
Master’s thesis

Electrostatic Interactions in
Neural-Network Force Fields

Carried out at the

Institute of Materials Chemistry

Under supervision of

Univ.Prof. Georg K. H. Madsen, PhD

and

Senior Scientist Jesús Carrete Montaña, PhD

By

Johannes Schörghuber, BSc

Vienna, 9th May, 2023
Johannes Schörghuber, BSc

Abstract

Neural-network force fields provide a computationally efficient, flexible and transferable
way to compute forces and further quantities with ab-initio-like accuracy, for example
for use in high-throughput applications such as molecular dynamics. Such models often
work in part by encoding the absolute coordinates using descriptors which capture the
immediate environment of an atom [1]. These are in most cases defined via a cutoff
radius, making them local by definition. While such networks already produce excellent
results using these descriptors [2, 3, 4], an accurate modelling of long-range interactions
is desirable to move towards more physical and transferable models of the systems of
interest [5].

In the present work, a methodology to model electrostatic interactions using a neural-
network force field has been developed. Training data that represents only the electro-
static interactions between the atoms in the system is generated via density functional
theory calculations and the performance impact of different training data choices are
explored. Atomic charges are predicted using a modified version of the electron-passing
neural-network introduced in Ref. [6], which is implemented to be combined with the
neural-network force field NeuralIL [4]. The applicability of the approach is demon-
strated on surface reconstructions and liquids. It is shown that atomic charges can be
predicted to accurately reproduce the electrostatic energy of the system by training the
network on the total electrostatic energies of the reference systems. However, the need
for additional local training information for each atom is highlighted by the poor per-
formance in force predictions when integrating models trained using this methodology
with NeuralIL.

I

Zusammenfassung

Kraftfelder basierend auf neuronalen Netzwerken bieten eine effiziente, flexible und
übertragbare Möglichkeit zur Berechnung von Kräften und weiterer Größen mit ab-
initio-ähnlicher Genauigkeit, beispielsweise für den Einsatz in Anwendungen, die eine
hohe Anzahl an Evaluationen erfordern, wie der Molekulardynamik. Oftmals werden
in solchen Modellen die absoluten Positionen mithilfe von Deskriptoren, welche die un-
mittelbare Umgebung der Atome beschreiben, dargestellt [1]. Diese sind in den meisten
Fällen über einen maximalen Grenzradius definiert und beschreiben daher nur das lokale
Umfeld eines Atoms. Während Netzwerke basierend auf solchen Deskriptoren bereits Re-
sultate mit sehr hoher Genauigkeit liefern [2, 3, 4], ist eine akkurate Beschreibung von
weitreichenden Wechselwirkungen für physikalisch vollständigere und besser transferable
Modelle von Interesse [5].

In der vorliegenden Arbeit wurde eine Methodik für die Beschreibung elektrostatis-
cher Wechselwirkungen in Kraftfeldern basierend auf neuronalen Netzwerken entwickelt.
Trainingsdaten, welche ausschließlich elektrostatische Interaktionen beschreiben, wer-
den mithilfe von Dichtefunktionaltheorie generiert und der Einfluss unterschiedlicher
Arten von Trainingsdaten untersucht. Atomare Teilladungen werden mithilfe einer
modifizierten Version des electron-passing neural network [6], welche kompatibel mit
NeuralIL [4] implementiert ist, modelliert. Die Anwendbarkeit wird anhand von
Oberflächenrekonstruktionen und Flüssigkeiten demonstriert. Es wird gezeigt, dass
atomare Teilladungen, welche die elektrostatischen Energien der untersuchten Systeme
reproduzieren, mit hoher Genauigkeit berechenbar sind. Jedoch zeigt die Integration des
Modells in NeuralIL, dass zusätzliche, lokale Trainingsinformationen notwendig sind,
um auch genaue Kräfte berechnen zu können.

II

Contents

1 Introduction 1

2 The Projector Augmented Wave (PAW) Method 2
2.1 Density Functional Theory . 2
2.2 The PAW Transformation . 4
2.3 (Semi-)Local Operators . 6
2.4 Electrostatic Energy . 8
2.5 The Kohn-Sham Equations in PAW . 11
2.6 Forces . 13

3 Neural-Network Force Fields 15
3.1 Spherical Bessel Descriptors . 17
3.2 Electrostatic Interactions in NNFFs . 18

4 Atomic Charge Prediction using Neural Networks 20
4.1 Graph Representation of Atomic Systems 20
4.2 Message-Passing Neural Networks . 20
4.3 Electron-Passing Neural Networks . 21

5 Methodology 24
5.1 Training Data . 24
5.2 Neural-Network Force Field . 24
5.3 Electron-Passing Neural Network . 25

5.3.1 Programming Framework . 25
5.3.2 Graph Representation . 26
5.3.3 Network Architecture . 27

6 Results 29
6.1 Water Dimer . 29
6.2 Handling of Electrostatics in a Neural-Network Force-Field 31
6.3 EPNN Training on Charges Obtained by Density Partitioning 33
6.4 EPNN Training on Electrostatic Energies 37
6.5 Electrostatic Forces in PAW . 41

7 Conclusion and Outlook 43

III

1 Introduction

Atomic-level simulations have become an integral tool in the understanding of atomic
structure, transport phenomena and reactivity. While first-principles electronic structure
methods provide highly accurate descriptions of a vast amount of systems, they are often
limited to smaller systems and fewer configurations due to the high computational costs.
To be able to facilitate the studies of more complicated systems such as alloys, surfaces
and interfaces and to allow for the use of methods such as molecular dynamics and Monte
Carlo simulations, a different way to model the potential energy hypersurface is needed.

A computationally more efficient alternative to ab-initio methods are force fields (FFs),
which consider the atoms as point-like particles and model the energy and forces in a
more classical fashion. Classical FFs, such as OPLS-AA [7] and ReaxFF [8], which
also includes terms for accounting for phenomena such as polarization and is consid-
ered the state-of-the-art FF for molecular mechanics, are usually constructed via the
parametrization of functional forms built up using physically inspired terms. However,
these FFs require at times difficult parametrizations and are still limited in terms of
scalability and transferability.

In recent years, machine-learning force fields have been introduced as a more general and
flexible alternative to classical FF parametrizations [1, 2]. These have been shown to
achieve DFT-like accuracy while keeping computational costs low [3]. However, neural-
network force fields, which are constructed adhering to the architecture introduced in
Ref. [1], do by definition not account for long-range interactions beyond a pre-defined
cutoff radius. One type of long-range interactions that is not accounted for explicitly are
electrostatic interactions between (charged) particles: Modelling of these interactions
has been found to be important for a physically accurate description of a variety of phe-
nomena in different systems, from the structure and dynamical behaviour of proteins [9]
to interface properties [10] to water in different phases and configurations [11].

In this work, a way of integrating electrostatic interactions with the neural-network force
field NeuralIL [4] is explored. The interactions are modelled explicitly by extending the
total energy expression by a Coulomb term with charges predicted by a separate, auxil-
iary electron-passing neural network [6]. A modified version of this graph-based neural
network is implemented in a programming framework compatible with NeuralIL. Dif-
ferent training data choices, methods to obtain training data from density functional
theory calculations, and their impact on the performance of the augmented NeuralIL
model are investigated to move towards a more phyiscally accurate description of atomic
systems.

1

2 The Projector Augmented Wave (PAW) Method

2.1 Density Functional Theory

The central equation in electronic structure calculations is the many-body problem,
which refers to the task of solving the Schrödinger equations for a system containing
multiple particles. The time-independent Schrödinger equation is given by

Ĥ|Ψ⟩ = E|Ψ⟩ (2.1)

Denoting electrons with the subscripts e and e′ and nuclei with the subscripts a and
a′, the Hamiltonian Ĥ is defined, in an atomic system of units with the electronic
charge e = 1, the electron mass me = 1 and ℏ = 1, as

Ĥ = −1

2
e

∇2 +
1

2
e ̸=e′

1

|re − re′ | − ea

Za

|re −Ra| +
1

2
a ̸=a′

ZaZa′

|Ra −Ra′ | (2.2)

Density Functional Theory (DFT) is an approach for expressing the energy of an inter-
acting many-body system introduced by Hohenberg and Kohn in 1964 [12]. The method
deals with the exploding complexity of the problem by reformulating it in terms of a
functional of the electron density n(r) instead of treating each particle explicitly and
is exact in its most general form, as shown in Ref. [12]. DFT is based on two central
concepts: First, under the Born-Oppenheimer approximation, the nuclei parametrize an
external potential vext(r) = − a

Za
|r−Ra| , which uniquely determines the ground state

density n0(r) [12]. (The nucleus-nucleus interaction can be seen as an additive constant
to the energy for a given set of atomic positions.) The Born-Oppenheimer approxima-
tion assumes an instantaneous response of the electrons to a change in the positions of
the nuclei, justified by the significantly heavier nature of the nuclei compared to the
electrons. Second, the ground state electronic density can be determined by minimizing
an energy functional E[n].

However, this requires the explicit form of the functional E[n] to be known exactly, which
is almost never the case. A self-consistent, iterative formulation of DFT, which lends
itself to finding well-defined approximations for practical calculations, was introduced
by Kohn and Sham in 1965 [13]. The resulting Kohn-Sham Density Functional Theory
approach (KS-DFT) will be the focus of this section. It is mentioned that while methods
to solve the time-dependent problem (TDDFT methods) are also in use [14], only the
time-independent problem is considered here.

2

In KS-DFT, the interacting many-body problem, the solution of which is denoted by the
wave function |Ψ⟩, is expressed as a system of non-interacting electrons characterized by
the wave functions |ψn⟩. The density is formulated in terms of the non-interaction wave
functions as n(r) = n |ψn(r)|2, where ψn(r) = ⟨r|ψn⟩. Using this expression for the
density, the KS energy functional is then defined as

E[n] = Ts[{ψn}] + EH [n] + vext(r)n(r)d
3r + Exc[n] (2.3)

where

Ts[{ψn}] =
n

⟨ψn| − ∇2

2
|ψn⟩ (2.4)

denotes the non-interacting kinetic energy and

EH [n] =
1

2

n(r)n(r′)
|r − r′| d3rd3r′ (2.5)

denotes the Hartree energy. The functional Exc is referred to as the exchange-correlation
functional and accounts for the error introduced by the reformulation in terms of non-
interacting electrons. Thus, it restores the electron-electron interaction energy of the
interacting system Eee = 1

2 e ̸=e′ |re − re′ |−1 and the kinetic energy of the interacting
system T . Formally, Exc is therefore defined as

Exc = T − Ts + Eee − EH (2.6)

With the functionals defined, the ground state of the system is then determined by
solving the KS equations (2.7). While these equations are in theory exact, the form of
Exc is not known in the general case and has to be approximated. There exists a broad
range of ways to construct exchange-correlation functionals, details of which will not be
discussed in this work.

−1

2
∇2 +

n(r)

|r − r′|d
3r′ + vext(r) +

δExc

δn
(r) ψn(r) = εnψn(r) (2.7)

While equation (2.7) describes a practical way to obtain ground-state solutions, chal-
lenges related to the implementation in software still arise. The wave functions are

3

required to be orthogonal, which in turn leads to highly oscillatory behaviour close to
the nuclei. This in turn requires a large set of plane wave basis functions to achieve a
sufficiently accurate representation. Multiple approaches to solve this problem exist:

Pseudo-potential methods rely on a smoother potential representation for the core elec-
trons to avoid the oscillatory behaviour. The KS equations are then only solved for the
valence electrons [15]. While this greatly reduces computational cost, it relies on finding
a suitable parametrization of the pseudo potential for accurate results. Furthermore,
even if an accurate result is obtained, information about the all-electron wave function
is lost in the regions surrounding the nuclei.

The (linearized) Augmented Plane Wave method ((L-)APW) provides a different ap-
proach by modifying the plane wave basis set in the core regions. In these regions the
wave functions are modelled as partial waves, which are then matched with the plane
waves at the core-interstitial boundary.

Another framework, which will be discussed in detail in the following sections, is given by
the Projector Augmented Wave (PAW) method first introduced by Blöchl [16], of which
the pseudo-potential method has been shown to be a well-defined approximation [17].

2.2 The PAW Transformation

As discussed in section 2.1, the main problem regarding solving the KS equations for
all electrons lies in the highly oscillatory behaviour close to the nuclei. The central idea
of the PAW method lies in the definition of a transformation T̂ that maps a smooth
auxiliary wave function |ψ̃n⟩ to the all-electron single particle wave function |ψn⟩, which
yields a transformed set of equations that take the place of the KS equations given in
equation (2.7).

T̂ ∗ĤT̂ |ψ̃n⟩ = εnT̂ ∗T̂ |ψ̃n⟩ (2.8)

It is desirable for the PAW transformation operator T̂ to be linear and, since the wave
functions are well-behaved away from the nuclei, reduce to an identity transformation
outside a cutoff radius rac away from the nucleus a, as given in equation (2.9). The cutoff
radii should be defined in such a way that the augmentation spheres do not overlap.

