
Scalable Bayesian Network
Structure Learning using

SAT-based Methods

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

eingereicht von

Vaidyanathan Peruvemba Ramaswamy, M.Tech., B.Tech.
Matrikelnummer 11928280

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider

Diese Dissertation haben begutachtet:

Pekka Parviainen Sebastian Ordyniak

Wien, 12. Mai 2023 Vaidyanathan Peruvemba
Ramaswamy

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Scalable Bayesian Network
Structure Learning using

SAT-based Methods

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Naturwissenschaften

by

Vaidyanathan Peruvemba Ramaswamy, M.Tech., B.Tech.
Registration Number 11928280

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Mag.rer.nat. Dr.rer.nat. Stefan Szeider

The dissertation has been reviewed by:

Pekka Parviainen Sebastian Ordyniak

Vienna, 12th May, 2023 Vaidyanathan Peruvemba
Ramaswamy

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Vaidyanathan Peruvemba Ramaswamy, M.Tech., B.Tech.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Mai 2023 Vaidyanathan Peruvemba
Ramaswamy

v

Acknowledgements

When I started this PhD back in September 2019, there was a small part of me that was
fearing that I had bitten off more than I could chew, that I was too naïve to comprehend
the behemothbehemoth of a job I was signing up for. A PhD is a big deal where I come from.
After completing my Bachelors and Masters in India, and faced with the decision of
what to do next; a PhD just happened to be the least undesirable option. I applied to
few places, with the primary criterion of maximizing the likelihood of me completing
the PhD. Consequently, what drew me towards this PhD position at TU Wien was the
familiarity of the research area along with the promise of a healthy mix of theoretical and
practical work (and I was not disappointed). I was so desperate to secure this position
that I sacrificed a good night’s sleep to complete an assignment (which was a part of
the hiring process) in one day, despite having been granted 2-3 weeks. Fortunately, my
efforts paid off, and I got the position.

I’ve always maintained that I’m not a big fan of change, but this move had change
written all over it: living in a foreign country for the first time, managing my own living
and food situation, financial independence, new culture, new language, und so weiter. I
had done what I could do from my side to maximize my chances of success by picking a
position that I felt I would be self-motivated in. But, there were several other cogs in the
machinery that finally yielded me my doctorate amid all the change and chaos . These
cogs were the numerous people that helped in their own ways, and these are the people
that I would like to thank in the rest of this section.

First and foremost, I would like to thank my supervisor Stefan Szeider for being extremely
understanding and making the core of this PhD experience an absolute treat. I was
particularly moved by how well you handled my dip in productivity at the start of the
pandemic—no anger or frustration, just looking to come up with a way to get me back
on track. I also appreciate the space you gave me with my vision for this thesis despite it
not being the most efficient approach. I would also like to thank my reviewers Pekka
Parviainen and Sebastian Ordyniak for their valuable feedback and cooperation.

Secondly, I would like to thank my parents for nurturing my curiosity and problem-solving
attitude. Despite the humble background, I rarely had the feeling that I was lacking
anything. Further, I would like to thank, my grandparents who also contributed to the
childhood that I so fondly reminisce.

vii

I am very fortunate to have found a second family here in Vienna, i.e., the Schlossis
(Toby, Sezen, Mali, Greg) and the former Schlossis (Milena, Eli, Neha, Stefan, Klausi).
Thank you for making the lockdown bearable, for improving my German, and for the
movie and game nights. I am also thankful to Theresienbad for some of my most blissful
summer memories.

I would also like to thank the Algorithms and Complexity group for providing a pleasant
and relaxing backdrop for me to work in. The group lunches were quite often the highlight
of my day, and my weekends were often brightened up by racket sports with colleagues.
On a related note, I would like to thank the fallen vegan angel [Venga] for their tireless
and efficient service before being wiped out by the pandemic. I would also like to thank
Fabian Klute for his dissertation which served as a trusty exemplar.

I would like to thank Mikko Koivisto for being a wonderful host during my research visit
at the University of Helsinki. Further, I would also like to thank Alex, my Table Tennis
coach in Helsinki, for turbocharging my love for the sport. And thanks to Juha, Trân
and Hector for sprucing up my Helsinki experience.

In retrospect, one of the most influential steps that brought me to this juncture was
the decision to join IIT Gandhinagar. I am incredibly thankful to the institute and
faculty for laying a strong foundation, especially Neeldhara Misra for introducing me to
Parameterized Complexity, and Bireswar Das for the enriching teaching opportunities.
Additionally, I would like thank my close friends in India, for ensuring that I do not
forget my roots with regular gaming nights and untimely video calls. I am also grateful
to those friends who proofread the initial chapters of this manuscript.

Moving to a new country and then to another for a research visit means lots of bureaucracy
and paperwork. MA35 was the kingpin here, making sure I don’t get too engrossed in
my research with periodic interruptions. However, thanks to Beatrix Buhl and Anna
Prianichnikova (a part of the Doktorandenkolleg), I was able to mitigate the impact
of MA35. I would also like to thank the other DK students for providing another
much-needed social outlet and for the wonderful retreat to Linz in 2019.

Finally, a mixed bag of all the remaining things I am grateful for: Gorilla Kitchen (for
helping me pull late-nighters), Eiskaffee, Tischtennis, Conrad das Fahrrad (which was
tragically stolen) und das türkise Fahrrad. Danke schön!

Kurzfassung

Bayes’sche Netze (BNs) sind grafische Modelle, die weithin erforscht wurden und in der
Praxis, insbesondere in der Medizin, häufig Anwendung finden. Diese Popularität hat zu
mehreren heuristischen Methoden für das Lernen von BNs geführt, dem „Bayesian Net-
work Structure Learning“ (BNSL). Die „SAT-based Local Improvement Method“ (SLIM)
ist eine Metaheuristik zur lokalen Verbesserung einer globalen Lösung mit Hilfe eines SAT-
Lösers. In dieser Arbeit befassen wir uns mit der Anwendung der SLIM-Metaheuristik auf
bestehende BNSL-Algorithmen, um qualitativ bessere BNs zu erhalten und gleichzeitig
die Skalierbarkeit beizubehalten. Wir betrachten das grundlegende BNSL-Problem mit
beschränkter Baumweite sowie zwei weitere Varianten: BNSL mit beschränkter Zustands-
raumgröße und BNSL mit Expertennebenbedingungen. Für jede Variante entwerfen wir
einen SLIM-Algorithmus und führen eine empirische Analyse durch, in der wir ihn mit
modernen BNSL-Algorithmen vergleichen.

In einer Welt, in der Vorhersagemodelle wie neuronale Netze und Autoencoder immer
beliebter werden, könnte die Rolle der Bayes’schen Netze trotz ihres bedeutenden Bei-
trags leicht übersehen werden. Im Bereich der vertrauenswürdige Vorhersagemodelle sind
die BNs jedoch die vorherrschende Methode. Darüber hinaus spielen sie weiterhin eine
entscheidende Rolle bei der Anwendung von Vorhersagemodellen. Ein wichtiges Beispiel
für solche Anwendungen, bei denen Vertrauen von größter Bedeutung ist, ist der Bereich
der Medizin. Beispiele hierfür sind Diagnose von Krankheiten, die Bestimmung deren
Ursachen oder Symptome, die Abschätzung der Wirksamkeit potenzieller Behandlungen
und die Angabe von Wahrscheinlichkeiten im Zusammenhang mit genetisch bedingten
Krankheiten. Diese Vertrauenswürdigkeit wird manchmal auch als Erklärbarkeit bezeich-
net und findet als Forschungsgebiet Explainable AI (XAI) immer mehr Interesse. Für
die am weitesten verbreiteten Modelle (wie neuronale Netze) ist die Erklärbarkeit nicht
zufriedenstellend möglich und muß behelfsmäßig im Nachhinein approximiert werden.
Bei BNs ist die Erklärbarkeit jedoch in das Modell selbst eingebaut, was es in diesem
Zusammenhang viel attraktiver macht.

Ein BN besteht aus mehreren Zufallsvariablen „Random Variables“ (RVs), die durch
gerichtete Kanten miteinander verbunden sind. Jede RV stellt ein atomares Ereignis
der realen Welt dar und kann mehrere Zustände annehmen; die Kanten erfassen die
Interaktionen zwischen diesen Ereignissen, d.h., die probabilistische Korrelation zwischen
den Zuständen der RVs. Der gerichtete azyklische Graph „Directed Acyclic Graph“ (DAG)

ix

der RVs bildet zusammen mit den Kanten einen Teil des BN, der als Struktur des BN
bezeichnet wird. Darüber hinaus benötigen wir auch Tabellen der bedingten Wahrschein-
lichkeitsverteilung „conditional probability distribution“ (CPD), eine für jede (die RVs),
die die Wahrscheinlichkeiten bezüglich des Zustands dieses RVs festhält. Diese Tabellen
werden zusammenfassend als Parameter des BN bezeichnet. Die Lernaufgabe kann direkt
in zwei Teilaufgaben unterteilt werden, das Lernen der Struktur des BN und das Lernen
der Parameter für eine gegebene Struktur, wobei die CPD-Tabellen ausgefüllt werden. Das
algorithmisch BNSL-Problem ist bekanntermaßen schwierig. Da reale Szenarien in der
Regel Tausende von RVs beinhalten, hat dies viele Forschungsarbeiten zur Entwicklung
heuristischer Algorithmen für die Suche nach approximative Lösungen für das BNSL
Problem angezogen. Es gibt einige Arbeiten zur exakten BNSL, aber diese Methoden sind
schlecht skalierbar und für BNs mit mehr als 50 Variablen in der Regel nicht anwendbar.

Das Hauptziel unserer Arbeit bestand darin, bessere BNSL-Algorithmen zu entwickeln.
Konkret geht es um drei wichtige Eigenschaften, die einzeln leicht zu erreichen sind, deren
gleichzeitige Verwirklichung jedoch eine Herausforderung darstellt. In erster Linie müssen
die von uns entwickelten Methoden zum Strukturlernen in der Lage sein, auf Tausende
von Variablen zu skalieren. Zweitens müssen wir sicherstellen, dass die Schlussfolgerungen
anhand des gelernten BN nicht nur handhabbar, sondern auch extrem schnell sind.
Daraus ergeben sich gewünschte Eigenschaften der Struktur des gelernten BN, wie die
Beschränkung der Baumweite. Schließlich möchten wir neben dem praktischen Fokus
der beiden vorangegangenen Punkte sicherstellen, dass die Qualität des BN, unter
Berücksichtigung dieser Eigenschaften, nicht leidet, d.h., dass die Eingabedaten gut
repräsentiert werden. Dies bildet unser Dreigestirn–Skalierbarkeit, Handhabbarkeit und
Qualität–die drei Eigenschaften, die wir gleichzeitig anstreben. Zunächst betrachten
wir das klassische beschränkte Baumweite BNSL-Problem, bei dem wir uns auf die
Skalierbarkeit konzentrieren und den Stand der Technik verbessern. Als nächstes befassen
wir uns mit dem beschränkte Zustandsraumgröße BNSL-Problem, bei dem wir die Grenzen
der Handhabbarkeit erweitern, indem wir eine neue Metrik vorschlagen, die die Inferenzzeit
besser widerspiegelt. Schließlich leisten wir einen Beitrag zur Forschung im Bereich des
Lernens von BNs, die zusätzliche kausale Beschränkungen berücksichtigen, die von einem
Domänenexperten bereitgestellt werden. Dies führt zu qualitativ hochwertigeren BNs, die
die zugrundeliegenden Daten besser repräsentieren, da sie nicht mehr rein korrelational
sind. Wir schlagen die erste skalierbare Methode zum Erlernen solcher BNs vor, die
dennoch handhabbare Schlussfolgerungen gewährleistet.

Unser Ansatz zur Erfüllung all dieser Anforderungen ist die SAT-basierte lokale Ver-
besserungsmethode (SLIM). SLIM ist eine Metaheuristik, die von Lodha, Ordyniak und
Szeider (SAT 2016) eingeführt wurde. SLIM-basierte Algorithmen kombinieren heuris-
tische und exakte Methoden, um ihre jeweiligen Vorteile zu nutzen und gleichzeitig
ihre Nachteile in Grenzen zu halten. Auf einer höheren Ebene sind die Lokale-Suche-
Algorithmen, die mit einer heuristischen Ausgangslösung beginnen und dann wiederholt
lokale Teile dieser Ausgangslösung isolieren, verbessern und ersetzen. Das Herzstück
dieses Verfahrens ist eine SAT-basierte exakte Methode (lokaler Löser), die für die Ver-

besserung der lokalen Teile zuständig ist. ‘SAT-basiert’ bezieht sich auf die Verwendung
von Lösern für das aussagenlogische Erfüllbarkeitsproblem „Propositional Satisfiability
problem“ (SAT) oder dessen Verallgemeinerung (wie MaxSAT). Diese Löser sind moderne
technologische Wunderwerke, die in der Lage sind, das SAT-Problem für Formeln mit
Millionen von Variablen zu lösen. Die allgemeine Philosophie bei der Kombination von
heuristischen und exakten Methoden besteht darin, Probleme, die für jede Methode
geeignet sind, spezifisch anzupassen. Dies ist der Grund dafür, dass der SAT-basierte
lokale Löser nur mit mundgerechten Teilproblemen gefüttert wird und nicht mit der
gesamten Eingabe in einem Durchgang. Dadurch wird sichergestellt, dass wir die Vorteile
der exakten Methode nutzen können, ohne dass wir unzumutbar lange Laufzeiten in Kauf
nehmen müssen.

Oberflächlich betrachtet mögen die von uns entwickelten SLIM-basierten Algorithmen
ähnlich aussehen, aber jeder Algorithmus erfordert eine sorgfältige Einbettung der exakten
Methode, um sicherzustellen, dass die globale Lösung auch dann gültig bleibt, wenn ein
lokaler Teil durch eine verbesserte lokale Lösung ersetzt wurde. Dies ist die größte Her-
ausforderung bei der Entwicklung eines SLIM-basierten Algorithmus. In unserer Arbeit
über das beschränkte Zustandsraumgröße BNSL-Problem haben wir zum Beispiel einen
neuartigen BDD-basierten Zähler verwendet, um mit Logarithmensummen umzugehen.
Schließlich haben wir aufgrund des übergreifenden Ziels der Praktikabilität jeden unserer
SLIM-basierten Algorithmen implementiert und experimentelle Auswertungen durchge-
führt. Diese Auswertungen bestätigten, dass die theoretischen Versprechen auch unter
den praktischen Herausforderungen der realen Welt Bestand haben. In jedem Fall haben
wir gezeigt, dass die von uns entwickelten Algorithmen im Vergleich zu den modernsten
Algorithmen gut abschneiden.

Abstract

In a world where the popularity of predictive models like Neural Networks and Au-
toencoders is rapidly growing, the role of the Bayesian Networks (BNs) might be easily
overlooked, despite their significant contribution. However, when it comes to trustworthy
predictive models, BNs have dominated the landscape and continue to play a critical role
in the real-world use of predictive models. A major example of such real-world use where
trust is of paramount importance is the field of Medicine. Examples include predictions
about human illnesses and their causes or symptoms, estimating effectiveness of poten-
tial remedial measures, expressing the probabilities related to genetically transmitted
conditions, etc. This trustworthiness is also sometimes referred to as explainability and
is starting to garner lots of interest as a field of research called ‘Explainable AI’ (XAI).
For most widely used models (like neural networks), explainability is an afterthought
meaning that such models need to be retrofitted with additional ‘explaining’ mechanisms.
However, in BNs, explainability is baked into the model itself, which makes them far
more appealing.

A BN consists of several Random Variables (RVs) connected to one another by directed
arcs. Each RV represents an atomic real-world event and can have multiple states;
the arcs capture the interaction between these events, i.e., the probabilistic correlation
between the states of RVs. The Directed Acyclic Graph (DAG) of the RVs along with
the arcs forms one part of the BN, called the BN’s structure. In addition to that, we
also need conditional probability distribution (CPD) tables, one for each RV, which pins
down the probabilities concerning the state of that RV. These tables are collectively
called the parameters of the BN. Learning a BN can be naturally split into two subtasks,
learning the structure of the BN and then learning the parameters for a given structure,
by filling in the CPD tables. BN structure learning (BNSL) is known to be notoriously
hard. Since real-world scenarios usually involve thousands of RVs, it has attracted lots
of research in developing heuristic algorithms for finding approximate solutions to the
BNSL problem. There is some work on exact BNSL, but these methods scale poorly and
are usually impractical for networks with more than 50 variables.

The primary goal of our work was to develop better BNSL algorithms. More specifically,
our work addresses three important properties which are easy to achieve individually but
challenging to achieve simultaneously. First and foremost, the structure learning methods
we develop must be able to scale up to thousands of variables, as opposed to freezing up

xiii

and failing to find any solutions for large networks. Secondly, once a BN is learned, it is
used to make several predictions or inferences, thus we must ensure that these inferences
are not only tractable but also extremely quick. This, in turn, translates to restrictions
on the structure of the learned BNs, like bounding the treewidth of the BN. Lastly, along
with the practical focus of the previous two points, we would like to ensure that the
quality of the BNs does not suffer in the process, i.e., the input data is well-represented by
the BN. This forms our trifecta—scalability, tractability, and quality—the three properties
that we strive to achieve simultaneously in all our works. We first look at the classic
Bounded Treewidth BNSL problem where we focus on scalability and improve the state of
the art. Next, we work on the Bounded State Space BNSL problem where we expand the
frontiers of tractability by proposing a new metric which better reflects the inference time.
Finally, we contribute to the line of research in learning BNs which respect additional
causal constraints supplied by a domain expert. This results in higher quality BNs which
better represent the underlying data, as they are no longer purely correlational. We
propose the first scalable method for learning such BNs while still ensuring tractable
inferences.

Our approach to satisfy all these requirements is the SAT-based Local Improvement
Method (SLIM). SLIM is a framework introduced by Lodha, Ordyniak, and Szeider
(SAT 2016) and can be used to develop heuristic algorithms. SLIM-based algorithms
combine heuristic and exact methods to capitalize on their respective advantages while
keeping their drawbacks in check. At a higher-level, these algorithms are local search
algorithms that start off with an initial heuristic solution and then repeatedly isolate,
improve and patch back local parts of this initial solution. At the heart of this procedure
is a SAT-based exact method (local solver) which is in charge of improving the local
parts. ‘SAT-based’ refers to the utilization of solvers for the propositional satisfiability
problem (SAT) or its generalization (such as MaxSAT). These solvers are modern-day
technological marvels that are capable of solving the SAT problem for formulas with
millions of Boolean variables. The general philosophy in combining both heuristic and
exact methods is to specifically tailor problems which are suitable for each method. This
is the reason that the SAT-based local solver is only fed bite-sized subproblems and not
the entire input in one go. This ensures that we can still reap the benefits of the exact
method without incurring infeasibly long running times.

At a higher level, the SLIM-based algorithms we develop, might look similar, but each
algorithm requires careful fortification of the exact method to be able to ensure that the
global solution remains valid even after a local part was replaced by an improved local
solution. This is the most challenging part of developing a SLIM-based algorithm. For
instance, in our work on bounded state space BNSL, we used a novel BDD-based counter
to deal with sums of logarithms. Finally, due to the overarching goal of practicality, we
implemented each of our SLIM-based algorithms and performed experimental evaluations.
These evaluations verified and confirmed that the theoretical promises still hold under the
practical challenge of real-world problems. In each case, we showed that the algorithms
we develop perform favorably in comparison to state-of-the-art algorithms.

Contents

Kurzfassung ix

Abstract xiii

Contents xv

1 Gentle Introduction 1
Gentle background for non-experts.
1.1 Graph Theory . 2
1.2 Bayesian Network Structure Learning 4
1.3 Tree Decompositions . 7

2 Algorithms for BNSL 15
Gentle overview of relevant algorithms.
2.1 Maximum Satisfiability . 15
2.2 SAT-based Local Improvement Method 17
2.3 Heuristics for the BNSL Problem . 20
2.4 Solving the BNSL Problem . 22

3 Notation and Background 25
Formal treatment of notation and terminology.
3.1 Theoretical Background . 25
3.2 Algorithmic Background . 29
3.3 Overview of Results . 35

4 Bounded Treewidth BNSL 39
4.1 Introduction and Motivation . 40
4.2 Local Improvement . 42
4.3 Implementing the Local Improvement 45
4.4 Experimental Evaluation . 48
4.5 Conclusion/Related Work . 52

5 Bounded State-Space BNSL 55
5.1 Introduction and Motivation . 56

xv

5.2 Treewidth and Maximum State Space Size 58
5.3 BN Learning of Bounded State Space Size 59
5.4 Experimental Evaluation . 64
5.5 Conclusion . 67

6 BNSL with Expert Constraints 69
6.1 Introduction . 70
6.2 Additional Background . 72
6.3 k-greedy with Constraints . 72
6.4 BN-SLIM with Constraints . 75
6.5 Experimental Evaluation . 80
6.6 Conclusion . 84

7 Conclusion 85
7.1 Bounded Treewidth BNSL . 85
7.2 Bounded State Space BNSL . 86
7.3 BNSL with Expert Constraints . 87
7.4 General Future Directions . 88
7.5 Closing Remarks . 88

List of Figures 91

List of Tables 91

List of Algorithms 93

Definition Index 95

Expert Index 97

Bibliography 101

CHAPTER 1
Gentle Introduction

Example is the school of mankind, and they will learn at
no other.

— Edmund Burke, “Letters on a Regicide Peace”

In this section, we give a gentle introduction to the main problem of interest. This
chapter is intended to be fairly accessible and didactic with ample diagrams and
examples to make clear the underlying logic and intuition. To the reader who is already
comfortable with these concepts, we recommend skipping to Chapter 3 where we back
these somewhat informal statements with formal notation and terminology.

� Note

Boxes like these provide helpful pointers, clarifications, intuitions, and examples.

� Note

The words on the margins guide the reader to the definition of the respective
terms and can be used in conjunction with the Definition Index at the end of this
manuscript to locate or recall definitions. Emphasized terms in the prose denote
definitions.

1

1. Gentle Introduction

1.1 Graph Theory

Graphs1 (also known as networks) are one of the most fundamental objects in Computer
Science. Graphs represent relations between entities. This simple definition enables
graphs to be used for a wide variety of applications. The entities are called either nodesnode

or vertices, and the relations between them are called edges. Some real world examplesvertex
edge which can be represented by graphs are:

• State neighborhood graph, where each state (or «Bundesland») of Austria is an
entity and the property of sharing a border is the relation;

• Organization hierarchy diagram, where each employee is an entity and the property
of being a superior is the relation.

The represented relations can either be symmetric relations (called undirected edges) likeundirected edge

in the neighborhood graph, (if u shares a border with v, so does v share a border with u);
or oriented in a particular direction (called directed edges) like in the hierarchy diagramdirected edge

(if u is v’s superior, v cannot be u’s superior). In this thesis, we only deal with either
directed graphs where all relations are directed; or undirected graphs, where all relationsdirected graph

undirected graph are undirected. Please see Figure 1.1 for a visualization. Note that, in Figure 1.1a, the
state of Tirol (TR) consists of two disjoint land masses.

NÖ

OÖ

ST

KÄ

SZ

TR

VO

BU

WI

(a) State neighborhood graph

April

Ben

Chris Freddy Garry

Diane Ethel Harris

(b) Organization hierarchy diagram

Figure 1.1: Examples of graphs

1not to be confused with graphs of functions, as in plots or charts, which represent how a function’s
output value changes with respect to the input argument

2

1.1. Graph Theory

� Note

In visual representations of graphs, the positions of the vertices do not matter and
neither do the shapes and curves of edges. The only information the drawing is
meant to convey is which vertices are connected to each other, either by undirected
edges (plain lines) or by directed edges (lines with arrowheads).

Unless otherwise specified, we use the term ‘graph’ as a shorthand for undirected graphs.
We refer to edges in a directed graph as arcs (depicted as arrows u → v in figures) and arc

henceforth reserve the term ‘edge’ as a shorthand for undirected edges (depicted as lines
u — v in figures). A graph over a set S is a graph where the vertices belong to the set S. graph over a set

An edge between vertices u and v is incident on vertex u and vertex v. A subgraph of incident
subgrapha graph G is a graph obtained by deleting some vertices or edges from G. Note that

when we delete a vertex, it also implies the deletion of the edges incident on that vertex
because otherwise we would be left with an edge that has only one endpoint.

In an undirected graph, a vertex is a neighbor of another vertex (or is adjacent to neighbor
adjacentanother vertex) if there is an edge between them. The neighborhood of a vertex v is
neighborhoodthe set of all other vertices that are adjacent to vertex v. The degree of a vertex is the
degreenumber of neighbors of that vertex. For example, in Figure 1.1a, the neighborhood of

Oberösterreich (OÖ) consists of Steiermark (ST), Salzburg (SZ) and Niederösterreich (NÖ)
and thus Oberösterreich (OÖ) has degree 3. In a directed graph, if there is an arc going
from vertex u to v, then u is a predecessor of v and v is a successor of u. The in-degree and predecessor

successor
in-degree

out-degree of a vertex is the number of predecessors and number of successors respectively.
out-degreeSo, Diane and Ethel are successors of Chris and Ben is his predecessor. Thus, Chris has

an out-degree of 2 and an in-degree of 1.

Another natural concept in the context of graphs is a path. A path is a sequence of path

vertices such that each successive vertex in the sequence is a neighbor (or successor) of the
previous vertex. In Figure 1.1a, WI–NÖ–ST–KÄ forms a path. Extending the concept of
successors and predecessors, if there exists a path from u to v in a directed graph, u is an
ancestor of v and v is a descendant of u. A path is termed simple if no vertex is repeated, ancestor

descendant
simple path

and in this thesis, we only deal with simple paths. A cycle is a simple path except that
cyclethe last vertex is the same as the first vertex. For example, BU–ST–OÖ–NÖ–BU is a

cycle, but BU–ST–OÖ–NÖ–ST–BU is not a cycle because the intermediate vertex ST
appears twice. An acyclic graph is a graph devoid of cycles. Combining these concepts, acyclic graph

we arrive at the oft-encountered and aptly named Directed Acyclic Graphs (DAGs). A DAG

graph is connected if there exists a path from any vertex of the graph to any other vertex connected graph

of the graph. Lastly, we only deal with simple graphs in this thesis, i.e., we neither allow
multiple edges (or arcs) between the same two vertices, nor an edge (or an arc) from a
vertex to itself.

3

1. Gentle Introduction

1.2 Bayesian Network Structure Learning

In this section we first introduce the main object of study of this thesis, Bayesian
Networks. We then describe the base problem concerning Bayesian Networks which we
will tackle later in Chapter 4. After that, we consider variations of this base problem
in Chapters 5 and 6.

We refer to the book by Neapolitan and Jiang [NJ07] for a more well-rounded intro-
duction to Bayesian Network Structure Learning.

1.2.1 Bayesian Networks

A random variable (RV) is a variable that takes values from a pre-defined set (calledRV
random variable domain) with some probabilities, and represents the outcome of a random event. For

domain example, let D be a random variable representing the outcome of rolling a dice, and
so the domain of D is the set {1, 2, 3, 4, 5, 6}. Each of this event is equally likely and
hence each event has the same probability of 1/6 or about 16%. In this thesis, we only
deal with categorical random variables, i.e., variables with finitely many possible values.categorical RV

Using categorical random variables, we can capture simple real-world phenomena like a
die roll, the grade of a student, or a patient’s tendency to contract a disease. However,
to really leverage random variables and broaden the scope of the real-world phenomena
that we can model accurately, we need some way to look at several random variables
simultaneously as well as how they interact with each other. For instance, we need
something that helps us answer questions like “How does a student’s family income affect
their grade?”

A Bayesian Network (BN) allows us to accomplish this. Bayesian Networks wereBN

introduced by Pearl in 1985 and later formalized by Pearl [Pea88] and Neapolitan and
Jiang [NJ07]. A Bayesian Network consists of a DAG over categorical random variables
as nodes, together with local parameters, i.e., Conditional Probability Distribution (CPD)CPD

tables—or probability tables for short—for each node. An arc between two nodes of the
DAG denotes that the random variables corresponding to those nodes are correlated or
interdependent, and the probability tables quantify this dependence. The DAG by itself
is called the structure of the Bayesian Network and all the probability tables collectivelystructure

are called parameters of the Bayesian Network.parameters

Consider the example of a Bayesian Network over five random variables shown in
Figure 1.2. In this example, we are analyzing the likelihood of a student pursuing a
master’s program (masters node), in the context of various other attributes detailed in
Table 1.1. Notice, for instance, how there is an arc from income to job to capture that
the student’s family income affects their tendency to take up a part-time job. Similarly,
the arc from income to masters says that the student’s family income affects their

4

1.2. Bayesian Network Structure Learning

tendency to pursue a master’s program.2 Further, the (probability) table to the right
of income specifies this tendency precisely. This table is interpreted as follows: if the
family income is high, then there is a 20% chance that the student takes up a job and
80% chance that they do not; on the other hand, if the family income is low, then there is
a 70% chance that the student takes up job and 30% chance that they do not. As another
representative example, consider the number 0.4 in the bottom right table (corresponding
to masters), this expresses that there is a 40% chance that a student with low family
income and good grades would pursue a master’s program.

