗∗ −4 −14 3 5 -48∗∗∗

0.3 0 −3 56∗ −23∗ 8 47 −48 0 −8 −18 0 −31
0.5 −22∗∗ −30∗∗ 35 −2 −16 27 95∗∗∗ 1 −18 1 −8 63∗∗∗

0.7 25∗∗∗ 12 0 −6 7 13 16 8 7 −2 8 -49∗∗∗

0.9 3 32∗∗∗ −41 23∗ 9 -55∗ 82∗∗ −5 33∗∗∗ 16 −4 66∗∗∗

Table 2.4: Top: Observed transition counts between the ROIs body (b), head (h), top
(t), and bottom (bot). Bottom: Differences transition count (observed -
expected) for the transitions between the ROIs textitbody (b), head (h), top
(t), and bottom (bot). The adjusted α level is 0.00083(*), 0.00017(**), and
0.000017(***). The transitions h-h, h-b, b-h, b-b are omitted since they are
already depicted in Table 2.3. Colored cells highlight comparisons made in
section 2.4.

when they experience a high cognitive load and they gaze downwards when they
need to regulate the level of intimacy. Therefore, we split the single ROIs of the
aggregated ROI gaze averted into top (t) and bottom (bot). The ROI top consists
of all ROIs above body, except the ROI head. The ROI bottom consists of all ROIs
below the head except body (Figure 2.8). The χ2 tests of independence was significant
( χ2(60) = 1122.2, p < 2.2e − 16, Cramer’s V = 0.116 (weak effect)). The results for
single significant cells are shown in Table 2.4. We adjusted the α level for top-bottom
to α = 0.5/(5 ∗ 12) = 0.0083.

Concerning the general gaze pattern for all groups, head to top, top to head, and
top to top gaze shifts were far more numerous than the gaze shifts regarding the ROI
bottom and body (cells marked in blue). This gaze aversion pattern rather indicates
a cognitive effort than intimacy regulation. Checking the top to bottom and body to
bottom columns reveals that this cannot be a measurement artifact. Assuming that the
true gaze shift occurred between head and bottom, but the eye tracker falsely registered
an intermittent fixation on top or body, we would expect more shifts from top to bottom
or body to bottom column. However, the frequencies in both columns are relatively
low, too.

As mentioned above, we are, however, interested in group differences between the
GAR conditions and trying to find an explanatory pattern for the significant cells. The
following significant results were observed: Participants in the 0.5 and 0.9 conditions
had more fixation shifts from bottom to bottom. In contrast, in conditions 0.1 and 0.7,
this occurred less frequently (cells marked in red). The top to top transitions occurred
less frequently in the 0.1 condition and more frequently in the 0.5 and 0.9 condition
(cells marked in orange). There were no other significant results for the 0.1 condition.
Participants in condition 0.3 made more gaze shifts from head to top than from head to
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bottom. In condition 0.5, participants gazed less frequently from body to top and from
body to bottom. In condition 0.7, more gaze shifts occurred from body to top. There
were more significant results in condition 0.9: There were more occurrences of shifts
from body to bottom, head to bottom, and bottom to body, and fewer occurrences of top
to head (cells colored in blue).

Top to bottom or bottom to top fixation shift frequencies did not differ between groups.
Looking for a pattern reveals significant results in the bot - bot column, which are
largely congruent with the a-a gaze shift in the previous ROI split. For condition GAR
0.9, the gaze shifts paint a picture of higher frequency gazing downwards, which can
be indicative of intimacy regulation [23] in contrast to the other groups. In summary,
splitting the gaze averted ROI into top and bottom reproduces the previous result.

2.4.5.4 Temporal Correlation of Robot and Human Gaze Shifts

Next, we wanted to examine whether the gaze behavior of the robot causes temporally
aligned fixation shifts of the participants. Therefore, for each participant, we calculated
the point in time of each real fixation shift (i.e., no loop like head-to-head) with
respect to the ten second gaze cycle time of the robot. Thus, each fixation has a
starting time between 0 s and 10 s with respect to the gaze cycle duration. These
starting times per participant are gathered per GAR condition. This results in five
distributions, which we tested for significant differences. Since the variables were not
normally distributed, we conducted one Kruskal-Wallis test counting all real fixation
shifts (χ2(4) = 5.36, p = 0.25) and one Kruskal-Wallis test that counted only fixation
shifts from and to the head (χ2(4) = 4.31, p = 0.36). Thus, there is no evidence for
differences in the temporal occurrence of gaze shifts within the 10 s robot gaze cycle. The
distribution for all GAR conditions is depicted in Figure 2.9. The depicted histograms
suggest a uniform distribution within the 10 s cycle for all five conditions. This result
indicates that the robot gaze shifts do not trigger human gaze shifts. In the previous
sections, differences in the gaze behavior between the GAR conditions were found, but
the differences cannot be explained by mere gaze following.

Figure 2.9: The distributions of the occurrence of a fixation shift of the participants
with respect to the 10 s gaze cycle of the robot. From left to right: GAR
0.1, 0.3, 0.5, 0.7, 0.9.

2.4.6 Interaction Behavior Evaluation
The two variables duration and word count (Table 2.5) were naturally highly correlated
(ρ = 0.922, t = 23.139, p < 0.000). The ANOVA assumptions for the effect of GAR on
these two variables were not met, therefore we applied a Kruskal-Wallis test (Figure 2.10).
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The null hypothesis of RQ 5a, that there is no effect of the robot’s GAR on the amount
of words spoken by the participants, can be rejected (χ2(4) = 11.3, p = 0.02, η2 = 0.08).
The null hypothesis of RQ 5b, that there is no effect of the robot’s GAR on the
interaction duration, can be rejected (χ2(4) = 11.6, p = 0.02, η2 = 0.08). For both
significant tests, there is a moderate effect size.

Figure 2.10: Top: Word count (left) and duration (right) per GAR condition. Bottom:
Attention displayed by the robot (left), comfort during the interaction
(middle), and perceived robot capability (right) per GAR condition.

We conducted pairwise comparisons for word count and duration using the Dunn test
with Bonferroni-Holm correction. There are significant differences in the word count
and duration between group 0.1 and 0.5 (p adj = 0.03, p adj = 0.02), as well as 0.1 and
0.7 (p adj. = 0.03 p adj. = 0.04).

This means participants in the GAR 0.1 condition (the robot mostly stares at the
participant) spoke fewer words and for a shorter amount of time than in the 0.5 (robot
averted gaze half of the time) and 0.7 GAR conditions. Thus, there is a moderately
sized effect of the GAR on the interaction level. In conversational settings, listeners tend
to gaze at the speaker more often than the speaker gazes at the listener [48]. However,
we observe that in the 0.1 GAR condition, participants talked significantly less. A
possible explanation for this is that a too low GAR is perhaps not (only) interpreted as
benevolently paying attention to the speaker. Together with the gaze behavior result,
we observe now that participants in lower GAR conditions (i.e., more robot staring)
talked less while gazing more at the robot.
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Word count Duration Attention Comfort Capability
Condition mean median SD mean median SD mean SD mean SD mean SD
0.1 180 140 106 113 89 72 3.92 0.85 3.70 0.50 3.59 0.72
0.3 232 211 139 138 120 80 3.94 0.90 3.76 0.81 3.67 0.69
0.5 309 239 197 168 147 82 3.47 1.15 3.74 0.65 2.94 0.93
0.7 272 253 107 157 136 66 3.84 0.82 4.04 0.66 3.44 0.65
0.9 243 232 120 137 133 55 3.70 0.81 3.89 0.87 3.34 0.81

Table 2.5: Descriptive statistics of the word count and interaction duration, as well as
the Likert scale comfort.

2.4.7 Attitudinal Data Evaluation

Up until now, only behavioral data were evaluated, which revealed differences in gaze
behavior and interaction duration between the GAR groups. In addition to this,
self-reported attitudinal data were recorded to learn more about how participants
experienced the conversational situation. The preconditions for ANOVA were not
met. We performed Kruskal-Wallis tests to evaluate the research questions about the
impact of the GAR conditions on the aggregated scales attention displayed by the robot,
comfort elicited by the robot, and capabilities of the robot (Appendix A.3.5). The mean
and standard deviations of the aggregated scales per condition are shown in Table 2.5
and Figure 2.10.

There are no significant differences between the GAR conditions with respect to the
scales attention, comfort, and capability (Table S5). If there is a meaningful effect, it
cannot be detected due to the sample size or the actual effect size being too small.
Otherwise, the GAR could just not have a significant effect on attitudinal measures.
So, although there is a moderately sized effect of the GAR on the behavior level, both
for gaze behavior and interaction duration, the participants did not form significantly
diverging opinions about the robot in the different conditions.

Additional exploratory evaluations revealed correlations between measures. The
Pearson correlation coefficient r was calculated for the three composite self-reported
scales attention, comfort, and capability on the one hand and the behavioral data word
count and duration on the other (Table 2.6). In these variables, when aggregated for
the whole dataset, no extreme outliers were detected. The data suggests a moderate
negative correlation between the participants’ perception of attention shown by the
robot and both interaction duration and word count. The longer the interaction took,
the less the participants felt the robot was paying attention to them. A possible reason
is the missing backchannel communication (e.g., utterances like “mhm”, “aha”) or
gestures (e.g., nodding) that are used by humans during prolonged periods of listening.

Correlations for the attitudinal measures and the physiological measures average pupil
size and pupil size variance revealed a significant moderate positive correlation between
the pupil size and the attention score (Table 2.6). There is also a significant moderate
positive correlation between pupil size variance and level of comfort. These findings
affirm previous psychophysiological studies: [82], [83] found that cognitive processes are
associated with constantly higher pupil dilations. One can speculate that participants
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Attention Comfort Capability
t p r t p r t p r

Duration −2.81 0.005**−0.27 −0.47 0.63 −0.04 −2.00 0.04* −0.20
Word count 2.72 0.007**−0.27 −0.18 0.85 −0.01 −2.20 0.02* −0.22
Avg. pupil size (mm) 2.22 0.02* 0.23 −0.27 0.78 −0.02 −0.47 0.63 −0.05
Pupil size SD (mm) 1.56 0.12 0.16 1.97 0.05* 0.21 −0.33 0.73 −0.03

Table 2.6: Pearson correlations between self-reported (attention, comfort, and capability)
and behavioral measures (duration and word count) and pupil size (avg. pupil
size and pupil size SD) for the whole sample.)

who themselves put more effort into retelling a movie then also exhibited more cognitive
effort, which led to a larger pupil dilation and a higher self-worth protecting assignment
of the robot’s attention to their story. Similarly, participants who might have felt a
certain comfort in the interaction thus exhibited a higher pupil dilation variance. This
is in accordance with [84], where pupil dilation variance is positively associated with
affective processing. If this is the case in this experiment, to arrive at the positive
correlation between pupil variance and comfort attribution, the elicited affect spectrum
ranges from neutral to positive.

2.5 Discussion
In this section, we will discuss and summarize 1) the findings regarding the three
research questions, 2) the limitations of the study, and 3) design recommendations
resulting from our work.

2.5.1 Answering the Research Questions

In the previous chapter, the statistical test results of the research questions were
presented. For the three subquestions (RQ 4 a-c) on gaze behavior, several different
analytical methods were used because of the wealth of data resulting from the eye-
tracking procedure. For the two subquestions (RQ 5 a and b) on interaction behavior
and the three subquestions (RQ 6 a-c) there are fewer metrics, and they will be used to
corroborate the gaze tracking results.

2.5.1.1 RQ 4 - Gaze behavior

For all three subquestions of RQ 4, the null hypothesis can be rejected: GAR does
have an effect on the fixation durations (RQ 4a). The effect of GAR on the fixation
durations changes during the interaction (RQ 4b). The GAR does influence the fixation
sequence behavior of the participants (RQ 4c).

The analysis of the fixation shifts was structured to advance from overall differences
of fixation durations on large ROIs head, body, and gaze averted to fine-grained dynamic
gaze shift patterns.
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The main point of discussion is whether the robotic gaze behavior influences the
gaze behavior of the participants and the attitudes of the participants towards the
robot. We use gaze as a proxy measure of attitudes towards the robot by incorporating
correlations between gaze behavior and affect presented in the related work. These
results are compared with the self-reported attitudes and the interaction duration,
which is another proxy measure of engagement.

Regarding the linear regression results across all groups for the overall head GAR
behavior between the groups, there are two competing interpretations. 1) Participants
mirror the GAR of the robot, i.e., they create rapport [85] or 2) Participants find
the interaction with higher GAR more uncomfortable and therefore avert their gaze
more [56]. We discussed another proxy measure from the related work, namely the
interaction length [54]: The longer a participant keeps up the conversation, the more
engaged they are with the robot and this is a sign for comfort during the interaction.
Because participants in the 0.1 GAR condition (high robot mutual gaze) talked for a
shorter amount of time, this is an indication that the rapport explanation is more likely.

However, there is a noteworthy deviation from the linear regression: In the linear
regression of the normalized fixation durations for the whole interaction, the 0.1 GAR
setting does not adhere to the otherwise linear relationship of between the participant
and the robot GAR. For a stronger relation, the median of the 0.1 setting was supposed
to be higher than the median of the 0.3 setting, but this was not the case. This might
indicate that the overall trend of participants mirroring the robot GAR is not valid at
the 0.1 end of the GAR spectrum, where the robot stares at the human. Otherwise,
when the robot has a higher GAR and thus averts the gaze more often, participants
mirror this behavior instead of increasing the gaze towards the robot. If we suppose
that the robot was perceived as a social agent and creating rapport is a typical human
adaptation in a conversation setting, another effect must have been stronger and at this
end of the robot GAR scale and prevented GAR mirroring. This might indicate that,
indeed, the 0.1 setting of the robot was perceived as uncomfortable, and participants
felt being stared at, for which they sought to regulate the intimacy level by avoiding
their own gaze more often. This is an indication that high mutual gaze is not always a
justified proxy measure of comfort in the interaction, as previously suggested in [52],
[53], [57], [58].

Next, we studied how the fixation distribution changes over the duration of the
interaction. Similar to [51] and [58], we also observed a time effect. In their study,
the gaze towards the robot head increased over time, whereas [58] observed a decrease
in time spent gazing at the robot head. The second result is replicated in our work.
[51] argue that later interactions represent a more stable interaction pattern. If this
statement was also applicable within single interactions, we can interpret the decreasing
gaze at the robot as an effect of habituation or a wearing off of the novelty effect.
Regarding the interaction effects, the GAR condition has the strongest effect in the
last interaction third, where we can observe a linear regression. However, as for the
linear regression of the whole interaction, the median of the 0.1 GAR is not as high as
expected. Time as a single factor also showed an effect across all conditions, namely
the decrease of time spent gazing at the head of the robot. The strongest interaction
effect of time and GAR occurs in the 0.5 GAR condition. The gaze at the robot’s head
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is higher in the first third than in the other two thirds.
Next, we were interested in the fixation shifts of the participants. The statistical

tests revealed which fixation shifts occurred more or less frequently than expected. The
fixation shifts that started and ended in the same ROI largely reproduced the findings
of the normalized fixation duration analysis: The true fixation shifts, i.e., when the
start and end ROI are not equal, show a pattern of higher gaze aversion for the 0.7 and
0.9 GAR setting, but noticeably a pattern of less gaze aversion in the 0.5 condition.
This could be indicative of a higher comfort for the participants in the 0.5 condition.
However, this identified pattern also does not follow the results of the linear regression
mentioned above.

We tried to distinguish between top and bottom gaze aversion. There, the gaze
aversion pattern for the 0.7 and 0.9 GAR condition was indicative of an intimacy
regulation gaze aversion pattern that typically occurs in uncomfortable situations [23].

Lastly, in this section, we explored the temporal relationship between robot and
human gaze shifts, i.e., if the human participants engage in gaze behavior after a certain
amount of time after a robot gaze shift. This test produced non-significant results and
might be another indicator towards the conclusion that humans react to the robotic
gaze behavior, but not by merely gaze following the robot.

2.5.1.2 RQ 5 - Interaction behavior

We can reject the null hypothesis for RQ 5 and thus state that the GAR does indeed
have an effect on the amount of spoken words (a) and the interaction duration (b). In
the related work, interaction duration was used as a proxy measure for engagement [54].
Using the same argument, we can conclude that in the 0.1 GAR setting, engagement
was the lowest. This, together with the conclusion of the 0.1 linear regression outlier in
the above subsection, paints a picture of an uncomfortable situation in the 0.1 setting.

This, however is in contrast to the exploratory identified significant negative corre-
lation between attention and interaction duration. This might be an indication that
interaction duration should not be used as a proxy measure of interest alone.

2.5.1.3 RQ 6 - Attitudes

The results for self-reported attitudinal scales perceived attention shown by the robot
(RQ 6a), level of comfort of the participants (RQ 6b), and the perceived robot capability
of the robot (RQ 6c) did not significantly differ between GAR conditions. We argue
against the existence of a medium or large effect of GAR on the conscious perception
of the robot interaction in this interaction setting. In the following, we want to
contextualize our line of thought.

The median value for attention was highest in the 0.1 GAR setting (though not
significantly different from other settings). Together with the shortest interaction
duration, this could be an indication that that participants felt “watched” in a negative
sense. The lowest median attention and cabability value occurred in the 0.5 GAR
group, where there was significantly less gaze-shifting behavior on the body of the robot,
though these values were not significantly different.
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In the qualitative interview, participants repeatedly mentioned that they experienced
the robot GAR as a “turning the ear towards the speaker to better listen”. Most
participants mentioned both positive and negative aspects of the interaction, e.g., “It
was weird in the beginning, then it was nice.”, “jerky moves, but cool and nice”, “less
weird than expected”, “funny and strange”. The robot implementation resulted in a
range of descriptions, even for the same GAR setting: ”The robot seems alive, especially
the eye blinking and head movements.” on the one hand, and “The robot did not react
at all, there was no interaction.” on the other hand. Both statements occurred in the
0.1 GAR setting. Many participants mentioned a missing backchannel communication
of the robot while listening.

The occurrences of “I don’t know.” answers in the attitudinal measures were counted
as omissions and are an indicator as to what participants can judge with certainty.
Participants always knew whether the robot was creepy, they were feeling nervous,
the robot appeared warm, pleasant, or artificial, all with zero omissions. However,
they were less certain about whether the robot was ignorant,unconscious, incompetent,
or intelligent, all with four to six omissions. This might be an indication that the
type of data collection is inadequate for certain topics. The participants were sure
when introspective questions were posed and more unsure when statements about the
inner working of the robot were asked about. More specific questions tailored to the
interaction might be adequate for such external evaluations.

2.5.2 Limitations
The following limitations and considerations should inform future work. The remarks
concern the interaction setting and the statistical evaluation.

Participants were engaged when talking to the robot. We, therefore, consider “talking
about a movie” as a suitable main task in our setting. However, some participants
mentioned in the interview the task as stressful, even though they were explicitly told
that the interaction was in no way a test.

However, was the simulation of an autonomous robot listening to them convincing for
the participants? In accordance with the WoZ reporting guidelines [67], we report that
participants mentioned that they found the robot behavior very sophisticated, or rather
basic, as well as very entertaining, or boring. Some of them asked about the natural
language processing capabilities of the robot before filling out the questionnaire. In this
case, the experimenter asked them to wait with the question until after filling out the
questionnaire. The degree of awareness about which parts of intelligent behavior are
difficult to achieve on a technical basis, might have influenced their perception.

However, there was no floor or ceiling effect in attitudinal measures, which indicates
that the different parts of the behavior implementation (greeting and farewell procedure,
idle behavior, and gaze behavior) were adequate.

We did not attempt to categorize the movie genres of the described movies. Arguably,
the chosen genre might have had an emotional priming effect. Remembering the plot
of a comedy in contrast to a drama might change the participants’ perception of the
robot during the interaction.

Next, we talk about the limitations of the statistical evaluation. We wanted to
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establish a functional relationship between GAR in the range of 0.1 and 0.9. However,
it is difficult to produce sample points for the continuous range of 0.1 to 0.9. Therefore
we settled on 0.2 increments between conditions.

As we have observed, human gaze changes during the interaction. An avenue of
gathering more data across multiple GAR parameters would be to change the GAR of
the robot continually during the interaction and interpret the associated gaze responses
of the participants. This method might be able to produce detailed insights into
continuous ranges of GAR.

As we did explore our hypotheses without prior assumptions, comparing all groups
to each other could produce arbitrary relationships, as opposed to a linear regression.
However, post-hoc group comparisons for even five groups lead to a very strict alpha
level correction. Thus, further increasing the granularity of the independent variable
seems infeasible for the empirical topic of our work.

Another difficulty of the granularity of data was the interpretation of gaze sequences.
Already with five conditions and three ROIs the resulting table of statistical test results
is only useful for researchers, if a pattern can be extracted. However, this allowed
different groupings of ROIs to answer different questions (i.e., split of gaze averted or
top/bottom. Additionally, the granularity of gaze sequences is adequate as a basis for
learning robot gaze behavior from human data.

Other factors concern the ecological validity of the interaction since the study took
place in a controlled laboratory setting, and the relatively homogenous participant
sample, namely persons spending time in the TU Wien library. Populations with
different age ranges and cultural backgrounds might give different ratings and show
different gaze behavior than the participants of this study.

2.5.3 Design Recommendations
In this study, we wanted to determine whether human-inspired gaze settings are indeed
the only way to provide agreeable HRI robot behavior parameters. We found, that on
a conscious level, participants did not distinguish between the different GAR settings,
but there were significant behavioral differences.

Designers who aim for long robot interactions with users should aim for a higher
GAR setting (i.e., avert the gaze more often).

Designers should be aware that users will start to imitate the gaze behavior of the
robot, with respect to the overall amount of gazing at different ROIs, which might
impact interaction goals.

For robot platforms adhering to the honest anthropomorphism principle [20], this
means that it should be unproblematic to incorporate additional gaze behavior during
a conversation with a specific user. For example, in an elderly care home, the robot
could have a conversation with one resident, while performing fall detection monitoring
on its surrounding.

We observed that although the robot gaze behavior was not inspired by human
parameters, we observed that in some aspects participants reacted as if the robot
was indeed a social agent. Thus, sticking to human-inspired values might be a good
starting point for a social behavior implementation. However, when technological
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aspects demand a deviation from these settings, this does not necessarily lead to a
worse perception of the robot by the users.