T̂ = 1 +
a

T̂ a with T̂ a = 0 for |r −Ra| ≥ rac (2.9)

4

In the region of distances smaller than the cutoff radius rac the all-electron wave function
is expanded using a set of partial waves {ϕa

i }. The choice of the functional form of these
waves is a parameter for the implementation: A natural choice for molecular systems
are the solutions of the radial Schrödinger equation for isolated atoms [16]. Similar to
the treatment of the full wave function there is a set of smooth partial waves {ϕ̃a

i } which
transform according to

|ϕa
i ⟩ = (1 + T̂ a)|ϕ̃a

i ⟩ ∀ i, a (2.10)

For given sets of (smooth) partial waves {ϕi} and {ϕ̃i} this yields a complete definition of
the PAW transformation operator T̂ . If the set {ϕ̃i} is complete inside the augmentation
region this allows for the expansion of the smooth wave function according to

|ψ̃n⟩ =
i

P a
ni|ϕ̃i⟩ for |r −Ra| < rac (2.11)

Due to equation (2.10) the expansion of the full all-electron wave function |ψn⟩ via the
set {ϕi} takes the same form as equation (2.11) with the same expansion coefficients
P a
ni. The linearity requirement for T̂ leads to the expansion coefficients being linear

functionals of the smooth wave function |ψ̃n⟩.

P a
ni = ⟨p̃ai |ψ̃n⟩ (2.12)

where ⟨p̃ai | are the so-called projector functions, which have to fulfill the completeness
condition given in equation (2.13) in order for the equality i |ϕ̃a

i ⟩⟨p̃ai |ψ̃n⟩ = |ψ̃n⟩ to
hold inside the augmentation regions.

i

|ϕ̃a
i ⟩⟨p̃ai | = 1 for |r −Ra| < rac (2.13)

This further implies a duality relation between the projector functions and the smooth
partial waves:

⟨p̃ai1 |ϕ̃a
i2⟩ = δi1i2 for |r −Ra| < rac (2.14)

Summarizing, the definitions of (smooth) partial waves and projector functions in turn
fully define a linear transformation operator

5

T̂ = 1 +
a i

(|ϕa
i ⟩ − |ϕ̃a

i ⟩)⟨p̃ai | (2.15)

with which the full, all-electron wave function |ψn⟩ can be expressed as

|ψn⟩ = |ψ̃n⟩+
a i

(|ϕa
i ⟩ − |ϕ̃a

i ⟩)⟨p̃ai |ψ̃n⟩ (2.16)

where the sets of (smooth) partial waves {ϕi} and {ϕ̃i} and the set of projector functions
{p̃i} are independent of the system and can thus be precalculated. The transformation
allows for a full reconstruction of the all-electron wave function |ψn⟩ from the smooth
auxiliary wave functions |ψ̃n⟩, which is found by solving the transformed Kohn-Sham
equations. This overcomes the problem of the highly oscillatory behaviour near the
nuclei when solving while also avoiding a loss of information in the core regions, as is
the case with pseudopotential methods.

While the transformation gives a well defined mapping of the smooth and all-electron
wave functions, a central approximation is customary to obtain a computationally effi-
cient method: The frozen core approximation assumes a localization of the core states
within the augmentation spheres and that they are not altered by the formation or
breaking of chemical bonds. This has been found to be a valid approximation that only
has a small effect on accuracy in Ref. [18]. As a consequence the core Kohn-Sham states
are directly given by the partial waves in that region:

|ψa,core
n ⟩ = |ϕa,core

α ⟩ (2.17)

Extensions of the PAW method beyond the frozen core approximation are possible, but
often forgone in implementations such asGPAW due to the high accuracy of calculations
within the approximation [19, 20].

2.3 (Semi-)Local Operators

As discussed in section 2.2, the smooth auxiliary wave function takes the role of the vari-
ational parameter in PAW, wherefore expressions for the expectation values of operators
have to be reformulated in terms of |ψ̃n⟩. In general an expectation value of an operator
Â in the frozen core approximation is given by

6

⟨Â⟩ =
valence

n

fn⟨ψn|Â|ψn⟩+
a

core

α

⟨ϕa,core
α |Â|ϕa,core

α ⟩ (2.18)

where fn denotes the occupation of a state n. Introducing the PAW transformation
defined in equation (2.15) to expand |ψa

n⟩ using partial waves yields

valence

n

fn⟨ψa
n|Â|ψa

n⟩ =
i1i2

⟨ϕa
i1 |Â|ϕa

i2⟩
valence

n

fnP
a∗
ni1P

a
ni2 (2.19)

The last sum in equation (2.19) is defined as the one-center density matrix Da
i1i2

in
equation (2.20).

Da
i1i2 =

n

fnP
a∗
ni1P

a
ni2 =

n

fn⟨ψ̃n|p̃ai1⟩⟨p̃ai2 |ψ̃n⟩ (2.20)

Finally, over the whole region the above transformations yield equation (2.21) as a
general expression for the expectation value of a (semi-)local operator depending on the
smooth auxiliary wave function.

⟨Â⟩ =
valence

n

fn⟨ψ̃n|Â|ψ̃n⟩

+
a i1i2

(⟨ϕa
i1 |Â|ϕa

i2⟩ − ⟨ϕ̃a
i1 |Â|ϕ̃a

i2⟩)Da
i1i2

+
a

core

α

⟨ϕa,core
α |Â|ϕa,core

α ⟩

(2.21)

This directly yields an expression for the expectation value of the real-space projection
operator |r⟩⟨r|, which gives the electron density n(r):

n(r) =

valence

n

fn|ψ̃n|2 +
a i1i2

(ϕa
i1ϕ

a
i2 − ϕ̃a

i1 ϕ̃
a
i2)D

a
i1i2 +

a

core

α

|ϕa,core
α |2 (2.22)

In practice, a smooth core density ña
c (r), which is equal to the core density na

c (r) for
|r −Ra| ≥ rac , is constructed [16, 19, 20]. This gives the one-center expansions

7

na(r) =
i1i2

ϕa
i1(r)ϕ

a
i2(r)D

a
i1i2 + na

c (r)

ña(r) =
i1i2

ϕ̃a
i1(r)ϕ̃

a
i2(r)D

a
i1i2 + ña

c (r)
(2.23)

which allow for expressing the all-electron density as a sum of a smooth contribution
evaluated on the whole space and atom-centered corrections.

n(r) = ñ(r) +
a

(na(r)− ña(r)) with ñ(r) =
valence

n

fn|ψ̃n(r)|2 +
a

ña
c (r) (2.24)

Similarly to the density, the expectation value of the kinetic energy operator can also
be expressed as a sum of smooth contributions and atom-centered corrections using
equation (2.21):

Ts[{ψn}] =
valence

n

fn⟨ψ̃n| − 1

2
∇2|ψ̃n⟩+

a

∆T a
s [{Da

i1i2}] (2.25)

with the local corrections

∆T a
s [{Da

i1i2}] =
i1i2

(⟨ϕa
i1 | −

1

2
∇2|ϕa

i2⟩ − ⟨ϕ̃a
i1 | −

1

2
∇2|ϕ̃a

i2⟩)Da
i1i2

+
a

core

α

⟨ϕa,core
α | − 1

2
∇2|ϕa,core

α ⟩
(2.26)

The exchange-correlation energy for (semi-)local XC functionals such as LDA or GGA-
type functionals can, at least conceptually, be obtained in an analogous way using equa-
tion (2.21) [19, 20].

2.4 Electrostatic Energy

Due to the non-linear and non-local nature of the Hartree term, the introduction of the
PAW transformation requires a more involved derivation in this case, starting from the
classical electrostatic energy given in equation (2.27).

8

EC [n] =
1

2

n(r)n(r′)
|r − r′| d3rd3r′+

n(r) a Z
a(r′)

|r − r′| d3rd3r′+
1

2
a ̸=a′

Za(r)Za′(r)

|r − r′| d3rd3r′

(2.27)

where Za(r) = −Zaδ(r − Ra) is the charge density of the nucleus a with Z denoting
the atomic number. This expression does not include nuclear self-interaction, which is
the case for the Hartree energy formulated in terms of the charge density

UH [ρ] =
1

2

ρ̃(r)ρ̃(r′)
|r − r′| d3rd3r′ +

a

1

2

ρa(r)ρa(r′)− ρ̃a(r)ρ̃a(r′)
|r − r′| d3rd3r′ (2.28)

with the charge density ρ(r) being defined in equation (2.29). This quantity is introduced
due to numerical problems with calculating the Hartree energy of a density with non-
zero local charge. An exact definition and more detailed discussion of the charge density
ρ and its’ smooth counterpart ρ̃ is given in the following paragraphs.

ρ(r) = n(r) +
a

Za(r) (2.29)

Evaluating UH [ρ] with the above defined charge density is computationally infeasible: It
would entail a double summation over all nuclei, as in the last term of equation (2.27),
which is O(N2

atoms) in a direct implementation. Furthermore, terms lying on different
grids (radial grids for the atom-centered terms and equally spaced coarse grids for the
smooth terms) would have to be treated in the same integrals. The solution lies in
the definition of one-center all-electron and smooth charge densities [20], as given in
equation (2.30).

ρa(r) = na(r)−Zaδ(r −Ra)

ρ̃a(r) = ña(r) +
lm

Qa
lmg̃alm(r) (2.30)

where g̃alm(r) are functions localized in the augmentation sphere of atom a, which are
normalized according to

rlYlm(r −Ra)g̃al′m′(r)d3r = δll′δmm′ for |r −Ra| < rac (2.31)

9

The compensation charges in the last term of ρ̃a(r) in equation (2.30) are defined in such
a way that the difference between the all-electron charge density ρ(r) and the smooth
charge density ρ̃(r) has multipole moments equal to zero, in order to electrostatically
decouple the augmentation spheres [20]. This fully defines the expansion coefficients
Qa

lm by equation (2.32).

Qa
lm = rlYlm(r̂) [na(r)− ña(r) + Za(r)] d3r = ∆aδl0 +

i1i2

∆a
lm,i1i2D

a
i1i2 (2.32)

with

∆a = Y00(r̂) [n
a
c (r)− ña

c (r)−Zaδ(r)] d3r

∆a
lm,i1i2 = rlYlm(r̂) ϕa

i1(r)ϕ
a
i2(r)− ϕ̃a

i1(r)ϕ̃
a
i2(r) d3r

(2.33)

The compensation charge densities Z̃a(r) = lmQa
lmg̃alm(r) are thus also fully defined,

so a smooth total charge density can be formulated.

ρ̃(r) = ñ(r) +
a lm

Qa
lmg̃alm(r) (2.34)

which in turn yields the expression ρ(r) = ρ̃(r) + a [ρ
a(r)− ρ̃a(r)] for the all-electron

charge density. With the definition of the all-electron and smooth charge densities ρ(r)
and ρ̃(r) as well as the atom-centered forms ρa(r) and ρ̃a(r) the electrostatic energy can
finally be evaluated using equation (2.28).

The term in the last sum over all atoms a can again be expressed as an atom-centered
correction tensor ∆Ea

C [{Da
i1i2

}], analogous to the expressions in section 2.3. For purposes
of a compact notation of the tensor the notation (f |g) is used to denote the Coulomb
integral for the functions f(r) and g(r) and ((f)) = (f |f):

(f |g) = f∗(r)g(r′)
|r − r′| d3rd3r′ (2.35)

10

∆Ea
C [{Da

i1i2}] =
1

2
((na)) + (na|Za)− 1

2
((ña))− (ña|Z̃a)− 1

2
((Z̃a))

=
1

2
[((na

c))− ((ña
c))]−Za na

c (r)

r
dr −

lm

Qa
lm(ña

c |g̃alm)

+
i1i2

Da∗
i1i2 (ϕa

i1ϕ
a
i2 |na

c)− (ϕ̃a
i1 ϕ̃

a
i2 |ña

c)

−Za ϕa
i1
(r)ϕa

i2
(r)

r
dr −

lm

Qa
lm(ϕ̃a

i1 ϕ̃
a
i2 |g̃alm)

+
1

2
i1i2i3i4

Da∗
i1i2 (ϕa

i1ϕ
a
i2 |ϕa

i3ϕ
a
i4)− (ϕ̃a

i1 ϕ̃
a
i2 |ϕ̃a

i3 ϕ̃
a
i4) Da

i3i4

− 1

2
lml′m′

Qa
lmQa

l′m′(g̃alm|g̃al′m′)

(2.36)

where all terms in ∆Ea
C only need to be treated on the radial atom-centered grids and

not the full space.

2.5 The Kohn-Sham Equations in PAW

In sections 2.3 and 2.4 a framework was derived to evaluate the different energy con-
tributions to the total energy of an atomic system based on the smooth expression for
the densities ñ(r) and ρ̃(r) and thus the underlying Kohn-Sham wave functions |ψ̃n⟩.
These quantitites are obtained by solving the transformed Kohn-Sham equation (2.8).
With the results of the previous sections it is now possible to fully define the terms
ˆ̃H = T ∗ĤT and Ŝ = T ∗T .