Name of RV Domain of RV Description
study {more, less} how much the student studies
income {high, low} the student’s family income
job {yes, no} does the student have a job on the side
grade {good, ok, bad} how well the student performs
masters {yes, no} whether the student pursues a master’s program

Table 1.1: Description of random variables used in Example 1.2

study income

grade

job

masters

study

more less
0.7 0.3

income

high low
0.5 0.5

job

income yes no
high 0.2 0.8
low 0.7 0.3

masters

income grade yes no

high good 0.9 0.1
low good 0.4 0.6
high ok 0.5 0.5
low ok 0.3 0.7
high bad 0.2 0.8
low bad 0.1 0.9

grade

study job good ok bad
more yes 0.4 0.3 0.3
more no 0.6 0.3 0.1
less yes 0.1 0.2 0.7
less no 0.2 0.3 0.5

Figure 1.2: Example of a Bayesian Network

2In this setting, we assume that the master’s program needs to be paid for by the student and is not
free of cost.

5

1. Gentle Introduction

� Note

It is subtle but worth noting that we model certain deterministic phenomena
(like the student’s income or how much they study) as random variables in order
to capture the stochastic characteristics across a data set. In other words, this
Bayesian Network does not represent the story of a single student but rather it
tries to capture the underlying patterns and dependence of these attributes in a
general sense, as observed for several students.

1.2.2 Structure Learning of Bayesian Networks
Now that the concept of Bayesian Networks is clear, we can introduce the core problem
of this thesis in an albeit simplified form:

BN Learning: Given observations of a set X of random variables, find the
Bayesian Network over X which is most likely to have produced the given
observations.

� Note

We assume that there always exists an underlying Bayesian Network that was
responsible for producing the given observations. This is a reasonable assumption
considering the expressive power afforded to us by Bayesian Networks in terms of
capturing probabilistic relations between variables.

An observation or an instance refers to an instantiation or assignment to the completeinstance

set of random variables X. For example, in Figure 1.2, an instance could be

study = more,income = low,job = no,grade = good,masters = yes.

A typical strategy to tackle the BN Learning problem is to split the task into two
steps, namely structure learning and parameter learning. Bayesian Network Structure
Learning (BNSL) or simply structure learning is the problem of determining just theBNSL

structure learning structure (i.e., the DAG) of the Bayesian Network. Since the structure by itself isn’t
sufficient to evaluate the quality of a Bayesian Network, one usually employs an auxiliary
score function as a proxy for the quality of the Bayesian Network. Here, ‘higher quality’
means that the Bayesian Network represents the given observations more accurately.
Thus, the precise problem in structure learning is to find the structure that maximizes
said score function. On the other hand, parameter learning is the problem of determiningparameter learning

the probability tables given the structure of the Bayesian Network. In this thesis, we only
concern ourselves with structure learning. In general, parameter learning is much simpler
than structure learning as it does not require guessing whether two random variables are

6

1.3. Tree Decompositions

related or not, rather, it just involves quantifying the dependencies specified in the given
structure.

1.2.3 Inference on Bayesian Networks
Once we have learned a Bayesian Network, both the structure and the parameters, we
can use them as machines to make predictions about the random variables involved. This
is known as performing inference or reasoning on the Bayesian Network. Following are inference

reasoningexamples of probabilistic queries (along with their answers) that one can answer using a
Bayesian Network (in this case we use the Bayesian Network from Figure 1.2):

• What is the probability that a student with low income and no job who pursued
masters, had studied more? (77%)

• What is the probability that a student pursues masters? (42%)

• What is the most likely grade for a student with a job? (grade = bad with 42%
chance)

The task of performing inference on Bayesian Networks is quite difficult in general. There
exist several techniques for answering such queries exactly, but all of them require time
exponential in the size of the network (i.e., if the network grows in size by 10-fold, the
running time grows by 210-fold). As a result, several approximate methods have also been
developed which avoid the impractical runtimes by compromising accuracy. Exploring
the inner workings of these techniques (be it exact or approximate) is beyond the scope
of this thesis. However, what is relevant in this context is that, if we restrict ourselves to
exact inference techniques, then the difficulty of performing inference can be mitigated if
the Bayesian Networks possess a special property which we uncover in the next section.

1.3 Tree Decompositions
This section introduces the concept of tree decompositions and the related metric called
treewidth. The importance of treewidth for inference in Bayesian Networks is discussed
towards the end of the section.

We refer to the book by Cygan et al. [Cyg+15, Chapter 7] for a gentle introduction to
tree decompositions.

� Note

It suffices to develop a rough intuition of the concept of treewidth and what it
correlates to, in order to understand the connection to Bayesian Networks and the
core problem of this thesis (introduced at the end of this section). An in-depth
understanding of tree decompositions, although helpful, is not strictly necessary.

7

1. Gentle Introduction

1.3.1 Definition

Algorithmic problems related to graphs have been widely studied in Computer Science.
A general pattern observed in the process is that some problems are much easier to solve
when the involved graphs are so-called trees as opposed to general graphs. A tree is atree

connected undirected graph without cycles (see Figure 1.3 for an example). One such
example of a problem that is easier on trees is performing inference on Bayesian Networks.
Quite often real-world problems do not come in the form of trees, however they may still
turn out to be easy to solve. This hints at the potential crudeness in simply binning
graphs into ‘trees’ and ‘not trees’, i.e., could there be a way to express the tree-likeness
of a graph which is more fine-grained than a yes/no answer?

April

Ben

Chris Freddy Garry

Diane Ethel Harris

(a) Undirected version of the hierarchy dia-
gram (tree)

WI

BU

ST

OÖ

SZ

KA

TR

NÖ

VO

(b) Neighborhood graph of the states of Aus-
tria (not a tree)

Figure 1.3: Examples of a graph which is a tree and one which is not

An answer to this question came in the form of tree decompositions, first investigated by
Bertele and Brioschi [BB73] and Halin [Hal76]. Later, Robertson and Seymour [RS84]
reintroduced this notion in the form that it is studied today. Tree decompositions
provide a granular answer to the question “How close is a given graph to being a tree?”
consequently answering the question of how hard certain problems are for the given
graph.

� Note

Contrary to how their real-life counterparts look, in Computer Science, trees are
typically drawn with the narrower end on the top and the broader end on the
bottom. Figure 1.3a, however, has been exceptionally drawn upside-down to
elucidate the reason such structures are called trees.

A tree decomposition of a graph G is an auxiliary graph (more specifically, an auxiliarytree decomposition

tree), where each node is a bag consisting of vertices from the original graph G (seebag

8

1.3. Tree Decompositions

Figure 1.4 for an example). We then impose two more conditions:

T1. for every edge, there should be at least one bag which contains both the endpoints
of this edge,

T2. for every vertex, if we delete every bag that doesn’t contain that that vertex, along
with all the edges incident on these bags, we should be left with a connected subtree.

WI

BU

ST

OÖ

SZ

KA

TR

NÖ

VO

e3

e2
e1

e4

(a) Neighborhood graph G of states of Austria

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ, NÖ

ST, NÖ, BU

NÖ, WI

c2

c1

b1

b2

b3

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

WI

BU

ST

OÖ

SZ

KA

TR

NÖ

VO

e3

e2
e1

e4

(b) Tree decomposition of G with width 2

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ, NÖ

ST, NÖ, BU

NÖ, WI

c2

c1

b1

b2

b3

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

WI

BU

ST

OÖ

SZ

KA

TR

NÖ

VO

e3

e2
e1

e4

(c) Tree decomposition of G with width 3

Figure 1.4: Examples of tree decompositions

There are several possible tree decompositions for a given graph. For each such tree
decomposition, we define a metric called width which is one less than the number of width

vertices in the largest bag. Finally, we define the treewidth of a graph to be the lowest treewidth

possible value of ‘width’ that can be achieved by some tree decomposition. The definition
of treewidth might seem obscure at first, but, as we will see, its applications help cement
the fact that it has all the characteristics of the fine-grained measure we were seeking.

9

1. Gentle Introduction

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

(a) Original tree decomposition

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

(b) Focusing on SZ

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

(c) Focusing on ST

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

(d) Focusing on TR

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

(e) Focusing on NÖ

KA, SZ, ST

TR, KA, SZ

TR, VO

SZ, ST, OÖ

ST, OÖ, NÖ

ST, NÖ, BU NÖ, WI

(f) Focusing on VO

Figure 1.5: Demonstrating property T2

10

1.3. Tree Decompositions

1.3.2 Example
Figure 1.4 shows two possible decompositions of the Neighborhood graph G from before.
We demonstrate that these are indeed valid tree decompositions.

In Figure 1.4b,

• the maximum number of vertices
in any bag is 3, and hence this
decomposition has width 2,

• edge e1 is contained in bag b1,

• edges e2 and e3 are contained in
bag b2,

• edge e4 is contained in bag b3.

In Figure 1.4c,

• the maximum number of vertices
in any bag is 4, and hence this
decomposition has width 3,

• edge e1 is contained in bag c1,

• edges e2, e3 and e4 are all con-
tained in bag c2.

And to demonstrate the validity of the second condition T2, we highlight the subtrees
that remain upon deletion of all the bags not containing a particular vertex in Figure 1.5.
Since this always yields connected subtrees, condition T2 is satisfied.

As further general examples, if we consider graphs with a fixed number n of vertices then

• connected acyclic graphs, i.e., trees always have a treewidth of 1,

• cycle graphs always have treewidth 2,

•
√

n × √
n grids have treewidth

√
n, and

• completely connected graphs (or cliques) have treewidth n − 1. clique

We refer to Figure 1.6 to see how these different types of graphs look and also to develop
an intuition of what it means for a graph to have high treewidth.

� Note

Roughly speaking, sparse graphs tend to have low treewidths and denser graphs
tend to have high treewidths. Using this newly acquired intuition, it should be
easy to see that removing a vertex from a graph can not increase its treewidth.

We notice how if the vertices occurring in a bag are deleted from the graph, we
are always left with two disconnected subgraphs. And the disconnectedness is
guaranteed due to property T2, which ensures that it is impossible for a vertex to
appear in both subgraphs while simultaneously being absent from the deletion set.

As an example of the disconnectedness property, in Figure 1.4b, let’s arbitrarily
pick the bag {SZ, ST, OÖ}. Deleting these vertices from the graph leaves behind
two disconnected subgraphs with vertices KÄ, TR, VO on one side and vertices
NÖ, BU, WI on the other side. It is then easy to see intuitively why dense and

11

1. Gentle Introduction

well-connected graphs would have higher treewidth in comparison to sparse and
weakly-connected graphs, since they would need larger bags (i.e., more vertices)
to be able to disconnect the original graph.

WI

BU

ST

OÖ

SZ

KA

TR

NÖ

VO

1.3.3 Relevance to Bayesian Networks
Returning to the topic of Bayesian Networks, to understand the link between tree
decompositions and Bayesian Networks, we require one more concept—treewidth of
Bayesian Networks. Since tree decompositions are only defined for undirected graphs and
Bayesian Networks are inherently directed, we define the treewidth of a Bayesian Network
in terms of its so-called moralized graph. The time required to perform inference on a
Bayesian Network heavily depends on the sizes of the probability tables at each node.
Thus, a desirable attribute in the definition of treewidth of a Bayesian Network is that

tw0

trees (tw=1)

b c

d e f g

h i

a

cycles (tw=2)

a b c d

e

fghi

grids (tw=
√

n)

a b

e

c

f g

i j k

cliques (tw=n-1)

b

c

d

f

g
h

i

j

a

1 2 3 4 5 6 7 8 9
Figure 1.6: Examples of common types of graphs (all with n = 9 vertices) along with
their respective treewidths

12

1.3. Tree Decompositions

the treewidth should be proportional to the sizes of the probability tables. Moralization
transforms the directed graph into an undirected while also embedding the sizes of the
probability tables that appear at each node as cliques. To moralize a Bayesian Network, moralization

we first convert all directed arcs (u, v) into undirected edges {u, v} and then insert edges
(called moral edges) between any two vertices that have a common successor (shown as moral edge

dashed lines in Figure 1.7b). Notice how if a node has lots of parents, the size of the
probability table at that node is also large, and accordingly there is a large clique at that
node in the moralized BN due to moral edges between each of the parents of that node.
Please see Figure 1.7 for an example of a tree decomposition of a Bayesian Network.

study income

grade

job

masters

(a) BN before moralization

study income

grade

job

masters

(b) Moralized graph of BN

study, job, grade

income, grade, masters

income, job, grade

(c) Tree decomposition of moral-
ized graph with width 2

Figure 1.7: Moralized Graph of the example BN and (one of) its tree decomposition

As we have already seen, there are two main tasks related to Bayesian Networks, learning
a Bayesian Network and performing inference on a Bayesian Network. In a typical
real-world workflow, the learning task is only performed once at the beginning, after
which the learned Bayesian Network is used to churn out predictions by performing
inferences using available partial data. For instance, consider the scenario of learning the
relation between a student’s income and their tendency to pursue masters. One needs
to learn a Bayesian Network over relevant variables from the dataset just once, after
which it can be deployed to make predictions over several students with differing incomes.
Thus, it makes sense to invest a little more time in the learning phase if it ensures better
throughput during the inference phase.

In this thesis, we disallow approximate inference solutions and only consider exact
inference solutions. Unfortunately, for a general Bayesian Network, in the worst-case,
it may take exponentially long to perform a single exact inference, thereby foiling the
standard workflow described above. This is where the treewidth of Bayesian Networks
comes in. The time required to perform inference on a Bayesian Network with n random
variables and treewidth w is proportional to 2w · poly(n), i.e., there is an exponential

13

1. Gentle Introduction

dependence on the treewidth and only polynomial dependence on the number of random
variables. The number of random variables is governed by the input and hence out of
our control. But, if we limit the treewidth of the Bayesian Networks to small values, we
can guarantee quicker inferences. We show the updated problem definition below, and in
the next chapter, we lay out the toolkit that will help us solve this problem.

Bounded Treewidth BN Learning: Given observations of a set X of random
variables, and a bound w for the treewidth, find a Bayesian Network over X with
treewidth w which is most likely to have produced the given observations.

14

CHAPTER 2
Algorithms for BNSL

Truth is much too complicated to allow anything but
approximations

— John von Neumann, “The Mathematician”

In this chapter we take a gentle look at the algorithms and techniques that pop up
frequently throughout the thesis, either as means to solve the problem at hand or as
stepping stones to build upon. Similar to the previous chapter, we cover these topics
in more technical detail in Chapter 3.

2.1 Maximum Satisfiability

This section introduces a tool called MaxSAT solver which sits at the center of the
framework we employ for solving the BNSL problem and its variants.

As is common in the field of Computer Science, it is preferable to reduce any data and
bring it into a binary form of 1 or 0, yes or no, on or off. Each bit of this data can then be
represented by a so-called Boolean variable which has 2 possible states, TRUE and FALSE. Boolean variable

Similar to operations such as addition, multiplication, and subtraction of numbers, we
can define the conjunction, disjunction, and negation operations (denoted ∧, ∨ and ¬ conjunction

disjunction
negation

respectively) for Boolean variables. p ∧ q is only TRUE if both p and q are TRUE, p ∨ q

∧, ∨, ¬is TRUE if either one of p or q (or both) are TRUE and ¬p is only TRUE if p is FALSE.

Now we can construct formulas, called propositional formulas, using Boolean variables propositional formula

and the operators defined above. For instance, to describe the days on which I go to the

15

2. Algorithms for BNSL

university, I would use the expression

(weekday ∧ ¬holiday) ∨ (saturday ∧ deadline).

Translated to plain English, this expression says that I work on weekdays when it’s not a
holiday or on Saturdays only if there’s a deadline approaching. With the right variables
and abstractions, such formulas are capable of expressing even complex conditions like
the acyclicity of a graph, or the possibility of successfully allocating the lecture rooms in
university to the courses, or if the treewidth of a graph is below a certain bound. It then
makes sense to pose questions about whether the variables in a given expression can be
assigned in a certain way such that the expression evaluates to TRUE. This problem is
called the Propositional Satisfiability (SAT) problem. Despite its innocent appearance,SAT

SAT forms a cornerstone of Theoretical Computer Science.

An expression or formula is satisfied by an assignment if setting the variables accordingsatisfied
assignment to the assignment results in the formula evaluating to TRUE. An encoding of a particular

encoding instance of a YES/NO problem is a propositional formula such that the formula is
satisfiable if and only if the answer to that instance of the problem is YES. For example,
say we have a particular graph G, and we are interested in the YES/NO question of
whether G is acyclic. Further, let F be a formula encoding this question. This means
that formula F is satisfiable if and only if G is acyclic. Note that the formula F is not a
general formula for the question but rather a tailor-made formula to test the acyclicity
for the particular graph G.

Propositional formulas formed by taking a conjunction over disjunctions, are called
Conjunctive Normal Form (CNF) formulas. Each individual disjunction is called a clause.CNF

clause An example of such a formula with five variables and four clauses is shown below

(x1 ∨ x2 ∨ x4) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (¬x2 ∨ x5).

There exist tools/software, called SAT solvers, which are capable of solving the satisfiabil-SAT solver

ity problem for CNF formulas encoding real-world problems with millions of propositional
variables and tens of millions of clauses in under 2 hours, i.e., given a CNF formula F
these tools can determine rather quickly if there exists some assignment of the variables
that results in F evaluating to TRUE. In some cases, it is very difficult to satisfy all
the clauses. Thus arose the need for the Maximum Satisfiability (MaxSAT) problem,MaxSAT

where the input consists of two types of clauses: soft clauses and hard clauses. Any validsoft clause
hard clause assignment must satisfy all the hard clauses and some subset of the soft clauses. The soft

clauses are tagged with a numerical weight (or profit). The goal is to find an assignmentclause weight

that maximizes the sum of weights (or total profit) of the satisfied soft clauses. Similar
to SAT solvers, there exist tools called MaxSAT solvers which can solve the MaxSATMaxSAT solver

problem for formulas involving millions of variables.

In our particular use case, we also make use of the timeout functionality supported byMaxSAT solver timeout

some MaxSAT solvers. For such solvers, it is possible to interrupt the solver in the middle

16

2.2. SAT-based Local Improvement Method

of the solving process and the solver spits out the best assignment it has found so far. It
is possible that this solution does not achieve the optimum profit, however, as we discover
in the next section, our framework gets much more mileage from quicker and slightly
suboptimal solutions as compared to slow yet optimum solutions.

2.2 SAT-based Local Improvement Method
In this section we describe the general framework which we use as the weapon of choice
to tackle the base BNSL problem and its variants in the forthcoming chapters. The
framework in itself does not constitute an algorithm but is rather a template to design
algorithms.

2.2.1 Introduction
Let us first take a look at the typical lifecycle of a problem (say P) in Computer Science
(shown in Figure 2.1). We first ask “Is it possible to develop an efficient algorithm to
solve P?” If the answer is yes, it is proven by coming up with an algorithm. Here,
‘efficient algorithm’ means an algorithm that runs in polynomial time in the size of it’s
input. If the answer to the question is ‘No’, we call the problem intractable. In this intractable problem

case, there are several potential follow-up directions. We discuss the two most relevant
directions. One can either develop a heuristic algorithm that is efficient but is only likely
to produce suboptimal solutions (i.e., ‘close-enough’ solutions), as opposed to optimal
solutions. Alternatively, one can express the problem in the form of a SAT/MaxSAT
encoding and then pass on the encoding to a SAT/MaxSAT solver.

Efficient Algorithm?

yes

Develop algorithm

no

Develop heuristic
algorithm

Formulate encoding

. . .

Analyze Parameterized
Complexity

Figure 2.1: Lifecycle of a problem

Both these approaches have their own pros and cons. Heuristic algorithms are usually
quite scalable, i.e., they perform reasonably well even for huge inputs, however, this scalability

comes at the expense of lower solution quality. The encoding-based approach, on the

17

2. Algorithms for BNSL

other hand, guarantees optimum solutions but usually only produces solutions for very
small instances.

The primary driving force behind the conception of the SAT-based Local Improvement
Method (SLIM) framework is to capitalize on the advantages of both these techniques whileSLIM

somewhat balancing out their drawbacks. The end product is an algorithm which retains
the scalability of the heuristic approach while still providing better quality solutions by
leveraging the encoding-based approach.

� Note

The following paragraphs aim to establish a high-level intuition about the SLIM
framework in its most general form and hence, we refrain from exemplifying the
BNSL problem. We will, however, come across concrete instantiations of the
framework for the BNSL problem and its variants in Chapters 4–6. Further, it
might be helpful to think of SLIM as a post-processing algorithm, which takes as
input the heuristic solution and polishes it to return a better solution.

The general idea is to first use the global solver (usually the heuristic algorithm) to comeglobal solver

up with a (possibly low-quality) initial solution to an input instance. Since we consider
small parts of this solution, we refer to the full solution of the original input instance as
the global solution. We then repeatedly extract small local parts (of size at most someglobal solution

budget β) from the global solution and find better solutions to these subproblems (withinbudget, β

subproblem a fixed timeout) using the local solver (usually the encoding). Then, we replace the
local solver local solution in the global solution with its improved counterpart. We demonstrate this

idea with a toy example in Figure 2.2 (walkthrough provided below). It is imperative
to take care that the improved counterpart can be patched back safely into the global
solution. The property of maintaining the validity of the global solution after replacement
is called replacement consistency. To accomplish this, one needs to ensure that the newlyreplacement consistency

improved local solution mimics the extracted local solution in terms of its interaction
with the rest of the global solution.

Throughout this thesis, we will constantly come across so-called anytime algorithms, i.e.,anytime algorithm

algorithms that don’t have a fixed termination, rather, they can keep running indefinitely,
finding better and better solutions along the way. All algorithms based on the SLIM
framework are anytime algorithms. It is preferable to use an anytime algorithm as the
global solver, as it allows for a fair and straightforward comparison of the performance of
the SLIM algorithm to the heuristic algorithm by itself. For practical use cases, usually
one decides a global timeout, i.e., a total execution time limit for anytime algorithms.global timeout

The moment this time limit is reached, the anytime algorithm returns the best solution
it found so far. Thus arise two types of timeouts, the global timeout or total time limit
and the local timeout which limits how long we run the local solver on a local subproblemlocal timeout

(internally, this typically translates to the MaxSAT solver timeout). Common values for
these timeouts in our algorithms are 30 to 60 minutes for the global timeout and 2 to 20
seconds for the local timeout.

18

2.2. SAT-based Local Improvement Method

A B

CD

SB′

SB

Global solution Local subproblem

B A

CD

SB

A

CD

SB′

Local solution New global solution

B′

isolate solve replace

solve replace

fortify

Figure 2.2: Higher-level overview of SAT-based Local Improvement Method (SLIM)

2.2.2 A Toy Example

Now, we analyze the example from Figure 2.2 in detail. In the dummy problem here, we
are given a set of points (depicted as ○) and asked to draw a continuous line through all
the points and return to the start. Additionally, we are required to minimize the length
of the resulting line.

We begin with an initial global solution provided by the global solver. From visual
inspection, one can see that there is some scope for improvement (by getting rid of the
loop in the top right). We arbitrarily partition the points into 4 quadrants A, B, C,
and D. We then select quadrant B (consisting of 3 points) as the local part and treat
this quadrant in isolation as a new subproblem. We then pass on this subproblem to
the local solver. There are several possible solutions for this subproblem. Say, we first
obtain a solution SB, which we then try to patch back into the global solution. But
this results in an invalid solution altogether because the line is no longer continuous,
i.e., replacement consistency is violated. This is because the new subproblem did not
properly capture the interaction of the old local solution with the rest of the solution,
more specifically in this case, the new subproblem is unaware of the points at which the
old local solution met the rest of the global solution. We thus come up with an alternate
fortified subproblem B′ which incorporates information about such interaction (depicted
as □ at the boundaries of the local subproblem) to ensure replacement consistency. So,

19

2. Algorithms for BNSL

any solution to the fortified instance SB′ is guaranteed to be compatible with the rest
of the global solution. Computing solutions to such fortified instances usually requires
upgrading the local solver as well, which is one of the key challenges when coming up
with a SLIM algorithm.

2.2.3 Past Work

SLIM was introduced by Lodha, Ordyniak, and Szeider [LOS16] and has been applied
to a wide range of problems [PS21c; PS22; LOS19; LOS17; FLS17; PS20; SS21; Sch22;
SS22; RSS23]. The diversity of these applications speaks volumes to the versatility and
expressiveness unlocked by the SAT-based local solver at the heart of SLIM. A CNF
formula, although seemingly simple, is very powerful at capturing and encoding the
various constraints one encounters in the problems listed above. The main challenge
in each of these papers was devising the fortified encoding so as to ensure replacement
consistency, in addition to (optionally) formulating the encoding for the basic version
of the problem. A minor remark here is that most of the past applications used SAT
encodings and plain SAT solvers while in our applications we use MaxSAT encodings
and MaxSAT solvers. At times, we construct a generalized MaxSAT encoding based on
several SAT encodings thus nullifying the need for multiple invocations of the SAT solver
in favor of a single invocation of the MaxSAT solver.

2.3 Heuristics for the BNSL Problem

In this section, we describe the algorithms which act as candidate heuristic algorithms
for computing the initial solution to the BNSL problem (detailed in Chapter 4). Since
we modify and extend these algorithms in Chapters 5 and 6, a good understanding of
the brass tacks is helpful.

For the original discourse on these algorithms along with the empirical findings, we
refer to the papers by Scanagatta et al. [Sca+16; Sca+18].

2.3.1 k-tree Construction

Both the heuristic algorithms rely on a common subroutine to ensure that the resulting
Bayesian Networks respect a given treewidth bound. A subtle point worth noting here
is that we are not concerned with computing a tree decomposition or calculating the
treewidth of a given graph, instead, we are given a treewidth bound k and are tasked with
constructing a graph whose treewidth (or constructing a BN whose moralized graph’s
treewidth) is guaranteed to be at most k by design. This is achieved by constructing the
graph sequentially such that at each step the partially constructed graph is a subgraph
of a k-tree. A k-tree is an edge-maximal graph of treewidth k, i.e., the addition of anyk-tree

edge to the graph would increase the treewidth of the graph [Sca+18]. k-trees are useful

20

2.3. Heuristics for the BNSL Problem

to us in this scenario because any subgraph of a k-tree has treewidth at most k1, and
a k-tree on n vertices can be easily ‘grown’ into a k-tree on n + 1 vertices. To grow a
k-tree, we pick a clique of size at most k from the original k-tree and add the new vertex growing k-trees

as being adjacent to all the vertices from this clique.

2.3.2 k-greedy Algorithm
We now explain the k-greedy algorithm [Sca+16] which greedily constructs a structure
with treewidth at most k for the BN over random variable set X. We start by sampling
a random ordering σ over all the random variables. Intuitively, this random ordering acts
as the topological ordering of the resulting DAG (and also as the elimination ordering
of its moralized graph). Recall that we also have access to a score function f , which
we use implicitly when we say ‘the best DAG’. Since any graph with k + 1 vertices has
treewidth at most k, we pick the first k + 1 vertices from σ and construct the best DAG
possible on these vertices (either approximately or exactly). Notice that this is a valid
k-tree. After this, we insert the remaining vertices from σ one by one into the DAG.
To insert a variable Xi, we grow the k-tree by (greedily) picking as parent set of Xi, a
clique C ⊆ X \ {Xi} of size at most k such that f(Xi, C) is maximized among all such
cliques. Once all variables have been inserted, we check the score of the final BN and
compare it with the current best BN, replacing if the score of the newly constructed BN
is higher. This is an anytime algorithm. We then keep repeating the same procedure,
from a newly sampled random ordering each time, until we run out of time, i.e., reach
the global timeout, upon which we return the best recorded BN encountered so far.

k-greedy was proposed by Scanagatta et al. [Sca+16] and was the state-of-the-art algo-
rithm for the heuristic BNSL problem at the time of its introduction. k-greedy scales
quite well to huge BNs with as many as 10,000 random variables. This performance is due
to the fact that the crux of the algorithm is an extremely quick greedy procedure. But,
relying on this alone would severely affect the quality of the resulting BNs. However, this
is addressed by the random sampling of the linear orderings. The efficiency of the greedy
procedure allows the algorithm to comb through a huge number of random orderings.
This dual combination improves the likelihood that the algorithm stumbles upon a ‘lucky’
ordering which yields an almost-optimum BN. An informal analogy would be that of
putting a million monkeys to work, each handed a different random ordering and tasked
with the simple job of constructing a BN from the random ordering.