2.6 Conclusion and Future Work
We conducted an experiment in a controlled laboratory setting in which a robot asked
participants to talk about their favorite films. While listening to the participants, the
robot used different gaze aversion ratios between condition groups from 0.1 (gazing
away only 10% of the time) to 0.9 (averting the gaze to the side 90% of the time). We
measured how this factor influenced the user experience through eye-tracking, behavioral
measures of interaction duration and word count, as well as self-reported attitudinal
data. By varying the independent GAR parameter over a broad range of values that
were intentionally not human-inspired, we observed that human participants adjusted
their own GAR to the robotic GAR, but not by mere gaze following. Participants showed
gaze aversion behavior that is usually associated with uncomfortable interactions when
the robot also averted the gaze most of the time. However, the freely chosen interaction
duration was the shortest when the robot stared (GAR 0.1) at the participants. Since
interaction duration has previously been used as a proxy for comfort in a social
interaction, this is not an intuitive finding and suggests that adapting the GAR in an
interaction is a stronger mechanism than gaze aversion to regulate the level of intimacy
in an uncomfortable interaction. Regarding the self-reported attitudinal measures,
participants did not rate a single GAR setting significantly better or worse than others
with respect to the attention or capability of the robot or the comfort in the interaction.
However, there are behavioral indicators that the GAR settings on both ends of the
parameter range were more uncomfortable than medium parameters. These findings
suggest that robot behavior designers can use the robot GAR to influence the interaction
duration if necessary, with the caveat that intense robot staring might be uncomfortable.
In some situations, robots might have tasks that are concurrent with a social interaction
(e.g., fall detection, reception work). This might require the robot to avert its gaze to
gather information from its surroundings. Our work suggests that in such cases, the
robot designers can quite freely adjust the GAR to suit the parallel task, as it does not
affect the conscious user experience. To summarize, humans seem to apply social gaze
behavior towards robots, even if the robot gaze behavior is not implemented by relying
on predetermined human gaze parameters.
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Gaze Sequences

In the previous chapter, we argued for the deviation from human-inspired gaze behavior
timings in conversational settings on the second-to-second level to provide more freedom
in the gaze behavior design. We will use this insight in conversational settings for joint
action settings, where the gaze is also an important modality. In conversational settings,
the social component of attitudes toward the robot is more salient than in joint action
settings since, during joint actions, there are also other gaze metrics to optimize, like
the signaling of task-related beliefs and intentions.

Figure 3.1: In a joint action HRI setting in the time resolution of up to one minute,
robotic gaze sequence planning can be learned from empirical human data.

We move downward in the time resolution scale to regard joint attention sequences
of about a minute in HRI settings where the human and the robot collaborate on a
common goal (Figure 3.1). Within one minute during a collaborative physical task,
multiple discrete actions by both actors occur. Both actors must repeatedly choose their
gaze target. They switch their gaze between the collaborator’s face and the actions
they perform, as well as other objects and locations involved in the task. Thus, gaze
planning, resulting in a specific gaze target sequence, is essential for joint action tasks.
The gaze of an actor can serve as an interaction smoother [86] since it signals the
current focus of attention to the collaborator through referential gaze or as a means of
coordination through mutual gaze. However, in a joint action HRI setting, it is still
being determined how a humanoid robot should dynamically plan the sequence of gaze
acts throughout the interaction. Humans solve this by simultaneously and repeatedly
using multiple cognitive capabilities, such as sequential planning and ToM.

In this chapter, we review insights into psychological research on joint attention. We
derive a structure for a technical implementation of a joint attention gaze controller
applicable to human-robot collaboration tasks.

40
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But how can descriptive psychological results be used in robotics? In [21], the authors
argue that the width and depth of human coordination capabilities in social contexts
will be out of reach for the foreseeable future for technological systems. Instead, they
suggest focusing on feasible components that can solve simplified problems or help
in a small part of the problem. Heeding this advice, we restrict the problem space.
As a task, rearranging colored wooden blocks on a tabletop is an actively used HRI
setting [87]. Smooth, cooperative behavior in this setting is challenging both on an
engineering and a research level.

Concerning the robot capabilities, the field of automated planning provides a
means of finding long horizon high-level plans for pre-specified task domains, such as
Blocksworld1 using the Planning Domain Definition Language (PDDL). A prerequisite
for this formalism to be applicable in the robotic context is the proper implementation
of a state filter and all defined atomic actions. The state filter translates sensor readings
to domain-specific states (e.g., whether block A rests on top of block B on blockA
blockB). Atomic actions are defined in the PDDL domain specification, e.g., the action
pickup blockA means that the robot can reliably pick up block A without disturbing
the rest of the scene. The automated planner finds action sequences from the current
state to the specified goal state, in this case, a specific arrangement of blocks on the
tabletop. This formalism has previously been extended to collaborative settings [32] in
such a way that the robot has a plan indicating who must act and how. Thus, the robot
knows when it is its turn to act and when it should wait for the human collaborator to
move a block.

However, in previous settings, the gaze modality is only used in a limited way. Mainly,
the gaze is statically directed at the tabletop to determine the tabletop state. This
method does not yet solve the gaze planning aspect of the scenario.

To this end, we propose adapting the approach in [76], [78] from a static conversational
setting to a dynamic joint action setting. This is done by transforming static object
roles (e.g., the green block) to dynamic object roles specific to the current plan (e.g.,
the next object to be picked up at a specific point in time). Using eye gaze data from
human dyads, we derive a state-dependent probabilistic gaze controller that produces
sequences of human-inspired gaze targets that are suitable for the current state of the
tabletop scene.

The resulting gaze controller serves several purposes. First, it produces referential gaze
behavior during robot actions. Second, it communicates its belief state by proactively
gazing at the objects relevant to the plan execution while waiting for the human to act,
with a natural balance of referential and mutual gaze. Third, this serves as a heuristic
for improving gaze planning, as imagined in the research area of active vision [33].

We demonstrate the feasibility of the data capture in a real-world scenario and the
calculation of the gaze controller in a pilot study. Thus, a humanoid robot has access
to gaze planning for the time resolution at the scope of up to a minute.

The following hypothetical situation motivates a joint action scenario which is typical
and easy to process for humans. It highlights several aspects of joint attention that are
not easily implemented in technological systems. Think of a situation where you have

1https://github.com/gerryai/PDDL4J/blob/master/pddl/blockworld/blocksworld.pddl
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to coordinate with another person in a physical task at hand. Let us say that you and
a friend attempt to move a sofa up a staircase. Both of you have the same goal, namely,
to bring the sofa up into another apartment, and the sofa would be too heavy for either
one of you to attempt to do so alone. Hence, each of you grabs one end of it. It is also
clear to you that your actions influence each other, such that you must monitor and
react to each other. Similarly, you can signal to your friend how you imagine squeezing
the sofa around the tight corner ahead. You probably will not verbalize each and every
intention, but you just push the sofa in one direction more than strictly necessary to
signal a direction, or you catch the gaze of your friend by intently looking into their
eyes and then gaze into a direction you intend to go. A short nod on their side could
signal that they understood. Both of you proceed for a few seconds with the now shared
and agreed-upon plan, until you have to check in with your friend to coordinate again.

Collaboration is highly necessary and not overly mentally taxing for humans. Never-
theless, when paying close attention to these collaborative processes that occur almost
automatically, it seems that there are numerous different components on different levels
of abstraction at work. For example, how do we notice the focused attention of others?
Which mental processes let us adapt and align our plans? How do we infer the plans of
others? How do we make sure that the other person is really on the same page as us?
How do we choose which kind of signal to use for which kind of information? How do
we draw the attention of others and signal attention on our part? One must consider
all these questions when implementing the capability of human-robot collaboration on
a social robot.

In this section, we first contribute a discussion of results in psychology related to
this topic (Chapter 3.1). Specifically, we review research on joint attention [88], [10]
and ToM [89] with a focus on the human gaze in physical tasks. These are important
building blocks generally required for the success of collaborative tasks in human-
human interaction (HHI). First, we properly differentiate the two terms and observe
how theory of mind builds on joint attention. Then, we focus on joint attention in
the robotic context (Chapter 3.2). We contribute a review of different approaches
employed by roboticists to provide robots with joint attention capability or at least
a technically feasible equivalent. Finally, we propose a novel probabilistic robotic
gaze controller for a joint action benchmark between the human and robot proposed
by [87], based on building a tower out of various wooden blocks (Chapter 3.3). For
object-centered collaborative physical tasks, this represents an approach to generate
realistic, intuitive, and interpretable gaze behavior. We report the initial results of a
pilot study (Chapter 3.4) and discuss how to include it into the joint action benchmark.
Our contribution extends a stochastic gaze controller for static scenarios to dynamic
ones. The content of this chapter is based on previously published work in [90].

3.1 Joint Attention in Psychology
Joint attention has been studied since the 1970ies [8]. Research on joint attention in
psychology yielded structural and procedural models, as well as analyses whose cues
are used to signal the state of joint attention between humans. If we intend to have
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service robots in the future that share environments with human beings and provide
help in everyday physical tasks, they must be endowed with the ability to engage in
joint attention [21] in a similar way as two humans.

Joint attention is the process of sharing one’s attention with another person, using
social cues for coordination. The coordination effort focuses on a third object, event,
or stimulus [91]. One of the earliest reports of joint attention appeared in 1975 in an
article by [8] and studied the gaze following ability in infants. The experiment showed
that only 30% of two to four-month-old children engage in gaze following, whereas from
the age of eleven months, every infant is able to do so. To this day, a significant amount
of research is conducted on joint attention in child development.

How can we achieve something functionally similar to human joint attention in
Social Robotics? First, we consider some results of cognitive and social psychology to
better understand how joint attention empowers humans. Furthermore, we consider
the components constituting joint attention and how it is embedded in the broader
coordination process.

3.1.1 On Theory of Mind and Modeling Joint Attention

One insightful approach is to recognize joint attention as a necessary building block
for the more high-level mental capability of ToM. [12] describe joint attention and
ToM as relevant in the field of social cognition, as they are concepts explaining how
humans process information about other humans in social situations. Children at the
end of their second year of life already possess the following capabilities: “1) They
understand other persons in terms of their intentions. 2) They understand that others
have intentions that may differ from their own. 3) They understand that others have
intentions that may not match with the current state of affairs (accidents and unfulfilled
intentions).” [12, p. 105]

The term “theory of mind” was coined by [92] and comprises several mental capabilities
that develop later in children, around the ages of three to four. It allows them to
represent more complex mental states than intentions, namely: “1) They understand
other persons in terms of their thoughts and beliefs. 2) They understand that others
have thoughts and beliefs that may differ from their own. 3) They understand that
others have thoughts and beliefs that may not match with the current state of affairs
(false beliefs).”[12, p. 104] 2

[88], [89] claimed a structural relationship between the separate mental modules
of joint attention and ToM. In fact, they claimed that the human ability they call
“mind-reading” requires at least four components that build on each other. Mind-reading
is defined in the sense that humans can often infer the thoughts, beliefs, plans, and
emotional states of other people they observe or think about, in short, reason about
“mental things.”

2Although the term joint attention originated in developmental psychology, other approaches in
psychology also provided results on the topic, some of which are covered in the following subsections.
In these, adults who exhibit a fully developed joint attention capability are the subject of the study.
As our robot model is also not developmentally inspired, we do not focus on child development for
the remainder of this chapter.
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Figure 3.2: Mind-reading system, adapted from [88].

The four component system consists of the intentionality detector (ID), the eye-
direction detector (EDD), the shared attention mechanism (SAM), and the theory
of mind mechanism (ToMM) (Fig. 3.2). The author claims the modularity to be a
necessary part of the model, as different clinical diagnoses can be explained by deficits
in specific modules. The ID interprets self-propelled motion of entities in terms of its
desires and goals. The EDD specializes in detecting eyes or eye-like stimuli, recognizes
the direction of the gaze, and enables the mental attribution of the ability to see an
observed entity. The purpose of the SAM module is to integrate the two types of
information provided by the ID and EDD. This module already allows humans to
determine whether another entity has the same target of visual attention. The ToMM
module builds on the SAM module and achieves two goals: First, it allows inferring
mental states in others from their observable behavior. Second, it allows us to generate
explanations for observable behavior by integrating these hidden mental states into
theories [93]. ID and EDD form dyadic representations (e.g., a cat chases a mouse (ID),
or a cat sees a mouse (EDD)). The SAM module, however, builds triadic representations
that are not possible only in the ID and EDD (e.g., I see a cat that chases a mouse).
Finally, the ToMM module is able to represent the full range of mental state concepts.
These are referred to as M-Representations and enable descriptions of mental states
where an agent has an attitude toward a proposition (e.g., Johnny believes that “the
money is in the biscuit tin.”). There is research that builds on this model in the fields
of clinical, developmental, and comparative psychology (where the latter studies the
mental processes of non-human animals).

3.1.2 Procedural Model of Joint Attention
Another approach to explain joint attention is to categorize processes involved in a
successful joint attention event. From observations in infants, the two core processes are
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Figure 3.3: An example of a mental rotation task, adapted from [95].

responding to joint attention (RJA) and initiating joint attention (IJA) [10]. RJA refers
to the ability to follow the direction of the gaze and gestures of others. This allows to
establish a common point of reference. IJA describes an infant’s ability to use gestures
and eye contact to direct the attention of others. Targets of attention are either objects,
events, or the infant themself. Clinical research shows that developmental deficits
arise in either of these two processes separately. Comparative studies in non-human
animals show that animals have the capacity for one of these processes while little to
none for the other. Chimpanzees, for example, can respond to, but rarely initiate joint
attention [94].

3.1.3 Eye-Mind Hypothesis

The gaze occurs first to gather information, while it also signals information to observers,
either intentionally or unintentionally. [95] introduced a simple yet powerful idea, namely
the “eye-mind hypothesis.” At that point in history, cognitive psychologists strived
to understand what was then called the central processor of the human mind. Their
experiments involved eye-tracking while performing mental rotation of Tetris-block-
shaped three-dimensional objects (Fig. 3.3) as well as checking whether displayed
sentences correctly described the content of pictures next to them. The authors
discovered relations between the ongoing mental operation and the gaze fixation target.

In summary, they found empirical evidence that the “locus of eye fixations reflects
what is being internally processed” and that the “locus of the eye fixation can indicate
what symbol is currently being processed” [95, p. 53]. The term symbol indicates a
mental content or entity, something one can think about. For example, when thinking
about your favorite mug, your mental representation of that mug is a symbol.

However, there are limits to the eye-mind hypothesis: [96] argue that the eye-mind
hypothesis is more likely to hold when a person is performing a visual task, as opposed
to pure cognitive tasks or tasks involving modalities other than the gaze.

3.1.4 Types of Gaze Behavior

As discussed in previous sections, there is strong evidence of some connection between
the mental focus of attention and the current gaze target. In situations where a potential
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interaction partner is present, there are several plausible gaze targets. Looking at objects
or specific locations other than the interaction partner is referred to as the deictic gaze.
When two interaction partners are attending to each other’s gaze it is called mutual
gaze, colloquially eye contact. Gaze following is the action of attending to the gaze of
the interaction partner, detecting their gaze direction, and then focusing their own gaze
onto the stimulus that is being attended by the partner. [97] also disambiguated the
state of joint attention from gaze events that appear similar, but have a lower degree
of coordination: 1) Simultaneous looking at an object that is triggered by a “pop-out”
effect or salient event; 2) Coincidental simultaneous looking at the same object; 3) Gaze
following of one agent, while the other pays no attention to the fact that they are being
observed; 4) Coordinated gaze at the same object, but attention to different aspects of
it (e.g., action intent (like playing with it), or aspect (like color)).

Gaze also plays a large role in pure conversation settings. For example, staring at
the other person is often uncomfortable, unnatural, and does not lead to a smooth
conversation experience for either participant. Therefore, gaze aversion is often equally
important and serves different roles: First, it regulates the intimacy of a conversation.
Secondly, it is utilized for turn-taking in a conversation. Gazing at the addressee after
an utterance while being silent indicates that the other person should take the floor.
Thirdly, averting the gaze indicates cognitive effort. Thus, a speaker can signal that they
are not yet done with their turn, even though they are currently silently formulating a
statement in their mind [23].

3.2 Joint Attention in Human-Robot Interaction
An envisioned goal for Social Robotics is close collaboration between humans and
robots, reaching beyond humans and robots working on different subtasks that lead to
a common end result (e.g., pick-and-place robots in production). Actual collaboration
between humans and robots is a sequence of shared actions toward a shared goal and
requires coordination [98]; in other words, joint attention is employed in the sofa moving
example mentioned in the introduction. In our work, we explicitly focus on HRI use
cases surrounding object manipulation (e.g., picking up objects) and exclude settings
with a stronger social focus.

There is no definitive theoretical model for joint attention on a robot. For implemen-
tation purposes, one approach is to view the desirable input-output relation for a given
scenario as the requirement and use whichever technique is available and achieves the
result. For example, a human and a robot can both generate plans for solving a given
problem, but their specific methods can differ.

Additionally, [21] argued that the width and depth of human coordination capabilities
in social contexts will be out of reach for technological systems in the foreseeable future
(although constant progress is being made). We must instead direct our attention to AI
research and look for feasible components that solve simplified problems or help with a
small part of the problem.

The authors split the problem of developing a ToM for social robotics into a micro
(actual interaction), meso (relationship building), and macro level (roles and persona).
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On the micro level, they associate ToM, perspective-taking, shared intentionality, and
common ground. Common ground refers to mental content of which all interaction
partners know that this content is known by everyone.In relation to these levels, our work
addresses a joint attention implementation on the micro level, excluding considerations
on the meso and macro level.

3.2.1 Implementing Joint Attention for HRI Tasks

HRI research has produced several results regarding joint attention implementations on
robots. These include the capability of drawing attention to another reference point,
as well as establishing, monitoring, and ensuring joint attention during an interaction.
The interaction settings are either conversational with different points of interest in the
environment or physical such as object handovers or other object manipulations.

These scenarios differ from pure conversational settings between a human and a
robot. Typically, joint attention HRI settings involve at least another object, location of
interest, or event besides the two agents. The human and robot both measurably focus
their attention on this third entity or even physically interact with it. [99] proposed an
HRI joint attention mechanism. They presented the difficulty of drawing a person’s
attention to another reference point. This includes how to make a person understand
the communicative intention of the robot, and how to deal with the person’s attention
status. They implemented the pointing and gazing functionality on a humanoid robot,
enabled the robot to perform the mutual gaze, and represented the person’s attentional
focus as a spatial coordinate. They conducted an experiment, where the robot acted
as a presenter of a scientific poster to a human participant. Results indicate that
humans gazed more frequently towards the poster when the robot acted according to
the proposed attention mechanism.

[11], [100] extended the Responding and Initiating Joint Attention (RJA, IJA, Chap-
ter 2.2) model by an explicit Ensuring Joint Attention component (EJA). The EJA
component in their framework encapsulates the ability to monitor another’s attention
to verify that joint attention is reached and maintained. They describe a cannonical
joint attention episode between two agents comprising five steps: 1) Connection of
two agents, where they become aware of one another and anticipate an interaction;
2) Joint attention request by the initiating agent, where it focuses the attention on
a third object and uses communicative channels such as pointing, gesture, and voice;
3) Joint attention response, where the other agent also focuses on the third object; 4)
Monitoring, where the initiating agent ensures joint attention by switching the focus
between the other agent and the referential focus; 5) Joint attention is reached, the
interaction continues. The authors equipped their social robotic platform with a finite
state machine, a procedural representation of the described joint attention episode.
The perception capabilities of the robot included face detection, marker detection to
perceive pointing actions, and speech recognition for a few phrases, which were used
to check the attentional state of the human interaction partner. The humanoid robot
had a movable head with two degrees of freedom and eyes with two degrees of freedom,
as well as movable arms for pointing and a speaker for verbal communication. The
authors conducted several experiments. In the first one, the robot had to show that it



48 3 Gaze Sequences

can respond to joint attention by attending to objects that the humans pointed at. In
the other experiments, which were video-based, the robot had to direct the attention of
a human to a presentation as a tour guide, ensure attention while delivering a verbal
message and giving directions. The overall result indicates that robots with their joint
attention implementation performed better in responding to pointing actions tasks and
were considered more natural in the video-based experiments. [11] mentioned that it is
unclear how to design the specific timings of the EJA component.

[101] created an autonomous gaze system for the Furhat robot (a mounted mannequin
head with an animated video-projected face) for a puzzle-like spatial reasoning task
conducted on a tabletop. Their attention system is split into a proactive and a responsive
gaze layer with different priority levels. Gaze events of higher priority override those
with lower priority. The timing of gaze shifts is uniformly sampled from predefined
ranges. The human participant, task objects, and the surrounding environment (for
gaze aversion) are possible gaze targets. The proactive layer handles the gaze related to
the speech acts of the robot (eye contact, IJA at task objects) and idle gaze behavior
through gaze aversion. In the responsive layer, user speech activity and a detected
mutual gaze led to a mutual gaze, while gaze tracking and object tracking was used
for RJA events to gaze at objects. The system was then used to engage with the user
during the task, comment on their progress and provide hints for the correct move. In
a user study, self-reported data suggested that the robot with both responsive and the
proactive layers was perceived as more socially present than the robot with only the
proactive component, as only the former was able to react to the user and thus engage
in joint attention.

Joint attention capabilities have also been shown to improve collaborative physical
tasks like handovers in HHI [102], but also HRI. [103] created a two-layer architecture
for physical robot-to-human handover tasks for a humanoid robot. The first layer
represents the physical state of the handover as a Hidden Markov Model with the
states “Robot pick up,” “Robot hold,” “User grap,” and “Robot not hold.” These states,
however, are only estimated by the current and torque values measured in the robot
hand. A higher-level layer was then added that serves as an additional safety check to
release a grasped cup to the human under the right conditions. The authors observed
that human users performed a sequence of actions in a successful handover: browsing
the environment, looking at the target cup (optionally looking at the cup repeatedly),
and finally grasping the cup. The second layer registers the gaze pattern of the human
by monitoring the head direction. Only if the described gaze pattern is detected before
registering a grasp attempt the robot releases the cup. The extension of the handover
architecture has been empirically shown to result in fewer unsuccessful grasp attempts.

Similarly, [104] compared HRI handover scenarios with varied humanoid robot gaze
behavior. In an HHI handover study, they detected two gaze patterns of the agent
handing over the object: The shared attention gaze is gaze-directed at the projected
handover location. In addition to this behavior, a turn-taking gaze pattern sometimes
occurs, which consists of establishing eye contact while reaching out. These findings
were implemented in a humanoid robot, which resulted in the experimental conditions of
no gaze (baseline), shared attention gaze, and the shared attention gaze plus turn-taking
cue. The authors found that human users reached for the handover object earlier in the
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two gaze conditions and reported a trend of self-reported preference for the turn-taking
behavior over the other two conditions.