Using the definition of the PAW transformation in equation (2.15) the overlap operator Ŝ
is expressed directly via equation (2.37). Due to the transformation of the KS equations
the original orthogonality condition ⟨ψn|ψm⟩ = δnm does not hold for the smooth wave
functions, which are orthogonal with respect to the aforementioned overlap operator
instead ⟨ψ̃n|Ŝ|ψ̃m⟩ = δnm.

Ŝ = T ∗T
= 1 +

a i1i2

|p̃ai1⟩(⟨ϕa
i1 |ϕa

i2⟩ − ⟨ϕ̃a
i1 |ϕ̃a

i2⟩)⟨p̃ai2 |

= 1 +
a i1i2

|p̃ai1⟩
√
4π∆a

00,i1i2⟨p̃ai2 |
(2.37)

11

While the Hamiltonian could be similarly deduced by applying the PAW transformation
to the operator directly, it is beneficial to take advantage of the expression for the
electrostatic energy UH [ρ] derived in section 2.4. Using the relation

∂E[n]

∂⟨ψ̃n|
= fn

ˆ̃H|ψ̃n⟩ (2.38)

for the Kohn-Sham total energy E[n] = Ts[{ψn}] +UH [ρ] +Exc[n] and defining the sum
of all local corrections to the energy contributions as ∆Ea = ∆T a

s +∆Ea
xc +∆Ea

C and
inserting the energy expressions derived previously yields

δE[n]

δψ̃∗
n(r)

=
δ

δψ̃∗
n(r)

Ts[{ψ̃n}] + Exc[ñ] + UH [ρ̃] + ∆Ea[{Da
i1i2}]

= fn(−1

2
∇2)ψ̃n(r)

+ fn[vxc[ñ](r
′) + uH [ρ̃](r′)]δ(r − r′)ψ̃n(r

′)d3r′

+
a i1i2

fn uH [ρ̃](r′)
lm

∆a
lm,i1i2 g̃

a
lm(r′) +

δ∆Ea

δDa
i1i2

d3r′ p̃ai1(r)P
a
ni2

(2.39)

with vxc[ñ](r) =
δExc[ñ]
δñ(r) being a (semi-)local exchange correlation potential. From this

result the PAW transformed Hamiltonian can again be extracted in a form that involves
only evaluation of smooth terms on the whole space and atom-centered corrections:

ˆ̃H = Ts[{ψ̃n}] + vxc[ñ] + uH [ρ̃] +
a i1i2

|p̃ai1⟩∆Ha
i1i2⟨p̃ai2 | (2.40)

where the one-center correction tensor ∆Ha
i1i2

is given by

∆Ha
i1i2 =

lm

∆a
lm,i1i2 uH [ρ̃](r)g̃alm(r)dr +

δ∆Ea

δDa
i1i2

(2.41)

12

2.6 Forces

As discussed in Ref. [16], multiple components have to be considered when calculating
the total forces acting on the nuclei: First, the gradient of E[ñ] with respect to atomic
positions (the Hellmann-Feynman forces). Second, a contribution due to a change in
the all-electron wave function with respect to atomic positions for fixed smooth wave
functions to account for the Ra-dependency of the augmentations. Third, since the
calculations are perfomed in the frozen core approximation, Pulay forces for the core
electrons have to be considered [21].

When calculating forces due to a shift of the wave function it has to be ensured that the
same subspace of the Hilbert spaced is spanned by the occupied wave functions, as well
as the orthogonality condition not being violated. In the following, primed quantities
represent linear expansions of the shifted wave functions.

The condition of conserving the subspace of the Hilbert space spanned allows expressing
the shifted wave function via the linear combination

|ψ̃′
n⟩ = |ψ̃n⟩+

m

|ψ̃m⟩Λmn (2.42)

Combining equation (2.42) with the orthogonality condition ⟨ψ̃′
n|Ŝ′|ψ̃′

m⟩ = δnm fully
determines the expansion coefficients Λnm [16].

Λnm + Λ∗
nm = −⟨ψ̃n|∇RaŜ|ψ̃m⟩ (2.43)

where ∇Ra denotes the gradient with respect to nuclear coordinates. Similar to the
invariance of the total energy with respect to a unitary transformation, an arbitrary
anti-symmetric matrix can be added to Λ [16]. A first-order Taylor expansion of the
general form of the unitary matrix Λ = exp(B) with B = −B∗ (anti-Hermitian) yields
Λ = 1 +B. From the aforementioned invariance of the total energy it thus follows that
the forces are also invariant with respect to the anti-symmetric part of Λ [16], wherefore

∇Ra |ψ̃n⟩ = −1

2
m

|ψ̃m⟩ ⟨ψ̃m|∇RaŜ|ψ̃n⟩+Bmn (2.44)

Combining equation (2.44) and the Hellmann-Feynman forces finally yields equation (2.45)
as an expression for the total forces in PAW.

13

fa
total =−

n

fn⟨ψ̃n|∇Ra
ˆ̃H|ψ̃n⟩

+
nm

fn + fm
2

⟨ψ̃m|∇RaŜ|ψ̃n⟩⟨ψ̃n| ˆ̃H|ψ̃m⟩

+
nm

fn − fm
2

Bmn⟨ψ̃n| ˆ̃H|ψ̃m⟩

(2.45)

The gradient with respect to atomic positions can be directly applied to the expression
of the overlap operator given in equation (2.37):

∇RaŜ =
i1i2

∆Sa
i1i2 ∇Ra |p̃ai1⟩⟨p̃ai2 |+ c.c. (2.46)

with ∆Sa
i1i2

= ⟨ϕa
i1
|ϕa

i2
⟩ − ⟨ϕ̃a

i1
|ϕ̃a

i2
⟩. The last term in equation (2.45) accounts for elec-

tronic excitations due to a unitary transformation between occupied and unoccupied
states and in general cannot be further specified [16]. In the special case of the matrix

⟨ψ̃n| ˆ̃H|ψ̃m⟩ commuting with the occupations, this term is exactly equal to zero. This
is fulfilled for the Hamiltonian for converged KS wave functions, due to the resulting
matrix being diagonal. In this case, the second term also involves a diagonal matrix,
wherefore only a single sum has to be computed. Thus, equation (2.45) is simplified to
a force expression like the one given in Ref. [19]:

fa
total = −∇RaE[ñ] +

n

fnεn
i1i2

∆Sa
i1i2 P a∗

ni1⟨∇Ra p̃ai2 |ψ̃n⟩+ ⟨ψ̃n|∇Ra p̃ai1⟩P a
ni2 (2.47)

14

3 Neural-Network Force Fields

Neural networks tackle the problem of parametrizing a force field by forgoing a classical
scheme of fitting the parameters of a pre-defined functional form in favor of a more
flexible form with universal approximation properties. In this problem the Cartesian
coordinates ri of the atoms are taken as inputs and are mapped onto outputs that
represent physical quantities, such as the potential energy Epot and the forces on atoms
fa. Parameters, which provide an optimal fit to the data but still define a model as
general as possible, are found via machine learning.

In their most basic form, neural networks transform the inputs x by computing a linear
combination with an added constant and applying a non-linear activation function fact.
The simplest possible network is a single-layer perceptron, which performs exactly this
transformation to compute the output y:

y = fact (w · x+ b) (3.1)

The individual elements of the vector w are referred to as the weights and b the bias,
which are trained parameters. To achieve a sufficiently flexible and general model,
this basic idea is applied in a nested manner, where multiple so-called hidden layers
containing multiple neurons, which compute their individual outputs according to equa-
tion (3.1), lie between the input and output layer. A network built according to this
architecture is known as a multi-layer perceptron (MLP), which also serves as one of
the main building blocks for further neural networks, for example convolutional neural
networks. MLPs are dense feed-forward neural networks, which means that a single
neuron takes the outputs of all neurons in the previous layer as input. For each layer
there are ninputs×nneurons weights and nneurons biases. Collecting the weights and biases
in the matrices W ∈ Rninputs×nneurons and b ∈ Rnneurons , the outputs of a single layer are
given by

y = fact W Tx+ b (3.2)

and the output of the whole network by repeated application of these matrix-vector
products. The sets of all weight matrices {Wm} and bias vectors {bm}, where m refers
to the index of a specific layer, combined with a defined sequence of layers with given
widths and a chosen activation function are referred to as the model.

The parameters of a model are found via the following training routine: A set of reference
data, which represents the ground truth the model is supposed to approximate, is divided
in non-overlapping training and validation sets. The model is evaluated on the training

15

set and the predicted outputs and underlying ground truths are used to evaluate a
loss function L, which models the error made in the predictions. This loss function is
minimized in repeated applications of this scheme, a single step of which is referred to as
an epoch, to find optimal values for the weights and biases. To prevent the phenomenon
of overfitting, validation statistics are computed using the validation set. Since this set
is non-overlapping with the training set, predictions are evaluated using information not
used for fitting the parameters. Only parameters that achieve minimal errors in those
statistics are then accepted.

Neural networks are a promising tool for the parametrization of force fields due to
the general and flexible design. The following will be concerned with neural-network
force fields following the general architecture first described in Ref. [1] and is a popular
choice for the construction of a multitude of force fields [2, 4, 22]. Other approaches
such as Gaussian approximation potentials (GAPs) [23] and moment tensor potentials
(MTPs) [24] have also been applied, but will not be discussed in this work.

For the force field to be useful it is necessary that it supports an arbitrary number of
atoms and that the labelling order of the atoms does not affect the result. One way
to achieve this is to compute the energy Epot as a sum of atomic contributions. In
the present work Epot = EBOA, that is, the potential energy of the system under the
Born-Oppenheimer approximation is considered as the true, underlying information.

Epot({Ra}) =
Natoms

a=1

ϕa({Ra}) (3.3)

where ϕa represents the, for now not further specified, function that computes the atomic
energy contribution of atom a evaluated using the set of Cartesian coordinates of the
atoms in the system.

However, directly using the absolute coordinates of atoms as inputs leads to a fundamen-
tal problem: Information about the underlying coordinate system would also be used in
training the network. This is undesirable in networks built on the architecture described
in Ref. [1], since translational and rotational symmetries have to be preserved, making
a transformation of the inputs before passing them to the network necessary. This takes
the form of encoding information about the immediate environments of the atoms in the
system in atom-centered descriptors. There have been a wide variety of proposals for en-
coding atomic environments, for example atom-centered symmetry functions, Coulomb-
or Ewald sum-matrices, and smooth overlap of atomic positions (SOAP) [25, 26, 27].
The focus here will however lie on the second-generation spherical Bessel descriptors
described in [28], due to them being the descriptor of choice in NeuralIL [4].

After encoding information in the atom-centered descriptors the potential energy is then

16

calculated as a sum of atomic contributions that do not depend on the positions directly,
but on the descriptors. An embedding vector e can be added to include additional
information such as atom types.

Epot({dα, eβ}) =
Natoms

a=1

Ω(da, ea) (3.4)

where α and β are collective indices running over all descriptors and all embedding
coefficients for all atoms respectively. The abstract function ϕa in equation (3.3) is
replaced by the function Ω, which is given by the network model evaluating the inputs
for an atom a.

3.1 Spherical Bessel Descriptors

To transform the 3Natoms Cartesian coordinates of all atoms in the system into atom-
centered descriptors, a neighbor density function ηaA(r) representing the local density of
each chemical element A around an atom a within a given cutoff radius rc is constructed
in a first step.

ηaA(r) =

a′∈A
Raa′<rc
a′ ̸=a

δ (r −Raa′) (3.5)

This neighbour density is then projected onto a set of orthonormal basis functions

Bnlm(r) = gn−l,l(r)Y
m
l (r̂) (3.6)

which in total gives an expansion of the form

η(r) =

nmax

n=0

n

l=0

l

m=−l

cnlmgn−l,l(r)Y
m
l (r̂) (3.7)

[28], with the integers 0 ≤ n ≤ nmax, 0 ≤ l ≤ n and −l ≤ m ≤ l. The parameter

nmax specifies the total number of descriptors dd = (nmax+1)(nmax+2)
2 used to construct

the descriptor, which in turn determines the granularity of the encoding [4]. Spherical

17

harmonics are a naturally arising choice for the spherical terms Y m
l and are used in both

the construction of both SOAP and spherical Bessel descriptors [27, 28].

It is left to define the radial basis functions gn−l,l in equations (3.6) and (3.7). There
is no simple, straightforward choice for these, as was the case for the angular term.
However, multiple constraints that either have to be, or a desirable to be, satisfied,
give information on how to choose the radial basis functions. As discussed in section 3,
the descriptors have to conserve the fundamental symmetries of mechanics. Further-
more, the completeness property of a set of descriptors is desirable: The embedding
f : X → D of the space of physically distinct atomic environments X to the space of
descriptors D should be smooth [28]. This translates to the notion that similar, but
distinct, atomic environments should also lead to similar, but distinct, representations
in the space of descriptors. A further constraint can be put on this condition leading to
optimal completeness, whereby a complete description is achieved by a minimal number
of radial basis functions [28]. This leads to obvious computational advantages since it
necessitates fewer operations in the evaluation procedure.