2.3.3 k-MAX Algorithm
A couple of years later, Scanagatta et al. [Sca+18] proposed a newer, slightly smarter
algorithm, which dethroned k-greedy as the state-of-the-art. The new algorithm, called
k-MAX, uses less randomization and more informed guessing to decide the order in
which to insert the vertices. It still uses the same tactic of picking the clique which
maximizes f(Xi, C) among all cliques. But, instead of randomly sampling a linear

1using the fact that removing a vertex cannot increase the treewidth of a graph

21

2. Algorithms for BNSL

ordering at the outset, it only relies on randomization to pick a handful of variables.
First, it builds a set of k + 1 variables by randomly picking some variables and including
all the other variables that could potentially be parents of these variables into this set
as well. After this, it uses an estimate m(Xi) to guess the potential increase in score
if variable Xi is inserted next. Then it picks the remaining variables one by one, in
decreasing order of m(Xi), i.e., most promising variable first. In this way, it uses a
cleverer estimate to decide the variable insertion order instead of working through a
random yet pre-determined ordering that is completely agnostic of the input instance.
The rest of the algorithm is identical to k-greedy, we repeat the previous step, keeping
track of the best scoring BN encountered so far, until we reach the global time limit.
k-MAX is also an anytime algorithm.

We conclude the description of the potential tools at our disposal to attack the BNSL
problem. In the next section, we discuss how we solved the BNSL problem and its
variants.

2.4 Solving the BNSL Problem
Our approach to solve the BNSL problem builds on top the SLIM framework. In order
to obtain an algorithm from this framework, we need two ingredients: the global solver
and the local solver, and then combine them together in a clever way, which is where the
real difficulty lies. We use state-of-the-art k-greedy and k-MAX algorithms as our global
solvers. We also have access to a MaxSAT encoding for the BNSL problem which is
similar to the encoding by Berg, Järvisalo, and Malone [BJM14]. However, this encoding
needs to be fortified before it can function as a local solver. Recall that the solution to
the BNSL problem is a DAG. In order to fortify the encoding, we need to understand
and capture the interaction of the local solution DAG with the remaining of the global
solution DAG, to ensure replacement consistency.

This interaction comes in two forms. Firstly, once we replace a local solution with an
improved solution, the final DAG must still remain a Directed Acyclic Graph, i.e., the
local subproblem must capture acyclicity. The second requirement is that the treewidth
of the DAG after replacement still respects the required treewidth bound. To satisfy
this requirement, it is sufficient to ensure that we can combine the tree decomposition of
the local solution with the tree decomposition of the remaining DAG. Thus, the local
subproblem must also capture the compatibility criterion between the local and global
tree decompositions. We thus fortify the original MaxSAT encoding as follows:

• incorporate information about possible ways to form cycles thereby violating the
acyclicity requirement,

• pass on information about the bags in the overlapping zone between the local
solution and the global solution, so that the local solver can ensure compatibility
with them.

22

2.4. Solving the BNSL Problem

Once we have a global and local solver, we can plug them into the SLIM framework to
obtain an algorithm to solve BNSL. We call this algorithm BN-SLIM. We then perform
experiments and show that BN-SLIM outperforms k-greedy and k-MAX and can compute
higher scoring BNs in the same amount of time.

After that, we looked at two variants of the base BNSL problem. In the first one instead
of limiting the treewidth, i.e., the maximum number of variables in a bag, we limit the
maximum product of domain sizes of the variables contained in a bag. This measure
is more closely related to the inference time than treewidth. In the second variant,
we consider Bounded Treewidth BNs which also respect additional externally provided
constraints such as ancestries or adjacencies.

We address these variants of the BNSL problem in a similar manner. Since k-greedy and
k-MAX are relatively simple algorithms, we upgrade them such that they can handle
the BNSL variant. After that, we fortify the MaxSAT encoding from Berg, Järvisalo,
and Malone [BJM14] tailoring the encodings to the conditions of required variant. The
expressive power of MaxSAT comes in handy for this purpose. Once we have a global
solver and a local solver for the variants of BNSL, we can once again plug them into the
framework to obtain algorithms to solve the variants. For these variants as well, we show
empirically that the SLIM algorithm yields better results.

23

CHAPTER 3
Technical Preliminaries

The fact that all Mathematics is Symbolic Logic is one of
the greatest discoveries of our age.

— Bertrand Russell, “The Principles of Mathematics”

In this chapter, we go through the basic concepts and definitions from Chapters 1
and 2 again but with a rigorous demeanor and in a more formal tone. Consequently,
this chapter is chock-full of symbols, notation, and terminology and is meant to serve
as a reference guide for the more technical sections of the thesis. We end this chapter
with the formal definition of the base version of the core problem of this thesis.

3.1 Theoretical Background
3.1.1 Graph Theory

Although, we cover most of the required notation and concepts in this chapter, for a
more comprehensive introduction to Graph Theory, we refer the reader to the book by
Diestel [Die00]. Additionally, for the theory on directed graphs, we refer to the initial
chapters of the book by Harary, Norman, and Cartwright [HNC65]

A graph G = (V, E) is a tuple where V is the set of vertices or nodes and E is the set vertex, node

of edges. We also use the notation V (G) and E(G) to refer to the set of vertices and edge
V (G), E(G)set of edge of a graph G respectively. The edges may either be undirected (represented
undirected edgeby an unordered tuple or a set) or directed (represented by an ordered tuple). We
directed edgeonly deal with graphs in which either all the edges are undirected (called undirected

graphs) or all the edges are directed (called directed graphs). We use the shorthand undirected graph
directed graph

25

3. Notation and Background

edge for undirected edges and arc for directed edges. An edge between nodes u and v
edge, arc is mathematically represented as an unordered pair {u, v} in an undirected graph and

as an ordered pair (u, v) in a directed graph. A graph over a set S is a graph G suchgraph over a set

that V (G) = S. Edge {u, v} or arc (u, v) is incident on both u and v. A subgraph ofincident

graph G is a graph obtained by deleting some vertices and edges from G, where deleting a
vertex implies the deletion of all the edges incident on that vertex. G[S] is the subgraphG[S]

of G obtained by deleting vertices V (G) \ S.

In an undirected graph, a vertex v is said to be a neighbor of (or adjacent to) anotherneighbor
adjacent vertex u if there exists an edge {u, v} ∈ E. We denote by N(u) = { v ∈ V : {u, v} ∈ E }

the neighborhood of u, and |N(u)| is the degree of u. Similarly, in a directed graph,N(·), neighborhood
degree for every arc (u, v), v is a successor of u and u is a predecessor of v. The number of

successor
predecessor successors and predecessors of a vertex are called in-degree and out-degree respectively.

in-degree
out-degree

In an undirected graph G, a path is a sequence v0, . . . , vℓ such that {vi, vi+1} ∈ E(G) for

path
all 0 ≤ i < ℓ and ℓ is the length of the path. In a directed graph D, a path is similar except

path length
that (vi, vi+1) ∈ E(D) instead. Analogous to the concept of successors and predecessors,
if there exists a path from u to v, u is an ancestor of v and v is a descendant of u.ancestor

descendant A simple path is one in which all vi are distinct, and in this thesis, we only deal with
simple path simple paths. A cycle is a path with ℓ ≥ 2 (or ℓ ≥ 3 for undirected graphs), v0 = vℓ

cycle and vi ̸= vj for all other combinations of i and j. An acyclic graph is a graph devoid
acyclic graph of cycles. Combining these concepts, we arrive at the oft-encountered and aptly named

Directed Acyclic Graphs (DAGs). Lastly, a graph is connected if there exists a path fromDAG
connected graph any vertex of the graph to any other vertex of the graph.

Some common graph structures that we refer to are listed below:

• trees are connected acyclic graphstree

• cycles are simple paths with coincident endpoints (mentioned above)

• cliques are fully connected graphs G such that E(G) = { {u, v} ⊆ V (G) : u ̸= v }clique

• stars are graphs G = (V, E) where V = {v1, . . . , vn} and E = { {v1, vj} : 1 < j ≤ n }star

3.1.2 Bayesian Network Structure Learning
A random variable (RV) X is a variable that takes values from a pre-defined do-RV

random variable main dom(X) with some probability. We only work with categorical RVs, which are
domain, dom(·)
categorical RV RVs having a countably finite domain. A Bayesian Network (BN) consists of a DAG

BN over n categorical RVs, together with local parameters, i.e., Conditional Probability
Distribution (CPD) tables, one for each node. The DAG by itself is called the structureCPD

structure of the BN and all the CPD tables collectively are called parameters of the BN. Bayesian
parameters

Networks were introduced by Pearl in 1985 and later formalized by Pearl [Pea88] and
Neapolitan and Jiang [NJ07]. Please see Figure 3.1 for an example BN showing both the
structure and the parameters.

The problem of learning a BN is divided into two tasks, structure learning, i.e, learningstructure learning

26

3.1. Theoretical Background

study income

grade

job

masters

study

more less
0.7 0.3

income

high low
0.5 0.5

job

income yes no
high 0.2 0.8
low 0.7 0.3

masters

income grade yes no

high good 0.9 0.1
low good 0.4 0.6
high ok 0.5 0.5
low ok 0.3 0.7
high bad 0.2 0.8
low bad 0.1 0.9

grade

study job good ok bad
more yes 0.4 0.3 0.3
more no 0.6 0.3 0.1
less yes 0.1 0.2 0.7
less no 0.2 0.3 0.5

Figure 3.1: Example of a Bayesian Network (BN)

just the DAG and parameter learning, i.e., learning the parameters for a given DAG. We parameter learning

are interested in the Bayesian Network Structure Learning (BNSL) problem of learning BNSL

the structure of a BN from a data set of N instances D1, . . . , DN over a set of n categorical
RVs X1, . . . , Xn, with no missing entries. An instance refers to an observation or an instance

instantiation of the complete set of RVs. For example, in Figure 3.1, an instance could be

D1 = {Xs = more, Xi = low, Xj = no, Xg = good, Xm = yes}

which says

study = more,income = low,job = no,grade = good,masters = yes.

Since only the structure by itself without the parameters does not completely specify a
BN, we make use of a scoring function as a proxy to determine how well a DAG D fits
the data. In other words, the score gives an estimate of how close the computed BN is to
the BN underlying the input instances. Thus, the goal is to find a BN which maximizes
the score. This problem was shown to be NP-hard by Chickering [Chi96] even when the
maximum in-degree for each variable is bounded [CHM04].

We assume that the score is decomposable, i.e., the score for the entire BN is the sum decomposable score func-
tionof scores for the individual RVs. Hence, we can assume that the score is given in terms

27

3. Notation and Background

of a score function f that assigns each node v ∈ V and each subset P ⊆ V \ {v} a realscore function

number f(v, P), the score of P for v. The score of the entire DAG D = (V, E) is thenf(·, ·)
f(D) :=

v∈V f(v, PD(v)) where PD(v) = { u ∈ V : (u, v) ∈ E } denotes the parent setparent set

of v in D and each u ∈ PD(V) is a parent of v (here we overload the score function f).parent

This setting accommodates several popular scores like AIC, BDeu, and BIC [Aka74;
HGC95; Sch78]. Because there is a one to one correspondence between the RVs and
the nodes or vertices in the DAG, we refer to them interchangeably. If P and P ′ are
two potential parent sets of an RV v such that P ⊊ P ′ and f(v, P ′) ≤ f(v, P), then we
can safely disregard the potential parent set P ′ of v. Consequently, we can disregard all
nonempty potential parent sets of v with a score of at most f(v, ∅). Such a restricted
score function is a score function cache.score function cache

Once we have learned a network, we can use it to predict the probabilities of some
sets of variables give observations of some other variables. This task is called inferenceinference

or reasoning. A series of works showed that even approximate inference on BNs, isreasoning

#P-complete in general [Rot96; DL93; Coo90] and requires supposedly exponential time.
However, if we impose some restrictions on the structure of the BN, we can perform
inference in polynomial time. To understand this restriction, we first need to take a look
at the concept of tree decompositions.

3.1.3 Tree Decompositions
A tree decomposition T of an undirected graph G is a pair (T, χ), where T is a tree andtree decomposition

χ is a function that assigns to each tree node t, a set χ(t) of vertices of G such that the
following conditions hold:

T1 For every edge e of G there is a tree node t such that e ⊆ χ(t).

T2 For every vertex v of G, the set of tree nodes t with v ∈ χ(t) induces a subtree of T .

The sets χ(t) are called bags of the decomposition T , and χ(t) is the bag associated withbag

the tree node t. The width of a tree decomposition (T, χ) is the size of a largest bag minus 1.width

The treewidth of G, denoted by tw(G), is the minimum width over all tree decompositionstreewidth

of G. Computing the treewidth of a graph is known to be NP-hard [ACP87].

An alternate way of characterizing tree decompositions is with elimination orderings. An
elimination ordering σ for a graph G is a total ordering of all the vertices V (G). Givenelimination ordering

an elimination ordering σ, we can construct a corresponding tree decomposition whose
width can be computed as follows. We iterate through the vertices as per the ordering σ
and for each vertex u perform the following steps,

1. for v, w ∈ V (G), insert a fill-in edge {v, w} if both v and w are adjacent to u (eitherfill-in edge

by normal edges or previously filled-in edges),

2. record the degree du of u and then delete vertex u.

28

3.2. Algorithmic Background

After going through all the vertices, maxu∈V (G) du yields the width of the corresponding
decomposition. Lastly, it can be shown that for every tree decomposition there exists an
elimination ordering which yields a decomposition of the same width. Thus, we often
work with elimination orderings in lieu of tree decompositions.

Another relevant concept is that of k-trees, which we encounter when dealing with
heuristic algorithms tasked with constructing bounded treewidth graphs. A k-tree is k-tree

an edge-maximal graph of treewidth k. k-trees are constructively defined as follows. A
clique on k + 1 vertices is a k-tree. Let C be a k-clique in a k-tree, inserting a new
vertex adjacent to all the other vertices of C yields a new k-tree (called growing a k-tree). growing k-trees

Naturally, any subgraph of a k-tree also has treewidth at most k.

Finally, returning to BNs, the treewidth of a BN is defined via its moral graph. The
moralized graph of BN B (written as M(B)) is obtained by converting all directed moralization

M(·)arcs (u, v) into undirected edges {u, v} and then inserting so-called moral edges {v, w}
moral edgebetween any two variables v, w if both v, w ∈ PD(u) for some u. Kwisthout, Bodlaender,

and Gaag [KBG10] showed that bounding the treewidth of BNs is a necessary condition
to ensure polynomial time inference. Given a BN on n variables with treewidth w, we
can perform exact inference in time O(2wpoly(n)). Thus, we arrive at the problem of
interest:

Bounded Treewidth Bayesian Network Structure Learning

Input: A set X of random variables, a score function cache f , an integer k.

Question: Find a DAG D over X with treewidth at most k such that f(D) is
maximized.

Solving Bounded Treewidth BNSL exactly was proven to be NP-hard by Korhonen and
Parviainen [KP13]. Hence, we divert our attention to heuristic algorithms that provide
approximate solutions but are still practical for large inputs with thousands of RVs. Some
of these design choices are based on the typical workflow when working with BNs. One
usually learns a BN only once at the beginning and then uses that learned BN to make
several predictions or inferences. Hence, we set the accuracy of the inferences as the
primary priority and the time required to learn the BN as only secondary.

3.2 Algorithmic Background
3.2.1 Maximum Satisfiability
The Propositional Satisfiability (SAT) problem forms a cornerstone of Computer Science, SAT

proving to be a reliable anchor for the theory of Computational Hardness. However, the
hardness of the satisfiability problem itself was not sufficient to discourage research in the
direction of finding practical solutions. In the SAT problem, we are given a propositional
formula involving a set X of n Boolean variables and conjunction, disjunction and propositional formula

conjunction
disjunction

negation operations (denoted ∧, ∨ and ¬ respectively). For convenience, we also define
negation
∧, ∨, ¬, −→29

3. Notation and Background

p −→ q to be equivalent to (¬p)∨q. Given an assignment of the variables, i.e., a mappingassignment

X → {TRUE,FALSE}, one can evaluate the formula to obtain the truth value of the
formula for that assignment as either a TRUE or a FALSE. The goal is then to find an
assignment of the variables such that the given formula evaluates to TRUE. A formula is
satisfiable if there exists such an assignment and unsatisfiable otherwise.satisfiable

unsatisfiable
A propositional formula is in Conjunctive Normal Form (CNF) if it consists of a con-CNF
junction over disjunctions. Each disjunction is called a clause and consists of variables orclause

negated variables (called literals). We represent a clause as a set of literals. A clause Cliteral

is satisfied by an assignment τ , if τ(x) = TRUE for some x ∈ C or if τ(x) = FALSE forsatisfied

some ¬x ∈ C. The CNF-SAT problem, similar to SAT, asks to find an assignment of
variables that satisfies the given CNF formula, i.e., satisfies all the clauses. Even though
CNF formulas seem restrictive, they are expressive enough to capture conditions such as
bounded treewidth, acyclicity, bounded state space size and more. An encoding of anencoding

instance of a decision problem, is a CNF formula such that, the instance of the decision
problem is YES-instance if and only if the formula is satisfiable.

Despite the CNF-SAT problem being exactly as hard as the SAT problem, there has
been considerable research in trying to develop software to solve it. This lead to the
development of SAT solvers which can solve CNF formula involving millions of variablesSAT solver

and tens of millions of clauses in under 2 hours. These solvers can determine whether the
given formula is satisfiable or unsatisfiable, and return a satisfying assignment as proof of
satisfiability. In our case, we make use of a generalization of the CNF-SAT problem called
Maximum Satisfiability (MaxSAT), where the input consists of hard clauses and weightedMaxSAT

hard clause
clause weight

soft clauses. The solution must satisfy all the hard clauses and maximize the weight of
soft clause the satisfied soft clauses. MaxSAT solvers, similar to SAT solvers, are tools that can

MaxSAT solver solve MaxSAT for formulas involving millions of variables and tens of millions of clauses.
Many MaxSAT solvers also support a timeout functionality through which it is possibleMaxSAT solver timeout

to interrupt the solver at any point in time and the solver returns the best (possibly
suboptimal) solution found so far. Such an algorithm is called an anytime algorithm, i.e.,anytime algorithm

an algorithm which can be interrupted at any point of time, and the algorithm spits out
the current best solution.

3.2.2 SAT-based Local Improvement Method
The SAT-based Local Improvement Method (SLIM) framework was introduced by Lodha,SLIM

Ordyniak, and Szeider [LOS16] and has since been successfully applied to several diverse
problems such as

• computing width measures for graphs like

– treewidth [FLS17; PS21c; PS22],
– branchwidth [LOS16; LOS17; LOS19], and
– treedepth [PS20];

30

3.2. Algorithmic Background

• inducing low-complexity decision trees [SS21];

• graph coloring [Sch22; SS22]; and

• circuit minimization [RSS23].

For any intractable problem (NP-hard or harder), the framework allows us to develop a intractable problem

scalable heuristic algorithm using an existing heuristic algorithm and an encoding for the
problem. The framework leverages the scalability of the existing heuristic algorithm (i.e., scalability

the algorithm works reasonably well even for large inputs), as well as the optimality of
the encoding to keep finding improvements even when other heuristics are unable to do
so. We often use the shorthand heuristic to refer to heuristic algorithms, i.e., algorithms heuristic

that do not guarantee their solution’s optimality. This is not to be confused with the
notion of heuristic as a static function that maps its inputs to a numeric range.

The key idea behind the framework is to start from an initial heuristic solution S (called
the global solution) provided by the global solver (usually the existing heuristic). We global solution

global solverthen repeatedly extract from S, improve and patch back into S small local parts using
the local solver (usually a MaxSAT solver applied to the encoding). For practicality, we local solver

enforce that each extracted local part has size at most some budget β and also that the budget, β

local solver respects a local timeout. local timeout

It is important that the local solver takes into account the interaction of the local solution
with the rest of the solution. The local solver must ensure that replacing the old local
solution in S with the newly improved local solution does not invalidate S. This property
of maintaining the validity of the global solution is called replacement consistency. Any replacement consistency

existing encodings of the problem are highly unlikely to respect replacement consistency
and hence this entails the fortification of the existing encoding by incorporating additional fortification

constraints which capture said interaction of the local solution with the rest of the global
solution. For example, suppose acyclicity is a required condition for the solution. We
know that, at the beginning, the initial heuristic solution is acyclic, and during one
iteration of the SLIM algorithm, the solution to the local subproblem computed by
the local solver is also acyclic. However, this does not guarantee that after replacing
the local solution with the new acyclic local solution, the global solution still remains
acyclic. So, we need to supply some additional constraints to the local solver (through the
fortifications of the encoding) such that any new local solution which might have caused
a cycle upon replacement, is already ruled out by the local solver. The pseudocode of a
generic SLIM-based algorithm is shown in Algorithm 3.1. We refer to Figure 2.2 for a
demonstration of applying SLIM to a toy example.

The SLIM framework by itself is quite modular and agnostic to the choice of the local and
global solvers. However, it is quite typical for there to already exist a heuristic algorithm
which we can use as the global solver and an encoding which we can fortify and then
use as the local solver. The main challenge in developing a SLIM-based algorithm is
thus coming up with the right fortifications. It sometimes involves adapting an existing
encoding to work for a generalized version of the original problem. Another minor

31

3. Notation and Background

Algorithm 3.1: Pseudocode of a generic SLIM-based algorithm for problem P
Assume : We have access to a global solver G for P and a local solver L for the

fortified version of P
Input : Instance I of problem P, budget β, global timeout T , local timeout τ
Output : Solution S to instance I

begin
1 S ←− G(I) // initialize S with heuristic solution
2 repeat
3 Extract local solution J of size at most β
4 Construct fortified subproblem J ′ from J
5 S′ ←− L(J ′) using time at most τ
6 Update S by replacing J with S′

7 until time T not exceeded
8 return S

9 end

technicality arising out of practical considerations is the global timeout which is theglobal timeout

total time limit we set for the learning phase. It is preferable if the algorithms we work
with are anytime algorithms, this allows for fair and straightforward comparison of their
performances. The SLIM-based algorithm by itself is also an anytime algorithm, as it
can keep on running the inner loop until it gets interrupted, which is when it returns S
as the final (possibly suboptimal) solution.

We would like to highlight one specific application of SLIM, computing treedepth [PS20],
and provide a quick overview.1 The treedepth of a graph is defined by means of the
treedepth decomposition, which is a tree T with vertex set same as the original graph and
a designated root. There is one additional condition: for any two vertices sharing an edge
in the original graph, one must be an ancestor the other in the decomposition tree T . The
depth of a decomposition is the length of the longest root to leaf path and the treedepthtreedepth

of a graph is the minimum possible depth over all possible treedepth decompositions.
Please see Figure 3.2 for a classic example of a treedepth decomposition of a path graph.
For convenience, we have drawn the implied ancestor-descendant relations as dashed
lines.

In order to tackle this problem using SLIM, we start off with a naive DFS heuristic for
the initial treedepth decomposition and then try to improve the depth of small local
subtrees using a fortified version of the encoding first proposed by Ganian et al. [Gan+19].
Once a local subtree has been processed (either improved or unaltered), we contract it to
a single node and move upwards in the global solution, making our way to the root of

1Due to being topically disjoint from the core problem of this thesis, this paper is added as an
appendix. This problem was among the ones investigated by the author during the course of their
doctoral studies and resulted in a publication [PS20].

32

3.2. Algorithmic Background

1 2 3 4 5 6 7
4

2 6

1 3 5 7

Figure 3.2: Path graph P7 on the left and its treedepth decomposition (of depth 3) on
the right. The dashed lines show the ancestry relations.

the global solution. Upon reaching the root, we reinflate all the contractions sequentially
to complete one pass and obtain a new global solution with depth at most as much as
the previous global solution. We perform as many passes as time permits and in the end
return the current global solution as the final solution. In order to ensure replacement
consistency, we formulate a generalization of the treedepth problem and also develop
an encoding for the same. This generalization allows for depth labels on vertices and
additional ancestry constraints. Surprisingly, the SLIM approach was able to find a
treedepth decomposition of same width significantly faster compared to encoding the
entire problem as a single monolithic SAT encoding.

3.2.3 Heuristics for BNSL
As we saw in the previous section, we need two main ingredients to develop a SLIM-based
algorithm. One of which is a heuristic algorithm used to provide the initial solution. At
the start of the PhD term, the k-MAX algorithm by Scanagatta et al. [Sca+18] was the
state-of-the-art heuristic algorithm for solving the BNSL problem for huge networks with
thousands of RVs. Additionally, it was also an anytime algorithm, making it the perfect
candidate heuristic for a SLIM-based approach. The k-MAX algorithm was a successor
to the formerly state-of-the-art k-greedy algorithm also by Scanagatta et al. [Sca+16].
Since these two algorithms are quite similar, we start with a description of the k-greedy
algorithm for the sake of simplicity.

The k-greedy algorithm for Bounded Treewidth BNSL works by repeatedly sampling an
ordering over the RVs and then constructing a DAG based on this ordering. The ordering
acts as a topological ordering of the resulting DAG and also as an elimination ordering
corresponding to a tree decomposition respecting the width bound. Given a randomly
sampled ordering σ, the algorithm iteratively inserts RVs one by one, according to σ,
greedily fixing the parent sets of each RV as they are inserted (hence the name k-greedy).
To ensure that the DAG has bounded treewidth, the algorithm maintains that the partial
graph constructed so far is always a subgraph of a k-tree. We refer to Algorithm 3.2
for a pseudocode of the k-greedy algorithm. We denote the partially constructed DAG
consisting of the first i variables from σ as Di. A parent set P is feasible if the variables feasible parent set

in P occur as a clique or a subgraph of a clique in the moral graph of Di.

The k-MAX algorithm was proposed shortly after and outperformed k-greedy to become
the new state-of-the-art algorithm for Bounded Treewidth BNSL. It functions similarly,

33

3. Notation and Background

Algorithm 3.2: Pseudocode of k-greedy [Sca+16]
Input : Set of n Random Variables X, score function cache f
Output : DAG D such that f(D) is maximized

1 begin
2 D′ ← empty DAG // stores the best DAG found so far
3 repeat
4 Sample a random order σ over X
5 i ← k
6 Find best scoring DAG Dk+1 over the first k + 1 variables from X
7 while i ≤ n do
8 Xi ← σ[i] // ith variable as per σ
9 Let P be a feasible parent set such that f(P, Xi) is maximized

10 Insert Xi as child of P into Di to obtain Di+1
11 i ← i + 1
12 end
13 if f(Dn) > f(D′) then
14 D′ ← Dn

15 end
16 until global timeout reached
17 return D′

18 end

except that it picks the vertex insertion ordering smartly on the fly based on how promising
a vertex is. The algorithm estimates the promise of a vertex based on potentially how
much that vertex can contribute to the total score. The estimate is based on a heuristic
score m(Xi) which compares in each iteration, for each remaining variable Xi, the bestm(·)
possible score from a feasible parent set against the best possible score from the parent set
cache (with the lowest possible cached score as the baseline). The variables for which this
gap is huge are deferred to be inserted later in the hopes that more parent sets become
feasible later, consequently reducing the gap. To obtain the pseudocode of k-MAX from
Algorithm 3.2, we

• delete Line 4,

• change Line 6 to build the initial DAG by randomly picking some vertices and
filling in the rest with their respective candidate parents, and,

• replace Line 8 with Xi ← argmaxx∈X m(x).

One of the key reasons for the success of these heuristics is the sheer amount of potential
DAGs Dn that they process. For example, for an input with 500 variables, these algorithms
go through tens of thousands of candidate DAGs, returning the highest scoring DAG

34

3.3. Overview of Results

among them in the end. At the beginning of the algorithm, new DAGs are constantly
replacing previous lower-scoring DAGs, at the rate of thousands of DAGs every minute.
However, as time goes on, this rate slows down as the newer candidate DAGs need to
work harder to replace the current best. We use this characteristic to our advantage
by applying SLIM to a DAG found after the rate has slowed down, and SLIM is able
to squeeze out improvements (due to the MaxSAT solver) even from supposedly good
DAGs.

3.3 Overview of Results
During the course of the doctoral studies, we primarily focused on applying the SLIM
framework to different problems, starting with treedepth (discussed in the previous
section) before moving onto BNSL. In this section, we present the brief overviews of
the contributions of the works compiled in this thesis. The reader may use the Expert
Index at the end of the thesis for quickly tracking down definitions.