3.2.2 Planning for Joint Human-Robot Interaction
As [88] mentioned, humans are expert mind readers. Hence, when a human observes
another human in an everyday situation, the observer most likely forms an idea about
what the observed person is trying to achieve with their current actions. For example,
if you see someone in a kitchen opening the cupboard drawer containing all the mugs,
you will probably already think about which drink they want to consume, while all they
did was simply open a drawer. Notable, it is quite possible that the observed person
will do something different, but our experience tells us that getting a drink is the most
probable goal given such an observation. One research direction on Joint HRI is to
explore methods for simulating this human capability, namely AI planning.

We distinguish between symbolic and subsymbolic planning: In a formal language,
symbols are atomic tokens of a language. This means they cannot be split into smaller
units of meaning. Symbols are manipulated with some kind of procedure to build
more complex expressions. This is (mostly) comparable to our spoken language with
its single tokens, such as “cat,” “in,” and “tree.” From these tokens one can build
expressions “cat in tree” or “tree in cat.” One of these makes more sense from our
experience than the other, but both are correct expressions in our language. In turn,
the expression “cat tree in” would not be considered part of our language. There
is simply no valid symbol manipulation sequence that can generate this expression.
Nevertheless, symbols alone do not have any meaning in themselves, and the problem
of assigning symbols to references in the physical or social space is referred to as the
symbol grounding problem [105], [106]. In contrast, subsymbolic planning involves a
more direct representation of the problem. Consider a map where one must find the
shortest route between two points. There are no tokens that are manipulated, just
path-finding reasoning with the data provided by the map.

Generally, subsymbolic planning is often used for collaborative problems such as
social navigation (i.e., safely moving through a crowd of people [107]) or human-
robot handovers, where the problem is represented and solved in a task space like the
Euclidean space of a suitable dimension. For more abstract or high-level planning
problems, however, a symbolic approach makes the problem formulation more compact.
In this book chapter, we focus on such representations.

Before formulating the problem itself, however, we must consider our underlying
assumption, namely the rationality of all involved agents. Broadly, this means that an
agent would rather perform an action that results in a benefit to them rather than harm.
In the frame of the problem definition, the question is how to define a cost function,
or even how to know that optimizing the expected cost for a problem is even the right
thing to do [108]. Assigning reward (or cost) values to certain outcomes of a decision
process may be intuitive. These may be of a monetary value, or of a more subjective
value, like choosing between washing the dishes or sweeping the floor. Thus, every
action is assigned a reward value. If the action outcome is stochastic, then a reward
distribution is assigned to each action. An example of this is a game where an agent
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chooses between receiving 1000 € or letting a coin flip decide whether they receive 2000
€ or nothing. Although the expected value of both actions is the same, most people will
have a preference for one or the other, depending on their inclination toward gambling.
Thus, using the expected value alone is insufficient to model the preferences of agents.
This is solved by deriving a so-called utility function for all action outcome distributions.
For a utility function to exist, a rational agent must be able to provide a consistent
ranking of different probability distributions over outcomes according to the axioms of
rationality [108]. Thus, each action outcome is assigned a utility value. Finally, a cost
function can be derived from the utility function.

Markov Decision Processes (MDP) can be used to solve problems in sequential
decision theory [108], where agents repeatedly chose actions according to their current
state. A single agent MDP is defined by 1) a non-empty state space S, which is a finite
or countably infinite set of states; 2) for each s ∈ S a finite, non-empty action space
U(s) with a termination action (it is applied when reaching a goal state); 3) a finite,
non-empty nature action space Θ(s, u) for each s ∈ S and u ∈ U(s) (a nature decision
maker represents uncertainty in the action outcome); 4) a state transition function
f that produces a state, f(s, u, θ), for every s ∈ S, u ∈ U , and θ ∈ Θ(s,u); 5) a set
of stages, which is either infinite or set to a fixed, maximum stage (i.e., how many
sequential actions can be taken before the problem must be solved); 6) an initial state
sI ∈ S; 7) a goal set SG ⊂ S, and 8) a stage-additive cost functional L. The goal of
the agent is to find a plan to reach a goal state from the initial state. Because there
are stochastic state transitions, a policy π : S → U must be found for all s ∈ S that
minimizes the cost. Alternatively, π can be a mapping from a state to a probability
distribution over the action space. Then, this corresponds to a randomized instead of a
deterministic strategy.

Markov chains are a simplification of this model without an explicit decision maker.
Nature determines the outcome of the next state alone. Markov chains are used to
model stochastic processes and, like MDPs, fulfill the Markov assumption (Equation
2.1). S1, S2, . . . , St denotes the sequence of random variables up to timestep t, where
the outcomes are si ∈ S. This means that only local information, and not the entire
history of the process is used to determine the probability of the next state transition.

Generally, artificial agents have some sensing capability to determine the current
state they are in. However, due to nature, sensor errors can occur. This leads to another
type of uncertainty besides stochastic state transitions, namely state uncertainty. This
means that the agent does not know for sure whether it is in a single current state
st ∈ S, but holds a belief about the current state, expressed as a probability over S.
Including this belief into planning lifts the problem formulations from the state space
into the state belief space.3

For joint action scenarios, it is important to model more than one active decision
maker. This leads to the inclusion of the game-theoretic concept of the two-player
nonzero-sum game [108]. One formulation is to extend the MDP definition by another
agent. Herein the two agents (players) P1 and P2 have their respective action spaces U1
and U2. In zero-sum games, there is only one cost function L : U × V → R ∪ ∞, which

3Literature presented in this chapter as well as our contribution only concerns planning in state space.
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one player regards as reward, and the other player as cost. In the nonzero-sum game,
however, each player has a different cost function (like L), namely L1 and L2. Both
players now aim to minimize their costs according to their respective cost functions.
Thus, in such games different degrees of cooperation can be formulated, from total
cooperation to a zero-sum game. This formulation can be lifted to sequential games on
game states by expanding the MDP definition by another player.

In symbolic planning problems, if the planning problem uses deterministic action
outcomes, a widespread approach in robotics is to employ classical planning. A classical
planning domain (i.e., a state-transition system) is a triple Σ = (S,A, γ) or a 4-tuple
Σ = (S,A,γ, cost). S is a finite set of possible states of a system. A is a finite set of
actions that an actor can perform. γ : S × A → S is a partial function called the
state-transition function. When γ(s,a), s ∈ S, a ∈ A, is defined, then a is applicable in s,
and γ(s,a) ∈ S is the outcome of the action. cost : S × A → [0, ∞) is a partial function
with the same domain as γ, defining a metric, which is to be minimized, such as the
monetary cost or time. In this kind of representation, there are the assumptions of a
finite, static environment, no explicit time (except the cost, if it is to be interpreted in
this way), and no concurrency, indicating that actions cannot be performed in parallel.
Actions are deterministic, which means that the outcome of an action is known with
certainty [109].

In the formulation above, there is a finite set of states (S = (s0, s1, . . . )) with no
specific relation to one another. A more succinct way of describing states is by using state-
variables (predicates) and objects. Hereby, states are defined as specific instantiations of
these state-variables. These state-variables can use objects as arguments. A concrete
example is the PDDL planning domain blocksworld [110], which is a formal planning
language that is commonly used for robotic tasks that involve planning in semantic
domains. It is an approach to encode a classical planning problem derived from previous
formal languages like the Stanford Research Institute Problem Solver (STRIPS) [111].
A PDDL problem is encoded by a domain and a problem instance, where the domain
describes the state-variables and operators, which are uninstantiated action templates.
Once an operator is given parameters, it is called an action. Operators, like pickup,
are defined with objects as possible parameters (?ob), preconditions, and effects. Only
when the preconditions are met in the current state, the action is performed by applying
the effects of the action on it. This is done by adding and/or removing predicates
from a state. The problem instance describes the existing objects, the initial state, and
the goal. The solution represents a plan which solves the problem. There are PDDL
versions that allow durative and concurrent actions, continuous and conditional effects,
etc. However, we disregard these options for simplicity.

3.2.3 Plan Recognition in Classical Planning

Classical, symbolic AI planning is an approach to endow a robot with a planning
capability suitable for joint HRI situations. However, it is only a part of the solution.
A robot must also be able to infer the goal and plan of the interaction partner. To this
end, classical planning plan recognition is employed [26], [112]–[114]. An advantage
of this approach is the reuse of the planner that the robot uses to generate its own
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plans. The plan recognition problem is formulated as a triple T = ⟨P, G, O⟩, where P
is a planning domain, G is a set of goals, and O is a sequence of observed actions. See
Chapter 4.2.2 for a formal definition. When the sequence O ends in a state that is a
goal, the goal recognition is trivial; however, when the observation ends in a state that
is not a goal, the problem is to predict which is the most likely goal, to rank these goals
with regard to their relative probabilities, or to assign probabilities to the different
goals. Various approaches have different ways of executing this, but their commonality
is to transform the original planning domain to accommodate the observations and
subsequently compare the cost of different plans. Different plans are generated for a
single goal, e.g., one that satisfies the observations and one that does not. When the
cost of adhering to the observation for a goal is significantly higher than reaching the
goal without doing so, that goal is probably not likely to be the actual goal of the
observed actor. This builds on the assumption of rationality of an agent, i.e., that one
attempts to fulfill their desires in an effective and efficient way.

3.2.4 A Benchmark in HRI for Joint Action

Situations that are simple and intuitive to solve for a human team, such as building a
specific tower out of wooden blocks on a table, prove to be complex and difficult for
current joint attention research. Therefore, this setting - a human and a humanoid
robot who attempt to build a block tower - is used as a recurring scenario in joint action
research [7], [115]–[117].

Pure plan recognition research often only treats problems that are already formulated
in formalisms like PDDL. Similarly, the problem formulation of plan recognition does
not deal with the continuous coordination effort that is necessary in joint attention
situations. [32] combined classical planning in the block world domain with the demands
of joint action problems. In their study, they set up a joint action scenario with a
human participant and a PR2 robot4 (Fig. 3.6, left). The PR2 robotic platform was
equipped with several optical sensors and two arms with pincer grippers. The setup
includes fiducial markers on the blocks to facilitate their recognition. The robot was
able to perceive the world state (i.e., the current arrangement of blocks) and manipulate
the blocks.

The robot and the human participant have a shared goal. They stand on opposite
sides of a table and attempt to build a specific block tower with blocks lying on the
surface. However, each agent is only able to reach some of the blocks, hence they must
collaborate. To introduce another challenge, there is not one single fixed sequence that
results in the correct block tower (Fig. 3.4). For example, there are two places for
putting the red blocks and each actor has access to one of the two red blocks. They
need to coordinate who picks which placement spot. The following difficulty arises
when the agents must place the block stack green-blue-green. Again, each actor has
access to only one green block. Thus, the actors must coordinate who places the first
green block.

The authors approach this scenario as a multi-agent planning problem. The robot
4https://robots.ieee.org/robots/pr2/, Image source: https://www.wevolver.com/wevolver.staff/pr2
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Figure 3.4: Joint action task described in [32]. Left: Initial configuration. Right: Goal
State.

finds plans by modeling three discrete actors (itself, the human, and a fictitious X agent)
who can place the blocks. In valid plans, actions that are assigned to the X agent mean
that either of the two actorsm, human or robot, will perform the action. Notably, in
the example above, there could be multiple open actions at once, e.g., placing the two
initial red blocks in the center. In the shared plan, when the next necessary step is an
action performed by the human, the robot waits for its completion. When the next
necessary step is a robot action, the robot performs it. However, whenever an action is
assigned to the X agent, the robot has different approaches for enacting this shared
plan, namely acting lazily (i.e., waiting for a specified amount of time and watching
whether the human will perform the action) or in a hurried way (i.e., the robot always
attempts to immediately perform an X action. Furthermore, agent assignments can
change during the plan execution, such that the plan must be recalculated after each
step. For example, when one actor places the first green cube, the placement of the
second cube is no longer an X agent action, as only the other agent has a green block
left. This demonstrates the complexity of this simple collaborative block world problem
as it already exposes numerous interesting and difficult aspects of joint action and
requires further research effort. Thus, to establish a standardized scenario, [87] propose
a joint action scenario similar to [32]. Their goal was to facilitate finding answers to the
following questions: “What knowledge does a robot need to have about the human it
interacts with [...]?”; “What information should the human possess to understand what
the robot is doing and how the robot should make this information available [...]?” [87,
p. 2] The proposed simple HRI scenario has the following setup and assumptions:

The common goal of the human and robot is to build a stack of four blocks in a
specified order with a pyramid on top. They are on opposite sides of the table and face
each other. Each agent has access to two of the four blocks. There are two pyramid
pieces, one on either agent’s side of the table. Only one of the two agents is supposed to
place the pyramid piece at the end of the action sequence. The agents are restricted to
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Figure 3.5: Left: Initial configuration. Middle and Right: The two possible goal states.

Figure 3.6: Two domestic service robots. Left: Toyota Human Support Robot (HSR).
Right: PR2 by WillowGarage.

the actions of the block world domain, plus a handover action, and a possibly support
tower action.

Fig. 3.5 illustrates the initial and the possible goal states. Both agents are assumed
to perceive the current world state and thus are able to locate objects and assess their
reachability by either agent. Finally, each agent is able to observe actions of the other.

3.3 Toward a Gaze Mechanism for Joint Actions
As described above, one of the two core questions posed by [87] is how a robot should
signal information that is important to the human in order to enable smooth collaboration.
We argue that the gaze is a useful modality for this specific benchmark task even for
robots, as it is highly intuitive for humans to interpret, and is perceived constantly
without being bothersome (in contrast to continuously verbalizing information, for
example). It is furthermore potentially easier to perform than other non-verbal behavior,
e.g., pointing.

Conveniently, common mobile service robotic platforms such as the PR2 by Wil-
lowGarage or the Toyota Human Support Robot5 (HSR) (Fig. 3.6) have head-like
extensions with two degrees of freedom that house forward-facing optical sensors. There-
fore, the head orientation represents in fact the direction of gaze. Social humanoid
robotic platforms, such as Pepper from Softbank Robotics6 or Nao7 (Fig. 3.7) have the

5https://robots.ieee.org/robots/hsr/, Image source: https://developer.nvidia.com/embedded
/community/reference-platforms/toyota-hsr

6https://www.softbankrobotics.com/emea/en/pepper
7https://www.softbankrobotics.com/emea/en/nao
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Figure 3.7: Two social humanoid robots by Softbank Robotics. Left: Nao. Right:
Pepper.

same degrees of freedom in their heads and have already been used in gaze-related HRI
studies. Research has shown that their head orientation communicates attention [118],
[119] and is interpreted as gaze by human participants. We, therefore, propose that the
gaze in the joint action benchmark will significantly smooth the interaction between the
human and the robot, as it has previously in the different communicative HRI settings
surveyed by [22].

3.3.1 Comparison of Human-Derived Gaze Mechanisms
It is important to model the gaze behavior of domestic service robots in a way that
it primarily does not impede their functionality, and secondly serves a communicative
purpose in joint attention and joint action situations. The human gaze is very effective
at doing both simultaneously. During object manipulation tasks, humans gaze at task-
relevant objects and locations [120], [121]. This behavior is a rich source of information
for an interaction partner in collaborative scenarios. In the ideal case, a robot would
use its gaze to improve its belief about the current world state, as well as utilize the
communicative aspect of gaze. Therefore, a model of the human gaze in joint action
tasks can be used as an initial heuristic. The most important characteristics of such
a model are the gaze locations and timings, i.e., when to look at what. Another,
perhaps less important factor, is the transition dynamics, i.e., which animation profile
is exhibited by gaze transitions.

When implementing a gaze model for a robot that interacts with another actor and
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objects in its environment during a joint task, the question of when the robot looks at
a specific gaze target needs to be addressed. More specifically, which sequence of gaze
targets and fixation durations communicates the attentional (gaze) focus of the robot
to the human actor? We assume that the gaze is divided between the objects the robot
manipulates itself, the object manipulations of the human partner, and the human’s
hands and face. The gaze at the objects that the robot wants to manipulate is (at least
at some point in the process) necessary for the proper execution of the planned action.
Thereby, the robot communicates its own attentional focus through gaze. The gaze at
the object manipulations by the human is necessary to assess the current world state.
The gaze at the face of the human is necessary to ensure the joint attention status.
Similarly, at each point, the gaze of the robot could be interpreted by the human to
draw conclusions about the attentional state of the robot.

This might seem to overly complicate the block stacking benchmark task, however,
it represents only an initial step to solve more difficult scenarios. Examples of these
include tasks with more than two actors, and tasks that include more movement, such
that not each important location of attention is captured in a single camera angle, for
example when objects are positioned further apart, when actors do not face each other
all the time, or when objects are occluded.

3.3.2 Modeling the Sequence of Gaze Targets

Next, we discuss how to create a gaze model for the above-mentioned tasks. [77], [78]
employed a specific methodology for creating a gaze controller specifically for gaze
aversion in conversational settings. They recorded two eye-tracking datasets in dialogs
between two humans, where one participant was the interviewer and the other the
interviewee. One dataset was generated from the view of the interviewer, the other one
from the view of the interviewee, using a wearable Tobii Glasses 28 eye-tracker. For
each interview perspective they used a sequential data mining method to derive the
most common gaze shifts, where the following gaze targets were encoded: the face of the
dialog partner (referred to as gaze contact fixation by the authors), and gaze aversion
directions relative to the position of the face (down, up, left, right, and diagonal).

More importantly for this book chapter, stochastic models are also used to model gaze
sequences. (First order) Discrete-Time Markov Chains (DTMC) describe sequences of
gaze directions using the Markov property assumption (Equation 2.1, Section 3.2), i.e.,
only the previous gaze target determines the probability of the next gaze direction and
the possible states are in the set Ω = {center, up, down, left,
right, up − left, up − right, down − left, down − right}.

A simplifying assumption was made, namely time-invariance, meaning that the
probabilities do not change depending on the position in the sequence. This allows the
gaze model to be represented as a Markov chain transition matrix of size |Ω| × |Ω|. A
cell matrix cell value pij represents the probability of changing the gaze from target xi

to xj and the rows must sum up to 1.
The authors argued that a gaze controller producing such stochastic behavior will

8https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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Figure 3.8: Gaze data capturing during the pilot study. Left: Initial position. Middle:
Eye-tracked participant places a block from the reachable area. Right:
Placement of the pyramid block. Both participants can place their pyramid,
and after a negotiation phase, the other participant places the final piece.

be helpful in HRI conversational settings. Further, they have future plans to validate
this idea by implementing it on a humanoid robot and conducting HRI validation
studies following the methodology of [23], where the proposed model with proper gaze
timings was tested against a baseline with static gaze and a baseline with inverted
timings (“anti-timings”). The study argued that both baselines should lead to a worse
evaluation of the robot by the human interview partners than the proposed model.

This kind of gaze control is aimed at conversational HRI settings and has numerous
useful applications, such as tour and info guidance, receptionist duties, etc. Mobile
service robots such as the Toyota HSR can additionally perform object manipulation
tasks and require gaze control for them, as argued above. Providing a gaze controller
for the joint action benchmark task described earlier is thus helpful to handle more
realistic scenarios in the future.

3.4 Data Collection
We describe how to adapt the procedures from [77], [78] to a collaborative object
manipulation task. In a pilot study, we recreated the block stacking task with the
pyramid top presented in [87] (Fig. 3.8). Two human participants sit opposite each
other at a table. One of the two participants per trial wore a PupilLabs Core9 [122]
eye-tracker with monocular eye-tracking.

We tested two pairs of participants (n = 4). Each pair conducted two trials. After the
first trial, they swapped positions, such that each participant wore the eye-tracker in one
trial. All participants were briefed by the experimenter. The participants were asked to
read and sign an informed consent form. They were instructed to collaboratively build
a specified tower (from bottom to top: green - red - lavender - blue - pyramid). Figure
3.5 depicts the view of the person wearing the eye-tracker. This person was instructed
to act as if only the red block, blue block, and right pyramid is reachable for them. The
person sitting opposite was instructed to act as if they can only reach the green block,
the lavender block, and the left pyramid.

The participants were instructed to follow a set of rules: (1) Use only your right hand.
The task was simple enough for humans, such that non-disabled persons can use their
right hand even if it is not their dominant hand. (2) The right hand is supposed to

9https://pupil-labs.com/products/core/
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always be above the table. (3) The left hand is supposed to be out of sight underneath
the table. (4) Participants were asked not to rotate the blocks while moving them.

The participants were informed that this was not a test and that speedy execution is
not important. Starting a grasping action while the other person is still placing their
block was not forbidden. The blocks display fiducial markers facing the person wearing
the eye-tracker and participants were asked to grasp the block in a way that does not
occlude the markers. The placement position of the bottom block was also marked on
the table with fiducial markers. These rules and restrictions were implemented such
that the resulting behavior is similar to the one of a robot during such a task.

The two participants were asked to memorize and recite the correct block stacking
sequence before the experiment to avoid execution mistakes and to limit gaze and other
behavior that is not associated with shared plan execution. The participants were not
allowed to discuss any strategy before the task and were not allowed to speak during
its execution.

The participant wearing the eye-tracker is referred to as the robot (R), because the
recorded gaze behavior is meant to be implemented on a service robot. The other
participant is referred to as human (H). X denotes the X Agent (X). The resulting
interactions included only actions that were in accordance with the optimal plan:
(pickup H green) (place H green table) (pickup R red)
(stack R red green) (pickup H lavender) (stack H lavender red)
(pickup R blue) (stack R blue lavender) (pickup X yellow)
(stack X yellow blue)

Gaze behavior that results from these interactions thus depicts gaze behavior for
smooth interaction without errors. During the last step, where the two agents need
to negotiate who picks up their pyramid piece, gaze behavior indicative of negotiation
will take place. The generalization is naturally only possible for an appropriately large
sample size and only for populations with the same demographic properties. In this
chapter, only a preliminary feasibility check with a small sample size is presented, and
the obtained results serve as an exemplary outcome.

The goal of this experimental setup is to elicit successful collaboration and the
corresponding gaze behavior in the person wearing the eye-tracker. Large-scale plan re-
negotiations during the task must be avoided. Small-scale negotiations (i.e., resolution
of X agent actions) fall within the capabilities of the planning formalism. This choice
is motivated by the consideration of the full robot architecture: In problems that are
more general than the chosen experimental setting, large-scale plan deviations might
occur. However, after each action (planned or unforeseen), the visual sensors of the
robot will detect the resulting world state, which will be used as the initial state of the
planning problem. Then, a new shared plan will be calculated. This might result in a
new planned sequence of actions. The robot gaze controller always acts with respect
to a determined plan, as described below in further detail. Thus, if a new plan is
calculated, the gaze is adjusted according to the newfound plan. Plan changes occur
due to unforeseen actions; however, this does not result in unspecified gaze behavior.
The robot gaze always corresponds to the belief of the robot and visualizing the belief
of the robot through gaze is the goal of this gaze controller.

