

III III

Thermochemical Modeling of the Blast Furnace Raceway Zone Markus Bösenhofer, Eva-Maria Wartha, Matthias Kiss, Michael Harasek

www.tuwien.at

Introduction

5-4

What is the raceway zone?

Cavity next to tuyeres

Why is the raceway zone important?

Schematic overview blast furnace process.

Introduction

What is the raceway zone?

Cavity next to tuyeres

Why is the raceway zone important?

- Thermochemical processes influence efficiency
- Injection alternative reducing agents (ARAs)
- Reduction of metallurgical coke consumption

Hot blast velocity and PCI residence time in the raceway zone.

Involved Length Scales

Geometrical scales

- Blast furnace size
- Coke/Ore/Aggregates
- ARAs

Involved Time Scales

 \circledast L. VERVISCH (2015): ERCOFTAC BEST PRACTICE GUIDELINES "COMPUTATIONAL FLUID DYNAMICS OF TURBULENT COMBUSTION"

Involved Time Scales

Chemical scales

- ARA/coke conversion
- Gas-phase chemistry

Physical scales

- Gas/solid flow
- Turbulence
- Mass transport/transfer

 $\textcircled{\sc blue}$ L vervisch (2015): Ercoftac Best Practice Guidelines "Computational Fluid dynamics of turbulent combustion"

Fixed raceway shape based on literature, colors indicate porosity: 0.9 (red), 0.8 (green), 0.7 (blue), 0.6 (grey)¹

Temperature	Heating rates	Pressure	Relative velocity	Flow type	Residence time
1200 – 2500 K	10 ⁴ – 10 ⁶ K/s	2 – 5 bar _(a)	< 1- 100 m/s	Turbulent	< 100 ms

¹C. MAIER (2015): NUMERICAL MODELING OF THE BLAST FURNACE PROCESS – INJECTION OF AUXILIARY REDUCING AGENTS INTO THE RACEWAY, PHD THESIS, TU WIEN ²M. BÖSENHOFER ET AL. (2020): SUITABILITY OF PULVERISED COAL TESTING FACILITIES FOR BLAST FURNACE APPLICATIONS, IRONMAKING & STEELMAKING, VOL 47(5), PP. 574-585

Thermochemical ARA conversion

What are ARAs?

- Pulverized carbon carriers
- Particle size: 10 µm 10 mm

ARA conversion:

- Drying \rightarrow thermal or equilibrium
- Devolatilization \rightarrow single or two-step
- Oxidation \rightarrow diffusion limited
- Gasification \rightarrow diffusion limited

[©]T. KAMIJOU ET AL. (2000): PC COMBUSTION IN BLAST FURNACE. IN ADVANCED PULVERIZED COAL INJECTION TECHNOLOGY AND BLAST FURNACE OPERATION, VOLUME 1, PP. 63–82

√

Thermochemical Conversion Coke/Ore

Coke conversion:

- (Unreacted) progressive core
- Effective rate expression:

© M. BÖSENHOFER ET AL. (2019): MULTIPHASE REACTIVE SYSTEMS – ANALYSIS OF INVOLVED TIME SCALES, PROCEEDINGS: 9TH EUROPEAN COMBUSTION MEETING (ECM), 6 PAGES

Thermochemical Conversion Coke/Ore

Coke conversion:

- (Unreacted) progressive core
- Effective rate expression:

Iron ore conversion:

- Unreacted shrinking core
- Effective rate expression:

$$\frac{1}{k_{\text{eff,i}}} = \frac{1}{A_{\text{s}}h_{\text{m,i}}} + \sum_{l>L} \left(\int_{r_{l+1}}^{r_l} \frac{dA}{D_{\text{eff,i}}A(r)} + \sum_{l=1}^{l} \frac{1}{k_{\text{i,l}}} \right) + \frac{1}{k_{\text{i,L}}}$$
$$k_{\text{eq,i}} = \left(k_{\text{eff,i}} + \frac{k_{\text{eff,i}}}{K_{\text{eq}}} \right) \cdot \left(c_{\text{i}} - \frac{c_{\text{j}}}{K_{\text{eq}}} \right)$$

© M. BÖSENHOFER ET AL. (2023):AN EULERIAN-BASED REDUCTION MODEL FOR IRON ORE PARTICLE REDUCTION, AISTECH 2023, 8 PAGES

Gas-phase chemistry

Challenges:

- Different combustion regimes
- Multiple gas species sources (coke, ore, ARAs)
- Widely scattered characteristic scales
- Turbulence

V. PANEBIANCO (2016): A NUMERICAL STUDY OF TURBULENCE-FLAME INTERACTION IN MILD COMBUSTION, PHD THESIS.

classical combustion

Gas-phase chemistry

Challenges:

- Different combustion regimes
- Multiple gas species sources (coke, ore, ARAs)
- Widely scattered characteristic scales
- Turbulence

Eddy Dissipation Concept (EDC):

- Based on turbulence energy cascade
- Covers multiple regimes

Comparison fine structures classical and MILD combustion.^{1,2}

Reacting structures of a premixed opposing jet flame.³

 ¹M. BÖSENHOFER ET AL. (2018): THE EDDY DISSIPATION CONCEPT—ANALYSIS OF DIFFERENT FINE STRUCTURE TREATMENTS FOR CLASSICAL COMBUSTION, ENERGIES 11(7):1902
²H. TENNEKES (1968): SIMPLE MODEL FOR THE SMALL-SCALE STRUCTURE OF TURBULENCE. THE PHYSICS OF FLUIDS, 11(3), PP. 669–671
³P. MAGNUSSEN (2009): INVESTIGATION INTO STRUCTURE AND BEHAVIOR OF LAMINAR AND TURBULENT FLAMES BY PLANAR LASER-INDUCED FLUORESCENCE MEASUREMENTS, PHD THESIS, NTNU

Multi-Phase Modeling

Involved phases:

- Gas
- Solid (coke, ore)
- Liquid (iron, slag)
- ARAs (pulverized solids)

Modeling strategy:

- Euler-Euler-Lagrange
- Continuous solid phases (KTGF)
- Point mass/1D Lagrangian ARA phases

© S. ELGHOBASHI (1994): ON PREDICTING PARTICLE-LADEN TURBULENT FLOWS, APPLIED SCIENTIFIC RESEARCH, VOL. 52, 309-329.

Model Validation

Lab-Scale blast furnace:

- Experimental raceway formation
- Measurement of species concentration in the raceway

Schematic illustration and mesh of the experimental setup from¹

 $^{\rm 1}$ H. NOGAMI ET AL. (2004) RACEWAY DESIGN FOR THE INNOVATIVE BLAST FURNACE, ISIJ INTERNATIONAL 2004;44:2150–8

Model Validation

Lab-Scale blast furnace:

- Experimental raceway formation
- Measurement of species concentration in the raceway

Simulations results:

- No significant difference between KTGF closures
- Good agreement with experiments

Comparison experimental and simulation result

Modeling Study – Raceway Size

Influence Coke :

- 2D experiments on raceway formation
- Continuous feeding from top
- Gas tight continuous discharging at bottom
- Varying coke conversion rates:

Casa ID	Rate		
Case ID	Variation		
C0	$0 \cdot k_{eff,i}$		
C1	0.5 · k _{eff,I}		
C2	k _{eff,I}		
C3	100 · k _{eff,i}		

¹ V. MOJAMDAR, G.S. GUPTA, A. PUTHUKKUDI, RACEWAY FORMATION IN A MOVING BED, ISIJ INT. 58 (2018) 1396–1401.

Modeling Study – Raceway Size

Influence Coke :

- 2D experiments on raceway formation
- Continuous feeding from top
- Gas tight continuous discharging at bottom
- Varying coke conversion rates:

	Rate		
	Variation		
C0	$0 \cdot k_{eff,i}$		
C1	0.5 · k _{eff,I}		
C2	k _{eff,I}		
C3	100 · k _{eff,i}		

Hot blast phase fraction contours. a) C0; b) C1; c) C2; d) C3.

Summary & Outlook

- Thermochemical raceway modeling complex:
 - Length/time scales
 - Multiple phases
 - Chemistry

- Comprehensive modeling framework
 - General multiphase reactors
- Investigation of blast furnace operation
 - ARA injection investigations
 - Coke consumption

Snapshot representative PCI injection simulation.

metallurgical competence center

Kontakt

Markus Bösenhofer

Phone: +43 1 58801 166251 Email: markus.boesenhofer@tuwien.ac.at markus.boesenhofer@k1-met.com

www.tuwien.at www.k1-met.com

Snapshot representative PCI injection simulation.