Bounded Treewidth BNSL (detailed in Chapter 4)

Bounded Treewidth Bayesian Network Structure Learning

Input: A set X of random variables, a score function cache f , an integer k.

Question: Find a DAG D over X with treewidth at most k such that f(D) is
maximized.

In this work we look at the Bounded Treewidth BNSL problem shown above and develop
the BN-SLIM algorithm for it, which also acts as the base version of the algorithm for the
other problems we considered. The algorithm starts off with an initial solution provided
by k-MAX [Sca+18]. This solution consists of a BN along with a corresponding tree
decomposition. We then randomly pick a bag in the tree decomposition and perform a
BFS from this starting bag, slowly expanding our selection until the budget is exceeded.
At this point, the union of all the bags, gives us the set of RVs that form our local part S.

We now need to use our local solver to find an improved local solution for the selected
local part. To this end, we first construct an encoding for the BNSL problem by building
on top of the SAT encoding for bounding the treewidth of graphs [SV09] and apply it to
the moralized graph. We then add decision variables parP

v that select for each RV v, a
parent set P from the score function cache. We then lift the SAT encoding to a MaxSAT
encoding by adding unit soft clauses parP

v , weighted by the score f(v, P). Finally, we
express the edges of the moralized graph in terms of these decision variables. We now have
a MaxSAT encoding for the Bounded Treewidth BNSL problem, however this encoding is
completely agnostic of the global solution and is not guaranteed to respect replacement
consistency. This was the main challenge that we overcame to develop the BN-SLIM
algorithm.

35

3. Notation and Background

To ensure replacement consistency, we first focus on acyclicity. We only need to worry
about cycles that pass through both the local solution and the rest of the global solution,
to ensure that the global solution remains acyclic upon replacement. To disallow such
cycles, we add an arc (w, u) to the local subproblem wherever there exists a path
u, v1, . . . , vℓ, w, where ℓ ≥ 1, u, v ∈ S, and vi /∈ S for all 1 ≤ i ≤ ℓ. We then consider the
validity of the tree decomposition. For each bag B in the local part which intersects some
bag B′ not in the local part, we implant a so-called marker clique [FLS17] on the set of
variables B ∩ B′ in the moralized graph of the local part. This ensures that there always
exists a bag containing B ∩ B′ in the tree decomposition of the local part. This bag can
then be joined to B′ upon replacement, thus maintaining a valid tree decomposition.

We implemented this algorithm and empirically showed that BN-SLIM performs better
than running k-MAX alone for the same duration.

� Published as “Turbocharging Treewidth-Bounded Bayesian Network Structure Learn-
ing”. Peruvemba Ramaswamy and Szeider. In: Proceedings of the AAAI Conference
on Artificial Intelligence, (May 2021) [PS21c]

Bounded State Space BNSL (detailed in Chapter 5)
To ensure polynomial time inference, bounding the treewidth of the BN is a very popular
technique in the field of BN learning. The motivating question for our work was “is
treewidth the best estimate of inference time or does there exist a better measure?”
Inference time depends on the maximum over all bags of the number of rows in the
CPD table, a measure called the state space size which has been considered by various
authors [Kas+11; Kjæ92; MJ96; OD08b; OD08a]. The state space size corresponding to
a bag B is �

X∈B ds(X), where ds(X) denotes the domain size or the number of states
that an RV X can take. When dealing with binary RVs, the state space size is simply
O(2|B|) = O(2k) where k is the treewidth. However, when using treewidth as a proxy
for the inference time, the accuracy deteriorates as the variance in the domain sizes
of the variables grows. Thus, when working with non-binary variables, it is more apt
to bound the state space size of the learned BNs rather than bounding the treewidth.
We corroborate this fact with practical evidence showing that state space size has a
significantly stronger correlation with the inference time.

Bounded State Space Bayesian Network Structure Learning

Input: A set X of random variables, a score function cache f , an integer k.

Question: Find a DAG D over X with maximum state space size at most k such
that f(D) is maximized.

We formulate the Bounded State Space BNSL problem as shown above and develop a
SLIM approach to solve it. We build on top of BN-SLIM and replace the unary cardinality
counter which bounds the treewidth in the encoding with a novel BDD-based counter

36

3.3. Overview of Results

which bounds the state space size. This new BDD counter keeps track of the sum of
logarithms of the domain size to keep the product of domain sizes under check. To
supplement that, we also modified k-MAX [Sca+16] such that its search is restricted to
bounded state space structures. Previous work focused on computing a decomposition
that minimizes the state space size for a given structure rather than learning a bounded
state space structure from outset. Combining the modified version of k-MAX and the
improved encoding using the SLIM approach, we propose the first Bounded State Space
BNSL algorithm and provide a scalable implementation. We perform experimental
evaluations and highlight the benefits of bounding state space size in place of treewidth.

� Published as “Learning Fast-Inference Bayesian Networks”. Peruvemba Ramaswamy
and Szeider. In: Advances in Neural Information Processing Systems, (2021) [PS21b]

BNSL with Expert Constraints (detailed in Chapter 6)
Lastly, we move our focus to the increasingly popular area of Causality. BNs are
inherently correlational structures, an arc from variable u to variable v merely indicates
that the two variables are correlated and does not mean that u has a causal effect on v.
This justifies the research direction of learning BNs in the presence of additional causal
constraints. Since such constraints are typically sourced from an expert, we call them
expert constraints. Such constraints can either be in the form of arc constraints which
indicate direct causation or ancestry constraints which indicate indirect causation. Direct
causation between two variables u and v can either be disallowed u →/ v, forced u → v,
or, forced ambivalently u ↔ v. Indirect causation between two variables u and v can
either be forced u ⇝ v (i.e., there must exist a path from u to v) or disallowed u ⇝/ v
(i.e., there cannot exist a path from u to v).

In our investigation of learning BNs with expert constraints, we further restrict ourselves
to learning bounded treewidth BNs in a scalable manner. Several versions of this problem
have been studied before for different subsets of qualifiers [Che+16; KKN01; LB18;
Cor+13]. However, we initiated the first line of research in the direction of learning
bounded treewidth BNs which respect expert constraints while also scaling to thousands
of RVs. The formal definition of this problem is shown below.

Constrained Bayesian Network Structure Learning

Input: A set X of random variables, a score function cache f , an integer k, and
a set C of constraints of the form u ▷◁ v, where ▷◁ ∈ {→, →/ , ↔,⇝,⇝/ }

Question: Find a DAG D over X with treewidth at most k such that f(D) is
maximized and D satisfies all constraints in C.

We solved this problem by first upgrading the k-greedy heuristic algorithm so that it
respects the supplied expert constraints. We also extended the Bounded Treewidth BNSL
encoding further, equipping it with the ability to understand and enforce the different

37

3. Notation and Background

types of expert constraints. To achieve this, we first added auxiliary variables and clauses
that keep track of presence and absence of paths between different variables. Then, we
enforced the presence or absence of arc and ancestry constraints by using the auxiliary
variables. Combining this encoding with the upgraded k-greedy algorithm, we obtain the
SLIM algorithm for the Constrained BNSL problem. We then implemented this approach
and tested it to find that it was able to learn bounded treewidth BNs with thousands of
RVs while still satisfying 80-90% of constraints and performing better than running the
upgraded k-greedy algorithm by itself.

� Published as “Learning large Bayesian networks with expert constraints”. Peru-
vemba Ramaswamy and Szeider. In: Proceedings of the Thirty-Eighth Conference on
Uncertainty in Artificial Intelligence, (Aug. 2022) [PS22]

38

CHAPTER 4
Bounded Treewidth BNSL

All of the chaos seems to be happening at the boundaries
between the regions.

— Grant Sanderson, “From Newton’s method to Newton’s
fractal”

� Published as “Turbocharging Treewidth-Bounded Bayesian Network Structure Learn-
ing”. Peruvemba Ramaswamy and Szeider. In: Proceedings of the AAAI Conference
on Artificial Intelligence, (May 2021) [PS21c]

In this chapter, we discuss the basic version of the BN-SLIM algorithm aimed to solve
the Bounded Treewidth BNSL problem. We use the SLIM framework to develop this
algorithm. We use k-MAX as the global solver to produce the initial heuristic solution.
For the local solver, we build on top of the SAT encoding for bounded treewidth graphs
by Samer and Veith [SV09], and apply it to the moralized graph. The moralized graph
itself is expressed in terms of the arcs in the BN. This way, we can keep the treewidth
of the BN in check. The main variables in the encoding represent which parent set is
assigned to each RV. From this, we derive which arcs must be present in the BN. We
have additional variables that represent an ordering of the RVs in the DAG, from source
to sink. We then make sure the arcs in the BN only go from left to right with respect to
this ordering, thereby guaranteeing acyclicity of the BN. Finally, we add soft clauses for
each tuple in the score function cache weighted by the corresponding score. This gives us
the basic (unfortified) MaxSAT encoding for the Bounded Treewidth BNSL problem.

To prepare this basic encoding for use as the local solver, we must fortify it. First,
we block those arcs that could, upon replacement, form cycles when combined with
existing directed paths from outside the local part. We also capture the bags that were

39

4. Bounded Treewidth BNSL

in the overlap zone between the local solution and the rest of the solution by embedding
so-called marker cliques [FLS17]. These cliques ensure that the tree decomposition of the
improved local solution includes specific bags which then allows this tree decomposition
to fit back into the unchanged tree decomposition with the rest of the solution. We also
perform experiments to show that applying BN-SLIM to k-MAX yields better results
than simply running k-MAX for the same duration.

4.1 Introduction and Motivation
Bayesian network structure learning is the notoriously difficult problem of discovering a
Bayesian network (BN) that optimally represents a given set of training data [Chi02].
Since exact inference on a BN is exponential in the BN’s treewidth [KBG10], one is
particularly interested in learning BNs of bounded treewidth. However, learning a BN
of bounded treewidth that optimally fits the data (i.e., with the largest possible score)
is, in turn, an NP-hard task [KP13]. This predicament caused the research on bounded
treewidth BN structure learning to split into two branches:

1. Heuristic Learning (see, e.g., Elidan and Gould [EG09], Nie, Campos, and Ji
[NCJ15], Scanagatta et al. [Sca+16; Sca+18], and Benjumeda, Bielza, and Larrañaga
[BBL19]), which is scalable to large BNs with thousands of random variables but
with a score that can be far from optimal, and

2. Exact Learning (see, e.g., Berg, Järvisalo, and Malone [BJM14], Korhonen and
Parviainen [KP13], and Parviainen, Farahani, and Lagergren [PFL14]), which learns
optimal BNs but is scalable only to a few dozen random variables.

In this chapter, we combine heuristic and exact learning and take the best of both worlds.

The basic idea for our approach is to first compute a BN with a heuristic method (the
global solver), and then to apply an exact method (the local solver) to parts of the
heuristic solution. The parts are chosen small enough that they allow an optimal solution
reasonably quickly with the exact method. Although the basic idea sounds compelling
and reasonably simple, its realization requires several conceptual contributions and new
results.

For the global solver, we can use any heuristic algorithm for the Bounded Treewidth
BNSL problem, such as the recent algorithms k-MAX [Sca+18] or ETL [BBL19]. The
local solver’s task is significantly more complex than bounded treewidth BN structure
learning, as several additional constraints need to be incorporated. Namely, it is not
sufficient that the BN computed by the local solver is acyclic. We need fortified acyclicity
constraints that prevent cycles that run through the other parts of the BN, which have
not been changed by the local solver. Similarly, it is not sufficient that the local BN is of
bounded treewidth. We need fortified treewidth constraints that prevent the local BN
from introducing links between a diverse set of nodes that, together with the other parts
of the BN, which have not been changed by the local solver, increase the treewidth.

40

4.1. Introduction and Motivation

Given these additional requirements, we propose a new local solver BN-SLIM (SAT-based
Local Improvement Method), which satisfies the fortified constraints. We formulate a
fortified version of the Bounded Treewidth BNSL problem. In Theorem 4.1, we show
that we can express the fortified constraints with certain virtual arcs and virtual edges.
The virtual arcs represent directed paths that run outside the local instance; with these
virtual arcs we can ensure fortified acyclicity. The virtual edges constitute marker cliques
and represent essential parts of a global tree decomposition using which we can ensure
bounded treewidth.

The new formulation of the local problem is well-suited to be expressed as a Maximum
Satisfiability (MaxSAT) problem and hence allows us to harvest the power of state-of-the-
art MaxSAT solvers (which received a significant performance gain over the last decade).
A distinctive feature of our encoding is that, in contrast to the virtual edges, the virtual
arcs are conditional and depend on the local solver’s solution.

4.1.1 Related work
The first SAT-encoding for finding the treewidth of a graph was proposed by Samer and
Veith [SV09]. Lodha, Ordyniak, and Szeider [LOS16] proposed the first SAT-based local
improvement method for branchwidth. Recently, SAT encodings have been proposed
for other graph and hypergraph width measures [Fic+18; Gan+19; LOS17; SS20]. So
far, there have been four concrete approaches that use the SLIM framework, one for
branchwidth [LOS16; LOS19], one for treewidth [FLS17], one for treedepth [PS20] and one
for decision trees [SS21]. SLIM is a meta-heuristic that, similarly to Large Neighborhood
Search [PR10], tries to improve a current solution by exploring its neighborhood of
potentially better solutions. As a distinctive feature, SLIM explores highly structurally
constrained neighboring solutions with a complete method (SAT).

Several exact approaches to bounded treewidth BNSL have been proposed. Korhonen
and Parviainen [KP13] proposed a dynamic-programming approach, and Parviainen,
Farahani, and Lagergren [PFL14] proposed a Mixed-Integer Programming approach.
Berg, Järvisalo, and Malone [BJM14] proposed a MaxSAT approach by extending the
basic Samer-Veith encoding for treewidth. Our approach for BN-SLIM uses a similar
general strategy, but we encode acyclicity differently. Moreover, BN-SLIM deals with the
fortified constraints in terms of virtual edges and virtual arcs.

Since the exact methods are limited to small domains, Nie, Campos, and Ji [NCJ15;
NCJ16] suggested heuristic approaches that scale up to hundreds of random variables.
The k-greedy algorithm proposed by Scanagatta et al. [Sca+16] at NIPS’16 provided a
breakthrough, consistently yielding better DAGs than its competitors and scaling up to
several thousand of random variables. As mentioned above, k-MAX [Sca+18] is a more
recent improvement over k-greedy. More recently, Benjumeda, Bielza, and Larrañaga
[BBL19] came up with the ETL algorithms, based on local search within the space of
structures called elimination trees. These algorithms perform better than k-MAX and
k-greedy in many cases.

41

4. Bounded Treewidth BNSL

4.2 Local Improvement
Consider an instance (V, f, W) of the Bounded Treewidth BNSL problem, and assume
we have computed an initial solution D = (V, E) heuristically, together with a tree
decomposition T = (T, χ) of width ≤ W of the moralized graph M(D).

We select a subtree S ⊆ T such that the number of vertices in VS := �
t∈V (S) χ(t) isS

at most some budget B. The budget is a parameter that we specify beforehand, such
that the subinstance induced by VS is small enough to be solved optimally by an exact
method, which we call the local solver. The local solver computes for each v ∈ VS a new
parent set, optimizing the score of the resulting DAG Dnew = (V, Enew).Dnew, Enew

Consider the induced DAG Dnew
S = (VS , Enew

S), where Enew
S = { (u, v) ∈ Enew : {u, v} ⊆Dnew

S , Enew
S

VS }. The local solver ensures that the following conditions are met:

C1 Dnew
S is acyclic.

C2 The moral graph M(Dnew
S) has treewidth ≤ W .

We assume that the local solver certifies C2 by producing a tree decomposition Snew =Snew

(Snew, χnew) of M(Dnew
S) of width ≤ W , which can be used by the global solver.Snew, χnew

The two conditions stated above are not sufficient to ensure that Dnew is acyclic and
that treewidth of M(Dnew) remains bounded by W . Acyclicity can be violated by cycles
formed by the combination of the new incoming arcs of vertices in S together with old
arcs that are kept from D. The treewidth can increase by a number that is linear in |VS |.
Hence, we need additional side conditions, which we will formulate using the following
additional concepts.

Let us call a vertex v ∈ VS a boundary vertex if there exists a tree node t ∈ V (T) \ V (S)boundary vertex

such that v ∈ χ(t), i.e., it occurs in some bag outside S. We call the other vertices in
VS internal vertices, and the vertices in V \ VS external vertices. Further, we call twointernal vertex

external vertex boundary vertices v, v′ adjacent if there exists a tree node t ∈ V (T) \ V (S) such that
adjacent boundary

vertices v, v′ ∈ χ(t), i.e., both vertices occur together in some bag outside S. It is easy to see that
any pair of adjacent boundary vertices occur together in a bag of S as well.

For any two adjacent boundary vertices v, v′, we call {v, v′} a virtual edge. Let Evirtvirtual edge
Evirt be the set of all virtual edges. These virtual edges form a clique and serve a similar

purpose as the marker cliques used in other work [FLS17]. The extended moral graphextended moral graph

Mext = (VS , Eext) is obtained from M(Dnew
S) by adding all virtual edges.Mext

For any two adjacent boundary vertices v, v′, we call (v′, v) a virtual arc, if Dnew containsvirtual arc

a directed path from v′ to v, where all the vertices on the path, except for v′ and v, are
external. Let E→

virt be the set of all virtual arcs.E→
virt

We can now formulate the side conditions.

C3 Snew is a tree decomposition of the extended moral graph Mext.

42

4.2. Local Improvement

C4 For each v ∈ VS , if PDnew(v) contains external vertices, then there is some t ∈
V (T) \ V (S) such that PDnew(v) ∪ {v} ⊆ χ(t).

C5 The digraph (VS , Enew
S ∪ E→

virt) is acyclic.

We note that condition C4 implies that in Dnew, all parents of an internal vertex are
internal.

a

b

c d

e

f

g

internal vertex bag of T \ S arc of D

external vertex bag of S edge of M(D)

boundary vertex virtual arc

virtual edge

B1

B2

B3

B4
B5

B6

B7

B8

Figure 4.1: Illustration for Theorem 4.1. The large circles B1, . . . , B8 represent the bags
of T , where B2, B3, B6 belong to S. The boundary vertices are a, . . . , g, where c, d are
adjacent, and e, f, g are mutually adjacent. Since there is a directed path from d to c
using external vertices from the bags B7 and B8, there is a virtual arc from d to c.

Theorem 4.1. If all the conditions C1–C5 are satisfied, then Dnew is acyclic, the
treewidth of M(Dnew) is at most W , and the score of Dnew is at least the score of D.

Proof. We define a new tree decomposition T new = (T new, χnew) of M(Dnew) as follows.
Let T1, . . . , Tr be the connected components of T \ V (S), i.e., the Ti’s are the subtrees
of T that we get when deleting the subtree S. Let Vi = �

t∈V (Ti) χ(t), 1 ≤ i ≤ r, and

43

4. Bounded Treewidth BNSL

observe that each external vertex x belongs to exactly one of the sets V1, . . . , Vr. Let
Bi = VS ∩ Vi, 1 ≤ i ≤ r, be the set of boundary vertices in Vi. We observe that all the
vertices in Bi are mutually adjacent boundary vertices and occur together in a bag χ(si)
of si ∈ V (S) and in a bag χ(ti), for ti ∈ V (Ti), as we can take si and ti to be the two
neighboring tree nodes of T with si ∈ V (S) and ti ∈ V (Ti). We also observe that each
Bi forms a clique in the extended moral graph Mext.

Recall that by assumption, the local solver provides a tree decomposition Snew =
(Snew, χnew) of Dnew

S = (VS , Enew
S) of width ≤ W . Additionally, by condition C3, Snew is

also a tree decomposition of Mext, and hence, by a basic property of tree decompositions
(see, e.g., Bodlaender and Möhring [BM93, Lem. 3.1]), there must exist a bag χnew(s∗

i),
s∗

i ∈ V (Snew), with Bi ⊆ χnew(s∗
i). Hence, we can define T new as the tree we get by

connecting the disjoint trees Snew, T1, . . . , Tr with the edges {s∗
i , ti}, 1 ≤ i ≤ r. We

extend χnew from V (Snew) to V (T new) by setting χnew(t) = χ(t) for t ∈ �r
i=1 V (Ti).

Claim 4.1.1. T new = (T new, χnew) is a tree decomposition of M(Dnew) of width ≤ W .

Proof. To prove the claim, we show that T new satisfies the conditions T1 and T2.

Condition T1. There are two reasons for an edge {u, v} to belong to M(Dnew): first,
because of an arc (u, v) ∈ Enew and second, because of two arcs (u, w), (v, w) ∈ Enew. First
case: (u, v) ∈ Enew. If u and v are both external, then {u, v} ⊆ χ(t) = χnew(t) for some
t ∈ V (T new) \ V (Snew) = V (T) \ V (S). If neither u nor v is external, then (u, v) ∈ Enew

S ,
and since Snew is a tree decomposition of Dnew

S , {u, v} ⊆ χnew(s) for some s ∈ V (Snew).
If v is external but u isn’t, then the arc (u, v) was already present in D, as the parents
of external vertices didn’t change. Hence, since T is a tree decomposition of M(D), it
follows that {u, v} ⊆ χ(t) = χnew(t) for some t ∈ V (T new) \ V (Snew) = V (T new) \ V (S).
If u is external but v isn’t, it follows from C4 that {u, v} ⊆ χ(t) = χnew(t) for some
t ∈ V (T new) \ V (Snew) = V (T new) \ V (S). Second case: (u, w), (v, w) ∈ Enew. If
u, v, w ∈ VS , then {u, v} ∈ E(M(Dnew

S)), and so {u, v} ⊆ χnew(s) for some s ∈ V (Snew),
since Snew is a tree decomposition of M(Dnew

S). If w ∈ VS but u /∈ VS or v /∈ VS , then C4
implies that {u, v} ⊆ χ(t) = χnew(t) for some t ∈ V (T new) \ V (Snew) = V (T new) \ V (S).
If w /∈ VS , then u, v are two adjacent boundary vertices, hence {u, v} is a virtual edge
which, by C3, means {u, v} ⊆ χnew(s) for some s ∈ V (Snew). We conclude that T1 holds.

Condition T2. Let v ∈ V . If v is external, then there is exactly one i ∈ {1, . . . , r},
such that v ∈ Vi = �

t∈V (Ti) χ(t). Since we do not change the tree decomposition of Ti,
condition T2 carries over from T to T new. Similarly, if v is internal, then v does not
appear in any bag χnew(t) for t ∈ V (T new) \ V (Snew), hence condition T2 carries over
from Snew to T new. It remains to consider the case where v is a boundary vertex. The
tree nodes t ∈ V (Snew) with v ∈ χ(t) are connected, because Snew satisfies T2, and
for Bi : v ∈ Bi, the tree nodes t ∈ V (Ti) for which v ∈ χ(t) are connected, since T
satisfies T2. By construction of T new, if v ∈ Bi, then there are neighboring tree nodes
s∗

i ∈ V (Snew) and ti ∈ V (Ti) with v ∈ χnew(s∗
i) ∩ χnew(ti). Hence, all the tree nodes

t ∈ V (T new) with v ∈ χ(t) are connected, and T2 also holds for boundary vertices.

44

4.3. Implementing the Local Improvement

To conclude the proof of the claim, it remains to observe the width of T new cannot exceed
the widths of T or Snew, hence the width of T new is at most W . ◀

Claim 4.1.2. Dnew is acyclic.

Proof. To prove the claim, suppose to the contrary that D contains a directed cycle
C = (V (C), E(C)). The cycle cannot lie entirely in Dnew

S , nor can it lie entirely in
Dnew − VS = D − VS , because Dnew

S and D are acyclic. Hence, C contains at least
one arc from VS × (V \ VS) and at least one arc from (V \ VS) × VS . Let (vj , xj) ∈
E(C)∩ (VS × (V \ VS)) and (x′

j , v′
j) ∈ E(C)∩ ((V \VS)×VS), for 0 ≤ j ≤ p, be these arcs,

such that they appear on C in the order (v′
0, x′

0), (x0, v0), (v′
1, x′

1), . . . , (v′
p, x′

p), (xp, vp).
It is possible that x′

j = xj or vj = v′
j+1. We observe that the vertices on the path from x′

j

to xj on C all belong to some Vi = �
t∈V (Ti) χ(t). Hence, vj and v′

j are adjacent boundary
vertices, and E→

virt contains all the arcs (v′
j , vj), 1 ≤ j ≤ p. However, the cycle C contains

also the paths from vj to v′
j+1 (mod p), for 1 ≤ j ≤ p, which only run through vertices

in VS . These paths, together with the virtual arcs (v′
j , vj) form a cycle C ′ which lies

in (VS , Enew
S ∪ E→

virt). This contradicts C5 which requires that this digraph be acyclic.
Hence the claim holds. ◀

Claim 4.1.3. The score of Dnew is at least the score of D.

Proof. We observe that by taking Dnew = D we have a solution that satisfies all the
required conditions and maintains the score. ◀

This concludes the proof of the theorem.

4.3 Implementing the Local Improvement
In this section, we first discuss how the set S representing the subinstance is constructed.
Then we provide a detailed explanation of the MaxSAT encoding that is responsible for
solving the subinstance.

4.3.1 Constructing the subinstance
For this section, we follow the same notation as used in the previous section. To construct
the subinstance, we initialize the subtree S with a tree node r picked at random from
V (T). We then expand S by performing a bread-first search from V (S) and adding a new
tree node to S as long as the size of VS does not exceed the budget. Next, we compute
Evirt for the chosen S. Finally, we prune the parent sets of each vertex so as to only retain
those parent sets which satisfy conditions C3 and C4. This can be done by first checking,
for each parent set, if the required tree node t is present V (T) \ V (S), and if it does,
we record the set of virtual arcs (excluding self-loops) that are imposed by this parent

45

4. Bounded Treewidth BNSL

set. For each v ∈ S and P ∈ Pv, we denote by A→
virt(v, P) the set of imposed virtual arcsA→

virt(·, ·)
when v has the parent set P in Dnew. We denote by Pv, the collection of parent sets
of node v that remain after this pruning process. Notice that, under this pruning, all
remaining parent sets P ∈ Pv satisfy C4. Also note that, since E→

virt is conditional on the
chosen parent sets, it cannot be precomputed.

Further, since we intend to solve the subinstance using a MaxSAT encoding, we need to
ensure that the score of each parent set is non-negative. Recall that Pv only contains
those non-empty parent sets whose score is at least that of the empty parent set.
Thus, we may assume that the empty parent set has the lowest score among all the
parents of a certain vertex. Consequently, we can adjust the score function by setting
f ′(P, v) = f(P, v) − f(∅, v) for v ∈ S and P ∈ Pv, which implies that f ′(P, v) ≥ 0 for allf ′(·, ·)
v ∈ S and P ∈ Pv.

4.3.2 MaxSAT encoding
We now describe the weighted partial MaxSAT instance that encodes conditions C1–C5.
We build on top of the SAT encoding proposed by Samer and Veith [SV09]. The only
difference in our case is that there are no explicit edges and hence we do not require
the corresponding clauses. Instead, the edges of the moralized graph are dependent on
and decided by other variables that govern the DAG structure. For convenience, let n
denote the size of the subinstance, i.e., n := |S|. A part of the encoding is based on the
elimination ordering of a tree decomposition (see, e.g., Samer and Veith [SV09, Sec. 2]).

The main variables used in our encoding are

• variables parP
v represent for each node v ∈ S the chosen parent set P ,

• n(n − 1)/2 variables acycu,v represent the topological ordering of Dnew
S ,

• n(n − 1)/2 variables ordu,v represent the elimination ordering of the tree decompo-
sition,

• n2 variables arcu,v represent the arcs in the moralized graph Mext, along with the
fill-in edges (see Samer and Veith [SV09]).

Since acycu,v and ordu,v represent linear orderings, we enforce transitivity of these
variables by means of the clauses

(acyc∗
u,v ∧ acyc∗

v,w) → acyc∗
u,w

(ord∗
u,v ∧ ord∗

v,w) → ord∗
u,w

�
for distinct u, v, w ∈ S.

To prevent self-loops in the moralized graph, we add the clauses

¬arcv,v for v ∈ S.

46

4.3. Implementing the Local Improvement

For each node v ∈ S, and parent set P ∈ Pv, the variable parP
v is true if and only if P is

the parent set of v. Since each node must have exactly one parent set, we introduce the
cardinality constraint �

P ∈Pv

parP
v = 1 for v ∈ S.

Next, for each node v, parent set P , and u ∈ P , if P is the parent set of v then u must
precede v in the topological ordering. Hence we add the clause

parP
v → acycu,v for v ∈ S, P ∈ Pv, and u ∈ P.