During the trials, the strategy to overcome the ambiguity of who places the pyramid
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Next Target
Target Face Hand Table Green Red Lavender Blue Yellow

Face 0.12 0.12 0.29 0.17 0.17 0.13
Hand 0.13 0.23 0.02 0.22 0.11 0.11 0.07 0.11
Table 0.11 0.37 0.08 0.25 0.04 0.04 0.11
Green 0.30 0.05 0.24 0.14 0.05 0.17 0.05

Red 0.10 0.10 0.25 0.12 0.23 0.10 0.10
Lavender 0.38 0.07 0.07 0.11 0.26 0.11

Blue 0.19 0.04 0.11 0.04 0.14 0.48
Yellow 0.67 0.17 0.08 0.08

Table 3.1: DTMC transition probabilities of eye-tracked locations.

was always solved with the “turn-taking” strategy, where the person who placed the
topmost rectangular block waits for the other person to place the pyramid. In our small
sample, the placement of the pyramid occurred either immediately or after a short
period of inactivity.

For each gaze data sample, we conducted the following evaluation: Using fiducial
markers10, as well as (the partner’s) hand and face tracking [123] allowed the recognition
of these objects in the eye-tracked video. By defining a 100 pixel radius around each
target, we distinguish eye fixations of the other person’s hand and face, as well as the
placement location of the bottom block on the table, as well as all other blocks and
pyramids. Furthermore, we encode fixations gazing at none of the above.

For each sample, a sequence of fixations is extracted from the gaze data, and we create
a DTMC transition model by counting the transitions. In this scenario, this yields a
8 × 8 matrix (pyramids are counted as one object). The gaze targets are the face of the
partner, the hand of the partner, the placement location on the table, the four blocks,
and the two pyramids, which are counted as one object due to their interchangeability.

For this gaze controller, we disregard fixations that do not fall in the radius of any
target. If a fixation falls on a spot in the visual field that is currently in the radius of
more than one target, we count split transitions and mark more than one object as
currently active until the gaze falls on a single object again.

The aggregated model in Table 3.1 was derived with the gaze model for every sample.
There are two possibilities of arriving at the probability values, which sum up to 1 per
row: Either the frequency counts of the transitions are averaged per sample, and then
the averaged matrices are added and again normalized per row. This is the variant we
chose since it leads to an equal representation of each sample. Another method is to
add all frequency count tables and only then normalize over the rows.

The controller can then be applied to create gaze behavior by choosing a basic
timestep unit, e.g., one second (This varies with the task, and the robot embodiment.)
and creating a gaze sequence by starting in a random or predetermined (e.g., face) state.
The next state is sampled with the probability weights of the row of the current state.

Further work is planned to split the gaze controller into two parts and to analyse
10https://april.eecs.umich.edu/software/apriltag
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Next Target
Target Face Hand Past Prev. Curr. Next Future

Face 0.08 0.08 0.19 0.11 0.19 0.33
Hand 0.16 0.19 0.09 0.27 0.20 0.09
Past 0.11 0.11 0.78

Previous 0.12 0.12 0.12 0.12 0.50
Current 0.20 0.35 0.19 0.22 0.03

Next 0.23 0.12 0.11 0.06 0.31 0.15 0.03
Future 0.33 0.50 0.17

Table 3.2: DTMC transition probabilities of eye-tracked locations in their dynamic
context of the plan execution.

whether the gaze behavior in the action phase (placement up to the last block) differs
from in the negotiation phase (placement of either pyramid).

3.4.1 Creating a Gaze Controller for Time-Variant Scenarios
Table 3.1 indicates the specific objects the participants gazed at during the whole
task duration. This neglects an important factor, namely the dynamic nature of the
time-variant task. During the task, the world state is defined by the block arrangement
and whether an actor is currently grasping a block. It is clear to both actors which
block to grasp next (or whether to negotiate who should place the pyramid top). For
the plan execution, the following block to be placed has another role to the actors of
the current action than a block that has already been placed. Therefore, we annotate
the video samples with the current state of the world, i.e., which blocks have already
been stacked (neglecting whether a block is grasped or not). Thereby, we partition the
set of blocks, pyramids and table placement location into sets of past, previous, current,
next, and future. The current block is the one that must be picked up and placed at a
specific point in time. The previous block is the block that was placed right before the
current block. Prior to placing the first block, previous indicates the table placement
location. The next block indicates the block to be placed after the current block. Past
and future blocks group blocks that have been placed before previous, and must be
placed after next, respectively. The controller in Table 3.2 is derived with this dynamic
assignment of object roles. Hence, we preserve the time-invariance assumption of the
gaze controller with this transformation from block identities to temporal roles.

3.4.2 Future Work
We tested the described pipeline to derive a gaze controller with transition probabilities
based on a larger sample size. Careful attention to the validity of the result must be
paid, as numerous design choices have been taken in the aggregation method of the
different study participants and filtering of fixations in single samples. Therefore, we
propose a validation study where a pre-programmed humanoid robot and a human
participant perform the described task. The robot functions according to the same
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assumptions as the one described by [87]. The robot acts in two different conditions: It
can place the final piece proactively (try to do it itself) or “lazily” (wait until the human
places it). During the task, the robot exhibits gaze behavior in accordance with the
gaze controller derived from the empirical data collection. There will be two baseline
conditions, namely one where the robot does not display any gaze behavior at all, and
another one, where the robot acts according to “anti-timings,” as in the study of [23].

For the gaze controller, there are numerous possible elaborations. For example, the
state space of the temporal roles could be expanded by the belief of who the believed actor
of that action is. The state space would then be {past, previous, current, next, future}×
{robot, human, Xagent}. The robot gaze could thus vary when the robot believes that
the human is about to perform the next action in contrast to when the robot believes
that it is to perform the next action itself.

While the approach in [77], [78], and [23] has worked in conversation settings, it
is unclear how gaze processes with dynamic gaze targets are handled by a robot. As
human-like object manipulation capabilities are the current goal of service robotics
research, human-like gaze behavior in object manipulation tasks is also beneficial, as
humans are known to actively seek out information that helps solve the current task.
This approach has a counterpart in robotic vision, called active vision [33]. Future
research can make use of the derived gaze timings to more reliably focus on important
aspects of a scene, according to the ongoing task.

3.5 Conclusion
In this chapter, we mainly focused on research in psychology and HRI on joint attention,
although there are numerous other related interesting subfields that influence how to
think about joint attention in service robotics.

In psychology, attention is studied in numerous different scenarios, such as sustained
attention, vigilance, and other low-level models of attention. In developmental psychol-
ogy, research on the autism spectrum disorder in infants and developmental robotics
explore how social collaboration abilities develop and emerge in complex behavior from
more simple prerequisites. Studies in neuroscience and psychophysics focus on the
neurological processes leading to the attention phenomenon. Differential psychology
studies how personality traits lead to different modes of attending to stimuli.

Similarly, for AI/robotics, there are numerous fields that deserve a mention in
attention research. Visual attention is an inductive bias, often used in visual pattern
recognition and machine learning research. Multi-agent reinforcement learning deals
with the emergence of communication protocols between untrained agents and how they
attend to each other to solve complex collaborative tasks. In different computational
cognitive architectures, joint attention may be a feature that emerges from the dynamic
interplay of different architecture components. In machine vision, object detection plays
a critical role regarding which objects can be paid attention to. Only if an object is
detected, segmented, or classified, it will be able to enter the center of attention. In
planning and scheduling, there are numerous different paradigms with many different
frameworks, of which a single one was chosen as the focus in this chapter.



62 3 Gaze Sequences

To summarize this chapter, first, structural and procedural models of joint attention
from the psychological perspective were discussed. The special relation between ToM
and joint attention was of particular interest. We then focused on gaze as the main
sensory modality. Information gathered through gaze not only provides necessary
information to calculate mental representations of one’s surroundings, but it is also
driven top-down to focus on areas that are crucial to form a coherent explanation. This
gaze behavior can be a source of information for observers.

Second, we reviewed how these insights are used to create robotic implementations for
different joint attention or joint action scenarios. The scenarios included conversations
with locations of interest other than conversation partners or collaborative physical
tasks with different manipulable objects.

Third, decision-theoretic and classical planning were reviewed for their use in such
collaborative physical tasks. Special attention was paid to plan recognition and the
usefulness of a benchmark (building a tower out of blocks) for joint action in HRI.

Finally, we proposed a method for learning a stochastic gaze controller for such
tasks from data. The joint action benchmark of jointly building a tower was used
as experimental foundation. We presented a method to preserve the time-invariance
assumption of the stochastic controller by assigning temporal roles to objects. These
roles are assigned dynamically by checking the current world state and the shared plan.
This was followed by an outlook on future research needed for the development of a
novel gaze mechanism for joint actions in HRI.

The work presented in this chapter only is a building block to a significantly larger
research problem, namely how to enable humans and robots to succeed in dynamic
collaborative tasks. However, it also demonstrates that attention is a topic that must
not only be considered relevant for HRI research, but for the entire robotics field.



Chapter 4

Plan Recognition from
Object Detection Traces

The previous chapter described how to produce joint attention gaze behavior in the
time resolution of up to a minute when the collaborators have a shared task and goal
in an adequately defined setting. However, service robots that co-inhabit spaces with
humans will have to act in a more unconstrained environment with regard to their task
domains, different goals within the domains, and time horizon. Several challenges in
the time scale of up to several minutes arise when a robot observes a human interacting
with objects in the environment. When does a task start? What is the current task
domain (e.g., fetching objects, setting the dinner table, tidying up the kitchen)? [124],
[125] What is the specific goal in the task domain? And how can a robot help the
human once it has identified the current goal? It is desirable that robots recognize when
a human is performing a task that lies within their area of capability and subsequently
estimate the pursued goal within the respective domain.

Figure 4.1: In the time resolution of up to ten minutes, robots must recognize human
goals and plans during physical object manipulation tasks to formulate
helping actions.

In order to fulfill this requirement, a robot must first gather relevant information
about its surroundings. This can be done using, e.g., RFID sensors, smart home sensors,
or marker-based systems. However, these setups are intrusive and cumbersome to
install, preventing their general applicability and acceptance in everyday environments.
In this chapter, we rely explicitly on video data, which is much more desirable because
sensors are typically integrated on standard robot platforms.

63
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Many household activities have multiple ways to achieve a specific goal. In this
thesis, we examine food preparation as a real-life domain relevant to service robotics
and include many of the challenges mentioned above. For example, there are different
ways of preparing a meal in a fully equipped kitchen. Different utensils fulfill the same
function, ingredients vary, and the execution steps are only partially ordered. Thus,
human plans to solve long-horizon high-level tasks show much variance. However, an
observing robot should still be able to identify the task domain and goal and choose
a practical action depending on the chosen plan (Figure 4.1). E.g., the robot may
step back when a human is reading a book in the living room but must step in when
the human is doing a chore. Robots in long-term deployment will be confronted with
human behavior from different domains; not all are relevant to a robot.

Once a goal is identified, the robot must find a way to help the human in the activity,
i.e., determine which actions in the planned action sequence are eligible for the robot to
perform. Notably, the kind of robot intervention in complex human tasks depends on
the desired mode of interaction during collaborative tasks. If the robot reacts to human
commands, there are different command-based interaction modalities [126], such as
speech-based, gesture-based, and brain-computer interface-based command modalities.
More broadly, there are different interaction styles for collaborative tasks. [7] identify
different variations of autonomous (autonomous, proactive, reactive), human-led (human
help request, human command), and robot-led (robot commands the human what to
do, the robot provides information about what the human could do) interaction styles.

For most of these different interaction styles, some underlying capabilities must be
developed: detecting the world state, predicting the actions of the collaborator, and
formulating plans for their path of action.

Service robots in long-term deployment already find high-level plans to solve complex
tasks that take several minutes to execute. High-level automated planners are used to
arrive at single-agent plans in their designed task domain. In previous work, it has been
shown that this single-agent task knowledge can also be used for plan recognition [112]
while observing other agents under the assumption that the observed actor indeed acts
in the estimated task domain.

A robot should not only recognize a goal, but also be able to reason about the
observed human action and formulate its own plans (e.g., to help accomplishing an
ongoing task) from an image sequence. However, automated planners rely on an abstract
representation of a problem, e.g., using the PDDL planning language formalism. Robots,
on the other hand, only receive time series of sensor readings. A domain-specific state
filter must process the sensor readings to provide a formulation of the world state to
the automated planner. For example, a knife touching a carrot could mean that the
carrot is cut. Therefore, the fact isCut(carrotA) can be added to the current state in
the automated planner.

Symbolic planning paradigms like classical planning, answer set programming or
constraint satisfaction programming possess the necessary abstraction level to solve
different types of problems. Among these, classical planning uses the most natural
formulation for agent-centric problems.

Action recognition [127] can be used to determine specific actions. In robot-centered
task domains, however, manipulating objects is often the focus. In such object-centered
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physical tasks, it has been found that the sequence of physical contact between objects
holds information to identify actions. In [128], [129], the authors use this idea to arrive
at an unsupervised categorization of different actions. However, it is not enough for
robotic tasks to identify an action in isolation from the rest of the ongoing activity.
It must be clear which objects are involved and how the detected action is used for
plan recognition. Automated planning formalisms allow defining actions that take
arguments. The arguments can be objects of the planning problem instance. We use
the idea of [129] and apply it as a state filter to an automated planning problem,
thus allowing us to perform plan recognition merely from 2D object detections. We
show that without explicit action recognition, only with 2D object detection available
can we prune the many possible plan hypotheses and estimate the current goal. An
advantage of this method is the usage of planning capabilities that a robot needs to
solve a task independently. Thus, improvements in the robot’s planning capabilities
will also positively affect its plan recognition capability. We provide service robots a
way of estimating goals from sensor data in the time scale of several minutes of human
activity that fall into relevant robotic task domains and allow them to help the human.

The symbolic tokens in classical planning problems must be instantiated from subsym-
bolic data like pixels in a video. Lifting such data to a higher level poses several problems.
To avoid operating with meaningless symbol tokens, [105] proposes a bottom-up repre-
sentation of two parts: an iconic representation, which can detect object instances in
sensory input (e.g., the many shapes an object can cast on the retina of an observer)
and a categorical representation, which holds information about class invariant features.
In this chapter, we substitute object detection algorithms and knowledge bases for these
two components.

We propose a method to infer goals and plans from an image sequence given object
detections, a PDDL domain and instance, an object ontology, and a set of goals. A
knowledge base is used to complete affordance and object property knowledge in a given
PDDL instance template. An object detection algorithm provides bounding boxes of
objects in the video sequence. A sequence of sets of possible planning actions is created
from the completed domain model and sequence of object interactions. From this
sequence and together with the planning instance, a Monte-Carlo-Tree-Search (MCTS)
procedure creates a directed acyclic graph (DAG), where nodes represent states and
edges represent actions. This search graph can represent all possible plans that can
be generated from the sequence of possible planning actions. Using the properties of
MCTS and using a plan recognition algorithm as a rollout policy, parts of the search
graph that lead to a goal are predominantly expanded.

The choice for using a MCTS search graph results in a drastically reduced length
of the observation trace used in each call to the rollout policy. Using the given plan
recognition algorithm directly on the whole sequence of possible actions usually does
not terminate or find a solution. This is due to the fact that there are usually much
more object interactions in a video sequence than necessary planning actions to fulfill
the corresponding planning problem. Also, depending on the problem formulation,
an object interaction can often instantiate two planning actions with complementary
effects, such as “pick up” and “put down”.

Current evaluation uses the annotated dataset in [130], which is a portion of the
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larger, but not as thoroughly annotated, MPII 2 Cooking dataset [131]. We use classical
planning domain formulations in two different degrees of complexity. Due to partial
observability and multiple cooperative agents (e.g., two hands that need to work together
to achieve some effects), this is a challenging planning domain.

In summary, this chapter makes the following contributions:

1. a novel problem formulation of goal estimation procedure from video without
explicit activity recognition,

2. plan representation through DAG,

3. analysis of MCTS evaluation schemas for goal selection.

The chapter is organized as follows: Related work is presented in the following
section (Chapter 4.1). We next provide a detailed description of each step in our
proposed method (Chapter 4.2). Next, an evaluation and different proposed metrics are
discussed (Chapter 4.3). This is followed by an outlook (Chapter 4.4) and a conclusion
(Chapter 4.5). The content of this chapter is based on previously published work
in [132].

4.1 Related Work

4.1.1 Plan Recognition

[113] describe the different layers of the recognition problem and the different approaches
within each area. They summarize that activity recognition and plan recognition form a
pipeline from low-level sensor to high-level complex goals and intents. [133] argue that
activity and plan recognition are conceptually inter-related by formalizing the general
recognition problem.

Most relevant for our work, [26], [112], and [114] propose plan recognition procedures
with increasingly relaxed preconditions. In these approaches, a goal recognition problem
is compiled into a classical planning problem that leverages different kinds of classical
planning solvers. In another approach, [134] develop a goal recognition procedure using
partially observable Markov decision process (POMDP) planners for the stochastic case,
where the agent and observer have access to the same POMDP model.

Further results, elaborating the plan recognition as planning approach, are given
by [135], and [136]. The worst-case distinctiveness of a plan recognition problem is a
measure that describes the maximal length of a plan an agent pursues before being
able to deduce the actual goal. This measure can be used to create domain models
where agents reveal their true goal as early as possible. [137] define the necessity of a
proposition for a set of goals in a given plan recognition instance, which describes the
percentage of goals that require the said proposition to be true. This measure can be
used to detect helpful actions in a multi-agent scenario.
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4.1.2 Activity Recognition

Many methods to infer current human activity from time series data like videos or human
pose estimations have been proposed [138]. [139] comprises methods and methods to
infer plans from a series of atomic actions. Plan recognition approaches are said to
mostly operate under the keyhole paradigm, where the unobserved agent is unaware of
its observer, which is the case in this chapter, too.

[128], [129] demonstrate that object interaction, in the case of contact between two
objects, can describe activities. In contrast, we study whether object interactions hold
enough information to directly solve symbolic plan recognition problems.

The prior work proposes Semantic Event Chains (SEC) for manipulation actions,
which capture changes in the spatial relations between a manipulator (e.g., human
hand or robotic gripper) and manipulated objects. A strength of this approach is that
the object properties do not play a role in the identification of actions. This approach
enables unsupervised learning, where clustering of different types of SECs enables
different manipulation sequences to be learned, e.g., hiding an object will result in a
different SEC than cutting an object with a knife.

This is an inspiration for our approach. We assume that in order to solve a symbolic
planning problem with planning operators of arity 2, a sequence of planning actions
instantiated with a task-specific combination of objects present in the planning instance
must be generated from a video.

4.1.3 Knowledge Representation

Regarding a more general issue, [105] formulates the symbol grounding problem, which
is especially relevant for robotic contexts, as shown in the review by [106]. [140] propose
a learning-from-demonstration algorithm that can learn symbolic representations of
sensory input patterns through the intermediate clustering in conceptual spaces.

There have been several approaches to organizing relational knowledge [141], and
especially robot-centered knowledge [125] [142] in knowledge bases. These knowledge
processing systems support storing and reasoning on semantically annotated subsymbolic
data and use common-sense ontologies for the given everyday use-case.

4.1.4 Plan Estimation from Video

[143] devise an approach that estimates goals from video frames and plan libraries.
They use a CNN for explicit activity recognition, creating a sequence of activities for
each input video. This sequence is then matched to sequences of cooking actions. Each
recipe is represented as a tree of cooking actions. This approach is able to perform goal
recognition from video, however, it does not allow individual objects in the plan to be
considered.
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Figure 4.2: System overview. From a video sequence, the spatial object annotation
is created. A PDDL template is completed by a knowledge base. The
observation sequence results from the object interaction list and the PDDL
instance. An MCTS procedure estimates a posterior goal probability for
the goal set.

4.2 Method
This method is developed for sufficiently complex domains where a single object
interaction cannot automatically achieve a goal. Appropriate problems contain goals
that are achievable through various partially ordered plans. This section details the
building blocks of the approach (Fig. 4.2).1

4.2.1 Object detection

From a video, a spatial annotation of relevant objects is created, provided by methods
like [144] or [145]. With such an annotation, the object interaction sequence O′ is
composed. Under the same assumption as in [128], the start and end point in time
of two objects having physical contact holds information about the whole sequence of
actions within a given sequence. O′ is a list with strict ordering by frame number. For
each frame, a pair of objects are added to a set when the interaction between them
begins or ends according to their spatial annotation. We could also define a start and a
stop set per frame to use all the provided information. If a planning action is matched
to an object interaction, it is then assigned either to the start or stop set, which must
be chosen by the domain designer. This is left for future work. For online use of our
approach, fast object detection systems need to be pre-trained with all objects relevant
to the domain.

1Code available at https://github.com/michaelkoller/pic-to-plan-v2-git

https://github.com/michaelkoller/pic-to-plan-v2-git
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4.2.2 Classical Planning and Plan Recognition

In [112], a STRIPS planning domain is a tuple P [·] = ⟨F, I, A⟩, where F is a set of
fluents, I ⊆ F is the initial goal state, and G ⊆ F is the goal state, which completes
P [G] to a planning problem. A is a set of actions, where a ∈ A are actions with Pre(a),
Add(a) and Del(a) as its preconditions, add and delete lists.

A plan recognition problem is a tuple T = ⟨P [·], G, O⟩, where P is a planning domain
and G is a set of goals G ⊆ F . O = o1, . . . , om is the observed action sequence, where
oi ∈ A, i ∈ [1, . . . , m]. More specifically, a probabilistic plan recognition problem is
a tuple T = ⟨P [·], G, O, Prob⟩, where Prob is a probability distribution over G. For
this work, we adopt the probabilistic formulation and change the definition of the
observation trace: O = {o11, . . . o1p}, . . . , {om1, . . . , omq} is a strictly ordered sequence
of sets of actions. Our plan recognition problem is thus a tuple T ′ = ⟨P [·], G, O, P rob⟩.
The result of our plan recognition problem is a posterior probability distribution over
the set of goals.

4.2.3 Knowledge Base

In order to keep domain models and instances consistent and more manageable, we
define a knowledge base per planning domain and instance, which completes the given
domain and instance template. The ontology K = (T , A), where the TBox T is a finite
set of general concept inclusions (C1 ⊑ C2) and the ABox A is a finite set of concept
and role membership assertions (C(a), R(a,b)). Using consistency checks and automatic
inference reduces the effort for the designer.