The radial basis functions are built on the spherical Bessel functions in such a way that
they are orthonormal and decay to zero at the cutoff radius rc, as well as their first and
second derivatives. As a final step, the angular parts of the caAnlm projections of ρaA
are then projected onto all elements Bnlm(r) of the basis set:

daAA′nl =
l

m=−l

caAnlmc∗aA′nlm =
2l + 1

4π
a′,a′′∈A,A′
a′,a′′ ̸=a

gn−l,l(Raa′)gn−l,l(Raa′′)Pl(cos γaa′a′′)

(3.8)

with γaa′a′′ denoting the angle defined by the three atoms a, a′ and a′′ with a at the vertex
and Pl denoting the Legendre polynomial of degree l. Since spherical harmonics are
orthogonal by their definition and the radial basis functions explicitly orthonormalized
this scheme yields a set of mutually orthonormal basis functions.

3.2 Electrostatic Interactions in NNFFs

While the encoding of atomic neighbourhood environments in atom-centered descrip-
tors solves the problem of achieving a representation that conserves the fundamental
invariancies, they only capture the immediate environment of an atom a within the cut-
off radius rc. Thus, only the local environment defined by rc is available information
for the network and, consequently, long-range interactions are not fully captured by
construction.

18

The most basic approach to considering long-range interactions lies in observing that
the system to be modelled is well described by an NNFF as is, which is often the case
for a small number of different elements and short screening distances [29]. In such cases
a minimal accuracy loss is to be expected when relying only on the descriptors, as has
been demonstrated across a wide range of different systems [4, 30, 31, 32].

However, for systems where a model built using only the local descriptions is insufficient,
long-range interactions have to be integrated on top of the existing framework [5]. In
the context of electrostatic interactions, Ref. [29] describes multiple strategies to incor-
porate them in a NNFF. All of them have in common that they introduce an additional
electrostatic energy term in equation (3.4):

Epot({dα, eβ , qa}) =
Natoms

a=1

Ω(da, ea) +
1

2
a ̸=a′

1

4πε0

qaqa′

|Ra −Ra′ | (3.9)

where q = {qa ∀a ∈ 1, . . . , Natoms} is a vector of charges for each atom. (Note the
use of SI units from equation (3.9) onwards.) The conventional way to compute the
double sum is to reformulate the term as an Ewald summation to improve computational
efficiency [33].

Methods to include electrostatic contributions in NNFFs mainly differ in how they de-
termine the charges qa and in how they perform the computation of the additional term
itself: Models such as those described in Refs. [34, 35] predict atomic charges based on
the atom-centered descriptors themselves. For such models, the condition of charge con-
servation has to be enforced explicitly via charge normalization or re-weighting schemes,
which may negatively effect transferability of the model [29]. A different approach to
predicting atomic charges is implemented in Ref. [22], where a NNFF is combined with
the CENT charge equilibration scheme [36], which infers charges using electronegativity
parameters based on the local arrangement of atoms. Variants based on (maximally)
localized Wannier functions reformulate the Coulomb term not to be computed using
point charges, but as integrals parametrized by the Wannier centers [37, 38]. A sig-
nificantly different route of computing the Coulomb term in equation (3.9) is taken in
Ref. [39], where machine learning is used to compute the Ewald summation kernels for
the long-range contributions.

The choice of modelling approach for this work is based on predicting atomic point
charges based not directly on the descriptors or an charge equilibration scheme, but using
a specially constructed neural network called electron-passing neural network (EPNN),
which is discussed in detail in section 4.

19

4 Atomic Charge Prediction using Neural Networks

In order to model an electrostatic contribution to the energy using a point-charge model
it is necessary to determine atomic charges for all nuclei. In the present work, this is
achieved using a neural-network based approach named electron-passing neural network
(EPNN) introduced in Ref. [6], which is built on the general framework of message-
passing neural networks (MPNN) described in Ref. [40].

4.1 Graph Representation of Atomic Systems

MPNNs belong to the class of graph neural networks (GNN), which emerged due to the
difficulty of dealing with data that is not represented in a Euclidean space in methods
such as convolutional neural networks (CNN) [41, 42]. Instead of working with data
represented, for example, on regular grids, such networks work on data represented on
a graph. A graph is defined as a tuple G = (V,E) where V = {va} is the set of all
nodes (or vertices) in the graph and E = {eaa′} the set of all edges, which represent the
connectivity between nodes. In the case of directed graphs, edges point from one node to
another without an edge in the reverse direction being defined [41]. In contrast, graphs
representing atomic structures will, in general, be un-directed, which means that two
nodes va and va′ will be connected by two opposingly directed edges eaa′ and ea′a. The
neighbourhood of a node va is given by the subset N(va) = {va′ ∈ V |(va, va′) ∈ E} of all
nodes va′ that share an edge with va. In the context of MPNNs, each node is equipped
with a feature vector va of dimension dv. Thus the set of nodes V ∈ RN×dv , where N
denotes the total number of nodes. Similarly, each edge is equipped with an edge feature
vector ea of dimension de, so the set of edges E ∈ RN×N×de [40]. Whether two nodes
are connected by an edge and thus directly communicate with each other is dependent
on the underlying problem defining the graph structure and is thus dependent on the
application.

4.2 Message-Passing Neural Networks

The core idea of MPNNs lies in a learned representation of the neighbourhood of a node
va by iteratively updating the node states vt

a using messages mt+1
a with the help of

an update function Ut, as given in equations (4.1) and (4.2). In the present MPNN,
the message generation functions Mt and update functions Ut are given by feed-forward
neural networks [40, 6], in contrast to previous work, where Mt is given simply by
concatenation and a Ut by a sigmoid function [43].

20

mt+1
a =

va′∈N(va)

Mt(v
t
a,v

t
a′ , eaa′) (4.1)

vt+1
a = Ut(v

t
a,m

t+1
a) (4.2)

where the superscript t is an integer representing index of the message passing step.
The total number T of message passing steps can be freely chosen and typically is a
hyperparameter of the network.

The combination of the message and update functions for each step t define a convolution-
like operation on all neighboring inputs on the graph. Thus, MPNNs can be classified as
spatial-based graph convolutional networks (GCN) [42], which generalize the framework
of CNNs to non-Euclidean data. These networks were individually introduced as such
in Ref. [44] as a method to perform spectral convolutions on graphs. MPNNs can also
be used in similar fashion to spectral GCNs, as for example the Ewald-based message
passing described in Ref. [39], which makes use of the formal correspondence between
the formalism of electrostatic interactions and continuous-filter convolutions [45].

In MPNNs, a desired quantity is computed from the learned node states via a readout
function R({va}). In the case of the total energy such a readout can have the form

E =
va∈V

NNR(vT
a) E ∈ R (4.3)

where NNR again represents a feed-forward neural network [40]. This defines the total
energy as a sum of atomic contributions, similar to the NNFFs described in section 3.

4.3 Electron-Passing Neural Networks

The EPNN (algorithm 1) foregoes the readout step described in section 4.2 in favour of
using the learned description of the environment of the nodes to predict atomic charges
while conserving the total charge of the system [6]. To achieve this, the graph tuple
G = (V,E) is extended by a set Q = {qa} ∈ RN , which are assigned to the nodes and
initialized such that the total charge of the whole system QG is correct:

Natoms

a

qa = QG (4.4)

21

Lines 2 to 5 of algorithm 1 constitute the message-passing phase described in section 4.2.
In this phase the node states va are iteratively updated to form a description of the local
environment of a single node a, which is illustrated in the upper panel of figure 1. The
description of the local environment is then used to compute the electron updates.

Algorithm 1 Electron-passing neural network (original version)

Require: Graph G = (V,E,Q)
1: Initialize {va}, {qa} such that Natoms

a qa = QG

2: for t ← 0 to T do Message passing phase
3: mt+1

a ← va′∈N(va)
Mt(v

t
a,v

t
a′ , eaa′) Pass messages

4: vt+1
a ← Ut(v

t
a,m

t+1
a) Update node states

5: end for
6: for s ← 0 to S do Electron passing phase
7: σs(qsa, q

s
a′ ,v

T
a ,v

T
a′ , eaa′) ← NNs(qsa, q

s
a′ ,v

T
a ,v

T
a′ , eaa′)−NNs(qsa′ , q

s
a,v

T
a′ ,v

T
a , ea′a)

8: qs+1
a ← va′∈N(va)

σs(qsa, q
s
a′ ,v

T
a ,v

T
a′ , eaa′)fc(eaa′) Update charges

9: end for

Similar to the message passing phase, the atomic charges qa are updated in electron
passes (lower panel in figure 1). In order to preserve the total charge QG the updates σs

computed in line 7 of algorithm 1 have to be anti-symmetric with respect to permutation
of the input indices:

σs(qsa, q
s
a′ ,v

T
a ,v

T
a′ , eaa′) = −σs(qsa′ , q

s
a,v

T
a′ ,v

T
a , ea′a) (4.5)

Anti-symmetry is guaranteed by defining the updates as the difference of the outputs
of an update generation function for permuted indices. As is the case for the message
passing phase, the method for generating the individual terms in equation (4.6) is again a
design choice. In Ref. [6], feed-forward neural networks NNs for each individual electron
passing step are chosen.

σs(qsa, q
s
a′ ,v

T
a ,v

T
a′ , eaa′) = NNs(qsa, q

s
a′ ,v

T
a ,v

T
a′ , eaa′)−NNs(qsa′ , q

s
a,v

T
a′ ,v

T
a , ea′a) (4.6)

The messages σs are then used to update the atomic charges via equation (4.7) (line 8
of algorithm 1). Note that, in contrast to equation (4.2), no update function is applied
to the collected messages to ensure charge preservation.

qs+1
a =

va′∈N(va)

σs(qsa, q
s
a′ ,v

T
a ,v

T
a′ , eaa′)fc(eaa′) (4.7)

22

The function fc serves as a cutoff function to ensure possible discontinuities arising from
atoms entering and leaving the cutoff range defined by rc are smoothed out. Ref. [6]
suggests a simple linear cutoff function fc = max(0, eaa′ − ϵ) with a tolerance ϵ = 10−5.
As is the case for the total number of message passing steps T , the total number of
electron passing steps S is again a network hyperparameter. With the update functions
and step counts chosen, the network is fully defined.

v0

v1

v2

v3

q0

q2

q3

q1

v0

v1

v2

v3

t < T

s < S

t = T
Mt(va

t, va'
t, eaa')

Generate messages

va
t+1 = Ut(va

t, ma
t+1)

Update node states

ma
t+1 = Σ Mt

Pass messages

Message-Passing
Phase

Electron-Passing Phase

σs(qa
s, qa'

s, va
T, va'

T, eaa')
Generate antisymmetric messages

qa
s+1 = Σσsfc(eaa')

Pass electrons

q0

q2

q3

q1+δ

-δ

Figure 1: Schematic visualization of the EPNN

23

5 Methodology

5.1 Training Data

Three datasets from different areas of applications have been used to provide training
data for the neural networks in this work. First, the ethylammonium nitrate (EAN)
database originally compiled for Ref. [4], which contains configurations sampled from
a classical MD run using GROMACS [46] with an OPLS-AA FF parametrization for
ionic liquids [7, 47]. The configurations subsampled from the run are used as inputs for a
DFT calculations. A subset of 373 of the configurations have been subjected to five steps
of the ASE quasi-Newton minimizer to ensure good sampling around local minima [4].
This dataset represents the typical use case of a NNFF, namely the improvement of MD
simulation results at finite temperature. Second, a subset of 500 SrTiO3(110) surface
layer reconstructions (also known as STO) generated and reported in Ref. [48]. Third,
a set of 76 water cluster configurations containing between 4 and 12 molecules [49]. All
DFT runs have been performed using GPAW [19, 20], the parameters are compiled in
table 1.

Table 1: DFT parameters for the generation of training datasets

Dataset Mode Basis/Cutoff XC BZ Sampling

EAN LCAO Double-ζ polarized LDA [13] Γ-only
STO LCAO Double-ζ polarized PBE [50] (2, 2, 1)
H2O PAW GPAW 0.9.20000/340 eV RPBE [51] Γ-only

To evaluate the quality of the implemented version of the EPNN, atomic charges have
been obtained by partitioning of the all-electron density using the DDEC6 approach [52]
implemented in Chargemol [53].

5.2 Neural-Network Force Field

The energies and forces of the systems are modelled using an updated version of theNeu-
ralIL implementation originally described in Ref. [4]. This NNFF is built on JAX [54]
and utilizes the just-in-time (JIT) compilation, vectorization and automatic differentia-
tion features provided to achieve fast training on Natoms energies and 3Natoms forces for
each structure. Two major improvements to the original version are implemented: First,
the MLP, which originally served as the core model, is replaced by a JAX-conforming
implementation of a deep residual network architecture (ResNet) [55]. Second, in place of
the original one-cycle minimizer schedule based on the adamw optimizer, the non-linear,
learned optimizer VeLO is used [56]. These improvements have been implemented after

24

the original publication and are reported in Ref. [57]. If not noted otherwise, models
have been constructed using a cutoff radius of rc = 4.0 Å, nmax = 4 and a sequence of
hidden layers with widths 64:32:16.