Similarly, for each node v, parent set P , and u ∈ P , if P is the parent set of v then we
must add an arc in the moralized graph respecting the elimination ordering between u
and v, as follows:

(parP
v ∧ ordu,v) → arcu,v

(parP
v ∧ ordv,u) → arcv,u

�
for v ∈ S, P ∈ Pv,

and u ∈ P.

Next, we encode the moralization by adding an arc between every pair of parents of a
node, using the following clauses

(parP
v ∧ ordu,w) → arcu,w

(parP
v ∧ ordw,u) → arcw,u

�
for v ∈ S, P ∈ Pv,

and u, w ∈ P.

Now, we encode the fill-in edges, with the following clauses

(arcu,v ∧ arcu,w ∧ ordv,w) → arcv,w

(arcu,v ∧ arcu,w ∧ ordw,v) → arcw,v

�
for u, v, w ∈ S.

Lastly, to bound the treewidth, we add a cardinality constraint on the number of outgoing
arcs for each node as follows�

w∈S,w ̸=v
arcv,w ≤ W for v ∈ S.

To complete the basic encoding, for every node v ∈ S, and every parent set P ∈ Pv we
add a unit soft clause weighted by the score of the parent set as follows

(parP
v) : weight f ′(P, v) for v ∈ S, P ∈ Pv.

To speed up the solving, we encode that for every pair of nodes, at most one of the arcs
between them can exist. We add the following redundant clauses

¬arcu,v ∨ ¬arcv,u for u, v ∈ S.

47

4. Bounded Treewidth BNSL

Now, we describe the additional clauses required to satisfy the fortified constraints, and
thus conditions C3 and C5. For every virtual edge {u, v} ∈ Evirt, we introduce a forced
arc depending on the elimination ordering using the following pair of clauses

ord∗
u,v → arcu,v ∧ ord∗

v,u → arcv,u for {u, v} ∈ Evirt.

This takes care of the fortified treewidth constraints, satisfying C3 and ensuring that
the edge {u, v} ⊆ χ(s) for some s ∈ V (S). Finally, we add the clauses that encode the
forced arcs E→

virt. For each v ∈ S, P ∈ Pv, and (u, v) ∈ A→
virt(v, P), we add the clause

parP
v → acyc∗

u,v,

which forces the virtual arc (u, v) if P is the parent set of v in Dnew, thereby handling
the fortified acyclicity constraints and ensuring that C5 is satisfied.

This concludes the definition of the MaxSAT instance, to which we will refer as ΦD,f (S).ΦD,f (S)

We refer to the weight of a satisfying assignment τ of ΦD,f (S) as the sum of weights
of all the soft clauses satisfied by τ . Let α(S) :=

v∈S f(∅, v). To each satisfying
assignment τ of ΦD,f (S) we can associate for each v ∈ V the corresponding parent set,
which in turn determines a directed graph Dnew. Due to Theorem 4.1, the treewidth
of M(Dnew) is bounded by W , and Dnew is acyclic. By construction of ΦD,f (S), the
weight of τ equals

v∈S f ′(P, v) = f(Dnew
S) − α(S). Conversely, if we pick new parent

sets for the vertices in S such that all the conditions C1–C5 are satisfied, then by
construction of ΦD,f (S), the corresponding truth assignment τ satisfies ΦD,f (S), and
its weight is

v∈S f ′(P, v) = f(Dnew
S) − α(S). In particular, let K0 be the weight of theK0

truth assignment which corresponds to the parent sets of S as defined by the input DAG
D. We summarize these observations in the following theorem.

Theorem 4.2. ΦD,f (S) has a solution of weight K if and only if there are new parent
sets for the vertices in S giving rise to a DAG Dnew with f(Dnew) − f(D) = K − K0.

4.4 Experimental Evaluation
In this section, we describe the experiments conducted to analyze the performance of
the local improvement algorithm. The current state-of-the-art heuristic algorithms for
solving the Bounded Treewidth BNSL problem are the k-MAX algorithm by Scanagatta
et al. [Sca+18] and the ETL algorithms by Benjumeda, Bielza, and Larrañaga [BBL19]
(available as two variants–the default variant ETLd and the poly-time variant ETLp).
Therefore, we analyze the benefit of applying BN-SLIM on top of these algorithms. It
is worth noting that both k-MAX and BN-SLIM are anytime algorithms, i.e., they run
indefinitely long and can be halted at any instant to output the best solution found so
far; ETL, on the other hand, as per the available implementation, is deterministic and
terminates when it fails to find any new improvements. This distinction affects the nature
of the experiments conducted to draw a comparison between the different algorithms.
However, for the most part, we closely follow the experimental setup (including data sets,

48

4.4. Experimental Evaluation

timeouts, comparison metrics) used by Scanagatta et al. [Sca+18] to compare k-MAX
with previous approaches.

Since BN-SLIM needs an initial heuristic solution, we enlist either k-MAX, ETLd, or ETLp
for this purpose. We denote by BN-SLIM (X), the algorithm which applies BN-SLIM
on an initial solution provided by X where X ∈ {k-MAX, ETLd, ETLp}. We run all our
experiments with treewidth bounds 2, 5, 8 for each data set following Scanagatta et al.
[Sca+18]. All reported BN-SLIM results are averages over three random seeds.

4.4.1 Setup

We run all our experiments on a 4-core Intel Xeon E5540 2.53 GHz CPU, with each
process having access to 8 GB RAM. We use UWrMaxSat as the MaxSAT-solver primarily
due to its anytime nature (available at the 2019 MaxSAT Evaluation webpage1). After
trying other solvers we found that UWrMaxSat works best for our use case. We use
the BNGenerator package [Ide15] in conjunction with the BBNConvertor tool [Guo] to
generate and reformat random Bayesian Networks. We also use the implementation of
the k-MAX algorithm available as a part of the BLIP package [Sca15]. For the ETL
algorithms we use the software made available2 by Benjumeda, Bielza, and Larrañaga
[BBL19]. We implement the local improvement algorithm in Python 3.6.9, using the
NetworkX 2.4 graph library [HSS08].

The source code along with the experiment data is available publicly at https://github.
com/aditya95sriram/bn-slim.

We first conducted a preliminary analysis on 20 data sets to find out the best values for
the budget (maximum number of random variables in a subinstance) and the timeout
(per MaxSAT call) of BN-SLIM. We tested out budget values 7, 10, and 17, and timeout
values 1 second, 2 seconds, and 5 seconds; and finally settled on a budget of 10 and a
timeout of 2 seconds for our experiments.

4.4.2 Data sets

We consider 99 data sets for our experiments. Of these, 84 data sets come from real-world
benchmarks. These are based on the benchmarks introduced by Lowd and Davis [LD10],
Van Haaren and Davis [VD12], Bekker et al. [Bek+15], and Larochelle, Bengio, and
Turian [LBT10], a subset of which has been used by Scanagatta et al. [Sca+18]. These
benchmarks are publicly available3 in the form of pre-partitioned data sets. There are
three data sets corresponding to each of the 28 benchmarks (see Table 4.1).

The remaining 15 data sets are classified as synthetic as they are obtained by drawing
5000 samples from known BNs (see Table 4.2). Five of these BNs are commonly used in

1https://maxsat-evaluations.github.io/2019/descriptions.html
2https://github.com/marcobb8/et-learn
3https://github.com/arranger1044/DEBD

49

https://github.com/aditya95sriram/bn-slim
https://github.com/aditya95sriram/bn-slim
https://maxsat-evaluations.github.io/2019/descriptions.html
https://github.com/marcobb8/et-learn
https://github.com/arranger1044/DEBD

4. Bounded Treewidth BNSL

the literature as benchmarks4, and we generated the remaining 10 BNs randomly using
the BNGenerator tool with more random variables than the previously mentioned data
sets. Overall, the collection of data sets provides a wide variety of the data’s nature and
the different parameters.

Both k-MAX and BN-SLIM take a score function cache as input, while ETL requires
the samples themselves and computes the required scores on-the-fly. We thus compute
the score function cache using the scoring module provided as a part of ETL’s source
code. More specifically, we first obtain the parent set tuples using independence selection
(available in the BLIP package), and then we recompute the scores for these tuples using
ETL’s scoring module. This cache is used as input to both BN-SLIM and k-MAX. This
provides a level playing field and improves comparability between the different algorithms.

While computing these score function caches, the scoring function module was unable to
process two data sets and hence we discarded these two data sets. The final list of data
sets is shown in Tables 4.1 and 4.2. Further, k-MAX crashes for 3 data sets and hence
we disregard these for any experiments involving k-MAX or BN-SLIM(k-MAX).

Name n Name n Name n Name n

Kdd 64 Accidents 111 MSWeb 294 C20NG 910
Plants 69 Retail 135 Book 500 BBC 1058
Audio 100 Pumsb-star 163 EachMovie 500 Ad 1556
Jester 100 DNA 180 WebKB 839
Netflix 100 Kosarek 190 Reuters-52 889

Table 4.1: Real-world data sets (n is the number of random variables, the number of
samples ranges from 100 to 291326)

Name n Name n Name n Name n

andes 223 r0 2000 r5 4000 r10 10000
diabetes 413 r1 2000 r6 4000 r11 10000
pigs 441 r2 2000 r7 4000 r12 10000
link 724 r3 2000 r8 4000 r13 10000
munin 1041 r4 2000 r9 4000 r14 10000

Table 4.2: Synthetic data sets (n denotes the number of random variables, 5000 samples
from each network)

4.4.3 Evaluation metric
For evaluating our algorithm’s performance, we use the same metric as Scanagatta et al.,
i.e., ∆BIC, which is the difference between the BIC scores of two solutions. Given a∆BIC

4https://www.bnlearn.com/bnrepository/

50

https://www.bnlearn.com/bnrepository/

4.4. Experimental Evaluation

DAG D, the BIC score approximates the logarithm of the marginal likelihood of D. Thus,
given two DAGs D1 and D2, the difference in their BIC scores approximates the ratio
of their respective marginal likelihoods which is the Bayes Factor [Raf95]. A positive
∆BIC score signifies positive evidence towards D1 and a negative ∆BIC score signifies
positive evidence towards D2. The ∆BIC values can be mapped to a scale of qualitative
categories [Raf95] as shown in Table 4.3.

Category ∆BIC
extremely negative (−∞, −10)
strongly negative (−10, −6)
negative (−6, −2)
positive (2, 6)
strongly positive (6, 10)
extremely positive (10, ∞)

Table 4.3: ∆BIC category scale

4.4.4 Experimental results
The primary focus of our experimentation is to analyze the benefit gained by applying
BN-SLIM on top of other heuristics and not to compare between the different heuristics.
To this end, we run BN-SLIM for 60 minutes on top of the initial solution provided
by k-MAX, ETLd, and ETLp and measure the time required for BN-SLIM to obtain a
solution that counts as extremely positive evidence with respect to the initial solution.
The initial solution by k-MAX is the solution captured at the 30-minute mark, whereas
the initial solution by ETL is the final solution obtained upon termination. The maximum
time required for computing the initial solution on any individual instance, by both ETLd
and ETLp, is around 3.5 hours. For comparison, we let k-MAX continue running for 60
more minutes after it has produced the initial solution.

Figure 4.2: CDF plots showing the number of significantly improved data sets (∆BIC ≥
10) across 94 data sets

Fig. 4.2 shows the results of this analysis. We consider a data set to be significantly
improved if BN-SLIM is able to improve by at least 10 BIC points over the initial heuristic significantly improved

51

4. Bounded Treewidth BNSL

solution. We observe that BN-SLIM improves over k-MAX much more efficiently as
over ETL. Giving k-MAX more time for computing the initial solution increases this
discrepancy even further, as the improvement rate of k-MAX rapidly slows down after
30 minutes. Averaging over all the heuristics, BN-SLIM can produce a solution with
extremely positive evidence for 95%, 79%, and 78% of instances for treewidth bounds 2,
5, and 8, respectively.

Fig. 4.4 shows the ∆BIC values from comparing the BN-SLIM(ETL) solution after 30
minutes to the corresponding initial solution by ETL. We can see that BN-SLIM(ETL)
can secure extremely positive evidence for a significant number of data sets across all
tested treewidth bounds, with a smaller treewidth being more favorable.

Due to the anytime nature of k-MAX, we can compare it against BN-SLIM(k-MAX)
in a “race.” We run both simultaneously for one hour, where out of the time allotted
to BN-SLIM(k-MAX), 30 minutes are used to generate the initial solution, and the
remaining 30 minutes are used to improve this initial solution. Fig. 4.3 shows the ∆BIC
values of comparing k-MAX and BN-SLIM(k-MAX) at the one-hour mark. Similar to
BN-SLIM(ETL) we observe that BN-SLIM(k-MAX) outperforms k-MAX on a significant
number of instances, and on all instances for treewidth 2.

The experimental evaluation demonstrates BN-SLIM approach’s effectiveness and the
combined power as a heuristic method of BN-SLIM(k-MAX) and BN-SLIM(ETL).

tw 2

tw 5

tw 8

69

55

53

4

1

1

2

2

4

8

1

3

9

10

Number of data sets

∆BIC treewidth
2 5 8

extreme positive 69 55 53
strong positive 0 4 1
positive 0 1 2
neutral 2 4 8
negative 0 1 0
strong negative 0 0 0
extreme negative 3 9 10

BN-SLIM(k-MAX) vs k-MAX

Figure 4.3: Comparison between BN-SLIM(k-MAX) and k-MAX over 94 data sets

4.5 Conclusion/Related Work
With BN-SLIM, we have presented a novel method for improving the outcome of bounded
treewidth BNSL heuristics. We have demonstrated its robustness and performance by
applying BN-SLIM to the solution provided by the state-of-the-art heuristics k-MAX,
ETLd, and ETLp. The approach of BN-SLIM is based on exact reasoning via MaxSAT,
which is fundamentally different from the mentioned heuristics. Consequently, both
approaches complement each other, and their combination provides significantly better
solutions than any of the heuristics alone. Simultaneously, the combination still scales to

52

4.5. Conclusion/Related Work

Figure 4.4: Comparison between BN-SLIM(ETL) and ETL over 97 data sets

large instances with thousands of random variables, which are far out of reach for exact
methods alone. Thus, BN-SLIM combines the best of both worlds.

The highly encouraging experimental outcome suggests several avenues for future work,
which include the development of more sophisticated subinstance selection schemes, the
inclusion of variable fidelity sampling (crude for the global solver, fine-grained for the
local solver), as well as more complex collaboration protocols between local and global
solver in a distributed setting.

53

CHAPTER 5
Bounded State-Space BNSL

Everything isn’t black or white, yes or no. Sometimes it’s
not a switch, it’s a dial.

— Jeff Garvin, “Symptoms of Being Human”

� Published as “Learning Fast-Inference Bayesian Networks”. Peruvemba Ramaswamy
and Szeider. In: Advances in Neural Information Processing Systems, (2021) [PS21b]

We started our journey with the widely popular Bounded Treewidth BNSL problem. The
main motivation for bounding the treewidth was to guarantee quick inference. Usually,
a BN is learned only once and then used to make several predictions in the form of
inferences. Thus, it is critical to ensure extremely quick inference times. The main factor
governing the inference time is the number of rows in the probability tables of the learned
BN. Bounding the treewidth usually also bounds this underlying measure and hence
guarantees quick inference. However, treewidth is a good proxy only as long as the BN
contains RVs whose domain sizes are all the same.

In this chapter, we look at a more fine-grained measure called the state space size and
why it is a better candidate than treewidth to ensure quick inference. The state space size
of a BN takes into account the domain sizes of the variables and hence is able to provide
a much better handle on the inference time. We first show empirically that indeed, the
state space size correlates to inference time more tightly than treewidth (Figure 5.2).
Then, we develop a SLIM-based algorithm BN-SLIMbss for learning bounded state space
BNs by extending BN-SLIM. To develop BN-SLIMbss, we modify k-greedy and k-MAX
such that they only consider parent sets which respect the state space bound, and we
upgrade the encoding to express the state space size instead of the treewidth. Since
computing the state space is more involved than computing the treewidth, we use a

55

5. Bounded State-Space BNSL

sophisticated counting mechanism (illustrated in Figure 5.3) which is capable of keeping
track of sums of non-integer values as well.

5.1 Introduction and Motivation
The time complexity of probabilistic reasoning on a Bayesian Network (BN) is dominated
by the maximum state space size of clusters (i.e., bags of the BN’s tree decomposi-
tion) [LS88; Dec99; Kas+11]. A bag’s state space size is the product of the domain
sizes of all the variables it contains. This metric has been previously studied under
different names such as “total state space”, “maximum complexity”, and “complexity
width” [Kas+11; Kjæ92; MJ96; OD08b; OD08a]. It is a more fine-grained metric as
compared to the extensively studied treewidth metric [EG09; NCJ15; Sca+16; Sca+18;
BBL19; BJM14; KP13; PFL14; PS21c]. We propose algorithms for learning BNs from
data, keeping the state space size within a user-specified bound. This results in fast-
inference BNs, i.e., BNs reliably admitting fast probabilistic reasoning. We compare our
algorithms to the baseline of state-of-the-art bounded treewidth BN learning algorithms,
on real-world benchmark data sets, with up to over a thousand variables. The results
show a clear advantage for our bounded state space (bss) BNSL algorithms.

It is common to encounter non-binary variables in real-world data. Moreover, during our
preliminary analysis, we noticed that even variables with domain sizes as small as 4 were
sufficient to impact the reasoning times significantly. This is in agreement with the fact
that the reasoning time has an exponential dependence on the domain sizes. For instance,
consider some of the networks learned for alarm and hepar2 having 37 and 70 variables,
respectively. Both these data sets were learned with small values of treewidth, and the
maximum domain size of the variables is 4. Despite this, they exhibited reasoning times
in the order of magnitude of 2.5 seconds.

For our bss BNSL algorithms, we build upon recent work on bounded treewidth BNSL,
particularly on the heuristic algorithms k-greedy and k-MAX by Scanagatta et al. [Sca+16;
Sca+18] as well as our BN-SLIM algorithm [PS21c], see Chapter 4. The latter is a post-
processing algorithm that uses MaxSAT to improve BNs generated by the heuristics.
All these algorithms assume a user-specified upper bound k for the treewidth of the
learned BN and optimize the BN’s score under the given treewidth bound. The learning
algorithms are highly optimized for dealing with large instances, and so the generalization
of treewidth bounds to state space bounds isn’t straightforward. The main challenge for
extending BN-SLIM to bss learning is to replace BN-SLIM’s simple cardinality constraints
with a MaxSAT encoding that bounds the state-space of a bag, i.e., a product of integers.
We achieve this by switching to logarithms and bounding the sum of real numbers,
utilizing a MaxSAT encoding based on binary decision diagrams (BDDs).

We consider several variants of bss BNSL algorithms, tested them on 16 real-world
benchmark data sets with up to 1041 variables, and compare them with bounded
treewidth BN learning algorithms. For the comparison, we put pairs of scatter plots side
by side, which show the trade-off between reasoning speed and data-fitting (score), one for

56

5.1. Introduction and Motivation

the baseline methods and one for the bounded state space methods. The bounded state
space methods show better performance throughout, with significantly higher reliability
(small variance).

In total, we consider six algorithm schemes for bounded state space BNSL. We tested
them on 16 real world benchmark data sets, with up to 1041 variables, and compared
them with bounded treewidth BN learning algorithms. The results are overwhelmingly
positive, showing a clear advantage for the bounded state space based methods. For the
comparison, we put pairs of scatter plots side by side, which show the trade-off between
responsiveness (inference speed) and data-fitting (score), one for the baseline methods
and one for the bounded state space methods. The bounded state space methods show a
better performance throughout, with a significantly better reliability (small variance).

5.1.1 Related Work
We discuss related work in terms of Figure 5.1. In approaches (a) and (b), the BN has

(a) Sample Data BN Tree Dec
bounded treewidth

(b) Sample Data BN Tree Dec
bounded state space

(c) Sample Data BN, Tree Dec
maximize score, bounded treewidth

(d) Sample Data BN, Tree Dec
maximize score, bounded state space

(new)

Figure 5.1: Various approaches to structure learning of BNs

already been learned by some other method, and one tries to find a tree decomposition
that minimizes either the treewidth or the maximum state space size, respectively. For
approach (a), general-purpose tree decomposition algorithms can be applied, such as the
one by Gogate and Dechter [GD04]. As the significance of the state space of BNs was
recognized [LS88], the research focused on approach (b) [Kas+11; Kjæ92; MJ96; OD08b;
OD08a]. However, once the BN has been fixed, the impact of the decomposition method
is limited. Therefore, the research in the last decade focused on approach (c), where a
treewidth bound is already considered during the BN learning; a suitable decomposition is
produced simultaneously. On the one hand, exact learning algorithms have been proposed
that scale only to small instances but find score-optimal BNs [KP13; PFL14; BJM14].
On the other hand, heuristic algorithms have been proposed that scale to large instances
but do not guarantee score optimality [NCJ15; NCJ16; Sca+16; Sca+18; BBL19]. In
Chapter 4, we proposed the hybrid approach BN-SLIM, which improves the score of a
heuristically computed BN by multiple applications of a MaxSAT-based exact method.

In this chapter, we follow approach (d) for the first time and implement it via various
scalable algorithms. Our experiments compare approaches (c) and (d) in terms of the

57

5. Bounded State-Space BNSL

achieved score and inference speed.

5.2 Treewidth and Maximum State Space Size
In this section, we discuss the different metrics that can be used to estimate the inference
speed of a BN along with some empirical findings.

Consider a tree decomposition T = (T, χ) of a DAG D, where V (D) consists of random
variables, each v ∈ V (D) ranging over a set of ds(v) many discrete values.ds(·)

The width of T is

max
t∈V (T)

|χ(t)| − 1,

i.e., is the size of a largest bag minus 1. The
treewidth tw(D) of D is the minimum width
over all tree decompositions of M(D).

The maximum state space size of T is

max
t∈V (T)

v∈χ(t)

ds(v),

i.e., largest state space size of all bags, where
the state space of a bag is the product of
the domain sizes of the variables it contains.
The maximum state space size msss(D) of
D is the minimum msss over all tree decom-
positions of M(D).

maximum state space
size

The maximum state space of a binary BN of treewidth t is 2t+1. The bounded treewidth
(state space, respectively) BN structure learning problem takes as input a set V of nodes
(i.e., random variables), a decomposable score function f on V , and an integer k, and
asks to compute a DAG D with V (D) = V of treewidth (maximum state space size,
respectively) at most k, with a maximal score f(D).

5.2.1 Empirical Influence on Inference Speed
Complexity results for probabilistic reasoning (inference) suggest that for BNs containing
non-binary variables, maximum state space size provides a more accurate prediction for
inference speed than treewidth [LS88; Dec99; Kas+11]. Our initial experiments aimed
to verify this theoretical assumption empirically. For this purpose, we generated several
BNs with varying treewidth and maximum state space size and analyzed the impact of
these two measures on the BN’s inference speed. We define a BN’s reasoning time as
the time required for computing the probability of evidence of 5 random variables set
to random states, averaged over 100 runs (same as [Sca+16]). For more details on the
experimental setup, we refer to Section 5.4.

Figure 5.2 depicts the distribution of the observed reasoning times for different treewidth
and maximum state space size ranges utilizing box plots, with dots signifying outliers.
We observe that the correlation between reasoning time and maximum state space size is
much stronger than the correlation between reasoning time and treewidth. The number
of outliers is much higher in the treewidth plot as compared to the maximum state
space size plot. Furthermore, for gradually increasing reasoning time thresholds, the

58

5.3. BN Learning of Bounded State Space Size

 2 3.44.76.17.48.8 10 11 13 14 16 17 18 20 21 22 24 25 26 28
log2(msss)

0

5

10

15

20

25

30

35

M
ea

n
Re

as
on

in
g

Ti
m

e
(in

 s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Treewidth

Figure 5.2: Comparison of correlation of treewidth and maximum state space size with
reasoning time

corresponding maximum state space size, for which none of the BNs exceed the reasoning
time, grows much more gradually than the corresponding treewidth.

These results provide a solid basis for our objective to develop algorithms that already
bound maximum state space size during BN structure learning, as we will lay out in the
next sections.

5.3 BN Learning of Bounded State Space Size

5.3.1 Modified Heuristics
We now describe the modifications we made to the k-MAX and k-greedy heuristics to
operate with a bound on the state space.

Now, we give a brief outline of the k-greedy algorithm. Let us assume a treewidth
bound of k. The algorithm starts from a random ordering of the random variables.
Initialization: It then initializes the first bag with the first k +1 variables. It computes the
best DAG over these variables either by an exact method or by an approximate method
depending on the value of k + 1. Addition: Then, the algorithm iteratively adds variables
to this DAG with parent sets that maximize local score. While doing so, the algorithm
searches through the existing k-cliques as potential parent sets. Termination: The
iteration continues until there are no variables left to add.

To make the k-greedy algorithm work for bounded state space, we first modify the
Initialization step. Let σ = v1, v2, . . . , vn be the randomly sampled ordering. Instead of
simply picking the first k variables, we now pick the first p variables such that p is the
largest integer satisfying the condition �p

i=1 vi ≤ k. In the Addition step, we no longer
treat all existing k-cliques as potential parent sets. Instead, when adding variable v, we
only consider those sets S for which �

u∈S∪{v} ds(u) ≤ k.

59

5. Bounded State-Space BNSL

The k-MAX algorithm is similar to the k-greedy algorithm but picks the variables based
on a scoring system instead of following a particular variable ordering. The modifications
we propose for the k-greedy algorithm can, however, be easily adjusted to work for the
k-MAX algorithm by incorporating domain-size checks in place of cardinality checks.

We thus obtain the following algorithms:

k-greedy and k-MAX refer to the original two heuristics proposed by Scanagatta
et al. [Sca+16; Sca+18] that return bounded treewidth BNs.

k-greedybss and k-MAXbss refer to the modified versions of k-greedy and k-MAX
with the proposed modifications that return bounded state space BNs.

As a side effect, all these algorithms produce a tree decomposition that witnesses the
treewidth or state space bound of the obtained BN.

5.3.2 Local Improvement
In this section, we explain how the local improvement framework from Chapter 4 can be
extended and utilized for the Bounded State Space BNSL problem.

Throughout this section, consider an instance of the Bounded State Space BNSL problem,
consisting of a set V of random variables, a score function f , and a state space bound k.
Initialization: We first use a heuristic (such as described in Subsection 5.3.1) to compute
an initial solution D, together with a tree decomposition T = (T, χ) of the moralized
graph M(D) with maximum state space size ≤ k. The local improvement step uses
the parameter budget β which controls the size of the local instance. Subtree selection:
We select a subtree S of T such that VS := �

t∈V (S) χ(t) does not exceed the budget β.S

Our aim is to compute for each v ∈ VS a new parent set, optimizing the score of the
resulting DAG Dnew with V (Dnew) = V . We define Dnew

S as the DAG induced by VSDnew

Dnew
S where E(Dnew

S) = { (u, v) ∈ E(Dnew) : {u, v} ⊆ VS }. We distinguish between different
kinds of nodes:

• v ∈ VS a boundary vertex if there exists a tree node t ∈ V (T) \ V (S) suchboundary vertex

that v ∈ χ(t);

• v ∈ VS is an internal vertex if v is not a boundary vertex;internal vertex

• v ∈ V \ VS is an external vertex .external vertex

Two boundary vertices v, v′ are adjacent if both occur together in some bag outside S.adjacent boundary
vertices In that case we call {v, v′} a virtual edge. We let Evirt be the set of all virtual edges.virtual edge

The extended moral graph Mext is obtained from M(Dnew
S) by adding all virtual edges. Ifextended moral graph

Mext v, v′ are two adjacent boundary vertices such that Dnew contains a directed path from v′

to v, where all the vertices on the path, except for v′ and v, are external, then (v′, v) is a
virtual arc. E→

virt denotes the set of all virtual arcs.virtual arc
E→

virt

60

5.3. BN Learning of Bounded State Space Size

We call Dnew
S a well-behaved DAG with respect to DAG D and its tree decomposition (T, χ) well-behaved

if the following conditions are satisfied:

1. Dnew
S is acyclic.

2. For each v ∈ V (Mext), if PDnew(v) contains external vertices, then there is some t ∈
V (T) \ V (S) such that PDnew(v) ∪ {v} ⊆ χ(t).

3. The digraph with vertex set V (Mext) and arc set E(Dnew
S) ∪ E→

virt) is acyclic.

Let T = (T, χ) be a tree decomposition of DAG D. We call T new = (T new, χnew) a
conservative tree decomposition of DAG Dnew with respect to set S ⊆ T if conservative

1. T new is a tree decomposition of DAG Dnew,

2. T new can be partitioned into Snew, T1, . . . , Tr, where T1, . . . , Tr are the connected
components of T \ V (S), and

3. χnew(t) = χ(t) for t ∈ �r
i=1 V (Ti).