Individuals defined in the knowledge base are assumed to be present in the scene.
This can include past observed objects, objects that are usually present given a certain
context (e.g., in a functional kitchen, there will be a sink), and hypothetical objects.
Similar to [146], hypothetical objects are objects in the database that incur a higher
cost than regular objects when being used in planning operators to achieve a goal.
Therefore the planner will avoid using hypothetical objects (e.g., prefer retrieving an
observed tool and using it instead of a hypothetical one). However, if the observed
object interactions that constitute a planning problem strongly suggest the use of an
unobserved hypothetical object, it might be that the robot lacks relevant knowledge of
the current observed scene. Currently, it is up to the designer to define which typical
objects are hypothetical.

4.2.4 PDDL Domain and Instance Completion

In order to complete the PDDL instance, concepts declared in T are inserted into the
domain definition, whereas all concept and role memberships of individuals (i.e., fluents)
occurring in A are inserted into the initial state description. All individuals are inserted
into the objects definition of the planning instance. This way, only predicates that are
necessary for the intended formulation of the planning operators need to be explicitly
defined in the planning domain model.
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4.2.4.1 Compilation of PDDL Domain

As a result of the binary interactions of the interaction sequence O′, all planning
operators must also be defined with arity of 2. This is often a natural fit for manipulation-
heavy domains, but sometimes refactoring is necessary. In our formulations, we are
always able to compile operators of arity greater than two into binary operators with
the method described below.

To show this, we use unary and binary predicates since predicates of higher arity
can be refactored to semantically equivalent groups of predicates with lower arity.
For a domain D = {d1, . . . , dm} and an n-ary predicate P , introduce mn predicates
of the form Px1,...,xn−1/xn , with xi ∈ D, i ∈ [1, . . . , n]. The intended semantics of this
is shown with the example D = {u,v,w} and a model I, where I |= P (u,v,w) ⇔
Puv/w(u,v) ∧ Puw/v(u,w) ∧ Pvw/u(v,w).

Planning operator definitions of higher arity can be reformulated to lower arity under
the assumption that certain predicates represent a resource, e.g., a hand can only hold
one object at a time.

(:action A_3
:param (?x ?y ?z)
:precondition (and a(x) b(y) c(z)

d(x,y) e(y,z) f(x,z))
:effect (and a’(x) b’(y) c’(z)

d’(x,y) e’(y,z) f’(x,z))
)

(:action A_2
:param (?x ?y)
:precondition (and a(x) b(y) d(x,y)

(exists (?z) (and c(z) e(y,z) f(x,z))))
:effect (and a’(x) b’(y) d’(x,y)

(forall (?z) (when (and c(z) e(y,z)
f(x,z)) (and c’(z) e’(y,z) f’(x,z)))))

)

It is now also necessary to define an operator that can affect the fluents containing
the factored variable, in this case z and c(z), e(y,z), f(x,z), which are also of lower
arity. The designer has to impose an order on the refactoring sequence.

4.2.4.2 Observation Trace

Next, we want to instantiate actions that can result from an object interaction, comparing
static preconditions of planning operators and static object properties defined in the
knowledge base. Therefore we define a mapping f : O′ → O from the interaction
sequence O′ to the sequence of possible actions O using the completed domain model.
For each interaction between {o1, o2} both permutations (o1, o2), (o2, o1) are considered.
For an object interaction tuple (p,q), all object concept memberships Ci, i ∈ {p, q}
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Figure 4.3: DAGs for O1 = {A+, B+}, {A+, B+} (left), O2 =
{A+, A−},{B+, B−}, {A−}, {B−} (middle), O3 =
{A+, A−},{A+, A−}, {B+, B−} (right).

are queried from the knowledge base, and for each planning operator, preconditions
Pi, i ∈ {p, q} that also occur in the knowledge base are considered. The action a(p,q) is
instantiated if Pp ⊆ Cp and Pq ⊆ Cq. This represents a necessary condition for actions
to be able to arise from an object interaction. This way, many object interactions are
filtered. However, for a single object interaction, many actions can be instantiated,
e.g., if there are multiple matching actions ((Stack A,B), (Unstack A,B)), or both
arguments are from the same object class ((Stack A,B), (Stack B,A)).

4.2.5 Monte Carlo Tree Search Directed Acyclic Graph
The generated list of possible actions O = O1, . . . , Om, with Oi = {o1, . . . , on} is the
observation trace of our plan recognition problem. In our experiments with the given
domain model, there are usually hundreds of sets of actions and |Oi| > 1, i ∈ [1, . . . , m].

4.2.5.1 Search Graph

From this list, a directed acyclic search graph can be built, where nodes represent states
in the planning problem, the root node represents the initial state from the PDDL
instance, and directed edges represent actions that transform the origin state to the
destination state. If a node has multiple incoming edges, there exists a lowest i among
the sets Oi to which the incoming edges belong. All actions of all sets Oj, j > i must
be considered as possible children of the current state. If an edge would create a cycle
in the graph it is not inserted. Cycles would be created if an action transforms the
current state in a previous state such that a directed path from the resulting state to
the current state already exists in the DAG. This excludes only suboptimal plans from
consideration. For example, consider the toy planning domain with the fluents a,b and
the actions A+,B+, A-,B-, which add or delete the respective fluent to the successor state.
Fig. 4.3 shows examples of DAGs created from different O.

Algorithm 1 creates the DAG (cf. [147]). With some abuse of notation, we equate
states to nodes. VAL [148] is used to evaluate if an action is applicable in a given state,
as it is not guaranteed that all preconditions are given.

The resulting DAG represents all possible sequences of actions given an O, and its
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Algorithm 1 DAG Construction
1: procedure ConstructDAG(O, ninit, δ)
2: N ← {ninit} ▷ Node set
3: E ← {} ▷ Edge set
4: for i = {1, . . . , |O|} do
5: N ′ = {}
6: for n ∈ N do
7: for a ∈ Oi do
8: n′ ← δ(n, a) ▷ Apply a to n
9: if n ̸= n′ then

10: if n′ ̸∈ N then
11: N ′ ← N ′ ∪ n′, E ← E ∪ (n, n′)
12: else if ̸ ∃(n′ ⇝ n) then ▷ Avoid
13: E ← E ∪ (n, n′) ▷ cycles
14: N ← N ∪ N ′

15: return N , E

depth is bound by |O|, where only few paths down the DAG represent goal-directed
behavior, if at all. Monte Carlo Tree Search is well suited for informed asymmetric tree
expansion. Additionally, using MCTS is an anytime algorithm, and observations can
be added to the observation trace incrementally.

We use adaptations presented in [147]: In a DAG, c(x) denotes the set of edges going
out of x, if x is a node. If x is an edge, then c(x) denotes the set of outgoing edges of
the destination of x. For an edge x and its origin y, b(x) = c(y), the set of siblings of
edge x, including x. µ(x) and n(x) denote the mean reward and the number of visits
to the respective node or edge. p(x) = Σe∈b(x)n(e) denotes the total number of payouts
to the sibling set of x. µ′(x) and n′(x) denote the reward that is attached to an object
x, which is attached to it between its first appearance and the first appearance of a
child of x. [147]

µ0(e) = µ(e) (4.1)

µd(e) = µ′(e) × n′(e) + Σf∈c(e)µd−1(f) × n(f)
n′(e) + Σf∈c(e)n(f) (4.2)

n0(e) = n(e) (4.3)

nd(e) = n′(e) + Σf∈c(e)nd−(f) (4.4)

pd(e) = Σf∈b(e)nd(f) (4.5)

This results in the UCT score formula uc,d1,d2,d3(e) = µd1(e) + c ×
�

log pd2 (e)
nd3 (e) with

(d1, d2, d3) ∈ N3 to determine the descent path in the tree policy. In our experiments,
we used d1 = ∞, d2 = 0, d3 = 0.
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4.2.5.2 Rollout Policy

The probabilistic plan recognition procedure presented in [112] is then used as the rollout
policy using a satisficing configuration of the FastDownward planner. Using satisficing
instead of optimal planners results in faster solution generation and is alleviated to a
certain degree by our parallelization method.

In each rollout policy call, a probabilistic plan recognition problem T = ⟨P [·], G, O, Prob⟩
is solved. Typically the length of the used observation trace O, which represents the
descent path from root to expansion node, is much shorter than the original observation
sequence O. The result of the rollout policy is a probability distribution over the set of
goals G. This is stored within the respective edge, and the highest resulting probability
value n′ = max(Prob) is backpropagated along the descent path. This leads to a tree
expansion that favors paths leading to at least one of the given goals, but it does not
detect if a path favors multiple goals. This behavior could be accomplished if the
normalized sum of probabilities in Prob were backpropagated.

In the case where an edge between two existing nodes is inserted, no rollout is
performed. It is, therefore, necessary to copy the n′ value and the probability distribution
of the existing in-going edges of the destination node into the newly added edge.

4.2.5.3 Parallelization

Modern processors enable parallel rollout policy calls to be made. We modify the
UCT-MCTS algorithm given a number of processor cores. Once the tree policy has
chosen an edge to expand, as many unexpanded siblings as possible with respect to
number of cores are expanded simultaneously. Remaining cores are used to recompute
the rollout policy on a random selection of edges on the current descent path. If a plan
with a lower cost is found, the goal probability distribution and n′ value are updated.
This alleviates the problem of exceptionally bad planning costs in previous steps. Most
of the runtime is spent performing the rollout policy, which prevents the system from
real-time application. Efficient domain design and more rare use of the rollout policy
during graph expansion might alleviate this problem.

4.3 Evaluation

4.3.1 MPII Cooking 2

[130] present a detailed bounding box annotation for a subset of the MPII Cooking 2
dataset [131]. We use the bounding box object annotation to create the initial touch
events sequence. This sequence, together with the ontology and the domain, comprises
the possible actions for an instance. The number of redundant actions is very high
and represent a realistic use case. Although, due to the small number of annotated
videos and only two different performed recipes, a thorough evaluation is not possible.
The complete MPII Cooking 2 dataset is still very suited for our experiments since it
contains many different sequences of preparing dishes (goals), variation for reaching



74 4 Plan Recognition

a goal, and significant overlaps in plans for different dishes. Ideally, the whole MPII
Cooking 2 dataset with object annotation from [130] would be used for evaluation.

An evaluation is performed on the dataset of [130], which consists of 9 annotated
video sequences. Each depicts a person preparing utensils and ingredients to either cut
a loaf of bread (4) or a cucumber (5) on a kitchen counter. For these instances, also
simple classifiers would work.

4.3.1.1 Domain definitions with increasing complexity

The kitchen setting is a suitable domain for our approach, where many variations of
object manipulations can result in the preparation of many different dishes. For evalua-
tion purposes, we use two planning domain formulations with increasing complexity
that are inherently multi-agent because there are two hands in the scene that can
perform different actions. In the more detailed formulation, some actions also require
cooperation between the two agents, e.g., in order to cut an ingredient, it must be
grasped with one hand and cut with a knife held in the other hand.

4.3.2 Baseline Comparison
The observation trace O is a list of sets of actions, strictly ordered by frame number.
One can transform this observation trace into a regular observation trace like in [112]
by choosing any ordering within each frame set and then flattening the list of sets.
As a baseline comparison, the regular probabilistic plan recognition algorithm can
then be applied to solve the problem. In our tests, the observation traces contained
hundreds of actions, and the planner was not able to find plans for the transformed
planning problems. Therefore all goals were reported to be equally likely. In contrast
to this, in our approach the default policy calls usually contain only a small number
of observations and terminate within the specified search time limit. [114] propose a
compilation that allows observations to be discarded at a parameterized cost, which
could alleviate the problem of domains with complementary actions like Stack and
Unstack, but it is unclear whether the general problem of very long observation traces
is handled more successfully than in [112].

4.3.3 Evaluation Metrics
Typically, MCTS is used to evaluate which action to take from the root node in order
to maximize some reward between 0 and 1. We operate with a probability distribution
as reward instead of a single numeric value. Therefore we define new metrics for this
approach. Given a graph G = (N,E) of nodes N and directed edges E, different metrics
to determine the most likely goal can be defined. Probe represents the probability
distribution over the goal set G stored in edge e. Note, that each node shares the same
Prob with the in-going edge of the highest probability.
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Metrics can be defined with respect to the considered node and edge set:

• descent path from root node choosing the highest reward, µd(e) at each edge (best
goal can change along the path),

• descent paths from root node choosing the highest reward, µd(e) per goal g ∈ G,

• whole edge set E, or whole node set N ,

• in-going edges of leaf nodes in N or leaf nodes in N .

Descent paths can terminate as soon as an actual goal state or a leaf is reached. Next,
in the specified edge set E ′ ⊆ E, the most likely goal can be defined according to the

• highest value in a single edge, arg max g ∈ Gmaxe∈E′Probe(g),

• largest sum over the edge set, arg max g ∈ GΣe∈E′Probe(g).

Table 4.1 presents results for a selection of the above-defined metrics in the more
complex domain formulation used. For the different metrics, there is a tendency that
sums of probabilities over the whole or the leaf set of nodes achieve the highest accuracy.
Using edges was not advantageous, i.e., counting nodes with multiple incoming edges
did not show any improvements. Among the sum metrics, there also is the tendency
that the metrics show a greater relative difference the more of the observation sequence
is used as input (first 10%, first 50%, 100%, Fig. 4.4). The maximum value metric
seems promising and should first be evaluated in more complex datasets.

Similar results arise in the less complex domain definition, except that no classifier
reaches accuracy of 1. This does not lead to the conclusion that a more complex domain
model helps in the goal estimation, but it will be a line of inquiry for the full dataset
evaluation. As above, the sum metrics generally achieve better accuracy, with the
descent path metric being highest (0.9).
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Figure 4.4: The plot depicts how the average relative difference between true and false
label score changes with respect to the length of the observation trace, for
several metrics in the complex domain. The bigger the difference, the better
a metric can distinguish between classes.

O% Metric avg. score acc.
true / false label

100 % ΣN 20.7 ± 10.5/14.4 ± 7.9 1.0
Σ leaf (N) 11.2 ± 5.3/7.4 ± 4.4 1.0
max N 0.88 ± 0.2/0.83 ± 0.2 0.55
Σ desc(N) 1.6 ± 9.5/1.2 ± 0.6 0.66

50 % ΣN 20.8 ± 6.9/16.9 ± 8.2 1.0
Σ leaf (N) 11.4 ± 6.9/9.1 ± 7.2 1.0
max N 0.94 ± 0.16/0.83 ± 0.25 0.61
Σ desc(N) 1.7 ± 0.6/1.4 ± 0.8 0.83

10 % ΣN 31.4 ± 14.8/27.3 ± 16.5 1.0
Σ leaf (N) 16.6 ± 10.7/14.9 ± 11.2 1.0
max N 0.88 ± 0.22 ± 0.86 ± 0.27 0.55
Σ desc(N) 2.1 ± 0.8/1.6 ± 0.8 0.66

Table 4.1: Results on MPII Cooking 2 dataset fragment (n = 9) with 2 dishes (sliced cu-
cumber/bread). Columns are divided into percentage of observation trace O
used (O %), the used metric, the average score for the correct and incorrect
predicted label), and accuracy (acc) of the used metric. The used met-
rics are arg maxg∈G Σn∈NProbn(g) (ΣN); arg maxg∈G Σn∈N ′Probn(g), N ′ . . .
leaf nodes (Σ leaf (N)); arg maxg∈G max n ∈ NProbn(g) (max N); and
arg maxg∈G Σn∈N ′Probn(g), N ′ . . . best descent path (Σ desc (N)).
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4.4 Outlook
Twin domain definitions If a robot is to reason about the goals of an observed human,
it is desirable that it has the means to formulate assistive plans toward the estimated
goal. Therefore we assume that a robot and a human will accomplish tasks in a similar
fashion in object manipulation domains (i.e., gripper and hand). However, a human
will typically have more flexibility in reaching a goal. This can be expressed by less
strict preconditions of the involved planning operators. The PDDL domain model for a
certain task for a service robot can be used to create a more suitable PDDL domain
model for observing humans. Heuristically, a human observation domain model can be
generated by a human designer by relaxing the preconditions of planning operators and
removing the then unused predicates.

PDDL extensions The PDDL formulation of an instance matched better to the
given scenario by the explicit formulation of partial observability. [149] propose a PDDL
compilation procedure using the knowledge operator K that transforms a fact p into
two facts of the form Kp and¬Kp. Thus, the state of knowledge about whether p is
believed to be true or false can be reasoned about.

Using planners that can handle domains with durative actions would allow to exploit
time interval information inherent in the observation sequence. Additionally, the
definition of durative actions could be leveraged to filter out noisy object interactions.

Missing Observations The presented formalism cannot cope with missing obser-
vations. This is due to the strict correspondence between nodes and states, as well
as between edges and actions. Including missing observations would result in a node
representing all planning states containing the fluents of a node. The MCTS can be ad-
justed to incorporate missing observations by not using VAL to perform validity checks
on single actions between two consecutive states but by finding valid plans between
two observed states. A plan with only one action represents the original case of only
one action between two observed states. In the case of a single missed observation, the
planner will find a plan with two actions, where the first action leads to the missed state
and the second actions leads from the missed observation to the original second state.
By adjusting the parameter of how long the plans between two observed states is allowed
to be, a number of consecutive missed actions can be accounted for. The trade-off is
a larger search space and longer computation times. The allowed number of missing
observations between two observed states can also be probabilistically sampled from a
distribution. Reasonable sampling distributions should resemble the error distribution
of missed observations.

4.5 Conclusion
The evaluation provides results for the problem of inferring goals from video using spatial
object annotation traces. This is done by matching the properties of detected objects
to the preconditions of planning operators, using a knowledge base. The resulting
observation trace contains significant noise, which is handled by compactly representing
all possible action sequences in a DAG. A variant of MCTS leveraging a previous
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plan recognition algorithm as rollout policy is applied for informed expansion of the
search graph. Thus, we have developed an approach that does not rely on an explicit
activity recognition step to instantiate a plan recognition instance. Instead, we directly
transform object interactions into classical planning actions. An evaluation provides
insights of which defined metrics work best for the adapted MCTS.



Chapter 5

Generating Well-Annotated Object
Interaction Samples

In this chapter, we stay in the same time resolution as the previous chapter and are
still concerned with action sequences of plans that can be completed in the time span
of a few minutes. However, we turn our focus from algorithms to datasets.

Research in robotics depends on suitable datasets for the specific research topic to
speed up training or testing time and standardize benchmarks. For example, image
datasets of everyday objects with ground truth annotation for lower-level robotic actions
such as grasping are widely used (e.g., YCB-Video [150]). However, joint attention is a
problem outside of a static context. There also exist time series datasets, for example,
video datasets that depict humans performing everyday actions (e.g., MPII Cooking 2
Dataset [131]). Extensive ground truth annotation in such datasets is prohibitively
expensive, which limits their usefulness.

Service robots in human homes will be expected to perform menial tasks in households
and to cooperate with their human partners. Thus, HRI researchers have studied kitchen
settings since they combine many challenges like collaborative object manipulation [151],
[152], use of semantic knowledge in interaction tasks [153], and plan recognition [154],
among others. Kitchen environments are also challenging environments in HRI studies
concerning proxemics and social navigation [155].

Datasets about joint attention in everyday activities have several requirements. In
each sample, many interactable objects should be available to the actor. Many object
classes and multiple instances of an object class should exist in the scene. The dataset
should include different goals for an actor with different ways of achieving one goal.
The dataset should include different typical robot sensor data types, such as RGB
and depth images, as well as segmentation masks. In the ideal case, a dataset should
include a complete ground truth annotation for all sensor data. For video samples with
several minutes each, the ground truth of the world state should also be annotated at an
appropriate abstraction level. This is achieved by including high-level object predicates
specific to everyday household tasks. These predicates describe the relationship between
objects, such as which objects rest on top of another, are stored inside of another, and
so on. There might also be the need for additional logical predicates for a specific
domain. For example, in a kitchen, the stove can be turned on or off, the fridge or
drawers can be open or closed, and so on.

79
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Figure 5.1: Dataset example for preparing salad. Left: RGB view; middle: depth view;
right: object mask view.

One approach is to record real-life samples and then use human labor for ground
truth annotation [130]. Another practice is to apply current state-of-the-art solutions to
arrive at a ground truth annotation. However, annotation errors will then be interpreted
as ground truth in later use. Some annotation types might be automatically generated
by installing additional sensors in the recorded scene, e.g., distance sensors or RFID
tags for detecting open drawers.

In recent years, synthetic datasets have been used to alleviate these problems [156],
[157]. Their main benefits are the correctness of the ground truth data and the ease
of data generation and annotation. It has also been shown that algorithms trained on
simulated data perform well in real-world settings. Overcoming the so-called “sim2real
gap” [158] has recently gained much research interest. For our use case, however, we
are interested in the data quality and sample complexity to create a challenging test
environment for robotic joint action tasks.

We present the Virtual Annotated Cooking Environment (VACE) (Figure 5.1), a
new video dataset and Unity-based virtual simulator in a rich kitchen environment,
modeled after MPII Cooking 2 [131], which is a well-known existing dataset for activity
recognition of fine-grained and composite actions showing different persons performing
various cooking tasks. This dataset aims to facilitate research on activity and plan
recognition, learning from demonstration, and semantic segmentation research. One of
the main advantages of virtual environments is the quick and reliable annotation of
the generated samples because of the accessibility of virtual ground truth information,
thus generating ground truth annotation for free. Users easily record data samples
while using standard virtual reality equipment. Samples are automatically recorded and
rendered after the recording phase. In our work, all labeling is done by the simulator.
The user only has to provide a high-level description of the sample in the readme
file. Especially with robotic applications in mind, virtually generated data and virtual
simulators can save time while still generating useful insights [159]. In domains shared
between humans and robots, activities depicted through human demonstrations have
been shown to shorten training time for robotic applications [160] in the learning from
demonstration paradigm.

In other fields of interest like semantic modeling or plan and activity recognition,
research depends on accurate ground truth for different parts of the computational
pipeline from pixel-wise object segmentation to semantic predicates of objects (object
held, contained, etc.), and the ground truth plan or temporally segmented activity label.
Especially approaches like [143] can leverage well-annotated datasets that provide all
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information along their pipeline from video to logical predicates, since they propose
domain-specific plan recognition in a kitchen setting from video sequences. There
already exist multiple datasets for activity recognition in everyday human activities,
such as cooking or performing other household chores [161], [162]. Also there are
multiple virtual environments for plan and activity recognition [156], as well as robotic
manipulation tasks [163].