5.3 Electron-Passing Neural Network

5.3.1 Programming Framework

A version of the EPNN based on Ref. [6] is implemented in Python 3.9 based on the
Google JAX framework [54]. Since the EPNN works on graph-structured data, the
graph neural network library jraph [58] is used to build representations of the inputs.
Neural network modules are built on top of flax [59]. Training is handled using the non-
linear, learned VeLO optimizer [56], which is implemented using Deepmind’s optax [60].
This combination of modules allows to make full use of the core features of Jax, namely
just-in-time (JIT) compilation, automatic differentiation (AD) and scalability to parallel
systems.

Since native Python is an interpreted language, compile-time optimizations cannot be
utilized. To improve performance of repeatedly called code, JAX uses the XLA (Ac-
celerated Linear Algebra) compiler to perform optimizations on sections when they are
first called. This requires the functions to be pure, thus not relying on global state or
data dependent shapes or conditionals.

The AD algorithm allows fast and accurate calculations of derivatives and gradients of
pure functions and is essential in the field of machine learning to determine the gradient
of the loss function in order to optimize the parameters [61]. Furthermore, models can
be constructed to be end-to-end differentiable, as is utilized in Ref. [4] to obtain forces
at minimal computational cost. Similar techniques can be used in combination with
the EPNN implementation described in this section to determine quantities such as, for
example, Born effective charges [62] from the predicted outputs.

Neural networks are used to work with large amounts of data and often perform the
same operations on different data, making them ideal candidates for parallelization us-
ing accelerators such as graphics processing units (GPUs) and tensor processing units
(TPUs). Libraries such as JAX use specially implemented array types and algorithms
on top of these to allow for simpler scaling to larger, parallel systems, which is utilized
to work with the EPNN on GPUs.

Function transformations such as AD and JIT-compilations are handled in JAX using
the concept of a PyTree. This abstraction of data structures divides objects into two
classes: Container-like Python objects, namely lists, tuples and dictionaries, are referred

25

to as PyTrees and are used to build a tree structure with any non-PyTree objects as
leaves. Internally, two functions are associated with PyTrees [54]: The first allows a
conversion of the tree structure to a (children, metadata) pair and the second defines a
conversion back to the original PyTree structure. (It is possible to manually register any
Python object as a PyTree as long as it provides these two functions.) This enables a
consistent mapping of functions and function transformations onto any combination of
data structures, which is crucial for tracing functions based solely on the shapes of the
inputs.

5.3.2 Graph Representation

As discussed in section 4.1, the atomic system is represented as an un-directed graph,
with the nuclei as nodes. The graph is built using the jraph module, which implements
a general framework for graph datastructures as a tuple consisting of node features,
edge features, sender and receiver arrays, optional global information and the total
numbers of nodes and edges [58]. The sender and receiver arrays store the node indices of
communicating nodes and are of equal length with corresponding indices, wherefore they
form an edge list representation of the graph. The nodes {va′} a node va communicates
with is given by its neighbourhood, which is given by N(va) = {va′ ∈ V |Raa′ < rc}
with Raa′ = |Ra −Ra′ | and the cutoff radius rc being a network hyperparameter to be
chosen.

Nodes are implemented in the EPNN using a dictionary, a PyTree with a root and
leaves only, to allow for different features and easier extensions. At minimum it contains
a field for storing the set of predicted outputs Q and the node states V . In contrast to
Ref. [6], types are not stored in a one-hot encoding concatenated to the node states V ,
but as atomic numbers in a separate field, since they are later used to as inputs to the
embedding layer. Additionally, the spherical Bessel descriptors discussed in section 3.1
are added as a field to the node features to include the local environment description
used in NeuralIL on top of the learned node states.

The edge description also differs to Ref. [6] in that they are not initialized to a set of
Gaussian functions encoding the distances Raa′ , but simply store the Euclidean distances
directly. This choice is made since the local environment is already captured by the
spherical Bessel descriptors added to the node features. Further, the cutoff masks used
to implement the cutoff function fc in equation (4.7) are stored as edge features.

Since functions are JIT-compiled based upon the shapes of the inputs when first calling
the method, the input data are padded upon construction of the graphs to be of same
shape, thus avoiding multiple JIT-compilations to be necessary. Padding and un-padding
after calculations are finished are performed using jraph functionalities which ensure
the padding does not influence the results in any way. This is achieved by creating

26

an extra “black hole” node for each graph. Extra edges needed to pad the arrays to
the same size are directed to these nodes such that computations on the graph are
not affected by the padding. Performance is further increased by splitting the data in
small batches such that the individual graph objects constructed hold information about
multiple configurations. The batch size is a free parameter that is chosen to optimize the
trade-off between memory requirements and keeping vectorization pipelines occupied.

5.3.3 Network Architecture

The network implements a modified version of algorithm 1 on top of flax [59] and
utilizes individual feed-forward neural networks for each message generation, update
and electron pass generation step. The set of all of these models will be referred to as
the core models. In contrast to the original implementation, which uses MLPs as the
core models, the ResNet architecture introduced in Ref. [55] is chosen for this work.
The non-linear activation function is chosen as Swish-1, defined by setting β = 1 in
equation (5.1), a functional form originally found in Ref. [63]. Similar to activation
functions like ReLU(x) = max(0, x), this function provides the benefit of avoiding the
gradient becoming near zero for large inputs, as was the case for more classical activation
functions like the sigmoid. Furthermore, it does not suffer the problem of not being
continuously differentiable at x = 0; in fact, it is infinitely times differentiable at that
point.

sβ(x) =
x

1 + exp(−βx)
(5.1)

The weights and biases for all core models are trainable parameters, which are updated
by minimizing a loss function L. Intuitive choices for this loss functions are given by the
mean absolute error (MAE) or mean squared error (MSE). However, measuring the error
in the L2 norm puts heavy emphasis on outliers, which might affect model performance.
On the other hand, the L1 norm measure is not continuously differentiable at q− q̃ = 0,
where q refers to the underlying data and q̃ to the predictions made by the model. An
“intermediate” choice is given by the log-cosh loss

Llog−cosh =
1

Natoms

Natoms

a=1

α log cosh
qa − q̃a

α
(5.2)

with α being a hyperparameter [64]. This loss function can be viewed as a smooth
approximation to the MAE, which solves the differentiability problem at q − q̃ = 0

since Llog−cosh(q, q̃) → |q−q̃|2
2 for prediction errors smaller than α. On the other hand,

27

Llog−cosh(q, q̃) → |q − q̃| for prediction errors significantly larger than α, which avoids
overemphasizing outliers.

After preliminary runs, in which the impacts of different layer widths, node feature vector
dimensions and numbers of message- and electron-passing steps on model quality have
been investigated, the following parameters are chosen: Models are constructed with a
series of features with sizes 128:64:32 for the message and electron pass generation models
and 64:32 for the update model. nmax = 4 and rc = 4.0 Å are chosen corresponding to the
values for the dynamics model (section 5.2). The node feature dimension determining
the size of the individual node feature vectors va is chosen as dv = 16. Types are used
as inputs to an extra embedding layer with an output dimension of dembed = 2, which
further extends the node description. In total, the local node description is given by the
concatenation of the learned node states va, the spherical Bessel descriptors and the type
embedding. Therefore, the dimension of the node states is given by dv + dd + dembed,
where dd refers to the total number of spherical Bessel descriptors for a single atom.
These concatenated vectors are then used as inputs to the message generation, update
and electron pass generation models. The number of message and electron passing steps
is set to S = T = 3, as suggested in Ref. [6].

As the module implementing algorithm 1 is based on the neural network library flax,
it is built as a stateless object. The parameters defining the state of a model are stored
externally in PyTrees for each of the individual core networks, which are passed to the
module upon calling it. Handling of model state is done via the functionalities of flax
and additionally optax, which provides tools for optimizers and updates.

It is noted that, while the network is initially introduced for predicting atomic charges,
the implementation is structured to take any input shape and allow for use in modelling
non-scalar quantities as well. Furthermore, since the spherical Bessel descriptors are
added to the node features and thus a description of the immediate environment of the
atoms is already given, the message passing phase can be skipped entirely, which allows
for electron passing only. The performance impact of skipping the message passing phase
is however not explored further in this work.

28

6 Results

6.1 Water Dimer

To investigate the energies for a system with well-known behaviour, a water dimer is
chosen for preliminary experiments. Oxygen-oxygen distances are sampled in a range of
1.5 Å to 5.5 Å. Geometry optimization is performed to find the local minimum on the
potential energy surface using the BFGS optimization method implemented in scipy [65]
at these sampled points. The difference of the total energy of the the dimer and two
individual H2O molecules is then calculated. Calculations were performed using GPAW
22.8.0 [19, 20] in PAW mode with a PW cutoff energy of 750.0 eV and the LDA XC
functional [13].

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

O - O distance / Å

10

5

0

5

10

15

20

E
n
e
rg

y
 /

 e
V

Etot

ECoulomb

Ekin

Exc

Ekin + Exc

Figure 2: Total energy difference and individual contribution differences for a H2O dimer compared to
two isolated H2O molecules depending on the distance between the oxygen atoms

The total energy and its contributions at the sampled oxygen-oxygen distances are visu-
alized in figure 2. At O-O distances < 2.5 Å, a strong electrostatic attraction is observed
due to H-O proximity. However, a large kinetic contribution still leads to a net energy
increase. The minimum energy configuration among the sampled points is at an O-O
distance of 2.5 Å with an energy difference of −0.13 eV between the dimer and the iso-
lated H2O molecules. At distances ≥ 3.5 Å the energy difference between the dimer and
the isolated atoms is < 100meV.

29

Furthermore, practically no short-range effects are observed anymore and the electro-
static energy can be modelled by the interaction of two classical dipoles. In this case the
distance between the two dipoles |r1 − r2| ≫ |a|, where |a| is the distance between the
two charges of a single, classical dipole. This is well approximated in the far-field limit,
in which the potential V1(r) due to a dipole with moment p1 is given by

V1(r) =
p1 · r
4πε0r3

(6.1)

wherefore equation 6.2 describes the interaction energy E due to a second dipole p2 in
the field of the first dipole p1.

E = −p2(−∇V1) = − 1

4πε0r3
[p1 · p2 − 3 (p1 · r̂) (p2 · r̂)] (6.2)

This behaviour is recovered for large O-O distances, as evident in figure 3. Small devi-
ations are observed due to the high convergence requirement posed upon the geometry
optimization to resolve the small energy differences due to the dipole interaction only.

3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25

O - O distance / Å

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

E
n
e
rg

y
 /

 e
V

ECoulomb

r 3 fit

Figure 3: Electrostatic energy contribution difference for a H2O dimer compared to two isolated H2O
molecules depending on the distance between the oxygen atoms. A r−3 fit models the interaction of two
classical dipoles

30

6.2 Handling of Electrostatics in a Neural-Network Force-Field

As discussed in section 3.2, neural-network force fields by design do not account for
long-range interactions beyond the cutoff radius rc, so augmentations that introduce
additional terms are introduced to the potential energy expression. To achieve this, the
electron-passing neural network implementation outlined in section 5.3 can be used to
generate charges used to evaluate a Coulomb term, which is added to the potential as
given in equation (3.9).

The choice of the kind of underlying data used to construct the EPNN model is im-
portant: Since the potential energy and forces on atoms are the physical observables
the model is supposed to predict directly, the most obvious choice is to also train
an augmented NNFF on these sets alone. However, in an experiment conducted in
Ref. [4], NeuralIL was augmented with an electrostatic term and charges inferred us-
ing a CENT-based partitioning scheme [36]. It has been shown that the improvement
in the energies and forces is marginal and in this case comes at the cost of a global
equilibration step, seriously compromising the scalability of the model. Furthermore, it
is observed that charges tend to be predicted close to zero for all atoms, wherefore it is
concluded that the local modelling approach was sufficient in this case.

Another possible choice is to provide a training data set that directly contains the par-
tial charges the network is supposed to reproduce. While this gives a straightforward
approach to train the electrostatic part independent of local part, the network implic-
itly gets trained to the methodology of the particular approach chosen to generate the
training data. This is problematic since charge partitioning is not a uniquely defined
task and different schemes exist, such as the ones described in Refs. [66, 52]. Although
some charge partitioning schemes are designed to reproduce the electrostatic field, it
is reasonable to expect that this approach negatively affects the transferability of the
model. Further, these charges do not provide any information about quantities like the
gradient of the electrostatic energy obtained from DFT.

The ultimate goal for this work therefore is to use the electrostatic energy EC [n] (see
section 2.4) and its negative gradient −∇RaEC [n], which will also be referred to as
the electrostatic forces, for training the EPNN. Since the model is designed to predict
charges, the outputs are first used to calculate an electrostatic energy, which is then in
turn used to evaluate a loss function, similar to the procedure for NeuralIL [4]. The
evaluation of the Coulomb term for modelling the long-range energy term is performed
using the technique described in Ref. [22]:

Eelec =

Natoms

a=1

Natoms

a′=1

erf
|Ra−Ra′ |√

2γaa′

|Ra −Ra′ |
qaqa′

4πε0
+

Natoms

a=1

1√
4πσa

q2a
4πε0

(6.3)

31

with γaa′ = σ2
a + σ2

a′ . The set of ionic radii {σa} serves to approximate the shapes of

the Gaussian charge density distributions.