Lemma 5.1. If Dnew
S is well-behaved, then Dnew is acyclic and f(Dnew) ≥ f(D).

Proof. The correctness follows from Theorem 4.1, as the statement of the lemma is
identical except the treewidth constraints. We note that any tree decomposition of such
a Dnew

S is conservative with respect to S.

Introducing a state space bound to Lemma 5.1, we obtain the following theorem.

Theorem 5.2. If Dnew
S is well-behaved and admits a tree decomposition with msss at

most k, then

1. Dnew is acyclic,

2. the score of Dnew is at least the score of D, and

3. msss(Dnew) ≤ k.

Proof. The first two properties follow from Lemma 5.1. Now, let T = (T, χ) be the tree
decomposition of DAG D, T new = (T new, χnew) be the tree decomposition of DAG Dnew

and Snew = (Snew, χnew
S) be the tree decomposition of Dnew

S . Since Snew is conservative
with respect to S (from Lemma 5.1), we can express χnew as χnew

S (t) if t ∈ S and χ(t)
otherwise. In order to prove the third property, we need to bound the state space size of
the bags of T new, i.e., we need to bound

max
t∈T new

v∈χnew(t)

ds(v) = max

max
t∈S

v∈χnew

S (t)
ds(v), max

t∈T \V (S)

v∈χ(t)

ds(v)
�

≤ max

k, max
t∈T

v∈χ(t)

ds(v)

[msss(Dnew
S) ≤ k]

≤ max (k, k) [msss(D) ≤ k].

61

5. Bounded State-Space BNSL

Thus, the maximum state space size of Dnew is at most k.

5.3.3 MaxSAT Encoding
We now describe how we construct the (weighted, partial) MaxSAT instance that encodes
the conditions required on the local instance S. The instance is a propositional formula
in conjunctive normal form (CNF), with hard clauses and soft clauses; each soft clause
has a weight. The MaxSAT solver tries to find a truth assignment that satisfies all the
hard clauses and maximizes the sum of weights of satisfied soft clauses. We take as input
the local instance S, the set of virtual edges Evirt, the set of virtual arcs E→

virt, and the
bound k on the maximum state space size and produce a MaxSAT instance ΦS . We reuseΦS

parts of the encoding from Chapter 4 (which we will refer to as the BN-SLIM encoding).

Let n = |S| denote the size of the subinstance. We now reiterate the hard clauses from the
BN-SLIM encoding and refer to the conjunction of these clauses as the formula Φ′

S . ForΦ′
S

an explanation of the semantics of these variables and clauses, we refer to Section 4.3.2.

(acyc∗
u,v ∧ acyc∗

v,w) → acyc∗
u,w

(ord∗
u,v ∧ ord∗

v,w) → ord∗
u,w

�
for distinct u, v, w ∈ S.

¬arcv,v for v ∈ S.
P ∈Pv

parP
v = 1 for v ∈ S.

parP
v → acycu,v for v ∈ S, P ∈ Pv, and u ∈ P.

(parP
v ∧ ordu,v) → arcu,v

(parP
v ∧ ordv,u) → arcv,u

�
for v ∈ S, P ∈ Pv, and u ∈ P.

(parP
v ∧ ordu,w) → arcu,w

(parP
v ∧ ordw,u) → arcw,u

�
for v ∈ S, P ∈ Pv, and u, w ∈ P.

(arcu,v ∧ arcu,w ∧ ordv,w) → arcv,w

(arcu,v ∧ arcu,w ∧ ordw,v) → arcw,v

�
for u, v, w ∈ S.

¬arcu,v ∨ ¬arcv,u for u, v ∈ S.

ord∗
u,v → arcu,v ∧ ord∗

v,u → arcv,u for {u, v} ∈ Evirt.

parP
v → acyc∗

u,v for v ∈ S, P ∈ Pv, and (u, v) ∈ A→
virt(v, P).

We also add the following unit soft clauses to Φ′
S , setting f ′(P, v) = f(P, v) − f(∅, v) as

their weight
(parP

v) : weight f ′(P, v) for v ∈ S, P ∈ Pv.

The weight of a solution to Φ′
S is given by the sum of weights of the satisfied soft clauses.

Let W =
v∈S f ′(v, PD(v)) be the core of the unmodified local instance S.

Lemma 5.3. Φ′
S admits a solution of weight W new if and only if there exists a well-

behaved DAG Dnew
S with respect to D, such that f(Dnew) − f(D) = W new − W .

62

5.3. BN Learning of Bounded State Space Size

Proof. We refer to Theorem 4.2 to establish the lemma, since the only difference is the
clauses that bound treewidth of Dnew

S from above. Therefore Dnew
S is still acyclic. Further,

an assignment that corresponds to setting Dnew
S = SS achieves the lower bound on the

score.

5.3.4 BDD-based Counter

l = 0 l = 1 l = 1.6

TRUE

(x1, 0)

(x2, 0) (x2, 1)

(x3, 0) (x3, 1)

l = 2.6

(x3, 2.6)(x3, 1.6)

FALSE

Figure 5.3: Example BDD constructed for three variables v1, v2, v3 with domain
sizes 2, 3, 4, respectively, and with k = 6. The logarithms of the domain sizes
are 1, 1.6, 2, respectively. The solid and dashed edges represent the ‘if’ and ‘else’ arcs
respectively. The path (x1, 0) (x2, 1) (x3, 2.6) TRUE represents the bag con-
taining x1 and x2 with a state space size of 6 ≤ k, hence reaching TRUE. The path
(x1, 0) (x2, 1) (x3, 1) FALSE represents the bag containing x1 and x3 with a state
space size of 8 > k, hence reaching FALSE. Note that both these bags have cardinality 2
and hence are treated the same when it comes to treewidth.

In this section, we elaborate the counting mechanism that we use to encode the condition�
w∈S,w ̸=v,arcv,w

log(ds(w)) ≤ log(k) for v ∈ S.

The technique we use was first proposed by Eén and Sörensson [ES06]. Intuitively
speaking, we construct an (Ordered) Binary Decision Diagram (BDD), where following a
path from an input node to a terminal node corresponds to summing up weights. Each
layer of nodes in the BDD is associated with a variable v ∈ S, and there are two outgoing
edges from each node in the BDD corresponding to the existence and absence of arcv,w.

More formally, let us assume that the set S consists of the variables v1, . . . , vm, where
m := |S|. We construct a BDD, which is a directed graph with nodes of the form (xi, l)
where i ∈ {1, d . . . m} is an integer, and l ∈ [0, k] is a real number. Here, xi signifies
that we branch on variable vi next, and l denotes the level of the current sum of
weights. Additionally, there are two special terminals (or sink nodes) — TRUE and
FALSE. From each node (xi, l) there are two outgoing arcs — the ‘if’ arc connecting it

63

5. Bounded State-Space BNSL

to the node (xi+1, l + log(ds(vi))), and the ‘else’ arc connecting it to the node (xi+1, l).
In case l + log(ds(vi)) > k, we instead connect it to the FALSE terminal. Finally, for a
node of the form (xm, l), we connect it to the TRUE terminal iff l + log(ds(vm)) ≤ k. We
denote by if(x, l) and else(x, l), the nodes connected to (x, l) via the ‘if’ and ‘else’ arcs,
respectively. We refer to Figure 5.3 for an example. There are at most 2m + 1 nodes in
the BDD.

For each variable v ∈ S, we have one such BDD to ensure that the product of the
domain sizes of the endpoints of the outgoing arcs does not exceed the bound k. It is
straightforward to express this BDD in the form of a CNF formula Bv. We introduce
a variable bddv

w,l for each w ∈ S \ {v} and each level l in the BDD. We then add the
following clauses to Bv

(bddv
w,l ∧ arcv,w) → bddv

if(w,l)

(bddv
w,l ∧ ¬arcv,w) → bddv

else(w,l)

�
for (w, l) ∈ V (Bv).

Next, we add the clause ¬bddv
FALSE to Bv that falsifies Bv if the FALSE sink node is

reached, i.e., if the outgoing arcs of variable v violate the bound. Finally, we conjoin all
the formulas Bv for v ∈ S with the formula Φ′

S to obtain our final formula ΦS , giving us
the following theorem.

Theorem 5.4. ΦS admits a solution of weight Knew if and only if there exists a well-
behaved DAG Dnew

S with respect to D, such that f(Dnew) − f(D) = Knew − K and
msss(Dnew

S) ≤ k.

Proof. By construction of the BDD, we see that Bv is falsified if and only if the outgoing
arcs from variable v result in the state space size of that bag exceeding k. Thus, �

v∈S Bv

is satisfiable if and only if msss(Dnew
S) ≤ k. Combining this with Lemma 5.3, we obtain

the desired result.

Finally, we would like to draw attention to the fact that since only the local part is
encoded into a MaxSAT formula, increasing the total number of variables does not
directly affect the solving time for each individual subinstance, and consequently, the
time required for each individual improvement. Thus, the overhead of the BDDs doesn’t
increase when the total number of variables in the network increases. This is a crucial
strength of the SLIM approach in general, i.e., it scales well relative to the total number
of variables, and the runtime has a stronger dependence on the budget.

5.4 Experimental Evaluation
5.4.1 Setup
We tested the various proposed methods on 4-core Intel Xeon E5540 2.53 GHz CPU
(internal cluster), with each process having access to 8 GB RAM. The k-greedy and

64

5.4. Experimental Evaluation

k-MAX algorithms are available as a part of the BLIP package [Sca15] implemented in
Java. We modified and extended these to obtain the implementations for k-greedybss

and k-MAXbss. We implemented BN-SLIMbssin Python making use of the NetworkX
library [HSS08]. We used UWrMaxSat1 as the MaxSAT-solver, because of its reliable
response to timeouts. For evaluating the reasoning time we used the Merlin package by
Radu Marinescu.2 We provide the source code as a public GitHub repository [PS21a].

We tested the algorithms on a subset of the bnlearn repository.3 These networks are
commonly used as benchmarks in the literature. Out of the 22 networks available in the
repository, we only consider the 16 networks that contain non-binary variables. These
networks range in size from 6 to 1041 random variables. Due to the smaller networks’
behavior being susceptible to random noise, we focus more on the larger networks.

5.4.2 Method
Next, we describe the method used to evaluate the performance of the BNSL algorithms
enumerated in Section 5.3.1. We run the algorithms for a total time of 90 minutes
and record the reasoning time and score at the end. We denote by BN-SLIMbss(X) the
algorithm composed of running the heuristic X for 30 minutes and then running the
bounded state space local improvement algorithm on top of the heuristic solution for
another 60 minutes. We run the algorithms with multiple bounds and multiple random
seeds. Finally, for each instance, we visualize the distribution of scores and reasoning
times on a scatter plot to capture the trade-off achieved between the two metrics. We set
k-greedy and k-MAX as the baseline algorithms and always compare the newly proposed
algorithms against these baseline algorithms. The baseline algorithms represent the
state-of-the-art bounded treewidth BNSL methods while the heuristics represent the
bounded state space based BNSL methods.

5.4.3 Results
We performed some preliminary tests to determine the most promising bounded state
space (bss) methods for comparison against the baseline of tw-methods k-MAX and
k-greedy. On the basis of these tests, we choose BN-SLIMbss(k-MAXbss) as the bss method.
In Figure 5.4 we see the scatter plots for a representative subset of instances. The plots
are presented in pairs with the left subplot depicting the tw methods’ performance and
the right subplot depicting BN-SLIMbss(k-MAXbss)’s performance.

In general, from Figure 5.4, we observe that BN-SLIMbss(k-MAXbss) achieves much
faster reasoning times at the expense of slightly worse scores in some cases. Whereas
in some cases, BN-SLIMbss(k-MAXbss) manages to match the score while reducing the
reasoning time significantly. In most cases, we observe a reduction by an order of
magnitude. Another point worth noting is that the clustering of the BNs output by

1https://maxsat-evaluations.github.io/2019/descriptions.html
2https://github.com/radum2275/merlin
3https://www.bnlearn.com/bnrepository/

65

https://maxsat-evaluations.github.io/2019/descriptions.html
https://github.com/radum2275/merlin
https://www.bnlearn.com/bnrepository/

5. Bounded State-Space BNSL

Starting Heuristic

k-greedy k-MAX 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

Width (tw or log2(msss))

−280000 −270000 −260000 −250000 −240000
Score

0
10

0
10

1
M

ea
n

Re
as

on
in

g
Ti

m
e

(in
 s)

Baseline

−280000 −270000 −260000 −250000 −240000
Score

HeuristicInstance: munin1 (186 nodes)

−3.4 −3.2 −3.0 −2.8 −2.6 −2.4 −2.2
Score 1e6

0
10

0
10

1
M

ea
n

Re
as

on
in

g
Ti

m
e

(in
 s)

Baseline

−3.4 −3.2 −3.0 −2.8 −2.6 −2.4 −2.2
Score 1e6

HeuristicInstance: diabetes (413 nodes)

−1.86 −1.84 −1.82 −1.80 −1.78 −1.76 −1.74
Score 1e6

0
10

0
10

1
M

ea
n

Re
as

on
in

g
Ti

m
e

(in
 s)

Baseline

−1.86 −1.84 −1.82 −1.80 −1.78 −1.76 −1.74
Score 1e6

HeuristicInstance: pigs (441 nodes)

−1.725−1.700−1.675−1.650−1.625−1.600−1.575
Score 1e6

10
0

10
1

M
ea

n
Re

as
on

in
g

Ti
m

e
(in

 s)

Baseline

−1.725−1.700−1.675−1.650−1.625−1.600−1.575
Score 1e6

HeuristicInstance: link (724 nodes)

Figure 5.4: Scatter plots comparing X ∈ {k-greedy, k-MAX} with BN-SLIMbss(X)

66

5.5. Conclusion

BN-SLIMbss(k-MAXbss) along the reasoning time axis is much tighter than with the tw
methods. This highlights the reliability aspect of the bss methods.

We also observe that the bss method BN-SLIMbss(k-MAXbss) allows us to expand the
search space much more carefully and predictably. For instance, consider a bound on the
maximum state space size of 5 × 105. A reasonable equivalent bound on the treewidth
would be log2(5 × 105) ≈ 19. However, networks with treewidth 19 can be expected to
have much worse inference speeds as compared to networks with msss ≤ 5 × 105.

This confirms our hypothesis that maximum state space size is a much better estimator
of reasoning time as compared to treewidth, and that one can construct algorithms like
BN-SLIMbss(k-MAXbss) to learn such fast-inference BNs.

5.5 Conclusion
We have introduced the concept of bounded state space BNSL, devised it theoretically,
implemented it, and tested it rigorously on a set of real-world data sets. We compared
the new approach with state-of-the-art bounded treewidth BNSL algorithms on a two-
dimensional setting to see the trade-off between inference speed and data fitting. Our
results show that the new approach indeed provides overall better and more reliable
results. In some cases, the advantage of bounded state space over bounded treewidth
methods is significant.

67

CHAPTER 6
BNSL with Expert Constraints

Science and everyday life cannot and should not be
separated.

— Rosalind Franklin, “Rosalind Franklin: The Dark Lady
of DNA”

� Published as “Learning large Bayesian networks with expert constraints”. Peru-
vemba Ramaswamy and Szeider. In: Proceedings of the Thirty-Eighth Conference on
Uncertainty in Artificial Intelligence, (Aug. 2022) [PS22]

In the final stop of our journey, we revisit Bounded Treewidth BNSL, but now with an
added twist. We introduce so-called expert constraints which are additional requirements
that the learned BN must satisfy. These requirements are expressed in terms of arcs or
ancestries that must be present or absent in the learned BN. Some examples of such
constraints are shown in Table 6.1. For each constraint, we also show the restriction that
it imposes on the learned BN and also the underlying real-world causal effect identified by
the expert that is being modelled by that constraint. From these constraints, Constraints
A and B are satisfied by the DAG shown in Figure 3.1 while Constraint C is violated.
These constraints are typically provided by an expert based on their domain knowledge
and their understanding of the causality of the involved RVs.

The area of Causality was pioneered by Pearl [Pea88] who was concerned that predictive
models of the time relied solely on correlation. He introduced causality as a means to make
models that are more ‘intentional’ in terms of their represented dependencies. Models
learned from causal data are more trustworthy as compared to models learned from
purely correlational data. In this chapter, we consider the problem of learning bounded
treewidth BNs with thousands of RVs which also satisfy additional expert constraints. We

69

6. BNSL with Expert Constraints

Constraint Restriction on BN Interpretation of Expert
A. income → job there must be an arc from

income to job
income has a (direct) causal
effect on job

B. study ⇝ masters there must be a path from
study to masters

study has a (possibly
indirect) causal effect on
masters

C. income ⇝/ grade there can be no path from
income to grade

income has no (direct or
indirect) causal effect on
grade

Table 6.1: Examples of expert constraints

develop a SLIM approach for this problem by significantly upgrading both the k-greedy
heuristic algorithm and the Bounded Treewidth BNSL MaxSAT encoding.

6.1 Introduction

We are already well-acquainted with the structure learning problem for BNs with the
additional requirement of bounded treewidth (from Chapter 4). Another fundamental
requirement receiving a growing amount of attention is to learn BNs that fit the data and
satisfy additional expert constraints [Che+16; KKN01; LB18; Cor+13]. Such constraints
can assert, for instance, direct or indirect causation between random variables in terms
of whether one variable is a parent or an ancestor of the other in the DAG of the learned
BN. Please see Table 6.2 for a list of expert constraints considered in the literature.

Arc constraints (direct causation)
u → v the DAG contains the arc (u, v)
u →/ v the DAG does not contain the arc (u, v)
u ↔ v the DAG contains either the arc (u, v)

or the arc (v, u)
Ancestry constraints (indirect causation)

u ⇝ v the DAG contains a path from u to v
u ⇝/ v the DAG does not contain a path from

u to v
u ↭ v the DAG contains either a path from u

to v or one in the other direction

Table 6.2: Various expert or side constraints considered in literature.
→,→/ ,↔,⇝,⇝/

In addition to bounded treewidth and expert constraint requirements, one must address
the scalability of methods for BNSL. For instance, learning a BN of bounded treewidth

70

6.1. Introduction

Scalability
(# RVs)

Bounded
treewidth

Supported
constraints

Score
optimization

EC Tree [Che+16] ≤ 20 no {⇝,⇝/ } exact
MINOBSx [LB18] ≤ 50 no {→/ ,⇝/ , →, ↔,⇝} approx.
CaMML [KKN01] unknown no {⇝/ , →, ↔,⇝}† exact
k-greedy [Sca+18] ≤ 10000 yes ∅ approx.
BN-SLIM (Chapter 4) ≤ 10000 yes ∅ approx.
Con-k-greedy (here) ≤ 10000 yes {→/ ,⇝/ , →, ↔,⇝}‡ approx.
Con-BN-SLIM (here) ≤ 10000 yes {→/ ,⇝/ , →, ↔,⇝}‡ approx.

Table 6.3: Table comparing relevant features of various methods. † CaMML allows
weighted constraints with the weight of 1 signifying hard constraints. ‡ Negative con-
straints are treated as hard constraints, while positive constraints can be violated.

that optimally fits the data is NP-hard [KP13]. The consideration of expert constraints
provides an additional source of complexity.

In this chapter, we propose Con-BN-SLIM (Constrained BN-SLIM), the first method for
BNSL that addresses all three requirements simultaneously: bounded treewidth, expert
constraints, and scalability. Table 6.3 shows how our new method compares to other
BN structure learning methods from the literature. Since these methods span decades
of research, it was a natural choice to try to reuse their progress as much as possible
so as to stand on the shoulders of giants. Thus, we arrived at our 2-phase approach of
Con-BN-SLIM, which leverages the scalability of k-greedy and the localized optimization
power of BN-SLIM (particularly useful for expert constraints).

In Phase 1, a heuristic algorithm greedily computes a candidate BN from data, thereby
trying to satisfy as many expert constraints as possible. The heuristic algorithm is a
version of the k-greedy algorithm by Scanagatta et al. [Sca+18] that we modified to
consider expert constraints. This method scales very well. However, considering expert
constraints significantly deteriorates the algorithm’s capability of fitting the BN to the
data. This even prevails when we consider the expert constraints as soft constraints,
which allows the algorithm to violate some constraints.

We, therefore, add a Phase 2 that takes the candidate BN from the first phase and
repeatedly tries to improve the score by optimizing local parts of the BN. The second
phase is an extension of the BN-SLIM approach from Chapter 4. BN-SLIM utilizes
a MaxSAT solver to locally improve the BN. Crucial for our extension is to express
suitable local versions of the desired expert constraints in terms of hard constraints
for the MaxSAT solver. This way, the solver may improve the fitting of the BN while
maintaining the satisfaction of all the expert constraints satisfied by the first phase
solution.

Due to our novel contributions in Section 6.4, like localization of global constraints
and the scaffolding of auxiliary variables required to express and incorporate expert

71

6. BNSL with Expert Constraints

constraints into BN-SLIM, the proposed approach is more than just gluing together
existing methods.

We evaluated a prototype implementation of Con-BN-SLIM on all discrete sample data
from the bnlearn BN repository, sampling expert constraints from the ground truth
networks. After the first phase of running the modified heuristic algorithm for about
30 minutes, the rate of improvement deteriorates. Phase 2 begins, and Con-BN-SLIM
takes over the candidate network and shows a remarkably high improvement rate. The
final network shows a significantly higher score than the one produced by Phase 1, which
displays favorably in the ∆BIC metric.

The empirical findings on our prototype implementation are highly encouraging, providing
the ground for several avenues of further investigation.

6.2 Additional Background
Since most of the required notation and methodology has already been discussed in
Chapter 3, in this section, we only discuss the minimal additional background required.

In our work, we consider only arc and ancestry constraints. The requirements for
satisfaction of the constraints is described in Table 6.2. We use the term constraint setconstraint set

to refer to a set of such constraints and a DAG D is said to satisfy a constraint set if it
satisfies all constituent constraints. We refer to → and ⇝ as positive constraints and →/
and ⇝/ as negative constraints. Note that, u ⇝/ v is denoted as v > u by Li and Beek
[LB18]. Also note that, some other variants of constraints like ↭/ can be expressed as
boolean combinations of the elementary constraints from Table 6.2. The path P avoids apath avoiding a set

set S ⊆ V if vi /∈ S for all 1 ≤ i < ℓ.

We also use the concept of partial orders in our modification of k-greedy (Section 6.3). A
partial order is a set of pairwise ordering requirements u ▷ v. A linear order u1, . . . , un ispartial order

said to obey a partial order if, for every ui ▷ uj in the partial order, i < j.obey a partial order

6.3 k-greedy with Constraints
In this section, we describe the modifications made to k-greedy to obtain a heuristic
algorithm to solve the Constrained BNSL problem. We would like to point out that
we chose to modify k-greedy as a proof of concept because of its simplicity. However,
theoretically similar modifications are also possible for the more aggressive k-MAX
heuristic [Sca+18].

6.3.1 Overview of k-greedy

First, we briefly recall the basic k-greedy heuristic by Scanagatta et al. [Sca+16]. The
algorithm takes as input a set X of RVs and a score function cache and returns a DAG D

72

6.3. k-greedy with Constraints

along with a corresponding (rooted) tree decomposition T . The algorithm repeatedly
performs the following steps:

Step 1 : Randomly sample a linear ordering σ over the variables X

Step 2 : Construct the root bag of T from the first k + 1 variables of σ. Also, compute a
DAG over these variables maximizing the score (either exactly or approximately).

Step 3 : Then insert the remaining variables from σ one by one into the DAG, selecting
the best parent set for it from the already inserted variables.

After each step, if the newly computed DAG has a higher score than the previous best
DAG, it is called an improvement.

6.3.2 Modified k-greedy
To upgrade this algorithm to work with expert constraints, we modify each of the
steps above to obtain Con-k-greedy (Constrained k-greedy). Algorithm 6.2 shows the
pseudocode for Con-k-greedy. In Step 1, instead of randomly sampling an order, we first
‘compile’ the supplied constraints C into a partial order P. Meaning, we add a partial
order pair u ▷ v to P for every positive constraint u ▷◁ v, i.e., ▷◁ ∈ {→,⇝}. This is
because it can be easily shown that all topological orderings of all networks that satisfy
constraints C also obey the partial order P. We then randomly sample linear orderings
that obey this partial order, which serve as both elimination orderings and topological
orderings for the DAG being constructed.

Algorithm 6.1: Pseudocode for Compile
Input : Set C of expert constraints
Output : Set P of partial order pairs

1 begin
2 P ←− ∅
3 foreach u ▷◁ v ∈ C do
4 if ▷◁ ∈ {→,⇝} then
5 P ←− P ∪ {u ▷ v}
6 end
7 end
8 return P
9 end

In Step 2, we now search for a best DAG that does not violate any negative constraint
by brute force or using any other local solver (Line 7). In Step 3, we select the best
parent set from among the parent sets that violates none of the negative constraints and
satisfies all the positive constraints involving the currently inserted variable. If there are

73

6. BNSL with Expert Constraints

Algorithm 6.2: Pseudocode for Con-k-greedy
Input : Score function f , set C of expert constraints, treewidth bound k
Output : DAG D satisfying all negative constraints necessarily and positive

constraints optionally
1:begin
2: P ←− Compile(C)
3: loop
4: Sample linear order σ obeying P
5: Construct root bag B0 ←− {σ0, . . . , σk+1}
7:7: Construct a DAG D over B0 maximizing score and not violating any

negative constraints
8: for v in σk+2, . . . , σn do
9: R ←− set of parent sets of v not violating any negative constraints and

satisfying all positive constraints of the form u ▷◁ v for some u
10: if R is nonempty then
11: PD(v) ←− maximum score parent set from R
12: else
14:14: PD(v) ←− ∅
15: end
16: end
17: if algorithm terminated then
18: return D
19: end
20: end
21:end

no such parent sets, we simply select the empty parent set for the current variable (see
Line 14); this ensures that no negative constraints are violated.

This results in an algorithm that can keep generating better and better scoring DAGs
with the condition that all generated DAGs respect the negative constraints from C as
hard constraints and the positive constraints as soft constraints.

6.3.3 Practical considerations
Theoretically, it is possible to modify k-greedy similarly so that the resultant algorithm
treats all constraints as hard constraints. However, in practice, we noticed that this
severely limits the number of improvements and, in many cases, fails to find any networks.
We, thus, slightly alter Step 3 to only reject choices of parent sets that violate the
negative constraints, i.e., {⇝/ , →/ }. As a result, the heuristic provides solutions which
satisfy all the negative constraints but not necessarily all the positive and undirected
constraints. In other words, all positive and undirected constraints, i.e., {→, ↔,⇝}, are
treated as soft constraints.

74

6.4. BN-SLIM with Constraints

6.3.4 Experimental Evaluation
We experimentally evaluated the heuristic proposed above and found the results unsatis-
factory. We noticed that the rate of improvement diminishes quite quickly and essentially
reaches saturation by 30 mins (see Figure 6.1). However, the output of the heuristic could
serve as a starting point for further improvement. The SAT-based Local Improvement
Method (SLIM) framework could potentially turbocharge and improve the score of such
an intermediate saturated solution. In the next sections, we develop a solution using the
SLIM framework for the Constrained BNSL problem.

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (in minutes)

101

102

103

Nu
m

be
r o

f i
m

pr
ov

em
en

ts

Activity Plot
Con-k-greedy

Figure 6.1: Activity plot showing the rate of improvements of Con-k-greedy against time.
Note that the y-axis is in log scale.

6.4 BN-SLIM with Constraints
6.4.1 Theory
In this section, we lay the theoretical foundation for solving the Constrained BNSL prob-
lem using the SLIM framework. The SLIM framework has been previously demonstrated
in Chapter 4 to solve the BNSL problem. We refer to this method as BN-SLIM. We
directly extend BN-SLIM to solve the Constrained BNSL problem; as a result we reuse
the same notation.

The problem input consists of a set V of random variables, a score function f , a treewidth
bound W and a set C of expert constraints, and each constraint is of the following form

u ▷◁ v, where u ̸= v ∈ V and ▷◁ ∈ {→, →/ , ↔,⇝,⇝/ }

75

6. BNSL with Expert Constraints

The goal is to compute a DAG D⋆ over V with maximum score such that the treewidth of
the moralized graph M(D⋆) is bounded by W and D⋆ satisfies all the constraints in C. We
assume to have an initial heuristic solution D, a corresponding tree decomposition T =
(T, χ) of width ≤ W of the moralized graph M(D) and that D satisfies the constraint
set C. Our aim now, is to compute a DAG Dnew over V with score at least as much
as D while still having bounded treewidth and satisfying constraint set C. Applying this
process repeatedly, we can improve the score of the resultant DAG while still satisfying
all the requirements.