However, we see a need for a dataset that fills a current gap. Ideally, this dataset
will include samples with many different goals but overlapping plans to create more
challenging instances. Agents in VirtualHome [164] can choose among many goals, but
since they are spread over all rooms of a typical apartment, the plans often diverge in
the first steps, which makes them easy to classify correctly. VRKitchen [156] on the
other hand, models five dishes very intricately with object state changes, but a larger
goal set is desirable. The kitchen room in iGibson2.0 [165] is sparsely furnished and
does not allow many different recipes.

Two recent surveys of RGB-D video activity datasets summarize the different kinds
of scenarios that are currently available for activity and plan recognition research [166],
[167]. Since our focus is on understanding long-term semantic plans from video, we
are interested in datasets that show behavior composed of multiple consequent actions.
Therefore datasets containing samples with only one action such as sit down, exit
the room, or fitness exercises are not suitable. Furthermore, there must be a wide
range of possible goals at the beginning of a video sample. For instance, the CAD120
dataset [168] contains sample classes like making cereal, and a cereal box in the first
frame already gives away the true label.

A very challenging dataset that avoids these problems is the MPII Cooking 2 dataset
[131]. It contains samples of many different cooking recipes, in many different variations
with respect to plan ordering, used utensils, and ingredients. As an example, when
a knife is taken out of a drawer, only a fraction of the recipes is excluded and the
true goal could have been accomplished with a different tool as well. The samples in
the MPII Cooking 2 dataset are suitably complex, overlapping, and varied. However,
the dataset is unfortunately not comprehensively annotated, which is necessary for
proper quantitative evaluation of methods. Optimally, each sample in a dataset consists
of realistic and complete sensor data, complete semantic and spatial segmentation
as well as temporal task-specific semantic annotation. [27] annotated a part of the
MPII Cooking 2 dataset (10 samples, 2 different goals) with a suitable level of detail
but reports that such annotation constitutes a significant effort. With our virtual
reality (VR) simulator, we can recreate these samples and improve their annotation for
a virtual environment.

The rest of the chapter describes the dataset (Chapter 5.1), and the simulation
environment (Chapter 5.2), and ends with a conclusion (Chapter 5.3). This chapter’s
content is based on previously published work in [169].
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Figure 5.2: Behavior of cuttable food items in the simulated environment.

5.1 Novel Dataset
We create a replication of the kitchen depicted in the MPII Cooking 2 dataset using
the Unity game engine1, including all food ingredients, tools, and furniture from the
original dataset. Our VACE dataset [170], [171] can be publicly downloaded2. In this
VR environment, users can manipulate all furniture, tools, and ingredients by using
a VR controller and observing through a VR headset. All graspable objects are rigid
and behave in a physically plausible way with respect to gravity and friction. Actions
such as picking up, placing down, pushing, dropping, throwing, and stacking objects
are possible. Food items can be repeatedly cut into smaller pieces (without predefined
section planes) using the usual cutting tools like knives, peelers, and graters. One
difference to the VRKitchen dataset [156] is that there currently are just a few object
state changes implemented. This includes opening and closing cupboards, the fridge,
containers such as boxes with lids, pots with pot tops, and drawers, as well as opening
and closing a water faucet and turning the different hot plates of a gas stove on and
off. Even with missing object state changes, a reasoning agent can still imply that if
an ingredient is placed in a pan on an active hotplate, then the object will be cooked,
fried, or something alike.

At submission, our dataset contains 22 reenacted MPII Cooking 2 samples and new
recipes performed by one user (10 × cut cucumber, 4 × cut bread, 4 × prepare salad, 4
× prepare sandwich). The goal is to have different recipes that share some steps of the
preparation process, i.e., different goals with congruent plan prefixes. There are also
multiple samples per dish such that there are different concrete goal states per goal (e.g.,
which kind of tableware is used) and ways to reach a specific goal state (e.g., whether
to boil water in a kettle or in a pot before pouring it into another vessel). Variations
currently include with/without washing of the ingredients, with/without tidying up after
preparation, with knife/with grater, order variations (get tools first/get food items first),
salad variations (with/without additional spices, with/without stirring after seasoning,
with/without pouring the salad into another bowl after stirring), and sandwich variations
(bun/toast).

As a concrete example, the preparation of a salad can be accomplished in various
ways: The actor can choose which tools to use (e.g., one or multiple knives, forks, ladles,
or the grater), whether to cut ingredients on the kitchen table surface, a cutting board,
or a plate, whether to wash the vegetables before cutting them in the sink, which bowls
to use, and how to season the salad, among others. Samples can also include actions
like tidying up the kitchen after the food preparation, such as washing the used tools

1https://unity.com
2https://sites.google.com/view/vacedataset, doi:10.48436/r5d7q-bdn48, doi:10.48436/9y2x1-q4n71
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Figure 5.3: A view inside the cupboards of the VACE scenario.

Figure 5.4: A view inside the drawers of the VACE scenario.

and storing them. The ordering of these steps can be changed, e.g., in which order to
get the tools, containers, and food items from their respective storage places.

The kitchen environment is equipped with ∼40 types of kitchen tools, tableware,
containers, ∼50 different types of food, as well as furniture like cupboards, tables, sink,
stove, and fridge (Figure 5.3, Figure 5.4, and Table A.7.6 for an overview of the object
types in the dataset). Similar to the MPII Cooking 2 dataset, there are two different
types of samples: complex dishes consisting of multiple preparation steps, e.g., making
a pizza, or a salad, and simple dishes, e.g., slicing avocados, onions, and the like.

5.1.1 Data Annotation
To make the generated dataset useful for as many research projects as possible, one
sample consists of the following data, recorded at 30 Hz, see Fig. 5.1:

• RGB camera (1600 × 1200 px),

• depth camera (1600 × 1200 px),

• instance and class segmentation (640 × 480 px), pixel-wise color coding per object,

• object-wise bounding boxes in screen coordinate system,

• 3D human pose joint position of 20 joints. Head, hands, chest (via VR tracker),
other joints from VR avatar calculated through inverse kinematics,

• 3D object poses and orientation,

• ground truth object predicates (grasping, on, in, cutting, pushing).
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The ground truth object predicate annotation of the first and last frame of a sample
can be used to generate an initial and final state of the sample for classical planning
approaches. Bounding box, pose, orientation data, and logical predicates are stored per
frame per object or per event (e.g., cutting) in the JSON format.

In Fig. 5.5 an example of a preparation task from the perspective of the human is
shown. The recipe for a slice of bread with cheese and produce is based on the example
in [156]. The steps include getting all necessary kitchen utensils, i.e., a knife and cutting
board from a drawer and a plate from the cupboard. Then all the food utensils are
gathered, namely cheese, cucumber, and tomato from the fridge, as well as a piece of
bread from the cupboard. Next, the cook washes the cucumber and tomato in the
faucet, needing to turn the faucet on and off. Then the cheese is cut, and a piece of
it is put onto the bread. The bread is put in the oven to simulate baking the cheese
(without a visual change of the piece of cheese, though). Then the bread is taken out of
the oven again and put back on the table. Next, the produce is cut and some pieces are
put onto the bread. Lastly the completed bread is put onto a plate for presentation.
None of the described actions is hard-coded, i.e., if an object needs to be retrieved from
the cupboard, one needs to grip the handle of the cupboard door, pull it open, reach
inside, and grasp the desired object.

Fig. 5.2 shows in detail the behavior of objects being cut. Only food items can be
cut, and only designated tools allow for cutting, namely knives, peelers, and graters.
As soon as a cutting tool collides with a cuttable food item, the ingredient is sliced into
two parts along the cutting plane of the tool from the point of contact, e.g., the blade.

5.2 Open Source and Interactive Simulator
We release this Unity project as an open-source tool3 so that researchers can adapt
the simulator to suit their needs, such as additional annotation, new objects, settings,
interfaces, and the like. With the current recording procedure, one can record additional
samples to add to the main dataset or create a new dataset. The workflow is split into a
recording phase and a rendering phase. In the editor, the starting setup can be specified,
like the arrangement of objects and furniture. Users can control the human avatar
with a HTC VIVE headset4. For improved realism, it is recommended to additionally
wear a HTC VIVE tracker5 on the chest, which allows independent movement of the
avatar’s head relative to the body. The body of the avatar is animated through an
inverse kinematic system in order to generate realistic arm, leg, and torso behavior.

For guidance during the recording of a task, users can choose any recipe of the
MPII Cooking 2 dataset and then sequentially display each single cooking step of a
chosen recipe in a head-up display and on a wall screen in the environment. The recipes
are stored in a folder of the project and provided by the original MPII Cooking 2
dataset. For guidance in other recipes, users can provide their own recipes following the
used encoding. Through the replay capability of pre-recorded samples in the simulator,

3https://github.com/michaelkoller/vacesimulator
4https://www.vive.com/eu/product/vive-pro-full-kit/
5https://www.vive.com/eu/accessory/tracker3/
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Figure 5.5: Steps in preparing slice of bread with baked cheese and produce from the
ego perspective.
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it is possible to re-annotate a sample or extend the previous annotation.

5.3 Conclusion and Future Work
In this paper, we presented VACE, a new VR simulator and synthetic dataset for
recording object interaction-heavy cooking tasks in a richly furnished, interactable
virtual kitchen. The dataset contains 22 samples with variations of 4 different recipes.
Each sample is composed of RGB, depth, and segmentation mask images, as well as
pose, orientation, bounding box data as well as logical predicates. Recording samples
with the simulator does not require users to label samples per hand.

on the dataset and compare the results to other available datasets [172]. We believe
that our simulator will allow researchers to create complex dynamic sequences with a fine-
grained level of annotation suitable to their research. With proper spatial and semantic
annotation of objects and atomic predicates, higher-level planning and recognition
approaches can be explored more efficiently. The possibility to re-annotate existing
samples (as was done with the VACE Ego Perspective Dataset, doi:10.48436/9y2x1-
q4n71) and extend the dataset provides additional utility.

Limitations of our work include that users have to be trained in order to reliably
grasp and stack objects. Users have to learn the kitchen layout, and how to handle the
Unity software and VR hardware. At submission, only HTC Vive with one additional
tracker is supported. This can be expanded in the future, and users are asked to contact
us with feature requests. Developers must be familiar with Unity and C#.



Chapter 6

Preferences and Biases

On the previous time scale of up to several minutes, the robot’s goal in joint attention
scenarios was to determine the current intention of the observed human by estimating
the task goal and plan. However, in a larger time scale of hours, days, and more, a
long-term deployed robot will have many opportunities to observe the choice behavior
of the human in a larger context. This means the robot can learn the preferences of the
human, given a problem, its possible actions, and their outcomes.

In such decision situations, it has been shown that humans do not act purely rationally
but display systematic irrational biases. Such cognitive biases include hyperbolic
discounting [173], several availability biases [174], or the need to reduce cognitive
dissonance [175], among many others. One well-documented cognitive bias is described
in the Cumulated Prospect Theory (CPT) [29], [176], and it describes how humans
systematically make suboptimal decisions in repeated games due to a cognitive distortion
of probabilities and reward values regarding a specific anchor point.

In the previous Chapter, the plan recognition algorithm necessarily incorporates an
estimation of goal priors [112]. If no other information is available, these can be modeled
as a uniform distribution over the goal set. However, long-term deployment of a robot
is well suited to transform these priors over time when the robot observes the actual
preferences of a human in a given task domain. This human choice behavior could be
seen as ground truth, but here we argue that this prior is the result of a human acting
according to their biases. Knowing how to counteract a known bias would lead the prior
distribution closer to the real distribution, which then improves the plan recognition
process (Figure 6.1). That means that the prior calculated from human observation
does not actually represent the preferences of the human, and we should look for a way
to improve the priors.

87
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Figure 6.1: In the time resolution of ten minutes and above, the robot can update
the belief about the preferences and biases of the human between repeated
interactions. During interactions, it can use the updated estimation to
propose more rewarding actions.

Recently, a formalism has been developed in which artificial agents are deployed to
observe and possibly correct faulty human choices, called the assistive multi-armed
bandit problem [28]. Specifically, an autonomous system observes and intercepts the
repeated actions of a human, estimates the actual utility of the different actions, and
potentially chooses a different action than the human to improve the overall return.
Previous work, however, dealt only with a cognitive bias in a single interaction [177],
i.e., not a repeated game, or with abstractions of human behavior that acted noisily
rational [28], [178]. A noisily rational agent does not act according to a bias that shifts
the perceived mean of a reward. Empirically observed human biases, however, transform
the true mean reward of an action, making the problem more complex than filtering
out the noise. Previous approaches would thus only learn to replicate the bias.

In this chapter, we present a framework that allows studying an abstract human policy
that acts according to the cognitive bias defined in the CPT in repeated interactions. We
also derive an algorithm that leverages knowledge about the risk-averse human model
to correct the human bias in a human-robot team. We show in a multi-armed bandit
experiment that the same robot agent improves the performance over a human agent
acting alone in a scenario where risk aversion is suboptimal and that the performance
of the human-robot team does not degrade below the performance of a rational agent
in a scenario where risk aversion actually leads to a higher reward.

This result is an initial step for a long-term human-robot interaction style, where the
robot can improve the expected return of the human for a given goal set in a task, even
if the human deviates from a noisily rational or otherwise informative choice behavior.

Humans frequently find themselves playing what is known as multi-armed bandit
(MAB) games (Figure 6.2, left), e.g., when choosing music to listen to, ordering food,
making financial decisions, or committing to a plan to fulfill a task. In such settings,
an actor repeatedly chooses an action (or pulls an arm, in analogy with the one-armed
bandit gambling machine) without complete knowledge about the associated reward
distribution of each action. During an episode, there is a trade-off between choosing
what previously yielded the best results (exploitation) and choosing other actions to
improve the estimate of the mean reward (exploration).

Social robots will also often face team situations, in which case they observe a human
partner who themselves is not quite sure what they want or what the robot understands
as both learn about the different outcomes. However, when an autonomous system in
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Figure 6.2: rt, reward at time step t. aH
t / aR

t , action of the human / the robot at time
step t. ct, the reward class at time step t. Left: The standard MAB scenario,
where a human repeatedly chooses among a group of actions to maximize
the long-term reward. Middle: The assistive MAB scenario, where a robot
observes and intercepts the action of the human and potentially chooses a
different action. Right: The assistive MAB scenario with observable reward
classes, where the robot observes the reward class additionally to the chosen
human action (but not the actual reward value).

general or a robot specifically teams up with a human in such a situation, the goal is
still to improve the overall utility for the human. Examples include under-specified
commands such as “Set the table.” or “Fetch me some food for lunch.”. One way to model
such a collaborative setting is the assistive multi-armed bandit [28], [178] (Figure 6.2,
middle). Over multiple rounds, the human chooses an action of a multi-armed bandit
with initially unknown rewards. Each round, the choice of the human is intercepted by
a robot. The robot can then choose to perform the chosen action or choose another
one. The human observes the robot’s chosen action and the resulting reward, which
influences their next choice. Thus, the robot must infer the reward only by the actions
of the human.

With regard to HRI settings, humans are known to display systematic biases in
decision-making scenarios like time-inconsistent planning due to hyperbolic discounting
[179], false beliefs due to overly trusting attitudes [180], or risk-averse behavior in
uncertain situations [177]. However, the predominant human model in previous work
is that of a noisily rational agent, where sub-optimal decisions are modeled as noise.
Furthermore, in the described scenario, the human also learns about the rewards and
thus behaves in a non-stationary way, which is not modeled by a noisily rational agent.
For the first problem, mathematical formulations to capture the bias exist [29]. For the
second problem, there are multiple classes of bandit algorithms that can achieve good
performance, but the problem of a risk-averse biased player has not yet been explored
in MAB problems.
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In behavioral economics, biases due to uncertain outcomes in risky situations are
described by the (Cumulative) Prospect Theory [29], [176], which states that humans
prefer certain over uncertain outcomes, weigh differences between small values stronger
than the same difference between larger values, and perceive losses more strongly than
gains. This formalism can explain phenomena such as gambling and insurance and has
strong empirical evidence [181].

It is thus worthwhile to include these biases not only in single decision scenarios
but also in repeated games with learning agents. This is achieved by transforming the
statistics of probabilities and rewards that are associated with an arm of the bandit
over time. As the robot cannot make inferences about the variance of rewards by only
observing the action taken by the human each turn, the problem setting in this work is
expanded in such a way that the robot is allowed to observe the human choice and the
resulting reward class, without knowing the biased utility for the human or the true
unbiased utility.

In this chapter, we (1) extend the human model for single decision games from
[177] to a multi-armed bandit setting and study the properties of robot assistants
who help humans that are modeled through different biased MAB learning algorithms.
Further, we (2) expand the assistive MAB setting to observable reward classes without
knowledge of the utility (Figure 6.2, right). This is then a preference learning problem
not for the available choices but for the observable rewards. In a first approach, we (3)
formulate an algorithm that has access to the human model - this can be understood as
a ToM approach - that tries to assist the human by fitting reward values to make the
history of human choices explainable under the known biases, then applying the inverse
transformation to these estimations and making a choice based on these estimated
unbiased values.

We (4) present an initial exploration of the performance of the risk-averse biased upper
confidence bound (RAB UCB) human policy and the human-robot team consisting of a
RAB UCB agent and a robot assistant. We show that a robot assistant will improve the
overall return in situations where risk aversion is detrimental and that the team does
not over-correct with respect to a baseline in situations where risk aversion is favorable.

This chapter is organized as follows. Chapter 6.1 covers other related work. In
Chapter 6.2 the formalism for the assistive multi-armed bandit problem with observable
reward classes, the risk aversion bias postulated by CPT, and the risk-averse biased
upper confidence bound human policy are defined. In Chapter 6.3, an algorithm for
a robot assistant is proposed. In Chapter 6.4, experimental results are presented.
Chapter 6.5 concludes the chapter with a discussion. This chapter’s content is based on
previously published work in [182], [183].

6.1 Related Work

6.1.1 Risk-Averse Multi-Armed Bandit

In the standard MAB problem, the goal is to maximize the expected return but
other variations attempt to also minimize the risk of incurring large losses [184]–[187].
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Algorithms that solve this risk-averse MAB problem are different from the human model
in this work, as they explicitly optimize a goal that includes some measure of risk. The
risk-averse human model still only tries to maximize the expected return, but perceives
rewards and probabilities through the risk-averse transformation by the Cumulative
Prospect Theory transformation.

6.1.2 Other Human-Robot Team Settings
[178] explores the benefit of robots that disobey human orders if they have a sufficiently
accurate estimation of the reward parameters. The agents perform in a POMDP with
a set of featurized world states and static reward parameters. The reward is a linear
combination of both. The human is modeled as a noisily rational agent with knowledge
of the true reward parameters.

[180] describes semi-cooperative games in a POMDP setting between a human and
a robot, where the robot has different assumptions about the degree of trust that a
human has towards the goals of the robot (i.e., whether the robot tries to help them or
not). It turns out that a robot with such a human model can in some cases decrease its
own cost and induce the human to do more of the shared workload. The robot solves a
POMDP in advance of the game without any learning afterward.

In [188], the turn order in the human-robot team is actually reversed. The robot can
choose to behave autonomously (including doing nothing) or delegate a decision to a
human, who is believed to know the true reward parameters. In this setting, the robot
can learn to strike a balance between autonomy and safety.

[179] addresses another known human bias, namely hyperbolic discounting, which
can lead a human to prefer different outcomes as the reward payout approaches in time.
They devise a planning algorithm that proposes paths to goals that avoid temptation
for such a time-inconsistent agent.

6.2 Formalism
In this section, we gather the preliminaries that allow us to define the Assistive Multi-
Armed Bandit Problem with Observable Reward Classes, and a human policy that
behaves in a risk-averse biased way in repeated games. The assistive multi-armed bandit
problem is expanded by allowing reward class observation because knowledge of the
risk aversion bias in human players is only useful when being able to gather estimates
of the variance of outcomes.

6.2.1 Multi-Armed Bandit
The multi-armed bandit (MAB) M examined here is defined by:

• M : the number of different rewards

• N : the number of arms

• u: a distribution over R
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• v: distribution over space of distributions over the sets of size M.

At the start of the game, M different rewards are sampled from u, forming the
reward set R = {r(1), ..., r(M)}, then for each arm i ∈ {1, . . . , N}, a distribution
vi = {p

(1)
i , . . . , p

(M)
i } over R is sampled according to v. In each round t, the agent

chooses an arm at ∈ {1, . . . , N} where a reward rt is sampled from the respective
distribution qat over R. The mean µi, i ∈ {1, . . . , N} per arm, called consequence in
[177], is defined as

µi =
	

j∈{1,...,M}
p

(j)
i · r

(j)
i . (6.1)

Tt(i) represents the number of arm pulls of the i-th arm up to time t.

6.2.2 Inverse Multi-Armed Bandit with Observable Reward
Classes

In [28], the inverse multi-armed bandit problem is defined as a passive inference problem
with a MAB M and a human H who employs a bandit strategy that maps histories of
past actions and rewards to distributions over arm indices Ht : h1×r1×· · ·×ht−1×rt−1 →
Π(N). In the inverse multi-armed bandit problem with observable reward classes, the
observing agent R knows the amount of different rewards M , but not their numeric
values. The reward classes are labeled c = {c(1), . . . , c(M)}. The robot’s goal is to infer
their numeric value in order to recover Π(N), while observing the choice of the human
and the reward class each turn. This can be understood with the example of a slot
machine with multiple arms, where each arm has a different distribution of the rewards
0, 5, and 10 gold coins. However, the observer R only sees them as rewards A, B, C
and has to estimate the value of these rewards.

6.2.3 Assistive Multi-Armed Bandit with Observable Reward
Classes

This is the active problem, where the joint system of a human and a robot H ◦ R play
a MAB M. Each round, the human player H chooses an arm aH

t according to a given
bandit strategy and the history of arm pulls and rewards H(aR

1 , r1, . . . , aR
t−1, rt−1) ∈

[1, . . . , N ]. But before the action is performed, the robot R intercepts and observes
the chosen action aH

t , and can then perform the human’s choice or pick another
action aR

t , which is actually performed. The human then observes this action and the
associated reward, while the robot observes the human’s choice and resulting reward
class R(aH

1 , c1, . . . , aH
t−1, ct−1) ∈ [1, . . . , N ].

6.2.4 UCB Family of Bandit Algorithms
There are several algorithms that belong to the index-based family of bandit algorithms.
They balance exploitation and exploration through the combination of a history of
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previous pulls and rewards per arm Qt(a), a ∈ [1, . . . , N ] (thus estimating their means)
and an exploration bonus per arm (prefering arms that were less often pulled), among
them Upper Confidence Bound (UCB), Bayes UCB and, Upper Credible Limit (UCL).
The biases that are used in this work are applied to the history that an agent keeps
while playing the MAB.