While it is highly desirable to also be able to include the electrostatic forces to also
provide local, node level, information for each node, this quantity is so far not available
due to the problems discussed in detail in section 6.5. Alternatively, Born effective
charges might serve as inputs to provide local information additionally to the global
information given by the electrostatic energy.

NeuralIL

Eelectrostatic

Positions,
Types,
Cells

Positions,
Cells

Nodes,
Edges

Elocal

Eelectrostatic

+
Add

Ltotal

Lelectrostatic Eelectrostatic,ref

Etotal,ref
ftotal,ref

Charges

n < NEPNN

n = NEPNN

EPNN
Charges

Compute gradient, update parameters

Compute gradient, update parameters

Figure 4: Visualization of the EPNN + NeuralIL training process. NEPNN denotes the number of EPNN
training epochs

The total training procedure is visualized in figure 4. The two models are trained in a
sequential manner: First the EPNN is trained for NEPNN epochs by using the predicted
charges to compute the electrostatic energy according to equation (6.3). The error
in the electrostatic energy prediction is then quantified using the log-cosh loss given
in equation (5.2) with α = 0.02 eV atom−1, which then allows to update the model
parameters based on the gradient. Charges for the NeuralIL model, to which a long-
range term has been added, are then generated using the converged EPNN model. The

32

training of the dynamics model is then performed as described in Ref. [4].

The problem of the charges being predicted close to zero reported in Ref. [4] is avoided
by specifically training the EPNN to reproduce the electrostatic energy hypersurface.
The sequential training method is chosen over a more combined, intervowen approach
due to the electrostatic energy term also entering the NeuralIL output. Thus, the
NeuralIL predictions depend both on the EPNN and NeuralIL parameters. There-
fore, the EPNN parameters are optimized beforehand such that the electrostatic energy
and forces contributions remain constant while optimizing the parameters for the local
model.

6.3 EPNN Training on Charges Obtained by Density Partitioning

In a first set of runs, the EPNN implementation discussed in section 5.3 is used to train
models based on charges obtained by partitioning the all-electron density (2.24). This
allows for a direct comparison of the model predictions to the underlying training data
without any need for post-processing, such as calculating a total electrostatic energy
from the charge distribution. Individual models have been trained on the EAN, STO
and H2O cluster data sets respectively, with initial atomic charges q0a = 0 e.

Figures 5 to 7 show comparisons of predicted charges to the underlying DDEC6 charges
the models were trained on and root mean square error (RMSE) and mean absolute
error (MAE) statistics for both the training and validation sets. Charges are predicted
with very high accuracy in all cases, with the best results being obtained for the ionic
liquid EAN. This can be attributed to the significantly larger size of the dataset, having
approximately twice as many entries compared to the STO dataset and thirteen times as
many entries compared to the H2O dataset. However, even for the comparatively small
set of H2O cluster configurations, error statistics in the same order of magnitude as for
the STO dataset are observed. Overall, the results confirm that the implementation
described in section 5.3 is suitable for the prediction of atomic charges.

33

0.6 0.3 0.0 0.3 0.6
qreference / e

-1.5

-1.0

-0.5

0.0

0.5

q
p
re

d
ic

te
d
 /

 e

-0.5

0.0

0.5

1.0

1.5

Validation:
RMSE: 0.0073 e atom 1

MAE: 0.0047 e atom 1

Training:
RMSE: 0.0057 e atom 1

MAE: 0.0042 e atom 1

Figure 5: Parity plot comparing predicted charges to DDEC6 charges for EAN using an EPNN model
trained directly on DDEC6 charges

1.2 0.6 0.0 0.6 1.2 1.8
qreference / e

-2.0

-1.0

0.0

1.0

2.0

q
p
re

d
ic

te
d
 /

 e

-1.0

0.0

1.0

2.0

3.0Validation:
RMSE: 0.0177 e atom 1

MAE: 0.0118 e atom 1

Training:
RMSE: 0.0160 e atom 1

MAE: 0.0110 e atom 1

Figure 6: Parity plot comparing predicted charges to DDEC6 charges for STO using an EPNN model
trained directly on DDEC6 charges

34

0.8 0.6 0.4 0.2 0.0 0.2 0.4
qreference / e

-1.5

-1.0

-0.5

0.0

q
p
re

d
ic

te
d
 /

 e

-0.5

0.0

0.5

1.0

Validation:
RMSE: 0.0109 e atom 1

MAE: 0.0079 e atom 1

Training:
RMSE: 0.0097 e atom 1

MAE: 0.0072 e atom 1

Figure 7: Parity plot comparing predicted charges to DDEC6 charges for H2O clusters using an EPNN
model trained directly on DDEC6 charges

The atomic charges predicted by the EPNN models considered in this section have been
used as inputs to model the electrostatic contribution to the total energy in NeuralIL,
as described in section 6.2. Comparisons of predicted energies and forces for the EAN,
STO and H2O cluster datasets are visualized in figures 8 to 10. In all cases, worse
MAE and RMSE statistics are obtained for the force predictions for the validation sets
compared to the training sets. This is most pronounced in the model trained for EAN,

where a difference of 0.413 eV Å
−1

is observed between the RMSEs (figure 8b). This
difference is not observed for the energy prediction statistics and can be a consequence
of using charges obtained from electron density partitioning for training the EPNN
model: The DDEC6 scheme used to calculate the atomic charges aims to reproduce the
electrostatic energy [52], but does not make a guarantee for the gradient. The augmented
NeuralIL models are thus implicitly optimized to compensate for this error. However,
one cannot expect this compensation to be systematic and thus the model gives worse
predictions for forces it has not been trained on directly. This is in agreement with an
experiment conducted in Ref. [4], in which the electrostatic forces obtained from OPLS-
AA were subtracted from the DFT forces before training a NeuralIL model, causing a
significant decrease in accuracy.

35

1300 1275 1250 1225 1200 1175
Ereference / eV

-1350

-1325

-1300

-1275

-1250

-1225

-1200

-1175

E
p
re

d
ic

te
d
 /

 e
V

-1300

-1275

-1250

-1225

-1200

-1175

-1150

-1125

Validation:
RMSE: 1.5820 eV atom 1

MAE: 1.3962 eV atom 1

Training:
RMSE: 1.6140 eV atom 1

MAE: 1.4401 eV atom 1

(a) Energies

15 10 5 0 5 10 15 20
freference / eV Å 1

-20

-10

0

10

20

f
p
re

d
ic

te
d
 /

 e
V

Å
1

-10

0

10

20

30
Validation:
RMSE: 0.1524 eV Å 1

MAE: 0.0892 eV Å 1

Training:
RMSE: 0.1111 eV Å 1

MAE: 0.0789 eV Å 1

(b) Forces

Figure 8: Parity plots comparing predicted energies and forces to the reference quantities for EAN using
an EPNN model trained directly on DDEC6 charges

725 700 675 650 625 600 575
Ereference / eV

-750

-700

-650

-600

E
p
re

d
ic

te
d
 /

 e
V

-700

-650

-600

-550

Validation:
RMSE: 4.3364 eV atom 1

MAE: 3.3657 eV atom 1

Training:
RMSE: 4.6297 eV atom 1

MAE: 3.9117 eV atom 1

(a) Energies

100 50 0 50 100
freference / eV Å 1

-150

-100

-50

0

50

100

f
p
re

d
ic

te
d
 /

 e
V

Å
1

-100

-50

0

50

100

150

Validation:
RMSE: 1.0569 eV Å 1

MAE: 0.7571 eV Å 1

Training:
RMSE: 0.9263 eV Å 1

MAE: 0.6537 eV Å 1

(b) Forces

Figure 9: Parity plots comparing predicted energies and forces to the reference quantities for STO using
an EPNN model trained directly on DDEC6 charges

36

100 80 60 40 20
Ereference / eV

-130

-110

-90

-70

-50

-30

E
p
re

d
ic

te
d
 /

 e
V

-100

-80

-60

-40

-20

0

Validation:
RMSE: 0.2017 eV atom 1

MAE: 0.1245 eV atom 1

Training:
RMSE: 0.2153 eV atom 1

MAE: 0.1551 eV atom 1

(a) Energies

7.5 5.0 2.5 0.0 2.5 5.0 7.5
freference / eV Å 1

-15

-10

-5

0

5

f
p
re

d
ic

te
d
 /

 e
V

Å
1

-5

0

5

10

15

Validation:
RMSE: 0.1323 eV Å 1

MAE: 0.0937 eV Å 1

Training:
RMSE: 0.0951 eV Å 1

MAE: 0.0695 eV Å 1

(b) Forces

Figure 10: Parity plots comparing predicted energies and forces to the reference quantities for H2O
clusters using an EPNN model trained directly on DDEC6 charges

6.4 EPNN Training on Electrostatic Energies

As discussed in section 6.2 and shown in terms of the force predictions in section 6.3,
charges obtained by partitioning of the electron density are not a suitable target quantity
to reproduce for the inclusion of long-range interactions in NNFFs. EPNN models have
therefore been trained to reproduce electrostatic energies: The predicted charges are
used to compute the electrostatic energy given by the last term in equation (3.9), which
is then passed as prediction input to the loss function. The model parameters are
thus adjusted based on the difference between the predicted electrostatic energy and
the electrostatic energy calculated using DFT. A single, trainable offset parameter was
added to the model to be able to adjust for the origin of energies.

Results for models trained using initial atomic charges q0a = 0 e are visualized in fig-
ures 11 to 12. It is shown that the EPNN is able to predict charges that reproduce the
total electrostatic energy of the system. However, the model for the H2O cluster dataset
appears not to be converged well, which can be attributed to a lack of training data.
Since only the global electrostatic energy is available as information for training, the set
is restricted to a total of 76 data points in total for training and validation.

37

1280 1200 1120 1040 960
Ereference / eV

-1500

-1400

-1300

-1200

-1100

-1000

E
p
re

d
ic

te
d
 /

 e
V

-1300

-1200

-1100

-1000

-900

-800

Validation:
RMSE: 13.6859 eV atom 1

MAE: 8.7027 eV atom 1

Training:
RMSE: 10.3071 eV atom 1

MAE: 6.7642 eV atom 1

Figure 11: Parity plot comparing predicted energies to the reference energies for EAN using an EPNN
model trained on electrostatic energies with initial atomic charges q0a = 0 e

10 20 30 40 50 60
Ereference / eV

-30

-10

10

30

50

70

E
p
re

d
ic

te
d
 /

 e
V

20

40

60

80

100

120Validation:
RMSE: 5.5359 eV atom 1

MAE: 4.5391 eV atom 1

Training:
RMSE: 5.6172 eV atom 1

MAE: 4.6477 eV atom 1

Figure 12: Parity plot comparing predicted energies to the reference energies for H2O clusters using an
EPNN model trained on electrostatic energies with initial atomic charges q0a = 0 e

38

As in section 6.3, the EPNN models trained on electrostatic energies have again been
used for the generation of inputs for augmented NeuralIL models. While the electro-
static energies themselves are predicted well, major errors arise for the total energy and
force predictions. This is especially apparent in figure 13a, where a bipartite structure
is observed in the energy predictions for both the training and validation sets. Only the
global electrostatic energy is available as training information. Therefore, the optimiza-
tion process is not guided in the direction of a specific minimum on the hypersurface in
parameter space defined by the loss function. This is visualized in figure 15, in which the
distributions of charges for all configurations in the EAN dataset are compared. While
three different peaks in the relative frequencies are observed, the EPNN model trained
with initial charges q0a = 0 e generates a distribution of charges that lead to cases, where
the ionic charges of two different configurations are assigned an opposite sign. A global
change of sign convention preserves electrostatic energies and forces, however, different
conventions within a single batch lead to spurious pollution of the gradient of the loss
function. Therefore, error statistics for force predictions are worse by a factor > 3 and a
bipartite pattern in energy predictions is observed. One approach to break the degener-
acy is to provide different initial charge states q0a, which has been tested by setting the
DDEC6 charges as initial charges in the EPNN. However, while this leads to a different
distribution of predicted charges, the same bipartite structure in the energy prediction
is still observed.