For convenience, we recall the notation from Section 4.2. We select a subtree S ⊆ T suchS

that the total number of vertices in VS := �
t∈S χ(t) is at most some budget β. β is a

fixed constant limiting the size of the local instances such that instances of this size can
be solved reasonably quickly by the local solver. The value of β is decided by means of
experimenting and educated guesses. We define Dnew

S as the DAG induced by Dnew on VS ,Dnew
S

where E(Dnew
S) = { (u, v) ∈ E(Dnew) : {u, v} ⊆ VS } and Snew = (Snew, χnew) as a treeSnew

Snew, χnew decomposition of Dnew
S . For convenience, we use the shorthand Enew

S to denote E(Dnew
S).

We distinguish between different kinds of vertices:

• v ∈ VS a boundary vertex if there exists a tree node t ∈ V (T) \ V (S) suchboundary vertex

that v ∈ χ(t);

• v ∈ VS is an internal vertex if v is not a boundary vertex;internal vertex

• v ∈ V \ VS is an external vertex .external vertex

Two boundary vertices v, v′ are adjacent if both occur together in some bag outside S. Inadjacent boundary
vertices that case we call {v, v′} a virtual edgeedge!virtualvirtual edge. We let Evirt be the set ofvirtual edge

Evirt all virtual edges. The extended moral graph Mext is obtained from M(Dnew
S) by adding

extended moral graph
Mext

all virtual edges. If v, v′ are two adjacent boundary vertices such that Dnew contains a
directed path from v′ to v, where all the vertices on the path, except for v′ and v, are
external, then (v′, v) is a virtual arcarc!virtualvirtual arc. E→

virt denotes the set of allvirtual arc
E→

virt virtual arcs.

We now collect and reiterate the conditions from Section 4.2 needed to state the main
theorem of this chapter.

C1 Dnew
S is acyclic.

C2 The moral graph M(Dnew
S) has treewidth ≤ W .

C3 Snew is a tree decomposition of the extended moral graph Mext.

C4 For each v ∈ VS , if PDnew(v) contains external vertices, then there is some t ∈
V (T) \ V (S) such that PDnew(v) ∪ {v} ⊆ χ(t).

C5 The digraph (VS , Enew
S ∪ E→

virt) is acyclic.

76

6.4. BN-SLIM with Constraints

Theorem 6.1 (Recalling Theorem 4.1). If all the conditions C1–C5 are satisfied, then
Dnew is acyclic, the treewidth of M(Dnew) is at most W , and the score of Dnew is at
least the score of D.

Now, we discuss how the different types of constraints can be transformed into their
respective local versions along with the correctness for the same. We note that the
input constraint set can only consist of elementary arc and ancestry constraints (listed
in Table 6.2); however, the translation into their respective local versions additionally
allows disjunctions over elementary constraints. This is because the local versions of the
constraints are directly handed off to the MaxSAT solver which is capable of handling
such disjunctions.

To discuss the behavior of the ancestry constraints, we use the concept of first-hit
descendants and first-hit ancestors. Given a DAG F over vertices W , subset Y ⊊ W
and vertex r ∈ W , a node s ∈ Y is said to be a first-hit descendant of r in Y if there first-hit descendant

exists a directed path from r to s avoiding all the other vertices in Y \ {r, s}. We denote
by descr

Y ⊆ Y , the set of all first-hit descendants of r in Y . Similarly, a node s ∈ Y is said desc

to be a first-hit ancestor of r in Y if there exists a directed path from s to r avoiding all first-hit ancestor

the other vertices in Y \ {r, s}. We denote by ancr
Y ⊆ Y , the set of all first-hit ancestors anc

of r in Y . We denote by ⊤, the always-true trivial constraint that is always satisfied. ⊤

Arc Constraints (→, →/ , or ↔)

Let c be a constraint u ▷◁ v, where ▷◁ ∈ {→, →/ , ↔}. If either of u, v /∈ S, then the
constraint remains satisfied, since the presence or absence of the arc between u, v is not
affected by Dnew. The local version of such a constraint is thus ⊤. Alternatively, if
both u, v ∈ S, it suffices to ensure that the constraint c holds in Dnew

S . The local version
of such a constraint is c itself.

Positive Ancestry Constraints (⇝)

Consider a constraint of the form u ⇝ v. Since the constraint is satisfied in D, we know
that there exists a u − v path in D.

Case 1 There is at least one u − v path avoiding VS . The constraint remains satisfied
independent of Dnew

S . The local version of such a constraint is ⊤.

Case 2 All u − v paths pass through VS . It suffices to ensure that there exists at least
one path in Dnew

S from some du ∈ descu
VS

to some av ∈ ancv
VS

. The local version of
such a constraint is �

du,av
du ⇝ av.

Negative Ancestry Constraints (⇝/)

Consider a constraint of the form u ⇝/ v. Since the constraint is satisfied in D, we know
that there are no u − v paths in D. Any u − v path passing through VS must be of the
form u − du − av − v, for some du ∈ descu

VS
, av ∈ ancv

VS
.

77

6. BNSL with Expert Constraints

Case 1 descu
VS

= ∅ or ancv
VS

= ∅. The constraint remains satisfied independent of Dnew
S .

The local version of such a constraint is ⊤.

Case 2 Both sets are non-empty. It suffices to ensure that there is no path in Dnew
S

from any du ∈ descu
VS

to any av ∈ ancv
VS

. The local version of such a constraint is�
du,av

du ⇝/ av.

From this discussion, we can assert the following lemma.

Lemma 6.2. If Dnew
S satisfies the local versions of each of the constraint in C, then

Dnew satisfies the constraint set C.

From Theorem 6.1 and Lemma 6.2, we obtain the following corollary.

Corollary 6.2.1. If conditions C1–C5 are satisfied and Dnew
S satisfies the local versions

of the constraints in C, then Dnew is acyclic, the treewidth of M(Dnew) is at most W ,
the score of Dnew is at least that of D and Dnew satisfies the constraint set C.

6.4.2 Encoding
In this section, we describe the MaxSAT encoding to compute Dnew

S . We build on top of
the encoding from Section 4.3.2. We recall briefly, the basic variables in the encoding are
the parP

v variables, which are true if and only if P is the parent set of v. These variables
appear in the encoding as soft clauses weighted by f(v, P). In addition to that, there
are several hard clauses involving arcu,v, acycu,v and ordu,v variables, which encode the
edges of the moralized graph, the acyclicity of the DAG and the elimination ordering
corresponding to the tree decomposition respectively. The soft and hard clauses of the
encoding are passed to the MaxSAT solver to optimize the network’s score. The MaxSAT
solver then finds solutions satisfying all the hard clauses while also maximizing the weight
of the satisfied soft clauses. Eventually, this encoding finds a network with maximum
score that satisfies the conditions C1–C5. For the sake of brevity, we skip repeating the
entire encoding and only describe the additions.

Now, having Corollary 6.2.1, we describe the addition to the encoding that ensures
that Dnew

S satisfies the local versions of the constraints.

Arc Constraints (→, →/ , ↔)

We filter out the infeasible parent sets based on the arc constraints. More specifically,
for the constraint u → v, we discard all parent sets of v that do not contain u, and
conversely, for the constraint u →/ v, we discard all parent sets that contain u.

Ancestry Constraints (⇝,⇝/)

We address the ancestry constraints by introducing the following variables to keep track
of the paths within the network:

78

6.4. BN-SLIM with Constraints

1. dagarcu,v represents an arc in the DAG from u to v (does not include the moralized
and fill-in edges unlike arcu,v),

2. tarcu,v captures the transitive closure of the dagarcu,v variables.

3. pathu,v implies the existence of a path in the DAG from u to v,

4. pathqu,v,z is a helper variable for pathu,v and implies the existence of a path in the
DAG from u to v with z as the penultimate vertex,

5. virtarcu,v represents the short-circuited directed paths through nodes outside the
local instance.

We then introduce hard clauses over these variables to capture their semantics and to
allow expressing expert constraints. This implies that these constraints are treated as
hard constraints. At times, we write the clauses using the friendlier implication notation.
However, all of these clauses can be converted into the standard Conjunctive Normal
Form (CNF) required by the MaxSAT solver. For this reason, the encoding accepts as
input all the elementary constraints as well as disjunctions over elementary constraints.

Phase 2 only considers the set of constraints satisfied by the initial heuristic solution as
hard constraints. This ensures that all the constraints satisfied by the Phase 1 solution
remain satisfied at the end of Phase 2. Further, there might be some constraints that
were previously violated in the heuristic solution but end up being coincidentally satisfied
by Phase 2. Thus, the set of satisfied constraints by the Phase 2 solutions is a (not
necessarily strict) superset of the set of constraints satisfied by the Phase 1 solution.

To disallow simultaneous arcs in opposite directions in the DAG, we add the clauses

¬dagarcu,v ∨ ¬dagarcv,u for all u ̸= v ∈ S.

We then add the following clauses to ensure that dagarcu,v is true if and only if u is in
the parent set of v.

parP
v ⇒

�
u∈P

dagarcu,v for all v ∈ S, P ∈ Pv, and

dagarcu,v ⇒
�

P ∈Pv s.t. u∈P

parP
v for all u ̸= v ∈ S.

And finally, we propagate the DAG arcs to the arcs of the moralized graph using the
clauses

dagarcu,v ⇒ arcu,v for all u ̸= v ∈ S.

For the tarcu,v variables, we initialize the transitivity using the dagarcu,v and virtarcu,v

variables as follows
dagarcu,v ⇒ tarcu,v

virtarcu,v ⇒ tarcu,v

�
for all u ̸= v ∈ S,

79

6. BNSL with Expert Constraints

and then encode the transitivity using the following clauses

tarcu,v ∧ tarcv,w ⇒ tarcu,w for all distinct u, v, w ∈ S.

To encode the path variables, we first encode the condition that the path can either be a
single arc in the DAG, a single external virtual arc or a path through at least one other
variable z. For this we add the following clauses for all u ̸= v ∈ S,

pathu,v ⇒ dagarcu,v ∨ virtarcu,v ∨
�

z ̸=u,v

pathqu,v,z.

Then, we encode the condition for the existence of a path from u to v with z in the
penultimate position, by asserting a path from u to z and either a direct arc or a virtual
arc from z to v. For this we add the following clauses for all distinct u, v, z ∈ S,

pathqu,v,z ⇒ pathu,z ∧ (dagarcz,v ∨ virtarcz,v).

Finally, we encode the constraints using the predicates described so far. For the arc
constraints, we use the dagarcu,v variables as follows

for u → v, we use dagarcu,v,

for u →/ v, we use ¬dagarcu,v,

for u ↔ v, we use dagarcu,v ∨ dagarcv,u.

For the ancestry constraints, we use the pathu,v and tarcu,v variables as follows

for u ⇝ v, we use pathu,v,

for u ⇝/ v, we use ¬tarcu,v,

It is subtle but worth noting nonetheless, that the clause ¬pathu,v does not ensure the
absence of a path from u to v in the DAG, i.e., the pathu,v variables can only be used to
assert the existence of paths (⇝ constraints), not their absence (⇝/ constraints). This is
reason we use the tarcu,v variables to be able to assert the absence of paths.

6.5 Experimental Evaluation
6.5.1 Setup
We tested the two proposed heuristics on a 4-core Intel Xeon E5540 2.53 GHz CPU
cluster, with each process having access to 8 GB RAM. The k-greedy algorithm is
available as a part of the BLIP package [Sca15] implemented in Java. The source code
for Con-BN-SLIM was built by extending the BN-SLIM codebase and is available as a

80

6.5. Experimental Evaluation

public GitHub repository [PS21a]. BN-SLIM uses the Python NetworkX library [HSS08],
and the UWrMaxSat1 as the MaxSAT solver.

We ran the heuristics on score function caches and constraints sets generated from all the
discrete networks available as a part of the bnlearn BN repository.2 This repository is
commonly used for benchmarking Bayesian Networks [LB18; Che+16; Sca+18; Sca+16].
We split up the networks into three groups—small, medium, and large—based on the
number of random variables. We then synthesized expert constraints by randomly
sampling a fixed number η of constraints of each of the 5 types from the ground truth
networks (see Table 6.4). Note that this repository consists of the networks themselves,
not the instances or samples drawn from the BNs. Additionally, we also precomputed
the treewidths of all the ground truth networks (ranging between 3 and 15) and used
those values as the bounds for all the heuristics.

Group Variables η

Small up to 50 {5, 10}
Medium 50 to 500 {10, 25, 50}
Large above 500 {25, 50, 75}

Table 6.4: Data set characteristics. η denotes the set of possible values for number of
constraints of each type in the input.

6.5.2 Method

We now explain the format of the experiments used to compare the proposed heuristics,
which is similar to that of Section 4.4. We precompute the score function caches using the
available functionality from the BLIP package. All the evaluated methods are supplied
with the same score function caches. We then randomly synthesized different constraints
using three random seed values. The score function caches along with a corresponding
constraint set are together considered to be one input instance. This results in a total of
183 input instances.

We then ran the original k-greedy algorithm and the Con-k-greedy algorithm on these
inputs for 60 minutes. For each input, we ran the heuristics with three different random
seed values. For evaluating Con-BN-SLIM, we used the intermediate solution produced
by Con-k-greedy at the 30-minute mark as the starting heuristic. After which, we run
Con-BN-SLIM for another 30 minutes, thereby fixing the total runtime of each method
to 60 minutes. For each input, we ran Con-BN-SLIM with 8 different configurations
(random seed, timeout, encoding type). For all the experiments, we record the final score,
the final satisfied constraint count, and the rate of improvement.

1https://maxsat-evaluations.github.io/2019/descriptions.html
2https://www.bnlearn.com/bnrepository/

81

https://maxsat-evaluations.github.io/2019/descriptions.html
https://www.bnlearn.com/bnrepository/

6. BNSL with Expert Constraints

0 5 10 15 20 25 30 35 40 45 50 55 60
Time (in minutes)

101

102

103

Nu
m

be
r o

f i
m

pr
ov

em
en

ts

Activity Plot
Con-k-greedy
Con-BN-SLIM

Figure 6.2: Activity plot showing rate of improvement of Con-BN-SLIM and Con-k-greedy
against time. Note that the y-axis is in log scale.

6.5.3 Results

As a continuation to Figure 6.1, we first visualize the activity of Con-BN-SLIM compared
to Con-k-greedy. Note that, Con-BN-SLIM only starts running at the 30-minute mark
(after being handed the heuristic solution from Con-k-greedy) and hence does not record
any improvements till that point. As is evident from Figure 6.2, despite the rate of
improvements of Con-k-greedy slowing down drastically, when Con-BN-SLIM takes
over, it is still able to find many improvements over the exact same networks. This
demonstrates the notion of turbocharging quite well.

Next, we compare the scores of the networks produced by Con-k-greedy and Con-BN-SLIM
at the 60-minute mark. We use the ∆BIC metric to make this comparison. The difference
in BIC scores of two networks approximates the ratio of their marginal likelihoods,
which is the Bayes Factor [Raf95; Sca+18]. The ∆BIC score of a pair of networks is
mapped to a categorical scale, with positive scores signifying positive evidence towards
the first network and vice versa. As can be seen from Table 6.5, Con-BN-SLIM severely
outperforms Con-k-greedy.

Finally, we compare the constraint satisfaction by the solutions of k-greedy, Con-k-greedy,
and Con-BN-SLIM in Table 6.6. We measure and tabulate the percentage of total
constraints satisfied. There are several noteworthy points here.

82

6.5. Experimental Evaluation

Category ∆ BIC Count
extremely positive (10, ∞) 127
strongly positive (6, 10) 0
positive (2, 6) 0
neutral (-2, 2) 14
negative (-6, -2) 1
strongly negative (-10, -6) 0
extremely negative (−∞, -10) 7

Table 6.5: ∆BIC values comparing Con-BN-SLIM against Con-k-greedy

Group k-greedy Con-k-greedy Con-BN-SLIM
Small 77.74% 84.52% 90.24%
Medium 63.80% 74.43% 81.73%
Large 59.44% 88.91% 89.44%
All 67.54% 81.73% 86.53%

Table 6.6: Comparison of average number of satisfied constraints as a percentage of
number of total constraints

k-greedy

We see that k-greedy, despite having no knowledge of the constraints, manages to satisfy
more than half of them. This could be attributed to the fact that k-greedy still has
access to the score function caches whose job is to quantify and reflect the closeness of
any network to the ground truth network (just like the expert constraints).

Con-k-greedy

We see a clear improvement in the constraint satisfaction by Con-k-greedy compared
to k-greedy. This is to be expected as we modified the heuristic to consider the expert
constraints.

Con-BN-SLIM

We see that Con-BN-SLIM ends up satisfying slightly more constraints than Con-k-greedy
even though it was not intentionally designed to do so. This, however, is a favorable side
effect. Con-BN-SLIM never violates a constraint that was satisfied by the initial heuristic
solution. Thus, by random chance, the number of satisfied constraints can only increase.

83

6. BNSL with Expert Constraints

6.6 Conclusion
We have proposed the first method for BN structure learning that scales to large instances
while respecting treewidth bounds and soft expert constraints. At the heart of our method
is utilizing a MaxSAT encoding, applied locally, which demonstrates the flexibility of the
SLIM framework.

We see several possibilities for improving the portion of satisfied expert constraints. An
easy target is improving the Phase 1 heuristics to better handle the root bag construction,
which a MaxSAT encoding could provide. Even more potential might be to adapt other
heuristics like k-MAX [Sca+18] or Elimination Trees [BBL19] for Phase 1.

The current implementation does not actively try to increase the satisfied constraints
in Phase 2. Despite that, it was somewhat surprising for us to still see a significant
increase in the number of satisfied constraints (see Table 6.6). This suggests a learning
approach where we continuously check during Phase 2 whether any previously violated
expert constraint is satisfied and if so, add it as a hard constraint to the Phase 2 engine.
This way, Phase 2 could yield a monotonic increase in both the score and the number of
satisfied constraints.

The local solver is essentially a CNF formula, and we have not exhausted its whole range
of expressiveness with the constraints explored in this work. Thus, another viable future
direction could be to explore more sophisticated constraint types. Similarly, one can
look into incorporating expert constraints into the heuristic learning algorithms for other
probabilistic graphical models.

84

CHAPTER 7
Conclusion

As our circle of knowledge expands, so does the
circumference of darkness surrounding it.

Albert Einstein

We have reached the end our journey through the world of BNSL. We began from
the basic bounded treewidth variant and then stopped by the bounded state space
variant before finally looking at the constrained variant. In this chapter, we recall
and summarize the contributions from the previous chapters, look at potential future
avenues of research, and close with general directions for future work and commonly
applicable remarks.

7.1 Bounded Treewidth BNSL
In our work on bounded treewidth BNSL (Chapter 4), we studied the problem of learning
bounded treewidth BNs from data and devised a scalable SLIM approach to heuristically
solve the problem. We built on top of the state-of-the-art heuristic k-MAX and the
SAT encoding from Samer and Veith [SV09]. We significantly upgraded the encoding to
support virtual arcs and virtual edges which in turn allowed us to maintain replacement
consistency. The resultant heuristic algorithm outperformed the state of the art, which
at that time, was k-MAX.

This work can be extended in several ways. One of which, we have already seen in
Chapter 5, where we bound a different metric of the tree decomposition as opposed to
the treewidth. Additionally, we could replace the random traversal-based subinstance
selection with more well-guided approach similar to the work by Hickey and Bacchus
[HB22]. We also briefly experimented with a variant of BN-SLIM that periodically

85

7. Conclusion

compares the current heuristic solution (say Bh) with its own current best (say B), and
if f(Bh) > f(B), then BN-SLIM adopts Bh as its own current best and proceeds to
optimize this solution further. This is similar in spirit to the concept of ‘restarts’ used by
SAT-solvers.

Another interesting line of future work is what we call variable fidelity sampling. For
this, we compute different score function caches for the local and global solver. The local
solver has access to a finer-grained score function cache with potentially more parents
per variable. Naturally, this would come at a higher cost, but since the local solver only
works with relatively small number of variables (governed by the budget β), this higher
cost isn’t particularly deterrent. On the other hand, the global solver, which has to deal
with thousands of variables, would be overwhelmed if it operated at a similar level of
fidelity as the local solver. Thus, sparser score function caches with fewer parent sets per
variable would be more suitable for the scales which the global solver has to handle.

7.2 Bounded State Space BNSL

In our work on bounded state space BNSL (Chapter 4), we extended the basic Bounded
Treewidth BNSL problem to a more fine-grained metric as compared to treewidth. This
was motivated by empirical evidence of better correlation between the state space size of
a BN and its inference time as compared to treewidth of a BN and the inference time. We
developed a SLIM-based algorithm, building on top of BN-SLIM, to tackle the Bounded
State Space BNSL problem. In the process, we upgraded the encoding, which is a part
of the local solver, by replacing the basic linear cardinality counter for treewidth with a
much more sophisticated Binary Decision Diagram-based counter. This counter allowed
us to represent and bound the sum of the logarithms of the domain sizes of the variable
sizes, i.e., bound the state space size of a BN. This is a good showcase for the flexibility
due to the MaxSAT encoding-based local solver. As a baseline for comparison, we also
upgraded the k-MAX heuristic such that it can search over the space of bounded state
space BNs instead of bounded treewidth BNs, and found that BN-SLIM obtains networks
with quicker inference times at a slight disadvantage to the score of the learned network.

In the future, it would be interesting to develop a heuristic that supports bounded
state space size natively, rather than retrofitting an existing bounded treewidth heuristic.
Further, as many of the reviewers of the conference venue Advances in Neural Information
Processing Systems 2021 (NeurIPS’21) appreciated, there is a huge abundance of bounded
treewidth based methods but hardly any bounded state space methods; despite it being
the superior metric when it comes to ensuring tractable inference. Thus, the BNSL
community as a whole, could benefit from widespread adoption of the bounded state
space metric which is perhaps accelerated by the availability of more bounded state space
methods.

86

7.3. BNSL with Expert Constraints

7.3 BNSL with Expert Constraints
In our work on Constrained BNSL (Chapter 6), we proposed the first algorithm for BNSL
that simultaneously supports the requirements of

i. learning a BN of bounded treewidth,

ii. satisfying expert constraints, including positive and negative ancestry properties
between nodes, and

iii. scaling up to BNs with several thousand nodes.

The algorithm operates in two phases. In Phase 1, we modify the BN structure learning
algorithm k-greedy to obtain Con-k-greedy. k-greedy is modified such that the BN it
learns support a portion of the given constraints. In Phase 2, we follow the BN-SLIM
framework. We improve the initial heuristic BN produced by Con-k-greedy by repeatedly
running a MaxSAT solver on selected local parts. The MaxSAT encoding entails local
versions of the expert constraints as hard constraints, thereby ensuring that all the
constraints remain satisfied while also maximizing the score of the local part. This is
another example of how the expressiveness of MaxSAT proves to be helpful. We evaluated
a prototype implementation of our algorithm on several standard benchmark sets. The
encouraging results demonstrate the power and flexibility of the BN-SLIM framework. It
boosts the score while increasing the number of satisfied expert constraints.

This work has numerous promising follow-ups. Similar to Con-k-greedy, we could also
upgrade k-MAX or ETL to respect expert constraints. This would be more involved but
could result in initial heuristic solutions with significantly higher scores. It might also
be worth investigating if other (not necessarily state-of-the-art) BNSL algorithms can
be upgraded to respect expert constraints. Since both k-greedy and k-MAX operate on
a randomly sampled linear ordering, it is a common occurrence that they fail to find
any candidate networks respecting the expert constraints. This was precisely the reason
for treating some expert constraints as soft constraints which meant that SLIM could
not guarantee 100% constraint satisfaction despite Phase 2 treating all hitherto satisfied
constraints as hard constraints. Another related area for improvement is the construction
of the root bag in Con-k-greedy in Phase 1. We can use an exact solver which respects
all expert constraints in this place, and the MaxSAT encoding itself would be viable
candidate for the same.

There is a lot of potential for future research in Phase 2 as well. At the moment, we
noticed that the number of satisfied constraints sometimes increases in Phase 2 despite
the encoding not being explicitly asked to optimize for it. This can be easily turned in
our favor, if we update the status of these accidentally satisfied constraints to be hard
constraints from that point on. This way, we can promise a monotonic increase in both
the score and the number of satisfied constraints. Lastly, another natural extension is
to consider more types of constraints and possibly more sophisticated constraints. We
suspect that the MaxSAT encoding currently in use is not nearly at its limit and can

87

7. Conclusion

probably handle more different constraint types. One could also investigate the possibility
of incorporating expert constraints into probabilistic graphical models other than BNs.

7.4 General Future Directions
There are several potential lines of research that apply to all the SLIM approaches we have
seen so far. The most straightforward of those is parallelization. Since each individual
improvement works on a local part, it lends itself well to parallelization across different
non-overlapping local parts. This, of course, requires access to a multicore processor to
reap benefits. One potential strategy for accomplishing this could be to maintain a global
job queue and several workers. Then the job manager, pushes local parts as jobs onto
the queue, which the workers then sequentially pick up one by one. Then the worker
acts as a local solver for the job that they picked up and upon completion, marks the job
as done, removing it from the queue. The manager has the responsibility of ensuring
that none of the jobs currently present on the queue overlap.

We could also investigate alternate strategies for local instance selection. Currently, we
select the local instances somewhat randomly. We pick a random starting bag in the
tree decomposition and keep including variables from the neighboring bags as long as
the budget is not exceeded. We could instead opt for smarter and more sophisticated
approaches. An example of this is defining a ‘promise’ metric for local subinstances and
picking the most promising subinstance first. Such a promise metric would have to be
problem-dependent, for instance, for score-based BNSL, inspired by k-MAX, one could
compare the current sum of local scores to the maximum possible sum of local scores
from the cache for the variables in a local instance. Another idea is to use so-called ‘tabu
lists’ alongside the randomized instance selection. The tabu list ensures that the same
variable does not keep getting picked repeatedly and that the local instances do a good
job spanning the entire global solution.

A final interesting idea is the technique of ‘interleaving’, seen in Reichl, Slivovsky, and
Szeider [RSS23]. A prerequisite for this technique is that we need a global solver that
can itself optionally accept a starting solution and improve it further. Both k-greedy
and k-MAX fail to satisfy this requirement as they always learn a new BN from scratch
and cannot optimize a provided BN. However, ETL might be promising candidate for
this. The key idea is to alternate between the global solver and the local solver always
starting from the current best solution, instead of just using the global solver once at the
beginning.

7.5 Closing Remarks
Throughout this thesis, we looked at several variants of the BNSL problem and how the
SLIM framework is an incredibly effective tool for solving this problem. We attribute this
success to the inherent complementary nature of the local solver and the global solver.
By virtue of this diversity, the SLIM framework is able to surmount a wide range of

88

7.5. Closing Remarks

problems without changing the skeleton of the framework and with only relatively small
modifications.

We would like to present an interesting analogy to demonstrate this. Consider the
problem at hand to be a marathon race. The distance covered corresponds to the quality
of the solution and the time required to cover that distance is the running time of the
algorithm. Some of the contenders at the starting line are:

• heuristic algorithms: fast and nimble, but they run out of steam quickly and
struggle to cover good distance,

• exact algorithms: what they lack in speed, they make up for in endurance, and
hence are likely to reach the finish line, albeit very slowly.

Now, a SLIM algorithm is like a team of two, composed of a heuristic global solver and an
exact local solver. For SLIM, the marathon is more like a relay race, where it capitalizes
on the speed of the heuristic solver to gain good distance quickly at the start of the race
and then the baton is passed over from the global solver to the exact local solver. SLIM
then uses the meticulousness (i.e., endurance) of the local solver to still ensure a steady
rate of progress at a point where the heuristic algorithm fails to do so. In this way, SLIM
can take advantage of both these approaches and outperform methods that rely on just
one.