Qt(a) =

t−1

i=1 Ri · 1Ai=a
t−1
i=1 1Ai=a

(6.2)

The arm with the maximum index each turn or a variation thereof with noise or
softmax is chosen each round t, with c ∈ R+ balancing exploration and exploitation.

At = argmaxa∈{1,...,N}Qt(a) + c

�
ln t

Tt(a) (6.3)

6.2.5 Risk-Averse Biased Upper Confidence Bound
This section motivates the expansion of the setting of the assistive multi-armed bandit
by the observation of reward classes. An observer who wants to estimate the utility of
the reward classes through actions that are biased by the following transformation needs
to be able to track the variance of outcomes for each given arm, as the transformation
is performed on the reward values and probabilities of each arm.

In previous work, there are cases where the human agent playing a MAB is rational,
noisily rational (i.e., knowing the actual reward parameters per arm from the beginning),
or a rational learning bandit policy that is greedy in limit of exploration. The estimated
reward values (for learning agents) that motivate the choices of the agents are congruent
with the actual reward values and cannot model sub-optimal behavior apart from being
noisy. The Cumulative Prospect Theory, on the other hand, models a systematic bias
that shifts the arm means. Biased agents will maximize the return under this perceived
bias. Any observer that employs merely a maximum likelihood method for explaining
the human actions will only learn the biased means and then be able to filter out noise.

The following section describes the reward and probability transformation first
described in [29] and recently used in an HRI scenario [177] (see Fig. 6.3) and expands
them for in MAB problems. The human model used in this work is a UCB policy
that incorporates a risk-averse bias into the estimated means µ̂a per arm a, then uses
the biased estimated arm means and an exploration bonus to determine which arm to
choose each round.

When playing, the human agent keeps a frequency statistic for each arm, where
R(t) = {(r(1), p(1), . . . , r(L), p(L)}, L ∈ [1, . . . , M ] describes all rewards (r(i)) and how
often they have occurred (p(i) = Tt−1(i)/(t − 1)) among all arm pulls up to round
t − 1. Ra(t) describes these statistics per arm a at time step t. From this statistic, the
unbiased µ̂a (eq. 6.1) can be estimated. In noisily rational models, given a mean per
arm, the probability the human choosing an arm a can be modeled by

P (a) = exp(θ · µ̂a)

a∈A exp(θ · µ̂a) , (6.4)
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with the rationality coefficient θ ∈ [0, ∞], which controls how noisy the choice is. The
bigger θ becomes, the more rational the agent acts, while θ = 0 corresponds to uniform
random choice.

To arrive at a human model that not only adds noise to the choice, but shifts the
estimated means per arm, the biased model uses a set of transformations first. Each
reward value is transformed according to

v(R) =
Rα if R ≥ 0

−λ(−R)β if R < 0,
(6.5)

with α, β ∈ [0,1], and λ ∈ [0, ∞). The coefficients α and β present how differences
among rewards are perceived. λ models how losses have more or less importance than
gains. Probabilities are transformed according to

w+(p) = pγ

(pγ + (1 − p)γ)1/γ
, w−(p) = pδ

(pδ + (1 − p)δ)1/δ
, (6.6)

with γ, δ ∈ [0,1]. The probability of positive and negative rewards are weighted by
w+ and w−, respectively. This transformation models how high probabilities are
underweighted while small probabilities are overweighted. The probabilities of 0 and 1
remain unchanged.

Figure 6.3: Transformations of the reward and probability in uncertain situations ac-
cording to the Prospect Theory. Left: Reward transformation. Losses are
weighted more strongly than gains. A difference between two big rewards is
perceived as smaller than the same difference between two smaller rewards.
α = β = 0.5, λ = 2. Right: Probability transformation. Low probabilities
are underweighted, while high probabilities are overweighted. 0 still maps
to 0 and 1 still to 1. γ = δ = 0.5.

Up to here, the transformation conforms to the Prospect Theory model, but the
Cumulative Prospect Theory model proposes that weighting is applied more strongly
to extreme events, i.e., high gains or losses, while Prospect Theory would weigh all
events equally, no matter their magnitude. The following transformation captures this.
Without loss of generality, the L rewards observed up to time t − 1 are ordered in a
decreasing order. Then the final probabilities weighted for each arm a are calculated
according to
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π(Ra(t)) = (π+(Ra(t)), π−(Ra(t)), (6.7)
π+(Ra(t)) =


w+(p(1)

a ), w+(p(1)
a + p(2)

a ) − w+(p(1)
a ), . . .


, (6.8)

π−(Ra(t)) =


. . . , w−(p(K)
a + p(K−1)) − w−(p(K)

a ), w−(p(K)
a )


. (6.9)

Now the probabilities are normalized in order to sum up to 1.

πj(Ra(t)) = πj(Ra(t))
K
i=1 πi(Ra(t))

, ∀j ∈ {1, 2, . . . , K} (6.10)

µ̂CP T
t (a) = π1(Ra(t)) · v


r(1)

a


+ · · · + πK(Ra(t))) · v


r(K)

a


(6.11)

The preference of the human is then described by

Pt(a) =
exp


θ · µ̂CP T

t (a)




a∈A exp


θ · µ̂CP T

t (a)
 , (6.12)

and after adding the usual UCB exploration term the human finally chooses an arm
according to

At = argmaxa∈{1,...,N}Pt(a) + c

�
ln t

Tt(a) , (6.13)

At = argmaxa∈{1,...,N}µ̂
CP T
t (a) + c

�
ln t

Tt(a) , (6.14)

with parameter c as exploration/exploitation trade-off factor.

6.3 Algorithm for Assistive Multi-Armed Bandits
with Reward Class Observation

An initial approach to the problem is proposed by the following algorithm. Without a
training phase, after a MAB M is instantiated with a given horizon T , the human policy
H is instantiated with a set of parameters θ, α, β, λ, γ, δ, and c. The robot R policy is
instantiated with a model of the human, i.e., it has an assumption about the human
behavior and an initial value for the estimated rewards r0. H has a descriptive statistic
of previous rewards and their probabilities per arm, on which the CPT transformation
is performed, and an arm pull counter for the exploration bonus. R keeps a history
of human choices, robot choices, and reward class per time step H = [(aH

t , aR
t , ct), . . . ].

The inverse reward transformation is

v−1(R) =
R1/α if R ≥ 0

−(−R/λ)1/β if R < 0.
(6.15)
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Algorithm 2 Robot policy in H ◦ R Team
1: procedure Choose Arm(t)
2: create probability statistic P for i ∈ [1, . . . , t − 1] from H
3: transform all P i with eq. 6.6
4: initialize R̂ with r0
5: minimize 
t−1

i=2 argmaxa∈AP i−1R̂ ̸= aH
i

6: inverse reward transformation on R̂ with eq. 6.15
7: choose aR

t = argmaxP t−1R̂ + c
�

lnt
Tt(a) ▷ State-action value + exploration bonus

8: observe human choice aH
t

9: H and R observe reward rt after aR
t

10: update H

There is currently no method involved to address a potential exploration behavior
of the human policy, which introduces a confounding error to the reward estimation.
With increasing t, however, the biased learned arm means become the deciding factor in
the human policy. After an initial learning phase, the error induced by the exploration
behavior is therefore negligible. A detail that is yet to be examined is that the proposed
robot algorithm assumes the Prospect Theory model, not the Cumulative Prospect
Theory model. This choice was made due to the higher sensitivity of the inverse CPT
transformation to reward fitting errors.

6.4 Experiments
The experiments seek to answer the following research questions:

• RQ 7 Risky-better: Can the H-R team improve the performance (i.e., average
return) of a risk-averse biased human policy in scenarios, where the risky option
has a higher expected return?

• RQ 8 Safe-better: Will the H-R team’s performance deteriorate below the
performance of the rational UCB policy when the lower variance option yields
the higher expected return?

The experiments use a horizon T = 300 MAB averaged over N = 300 trials and
compare a baseline UCB policy, a RAB UCB human policy, and a human-robot team.
The human policy is instantiated with θ = 1, α = β = 0.5, λ = 2, γ = δ = 0.5, and
c =

√
2. The CPT parameters are roughly motivated by the international survey of

Rieger et al. [189]. We picked a plausible above-average λ to model risk aversion. The
robot policy has knowledge of these parameters. For each trial, the policies are exposed
to the same sequence of rewards per arm. More specifically, before each trial, each
arm is sampled T times, and the resulting rewards are saved in this order per arm.
Thich allows a fair comparison between policies since each encounters the same series
of rewards when exploring.

We fix two representative MABs (see. Fig. 6.4) with N = 2 arms and M = 3 different
rewards for comparison: In the Risky-better MAB, a higher return can be achieved,
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Figure 6.4: MABS used in the experiment. The bars under the arm name depict
the probability of the reward outcome. Left: Risky-Better, Arm 0 (µ =
0.38, σ = 0.57) has higher mean reward and higher std. than Arm 1
(µ = 0.24, σ = 0.28). Right: Safe-Better, Arm 0 (µ = 0.56, σ = 0.28) has
higher mean reward and lower std. than Arm 1 (µ = 0.42, σ = 0.57).

MAB Agent avg. return std.
risky-better UCB 102.25 11.57

RAB UCB 82.05 9.13
HR Team 87.55 11.45

safe-better UCB 155.93 10.66
RAB UCB 161.52 10.86
HR Team 157.32 12.30

Table 6.1: Results for the comparison of two MABs (N = 300, T = 300) for three
different agents.

when the arm with the more unsure and risky events is preferred. In the safe-better
MAB, the opposite is true.

Table 6.1 shows the returns of the two MAB settings for each agent (see also Fig. 6.5
and Fig. 6.6). As expected, the H-R team moves the RAB UCB average return closer
to the UCB agent. This means that in the risky-better MAB, the return improves,
whereas the return deteriorates for the safe-better MAB. Closing the gap to the UCB
agent, who acts (and explores) rationally, is a positive property of the human-robot
team. It is unclear if there is a way to keep the overly optimistic behavior when an
actor finds itself in an environment where risk aversion is indeed rewarded.

Performing a one-way ANOVA for the 3 agent types in the risky-better MAB reveals
a significant difference: F = 280.76, p < 0.001. A Tukey HSD post-hoc comparison
shows that µUCB is significantly higher than µRABUCB, p < 0.001 and µHRT , p < 0.001.
Also, µHRT outperformed µRABUCB, p < 0.001, therefore our assumption that the H-R
team improves the performance (RQ 7 risky-better) is supported by the data.

Similarly, performing a one-way ANOVA for the three agent types in the safe-better
MAB reveals a significant difference F = 19.86, p < 0.001. A Tukey HSD post-hoc
comparison shows that µRABUCB outperformed µUCB, p < 0.001 and µHRT , p < 0.001.
However, there was no difference between µHRT and µUCB, p = 0.291. The data thus
support research question RQ 8 safe-better.
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Figure 6.5: Results for MAB risky-better for UCB, RAB UCB and H-R Team ( N = 300,
T = 300). Left: Average choice over time. Lower is better, as arm 0 has a
higher expected mean than arm 1. Right: Average cumulative reward over
time. Higher reward is better.

Figure 6.6: Results for MAB safe-better for UCB, RAB UCB and H-R Team ( N = 300,
T = 300). Left: Average choice over time. Lower is better, as arm 0 has a
higher expected mean than arm 1. Right: Average cumulative reward over
time. Higher reward is better.

6.5 Conclusion
In this chapter, we motivated the Assistive Multi-Armed Bandit with Observable Reward
Classes. This expanded problem allows a direct observation of the variance of each arm
in a MAB and, thus, a way to perform calculations involving variance. The original
Assistive Multi-Armed Bandit problem essentially is transformed from a preference
learning problem of arm choices into a preference learning of different discrete rewards.
Continuous reward distributions can be handled by dividing the reward value range
into a suitable amount of discrete bins. For the human-robot team, the previous
single decision CPT framework is used to define the Risk-Averse Biased UCB policy,
which captures empirical human biases. The robot assistant policy we proposed yields
an initial approach to improve the overall return for the team by applying the CPT
transformation to the observed probabilities each time step. Then it estimates the
biased reward values from the history. Next, the inverse transformation is performed
on the estimated biased rewards and the results are used to calculate the estimated
unbiased arm means. It has been shown empirically that the Cumulative Prospect
Theory models actual human behavior more accurately than the original Prospect
Theory [181]. In this work, the human model acts according to the CPT, but the human
model of the assistant policy assumes the human to act according to the Prospect
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Theory. This design choice was made as the inverse transformation of CPT is more
sensitive to reward estimation errors than the inverse transformation of PT.

6.5.1 Limitations
Further evaluations should compare different index-based policies with the CPT bias re-
ward and probability transformation. This will shine a light on how different exploration-
exploitation schemes impact the human-robot team. The influence of different CPT
parameter ranges, as well as misscecified parameters in a human-robot team on the
team performance should be experimentally measured. Future work can entail questions
as to how robots can safely learn and leverage the human CPT parameters during a
prolonged interaction.

6.5.2 Reactance
In the experiment, it became apparent that the human in the human-robot team chooses
the suboptimal arm more often than the solo human policy. This is explainable by the
index-based exploration bonus. As the human policy starts overestimating the mean of
the suboptimal arm, the exploration bonus also increases, since the robot often chooses
the other arm. Interestingly, the robot still can improve the overall return. A greedy
biased human policy should turn out to be even more interpretable than the Risk-Averse
Biased UCB. This algorithmic phenomenon lends itself to the very human interpretation
of reactance [190]. Reactance describes an unpleasant motivational arousal in persons
who are deprived of a previously available choice. Persons in such situations tend
to exhibit a stronger preference for the lost option. Empirical research with human
participants could shed light on whether a human enjoys being “helped” by a robot in
such a way and how to design the interaction in a more pleasant way, taking in account
the human arousal as an additional cost factor for example.



Chapter 7

Discussion

In the previous five chapters, we presented our work on joint attention-enabling mecha-
nisms. We focused on the aspect of different time resolutions. This level of abstraction
allows us to recognize different problems and provides the right frame to address different
research questions. In this chapter, we integrate the findings and elaborate on how they
relate in a joint action HRI scenario.

We proposed a specific high-level scenario: a socially competent domestic service
robot that is long-term deployed in human living space. In [20], the authors demand
honest design principles for robots with a recognizable head. This serves the purpose of
not betraying the trust of interacting humans. The requirement imposes the restriction
on the humanoid robot embodiment that the sensor capacity must coincide with that
of a human, i.e., the robot can see in the direction that the head is pointing, and no
more. The need for unobtrusive yet attentive interactions with humans with respect
to a defined number of chore-like tasks characterizes this proposed deployment. Joint
attention is, therefore, a relevant robotic capability for such scenarios.

Figure 7.1: Gaze aversion in the time reso-
lution of up to ten seconds.

In the highest time resolution (Fig-
ure 7.1), we were concerned with the gaze
aversion ratio in an HRI scenario to deter-
mine how much time a robot can spend
gazing at task-relevant locations and not
at the interacting human. We found that
the robot GAR influences the human GAR
and interaction duration, but we found no
significant differences in the consciously
experienced interaction quality. Thus, we
concluded that robot designers can take
more freedom in robotic gaze design and
diverge from human gaze timings in order
to achieve additional interaction goals without deteriorating the conscious human in-
teraction experience. This finding provides a useful justification for the relaxation of
design requirements during an interaction and can be leveraged in the following problem,
namely gaze sequence planning.

100
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Figure 7.2: Gaze sequence planning in the
time resolution of up to one
minute.

In the second highest time resolution
(Figure 7.2), we were concerned with how
to chain different gaze targets together
when a robot interacts with a human in
a physical joint action task. The two
competing purposes of the gaze target se-
lection are task-relevant sensor alignment
(i.e., pointing the head and, therefore, cam-
eras at objects or locations in the envi-
ronment) and socially interpretable joint
attention signaling. This is achieved by
learning a first-order MDP gaze transition
function from human-human interactions.

A state filter and an automated planner allow the robot to detect the current state of
the task while the automated planner computes a plan to complete the task. Thus, the
robot has an internal belief and intention, to use human terms. The gaze transition
function is learned with respect to the dynamic task roles of the objects. When an
object is next to be manipulated in order to achieve a task goal, it is declared the
current active object. These roles are also defined for objects that are next or just
previously in line and all other past and future objects. The learned gaze transitions are
applied to the dynamic object roles (and not the objects themselves), the collaborator’s
hands, and head. The robot can combine sound task planning with gaze behavior from
previous successful joint action tasks. The insight of our gaze aversion study simplifies
the gaze sequence planning by only considering the chain of actual targets without the
specific gaze dynamics, e.g., animation profiles and gaze durations.

Figure 7.3: Plan recognition in the time res-
olution of up to ten minutes.

The setting in the second-highest time
resolution (Figure 7.3) operates under the
assumption of only one possible goal. In
general, however, there are multiple goals
in the goal set. In a block stacking task,
multiple block configurations could rep-
resent different goals, or different dishes
could be prepared in a food preparation
scenario. Thus, goal or plan recognition
is the challenge in the third-highest time
resolution of up to ten minutes. Previ-
ous work in plan recognition that relies on
automated planning assumes that observa-
tion traces in the used planning language
formalism are available. Robots, however,
have only access to raw sensor data, in
our example, video data. We derived an algorithm that leverages a common robot
functionality, namely object detection, to generate observation trace candidates. This is
done by leveraging the information inherent in physical object interactions in physical
manipulation tasks. Thus, a robot can perform plan recognition without explicit action
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recognition. Using plan recognition and gaze sequence planning, a robot can now
express its belief about the currently pursued goal of the human collaborator. More
precisely, the robot observes the human actions, and computes a probability distribution
over the goal set. The robot then adapts the joint attention-signaling gaze behavior
according to the dynamic object roles of the most likely human plan.

We faced the difficulty of finding thoroughly annotated complex video samples of
humans performing chore-like tasks with a long time horizon of up to several minutes.
Therefore we created a VR simulation environment that allowed the recording of a
synthetic dataset in a kitchen-like environment. Users can act in this environment
through a virtual avatar using common VR equipment. The environment offers a
multitude of interaction opportunities with respect to articulated furniture, tools,
dishes, and food ingredients. Users can record samples of their food preparation
tasks, which include multiple types of common video sensor data, ground truth pose
annotations of all objects in the scene, and the logical scene state through first-order
predicates. These complex samples with long time horizon and thorough annotation
allow a standardized research effort for a multitude of research topics, e.g., how a robot
should estimate not only the current goal of the observed human in a realistic setting
but also when to intervene and with which action. For such cases, our environment
provides long action sequences with realistic data samples and many different ways to
reach a single goal. This offers flexibility for robotic interventions and also provides a
challenging goal recognition task.

Figure 7.4: Preference and bias estimation
in the time resolution of ten min-
utes and above.

A robot can estimate the intended goal
of a human collaborator through the ob-
served actions during a single interaction.
However, during long-term deployment, a
robot can also learn from the previous in-
teraction with a collaborator and update
its priors about the human’s preferences.
The time resolution of ten minutes and
above (Figure 7.4)is the lowest time res-
olution in this thesis and is the frame of
human preferences and biases. The as-
sistive MAB, a recent human-robot team
formalism, describes how robots can po-
tentially improve the long-term reward of
a suboptimal agent if they allow a robot

to observe the choice and change it. However, these initial contributions abstract human
behavior through noisy rational agents or other communicative suboptimal strategies.
Human behavior, however, is shaped by non-communicative, systematically irrational
biases, such as different kinds of risk awareness. We extended the setting of the assistive
MAB by allowing the robot to observe reward classes. In each round, a robot can
observe the human choice and the outcome of the action taken (which may not be
the same action that the human chose). The reward classes in the assistive MAB can
represent the goal set of the previously described time resolution. The robot knows
that there are different outcomes. Each reward class corresponds to one goal in the
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goal set. However, it does not know the reward value of the reward classes. The process
of goal recognition in the previous time resolution is abstracted to recognizing a single
action taken by the human, i.e., choosing one goal, and not considering how to reach
the goal. The robot can ascribe different reward values to the different reward classes
(i.e., goals) using the algorithm presented in Chapter 6. Thus, it can improve the plan
recognition in the previous time resolution.

To summarize, the presented contributions interrelate and demonstrate how achieving
gaze-related joint attention in HRI is a multifaceted problem:

1. We investigated how to design single gaze actions in social interactions.

2. We proposed a way to compute sequential gaze targets given one single goal.

3. We proposed an algorithm for plan recognition from object detection traces when
there are multiple possible goals for a given task.

4. We published a simulator and dataset to study complex activities with a long
time horizon.

5. We presented an algorithm that allows robots to correct human biases in an
abstract reward maximization problem, which can be used to leverage learning
opportunities during long-term deployment.

The research presented in the previous chapters was guided by the overarching
research questions RQ 1-3 stated in Chapter 1.2.

7.1 RQ 1 - Gaze-Related Challenges in Joint Atten-
tion in Different Temporal Resolutions

RQ 1: Which HRI challenges can be identified by examining gaze-related joint attention
through the lens of different temporal resolutions?

We provided conceptual approaches and solutions to problems of gaze-related joint
attention in different time resolutions. We showed in Chapter 2 [42]–[44] that assump-
tions about human-inspired gaze timings in the second to second time resolution can be
relaxed. In Chapter 3 [90] we showed how to use this relaxation in combination with
HHI data to compute gaze sequences. In Chapter 4 [132], we leverage common robotic
vision (object detection) and service robot capabilities (classical planning) to enhance
the awareness of service robots and provide challenging data samples for robotic joint
attention problems in Chapter 5 [169]. In Chapter 6 [182], [183], we contributed to the
value alignment problem [191] in HRI when the robot possesses autonomy by expanding
the assistive MAB formulation and introducing empirical systematic human biases in
the human policy, and an algorithm to enhance human-robot team performance.

The core challenge of this research question stems from the multifaceted nature of the
complex human phenomenon of joint attention, which manifests at different temporal
resolutions. Psychological research results define processes of joint attention (e.g., RJA,
IJA) and components of a cognitive architecture (e.g., structural model in [88], [89])
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which can be used to partition the research problem into smaller pieces, as suggested
in [21]. Psychological research results are most of the time descriptive, and thus it is
the topic of technology-focused research to find technological correspondences to the
single cognitive components.