1300 1275 1250 1225 1200 1175
Ereference / eV

-1650

-1550

-1450

-1350

-1250

-1150

E
p
re

d
ic

te
d
 /

 e
V

-1400

-1300

-1200

-1100

-1000

-900

Validation:
RMSE: 68.2445 eV atom 1

MAE: 64.3453 eV atom 1

Training:
RMSE: 69.1304 eV atom 1

MAE: 65.6896 eV atom 1

(a) Energies

15 10 5 0 5 10 15 20
freference / eV Å 1

-30

-20

-10

0

10

20

f
p
re

d
ic

te
d
 /

 e
V

Å
1

-10

0

10

20

30

40
Validation:
RMSE: 0.4193 eV Å 1

MAE: 0.2841 eV Å 1

Training:
RMSE: 0.3719 eV Å 1

MAE: 0.2566 eV Å 1

(b) Forces

Figure 13: Parity plots comparing predicted energies and forces to the reference quantities for EAN
using an EPNN model trained on electrostatic energies with initial atomic charges q0a = 0 e

39

100 80 60 40 20
Ereference / eV

-150

-130

-110

-90

-70

-50

-30

E
p
re

d
ic

te
d
 /

 e
V

-100

-80

-60

-40

-20

0

20

Validation:
RMSE: 3.3833 eV atom 1

MAE: 2.2154 eV atom 1

Training:
RMSE: 3.0236 eV atom 1

MAE: 2.0075 eV atom 1

(a) Energies

7.5 5.0 2.5 0.0 2.5 5.0 7.5
freference / eV Å 1

-15

-10

-5

0

5

f
p
re

d
ic

te
d
 /

 e
V

Å
1

-5

0

5

10

15

Validation:
RMSE: 0.4890 eV Å 1

MAE: 0.3496 eV Å 1

Training:
RMSE: 0.2549 eV Å 1

MAE: 0.1824 eV Å 1

(b) Forces

Figure 14: Parity plots comparing predicted energies and forces to the reference quantities for H2O
clusters using an EPNN model trained on electrostatic energies with initial atomic charges q0a = 0 e

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Charge / e

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
e
la

ti
v
e
 f

re
q
u
e
n
cy

(a) DDEC6 charges

1.0 0.5 0.0 0.5 1.0
Charge / e

0.00

0.01

0.02

0.03

0.04

0.05

R
e
la

ti
v
e
 f

re
q
u
e
n
cy

(b) EPNN with initial q0a = 0 e

Figure 15: Comparison of DDEC6 and EPNN predicted charge distributions for all EAN configurations

40

6.5 Electrostatic Forces in PAW

To provide local information, an expression for the electrostatic forces fa
C = −∇RaEC

is desirable to generate training data for integrating electrostatic interactions in neural-
network force fields. Equation (2.45) is therefore analyzed in more detail with respect
to the electrostatic energy. It is noted that the same system of units as in section 2 is
used again in this section.

The term ⟨ψ̃n|∇RaÊC |ψ̃n⟩ is obtained by direct application of the gradient to the PAW
energy expression derived in section 2.4:

∇RaEC =∇Ra UH [ρ̃] + ∆EC Da
i1i2

=
δEC

δñ(r′)
∇Ra ñ(r′)dr′ +

lm

δEC

δg̃alm(r′)
∇Ra g̃alm(r′)dr′ +

i1i2

∂EC

∂Da
i1i2

∇RaDa
i1i2

= uH(r′)∇Ra ña
c (r

′)dr′ + uH(r′)
lm

Qlm∇Ra g̃alm(r′)dr′

+
i1i2

∂EC

∂Da
i1i2

∇RaDa
i1i2

(6.4)

The last term in equation (6.4) remains to be treated. The gradient of the one-center
density matrix with respect to atomic positions can be expressed directly via

∇RaDa
i1i2 = ∇Ra

n

fn⟨ψ̃n|p̃ai1⟩⟨p̃ai2 |ψ̃n⟩

=
n

fn ⟨ψ̃n|∇Ra p̃ai1⟩P a
ni2 + P a∗

ni1⟨∇Ra p̃ai2 |ψ̃n⟩
(6.5)

The smooth charge density ρ̃(r) also depends on the one-center density matrix through
the smooth core charge density Z̃a(r), so the derivative of the electrostatic energy with
respect to the elements of the one-center density matrix also has to include a term
accounting for ∂UH

∂Da
i1i2

:

41

∂EC

∂Da
i1i2

=
∂UH

∂Da
i1i2

+
∂∆EC

∂Da
i1i2

=
δUH

δZ̃a

∂Z̃a

∂Da
i1i2

+
∂∆EC

∂Da
i1i2

=
lm

∆a
lm,i1i2 uH [ρ̃](r)g̃alm(r)dr +

∂∆EC

∂Da
i1i2

(6.6)

Finally, the derivative of the one-center correction tensor for the electrostatic energy
(2.36) can also be directly evaluated:

∂∆EC

∂Da
i1i2

=(ϕa
i1ϕ

a
i2 |na

c)− (ϕ̃a
i1 ϕ̃

a
i2 |ña

c)−Za ϕa
i1
(r)ϕa

i2
(r)

r
dr −∆a(ϕ̃a

i1 ϕ̃
a
i2 |g̃a00)

−
lm

∆a
lm,i1i2 [(ñ

a
c |g̃alm) + ∆a(g̃a00|g̃a00)]

+
i3i4

(ϕa
i1ϕ

a
i2 |ϕa

i3ϕ
a
i4)− (ϕ̃a

i1 ϕ̃
a
i2 |ϕ̃a

i3 ϕ̃
a
i4) Da

i3i4

−
i3i4 lm

(ϕ̃a
i1 ϕ̃

a
i2 |g̃alm)∆a

lm,i3i4 +∆a
lm,i1i2(ϕ̃

a
i3 ϕ̃

a
i4 |g̃alm) Da

i3i4

−
i3i4

lm,l′m′

∆a
lm,i1i2(g̃

a
lm|g̃al′m′)∆a

l′m′,i3i4

Da
i3i4

(6.7)

However, since the Bmn term is not known explicitly, the last term of equation (2.45) with

respect to ÊC instead of ˆ̃H remains unspecified. Other approaches, in particular density-
functional perturbation theory [67], might provide a way of obtaining an expression for
∇RaEC .

42

7 Conclusion and Outlook

Neural networks provide a promising framework for general and scalable parametriza-
tions of force fields. Already in the form originally implemented in NeuralIL, energies
and forces are predicted with DFT-level accuracy [4, 48], although the FF does not model
the full physics of the system by construction. This validates the strategy of simply ne-
glecting long-range contributions in situations where this leads to only a minimal loss
of accuracy, for example in dense atomic arrangements. However, the inclusion of these
interactions cannot be forgone in all cases, as for example with sparse arrangements or
at, for example, liquid-vapor interfaces [5].

In this work, first steps towards the explicit inclusion of long-range electrostatic inter-
actions in NeuralIL have been taken. It is shown that EPNNs are a viable strategy
for the prediction of atomic charges. While EPNN models can be trained on charges
obtained by partitioning of the electron density n(r), it is preferable to use the network
to rather model the electrostatic energy hypersurface. However, reproducing the correct
behaviour leads to the challenge of finding the correct training data: While electrostatic
energies can be obtained directly from DFT solvers, obtaining the corresponding forces
−∇RaEC proves to be a significant challenge in practical DFT schemes (section 6.5).
Charges obtained from an EPNN model trained on the electrostatic energies only are
observed to not follow a distribution which reproduces the correct corresponding forces.

One possible way to address this problem is to extend the training datasets with con-
figurations obtained by applying small displacements to the atoms in the initial set of
configurations. This adds configurations which lie close together in the space of atomic
positions and thus emulates the inclusion of forces similar to the numeric computation of
derivatives. A different approach is to use Born effective charges to add local information
to the training process.

Furthermore, the modelling of electrostatic interactions as described in section 6.2 relies
on prescribing the long-range behaviour using an unscreened Coulomb term. However,
to achieve a more general and flexible method of modelling electrostatic interactions, a
different functional form overall is necessary. Graph-based neural networks can still be of
use here, for example by using such networks to predict the parameters for convolution
kernels that account for long-range interactions.

43

References

[1] J. Behler and M. Parrinello. “Generalized Neural-Network Representation of High-
Dimensional Potential-Energy Surfaces”. In: Phys. Rev. Lett. 98 (14 2007), p. 146401.
doi: 10.1103/PhysRevLett.98.146401.

[2] V. Botu et al. “Machine learning force fields: Construction, validation, and out-
look”. In: J. Phys. Chem. C 121 (1 2017), pp. 511–522. doi: 10.1021/acs.jpcc.
6b10908.

[3] J. S. Smith, O. Isayev, and A. E. Roitberg. “ANI-1: an extensible neural network
potential with DFT accuracy at force field computational cost”. In: Chem. Sci. 8
(4 2017), pp. 3192–3203. doi: 10.1039/C6SC05720A.

[4] H. Montes-Campos et al. “A Differentiable Neural-Network Force Field for Ionic
Liquids”. In: J. Chem. Inf. Model. 62.1 (2022), pp. 88–101. doi: 10.1021/acs.
jcim.1c01380.

[5] S. Yue, M. C. Muniz, and M. F. Calegari Andrade. “When do short-range atomistic
machine-learning models fall short?” In: J. Chem. Phys. 154 (3 2021). doi: 10.
1063/5.0031215.

[6] D. P. Metcalf et al. “Electron-Passing Neural Networks for Atomic Charge Predic-
tion in Systems with Arbitrary Molecular Charge”. In: J. Chem. Inf. Model. 61 (1
2021), pp. 115–122. doi: 10.1021/acs.jcim.0c01071.

[7] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. “Development and testing
of the OPLS all-atom force field on conformational energetics and properties of
organic liquids”. In: J. Am. Chem. Soc. 118 (45 1996), pp. 11225–11236. doi:
10.1021/JA9621760.

[8] T. P. Senftle et al. “The ReaxFF reactive force-field: development, applications
and future directions”. In: npj Comput. Mater. 2.1 (2016), p. 15011. doi: 10.
1038/npjcompumats.2015.11.

[9] H. X. Zhou and X. Pang. “Electrostatic Interactions in Protein Structure, Folding,
Binding, and Condensation”. In: Chem. Rev. 118 (4 2018), pp. 1691–1741. doi:
10.1021/acs.chemrev.7b00305.

[10] S. P. Niblett, M. Galib, and D. T. Limmer. “Learning intermolecular forces at
liquid-vapor interfaces”. In: J. Chem. Phys. 155 (16 2021). doi: 10.1063/5.
0067565.

[11] M. J. Gillan, D. Alfè, and A. Michaelides. “Perspective: How good is DFT for
water?” In: J. Chem. Phys. 144 (13 2016), p. 130901. doi: 10.1063/1.4944633.

[12] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas”. In: Phys. Rev. 136
(3B 1964), B864–B871. doi: 10.1103/PhysRev.136.B864.

[13] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and
Correlation Effects”. In: Phys. Rev. 140 (4A 1965), A1133–A1138. doi: 10.1103/
PhysRev.140.A1133.

44

https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1021/acs.jpcc.6b10908
https://doi.org/10.1021/acs.jpcc.6b10908
https://doi.org/10.1039/C6SC05720A
https://doi.org/10.1021/acs.jcim.1c01380
https://doi.org/10.1021/acs.jcim.1c01380
https://doi.org/10.1063/5.0031215
https://doi.org/10.1063/5.0031215
https://doi.org/10.1021/acs.jcim.0c01071
https://doi.org/10.1021/JA9621760
https://doi.org/10.1038/npjcompumats.2015.11
https://doi.org/10.1038/npjcompumats.2015.11
https://doi.org/10.1021/acs.chemrev.7b00305
https://doi.org/10.1063/5.0067565
https://doi.org/10.1063/5.0067565
https://doi.org/10.1063/1.4944633
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133

[14] K. Burke, J. Werschnik, and E. K. U. Gross. “Time-dependent density functional
theory: Past, present, and future”. In: J. Chem. Phys. 123 (6 2005), p. 062206.
doi: 10.1063/1.1904586.

[15] W. E. Pickett. “Pseudopotential methods in condensed matter applications”. In:
Comput. Phys. Rep. 9 (3 1989), pp. 115–197. doi: 10.1016/0167-7977(89)90002-
6.

[16] P. E. Blöchl. “Projector augmented-wave method”. In: Phys. Rev. B 50 (24 1994),
pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953.

[17] G. Kresse and D. Joubert. “From ultrasoft pseudopotentials to the projector
augmented-wave method”. In: Phys. Rev. B 59 (3 1999), pp. 1758–1775. doi:
10.1103/PhysRevB.59.1758.

[18] A. Kiejna et al. “Comparison of the full-potential and frozen-core approximation
approaches to density-functional calculations of surfaces”. In: Phys. Rev. B 73 (3
2006), p. 035404. doi: 10.1103/PhysRevB.73.035404.

[19] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen. “Real-space grid implemen-
tation of the projector augmented wave method”. In: Phys. Rev. B 71 (3 2005),
p. 035109. doi: 10.1103/PhysRevB.71.035109.

[20] J. Enkovaara et al. “Electronic structure calculations with GPAW: a real-space
implementation of the projector augmented-wave method”. In: J. Phys. Condens.
Matter 22 (25 2010), p. 253202. doi: 10.1088/0953-8984/22/25/253202.

[21] J. Harris, R. O. Jones, and J. E. Müller. “Force calculations in the density func-
tional formalism”. In: J. Chem. Phys. 75 (8 1981), pp. 3904–3908. doi: 10.1063/
1.442546.