89

List of Figures

1.1 Examples of graphs . 2
1.2 Example of a BN . 5
1.3 Example of a tree and a non-tree . 8
1.4 Examples of tree decompositions . 9
1.5 Demonstration of property T2 . 10
1.6 Treewidths of common graphs . 12
1.7 Tree decomposition of a BN . 13

2.1 Lifecycle of a problem . 17
2.2 Overview of SLIM . 19

3.1 Example of a BN . 27
3.2 Example of a treedepth decomposition . 33

4.1 Illustration for Theorem 4.1 . 43
4.2 CDF plots comparing bounded treewidth BNSL methods 51
4.3 Comparison between BN-SLIM(k-MAX) and k-MAX 52
4.4 Comparison between BN-SLIM(ETL) and ETL 53

5.1 Approaches for BNSL . 57
5.2 Correlation of width measures with reasoning time 59
5.3 Example of the BDD counter construction 63
5.4 Scatter plots comparing tw methods and msss methods 66

6.1 Activity plot of Con-k-greedy . 75
6.2 Activity plot of Con-k-greedy and Con-BN-SLIM 82

91

List of Tables

1.1 Semantics of RVs used in Example 1.2 . 5

4.1 Real-world data sets for Chapter 4 Experiment 50
4.2 Synthetic data sets for Chapter 4 Experiment 50
4.3 ∆BIC category scale . 51

6.1 Examples of expert constraints . 70
6.2 Types of expert constraints . 70
6.3 Comparing methods which support expert constraints 71
6.4 Characteristics of data set used for Chapter 6 Experiment 81
6.5 Score comparison between Con-BN-SLIM and Con-k-greedy 83
6.6 Comparison of constraint satisfaction . 83

92

List of Algorithms

3.1 Pseudocode template for SLIM . 32

3.2 Pseudocode for k-greedy . 34

6.1 Pseudocode for Compile . 73

6.2 Pseudocode for Con-k-greedy . 74

93

Definition Index

∧, ∨, ¬, 15
⊤, 77
→,→/ ,↔,⇝,⇝/ , 70

adjacent, 3
adjacent boundary vertices, 42, 60, 76
algorithm

anytime, 18
anc, 77
ancestor, 3

first-hit, 77
arc, 3

virtual, 42, 60
assignment, 16
A→

virt(·, ·), 46

bag, 8
β, 18
BN (Bayesian Network), 4
BNSL (Bayesian Network Structure Learn-

ing), 6
budget, 18

categorical RV, 4
χnew, 42, 76
clause, 16

hard, 16
soft, 16

clause weight, 16
clique, 11
CNF (Conjunctive Normal Form), 16
conjunction, 15
conservative, 61
constraint set, 72

CPD (Conditional Probability Distribu-
tion), 4

cycle, 3

DAG (Directed Acyclic Graph), 3
degree, 3
∆BIC, 50
desc, 77
descendant, 3

first-hit, 77
disjunction, 15
Dnew, 42
Dnew, 60
domain, 4
ds(·), 58
Dnew

S , 42, 76
Dnew

S , 60

edge, 2
directed, 2
moral, 13
undirected, 2
virtual, 42, 60

encoding, 16
Enew, 42
Enew

S , 42
Evirt, 42, 76
E→

virt, 42, 60, 76
extended moral graph, 76

f ′(·, ·), 46
formula

propositional, 15

graph

95

acyclic, 3
connected, 3
directed, 2
undirected, 2

graph over a set, 3
growing k-trees, 21

in-degree, 3
incident, 3
inference, 7
instance, 6
intractable problem, 17

k-tree, 20
K0, 48

maximum state space size, 58
MaxSAT solver, 16
MaxSAT (Maximum Satisfiability), 16
Mext, 42, 60, 76
moral graph

extended, 42, 60
moralization, 13

negation, 15
neighbor, 3
neighborhood, 3
node, 2

obey a partial order, 72
out-degree, 3

parameter learning, 6
parameters, 4
partial order, 72
path, 3

simple, 3
path avoiding a set, 72
ΦS , 62
ΦD,f (S), 48
Φ′

S , 62
predecessor, 3

reasoning, 7
replacement consistency, 18

RV (random variable), 4

S, 42, 60, 76
SAT (Propositional Satisfiability), 16
SAT solver, 16
satisfied, 16
scalability, 17
significantly improved, 51
SLIM (SAT-based Local Improvement

Method), 18
Snew, 42, 76
solution

global, 18
solver

global, 18
local, 18

Snew, 42, 76
structure, 4
structure learning, 6
subgraph, 3
subproblem, 18
successor, 3

timeout
global, 18
local, 18
MaxSAT solver, 16

tree, 8
tree decomposition, 8
treewidth, 9

variable
Boolean, 15

vertex, 2
boundary, 42, 60, 76
external, 42, 60, 76
internal, 42, 60, 76

virtual arc, 76
virtual edge, 76

well-behaved, 61
width, 9

96

Expert Index

∧, ∨, ¬, −→, 29
⊤, 77
→,→/ ,↔,⇝,⇝/ , 70

adjacent, 26
adjacent boundary vertices, 42, 60, 76
algorithm

anytime, 30
anc, 77
ancestor, 26

first-hit, 77
arc, 26

virtual, 42, 60
assignment, 30
A→

virt(·, ·), 46

bag, 28
β, 31
BN (Bayesian Network), 26
BNSL (Bayesian Network Structure Learn-

ing), 27
budget, 31

χnew, 42, 76
clause, 30

hard, 30
soft, 30

clause weight, 30
clique, 26
CNF (Conjunctive Normal Form), 30
conjunction, 29
conservative, 61
constraint set, 72
CPD (Conditional Probability Distribu-

tion), 26

cycle, 26

DAG (Directed Acyclic Graph), 26
degree, 26
∆BIC, 50
desc, 77
descendant, 26

first-hit, 77
disjunction, 29
Dnew, 42
Dnew, 60
dom(·), 26
domain, 26
ds(·), 58
Dnew

S , 42, 76
Dnew

S , 60

E(G), 25
edge, 25, 26

directed, 25
fill-in, 28
moral, 29
undirected, 25
virtual, 42, 60

elimination ordering, 28
encoding, 30
Enew, 42
Enew

S , 42
Evirt, 42, 76
E→

virt, 42, 60, 76
extended moral graph, 76

f(·, ·), 28
f ′(·, ·), 46

97

feasible parent set, 33
formula

propositional, 29
fortification, 31

G[S], 26
graph

acyclic, 26
connected, 26
directed, 25
undirected, 25

graph over a set, 26
growing k-trees, 29

heuristic, 31

in-degree, 26
incident, 26
inference, 28
instance, 27
intractable problem, 31

k-tree, 29
K0, 48

length of a path, 26
literal, 30

M(·), 29
m(·), 34
maximum state space size, 58
MaxSAT solver, 30
MaxSAT (Maximum Satisfiability), 30
Mext, 42, 60, 76
moral graph

extended, 42, 60
moralization, 29

N(·), 26
negation, 29
neighbor, 26
neighborhood, 26
node, 25

obey a partial order, 72
out-degree, 26

parameter learning, 27
parameters, 26
parent, 28
parent set, 28
partial order, 72
path, 26

simple, 26
path avoiding a set, 72
ΦS , 62
ΦD,f (S), 48
Φ′

S , 62
predecessor, 26

reasoning, 28
replacement consistency, 31
RV

categorical, 26
RV (random variable), 26

S, 42, 60, 76
SAT (Propositional Satisfiability), 29
SAT solver, 30
satisfiable, 30
satisfied, 30
scalability, 31
score function, 28

decomposable, 27
score function cache, 28
significantly improved, 51
SLIM (SAT-based Local Improvement

Method), 30
Snew, 42, 76
solution

global, 31
solver

global, 31
local, 31

Snew, 42, 76
star, 26
structure, 26
structure learning, 26
successor, 26

timeout

98

global, 32
local, 31
MaxSAT solver, 30

tree, 26
tree decomposition, 28
treedepth, 32
treewidth, 28

unsatisfiable, 30

V (G), 25
vertex, 25

boundary, 42, 60, 76
external, 42, 60, 76
internal, 42, 60, 76

virtual arc, 76
virtual edge, 76

well-behaved, 61
width, 28

99

Bibliography

[Aka74] Hirotugu Akaike. “A new look at the statistical model identification”. In:
IEEE transactions on automatic control 19.6 (1974), pp. 716–723.

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. “Complexity
of finding embeddings in a k-tree”. In: SIAM J. Algebraic Discrete Methods
8.2 (1987), pp. 277–284.

[Bek+15] Jessa Bekker et al. “Tractable learning for complex probability queries”. In:
Advances in Neural Information Processing Systems. 2015, pp. 2242–2250.

[BBL19] Marco Benjumeda, Concha Bielza, and Pedro Larrañaga. “Learning Tractable
Bayesian networks in the space of elimination orders”. In: Artificial Intelli-
gence 274 (2019), pp. 66–90.

[BJM14] Jeremias Berg, Matti Järvisalo, and Brandon M. Malone. “Learning Optimal
Bounded Treewidth Bayesian Networks via Maximum Satisfiability”. In: Pro-
ceedings of the Seventeenth International Conference on Artificial Intelligence
and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014. Vol. 33.
JMLR Workshop and Conference Proceedings. JMLR.org, 2014, pp. 86–95.

[BB73] Umberto Bertele and Francesco Brioschi. “On non-serial dynamic program-
ming”. In: J. Comb. Theory, Ser. A 14.2 (1973), pp. 137–148.

[BM93] Hans L. Bodlaender and Rolf H. Möhring. “The Pathwidth and Treewidth
of Cographs”. In: SIAM J. Discrete Math. 6.2 (1993), pp. 181–188. doi:
10.1137/0406014.

[Che+16] Eunice Yuh-Jie Chen et al. “Learning Bayesian networks with ancestral
constraints”. In: Advances in Neural Information Processing Systems 29
(2016).

[Chi96] David Maxwell Chickering. Learning Equivalence Classes Of Bayesian Net-
work Structures. 1996.

[Chi02] David Maxwell Chickering. “Learning Equivalence classes of Bayesian-Network
Structures”. In: J. Mach. Learn. Res. 2 (2002), pp. 445–498.

[CHM04] Max Chickering, David Heckerman, and Chris Meek. “Large-sample learning
of Bayesian networks is NP-hard”. In: Journal of Machine Learning Research
5 (2004), pp. 1287–1330.

101

https://doi.org/10.1137/0406014

[Coo90] Gregory F. Cooper. “The computational complexity of probabilistic inference
using Bayesian belief networks”. In: Artificial Intelligence 42.2-3 (1990),
pp. 393–405.

[Cor+13] Jukka Corander et al. “Learning Chordal Markov Networks by Constraint
Satisfaction”. In: Advances in Neural Information Processing Systems. Vol. 26.
Curran Associates, Inc., 2013. (Visited on 02/23/2022).

[Cyg+15] Marek Cygan et al. Parameterized algorithms. Vol. 5. 4. Springer, 2015.
[DL93] Paul Dagum and Michael Luby. “Approximating Probabilistic Inference in

Bayesian Belief Networks is NP-Hard”. In: Artificial Intelligence 60.1 (1993),
pp. 141–153.

[Dec99] Rina Dechter. “Bucket elimination: a unifying framework for reasoning”. In:
Artificial Intelligence 113.1-2 (1999), pp. 41–85.

[Die00] Reinhard Diestel. Graph Theory. 2nd. Vol. 173. Graduate Texts in Mathe-
matics. New York: Springer Verlag, 2000.

[ES06] Niklas Eén and Niklas Sörensson. “Translating Pseudo-Boolean Constraints
into SAT”. In: J. Satisf. Boolean Model. Comput. 2.1-4 (2006), pp. 1–26. doi:
10.3233/sat190014. url: https://doi.org/10.3233/sat190014.

[EG09] Gal Elidan and Stephen Gould. “Learning Bounded Treewidth Bayesian
Networks”. In: Advances in Neural Information Processing Systems 21, Pro-
ceedings of the Twenty-Second Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 8-11,
2008. Ed. by Daphne Koller et al. Curran Associates, Inc., 2009, pp. 417–424.

[FLS17] Johannes K. Fichte, Neha Lodha, and Stefan Szeider. “SAT-Based Local
Improvement for Finding Tree Decompositions of Small Width”. In: Theory
and Applications of Satisfiability Testing - SAT 2017 - 20th International
Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017,
Proceedings. Ed. by Serge Gaspers and Toby Walsh. Vol. 10491. Lecture Notes
in Computer Science. Springer Verlag, 2017, pp. 401–411. doi: 10.1007/978-
3-319-66263-3_25.

[Fic+18] Johannes K. Fichte et al. “An SMT Approach to Fractional Hypertree Width”.
In: Proceedings of CP 2018, the 24rd International Conference on Principles
and Practice of Constraint Programming. Ed. by John N. Hooker. Vol. 11008.
Lecture Notes in Computer Science. Springer Verlag, 2018, pp. 109–127. doi:
10.1007/978-3-319-98334-9_8.

[Gan+19] Robert Ganian et al. “SAT-Encodings for Treecut Width and Treedepth”. In:
Proceedings of ALENEX 2019, the 21st Workshop on Algorithm Engineering
and Experiments. Ed. by Stephen G. Kobourov and Henning Meyerhenke.
SIAM, 2019, pp. 117–129. doi: 10.1137/1.9781611975499.10.

102

https://doi.org/10.3233/sat190014
https://doi.org/10.3233/sat190014
https://doi.org/10.1007/978-3-319-66263-3_25
https://doi.org/10.1007/978-3-319-66263-3_25
https://doi.org/10.1007/978-3-319-98334-9_8
https://doi.org/10.1137/1.9781611975499.10

[GD04] Vibhav Gogate and Rina Dechter. “A Complete Anytime Algorithm for
Treewidth”. In: Proceedings of the Twentieth Conference Annual Conference
on Uncertainty in Artificial Intelligence (UAI-04). Arlington, Virginia: AUAI
Press, 2004, pp. 201–208.

[Guo] Haipeng Guo. BBNConvertor – Bayesian Networks Formats Convertor.
[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring network

structure, dynamics, and function using NetworkX”. In: Proceedings of the
7th Python in Science Conference (SciPy2008). Pasadena, CA USA, Aug.
2008, pp. 11–15.

[Hal76] Rudolf Halin. “S-functions for graphs”. In: Journal of Geometry 8.1 (1976),
pp. 171–186.

[HNC65] Frank Harary, Robert Z. Norman, and Dorwin Cartwright. Structural Models:
An Introduction to the Theory of Directed Graphs. New York: John Wiley &
Sons, 1965.

[HGC95] David Heckerman, Dan Geiger, and David Maxwell Chickering. “Learning
Bayesian Networks: The Combination of Knowledge and Statistical Data”.
In: Machine Learning 20.3 (1995), pp. 197–243.

[HB22] Randy Hickey and Fahiem Bacchus. “Large Neighbourhood Search for Any-
time MaxSAT Solving”. In: Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22. Ed. by Lud De Raedt.
Main Track. International Joint Conferences on Artificial Intelligence Or-
ganization, July 2022, pp. 1818–1824. doi: 10.24963/ijcai.2022/253. url:
https://doi.org/10.24963/ijcai.2022/253.

[Ide15] Jaime S. Ide. BNGenerator – A generator for random Bayesian network.
2015. url: http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator (visited
on 06/03/2020).

[Kas+11] Kalev Kask et al. “Pushing the Power of Stochastic Greedy Ordering Schemes
for Inference in Graphical Models”. In: Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence (AAAI 2011). Ed. by Wolfram Burgard
and Dan Roth. AAAI Press, 2011, pp. 54–60.

[KKN01] Russell J Kennett, Kevin B Korb, and Ann E Nicholson. “Seabreeze prediction
using Bayesian networks”. In: Pacific-Asia conference on knowledge discovery
and data mining. Springer. 2001, pp. 148–153.

[Kjæ92] Uffe Kjærulff. “Optimal decomposition of probabilistic networks by simulated
annealing”. In: Statistics and Computing 2 (1992), pp. 7–17.

[KP13] Janne H. Korhonen and Pekka Parviainen. “Exact Learning of Bounded Tree-
width Bayesian Networks”. In: Proceedings of the Sixteenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale,
AZ, USA, April 29 - May 1, 2013. Vol. 31. JMLR Workshop and Conference
Proceedings. JMLR.org, 2013, pp. 370–378.

103

https://doi.org/10.24963/ijcai.2022/253
https://doi.org/10.24963/ijcai.2022/253
http://sites.poli.usp.br/pmr/ltd/Software/BNGenerator

[KBG10] Johan Kwisthout, Hans L. Bodlaender, and Linda C. van der Gaag. “The
Necessity of Bounded Treewidth for Efficient Inference in Bayesian Networks”.
In: ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon,
Portugal, August 16-20, 2010, Proceedings. Ed. by Helder Coelho, Rudi Studer,
and Michael Wooldridge. Vol. 215. Frontiers in Artificial Intelligence and
Applications. IOS Press, 2010, pp. 237–242.

[LBT10] Hugo Larochelle, Yoshua Bengio, and Joseph Turian. “Tractable multivariate
binary density estimation and the restricted Boltzmann forest”. In: Neural
computation 22.9 (2010), pp. 2285–2307.

[LS88] S. L. Lauritzen and D. J. Spiegelhalter. “Local Computations with Probabili-
ties on Graphical Structures and Their Application to Expert Systems”. In:
J. R. Stat. Soc. Ser. B. 50.2 (1988), pp. 157–224.

[LB18] Andrew Li and Peter van Beek. “Bayesian network structure learning with
side constraints”. In: International Conference on Probabilistic Graphical
Models. PMLR. 2018, pp. 225–236.

[LOS16] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. “A SAT Approach
to Branchwidth”. In: Theory and Applications of Satisfiability Testing -
SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8,
2016, Proceedings. Ed. by Nadia Creignou and Daniel Le Berre. Vol. 9710.
Lecture Notes in Computer Science. Springer Verlag, 2016, pp. 179–195. doi:
10.1007/978-3-319-40970-2_12.

[LOS17] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. “SAT-Encodings for
Special Treewidth and Pathwidth”. In: Theory and Applications of Satis-
fiability Testing - SAT 2017 - 20th International Conference, Melbourne,
VIC, Australia, August 28 - September 1, 2017, Proceedings. Ed. by Serge
Gaspers and Toby Walsh. Vol. 10491. Lecture Notes in Computer Science.
Springer Verlag, 2017, pp. 429–445. doi: 10.1007/978-3-319-66263-3_27.
url: http://www.ac.tuwien.ac.at/files/tr/ac-tr-17-012.pdf.

[LOS19] Neha Lodha, Sebastian Ordyniak, and Stefan Szeider. “A SAT Approach to
Branchwidth”. In: ACM Trans. Comput. Log. 20.3 (2019), 15:1–15:24. doi:
10.1145/3326159. url: http://www.ac.tuwien.ac.at/files/tr/ac-tr-19-010.pdf.

[LD10] Daniel Lowd and Jesse Davis. “Learning Markov network structure with
decision trees”. In: 2010 IEEE International Conference on Data Mining.
IEEE. 2010, pp. 334–343.

[MJ96] Marina Meila and Michael I. Jordan. “Triangulation by Continuous Em-
bedding”. In: Advances in Neural Information Processing Systems 9, NIPS,
Denver, CO, USA, December 2-5, 1996. Ed. by Michael Mozer, Michael I.
Jordan, and Thomas Petsche. MIT Press, 1996, pp. 557–563.

104

https://doi.org/10.1007/978-3-319-40970-2_12
https://doi.org/10.1007/978-3-319-66263-3_27
http://www.ac.tuwien.ac.at/files/tr/ac-tr-17-012.pdf
https://doi.org/10.1145/3326159
http://www.ac.tuwien.ac.at/files/tr/ac-tr-19-010.pdf

[NJ07] Richard E. Neapolitan and Xia Jiang. “Chapter 4 - Learning Bayesian
Networks”. In: Probabilistic Methods for Financial and Marketing Informatics.
Ed. by Richard E. Neapolitan and Xia Jiang. Burlington: Morgan Kaufmann,
2007, pp. 111–175. isbn: 978-0-12-370477-1. doi: https://doi.org/10.1016/
B978-012370477-1.50021-9. url: https://www.sciencedirect.com/science/
article/pii/B9780123704771500219.

[NCJ15] Siqi Nie, Cassio Polpo de Campos, and Qiang Ji. “Learning Bounded Tree-
Width Bayesian Networks via Sampling”. In: Symbolic and Quantitative
Approaches to Reasoning with Uncertainty - 13th European Conference, EC-
SQARU 2015, Compiègne, France, July 15-17, 2015. Proceedings. Ed. by
Sébastien Destercke and Thierry Denoeux. Vol. 9161. Lecture Notes in Com-
puter Science. Springer Verlag, 2015, pp. 387–396.

[NCJ16] Siqi Nie, Cassio Polpo de Campos, and Qiang Ji. “Learning Bayesian Networks
with Bounded Tree-width via Guided Search”. In: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA. Ed. by Dale Schuurmans and Michael P. Wellman. AAAI
Press, 2016, pp. 3294–3300.

[OD08a] Lars Otten and Rina Dechter. “Bounding Search Space Size via (Hyper)tree
Decompositions”. In: UAI 2008, Proceedings of the 24th Conference in Un-
certainty in Artificial Intelligence, Helsinki, Finland, July 9-12, 2008. Ed. by
David A. McAllester and Petri Myllymäki. AUAI Press, 2008, pp. 452–459.

[OD08b] Lars Otten and Rina Dechter. “Refined Bounds for Instance-Based Search
Complexity of Counting and Other #P Problems”. In: Principles and Practice
of Constraint Programming, 14th International Conference, CP 2008, Sydney,
Australia, September 14-18, 2008. Proceedings. Ed. by Peter J. Stuckey.
Vol. 5202. Lecture Notes in Computer Science. Springer Verlag, 2008, pp. 576–
581. doi: 10.1007/978-3-540-85958-1_45.

[PFL14] Pekka Parviainen, Hossein Shahrabi Farahani, and Jens Lagergren. “Learning
Bounded Tree-width Bayesian Networks using Integer Linear Programming”.
In: Proceedings of the Seventeenth International Conference on Artificial
Intelligence and Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25,
2014. Vol. 33. JMLR Workshop and Conference Proceedings. JMLR.org, 2014,
pp. 751–759.

[Pea85] Judea Pearl. “Bayesian networks: A model of self-activated memory for
evidential reasoning”. In: Proceedings of the 7th Conference of the Cognitive
Science Society, University of California, Irvine, CA, USA. 1985, pp. 15–17.

[Pea88] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausi-
ble inference. The Morgan Kaufmann Series in Representation and Reasoning.
San Mateo, CA: Morgan Kaufmann, 1988.

105

https://doi.org/https://doi.org/10.1016/B978-012370477-1.50021-9
https://doi.org/https://doi.org/10.1016/B978-012370477-1.50021-9
https://www.sciencedirect.com/science/article/pii/B9780123704771500219
https://www.sciencedirect.com/science/article/pii/B9780123704771500219
https://doi.org/10.1007/978-3-540-85958-1_45

[PS20] Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. “MaxSAT-Based
Postprocessing for Treedepth”. In: Proceedings of CP 2020, the 26th Inter-
national Conference on Principles and Practice of Constraint Programming.
Ed. by Helmut Simonis. Vol. 12333. Lecture Notes in Computer Science.
Springer Verlag, 2020, pp. 478–495. doi: 10.1007/978-3-030-58475-7_28.

[PS21a] Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. BN-SLIM source
code. Version nips21. Oct. 2021. doi: 10.5281/zenodo.5598257. url: https:
//doi.org/10.5281/zenodo.5598257.

[PS21b] Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. “Learning Fast-
Inference Bayesian Networks”. In: Advances in Neural Information Processing
Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021,
pp. 17852–17863. url: https://proceedings.neurips.cc/paper/2021/file/
94e70705efae423efda1088614128d0b-Paper.pdf.

[PS21c] Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. “Turbocharging
Treewidth-Bounded Bayesian Network Structure Learning”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 35.5 (May 2021), pp. 3895–
3903. doi: 10.1609/aaai.v35i5.16508. url: https://ojs.aaai.org/index.php/
AAAI/article/view/16508.

[PS22] Vaidyanathan Peruvemba Ramaswamy and Stefan Szeider. “Learning large
Bayesian networks with expert constraints”. In: Proceedings of the Thirty-
Eighth Conference on Uncertainty in Artificial Intelligence. Ed. by James
Cussens and Kun Zhang. Vol. 180. Proceedings of Machine Learning Research.
PMLR, Aug. 2022, pp. 1592–1601. url: https://proceedings.mlr.press/v180/
peruvemba-ramaswamy22a.html.

[PR10] David Pisinger and Stefan Ropke. “Large neighborhood search”. In: Handbook
of metaheuristics. Springer, 2010, pp. 399–419.

[Raf95] Adrian E. Raftery. “Bayesian Model Selection in Social Research”. In: Socio-
logical Methodology 25 (1995), pp. 111–163. issn: 00811750, 14679531. doi:
10.2307/271063.

[RSS23] Franz Reichl, Friedrich Slivovsky, and Stefan Szeider. “Circuit Minimization
with QBF-Based Exact Synthesis”. In: Proceedings of the AAAI Conference
on Artificial Intelligence 37 (2023). To appear.

[RS84] Neil Robertson and Paul D Seymour. “Graph minors. III. Planar tree-width”.
In: Journal of Combinatorial Theory, Series B 36.1 (1984), pp. 49–64.

[Rot96] Dan Roth. “On the hardness of approximate reasoning”. In: Artificial Intelli-
gence 82.1-2 (1996), pp. 273–302.

[SV09] Marko Samer and Helmut Veith. “Encoding Treewidth into SAT”. In: Theory
and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings.
Vol. 5584. Lecture Notes in Computer Science. Springer Verlag, 2009, pp. 45–
50.

106

https://doi.org/10.1007/978-3-030-58475-7_28
https://doi.org/10.5281/zenodo.5598257
https://doi.org/10.5281/zenodo.5598257
https://doi.org/10.5281/zenodo.5598257
https://proceedings.neurips.cc/paper/2021/file/94e70705efae423efda1088614128d0b-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/94e70705efae423efda1088614128d0b-Paper.pdf
https://doi.org/10.1609/aaai.v35i5.16508
https://ojs.aaai.org/index.php/AAAI/article/view/16508
https://ojs.aaai.org/index.php/AAAI/article/view/16508
https://proceedings.mlr.press/v180/peruvemba-ramaswamy22a.html
https://proceedings.mlr.press/v180/peruvemba-ramaswamy22a.html
https://doi.org/10.2307/271063

[Sca15] Mauro Scanagatta. BLIP – Bayesian Network learning and inference package.
2015. url: https://ipg.idsia.ch/software/blip (visited on 06/03/2020).

[Sca+16] Mauro Scanagatta et al. “Learning Treewidth-Bounded Bayesian Networks
with Thousands of Variables”. In: Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain. Ed. by Daniel D. Lee et al.
2016, pp. 1462–1470.

[Sca+18] Mauro Scanagatta et al. “Efficient learning of bounded-treewidth Bayesian
networks from complete and incomplete data sets”. In: Int. J. Approx. Reason
95 (2018), pp. 152–166.

[Sch22] André Schidler. “SAT-Based Local Search for Plane Subgraph Partitions”.
In: Symposium on Computational Geometry (SoCG). 2022, 74:1–74:8.

[SS20] André Schidler and Stefan Szeider. “Computing Optimal Hypertree Decompo-
sitions”. In: Proceedings of ALENEX 2020, the 22nd Workshop on Algorithm
Engineering and Experiments. Ed. by Guy Blelloch and Irene Finocchi. SIAM,
2020, pp. 1–11.

[SS21] André Schidler and Stefan Szeider. “SAT-based Decision Tree Learning
for Large Data Sets”. In: Proceedings of AAAI’21, the Thirty-Fifth AAAI
Conference on Artificial Intelligence. AAAI Press, 2021.

[SS22] André Schidler and Stefan Szeider. SAT-Boosted Tabu Search for Coloring
Massive Graphs. 2022.

[Sch78] Gideon Schwarz. “Estimating the dimension of a model”. In: The Annals of
Statistics 6.2 (1978), pp. 461–464.

[VD12] Jan Van Haaren and Jesse Davis. “Markov network structure learning: A
randomized feature generation approach”. In: Twenty-Sixth AAAI Conference
on Artificial Intelligence. 2012.

107

https://ipg.idsia.ch/software/blip

	Kurzfassung
	Abstract
	Contents
	Gentle Introduction
	Graph Theory
	Bayesian Network Structure Learning
	Tree Decompositions

	Algorithms for BNSL
	Maximum Satisfiability
	SAT-based Local Improvement Method
	Heuristics for the BNSL Problem
	Solving the BNSL Problem

	Notation and Background
	Theoretical Background
	Algorithmic Background
	Overview of Results

	Bounded Treewidth BNSL
	Introduction and Motivation
	Local Improvement
	Implementing the Local Improvement
	Experimental Evaluation
	Conclusion/Related Work

	Bounded State-Space BNSL
	Introduction and Motivation
	Treewidth and Maximum State Space Size
	BN Learning of Bounded State Space Size
	Experimental Evaluation
	Conclusion

	BNSL with Expert Constraints
	Introduction
	Additional Background
	k-greedy with Constraints
	BN-SLIM with Constraints
	Experimental Evaluation
	Conclusion

	Conclusion
	Bounded Treewidth BNSL
	Bounded State Space BNSL
	BNSL with Expert Constraints
	General Future Directions
	Closing Remarks

	List of Figures
	List of Tables
	List of Algorithms
	Definition Index
	Expert Index
	Bibliography