Current technological systems model the different aspects of joint attention neither
in its whole breadth nor depth. In order to conduct effective research, we need an
exact description of the HRI research scenario with respect to the social and physical
environment. In this thesis, we opted for the view of a domestic service robot as an
intelligent tool that leverages the natural ability of humans to interpret social cues of
non-human agents, such as reported in the apparent behavior of animated shapes [192],
the media equation theory [59], and the intentional stance [193]. We argue that fluent
task-related social behavior (i.e., gazing, pointing, object manipulation) is already
a challenging research topic. In many instances in this thesis, it is difficult, if not
impossible, to exclude emotional aspects of joint attention and joint action. Emotional
interaction aspects are implicit in scenarios where the two agents have no conflicting
goals (e.g., Chapter 3, How did the two agents agree on the goal in the first place?), and
explicit in Chapter 2, where the effect of robot movement on the human user experience
is measured, or Chapter 6, where the robotic intervention leads to behavior in the
human policy which is akin to reactance in actual humans.

Eventually, the emotional aspect in joint action research cannot be neglected. However,
currently robots still lack the mere task-related fluency in joint action scenarios which
necessitates research that simplifies the emotional aspect of HRI in order to conduct
effective research on task-oriented joint attention aspects. Similar to [21], we argue that
as a preliminary step to joint action, future research should focus on the fluency in HRI
as a user interface. Instead of relying on constant verbal feedback from the robot or the
display of information on a screen, we argue that using the embodiment of the robot
as the main communication modality in adequate scenarios is promising and will lead
to high comfort, acceptance, and task-completion success. Thereby the focus should
be put on achieving fluent interaction before achieving collaboration on shared goals
between a human and a robot.

7.2 RQ 2 - Robot and Human Capabilities for Gaze-
Related Joint Attention in Different Temporal
Resolutions

RQ 2: What are the relevant robotic capabilities for gaze-related joint attention in the
context of different temporal resolutions in comparison to humans?

The problem space of this research question is the mapping between empirically
observed human capabilities and technological implementations on robotic systems. In
Chapter 2 [42]–[44] , we leveraged the humanoid embodiment of a robot, face detection,
speech, and animation principles. In Chapter 3 [90], we used face tracking, object
detection, classical planning, and plan recognition together with empirical HHI data
to recreate the gaze target distribution of a successfully cooperating human-human
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dyad during a joint action task. In Chapter 4 [132], we leveraged classical planning and
object detection to mimic human ToM capabilities in a robot. In Chapter 6 [182], [183],
we used UCB policies and function approximation methods to model human learning
from historic interaction data.

We found several correspondences between human faculties that enable joint attention
and technological approaches to distinct research problems. Plan recognition in classical
planning corresponds to ToM capabilities. Object and and face detection must be
available as an initial step to process sensory data. However, a symbol grounding
process must be in place not only the physical objects, but also perceived actions. All
found correspondences are limited to certain scenarios and would not work in others.
The main function of service robots is to manipulate physical objects and to navigate in
an environment. Therefore, robotic capabilities must be robust for these domains and
it must be clearly communicated to the user that the robotic capabilities are limited to
these predefined areas. This can be done either by educating and informing users before
and during contact with a service robot, but also by carefully designing the HRI itself.
The importance of not overpromising robotic capabilities - both social and task-related
- is apparent in the the anecdotal observations of failed social robots and the reported
lack of long-term engagement with social robots [16].

Limiting the users’ perceived intentionality [193] of a robot is interrelated with
questions about how human the robotic behavior should appear (Chapter 2 and 3), and
how autonomous the robot should be allowed to act (Chapter 6). Effective service robots
will have to possess some degree of autonomy. The problem of value alignment [191]
comes to the foreground when HRI leaves predefined research setups. Value alignment
describes the problem of how to ensure that the programmed goal of a robot is congruent
to the actual intention the programmer (and society in the larger context) intends to
bestow on the robot.

Another core problem of realizing human-inspired behaviors on robots is that be-
havioral mappings for robots will never be totally congruent with HHI. Developing
robotic capabilities that mimic human capabilities implies that human behavior must be
modeled and re-imagined on a robot (unless one envisions an end-to-end implementation
of HRI, but this approach currently seems infeasible due to its complexity). We found
that is makes sense to apply a structural model of capabilities found in humans as
an overarching design guide for robotic applications. However, for single systems in
the structural model, we found it feasible to find translations of human capabilities to
technological systems. For example, one aspect of ToM relevant for our scenario can be
modeled through plan recognition. On a higher time resolution, an estimated goal and
plan can be visualized by a gaze controller that produces head movement in the same
statistical distribution of successful human-human joint interaction.

Another observation is that not only it is impossible for robots to employ unaltered
human interaction behavior, but also that humans adapt their behavior when interacting
with robots. It is likely that humans will try to make their actions legible to robots
and thus differ from their usual HHI behavior.

Whenever a robot helps a human during a chore, the robot will employ some internal
representation of the human in the computation of the next action. This representation
will therefore have an effect on the human. In order to guarantee beneficial interactions
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with robots for humans, the intrinsic value of human autonomy must be considered in
collaborative scenarios. There must be an explicit weighting of the validity of human
decisions, even when the robot is aware of human biases and is able to correct them.

7.3 RQ 3 - Existing Technologies for Gaze-Related
Joint Attention Problems in Different Temporal
Resolutions

RQ 3: Which existing technologies and approaches can be extended, modified, and used
to solve gaze-related joint attention problems in different temporal resolutions?

In Chapter 2 [42]–[44], we were able to relax assumptions about the rigidity of human-
inspired HRI approaches. We answered research questions by applying statistical tests
on empirical data collected during conversational HRI. In Chapter 3 [90], we combined
learned DTMCs with classical planning. In Chapter 4 [132], we combined ontological
databases, classical plan recognition in the PDDL formalism, and MCTS. In Chapter
5 [169], we leveraged a game engine and VR interface to create a new dataset. In
Chapter 6 [182], [183], we combined empirical psychological results about statistical
parameters in the population with MAB, UCB, and function approximation algorithm.

The challenge in the technological conception of joint attention is to find approaches
for the different facets of joint attention that either are separate to a degree where they
do not impede each other or find technological approaches that solve multiple problems
in the joint attention pipeline at once. The former variant applies to the separation
of gaze dynamics (Chapter 2) and gaze targets (Chapter 3). The latter applies to
the plan recognition approach (Chapter 4), where object detection and classical plan
recognition are combined to not only arrive at an estimation of the current goal of the
observed actor but also provide a plan to reach that goal. The robot can then use the
plan to decide how to help the observed actor in reaching the goal. These methods are
applicable in joint action interactions and complex tasks with long time horizon.

As it is often the case in robotics, for a working implementation in a real scenario,
many different software components must be integrated. Each component fulfills
a different role, e.g., object detection and pathfinding. For social scenarios, these
considerations are valid as well. Social processes can be examined at different levels of
abstraction. A couple of lower-level components are then combined to fulfill a higher
function. At other times, a software component explicitly integrates data and output
of lower-level components, as is the case with our gaze sequence controller or the plan
recognition algorithm. As with all engineering tasks, different design approaches exist
involving different lower-level frameworks. This thesis represents one of them.

In conclusion, the focus on different temporal resolutions for the contributions of this
thesis allowed us to compile different but interrelating findings for the multifaceted
joint attention HRI setting.
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Conclusion

The goal of this thesis was to enhance robotic joint attention capabilities during physical
joint action tasks through design and computational insights. We offer a perspective on
HRI challenges in different temporal resolutions and elaborate on their interrelation.

The main results of Chapter 2 reveal that on a behavioral level, a low gaze aversion
ratio leads to shorter interaction durations and that human participants change their
own gaze aversion ratio to mimic the robot. However, they do not copy the robotic
gaze behavior strictly. Additionally, in the lowest gaze aversion setting, participants
do not gaze back as much as expected, which indicates a user aversion to the robot
gaze behavior. However, participants do not report different attitudes toward the
robot for different gaze aversion ratios during the interaction. The urge of humans in
conversational settings with a humanoid robot to adapt to the perceived gaze aversion
ratio is stronger than the urge of intimacy regulation through gaze aversion, and high
mutual gaze is not always a sign of high comfort, as suggested in previous work. This
result can be used to justify deviating from human-inspired gaze parameters when it is
necessary for specific robot behavior implementations.

In Chapter 3, we discuss human gaze behavior as an important modality for signaling,
detecting, and monitoring joint attention processes. This is followed by an overview
of joint attention implementations in HRI and commonly used artificial intelligence
methods for planning and plan recognition. These methods are used to mimic the
qualities of different components in psychological joint attention models in humans. In
object manipulation tasks, the gaze behavior is not only used to gather information
about the environment but also has a communicative role, as the interaction partner
can interpret the gaze direction. The intended actions and beliefs about the current
world state are communicated through the gaze. We argue that robotic gaze behavior,
which humans easily interpret, will improve the interaction capability of a social robot.
We investigate this claim in an already established HRI joint action benchmark scenario
of collaboratively building a tower out of different blocks. To this end, we propose a
stochastic gaze controller for joint action tasks and present the results of a pilot study.

In Chapter 4, we present an approach to estimate the goal of an observed actor from
video data and provide a plan to achieve the goal. Since the resulting observation trace
contains many noisy and redundant actions, a variant of the Monte Carlo Tree Search
algorithm is used to construct a directed acyclic graph that compactly represents action

107



108 8 Conclusion

sequences. We focus on the context of object interactions and use video sequences with
spatial object annotation traces in manipulation-heavy tasks suitable for robots. We
show the results of a fragment of the MPII Cooking 2 dataset. We further contribute
definitions and analysis of different metrics to estimate the goal with the highest
posterior probability. Different metrics are defined to estimate the goal with the highest
posterior probability.

In Chapter 5, we present the VACE dataset. Based on the MPII Cooking 2 dataset, it
enables the recreation of recipes in a VR environment for a variety of meals and smaller
activity sequences, such as cutting vegetables. For complex recipes, multiple samples
are present, following different orderings of valid partially ordered plans. The dataset
includes an RGB and depth camera view, bounding boxes, object segmentation masks,
human joint poses, and object poses, as well as ground truth interaction data in the form
of temporally labeled semantic predicates (holding, on, in, colliding, moving, cutting).
In our effort to make the simulator accessible as an open-source tool, researchers are
able to expand the setting and annotation to create additional data samples.

In Chapter 6, we expand the concept of the assistive MAB to improve the performance
of human-robot teams where the human policy acts according to systematic irrational
biases and not only noisily rational. The assistive multi-armed bandit setting is expanded
by using observable reward classes but not their utility value. This allows deriving
an algorithm that leverages knowledge about the risk-averse human model to correct
human bias in a human-robot team. An evaluation indicates that arbitrary discrete
reward functions can be handled.

In the discussion (Chapter 7), we provided considerations to integrating the different
chapters, especially focusing on different temporal resolutions. We elaborated on the
overarching challenges in joint attention research in HRI and answered the general
research questions about challenges, mappings between human and robotic capabilities
and combinations of technological approaches for gaze-related joint attention in HRI.

8.1 Limitations
Limitations specific to the individual contributions are presented at the end of the
respective Chapters 2-6. In this section, we elaborate the overarching limitations of this
thesis. One main limitation is that the findings of this thesis build upon each other
conceptually, however, the individual contributions have not yet been integrated in one
robotic system and empirically validated in user studies. This will include significant
engineering efforts such as system integration for the many parallel mechanisms on a
social robot.

During the thesis, we emphasized the different research challenges on the temporal
resolution levels. For the topic of joint attention in HRI, this organization was productive.
However, we do not claim that this is a definitive taxonomy for social processes.
Additionally, the individual contributions focus on single aspects on the respective
temporal resolution. For example, each represented research field has numerous results,
which cannot easily be integrated in a single framework for HRI [63]. This consideration
applies to diverse topics such as numerous different gaze parameters in conversational
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settings and numerous different systematic biases in human decision-making.
Another limitation stems from the initial HRI setting assumption, namely that the

interaction is always collaborative. This is an idealization, and it is far from being the
typical case that human goals always align with the goals of a robot, no matter how
well-intended the robotic programming is. Some examples include the effect of robot
movements on the human user experience, miscalibrated expectations about the robot
capabilities, agnostic or adversarial behavior of an observed actor in plan recognition,
the degree of autonomy that leads a robot to overrule human decisions, and the value
alignment problem in a broader scope.

As mentioned above, in this thesis we largely tried to exclude emotional aspects of
joint attention HRI. However, the topic implicitly or explicitly appeared in several
chapters. In Chapter 2, we tried to find a balance between the human user experience
and design freedom in robotic gaze design. In Chapter 3 and 4, the robot excludes the
emotional state of the collaborator and observed actor, although the emotional state
influences human behavior. In Chapter 6, we noticed how the interaction between a
human policy and a robot policy led to a behavior in the human policy akin to reactance,
which is a cognitive state associated with strong emotions in humans.

8.2 Future Work
Avenues of future work in the respective research domains are mentioned in Chapters 2-6.
The overarching direction of future work for this thesis is how humans interact with
robots in different ways than with other humans. This applies to all aspects of this
thesis, from gaze behavior to interactions where ToM capabilities are needed by both
collaborators. Thereby the focus should be put on achieving fluent interaction before
achieving collaboration on shared goals between a human and a robot.

Similar to [21], we argue that as a preliminary step to joint action, future research
should focus on the fluency in HRI as a user interface. Instead of relying on constant
verbal feedback of the robot or the display of information on a screen, we argue that
using the embodiment of the robot as the main communication modality in adequate
scenarios is promising and will lead to high comfort, acceptance, and task-completion
success rates.

Moreover, humans apply different techniques when adapting their behavior towards
robots, such as increasing the tone of their voice, or pushing a button repeatedly, among
others. However, these attempts do not improve the interaction. Researching how these
naturally occurring strategies arise as error correcting strategies can be used to generate
further insights on fluent HRI.

Moving to more realistic scenarios and considering more aspects of joint attention
in HRI scenarios simultaneously is a constant goal of HRI research and applies to the
topics presented in this thesis as well. Specifically, increasing the complexity of the
physical interaction setting and task domain is ongoing work and will provide more
fluent HRI in the coming years.

Additionally, there is a need for more conceptual work on how we want to integrate
robots into our everyday lives, knowing that it will change our own behavior. Without
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design guidelines and an ethical vision of social robotics, future research is inapplicable
at best, and detrimental to human society at worst. We estimate that the debate about
domestic service robots with respect to their place on the spectrum between intelligent
tools versus companions will intensify during the next years.



Appendix

A.1 Robot Script
We used the Pepper standard voice in English and the animations from the Pepper’s
movement library, provided by the NAOqi Python API.

Pepper Greeting:

• Say: “Hello!”, Animation Slowly Offer Both Hands

• Say: “My name is Pepper!”, Animation Both Hands Bump With Bump

• Say: “Please tell me about a movie you like! What is it about?”, Animation
Slowly Offer Both Hands

Pepper Farewell:

• Say: “Okay! Thanks for speaking to me.!”, Animation Slowly Offer Both Hands

• Say: “I think, I now know enough about the movie.”, Animation Both Hands
Bump With Bump

• Say: “Thanks for your thoughts about it.”, Animation Slowly Offer Both Hands

• Say: “Until next time! Bye!”, Animation Happy

Pepper Parameters:
Speed values fall between 0 and 1, where 1 is specified as the maximum speed. Voice

speed: 85, voice shaping: 110, gaze shift speed for pitch: 0.1, gaze shift speed for yaw:
0.2, gaze iteration duration: 10.0, gaze offset: 25, breath amplitude: 0.1, breath bpm:
10, blink duration: 0.05, speed postures: 0.3, speed head tracking: 0.1, head mov max
range: 0.02, head mov min range: 0.01, speed speed random head movement: 0.3.

Pepper Gaze:
Gaze shifts are programmed to happen within 0.5s. When gazing away, the direction

(left/right) is chosen randomly and a target head yaw is then ±25◦. The joint position
profiles are smoothly curved 1 and jerky movement is avoided. When directing the gaze

1https://developer.softbankrobotics.com/nao6/naoqi-developer-guide/naoqi-apis/naoqi-
motion/almotion/joint-control, Case 3: Reactive Control
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back from the averted state to the mutual gaze state, the last known angle position
of the face of the human is targeted, until the human face is detected again. Then,
the new position is targeted instead. A p-controller scheme is used to avoid jerky
movements. While gazing at the human, pepper tracks the face of the human. Random
head movement is applied, whenever the robot does not perform gaze shifts.

A.2 “Was that all?” - Robot Asked for More Infor-
mation

Attention Comfort Capability Word count Duration
Question asked mean SD mean SD mean SD mean SD mean SD
No 3.62 0.953 3.87 0.768 3.28 0.912 332. 139. 185. 70.9
Yes 3.94 0.852 3.77 0.632 3.51 0.630 150. 65.4 93.2 36.1

Table A.2.1: Descriptive statistics between the two participant groups “robot asked for
more: yes and no”.

Attention Comfort Capability Word count Duration
χ2 3.284 1.548 0.536 52.678 53.702
p 0.069 0.213 0.464 <0.000 <0.000

Table A.2.2: Kruskal-Wallis tests for differences between the “robot asked for more: yes
and no” conditions.

A.3 Human Gaze Data Evaluation

GAR n mean (ms) median (ms) SD (ms)
0.1 3783 372 219 372
0.3 4221 384 234 411
0.5 5799 406 250 453
0.7 4896 350 219 360
0.9 4830 330 219 310

Table A.3.3: Descriptive statistics for fixations per GAR condition. 0.1: Robot mostly
stared at the human. 0.9: Robot mostly looked away from the human.
Number of recorded fixations per condition (n), mean, median, and SD of
fixation durations per condition.
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GAR mean SD median
0.1 0.65 0.19 0.65
0.3 0.69 0.2 0.69
0.5 0.65 0.2 0.65
0.7 0.54 0.22 0.55
0.9 0.51 0.17 0.46

Table A.3.4: Descriptive statistics for the normalized fixation duration on ROI head for
all five GAR conditions.

A.3.1 Attitudinal Data Evaluation

χ2 p η2

attention 2.588 0.628 -0.015
comfort 4.685 0.321 0.007
capability 8.689 0.069· 0.051
artificial 2.578 0.630 -0.015
incompetent 8.107 0.087· 0.045
intelligent 6.026 0.197 0.022
sensible 11.533 0.021* 0.082

Table A.3.5: Kruskal-Wallis tests for the Likert scales attention, comfort, and capability,
as well as the Likert items artificial, incompetent, intelligent, and sensible.
Effect sizes: > 0.01 small effect, > 0.06 medium effect and > 0.14 (large
effect). Significance level: ’·’: p < 0.1, ’*’: p < 0.05.

A.4 Participant Instructions
Written Experiment Introduction

Before signing a written consent form, participants read the following written in-
troduction or the experimenter provided a verbal introduction following the written
introduction. This is a short study on human-robot conversation. We want to know
how people talk to a robot in certain situations to improve the human-robot dialogue.
You help us a lot by participating. In this room you see the robot Pepper. Pepper
speaks in English. You can talk in English, but if you feel uncomfortable, you can
also talk in German. The robot will ask you about a movie you like. Just answer by
describing one of the best movies you have watched recently in a couple of minutes and
speak about it for about 2 minutes. The robot can see and hear you, just talk like you
would normally talk to a friend. Your task is: Just answer by describing one of the
best movies you have watched recently in about 2 minutes. Be aware that Pepper will
not answer any questions. Pepper’s task is: It will simply try to understand you. This
study is done to gather data to improve human-robot dialogue, but it doesn’t test you
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in any way. Afterwards we will give you a questionnaire and ask you a few questions
about your experience in person.

Verbal Experiment Introduction Before manually triggering the start of the experi-
ment, the experimenter elaborated the following: So, this is the robot Pepper. It can
hear and see you. Pepper will ask you to tell it about a movie. Your task is to just
answer by describing one of your favorite movies or a movie you watched recently. Be
aware that pepper will not answer any questions. It will simply try to understand you.
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A.5 Questionnaire

Questionnaire Pepper’s Movies Participant#:
Condition:
Folder#:
Date, time:

Thank you for participating in our experiment. Please answer some questions for us!
(Questions about Pepper are on the back)

About you

Your age:

Your gender:

Your main profession:

Your previous experience with robots:
never          once     a few times     regularly

Your use of computers:
never        sometimes      daily

Do you wear optical glasses for the experiment (apart from the eye tracker):
yes               no

Can you see the robot clearly:
yes               no
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About Pepper:

1. Please rate your impression of   the way you were being attended by the robot, based  
on the following statements:
please mark one oval per row

Pepper made a 
responsive impression

Pepper made an 
interactive impression

Pepper made an 
ignorant impression

Pepper made an 
unconscious impression

2. Please rate your   feeling of comfort with the robot, based on the following statements:  
please mark one oval per row

Pepper made a 
creepy impression

Pepper made me 
feel nervous

Pepper made a 
warm impression

Pepper was acting 
pleasantly

3.  Please  rate  your  impression  of  the  robot’s    interaction  capabilities based  on  the  
following statements:
please mark one oval per row

Pepper’s interactions 
were artificial

Pepper made an 
incompetent impression

Pepper was acting
intelligently

Pepper was acting
sensibly
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A.6 Glossary

Optional glossary (Merriam Webster & Cambridge Dictionary)

responsive
quick to respond or react appropriately or sympathetically

interactive
Mutually or reciprocally active

ignorant
lacking knowledge or comprehension of the thing specified

unconscious
not knowing or perceiving | not aware

creepy
strange or unnatural and making you feel frightened

nervous
tending to produce agitation or nervousness | uneasy

warm
marked by or readily showing affection, gratitude, cordiality, or sympathy

pleasant
enjoyable, attractive, friendly, or easy to like

artificial
lacking in natural, lifelike qualities

incompetent
not having the ability to do something as it should be done

intelligent
able to learn and understand things easily

sensible
based on or acting on good judgment and practical ideas or understanding



118 8 Conclusion

A.7 VACE Object Types

utensils
baking paper detergent ladle small plate
big plate dishsoap large bowl smartphone
blender fork mug spatula
bowl front peeler pan spoon
can opener glass paper towel roll tea cup
cleaver grater pot tea pot
coffee machine handsoap pot top toaster
cup knife rolling pin towel wine glass
cutting board large knife saucepan tray
deep pan knife sharpener saucer whisk
ingredients
apple carrot kiwi pepper
avocado cheese lemon pineapple
baguette chocolate bar lime potato
balsamic cocoa corn salad
beer bottle cucumber milk salt
beer can dough mushroom sausage
blueberries egg mustard bottle soy sauce
bread loaf flour olive oil strawberry
broccoli garlic onion sugar
bun ground coffee orange toast
can hot sauce paprika tomato
butter ketchup bottle pear zucchini
can
furniture
counter bin drawer stove
cabinet sink outlet table
fridge faucet spice holder
avatar
human left hand right hand

Table A.7.6: Overview of object types in the VR environment.
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