[22] T. W. Ko et al. “A fourth-generation high-dimensional neural network potential
with accurate electrostatics including non-local charge transfer”. In: Nat. Commun.
12 (398 2021). doi: 10.1038/s41467-020-20427-2.

[23] A. P. Bartók and G. Csányi. “Gaussian Approximation Potentials: A Brief Tutorial
Introduction”. In: Int. J. Quantum Chem. 115 (16 2015), pp. 1051–1057. doi:
10.1002/qua.24927.

[24] A. V. Shapeev. “Moment tensor potentials: A class of systematically improvable
interatomic potentials”. In: Multiscale Model. Simul. 14 (3 2016), pp. 1153–1173.
doi: 10.1137/15M1054183.

[25] J. Behler. “Atom-centered symmetry functions for constructing high-dimensional
neural network potentials”. In: J. Chem. Phys. 134 (7 2011). doi: 10.1063/1.
3553717.

[26] M. Rupp et al. “Fast and accurate modeling of molecular atomization energies
with machine learning”. In: Phys. Rev. Lett. 108 (5 2012), p. 058301. doi: 10.
1103/PhysRevLett.108.058301.

[27] A. P. Bartók, R. Kondor, and G. Csányi. “On representing chemical environments”.
In: Phys. Rev. B 87 (18 2013), p. 184115. doi: 10.1103/PhysRevB.87.184115.

45

https://doi.org/10.1063/1.1904586
https://doi.org/10.1016/0167-7977(89)90002-6
https://doi.org/10.1016/0167-7977(89)90002-6
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.73.035404
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1063/1.442546
https://doi.org/10.1063/1.442546
https://doi.org/10.1038/s41467-020-20427-2
https://doi.org/10.1002/qua.24927
https://doi.org/10.1137/15M1054183
https://doi.org/10.1063/1.3553717
https://doi.org/10.1063/1.3553717
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevB.87.184115

[28] E. Kocer, J. K. Mason, and H. Erturk. “Continuous and optimally complete de-
scription of chemical environments using Spherical Bessel descriptors”. In: AIP
Adv. 10 (1 2020). doi: 10.1063/1.5111045.

[29] D. M. Anstine and O. Isayev. “Machine Learning Interatomic Potentials and Long-
Range Physics”. In: J. Phys. Chem. A (2023). doi: 10.1021/acs.jpca.2c06778.

[30] Nongnuch Artrith and Alexander Urban. “An implementation of artificial neural-
network potentials for atomistic materials simulations: Performance for TiO2”. In:
Comput. Mater. Sci. 114 (2016), pp. 135–150. doi: 10.1016/J.COMMATSCI.2015.
11.047.

[31] W. Li et al. “Study of Li atom diffusion in amorphous Li3PO4 with neural network
potential”. In: J. Chem. Phys. 147 (21 2017), p. 214106. doi: 10.1063/1.4997242.

[32] Q. Li et al. “Development of robust neural-network interatomic potential for
molten salt”. In: Cell Rep. 2 (3 2021), p. 100359. doi: 10.1016/j.xcrp.2021.
100359.

[33] A. Y. Toukmaji and J. A. Board. “Ewald summation techniques in perspective:
a survey”. In: Comput. Phys. Commun. 95 (2-3 1996), pp. 73–92. doi: 10.1016/
0010-4655(96)00016-1.

[34] A. E. Sifain et al. “Discovering a Transferable Charge Assignment Model Using
Machine Learning”. In: J. Phys. Chem. Lett. 9 (16 2018), pp. 4495–4501. doi:
10.1021/ACS.JPCLETT.8B01939.

[35] O. T. Unke and M. Meuwly. “PhysNet: A Neural Network for Predicting Energies,
Forces, Dipole Moments, and Partial Charges”. In: J. Chem. Theory Comput. 15
(6 2019), pp. 3678–3693. doi: 10.1021/ACS.JCTC.9B00181.

[36] E. R. Khajehpasha et al. “CENT2: Improved charge equilibration via neural net-
work technique”. In: Phys. Rev. B 105 (14 2022), p. 144106. doi: 10 . 1103 /

PhysRevB.105.144106.

[37] L. Zhang et al. “A deep potential model with long-range electrostatic interactions”.
In: J. Chem. Phys. 156 (2022), p. 124107. doi: 10.1063/5.0083669.

[38] A. Gao and R. C. Remsing. “Self-consistent determination of long-range electro-
statics in neural network potentials”. In: Nature Comm. 13 (1 2022), pp. 1–11.
doi: 10.1038/s41467-022-29243-2.

[39] A. Kosmala et al. Ewald-based Long-Range Message Passing for Molecular Graphs.
2023. doi: 10.48550/arxiv.2303.04791.

[40] J. Gilmer et al. Neural Message Passing for Quantum Chemistry. 2017. doi: 10.
48550/arxiv.1704.01212.

[41] J. Zhou et al. Graph Neural Networks: A Review of Methods and Applications.
2018. doi: 10.48550/arxiv.1812.08434.

[42] Z. Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Trans. Neural. Netw. Learn. Syst. 32 (1 2021), pp. 4–24. doi: 10.1109/TNNLS.
2020.2978386.

46

https://doi.org/10.1063/1.5111045
https://doi.org/10.1021/acs.jpca.2c06778
https://doi.org/10.1016/J.COMMATSCI.2015.11.047
https://doi.org/10.1016/J.COMMATSCI.2015.11.047
https://doi.org/10.1063/1.4997242
https://doi.org/10.1016/j.xcrp.2021.100359
https://doi.org/10.1016/j.xcrp.2021.100359
https://doi.org/10.1016/0010-4655(96)00016-1
https://doi.org/10.1016/0010-4655(96)00016-1
https://doi.org/10.1021/ACS.JPCLETT.8B01939
https://doi.org/10.1021/ACS.JCTC.9B00181
https://doi.org/10.1103/PhysRevB.105.144106
https://doi.org/10.1103/PhysRevB.105.144106
https://doi.org/10.1063/5.0083669
https://doi.org/10.1038/s41467-022-29243-2
https://doi.org/10.48550/arxiv.2303.04791
https://doi.org/10.48550/arxiv.1704.01212
https://doi.org/10.48550/arxiv.1704.01212
https://doi.org/10.48550/arxiv.1812.08434
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386

[43] D. Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular
Fingerprints. 2015. url: https://proceedings.neurips.cc/paper/2015/file/
f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

[44] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolu-
tional Networks. 2016. doi: 10.48550/arxiv.1609.02907.

[45] B. Anderson, T. Hy, and R. Kondor. Cormorant: Covariant Molecular Neural
Networks. 2019. doi: 10.48550/arXiv.1906.04015.

[46] D. Van Der Spoel et al. “GROMACS: Fast, flexible, and free”. In: J. Comput.
Chem. 26 (16 2005), pp. 1701–1718. doi: 10.1002/JCC.20291.

[47] S. V. Sambasivarao and O. Acevedo. “Development of OPLS-AA force field pa-
rameters for 68 unique ionic liquids”. In: J. Chem. Theory Comput. 5 (4 2009),
pp. 1038–1050. doi: 10.1021/CT900009A.

[48] R. Wanzenböck et al. “Neural-network-backed evolutionary search for SrTiO3(110)
surface reconstructions”. In: Digital Discovery 1 (5 2022), pp. 703–710. doi: 10.
1039/D2DD00072E.

[49] J. Řezáč et al. “Quantum Chemical Benchmark Energy and Geometry Database for
Molecular Clusters and Complex Molecular Systems (www.begdb.com): A Users
Manual and Examples”. In: Collect. Czechoslov. Chem. Commun. 73 (10 2008),
pp. 1261–1270. doi: 10.1135/CCCC20081261.

[50] J. P. Perdew, K. Burke, and M. Ernzerhof. “Generalized Gradient Approximation
Made Simple”. In: Phys. Rev. Lett. 77 (18 1996), pp. 3865–3868. doi: 10.1103/
PhysRevLett.77.3865.

[51] B. Hammer, L. B. Hansen, and J. K. Nørskov. “Improved adsorption energetics
within density-functional theory using revised Perdew-Burke-Ernzerhof function-
als”. In: Phys. Rev. B 59 (11 1999), pp. 7413–7421. doi: 10.1103/PhysRevB.59.
7413.

[52] T. A. Manz and N. G. Limas. “Introducing DDEC6 atomic population analysis:
part 1. Charge partitioning theory and methodology”. In: RSC Adv. 6 (53 2016),
pp. 47771–47801. doi: 10.1039/C6RA04656H.

[53] T. A. Manz and N. G. Limas. Chargemol program for performing DDEC analysis.
Version 3.15. 2017. url: http://ddec.sourceforge.net.

[54] J. Bradbury et al. JAX: composable transformations of Python+NumPy programs.
Version 0.3.13. 2018. url: http://github.com/google/jax.

[55] D. Chen et al. “Deep Residual Learning for Nonlinear Regression”. In: Entropy 22
(2 2020), p. 193. doi: 10.3390/e22020193.

[56] L. Metz et al. VeLO: Training Versatile Learned Optimizers by Scaling Up. 2022.
doi: 10.48550/arxiv.2211.09760.

[57] J. Carrete et al. Deep Ensembles vs. Committees for Uncertainty Estimation in
Neural-Network Force Fields: Comparison and Application to Active Learning.
2023. doi: 10.48550/arxiv.2302.08805.

47

https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://doi.org/10.48550/arxiv.1609.02907
https://doi.org/10.48550/arXiv.1906.04015
https://doi.org/10.1002/JCC.20291
https://doi.org/10.1021/CT900009A
https://doi.org/10.1039/D2DD00072E
https://doi.org/10.1039/D2DD00072E
https://doi.org/10.1135/CCCC20081261
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1103/PhysRevB.59.7413
https://doi.org/10.1039/C6RA04656H
http://ddec.sourceforge.net
http://github.com/google/jax
https://doi.org/10.3390/e22020193
https://doi.org/10.48550/arxiv.2211.09760
https://doi.org/10.48550/arxiv.2302.08805

[58] J. Godwin et al. Jraph: A library for graph neural networks in jax.Version 0.0.1.dev.
2020. url: http://github.com/deepmind/jraph.

[59] J. Heek et al. Flax: A neural network library and ecosystem for JAX. Version 0.3.0.
2020. url: http://github.com/google/flax.

[60] I. Babuschkin et al. The DeepMind JAX Ecosystem. 2020. url: http://github.
com/deepmind.

[61] A. G. Baydin et al. “Automatic Differentiation in Machine Learning: a Survey”. In:
J. Mach. Learn. Res. 18.153 (2018), pp. 1–43. doi: 10.48550/arXiv.1502.05767.

[62] N. A. Spaldin. “A beginner’s guide to the modern theory of polarization”. In: J.
Solid State Chem. 195 (2012), pp. 2–10. doi: 10.1016/J.JSSC.2012.05.010.

[63] P. Ramachandran, B. Zoph, and Q. V. Le. Searching for Activation Functions.
2017. doi: 10.48550/arXiv.1710.05941.

[64] Q. Wang et al. “A Comprehensive Survey of Loss Functions in Machine Learning”.
In: Ann. Data Sci. 9 (2 2022), pp. 187–212. doi: 10.1007/S40745-020-00253-5.

[65] P. Virtanen et al. “SciPy 1.0: fundamental algorithms for scientific computing in
Python”. In: Nat. Methods 17 (3 2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

[66] F. L. Hirshfeld. “Bonded-atom fragments for describing molecular charge densi-
ties”. In: Theor. Chem. Acc. 44 (2 1977), pp. 129–138. doi: 10.1007/BF00549096.

[67] S. Baroni et al. “Phonons and related crystal properties from density-functional
perturbation theory”. In: Rev. Mod. Phys. 73 (2 2001), pp. 515–562. doi: 10.1103/
RevModPhys.73.515.

48

http://github.com/deepmind/jraph
http://github.com/google/flax
http://github.com/deepmind
http://github.com/deepmind
https://doi.org/10.48550/arXiv.1502.05767
https://doi.org/10.1016/J.JSSC.2012.05.010
https://doi.org/10.48550/arXiv.1710.05941
https://doi.org/10.1007/S40745-020-00253-5
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/BF00549096
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515

	Introduction
	The Projector Augmented Wave (PAW) Method
	Density Functional Theory
	The PAW Transformation
	(Semi-)Local Operators
	Electrostatic Energy
	The Kohn-Sham Equations in PAW
	Forces

	Neural-Network Force Fields
	Spherical Bessel Descriptors
	Electrostatic Interactions in NNFFs

	Atomic Charge Prediction using Neural Networks
	Graph Representation of Atomic Systems
	Message-Passing Neural Networks
	Electron-Passing Neural Networks

	Methodology
	Training Data
	Neural-Network Force Field
	Electron-Passing Neural Network
	Programming Framework
	Graph Representation
	Network Architecture

	Results
	Water Dimer
	Handling of Electrostatics in a Neural-Network Force-Field
	EPNN Training on Charges Obtained by Density Partitioning
	EPNN Training on Electrostatic Energies
	Electrostatic Forces in PAW

	Conclusion and Outlook

